
An Introduction to Modular Forms

Henri Cohen

Abstract In this course, we introduce the main notions relative to the classical
theory of modular forms. A complete treatise in a similar style can be found in
the author’s book joint with Strömberg (Cohen and Strömberg, Modular Forms: A
Classical Approach, Graduate Studies in Math. 179, American Math. Soc. (2017)
[1]).

1 Functional Equations

Let f be a complex function defined over some subset D ofC. A functional equation
is some type of equation relating the value of f at any point z ∈ D to someother point,
for instance, f (z + 1) = f (z). If γ is some function from D to itself, one can ask
more generally that f (γ (z)) = f (z) for all z ∈ D (or even f (γ (z)) = v(γ, z) f (z)
for some known function v). It is clear that f (γ m(z)) = f (z) for allm ≥ 0, and even
for all m ∈ Z if γ is invertible, and more generally the set of bijective functions u
such that f (u(z)) = f (z) forms a group.

Thus, the basic setting of functional equations (at least of the type thatwe consider)
is that we have a group of transformations G of D, that we ask that f (u(z)) = f (z)
(or more generally f (u(z)) = j (u, z) f (z) for some known j) for all u ∈ G and
z ∈ D, and we ask for some type of regularity condition on f such as continuity,
meromorphy, or holomorphy.

Note that there is a trivial but essential way to construct from scratch functions f
satisfying a functional equation of the above type: simply choose any function g and
set f (z) = ∑

v∈G g(v(z)). SinceG is a group, it is clear that formally f (u(z)) = f (z)
for u ∈ G. Of course there are convergence questions to be dealt with, but this is a
fundamental construction, which we call averaging over the group.

We consider a few fundamental examples.
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1.1 Fourier Series

We choose D = R and G = Z acting on R by translations. Thus, we ask that f (x +
1) = f (x) for all x ∈ R. It is well known that this leads to the theory of Fourier
series: if f satisfies suitable regularity conditions (we need not specify them here
since in the context of modular forms they will be satisfied) then f has an expansion
of the type

f (x) =
∑

n∈Z

a(n)e2π inx ,

absolutely convergent for all x ∈ R, where the Fourier coefficients a(n) are given by
the formula

a(n) =
∫ 1

0
e−2π inx f (x) dx ,

which follows immediately from the orthonormality of the functions e2π imx (you
may of course replace the integral from 0 to 1 by an integral from z to z + 1 for any
z ∈ R).

An important consequence of this, easily proved, is the Poisson summation for-
mula: define the Fourier transform of f by

f̂ (x) =
∫ ∞

−∞
e−2π i xt f (t) dt .

We ignore all convergence questions, although of course they must be taken into
account in any computation.

Consider the function g(x) = ∑
n∈Z

f (x + n), which is exactly the averaging
procedure mentioned above. Thus g(x + 1) = g(x), so g has a Fourier series, and an
easy computation shows the following (again omitting any convergence or regularity
assumptions):

Proposition 1.1 (Poisson summation) We have

∑

n∈Z

f (x + n) =
∑

m∈Z

f̂ (m)e2π imx .

In particular, ∑

n∈Z

f (n) =
∑

m∈Z

f̂ (m) .

A typical application of this formula is to the ordinary Jacobi theta function: it
is well known (prove it otherwise) that the function e−πx2 is invariant under Fourier
transform. This implies the following:

Proposition 1.2 If f (x) = e−aπx2 for some a > 0, then f̂ (x) = a−1/2e−πx2/a.
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Proof Simple change of variable in the integral. �
Corollary 1.3 Define

T (a) =
∑

n∈Z

e−aπn2 .

We have the functional equation

T (1/a) = a1/2T (a) .

Proof Immediate from the proposition and Poisson summation. �
This is historically the first example of modularity, which we will see in more

detail below.

Exercise 1.4 Set S = ∑
n≥1 e

−(n/10)2 .

1. Compute numerically S to 100 decimal digits, and show that it is apparently equal
to 5

√
π − 1/2.

2. Show that, in fact, S is not exactly equal to 5
√

π − 1/2, and using the above
corollary give a precise estimate for the difference.

Exercise 1.5 1. Show that the function f (x) = 1/ cosh(πx) is also invariant under
Fourier transform.

2. In a manner similar to the corollary, define

T2(a) =
∑

n∈Z

1/ cosh(πna) .

Show that we have the functional equation

T2(1/a) = aT2(a) .

3. Show that, in fact, T2(a) = T (a)2 (this may be more difficult).
4. Do the sameexercise as theprevious onebynoticing that S = ∑

n≥1 1/ cosh(n/10)
is very close to 5π − 1/2.

Above we have mainly considered Fourier series of functions defined on R. We
now consider more generally functions f defined on C or a subset of C. We again
assume that f (z + 1) = f (z), i.e., that f is periodic of period 1. Thus (modulo
regularity), f has a Fourier series, but the Fourier coefficients a(n) now depend on
y = ℑ(z):

f (x + iy) =
∑

n∈Z

a(n; y)e2π inx with a(n; y) =
∫ 1

0
f (x + iy)e−2π inx dx .

If we impose no extra condition on f , the functions a(n; y) are quite arbitrary. But in
almost all of our applications f will beholomorphic; thismeans that ∂( f )(z)/∂z = 0,
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or equivalently that (∂/∂(x) + i∂/∂(y))( f ) = 0. Replacing in the Fourier expansion
(recall that we do not worry about convergence issues) gives

∑

n∈Z

(2π ina(n; y) + ia′(n; y))e2π inx = 0 ,

and hence by uniqueness of the expansion, we obtain the differential equation
a′(n; y) = −2πna(n; y), so that a(n; y) = c(n)e−2πny for some constant c(n). This
allows us to write cleanly the Fourier expansion of a holomorphic function in the
form

f (z) =
∑

n∈Z

c(n)e2π inz .

Note that if the function isonlymeromorphic, the regionofconvergencewillbe lim-
ited by the closest pole. Consider, for instance, the function f (z) = 1/(e2π i z − 1) =
e−π i z/(2i sin(π z)). If we set y = ℑ(z), we have |e2π i z| = e−2πy , so if y > 0, we have
the Fourier expansion f (z) = −∑

n≥0 e
2π inz , while if y < 0 we have the different

Fourier expansion f (z) = ∑
n≤−1 e

2π inz .

2 Elliptic Functions

The preceding section was devoted to periodic functions. We now assume that our
functions are defined on some subset of C and assume that they are doubly periodic:
this can be stated either by saying that there exist twoR-linearly independent complex
numbersω1 andω2 such that f (z + ωi ) = f (z) for all z and i = 1, 2, or equivalently
by saying that there exists a rank 2 lattice Λ in C (here Zω1 + Zω2) such that for
any λ ∈ Λ, we have f (z + λ) = f (z).

Note in passing that if ω1/ω2 ∈ Q this is equivalent to (single) periodicity, and
if ω1/ω2 ∈ R \ Q the set of periods would be dense so the only “doubly periodic”
(at least continuous) functions would essentially reduce to functions of one variable.
For a similar reason, there do not exist nonconstant continuous functions which are
triply periodic.

In the case of simply periodic functions considered above there already existed
some natural functions such as e2π inx . In the doubly periodic case no such function
exists (at least on an elementary level), so we have to construct them, and for this
we use the standard averaging procedure seen and used above. Here, the group is the
lattice Λ, so we consider functions of the type f (z) = ∑

ω∈Λ φ(z + ω). For this to
converge φ(z) must tend to 0 sufficiently fast as |z| tends to infinity, and since this is
a double sum (Λ is a two-dimensional lattice), it is easy to see by comparison with
an integral (assuming |φ(z)| is regularly decreasing) that |φ(z)| should decrease at
least like 1/|z|α for α > 2. Thus, a first reasonable definition is to set
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f (z) =
∑

ω∈Λ

1

(z + ω)3
=

∑

(m,n)∈Z2

1

(z + mω1 + nω2)3
.

This will indeed be a doubly periodic function, and by normal convergence it is
immediate to see that it is a meromorphic function onC having only poles for z ∈ Λ,
so this is our first example of an elliptic function, which is by definition a doubly
periodic function which is meromorphic on C. Note for future reference that since
−Λ = Λ this specific function f is odd: f (−z) = − f (z).

However, this is not quite the basic elliptic function that we need.We can integrate
term by term, as long as we choose constants of integration such that the integrated
series continues to converge. To avoid stupid multiplicative constants, we integrate
−2 f (z): all antiderivatives of −2/(z + ω)3 are of the form 1/(z + ω)2 + C(ω) for
someconstantC(ω), andhence to preserve convergencewewill chooseC(0) = 0 and
C(ω) = −1/ω2 for ω �= 0: indeed, |1/(z + ω)2 − 1/ω2| is asymptotic to 2|z|/|ω3|
as |ω| → ∞, so we are again in the domain of normal convergence. We will thus
define

℘(z) = 1

z2
+

∑

ω∈Λ\{0}

(
1

(z + ω)2
− 1

ω2

)

,

theWeierstrass ℘-function.
By construction ℘ ′(z) = −2 f (z), where f is the function constructed above, so

℘ ′(z + ω) = ℘ ′(z) for any ω ∈ Λ, and hence ℘(z + ω) = ℘(z) + D(ω) for some
constant D(ω) depending on ω but not on z. Note a slightly subtle point here: we
use the fact that C \ Λ is connected. Do you see why?

Now as before it is clear that℘(z) is an even function: thus, setting z = −ω/2 we
have ℘(ω/2) = ℘(−ω/2) + D(ω) = ℘(ω/2) + D(ω), so D(ω) = 0, and hence
℘(z + ω) = ℘(z) and ℘ is indeed an elliptic function. There is a mistake in this
reasoning: do you see it?

Since ℘ has poles on Λ, we cannot reason as we do when ω/2 ∈ Λ. Fortu-
nately, this does not matter: since ωi/2 /∈ Λ for i = 1, 2, we have shown at least that
D(ωi ) = 0, and hence that ℘(z + ωi ) = ℘(z) for i = 1, 2, so ℘ is doubly periodic
(so indeed D(ω) = 0 for all ω ∈ Λ).

The theory of elliptic functions is incredibly rich, and whole treatises have been
written about them. Since this course is mainly about modular forms, we will simply
summarize the main properties, and emphasize those that are relevant to us. All are
proved using manipulation of power series and complex analysis, and all the proofs
are quite straightforward. For instance,

Proposition 2.1 Let f be a nonzero elliptic function with period lattice Λ as
above, and denote by P = Pa a “fundamental parallelogram” Pa = {z = a +
xω1 + yω2, 0 ≤ x < 1, 0 ≤ y < 1}, where a is chosen so that the boundary of
Pa does not contain any zeros or poles of f (see Fig.1).

1. The number of zeros of f in P is equal to the number of poles (counted with
multiplicity), and this number is called the order of f .
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ω1+a ω1+ω2+aω1

ω2

Fig. 1 Fundamental Parallelogram Pa

2. The sum of the residues of f at the poles in P is equal to 0.
3. The sum of the zeros and poles of f in P belongs to Λ.
4. If f is nonconstant its order is at least 2.

Proof For (1), (2), and (3), simply integrate f (z), f ′(z)/ f (z), and z f ′(z)/ f (z) along
the boundary of P and use the residue theorem. For (4), we first note that by (2) f
cannot have order 1 since it would have a simple pole with residue 0. But it also
cannot have order 0: this would mean that f has no pole, so it is an entire function,
and since it is doubly periodic its values are those taken in the topological closure of
P which is compact, so f is bounded. By a famous theorem of Liouville (of which
this is the no lessmost famous application), it implies that f is constant, contradicting
the assumption of (4). �

Note that clearly ℘ has order 2, and the last result shows that we cannot find an
elliptic function of order 1. Note however the following:

Exercise 2.2 1. By integrating term by term the series defining −℘(z) show that
if we define the Weierstrass zeta function

ζ(z) = 1

z
+

∑

ω∈Λ\{0}

(
1

z + ω
− 1

ω
+ z

ω2

)

,
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this series converges normally on any compact subset of C \ Λ and satisfies
ζ ′(z) = −℘(z).

2. Deduce that there exist constants η1 and η2 such that ζ(z + ω1) = ζ(z) + η1 and
ζ(z + ω2) = ζ(z) + η2, so that if ω = mω1 + nω2, we have ζ(z + ω) = ζ(z) +
mη1 + nη2. Thus, ζ (which would be of order 1) is not doubly periodic but only
quasi-doubly periodic: this is called a quasi-elliptic function.

3. By integrating around the usual fundamental parallelogram, show the important
relation due to Legendre:

ω1η2 − ω2η1 = ±2π i ,

the sign depending on the ordering of ω1 and ω2.

The main properties of ℘ that we want to mention are as follows: First, for z
sufficiently small and ω �= 0, we can expand

1

(z + ω)2
=

∑

k≥0

(−1)k(k + 1)zk
1

ωk+2
,

so

℘(z) = 1

z2
+

∑

k≥1

(−1)k(k + 1)zkGk+2(Λ) ,

where we have set

Gk(Λ) =
∑

ω∈Λ\{0}

1

ωk
,

which are called Eisenstein series of weight k. Since Λ is symmetrical, it is clear
that Gk = 0 if k is odd, so the expansion of ℘(z) around z = 0 is given by

℘(z) = 1

z2
+

∑

k≥1

(2k + 1)z2kG2k+2(Λ) .

Second, one can show that all elliptic functions are simply rational functions in
℘(z) and ℘ ′(z), so we need not look any further in our construction.

Third, and this is probably one of themost important properties of℘(z), it satisfies
a differential equation of order 1: the proof is as follows. Using the above Taylor
expansion of ℘(z), it is immediate to check that

F(z) = ℘ ′(z)2 − (4℘(z)3 − g2(Λ)℘ (z) − g3(Λ))

has an expansion around z = 0 beginning with F(z) = c1z + · · · , where we have set
g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ). In addition, F is evidently an elliptic
function, and since it has no pole at z = 0 it has no poles on Λ, and hence no
poles at all, so it has order 0. Thus, by Proposition 2.1 (4) f is constant, and since
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by construction it vanishes at 0 it is identically 0. Thus, ℘ satisfies the differential
equation

℘ ′(z)2 = 4℘(z)3 − g2(Λ)℘ (z) − g3(Λ) .

A fourth and somewhat surprising property of the function ℘(z) is connected to
the theory of elliptic curves: the above differential equation shows that (℘ (z), ℘ ′(z))
parametrizes the cubic curve y2 = 4x3 − g2x − g3, which is the general equation of
an elliptic curve (you do not need to know the theory of elliptic curves for what
follows). Thus, if z1 and z2 are in C \ Λ, the two points Pi = (℘ (zi ), ℘ ′(zi )) for
i = 1, 2 are on the curve, and hence if we draw the line through these two points (the
tangent to the curve if they are equal), it is immediate to see from Proposition 2.1
(3) that the third point of intersection corresponds to the parameter −(z1 + z2), and
can of course be computed as a rational function of the coordinates of P1 and P2. It
follows that ℘(z) (and ℘ ′(z)) possess an addition formula expressing ℘(z1 + z2) in
terms of the ℘(zi ) and ℘ ′(zi ).

Exercise 2.3 Find this addition formula. You will have to distinguish the cases
z1 = z2, z1 = −z2, and z1 �= ±z2.

An interesting corollary of the differential equation for℘(z), which we will prove
in a different way below, is a recursion for the Eisenstein series G2k(Λ):

Proposition 2.4 We have the recursion for k ≥ 4:

(k − 3)(2k − 1)(2k + 1)G2k = 3
∑

2≤ j≤k−2

(2 j − 1)(2(k − j) − 1)G2 j G2(k− j) .

Proof Taking the derivative of the differential equation and dividing by 2℘ ′, we
obtain ℘ ′′(z) = 6℘(z)2 − g2(Λ)/2. If we set by convention G0(Λ) = −1 and
G2(Λ) = 0, and for notational simplicity omit Λ which is fixed, we have ℘(z) =∑

k≥−1(2k + 1)z2kG2k+2, so on the one hand

℘ ′′(z) =
∑

k≥−1

(2k + 1)(2k)(2k − 1)z2k−2G2k+2 ,

and on the other hand ℘(z)2 = ∑
K≥−2 a(K )z2K with

a(K ) =
∑

k1+k2=K

(2k1 + 1)(2k2 + 1)G2k1+2G2k2+2 .

Replacing in the differential equation, it is immediate to check that the coefficients
agree up to z2, and for K ≥ 2, we have the identification

6
∑

k1+k2=K
ki≥−1

(2k1 + 1)(2k2 + 1)G2k1+2G2k2+2 = (2K + 3)(2K + 2)(2K + 1)G2K+4
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which is easily seen to be equivalent to the recursion of the proposition using G0 =
−1 and G2 = 0. �

For instance,

G8 = 3

7
G2

4 G10 = 5

11
G4G6 G12 = 18G3

4 + 25G2
6

143
,

and more generally this implies that G2k is a polynomial in G4 and G6 with rational
coefficients which are independent of the lattice Λ.

As other corollary, we note that if we choose ω2 = 1 and ω1 = iT with T tending
to +∞, then the definition G2k(Λ) = ∑

(m,n)∈Z2\{(0,0)}(mω1 + nω2)
−2k implies that

G2k(Λ) will tend to
∑

n∈Z\{0} n−2k = 2ζ(2k), where ζ is the Riemann zeta function.
If follows that for all k ≥ 2, ζ(2k) is a polynomial in ζ(4) and ζ(6) with rational
coefficients. Of course this is a weak but nontrivial result, since we know that ζ(2k)
is a rational multiple of π2k.

To finish this section on elliptic functions and make the transition to modular
forms, we write explicitly Λ = Λ(ω1, ω2) and by abuse of notation G2k(ω1, ω2) :=
G2k(Λ(ω1, ω2)), and we consider the dependence of G2k on ω1 and ω2. We
note two evident facts: first, G2k(ω1, ω2) is homogeneous of degree −2k: for
any nonzero complex number λ, we have G2k(λω1, λω2) = λ−2kG2k(ω1, ω2). In
particular, G2k(ω1, ω2) = ω−2k

2 G2k(ω1/ω2, 1). Second, a general Z-basis of Λ is
given by (ω′

1, ω
′
2) = (aω1 + bω2, cω1 + dω2) with a, b, c, and d integers such that

ad − bc = ±1. If we choose an oriented basis such that ℑ(ω1/ω2) > 0, we, in fact,
have ad − bc = 1.

Thus, G2k(aω1 + bω2, cω1 + dω2) = G2k(ω1, ω2), and using homogeneity this
can be written as

(cω1 + dω2)
−2kG2k

(
aω1 + bω2

cω1 + dω2
, 1

)

= ω−2k
2 G2k

(
ω1

ω2
, 1

)

.

Thus, ifwe set τ = ω1/ω2 and by an additional abuse of notation abbreviateG2k(τ, 1)
to G2k(τ ), we have by definition

G2k(τ ) =
∑

(m,n)∈Z2\{(0,0)}
(mτ + n)−2k ,

and we have shown the following modularity property:

Proposition 2.5 For any
(
a b
c d

) ∈ SL2(Z), the group of 2 × 2 integer matrices of
determinant 1, and any τ ∈ C with ℑ(τ ) > 0, we have

G2k

(
aτ + b

cτ + d

)

= (cτ + d)2kG2k(τ ) .

This will be our basic definition of (weak) modularity.
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3 Modular Forms and Functions

3.1 Definitions

Let us introduce some notation:

• We denote by Γ the modular group SL2(Z). Note that properly speaking the
modular group should be the group of transformations τ 
→ (aτ + b)/(cτ + d),
which is isomorphic to the quotient of SL2(Z) by the equivalence relation saying
that M and −M are equivalent, but for this course, we will stick to this definition. If
γ = (

a b
c d

)
, we will, of course, write γ (τ) for (aτ + b)/(cτ + d).

• The Poincaré upper half-plane H is the set of complex numbers τ such that
ℑ(τ ) > 0. Since for γ = (

a b
c d

) ∈ Γ , we have ℑ(γ (τ )) = ℑ(τ )/|cτ + d|2, we see
that Γ is a group of transformations of H (more generally so is SL2(R), there is
nothing special about Z).

• The completed upper half-planeH is by definitionH = H ∪ P1(Q) = H ∪
Q ∪ {i∞}. Note that this is not the closure in the topological sense since we do not
include any real irrational numbers.

Definition 3.1 Let k ∈ Z and let F be a function fromH to C.

1. We will say that F is weakly modular of weight k for Γ if for all γ = (
a b
c d

) ∈ Γ

and all τ ∈ H , we have

F(γ (τ )) = (cτ + d)k F(τ ) .

2. We will say that F is a modular form if, in addition, F is holomorphic onH and
if |F(τ )| remains bounded as ℑ(τ ) → ∞.

3. We will say that F is a modular cusp form if it is a modular form such that F(τ )

tends to 0 as ℑ(τ ) → ∞.

We make a number of immediate but important remarks.

Remarks 3.2 1. The Eisenstein seriesG2k(τ ) are basic examples of modular forms
of weight 2k, which are not cusp forms since G2k(τ ) tends to 2ζ(2k) �= 0 when
ℑ(τ ) → ∞.

2. With the present definition, it is clear that there are no nonzero modular forms of
odd weight k, since if k is odd we have (−cτ − d)k = −(cτ + d)k and γ (τ) =
(−γ )(τ ). However, when considering modular forms defined on subgroups of Γ

there may be modular forms of odd weight, so we keep the above definition.
3. Applyingmodularity to γ = T = (

1 1
0 1

)
, we see that F(τ + 1) = F(τ ), and hence

F has a Fourier series expansion, and if F is holomorphic, by the remark
made above in the section on Fourier series, we have an expansion F(τ ) =
∑

n∈Z
a(n)e2π inτ witha(n) = e2πny

∫ 1
0 F(x + iy)e−2π inx dx for any y > 0.Thus,

if |F(x + iy)| remains bounded as y → ∞ it follows that as y → ∞, we have
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a(n) ≤ Be2πny for a suitable constant B, so we deduce that a(n) = 0 when-
ever n < 0 since e2πny → 0. Thus, if F is a modular form, we have F(τ ) =∑

n≥0 a(n)e2π inτ , and hence limℑ(τ )→∞ F(τ ) = a(0), so F is a cusp form if and
only if a(0) = 0.

Definition 3.3 We will denote by Mk(Γ ), the vector space of modular forms of
weight k on Γ (M for Modular of course), and by Sk(Γ ) the subspace of cusp forms
(S for the German Spitzenform, meaning exactly cusp form).

Notation: for any matrix γ = (
a b
c d

)
with ad − bc > 0, we will define the weight k

slash operator F |kγ by

F |kγ (τ) = (ad − bc)k/2(cτ + d)−k F(γ (τ )) .

The reason for the factor (ad − bc)k/2 is that λγ has the same action onH as γ , so
this makes the formula homogeneous. For instance, F is weakly modular of weight
k if and only if F |kγ = F for all γ ∈ Γ .

We will also use the universal modular form convention of writing q for e2π iτ , so
that a Fourier expansion is of the type F(τ ) = ∑

n≥0 a(n)qn . We use the additional
convention that if α is any complex number, qα will mean e2π iτα .

Exercise 3.4 Let F(τ ) = ∑
n≥0 a(n)qn ∈ Mk(Γ ), and let γ = (

A B
C D

)
be a matrix

in M+
2 (Z), i.e., A, B, C , and D are integers and Δ = det(γ ) = AD − BC > 0. Set

g = gcd(A,C), let u and v be such that uA + vC = g, set b = uB + vD, and finally
let ζΔ = e2π i/Δ. Prove the matrix identity

(
A B
C D

)

=
(
A/g −v
C/g u

) (
g b
0 Δ/g

)

,

and deduce that we have the more general Fourier expansion

Fig. 2 The fundamental
domain, F, of Γ

1
2−1

2

F
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F |kγ (τ) = gk/2

Δk

∑

n≥0

ζ
nbg
Δ a(n)qg2/Δ ,

which is, of course, equal to F if Δ = 1, since then g = 1.

3.2 Basic Results

The first fundamental result in the theory of modular forms is that these spaces are
finite dimensional. The proof uses exactly the same method that we have used to
prove the basic results on elliptic functions. We first note that there is a “fundamental
domain” (which replaces the fundamental parallelogram, see Fig. 2) for the action of
Γ on H , given by

F = {τ ∈ H , −1/2 ≤ ℜ(τ ) < 1/2, |τ | ≥ 1} .

The proof that this is a fundamental domain, in other words that any τ ∈ H has a
unique image by Γ belonging to F is not very difficult and will be omitted. We then
integrate F ′(z)/F(z) along the boundary of F, and using modularity, we obtain the
following result:

Theorem 3.5 Let F ∈ Mk(Γ ) be a nonzero modular form. For any τ0 ∈ H , denote
by vτ0(F) the valuation of F at τ0, i.e., the unique integer v such that F(τ )/(τ − τ0)

v

is holomorphic and nonzero at τ0, and if F(τ ) = G(e2π iτ ), define vi∞(F) = v0(G)

(i.e., the number of first vanishing Fourier coefficients of F). We have the formula

vi∞(F) +
∑

τ∈F

vτ (F)

eτ

= k

12
,

where ei = 2, eρ = 3, and eτ = 1 otherwise (ρ = e2π i/3).

This theorem has many important consequences but, as already noted, the most
important is that it implies that Mk(Γ ) is finite dimensional. First, it trivially implies
that k ≥ 0, i.e., there are no modular forms of negative weight. In addition, it easily
implies the following:

Corollary 3.6 Let k ≥ 0 be an even integer. We have

dim(Mk(Γ )) =
{

�k/12
 if k ≡ 2 (mod 12) ,

�k/12
 + 1 if k �≡ 2 (mod 12) ,

dim(Sk(Γ )) =

⎧
⎪⎨

⎪⎩

0 if k < 12 ,

�k/12
 − 1 if k ≥ 12, k ≡ 2 (mod 12) ,

�k/12
 if k ≥ 12, k �≡ 2 (mod 12) .
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Since the product of two modular forms is clearly a modular form (of weight the
sum of the two weights), it is clear that M∗(Γ ) = ⊕

k Mk(Γ ) (and similarly S∗(Γ ))
is an algebra, whose structure is easily described as follows:

Corollary 3.7 We have M∗(Γ ) = C[G4,G6], and S∗(Γ ) = ΔM∗(Γ ), where Δ is
the unique generator of the one-dimensional vector space S12(Γ ) whose Fourier
expansion begins with Δ = q + O(q2).

Thus, for instance, M0(Γ ) = C, M2(Γ ) = {0}, M4(Γ ) = CG4, M6(Γ ) = CG6,
M8(Γ ) = CG8 = CG2

4, M10(Γ ) = CG10 = CG4G6,

M12(Γ ) = CG12 ⊕ CΔ = CG3
4 ⊕ CG2

6 .

In particular, we recover the fact proved differently that G8 is a multiple of G2
4

(the exact multiple being obtained by computing the Fourier expansions), G10 is a
multiple of G4G6, G12 is a linear combination of G3

4 and G2
6. Also, we see that Δ is

a linear combination of G3
4 and G2

6 (we will see this more precisely below).
A basic result on the structure of the modular group Γ is the following:

Proposition 3.8 Set T = (
1 1
0 1

)
, which acts onH by the unit translation τ 
→ τ + 1,

and S = (
0 −1
1 0

)
which acts on H by the symmetry inversion τ 
→ −1/τ . Then, Γ

is generated by S and T , with relations generated by S2 = −I and (ST )3 = −I (I
the identity matrix).

There are several (easy) proofs of this fundamental result, which we do not give.
Simply note that this proposition is essentially equivalent to the fact that the set F
described above is indeed a fundamental domain.

A consequence of this proposition is that to checkwhether some function F has the
modularity property, it is sufficient to check that F(τ + 1) = F(τ ) and F(−1/τ) =
τ k F(τ ).

Exercise 3.9 (Bol’s identity). Let F be any continuous function defined on the upper
half-plane H , and define I0(F, a) = F and for any integer m ≥ 1 and a ∈ H set:

Im(F, a)(τ ) =
∫ τ

a

(τ − z)m−1

(m − 1)! F(z) dz .

1. Show that Im(F, a)′(τ ) = Im−1(F, a)(τ ), so that Im(F, a) is anmth antiderivative
of F .

2. Let γ ∈ Γ , and assume that k ≥ 1 is an integer. Show that

Ik−1(F, a)|2−kγ = Ik−1(F |kγ, γ −1(a)) .

3. Deduce that if we set F∗
a = Ik−1(F, a), then

D(k−1)(F∗
a |2−kγ ) = F |kγ ,
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where D = (1/2π i)d/dτ = qd/dq is the basic differential operator that we will
use (see Sect. 3.10).

4. Assume now that F is weakly modular of weight k ≥ 1 and holomorphic onH
(in particular, if F ∈ Mk(Γ ), but |F | could be unbounded as ℑ(τ ) → ∞). Show
that

(F∗
a |2−k |γ )(τ ) = F∗

a (τ ) + Pk−2(τ ) ,

where Pk−2 is the polynomial of degree less than or equal to k − 2 given by

Pk−2(X) =
∫ a

γ −1(a)

(X − z)k−2

(k − 2)! F(z) dz .

What this exercise shows is that the (k − 1)st derivative of some function which
behaves modularly in weight 2 − k behaves modularly in weight k, and conversely
that the (k − 1)st antiderivative of some function which behaves modularly in weight
k behaves modularly in weight k up to addition of a polynomial of degree at most
k − 2. This duality between weights k and 2 − k is, in fact, a consequence of the
Riemann–Roch theorem.

Note also that this exercise is the beginning of the fundamental theories of periods
and of modular symbols.

Also, it is not difficult to generalize Bol’s identity. For instance, applied to the
Eisenstein series G4 and using Proposition 3.13 below, we obtain:

Proposition 3.10 1. Set

F∗
4 (τ ) = − π3

180

(τ

i

)3 +
∑

n≥1

σ−3(n)qn .

We have the functional equation

τ 2F∗
4 (−1/τ) = F∗

4 (τ ) + ζ(3)

2
(1 − τ 2) − π3

36

τ

i
.

2. Equivalently, if we set

F∗∗
4 (τ ) = − π3

180

(τ

i

)3 − π3

72

(τ

i

)
+ ζ(3)

2
+

∑

n≥1

σ−3(n)qn

we have the functional equation

F∗∗
4 (−1/τ) = τ−2F∗∗

4 (τ ) .

Note that the appearance of ζ(3) comes from the fact that, up to a multiplicative
constant, the L-function associated to G4 is equal to ζ(s)ζ(s − 3), whose value at
s = 3 is equal to −ζ(3)/2.
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3.3 The Scalar Product

We begin by the following exercise:

Exercise 3.11 1. Denote by dμ = dxdy/y2 a measure on H , where as usual x
and y are the real and imaginary parts of τ ∈ H . Show that this measure is
invariant under SL2(R).

2. Let f and g be inMk(Γ ). Show that the function F(τ ) = f (τ )g(τ )yk is invariant
under the modular group Γ .

It follows, in particular, from this exercise that if F(τ ) is any integrable function
which is invariant by the modular group Γ , the integral

∫
Γ \H F(τ )dμ makes sense

if it converges. Since F is a fundamental domain for the action of Γ on H , this
can also be written as

∫
F F(τ )dμ. Thus, it follows from the second part that we can

define

< f, g >=
∫

Γ \H
f (τ )g(τ )yk

dxdy

y2
,

whenever this converges.
It is immediate to show that a necessary and sufficient condition for convergence

is that at least one of f and g be a cusp form, i.e., lies in Sk(Γ ). In particular, it is
clear that this defines a scalar product on Sk(Γ ) called the Petersson scalar product.
In addition, any cusp form in Sk(Γ ) is orthogonal to Gk with respect to this scalar
product. It is instructive to give a sketch of the simple proof of this fact as given
below:

Proposition 3.12 If f ∈ Sk(Γ ), we have < Gk, f >= 0.

Proof Recall that Gk(τ ) = ∑
(m,n)∈Z2\{(0,0)}(mτ + n)−k . We split the sum according

to the GCD of m and n: we let d = gcd(m, n), so that m = dm1 and n = dn1 with
gcd(m1, n1) = 1. It follows that

Gk(τ ) = 2
∑

d≥1

d−k Ek(τ ) = 2ζ(k)Ek(τ ) ,

where Ek(τ ) = (1/2)
∑

gcd(m,n)=1(mτ + n)−k . We thus need to prove that
< Ek, f >= 0.

On the other hand, denote by Γ∞ the group generated by T , i.e., translations(
1 b
0 1

)
for b ∈ Z. This acts by left multiplication on Γ , and it is immediate to check

that a system of representatives for this action is given by matrices ( u v
m n ), where

gcd(m, n) = 1 and u and v are chosen arbitrarily (but only once for each pair (m, n))
such that un − vm = 1. It follows that, we can write

Ek(τ ) =
∑

γ∈Γ∞\Γ
(mτ + n)−k ,
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where it is understood that γ = ( u v
m n ) (the factor 1/2 has disappeared since γ and

−γ have the same action on H ).
Thus

< Ek, f > =
∫

Γ \H

∑

γ∈Γ∞\Γ
(mτ + n)−k f (τ )yk

dxdy

y2

=
∑

γ∈Γ∞\Γ

∫

Γ \H
(mτ + n)−k f (τ )yk

dxdy

y2
.

Now note that by modularity f (τ ) = (mτ + n)−k f (γ (τ )), and since ℑ(γ (τ )) =
ℑ(τ )/|mτ + n|2, it follows that

(mτ + n)−k f (τ )yk = f (γ (τ ))ℑ(γ (τ ))k .

Thus, since dμ = dxdy/y2 is an invariant measure, we have

< Ek, f > =
∑

γ∈Γ∞\Γ

∫

Γ \H
f (γ (τ ))ℑ(γ (τ ))kdμ =

∫

Γ∞\H
f (τ )yk

dxdy

y2
.

Since Γ∞ is simply the group of integer translations, a fundamental domain for
Γ∞\H is simply the vertical strip [0, 1] × [0,∞[, so that

< Ek, f >=
∫ ∞

0
yk−2dy

∫ 1

0
f (x + iy)dx ,

which trivially vanishes since the inner integral is simply the conjugate of the constant
term in the Fourier expansion of f , which is 0 since f ∈ Sk(Γ ).

The above procedure (replacing the complicated fundamental domain of Γ \H
by the trivial one of Γ∞\H ) is very common in the theory of modular forms and is
called unfolding.

3.4 Fourier Expansions

The Fourier expansions of the Eisenstein series G2k(τ ) are easy to compute. The
result is the following:

Proposition 3.13 For k ≥ 4 even, we have the Fourier expansion

Gk(τ ) = 2ζ(k) + 2
(2π i)k

(k − 1)!
∑

n≥1

σk−1(n)qn ,

where σk−1(n) = ∑
d|n, d>0 d

k−1.
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Since we know that when k is even 2ζ(k) = −(2π i)k Bk/k!, where Bk is the k-th
Bernoulli number defined by

t

et − 1
=

∑

k≥0

Bk

k! t
k ,

it follows that Gk = 2ζ(k)Ek , with

Ek(τ ) = 1 − 2k

Bk

∑

n≥1

σk−1(n)qn .

This is the normalization of Eisenstein series that we will use. For instance,

E4(τ ) = 1 + 240
∑

n≥1

σ3(n)qn ,

E6(τ ) = 1 − 504
∑

n≥1

σ5(n)qn ,

E8(τ ) = 1 + 480
∑

n≥1

σ7(n)qn .

In particular, the relations given above which follow from the dimension formula
become much simpler and are obtained simply by looking at the first terms in the
Fourier expansion:

E8 = E2
4 , E10 = E4E6 , E12 = 441E3

4 + 250E2
6

691
, Δ = E3

4 − E2
6

1728
.

Note that the relation E2
4 = E8 (and the others) implies a highly nontrivial relation

between the sum of divisors function: if we set by convention σ3(0) = 1/240, so that
E4(τ ) = ∑

n≥0 σ3(n)qn , we have

E8(τ ) = E2
4(τ ) = 2402

∑

n≥0

qn
∑

0≤m≤n

σ3(m)σ3(n − m) ,

so that by identification σ7(n) = 120
∑

0≤m≤n σ3(m)σ3(n − m), so

σ7(n) = σ3(n) + 120
∑

1≤m≤n−1

σ3(m)σ3(n − m) .

It is quite difficult (but not impossible) to prove this directly, i.e., without using at
least indirectly the theory of modular forms.

Exercise 3.14 Find a similar relation for σ9(n) using E10 = E4E6.
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This type of reasoning is one of the reasons for which the theory of modular forms
is so important (and lots of fun!): if you have a modular form F , you can usually
express it in terms of a completely explicit basis of the space to which it belongs since
spaces of modular forms are finite dimensional (in the present example, the space is
one dimensional), and deduce highly nontrivial relations for the Fourier coefficients.
We will see a further example of this below for the number rk(n) of representations
of an integer n as a sum of k squares.

Exercise 3.15 1. Prove that for any k ∈ C, we have the identity

∑

n≥1

σk(n)qn =
∑

n≥1

nkqn

1 − qn
,

the right-hand side being called a Lambert series.
2. Set F(k) = ∑

n≥1 n
k/(e2πn − 1). Using the Fourier expansions given above,

compute explicitly F(5) and F(9).
3. Using Proposition 3.10, compute explicitly F(−3).
4. Using Proposition 3.23 below, compute explicitly F(1).

Note that in this exercise, we only compute F(k) for k ≡ 1 (mod 4). It is also
possible but more difficult to compute F(k) for k ≡ 3 (mod 4). For instance, we
have

F(3) = Γ (1/4)8

80(2π)6
− 1

240
.

3.5 Obtaining Modular Forms by Averaging

We have mentioned at the beginning of this course that one of the ways to obtain
functions satisfying functional equations is to use averaging over a suitable group or
set: we have seen this for periodic functions in the form of the Poisson summation
formula, and for doubly periodic functions in the construction of the Weierstrass
℘-function. We can do the same for modular forms, but we must be careful in two
different ways. First, we do not want invariance by Γ , but we want an automorphy
factor (cτ + d)k . This is easily dealtwith bynoting that (d/dτ)(γ (τ )) = (cτ + d)−2:
indeed, if φ is some function on H , we can define

F(τ ) =
∑

γ∈Γ

φ(γ (τ))((d/dτ)(γ (τ )))k/2 .

Exercise 3.16 Ignoring all convergence questions, by using the chain rule ( f ◦
g)′ = ( f ′ ◦ g)g′ show that for all δ = (

A B
C D

) ∈ Γ , we have

F(δ(τ )) = (Cτ + D)k F(τ ) .
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But the second important way in which we must be careful is that the above
construction rarely converges. There are, however, examples where it does converge:

Exercise 3.17 Let φ(τ) = τ−m , so that

F(τ ) =
∑

γ=
(
a b
c d

)
∈Γ

1

(aτ + b)m(cτ + d)k−m
.

Show that if 2 ≤ m ≤ k − 2 and m �= k/2, this series converges normally on any
compact subset of H (i.e., it is majorized by a convergent series with positive
terms), so defines a modular form in Mk(Γ ).

Note that the series converges also for m = k/2, but this is more difficult.
One of the essential reasons for non-convergence of the function F is the trivial

observation that for a given pair of coprime integers (c, d) there are infinitely many
elements γ ∈ Γ having (c, d) as their second row. Thus, in general, it seems more
reasonable to define

F(τ ) =
∑

gcd(c,d)=1

φ(γc,d(τ ))(cτ + d)−k ,

where γc,d is any fixedmatrix inΓ with second row equal to (c, d). However, we need
this to make sense: if γc,d = (

a b
c d

) ∈ Γ is one such matrix, it is clear that the general
matrix having second row equal to (c, d) is T n

(
a b
c d

) = (
a+nc b+nd
c d

)
, and as usual

T = (
1 1
0 1

)
is translation by 1: τ 
→ τ + 1. Thus, an essential necessary condition for

our series to make any kind of sense is that the function φ be periodic of period 1.
The simplest such function is, of course, the constant function 1.

Exercise 3.18 (See the proof of Proposition 3.12.) Show that

F(τ ) =
∑

gcd(c,d)=1

(cτ + d)−k = 2Ek(τ ) ,

where Ek is the normalized Eisenstein series defined above.

But by the theory of Fourier series, we know that periodic functions of period 1
are (infinite) linear combinations of the functions e2π inτ . This leads to the definition
of Poincaré series:

Pk(n; τ) = 1

2

∑

gcd(c,d)=1

e2π inγc,d (τ )

(cτ + d)k
,

where we note that we can choose any matrix γc,d with bottom row (c, d) since the
function e2π inτ is 1-periodic, so that Pk(n; τ) ∈ Mk(Γ ).

Exercise 3.19 Assume that k ≥ 4 is even.
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1. Show that if n < 0, the series defining Pk diverges (wildly in fact).
2. Note that Pk(0; τ) = Ek(τ ), so that limτ→i∞ Pk(0; τ) = 1. Show that if n > 0,

the series converges normally and that we have limτ→i∞ Pk(n; τ) = 0. Thus, in
fact, Pk(n; τ) ∈ Sk(Γ ) if n > 0.

3. By using the same unfolding method as in Proposition 3.12, show that if f =∑
n≥0 a(n)qn ∈ Mk(Γ ) and n > 0, we have

< Pk(n), f >= (k − 2)!
(4πn)k−1

a(n) .

It is easy to show that, in fact, the Pk(n) generate Sk(Γ ). We can also compute
their Fourier expansions as we have done for Ek , but they involve Bessel functions
and Kloosterman sums.

3.6 The Ramanujan Delta Function

Recall that by definition Δ is the generator of the one-dimensional space S12(Γ )

whose Fourier coefficient ofq1 is normalized to be equal to 1.By simple computation,
we find the first terms in the Fourier expansion of Δ:

Δ(τ) = q − 24q2 + 252q3 − 1472q4 + · · · ,

with no apparent formula for the coefficients. The nth coefficient is denoted τ(n) (no
confusion with τ ∈ H ), and called Ramanujan’s tau function, and Δ itself is called
Ramanujan’s Delta function.

Of course, using Δ = (E3
4 − E2

6)/1728 and expanding the powers, one can give
a complicated but explicit formula for τ(n) in terms of the functions σ3 and σ5, but
this is far from being the best way to compute them. In fact, the following exercise
already gives a much better method.

Exercise 3.20 Let D be the differential operator (1/(2π i))d/dτ = qd/dq.

1. Show that the function F = 4E4D(E6) − 6E6D(E4) is amodular form ofweight
12, then by looking at its constant term show that it is a cusp form, and finally
compute the constant c such that F = c · Δ.

2. Deduce the formula

τ(n) = n

12
(5σ3(n) + 7σ5(n)) + 70

∑

1≤m≤n−1

(2n − 5m)σ3(m)σ5(n − m) .

3. Deduce, in particular, the congruences τ(n) ≡ nσ5(n) ≡ nσ1(n) (mod 5) and
τ(n) ≡ nσ3(n) (mod 7).

Although there are much faster methods, this is already a very reasonable way to
compute τ(n).
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The cusp form Δ is one of the most important functions in the theory of modular
forms. Its first main property, which is not at all apparent from its definition, is that
it has a product expansion:

Theorem 3.21 We have
Δ(τ) = q

∏

n≥1

(1 − qn)24 .

Proof We are not going to give a complete proof, but sketch a method which is one
of the most natural to obtain the result.

We start backward, from the product R(τ ) on the right-hand side. The logarithm
transforms products into sums, but in the case of functions f , the logarithmic deriva-
tive f ′/ f (more precisely D( f )/ f , where D = qd/dq) also does this, and it is also
more convenient. We have

D(R)/R = 1 − 24
∑

n≥1

nqn

1 − qn
= 1 − 24

∑

n≥1

σ1(n)qn

as is easily seen by expanding 1/(1 − qn) as a geometric series. This is exactly the
case k = 2 of the Eisenstein series Ek , which we have excluded from our discussion
for convergence reasons, so we come back to our series G2k (we will divide by the
normalizing factor 2ζ(2) = π2/3 at the end), and introduce a convergence factor due
to Hecke, setting

G2,s(τ ) =
∑

(m,n)∈Z2\{(0,0)}
(mτ + n)−2|mτ + n|−2s .

As above this converges for ℜ(s) > 0, it satisfies

G2,s(γ (τ )) = (cτ + d)2|cτ + d|2sG2,s(τ )

and hence, in particular, is periodic of period 1. It is straightforward to compute its
Fourier expansion, which we will not do here, and the Fourier expansion shows that
G2,s has an analytic continuation to the whole complex plane. In particular, the limit
as s → 0makes sense; if we denote it byG∗

2(τ ), by continuity it will of course satisfy
G∗

2(γ (τ )) = (cτ + d)2G∗
2(τ ), and the analytic continuation of the Fourier expansion

that has been computed gives

G∗
2(τ ) = π2

3

(

1 − 3

πℑ(τ )
− 24

∑

n≥1

σ1(n)qn

)

.

Note the essential fact that there is now a nonanalytic term 3/(πℑ(τ )). We will, of
course, set the following definition:



24 H. Cohen

Definition 3.22 We define

E2(τ ) = 1 − 24
∑

n≥1

σ1(n)qn and E∗
2 (τ ) = E2(τ ) − 3

πℑ(τ )
.

Thus, E2(τ ) = D(R)/R, G∗
2(τ ) = (π2/3)E∗

2 (τ ), and we have the following:

Proposition 3.23 For any γ = (
a b
c d

) ∈ Γ , we have E∗
2 (γ (τ )) = (cτ + d)2E∗

2 (τ ).
Equivalently,

E2(γ (τ )) = (cτ + d)2E2(τ ) + 12

2π i
c(cτ + d) .

Proof The first result has been seen above, and the second follows from the formula
ℑ(γ (τ )) = ℑ(τ )/|cτ + d|2. �

Exercise 3.24 Show that

E2(τ ) = −24

(

− 1

24
+

∑

m≥1

m

q−m − 1

)

.

Proof of the theorem. We can now prove the theorem on the product expansion of
Δ: noting that (d/dτ)γ (τ ) = 1/(cτ + d)2, the above formulas imply that if we set
S = R(γ (τ )), we have

D(S)

S
= D(R)

R
(γ (τ ))(d/dτ)(γ (τ ))

= (cτ + d)−2E2(γ (τ )) = E2(τ ) + 12

2π i

c

cτ + d

= D(R)

R
(τ ) + 12

D(cτ + d)

cτ + d
.

By integrating and exponentiating, it follows that

R(γ (τ )) = (cτ + d)12R(τ ) ,

and since clearly R is holomorphic on H and tends to 0 as ℑ(τ ) → ∞ (i.e., as
q → 0), it follows that R is a cusp form of weight 12 on Γ , and since S12(Γ ) is
one-dimensional and the coefficient of q1 in R is 1, we have R = Δ, proving the
theorem. �

Exercise 3.25 Wehave shown in passing that D(Δ) = E2Δ. Expanding the Fourier
expansion of both sides, show that we have the recursion

(n − 1)τ (n) = −24
∑

1≤m≤n−1

σ1(m)τ (n − m) .
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Exercise 3.26 1. Let F ∈ Mk(Γ ), and for some squarefree integer N set

G(τ ) =
∑

d|N
μ(d)dk/2F(dτ) ,

where μ is the Möbius function. Show that G|kWN = μ(N )G, where WN =(
0 −1
N 0

)
is the so-called Fricke involution.

2. Show that if N > 1, the same result is true for F = E2, although E2 is only
quasi-modular.

3. Deduce that if μ(N ) = (−1)k/2−1, we have G(i/
√
N ) = 0.

4. Applying this to E2 and using Exercise 3.24, deduce that ifμ(N ) = 1 and N > 1,
we have

∑

gcd(m,N )=1

m

e2πm/
√
N − 1

= φ(N )

24
,

where φ(N ) is Euler’s totient function.
5. Using directly the functional equation of E∗

2 , show that for N = 1 there is an
additional term −1/(8π), i.e., that

∑

m≥1

m

e2πm − 1
= 1

24
− 1

8π
.

3.7 Product Expansions and the Dedekind Eta Function

We continue our study of product expansions. We first mention an important identity
due to Jacobi, the triple product identity, as well as some consequences:

Theorem 3.27 (Triple product identity) If |q| < 1 and u �= 0, we have

∏

n≥1

(1 − qn)(1 − qnu)
∏

n≥0

(1 − qn/u) =
∑

k≥0

(−1)k(uk − u−(k+1))qk(k+1)/2 .

Proof (sketch): Denote by L(q, u) the left-hand side. We have clearly L(q, u/q) =
−uL(q, u), and since one can write L(q, u) = ∑

k∈Z
ak(q)uk this implies the recur-

sion ak(q) = −qkak−1(q), so ak(q) = (−1)kqk(k+1)/2a0(q), and separating k ≥ 0
and k < 0 this shows that

L(q, u) = a0(q)
∑

k≥0

(−1)k(uk − u−(k+1))qk(k+1)/2 .

The slightly longer part is to show that a0(q) = 1: this is done by setting u = i/q1/2

and u = 1/q1/2, which after a little computation implies that a(q4) = a(q), and from
there it is immediate to deduce that a(q) is a constant, and equal to 1. �
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To give the next corollaries, we need to define the Dedekind eta function η(τ), by

η(τ) = q1/24
∏

n≥1

(1 − qn) ,

(recall that qα = e2π iατ ). Thus, by definition η(τ)24 = Δ(τ). Since Δ(−1/τ) =
τ 12Δ(τ), it follows that η(−1/τ) = c · (τ/ i)1/2η(τ) for some 24th root of unity
c (where we always use the principal determination of the square root), and since
we see from the infinite product that η(i) �= 0, replacing τ by i shows that, in fact,
c = 1. Thus, η satisfies the two basic modular equations

η(τ + 1) = e2π i/24η(τ) and η(−1/τ) = (τ/ i)1/2η(τ) .

Of course, we have more generally

η(γ (τ)) = vη(γ )(cτ + d)1/2η(τ)

for any γ ∈ Γ , with a complicated 24th root of unity vη(γ ), so η is in some (reason-
able) sense amodular form ofweight 1/2, similar to the function θ that we introduced
at the very beginning.

The triple product identity immediately implies the following two identities:

Corollary 3.28 We have

η(τ) = q1/24

(

1 +
∑

k≥1

(−1)k(qk(3k−1)/2 + qk(3k+1)/2)

)

and

η(τ)3 = q1/8
∑

k≥0

(−1)k(2k + 1)qk(k+1)/2 .

Proof In the triple product identity, replace (u, q) by (1/q, q3), we obtain

∏

n≥1

(1 − q3n)(1 − q3n−1)
∏

n≥0

(1 − q3n+1) =
∑

k≥0

(−1)k(q−k − qk+1)q3k(k+1)/2 .

The left-hand side is clearly equal to η(τ), and the right-hand side to

1 − q +
∑

k≥1

(−1)k(qk(3k+1)/2 − q(k+1)(3k+2)/2)

= 1 +
∑

k≥1

(−1)kqk(3k+1)/2 − q +
∑

k≥2

(−1)kqk(3k−1)/2 ,

giving the formula for η(τ). For the second formula, divide the triple product identity
by 1 − 1/u and make u → 1. �
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Thus, the first few terms are

∏

n≥1

(1 − qn) = 1 − q − q2 + q5 + q7 − q12 − q15 + · · ·
∏

n≥1

(1 − qn)3 = 1 − 3q + 5q3 − 7q6 + 9q10 − 11q15 + · · · .

The first identity was proved by L. Euler.

Exercise 3.29 1. Show that 24ΔD(η) = ηD(Δ), and using the explicit Fourier
expansion of η, deduce the recursion

∑

k∈Z

(−1)k(75k2 + 25k + 2 − 2n)τ

(

n − k(3k + 1)

2

)

= 0 .

2. Similarly, from 8ΔD(η3) = η3D(Δ) deduce the recursion

∑

k∈Z

(−1)k(2k + 1)(9k2 + 9k + 2 − 2n)τ

(

n − k(k + 1)

2

)

= 0 .

Exercise 3.30 Define the q-Pochhammer symbol (q)n by (q)n = (1 − q)(1 − q2)

· · · (1 − qn).

1. Set f (a, q) = ∏
n≥1(1 − aqn), and define coefficients cn(q) by setting f (a, q) =∑

n≥0 cn(q)an . Show that f (a, q) = (1 − aq) f (aq, q), deduce that cn(q)(1 −
qn) = −qncn−1(q) and finally the identity

∏

n≥1

(1 − aqn) =
∑

n≥0

(−1)nanqn(n+1)/2/(q)n .

2. Write in terms of theDedekind eta function, the identities obtained by specializing
to a = 1, a = −1, a = −1/q, a = q1/2, and a = −q1/2.

3. Similarly, prove the identity

1/
∏

n≥1

(1 − aqn) =
∑

n≥0

anqn/(q)n ,

and once again write in terms of the Dedekind eta function, the identities obtained
by specializing to the same five values of a.

4. By multiplying two of the above identities and using the triple product identity,
prove the identity

1
∏

n≥1(1 − qn)
=

∑

n≥0

qn2

(q)2n
.
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Note that this last series is the generating function of the partition function p(n),
so if one wants to make a table of p(n) up to n = 10,000, say, using the left-hand
side would require 10,000 terms, while using the right-hand side only requires 100.

3.8 Computational Aspects of the Ramanujan τ Function

Since its introduction, the Ramanujan tau function τ(n) has fascinated number the-
orists. For instance, there is a conjecture due to D. H. Lehmer that τ(n) �= 0, and an
even stronger conjecture (which would imply the former) that for every prime p we
have p � τ(p) (on probabilistic grounds, the latter conjecture is probably false).

To test these conjectures as well as others, it is an interesting computational
challenge to compute τ(n) for large n (because of Ramanujan’s first two conjectures,
i.e., Mordell’s theorem that we will prove in Sect. 4 below, it is sufficient to compute
τ(p) for p prime).

We can have two distinct goals. The first is to compute a table of τ(n) for n ≤ B,
where B is some (large) bound. The second is to compute individual values of τ(n),
equivalently of τ(p) for p prime.

Consider first the construction of a table. The use of the first recursion given in
the above exercise needs O(n1/2) operations per value of τ(n), and hence O(B3/2)

operations in all to have a table for n ≤ B.
However, it is well known that the Fast Fourier Transform (FFT) allows one

to compute products of power series in essentially linear time. Thus, using Corol-
lary3.28, we can directly write the power series expansion of η3, and use the FFT to
compute its eighth power η24 = Δ. This will require O(B log(B)) operations, so it
is much faster than the preceding method; it is essentially optimal since one needs
O(B) time simply to write the result.

Using large computer resources, especially inmemory, it is reasonable to construct
a table up to B = 1012, but notmuchmore.Thus, the problemof computing individual
values of τ(p) is important. We have already seen one such method in Exercise 3.20
above, which gives a method for computing τ(n) in time O(n1+ε) for any ε > 0.

A deep and important theorem of B. Edixhoven, J.-M. Couveignes, et al., says that
it is possible to compute τ(p) in time polynomial in log(p), and, in particular, in time
O(pε) for any ε > 0. Unfortunately, this algorithm is not at all practical, and at least
for now, completely useless for us. The only practical and important application is
for the computation of τ(p) modulo some small prime numbers � (typically � < 50,
so far from being sufficient to apply the Chinese Remainder Theorem).

However, there exists an algorithm which takes time O(n1/2+ε) for any ε > 0, so
much better than the one of Exercise 3.20, and which is very practical. It is based
on the use of the Eichler–Selberg trace formula, together with the computation of
Hurwitz class numbers H(N ) (essentially the class numbers of imaginary quadratic
orders counted with suitable multiplicity): if we set H3(N ) = H(4N ) + 2H(N )

(note that H(4N ) can be computed in terms of H(N )), then for p prime
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τ(p) = 28p6 − 28p5 − 90p4 − 35p3 − 1

− 128
∑

1≤t<p1/2

t6(4t4 − 9pt2 + 7p2)H3(p − t2) .

See [1] Exercise 12.13 of Chap.12 for details. Using this formula and a cluster, it
should be reasonable to compute τ(p) for p of the order of 1016.

3.9 Modular Functions and Complex Multiplication

Although the terminology is quite unfortunate, we cannot change it. By definition, a
modular function is a function F fromH to C which is weakly modular of weight 0
(so that F(γ (τ )) = F(τ ), in otherwords is invariant underΓ , or equivalently defines
a function from Γ \H to C), meromorphic, including at ∞. This last statement
requires some additional explanation, but in simple terms, this means that the Fourier
expansion of F has only finitely many Fourier coefficients for negative powers of q:
F(τ ) = ∑

n≥n0
a(n)qn , for some (possibly negative) n0.

A trivial way to obtain modular functions is simply to take the quotient of two
modular forms having the same weight. The most important is the j-function defined
by

j (τ ) = E3
4(τ )

Δ(τ)
,

whose Fourier expansion begins by

j (τ ) = 1

q
+ 744 + 196884q + 21493760q2 + · · ·

Indeed, one can easily prove the following theorem:

Theorem 3.31 Let F be a meromorphic function onH . The following are equiva-
lent:

1. F is a modular function.
2. F is the quotient of two modular forms of equal weight.
3. F is a rational function of j .

Exercise 3.32 1. Noting that Theorem 3.5 is valid more generally for modular
functions (with vτ ( f ) = −r < 0 if f has a pole of order r at τ ) and using the
specific properties of j (τ ), compute vτ ( f ) for the functions j (τ ), j (τ ) − 1728,
and D( j)(τ ), at the points ρ = e2π i/3, i , i∞, and τ0 for τ0 distinct from these
three special points.

2. Set f = f (a, b, c) = D( j)a/( j b( j − 1728)c). Show that f is a modular form if
and only if 2c ≤ a, 3b ≤ 2a, and b + c ≥ a, and give similar conditions for f to
be a cusp form.
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3. Show that E4 = f (2, 1, 1), E6 = f (3, 2, 1), and Δ = f (6, 4, 3), so that, for
instance, D( j) = −E14 = −E2

4E6/Δ.

An important theory linked to modular functions is the theory of complex mul-
tiplication, which deserves a course in itself. We simply mention one of the basic
results.

We will say that a complex number τ ∈ H is a CM point (CM for Complex
Multiplication), if it belongs to an imaginary quadratic field, or equivalently if there
exist integers a, b, and c with a �= 0 such that aτ 2 + bτ + c = 0. The first basic
theorem is the following:

Theorem 3.33 If τ is a CM point, then j (τ ) is an algebraic integer.

Note that this theorem has two parts: the first and most important part is that j (τ )

is algebraic. This is, in fact, easy to prove. The second part is that it is an algebraic
integer, and this is more difficult. Since any modular function f is a rational function
of j , it follows that if this rational function has algebraic coefficients then f (τ ) will
be algebraic (but not necessarily integral). Another immediate consequence is the
following:

Corollary 3.34 Let τ be a CM point and define�τ = η(τ)2, where η is as usual the
Dedekind eta function. For any modular form f of weight k (in fact, f can also be
meromorphic), the number f (τ )/�k

τ is algebraic. In fact, E4(τ )/�4
τ and E6(τ )/�6

τ

are always algebraic integers.

But the importance of this theorem lies in algebraic number theory. We give the
following theorem without explaining the necessary notions:

Theorem 3.35 Let τ be a CM point, D = b2 − 4ac its discriminant, where we
choose gcd(a, b, c) = 1 and K = Q(

√
D). Then, K ( j (τ )) is the maximal abelian

unramified extension of K , the Hilbert class field of K , and Q( j (τ )) is the ring class
field of discriminant D. In particular, the degree of the minimal polynomial of the
algebraic integer j (τ ) is equal to the class number h(D) of the order of discriminant
D, and its algebraic conjugates are given by an explicit formula called the Shimura
reciprocity law.

Examples:

j ((1 + i
√
3)/2) = 0 = 1728 − 3(24)2

j (i) = 1728 = 123 = 1728 − 4(0)2

j ((1 + i
√
7)/2) = −3375 = (−15)3 = 1728 − 7(27)2

j (i
√
2) = 8000 = 203 = 1728 + 8(28)2

j ((1 + i
√
11)/2) = −32768 = (−32)3 = 1728 − 11(56)2

j ((1 + i
√
163)/2) = −262537412640768000 = (−640320)3
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= 1728 − 163(40133016)2

j (i
√
3) = 54000 = 2(30)3 = 1728 + 12(66)2

j (2i) = 287496 = (66)3 = 1728 + 8(189)2

j ((1 + 3i
√
3)/2) = −12288000 = −3(160)3 = 1728 − 3(2024)2

j ((1 + i
√
15)/2) = −191025 − 85995

√
5

2

= 1 − √
5

2

(
75 + 27

√
5

2

)3

= 1728 − 3

(
273 + 105

√
5

2

)2

Note that we give the results in the above form since show that the functions j1/3

and ( j − 1728)1/2 also have interesting arithmetic properties.
The example with D = −163 is particularly spectacular:

Exercise 3.36 Using the above table, show that

(eπ
√
163 − 744)1/3 = 640320 − ε ,

with 0 < ε < 10−24, and more precisely that ε is approximately equal to
65628e−(5/3)π

√
163 (note that 65628 = 196884/3).

Exercise 3.37 1. Using once again the example of 163, compute heuristically
a few terms of the Fourier expansion of j assuming that it is of the form
1/q + ∑

n≥0 c(n)qn with c(n) reasonably small integers using the following

method. Set q = −e−π
√
163, and let J = (−640320)3 be the exact value of

j ((−1 + i
√
163)/2). By computing J − 1/q, one notices that the result is very

close to 744, so we guess that c(0) = 744.We then compute (J − 1/q − c(0))/q
and note that once again the result is close to an integer, giving c(1), and so on.
Go as far as you can with this method.

2. Do the same for 67 instead of 163. You will find the same Fourier coefficients
(but you can go less far).

3. On the other hand, do the same for 58, starting with J equal to the integer close
to eπ

√
58. You will find a different Fourier expansion: it corresponds, in fact,

to another modular function, this time defined on a subgroup of Γ , called a
Hauptmodul.

4. Try to find other rational numbers D such that eπ
√
D is close to an integer, and

do the same exercise for them (an example where D is not integral is 89/3).
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3.10 Derivatives of Modular Forms

If we differentiate the modular equation f ((aτ + b)/(cτ + d)) = (cτ + d)k f (τ )

with
(
a b
c d

) ∈ Γ using the operator D = (1/(2π i))d/dτ (which gives simpler for-
mulas than d/dτ since D(qn) = nqn), we easily obtain

D( f )

(
aτ + b

cτ + d

)

= (cτ + d)k+2

(

D( f )(τ ) + k

2π i

c

cτ + d
f (τ )

)

.

Thus, the derivative of a weakly modular form of weight k looks like one of weight
k + 2, except that there is an extra term. This term vanishes if k = 0, so the derivative
of a modular function of weight 0 is indeed modular of weight 2 (we have seen above
the example of j (τ ) which satisfies D( j) = −E14/Δ).

If k > 0 and we really want a true weakly modular form of weight k + 2 there
are two ways to do this. The first one is called the Serre derivative:

Exercise 3.38 Using Proposition 3.23, show that if f is weakly modular of weight
k, then D( f ) − (k/12)E2 f is weakly modular of weight k + 2. In particular, if
f ∈ Mk(Γ ), then SDk( f ) := D( f ) − (k/12)E2 f ∈ Mk+2(Γ ).

The second method is to set D∗( f ) := D( f ) − (k/(4πℑ(τ ))) f since by
Proposition3.23, we have D∗( f ) = SDk( f ) − (k/12)E∗

2 f . This loses holomorphy,
but is very useful in certain contexts.

Note that if more than one modular form is involved, there are more ways to make
new modular forms using derivatives.

Exercise 3.39 1. For i = 1, 2 let fi ∈ Mki (Γ ). By considering the modular func-
tion f k21 / f k12 of weight 0, show that

k2 f2D( f1) − k1 f1D( f2) ∈ Sk1+k2+2(Γ ) .

Note that this generalizes Exercise 3.20.
2. Compute constants a, b, and c (depending on k1 and k2 and not all 0) such that

[ f1, f2]2 = aD2( f1) + bD( f1)D( f2) + cD2( f2) ∈ Sk1+k2+4(Γ ) .

This gives the first two of the so-called Rankin–Cohen brackets.
As an application of derivatives of modular forms, we give a proof of a theorem

of Siegel. We begin by the following:

Lemma 3.40 Let a and b be nonnegative integers such that 4a + 6b = 12r + 2.
The constant term of the Fourier expansion of Fr (a, b) = Ea

4 E
b
6/Δ

r vanishes.

Proof By assumption Fr (a, b) is a meromorphic modular form of weight 2. Since
D(

∑
n≥n0

a(n)qn) = ∑
n≥n0

na(n)qn , it is sufficient to find a modular function
Gr (a, b) of weight 0 such that Fr (a, b) = D(Gr (a, b)) (recall that the derivative of a



An Introduction to Modular Forms 33

modular function of weight 0 is still modular). We prove this by an induction first on
r , then on b. Recall that by Exercise 3.32, we have D( j) = −E14/Δ = −E2

4E6/Δ,
and since 4a + 6b = 14 has only the solution (a, b) = (2, 1) the result is true for
r = 1. Assume it is true for r − 1. We now do a recursion on b, noting that since
2a + 3b = 6r + 1, b is odd. Note that D( j r ) = r jr−1D( j) = −r E3r−1

4 E6/Δ
r , so

the constant term of Fr (a, 1) indeed vanishes. However, since E3
4 − E2

6 = 1728Δ,
if a ≥ 3, we have

Fr (a − 3, b + 2) = Ea−3
4 Eb

6 (E
3
4 − 1728Δ)/Δr = Fr (a, b) − 1728Fr−1(a − 3, b) ,

proving that the result is true for r by induction on b since we assumed it true for
r − 1. �

We can now prove (part of) Siegel’s theorem:

Theorem 3.41 For r = dim(Mk(Γ )) define coefficients cki by

E12r−k+2

Δr
=

∑

i≥−r

cki q
i ,

where by convention we set E0 = 1. Then, for any f = ∑
n≥0 a(n) ∈ Mk(Γ ), we

have the relation ∑

0≤n≤r

ck−na(n) = 0 .

In addition, we have ck0 �= 0, so that a(0) = ∑
1≤n≤r (c

k−n/c
k
0)a(n) is a linear combi-

nation with rational coefficients of the a(n) for 1 ≤ n ≤ r .

Proof First note that by Corollary 3.6, we have r ≥ (k − 2)/12 (with equality only
if k ≡ 2 (mod 12)), so the definition of the coefficients cki makes sense. Note also
that since the Fourier expansion of E12r−k+2 begins with 1 + O(q) and that of Δr

by qr + O(qr+1), that of the quotient begins with q−r + O(q1−r ) (in particular,
ck−r = 1). The proof of the first part is now immediate: the modular form f E12r−k+2

belongs toM12r+2(Γ ), so byCorollary 3.7 is a linear combination of Ea
4 E

b
6 with 4a +

6b = 12r + 2. It follows from the lemma that the constant term of f E12r−k+2/Δ
r

vanishes, and this constant term is equal to
∑

0≤n≤r c
k−na(n), proving the first part

of the theorem. The fact that ck0 �= 0 (which is of course essential) is a little more
difficult and will be omitted, see [1] Theorem 9.5.1. �

This theorem has (at least) two consequences. First, a theoretical one: if one
can construct a modular form whose constant term is some interesting quantity and
whose Fourier coefficients a(n) are rational, this shows that the interesting quantity
is also rational. This is what allowed Siegel to show that the value at negative integers
of Dedekind zeta functions of totally real number fields are rational, see Sect. 7.2.
Second, a practical one: it allows to compute explicitly the constant coefficient a(0)
in terms of the a(n), giving interesting formulas, see again Sect. 7.2.



34 H. Cohen

4 Hecke Operators: Ramanujan’s Discoveries

We now come to one of the most amazing and important discoveries on modular
forms due to S. Ramanujan, which has led to the modern development of the subject.
Recall that we set

Δ(τ) = q
∏

m≥1

(1 − qm)24 =
∑

n≥1

τ(n)qn .

We have τ(2) = −24, τ(3) = 252, and τ(6) = −6048 = −24 · 252, so that τ(6) =
τ(2)τ (3). After some more experiments, Ramanujan conjectured that if m and n
are coprime, we have τ(mn) = τ(m)τ (n). Thus, by decomposing an integer into
products of prime powers, assuming this conjecture, we are reduced to the study of
τ(pk) for p prime.

Ramanujan then noticed that τ(4) = −1472 = (−24)2 − 211 = τ(2)2 − 211, and
again after some experiments he conjectured that τ(p2) = τ(p)2 − p11, and more
generally that τ(pk+1) = τ(p)τ (pk) − p11τ(pk−1). Thus, uk = τ(pk) satisfies a lin-
ear recurrence relation

uk+1 − τ(p)uk + p11uk−1 = 0 ,

and since u0 = 1 the sequence is entirely determined by the value of u1 = τ(p). It
is well known that the behavior of a linear recurrent sequence is determined by its
characteristic polynomial. Here, it is equal to X2 − τ(p)X + p11, and the third of
Ramanujan’s conjectures is that the discriminant of this equation is always negative,
or equivalently that |τ(p)| < p11/2.

Note that if αp and βp are the roots of the characteristic polynomial (necessarily
distinct since we cannot have |τ(p)| = p11/2), then τ(pk) = (αk+1

p − βk+1
p )/(αp −

βp), and the last conjecture says that αp and βp are complex conjugate, and, in
particular, of modulus equal to p11/2.

These conjectures are all true. The first two (multiplicativity and recursion) were
proved by L. Mordell only 1 year after Ramanujan formulated them, and indeed
the proof is quite easy (in fact, we will prove them below). The third conjecture
|τ(p)| < p11/2 is extremely hard, and was only proved by P. Deligne in 1970 using
the whole machinery developed by the school of A. Grothendieck to solve the Weil
conjectures.

Themain idea ofMordell, whichwas generalized later by E.Hecke, is to introduce
certain linear operators (now called Hecke operators) on spaces of modular forms,
to prove that they satisfy the multiplicativity and recursion properties (this is, in
general, much easier than to prove this on numbers), and finally to use the fact that
S12(Γ ) = CΔ is of dimension 1, so that necessarily Δ is an eigenform of the Hecke
operators whose eigenvalues are exactly its Fourier coefficients.



An Introduction to Modular Forms 35

Although there are more natural ways of introducing them, we will define
the Hecke operator T (n) on Mk(Γ ) directly by its action on Fourier expansions
T (n)(

∑
m≥0 a(m)qm) = ∑

m≥0 b(m)qm , where

b(m) =
∑

d|gcd(m,n)

dk−1a(mn/d2) .

Note that we can consider this definition as purely formal, apart from the presence of
the integer k this is totally unrelated to the possible fact that

∑
m≥0 a(m)qm ∈ Mk(Γ ).

A simple but slightly tedious combinatorial argument shows that these operators
satisfy

T (n)T (m) =
∑

d|gcd(n,m)

dk−1T (nm/d2) .

In particular, if m and n are coprime, we have T (n)T (m) = T (nm) (multiplicativ-
ity), and if p is a prime and k ≥ 1, we have T (pk)T (p) = T (pk+1) + pk−1T (pk−1)

(recursion). This shows that these operators are indeed good candidates for proving
the first two of Ramanujan’s conjectures.

We need to show the essential fact that they preserve Mk(Γ ) and Sk(Γ ) (the latter
will follow from the former since by the above definition b(0) = ∑

d|n dk−1a(0) =
a(0)σk−1(n) = 0 if a(0) = 0). By recursion and multiplicativity, it is sufficient to
show this for T (p) with p prime. Now, if F(τ ) = ∑

m≥0 a(m)qm , T (p)(F)(τ ) =
∑

m≥0 b(m)qm with b(m) = a(mp) if p � m, and b(m) = a(mp) + pk−1a(m/p) if
p | m.

On the other hand, let us compute G(τ ) = ∑
0≤ j<p F((τ + j)/p). Replacing

directly in the Fourier expansion, we have

G(τ ) =
∑

m≥0

a(m)qm/p
∑

0≤ j<p

e2π im j/p .

The inner sum is a complete geometric sum which vanishes unless p | m, in which
case it is equal to p. Thus, changingm into pm, we haveG(τ ) = p

∑
m≥0 a(pm)qm .

On the other hand, we have trivially
∑

p|m a(m/p)qm = ∑
m≥0 a(m)q pm = F(pτ).

Replacing both of these formulas in the formula for T (p)(F), we see that

T (p)(F)(τ ) = pk−1F(pτ) + 1

p

∑

0≤ j<p

F

(
τ + j

p

)

.

Exercise 4.1 Show more generally that

T (n)(F)(τ ) =
∑

ad=n

ak−1 1

d

∑

0≤b<d

F

(
aτ + b

d

)

.
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It is now easy to show that T (p)F is modular: replace τ by γ (τ) in the above
formula and make a number of elementary manipulations to prove modularity. In
fact, since Γ is generated by τ 
→ τ + 1 and τ 
→ −1/τ , it is immediate to check
modularity for these two maps on the above formula.

As mentioned above, the proof of the first two Ramanujan conjectures is now
immediate: since T (n) acts on the one-dimensional space S12(Γ ), we must have
T (n)(Δ) = c · Δ for some constant c. Replacing in the definition of T (n), we thus
have for allm cτ(m) = ∑

d|gcd(n,m) d
11τ(nm/d2). Choosingm = 1 and using τ(1) =

1 shows that c = τ(n), so that

τ(n)τ (m) =
∑

d|gcd(n,m)

d11τ(nm/d2)

which implies (and is equivalent to) the first two conjectures of Ramanujan.
Denote by Pk(n) the characteristic polynomial of the linearmap T (n) on Sk(Γ ). A

strong form of the so-called Maeda’s conjecture states that for n > 1 the polynomial
Pk(n) is irreducible. This has been tested up to very large weights.

Exercise 4.2 The above proof shows that the Hecke operators also preserve the
space of modular functions, so by Theorem 3.31, the image of j (τ )will be a rational
function in j :

1. Show, for instance, that

T (2)( j) = j2/2 − 744 j + 81000 and

T (3)( j) = j3/3 − 744 j2 + 356652 j − 12288000 .

2. Set J = j − 744, i.e., j with no term in q0 in its Fourier expansion. Deduce that

T (2)(J ) = J 2/2 − 196884 and

T (3)(J ) = J 3/3 − 196884J − 21493760 ,

and observe that the coefficients that we obtain are exactly the Fourier coefficients
of J .

3. Prove that T (n)( j) is a polynomial in j . Does the last observation generalize?

5 Euler Products, Functional Equations

5.1 Euler Products

The case of Δ is quite special, in that the modular form space to which it naturally
belongs, S12(Γ ), is only one dimensional. As can easily be seen from the dimension



An Introduction to Modular Forms 37

formula, this occurs (for cusp forms) only for k = 12, 16, 18, 20, 22, and 26 (there
are no nonzero cusp forms in weight 14 and the space is of dimension 2 in weight
24), and thus the evident cusp forms ΔEk−12 for these values of k (setting E0 = 1)
are generators of the space Sk(Γ ), so are eigenforms of the Hecke operators and
share exactly the same properties as Δ, with p11 replaced by pk−1.

When the dimension is greater than 1, we must work slightly more. From the
formulas given above, it is clear that the T (n) forms a commutative algebra of oper-
ators on the finite-dimensional vector space Sk(Γ ). In addition, we have seen above
that there is a natural scalar product on Sk(Γ ). One can show the not completely
trivial fact that T (n) is Hermitian for this scalar product, and hence, in particular,
is diagonalizable. It follows by an easy and classical result of linear algebra that
these operators are simultaneously diagonalizable, i.e., there exists a basis Fi of
forms in Sk(Γ ) such that T (n)Fi = λi (n)Fi for all n and i . Identifying Fourier coef-
ficients as we have done above for Δ shows that if Fi = ∑

n≥1 ai (n)qn , we have
ai (n) = λi (n)ai (1). This implies first that ai (1) �= 0, otherwise Fi would be iden-
tically zero, so that by dividing by ai (1) we can always normalize the eigenforms
so that ai (1) = 1, and second, as for Δ, that ai (n) = λi (n), i.e., the eigenvalues
are exactly the Fourier coefficients. In addition, since the T (n) are Hermitian, these
eigenvalues are real for any embedding into C, and hence are totally real, in other
words their minimal polynomial has only real roots. Finally, using Theorem 3.5, it
is immediate to show that the field generated by the ai (n) is finite dimensional over
Q, i.e., is a number field.

Exercise 5.1 Consider the space S = S24(Γ ), which is the smallest weight where
the dimension is greater than 1, here 2. By the structure theorem given above, it is
generated, for instance, by Δ2 and ΔE3

4 . Compute the matrix of the operator T (2)
on this basis of S, diagonalize this matrix, so find the eigenfunctions of T (2) on S
(the prime number 144169 should occur). Check that these eigenfunctions are also
eigenfunctions of T (3).

Thus, let F = ∑
n≥1 a(n)qn be a normalized eigenfunction for all the Hecke

operators in Sk(Γ ) (for instance, F = Δ with k = 12), and consider the Dirichlet
series

L(F, s) =
∑

n≥1

a(n)

ns
,

for themoment formally, althoughwewill show below that it converges forℜ(s) suf-
ficiently large. The multiplicativity property of the coefficients (a(nm) = a(n)a(m)

if gcd(n,m) = 1, coming from that of the T (n)) is equivalent to the fact that we
have an Euler product (a product over primes)

L(F, s) =
∏

p∈P

L p(F, s) with L p(F, s) =
∑

j≥0

a(p j )

p js
,

where we will always denote by P the set of prime numbers.
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The additional recursion propertya(p j+1) = a(p)a(p j ) − pk−1a(p j−1) is equiv-
alent to the identity

L p(F, s) = 1

1 − a(p)p−s + pk−1 p−2s

(multiply both sides by the denominator to check this). We have thus proved the
following theorem:

Theorem 5.2 Let F = ∑
n≥1 a(n)qn ∈ Sk(Γ ) be an eigenfunction of all Hecke

operators. We have an Euler product

L(F, s) =
∑

n≥1

a(n)

ns
=

∏

p∈P

1

1 − a(p)p−s + pk−1 p−2s
.

Note that we have not really used the fact that F is a cusp form: the above theorem
is still valid if F = Fk is the normalized Eisenstein series

Fk(τ ) = − Bk

2k
Ek(τ ) = − Bk

2k
+

∑

n≥1

σk−1(n)qn ,

which is easily seen to be a normalized eigenfunction for all Hecke operators. In fact,

Exercise 5.3 Let a ∈ C be any complex number and let as usual σa(n) = ∑
d|n da .

1. Show that

∑

n≥1

σa(n)

ns
= ζ(s − a)ζ(s) =

∏

p∈P

1

1 − σa(p)p−s + pa p−2s
,

with σa(p) = pa + 1.
2. Show that

σa(m)σa(n) =
∑

d|gcd(m,n)

daσa

(mn

d2

)
,

so that, in particular, Fk is indeed a normalized eigenfunction for all Hecke
operators.

5.2 Analytic Properties of L-Functions

Everything that we have done up to now is purely formal, i.e., we do not need to
assume convergence. However, in the sequel, we will need to prove some analytic
results, and for this, we need to prove convergence for certain values of s. We begin
with the following easy bound, due to Hecke:
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Proposition 5.4 Let F = ∑
n≥1 a(n)qn ∈ Sk(Γ ) be a cusp form (not necessarily an

eigenform). There exists a constant c > 0 (depending on F) such that for all n, we
have |a(n)| ≤ cnk/2.

Proof The trick is to consider the function g(τ ) = |F(τ )ℑ(τ )k/2|: since we have
seen that ℑ(γ (τ )) = ℑ(τ )/|cτ + d|2, it follows that g(τ ) is invariant under Γ . It
follows that supτ∈H g(τ ) = supτ∈F g(τ ), where F is the fundamental domain used
above. Now because of the Fourier expansion and the fact that F is a cusp form,
|F(τ )| = O(e−2πℑ(τ )) as ℑ(τ ) → ∞, so g(τ ) tends to 0 also. It immediately follows
that g is bounded on F, and hence onH , so that there exists a constant c1 > 0 such
that |F(τ )| ≤ c1ℑ(τ )−k/2 for all τ .

We can now easily prove Hecke’s bound: from the Fourier series section, we know
that for any y > 0

a(n) = e2πny
∫ 1

0
F(x + iy)e−2π inx dx ,

so that |a(n)| ≤ c1e2πny y−k/2, and choosing y = 1/n proves the proposition with
c = e2πc1. �

The following corollary is now clear:

Corollary 5.5 The L-function of a cusp form of weight k converges absolutely (and
uniformly on compact subsets) for ℜ(s) > k/2 + 1.

Remark 5.6 Deligne’s deep result mentioned above on the third Ramanujan con-
jecture implies that we have the following optimal bound: there exists c > 0 such
that |a(n)| ≤ cσ0(n)n(k−1)/2, and, in particular, |a(n)| = O(n(k−1)/2+ε) for all ε > 0.
This implies that the L-function of a cusp form converges absolutely and uniformly
on compact subsets, in fact, also for ℜ(s) > (k + 1)/2.

Exercise 5.7 Define for all s ∈ C the function σs(n) by σs(n) = ∑
d|n ds if n ∈ Z>0,

σs(0) = ζ(−s)/2 (and σs(n) = 0 otherwise). Set

S(s1, s2; n) =
∑

0≤m≤n

σs1(m)σs2(n − m) .

1. Compute S(s1, s2; n) exactly in terms of σs1+s2+1(n) for (s1, s2) = (3, 3) and
(3, 5), and also for (s1, s2) = (1, 1), (1, 3), (1, 5), and (1, 7) by using properties
of the function E2.

2. Using Hecke’s bound for cusp forms, show that if s1 and s2 are odd positive
integers the ratio S(s1, s2; n)/σs1+s2+1(n) tends to a limit L(s1, s2) as n → ∞,
and compute this limit in terms ofBernoulli numbers. In addition, give an estimate
for the error term |S(s1, s2; n)/σs1+s2+1(n) − L(s1, s2)|.

3. Using the values of the Riemann zeta function at even positive integers in terms
of Bernoulli numbers, show that if s1 and s2 are odd positive integers, we have
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L(s1, s2) = ζ(s1 + 1)ζ(s2 + 1)

(s1 + s2 + 1)
(s1+s2

s1

)
ζ(s1 + s2 + 2)

.

4. (A little project.) Define L(s1, s2) by the above formula for all s1, s2 in C for
which it makes sense, interpreting

(s1+s2
s1

)
as Γ (s1 + s2 + 1)/(Γ (s1 + 1)Γ (s2 +

1)). Check on a computer whether it still seems to be true that

S(s1, s2; n)/σs1+s2+1(n) → L(s1, s2) .

Try to prove it for s1 = s2 = 2, and then for general s1, s2. If you succeed, give
also an estimate for the error term analogous to the one obtained above.

We now do some (elementary) analysis.

Proposition 5.8 Let F ∈ Sk(Γ ). For ℜ(s) > k/2 + 1, we have

(2π)−sΓ (s)L(F, s) =
∫ ∞

0
F(i t)t s−1 dt .

Proof Using Γ (s) = ∫ ∞
0 e−t t s−1 dt , this is trivial by uniform convergence which

insures that we can integrate term by term. �

Corollary 5.9 The function L(F, s) is a holomorphic function which can be ana-
lytically continued to the whole of C. In addition, if we set Λ(F, s) = (2π)−sΓ (s)
L(F, s), we have the functional equation Λ(F, k − s) = i−kΛ(F, s).

Note that in our case k is even, so that i−k = (−1)k/2, but we prefer writing the
constant as above so as to be able to use a similar result in odd weight, which occurs
in more general situations.

Proof Indeed, splitting the integral at 1, changing t into 1/t in one of the integrals,
and using modularity shows immediately that

(2π)−sΓ (s)L(F, s) =
∫ ∞

1
F(i t)(t s−1 + i k t k−1−s) dt .

Since the integral converges absolutely and uniformly for all s (recall that F(i t) tends
exponentially fast to 0 when t → ∞), this immediately implies the corollary. �

As an aside, note that the integral formula used in the above proof is a very
efficient numerical method to compute L(F, s), since the series obtained on the right
by term-by-term integration is exponentially convergent. For instance,

Exercise 5.10 Let F(τ ) = ∑
n≥1 a(n)qn be the Fourier expansion of a cusp form

of weight k on Γ . Using the above formula, show that the value of L(F, k/2) at the
center of the “critical strip” 0 ≤ ℜ(s) ≤ k is given by the following exponentially
convergent series:
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L(F, k/2) = (1 + (−1)k/2)
∑

n≥1

a(n)

nk/2
e−2πn Pk/2(2πn) ,

where Pk/2(X) is the polynomial

Pk/2(X) =
∑

0≤ j<k/2

X j/j ! = 1 + X/1! + X2/2! + · · · + Xk/2−1/(k/2 − 1)! .

Note, in particular, that if k ≡ 2 (mod 4), we have L(F, k/2) = 0. Prove this directly.

Exercise 5.11 1. Prove that if F is not necessarily a cusp form, we have |a(n)| ≤
cnk−1 for some c > 0.

2. Generalize the proposition and the integral formulas so that they are also valid for
non-cusp forms; you will have to add polar parts of the type 1/s and 1/(s − k).

3. Show that L(F, s) still extends to the whole of C with functional equation, but
that it has a pole, simple, at s = k, and compute its residue. In passing, show that
L(F, 0) = −a(0).

5.3 Special Values of L-Functions

A general “paradigm” on L-functions, essentially due to P. Deligne, is that if some
“natural” L-function has both an Euler product and functional equations similar to
the above, then for suitable integral “special points” the value of the L-function
should be a certain (a priori transcendental) number ω times an algebraic number.

In the case of modular forms, this is a theorem of Yu. Manin.

Theorem 5.12 Let F be a normalized eigenform in Sk(Γ ), and denote by K the
number field generated by its Fourier coefficients. There exist two nonzero complex
numbers ω+ and ω− such that for 1 ≤ j ≤ k − 1 integral, we have

Λ(F, j)/ω(−1) j ∈ K ,

where we recall that Λ(F, s) = (2π)−sΓ (s)L(F, s).
In addition, ω± can be chosen such that ω+ω− =< F, F >.

In other words, for j odd, we have L(F, j)/ω− ∈ K while for j even, we have
L(F, j)/ω+ ∈ K .

For instance, in the case F = Δ, if we choose ω− = Λ(F, 3) and ω+ = Λ(F, 2),
we have

(Λ(F, j))1≤ j≤11 odd = (1620/691, 1, 9/14, 9/14, 1, 1620/691)ω−
(Λ(F, j))1≤ j≤11 even = (1, 25/48, 5/12, 25/48, 1)ω+ ,

and ω+ω− = (8192/225) < F, F >.
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Exercise 5.13 (see also Exercise 3.9). For F ∈ Sk(Γ ) define the period polynomial
P(F, X) by

P(F; X) =
∫ i∞

0
(X − τ)k−2F(τ ) dτ .

1. For γ ∈ Γ show that

P(F; X)|2−k =
∫ γ −1(i∞)

γ −1(0)
(X − τ)k−2F(τ ) dτ .

2. Show that P(F; X) satisfies

P(F; X)|2−k S + P(F; X) = 0 and

P(F; X)|2−k(ST )2 + P(F; X)|2−k(ST ) + P(F; X) = 0 .

3. Show that

P(F; X) = −
k−2∑

j=0

(−i)k−1− j

(
k − 2

j

)

Λ(F, k − 1 − j)X j .

4. If F = Δ, using Manin’s theorem above show that up to the multiplicative con-
stant ω+, ℜ(P(F; X)) factors completely in Q[X ] as a product of linear polyno-
mials, and show a similar result for ℑ(P(F; X)) after omitting the extreme terms
involving 691.

5.4 Nonanalytic Eisenstein Series and Rankin–Selberg

If we replace the expression (cτ + d)k by |cτ + d|2s for some complex number s, we
can also obtain functions which are invariant by Γ , although they are nonanalytic.
More precisely:

Definition 5.14 Write as usual y = ℑ(τ ). For ℜ(s) > 1, we define

G(s)(τ ) =
∑

(c,d)∈Z2\{(0,0)}

ys

|cτ + d|2s and

E(s)(τ ) =
∑

γ∈Γ∞\Γ
ℑ(γ (τ ))s = 1

2

∑

gcd(c,d)=1

ys

|cτ + d|2s .

This is again an averaging procedure, and it follows that G(s) and E(s) are
invariant under Γ . In addition, as in the case of the holomorphic Eisenstein series
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Gk and Ek , it is clear that G(s) = 2ζ(2s)E(s). One can also easily compute their
Fourier expansion, and the result is as follows:

Proposition 5.15 Set Λ(s) = π−s/2Γ (s/2)ζ(s). We have the Fourier expansion

Λ(2s)E(s) = Λ(2s)ys + Λ(2 − 2s)y1−s + 4y1/2
∑

n≥1

σ2s−1(n)

ns−1/2 Ks−1/2(2πny) cos(2πnx) .

In the above, Kν(x) is a K -Bessel function which we do not define here. The
main properties that we need is that it tends to 0 exponentially (more precisely
Kν(x) ∼ (π/(2x))1/2e−x as x → ∞) and that K−ν = Kν . It follows from the above
Fourier expansion that E(s) has an analytic continuation to the whole complex
plane, that it satisfies the functional equation E (1 − s) = E (s), where we set E (s) =
Λ(2s)E(s), and that E(s) has a unique pole, at s = 1, which is simple with residue
3/π , independent of τ .

Exercise 5.16 Using the properties of the Riemann zeta function ζ(s), show this
last property, i.e., that E(s) has a unique pole, at s = 1, which is simple with residue
3/π , independent of τ .

There are many reasons for introducing these non-holomorphic Eisenstein series,
but for us the main reason is that they are fundamental in unfolding methods. Recall
that using unfolding, in Proposition 3.12 we showed that Ek (or Gk) was orthogonal
to any cusp form. In the present case, we obtain a different kind of result called a
Rankin–Selberg convolution. Let f and g be in Mk(Γ ), one of them being a cusp
form. Since E(s) is invariant by Γ , the scalar product < E(s) f, g > makes sense,
and the following proposition gives its value:

Proposition 5.17 Let f (τ ) = ∑
n≥0 a(n)qn and g(τ ) = ∑

n≥0 b(n)qn be in Mk(Γ ),
with at least one being a cusp form. For ℜ(s) > 1, we have

< E(s) f, g >= Γ (s + k − 1)

(4π)s+k−1

∑

n≥1

a(n)b(n)

ns+k−1
.

Proof Weessentially copy the proof of Proposition 3.12 sowe skip the details: setting
temporarily F(τ ) = f (τ )g(τ )yk which is invariant by Γ , we have

< E(s) f, g > =
∫

Γ \H

∑

γ∈Γ∞\Γ
ℑ(γ (τ ))s F(γ (τ )) dμ

=
∑

Γ∞\H
ℑ(τ )s F(τ ) dμ

=
∫ ∞

0
ys+k−2

∫ 1

0
F(x + iy) dx dy .
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The inner integral is equal to the constant term in the Fourier expansion of F , and
hence is equal to

∑
n≥1 a(n)b(n)e−4πny (note that by assumption one of f and g is

a cusp form, so the term n = 0 vanishes), and the proposition follows. �

Corollary 5.18 For ℜ(s) > k set

R( f, g)(s) =
∑

n≥1

a(n)b(n)

ns
.

1. R( f, g)(s) has an analytic continuation to the whole complex plane and satisfies
the functional equation R(2k − 1 − s) = R(s) with

R(s) = Λ(2s − 2k + 1)(4π)−sΓ (s)R( f, g)(s) .

2. R( f, g)(s) has a single pole, which is simple, at s = k with residue

3

π

(4π)k

(k − 1)! < f, g > .

Proof This immediately follows from the corresponding properties of E(s): we have

Λ(2s − 2k + 2)(4π)−sΓ (s)R( f, g)(s) =< E (s − k + 1) f, g > ,

and the right-hand side has an analytic continuation to C, and is invariant when
changing s into 2k − 1 − s. In addition, by the proposition E(s − k + 1) = E (s −
k + 1)/Λ(2s − 2k + 2) has a single pole, which is simple, at s = k, with residue
3/π , so R( f, g)(s) also has a single pole, which is simple, at s = k with residue
3

π

(4π)k

(k − 1)! < f, g >. �

It is an important fact (see Theorem 7.9 of my notes on L-functions in the present
volume) that L-functions having analytic continuation and standard functional equa-
tions can be very efficiently computed at any point in the complex plane (see the
note after the proof of Corollary 5.9 for the special case of L(F, s)). Thus, the above
corollary gives a very efficient method for computing Petersson scalar products.

Note that theholomorphicEisenstein series Ek(τ ) can also beused to giveRankin–
Selberg convolutions, but now between forms of different weights.

Exercise 5.19 Let f = ∑
n≥0 a(n)qn ∈ M�(Γ ) and g = ∑

n≥0 b(n)qn ∈ Mk+�(Γ ),
at least one being a cusp form. Using exactly the same unfolding method as in the
above proposition or as in Proposition 3.12, show that

< Ek f, g >= (k + � − 2)!
(4π)k+�−1

∑

n≥1

a(n)b(n)

nk+�−1
.
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6 Modular Forms on Subgroups of Γ

6.1 Types of Subgroups

We have used as basic definition of (weak) modularity F |kγ = F for all γ ∈ Γ .
But there is no reason to restrict to Γ : we could very well ask the same modularity
condition for some group G of transformations of H different from Γ .

There are many types of such groups, and they have been classified: for us, we
will simply distinguish three types, with no justification. For any such group G, we
can talk about a fundamental domain, similar to F that we have drawn above (I do not
want to give a rigorous definition here). We can distinguish essentially three types
of such domains, corresponding to three types of groups.

The first type is when the domain (more precisely its closure) is compact: we say
in that case that G is cocompact. It is equivalent to saying that it does not have any
“cusp” such as i∞ in the case of G. These groups are very important, but we will
not consider them here.

The second type is when the domain is not compact (i.e., it has cusps), but it has
finite volume for the measure dμ = dxdy/y2 on H defined in Exercise 3.11. Such
a group is said to have finite covolume, and the main example is G = Γ that we have
just considered, and hence also evidently all the subgroups of Γ of finite index.

Exercise 6.1 Show that the covolume of the modular group Γ is finite and equal to
π/3.

The third type is when the volume is infinite: a typical example is the group
Γ∞ generated by integer translations, i.e., the set of matrices

(
1 n
0 1

)
. A fundamental

domain is then any vertical strip in H of width 1, which can trivially be shown to
have infinite volume. These groups are not important (at least for us) for the following
reason: they would have “too many” modular forms. For instance, in the case of Γ∞
a “modular form” would simply be a holomorphic periodic function of period 1, and
we come back to the theory of Fourier series, much less interesting.

Wewill, therefore, restrict to groups of the second type, which are calledFuchsian
groups of the first kind. In fact, for this course, we will even restrict to subgroups G
of Γ of finite index.

However, even with this restriction, it is still necessary to distinguish two types of
subgroups: the so-called congruence subgroups, and the others, of course, called non-
congruence subgroups. The theory of modular forms on non-congruence subgroups
is quite a difficult subject and active research is being done on them. One annoying
aspect is that they apparently do not have a theory of Hecke operators.

Thus, will restrict even more to congruence subgroups. We give the following
definitions:

Definition 6.2 Let N ≥ 1 be an integer.

1. We define
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Γ (N ) = {γ =
(
a b
c d

)

∈ Γ, γ ≡
(
1 0
0 1

)

(mod N )} ,

Γ1(N ) = {γ =
(
a b
c d

)

∈ Γ, γ ≡
(
1 ∗
0 1

)

(mod N )} ,

Γ0(N ) = {γ =
(
a b
c d

)

∈ Γ, γ ≡
(∗ ∗
0 ∗

)

(mod N )} ,

where the congruences are component-wise and ∗ indicates that no congruence
is imposed.

2. A subgroup of Γ is said to be a congruence subgroup if it contains Γ (N ) for
some N , and the smallest such N is called the level of the subgroup.

It is clear that Γ (N ) ⊂ Γ1(N ) ⊂ Γ0(N ), and it is trivial to prove that Γ (N )

is normal in Γ (hence, in any subgroup of Γ containing it), that Γ1(N )/Γ (N ) �
Z/NZ (with the map

(
a b
c d

) 
→ b mod N ), and that Γ1(N ) is normal in Γ0(N ) with
Γ0(N )/Γ1(N ) � (Z/NZ)∗ (with the map

(
a b
c d

) 
→ d mod N ).
If G is a congruence subgroup of level N , we have Γ (N ) ⊂ G, so (whatever the

definition) amodular form onG will, in particular, be onΓ (N ). Because of the above
isomorphisms, it is not difficult to reduce the study of forms on Γ (N ) to those on
Γ1(N ), and the latter to forms on Γ0(N ), except that we have to add a slight “twist”
to the modularity property. Thus, for simplicity, we will restrict to modular forms on
Γ0(N ).

6.2 Modular Forms on Subgroups

In view of the definition given for Γ , it is natural to say that F is weakly modular of
weight k on Γ0(N ) if for all γ ∈ Γ0(N ), we have F |kγ = F , where we recall that if
γ = (

a b
c d

)
, then F |kγ (τ) = (cτ + d)−k F(τ ). To obtain amodular form, we need also

to require that F is holomorphic onH , plus some additional technical condition “at
infinity”. In the case of the fullmodular groupΓ , this conditionwas that F(τ ) remains
bounded asℑ(τ ) → ∞. In the case of a subgroup, this condition is not sufficient (it is
easy to show that if we do not require an additional condition the corresponding space
will, in general, be infinite dimensional). There are several equivalent ways of giving
the additional condition.One is the following:writing as usual τ = x + iy,we require
that there exists N such that in the strip −1/2 ≤ x ≤ 1/2, we have |F(τ )| ≤ yN as
y → ∞ and |F(τ )| ≤ y−N as y → 0 (since F is 1-periodic, there is no loss of
generality in restricting to the strip).

It is easily shown that if F is weakly modular and holomorphic, then the above
inequalities imply that |F(τ )| is, in fact, bounded as y → ∞ (but, in general, not as
y → 0), so the first condition is exactly the one that we gave in the case of the full
modular group.
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Similarly, we can define a cusp form by asking that in the above strip |F(τ )| tends
to 0 as y → ∞ and as y → 0.

Exercise 6.3 If F ∈ Mk(Γ ) show that the second condition |F(τ )| ≤ y−N as y → 0
is satisfied.

Now that we have a solid definition of modular form, we can try to proceed as in
the case of the full modular group. A number of things can easily be generalized. It
is always convenient to choose a system of representatives (γ j ) of right cosets for
Γ0(N ) in Γ , so that

Γ =
⊔

j

Γ0(N )γ j .

For instance, if F is the fundamental domain of Γ seen above, one can choose
D = ⊔

γ j (F) as fundamental domain for Γ0(N ). The theorem that we gave on
valuations generalizes immediately:

∑

τ∈D

vτ (F)

eτ

= k

12
[Γ : Γ0(N )] ,

where D is D to which is added a finite number of “cusps” (we do not explain this;
it is not the topological closure), eτ = 2 (resp., 3) if τ is Γ -equivalent to i (resp., to
ρ), and eτ = 1 otherwise, and we can then deduce the dimension of Mk(Γ0(N )) and
Sk(Γ0(N )) as we did for Γ :

Theorem 6.4 We have M0(Γ0(N )) = C (i.e., the only modular forms of weight 0
are the constants) and S0(Γ0(N )) = {0}. For k ≥ 2 even, we have

dim(Mk(Γ0(N ))) = A1 − A2,3 − A2,4 + A3 and

dim(Sk(Γ0(N ))) = A1 − A2,3 − A2,4 − A3 + δk,2 ,

where δk,2 is the Kronecker symbol (1 if k = 2, 0 otherwise) and the Ai are given as
follows:

A1 = k − 1

12
N

∏

p|N

(

1 + 1

p

)

,

A2,3 =
(
k − 1

3
−

⌊
k

3

⌋) ∏

p|N

(

1 +
(−3

p

))

if 9 � N , 0 otherwise,

A2,4 =
(
k − 1

4
−

⌊
k

4

⌋) ∏

p|N

(

1 +
(−4

p

))

if 4 � N , 0 otherwise,

A3 = 1

2

∑

d|N
φ(gcd(d, N/d)) .
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6.3 Examples of Modular Forms on Subgroups

We give a few examples of modular forms on subgroups. First, note the following
easy lemma:

Lemma 6.5 If F ∈ Mk(Γ0(N )), then for any m ∈ Z≥1, we have F(mτ) ∈
Mk(Γ0(mN )).

Proof Trivial since when
(
a b
c d

) ∈ Γ0(mN ) one can write (m(aτ + b)/(cτ + d)) =
(a(mτ) + mb)/((c/m)τ + d). �

Thus, we can already construct many forms on subgroups, but in a sense they are
not very interesting, since they are “old” in a precise sense that we will define below.

A second more interesting example is Eisenstein series: there are more general
Eisenstein series than those that we have seen for Γ , but we simply give the follow-
ing important example: using a similar proof to the above lemma we can construct
Eisenstein series ofweight 2 as follows. Recall that E2(τ ) = 1 − 24

∑
n≥1 σ1(n)qn is

not quite modular, and that E∗
2 (τ ) = E2(τ ) − 3/(πℑ(τ )) is weakly modular (but of

course non-holomorphic). Consider the function F(τ ) = NE2(Nτ) − E2(τ ), anal-
ogous to the construction of the lemma with a correction term.

We have the evident but crucial fact that we also have F(τ ) = NE∗
2 (Nτ) − E∗

2 (τ )

(since ℑ(τ ) is multiplied by N ), so F is also weakly modular on Γ0(N ), but since it
is holomorphic, we have thus constructed a (nonzero) modular form of weight 2 on
Γ0(N ).

A third important example is provided by theta series. This would require a book
in itself, so we restrict to the simplest case. We have seen in Corollary 1.3 that the
function T (a) = ∑

n∈Z
e−aπn2 satisfies T (1/a) = a1/2T (a), which looks like (and

is) a modularity condition. This was for a > 0 real. Let us generalize and for τ ∈ H
set

θ(τ ) =
∑

n∈Z

qn2 =
∑

n∈Z

e2π in
2τ ,

so that, for instance, we simply have T (a) = θ(ia/2). The proof of the functional
equation for T that we gave using Poisson summation is still valid in this more
general case and shows that

θ(−1/(4τ)) = (2τ/ i)1/2θ(τ ) .

On the other hand, the definition trivially shows that θ(τ + 1) = θ(τ ). If we denote
by W4 the matrix

(
0 −1
4 0

)
corresponding to the map τ 
→ −1/(4τ) and as usual T =(

1 1
0 1

)
, we thus have θ |1/2W4 = cθ and θ1/2T = θ for some eighth root of unity c.

(Note: we always use the principal determination of the square roots; if you are
uncomfortable with this, simply square everything, this is what we will do below
anyway.) This implies that if we let Γθ be the intersection of Γ with the group
generated by W4 and T (as transformations ofH ), then for all γ ∈ Γθ we will have
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θ |1/2γ = c(γ )θ for some eighth root of unity c(γ ), but in fact c(γ ) is a fourth root
of unity which we will give explicitly below.

One can easily describe this groupΓθ , and in particular show that it containsΓ0(4)
as a subgroup of index 2. This implies that θ4 ∈ M2(Γ0(4)), and more generally of
course θ4m ∈ M2m(Γ0(4)).

As one of the most famous application of the finite dimensionality of modular
form spaces, solve the following exercise:

Exercise 6.6 1. Using the dimension formulas, show that 2E2(2τ) − E2(τ )

together with 4E2(4τ) − E2(τ ) form a basis of M2(Γ0(4)).
2. Using the Fourier expansion of E2, deduce an explicit formula for the Fourier

expansion of θ4, and hence that r4(n), the number of representations of n as a
sum of four squares (in Z, all permutations counted) is given for n ≥ 1 by the
formula

r4(n) = 8(σ1(n) − 4σ1(n/4)) ,

where it is understood thatσ1(x) = 0 if x /∈ Z. In particular, show that this trivially
implies Lagrange’s theorem that every integer is a sum of four squares.

3. Similarly, show that r8(n), the nth Fourier coefficient of θ8, is given for n ≥ 1 by

r8(n) = 16(σ3(n) − 2σ3(n/2) + 16σ3(n/4)) .

Remark 6.7 Using more general methods one can give “closed” formulas for rk(n)

for k = 1, 2, 3, 4, 5, 6, 7, 8, and 10, see, e.g., [1].

6.4 Hecke Operators and L-Functions

We can introduce the same Hecke operators as before, but to have a reasonable
definition we must add a coprimality condition: we define T (n)(

∑
m≥0 a(m)qm) =∑

m≥0 b(m)qm , with

b(m) =
∑

d|gcd(m,n)
gcd(d,N )=1

dk−1a(mn/d2) .

This additional condition gcd(d, N ) = 1 is, of course, automatically satisfied if n is
coprime to N , but not otherwise.

One then shows exactly like in the case of the full modular group that

T (n)T (m) =
∑

d|gcd(n,m)
gcd(d,N )=1

dk−1T (nm/d2) ,

that they preserve modularity, so, in particular, the T (n) form a commutative algebra
of operators on Sk(Γ0(N )). And this is where the difficulties specific to subgroups of



50 H. Cohen

Γ begin: in the case of Γ , we stated (without proof nor definition) that the T (n)were
Hermitian with respect to the Petersson scalar product, and deduced the existence of
eigenforms for all Hecke operators. Unfortunately, here the same proof shows that
the T (n) are Hermitian when n is coprime to N , but not otherwise.

It follows that there exist common eigenforms for the T (n), but only for n coprime
to N , which creates difficulties.

An analogous problemoccurs forDirichlet characters: ifχ is aDirichlet character
modulo N , it may, in fact, come by natural extension from a character modulo
M for some divisor M | N , M < N . The characters which have nice properties,
in particular, with respect to the functional equation of their L-functions, are the
primitive characters, for which such an M does not exist.

A similar but slightly more complicated thing can be done for modular forms. It
is clear that if M | N and F ∈ Mk(Γ0(M)), then, of course, F ∈ Mk(Γ0(N )). More
generally, by Lemma 6.5, for any d | N/M , we have F(dτ) ∈ Mk(Γ0(N )). Thus, we
want to exclude such “oldforms”. However, it is not sufficient to say that a newform
is not an oldform. The correct definition is to define a newform as a form which is
orthogonal to the space of oldformswith respect to the scalar product, and, of course,
the new space is the space of newforms. Note that in the case of Dirichlet characters,
this orthogonality condition (for the standard scalar product of two characters) is
automatically satisfied so need not be added.

This theory was developed by Atkin–Lehner–Li, and the new space Snewk (Γ0(N ))

can be shown to have all the nice properties that we require. Although not trivial,
one can prove that it has a basis of common eigenforms for all Hecke operators, not
only those with n coprime to N . More precisely, one shows that in the new space
an eigenform for the T (n) for all n coprime to N is automatically an eigenform for
any operator which commutes with all the T (n), such as, of course, the T (m) for
gcd(m, N ) > 1.

In addition, we have not really lost anything by restricting to the new space, since
it is easy to show that

Sk(Γ0(N )) =
⊕

M |N

⊕

d|N/M

B(d)Snewk (Γ0(M)) ,

where B(d) is the operator sending F(τ ) to F(dτ). Note that the sums in the above
formula are direct sums.

Exercise 6.8 The above formula shows that

dim(Sk(Γ0(N ))) =
∑

M |N
σ0(N/M) dim(Snewk (Γ0(M))) ,

where σ0(n) is the number of divisors of n.

1. Using theMöbius inversion formula, show that if we define an arithmetic function
β by β(p) = −2, β(p2) = 1, and β(pk) = 0 for k ≥ 3, and extend bymultiplica-
tivity (β(

∏
pvii ) = ∏

β(pvii )), we have the following dimension formula for the
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new space:

dim(Snewk (Γ0(N ))) =
∑

M |N
β(N/M) dim(Sk(Γ0(M))) .

2. Using Theorem 6.4, deduce a direct formula for the dimension of the new space.

Proposition 6.9 Let F ∈ Sk(Γ0(N )) and WN = (
0 −1
N 0

)
.

1. We have F |kWN ∈ Sk(Γ0(N )), where

F |kWN (τ ) = N−k/2τ−k F(−1/(Nτ)) .

2. If F is an eigenform (in the new space), then F |kWN = ±F for a suitable sign
±.

Proof (1): This simply follows from the fact thatWN normalizes Γ0(N ):W−1
N Γ0(N )

WN = Γ0(N ) as can easily be checked, and the same result would be true for any
other normalizing operator such as the Atkin–Lehner operators which we will not
define. The operator WN is called the Fricke involution.

(2): It is easy to show that WN commutes with all Hecke operators T (n) when
gcd(n, N ) = 1, so bywhat we havementioned above, if F is an eigenform in the new
space, it is automatically an eigenform for WN , and since WN acts as an involution,
its eigenvalues are ±1. �

The eigenforms can again be normalized with a(1) = 1, and their L-function has
an Euler product, of a slightly more general shape:

L(F, s) =
∏

p�N

1

1 − a(p)p−s + pk−1 p−2s

∏

p|N

1

1 − a(p)p−s
.

Proposition 5.8 is, of course, still valid, but is not the correct normalization to obtain
a functional equation. We replace it by

Ns/2(2π)−sΓ (s)L(F, s) =
∫ ∞

0
F(i t/N 1/2)t s−1 dt ,

which, of course, is trivial from the proposition by replacing t by t/N 1/2. Indeed,
thanks to the above proposition, we split the integral at t = 1, and using the action
of WN , we deduce the following proposition:

Proposition 6.10 Let F ∈ Snewk (Γ0(N )) be an eigenform for all Hecke operators,
and write F |kWN = εF for some ε = ±1. The L-function L(F, s) extends to a
holomorphic function in C, and if we set Λ(F, s) = Ns/2(2π)−sΓ (s)L(F, s), we
have the functional equation

Λ(F, k − s) = εi−kΛ(F, s) .
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Proof Indeed, the trivial change of variable t into 1/t proves the formula

Ns/2(2π)−sΓ (s)L(F, s) =
∫ ∞

1
F(i t/N 1/2)(t s−1 + εi k t k−1−s) dt ,

from which the result follows. �

Once again, we leave to the reader to check that if F(τ ) = ∑
n≥1 a(n)qn , we have

L(F, k/2) = (1 + ε(−1)k/2)
∑

n≥1

a(n)

nk/2
e−2πn/N 1/2

Pk/2(2πn/N 1/2) .

6.5 Modular Forms with Characters

Consider again the problem of sums of squares, in other words of the powers of
θ(τ ). We needed to raise it to a power which is a multiple of 4 so as to have a pure
modularity property as we defined it above. But consider the function θ2(τ ). The
same proof that we mentioned for θ4 shows that for any γ = (

a b
c d

) ∈ Γ0(4), we have

θ2(γ (τ )) =
(−4

d

)

(cτ + d)θ2(τ ) ,

where
(−4

d

)
is the Legendre–Kronecker character (in this specific case equal to

(−1)(d−1)/2 since d is odd, being coprime to c). Thus, it satisfies a modularity prop-
erty, except that it is “twisted” by

(−4
d

)
. Note that the equation makes sense since

if we change γ into −γ (which does not change γ (τ)), then (cτ + d) is changed
into −(cτ + d), and

(−4
d

)
is changed into

( −4
−d

) = − (−4
d

)
. It is thus essential that

the multiplier that we put in front of (cτ + d)k , here
(−4

d

)
, has the same parity as k.

We mentioned above that the study of modular forms on Γ1(N ) could be reduced
to those on Γ0(N ) “with a twist”. Indeed, more precisely it is trivial to show that

Mk(Γ1(N )) =
⊕

χ(−1)=(−1)k

Mk(Γ0(N ), χ) ,

where χ ranges through all Dirichlet characters modulo N of the specified parity,
and where Mk(Γ0(N ), χ) is defined as the space of functions F satisfying

F(γ (τ )) = χ(d)(cτ + d)k F(τ )

for all γ = (
a b
c d

) ∈ Γ0(N ), plus the usual holomorphy and conditions at the cusps
(note that γ 
→ χ(d) are the group homomorphism from Γ0(N ) toC

∗ which induces
the abovementioned isomorphism from Γ0(N )/Γ1(N ) to (Z/NZ)∗).
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Exercise 6.11 1. Show that a system of coset representatives of Γ1(N )\Γ0(N ) is
given by matrices Md = (

u −v
N d

)
, where 0 ≤ d < N such that gcd(d, N ) = 1 and

u and v are such that ud + vN = 1.
2. Let f ∈ Mk(Γ1(N )). Show that in the above decomposition of Mk(Γ1(N )), we

have f = ∑
χ(−1)=(−1)k fχ with

fχ =
∑

0≤d<N , gcd(d,N )=1

χ(d) f |kMd .

These spaces are just as nice as the spaces Mk(Γ0(N )) and share exactly the same
properties. They have finite dimension (which we do not give), there are Eisenstein
series, Hecke operators, newforms, Euler products, L-functions, etc. An excellent
rule of thumb is simply to replace any formula containing dk−1 (or pk−1) byχ(d)dk−1

(or χ(p)pk−1). In fact, in the Euler product of the L-function of an eigenform, we
do not need to distinguish p � N and p | N since we have

L(F, s) =
∏

p∈P

1

1 − a(p)p−s + χ(p)pk−1−2s
,

and χ(p) = 0 if p | N since χ is a character modulo N .
Thus, for instance, θ2 ∈ M1(Γ0(4), χ−4), more generally θ4m+2 ∈ M2m+1

(Γ0(4), χ−4), where we use the notation χD for the Legendre–Kronecker symbol(
D
d

)
.
The space M1(Γ0(4), χ−4) has dimension 1, generated by the single Eisenstein

series

1 + 4
∑

n≥1

σ
(−4)
0 (n)qn , where σ

(D)
k−1(n) =

∑

d|n

(
D

d

)

dk−1

according to our rule of thumb (which does not tell us the constant 4). Comparing
constant coefficients, we deduce that r2(n) = 4σ (−4)

0 (n), where as usual r2(n) is the
number of representations of n as a sum of two squares. This formula was in essence
discovered by Fermat.

For r6(n), we must work slightly more: θ6 ∈ M3(Γ0(4), χ−4), and this space has
dimension 2, generated by two Eisenstein series. The first is the natural “rule of
thumb” one (which again does not give us the constant)

F1 = 1 − 4
∑

n≥1

σ
(−4)
2 (n)qn ,

and the second is
F2 =

∑

n≥1

σ
(−4,∗)
2 (n)qn ,

where
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σ
(D,∗)
k−1 =

∑

d|n

(
D

n/d

)

dk−1 ,

a sort of dual to σ
(D)
k−1 (these are my notation). Since θ6 = 1 + 12q + · · · , comparing

the Fourier coefficients of 1 and q shows that θ6 = F1 + 16F2, so we deduce that

r6(n) = −4σ (−4)
2 (n) + 16σ (−4,∗)

2 (n) =
∑

d|n

(

16

( −4

n/d

)

− 4

(−4

d

))

d2 .

6.6 Remarks on Dimension Formulas and Galois
Representations

The explicit dimension formulas alluded to above are valid for k ∈ Z except for
k = 1; in addition, thanks to the theorems mentioned below, we also have explicit
dimension formulas for k ∈ 1/2 + Z. Thus, the theory of modular forms of weight
1 is very special, and their general construction is more difficult.

This is also reflected in the construction of Galois representations attached to
modular eigenforms, which is an important and deep subject that wewill not mention
in this course, except to say the following: in weight k ≥ 2 these representations are
�-adic (or modulo �), i.e., with values in GL2(Q�) (or GL2(F�)), while in weight
1 they are complex representations, i.e., with values in GL2(C). The construction
in weight 2 is quite old, and comes directly from the construction of the so-called
Tate module T (�) attached to an Abelian variety (more precisely the Jacobian of a
modular curve), while the construction in higher weight, due to Deligne, is much
deeper since it implies the third Ramanujan conjecture |τ(p)| < p11/2. Finally, the
case of weight 1 is due to Deligne–Serre, in fact, using the construction for k ≥ 2
and congruences.

6.7 Origins of Modular Forms

Modular forms are all pervasive in mathematics, physics, and combinatorics. We just
want to mention the most important constructions:

• Historically, the first modular forms were probably theta functions (this dates
back to J. Fourier at the end of the eighteenth century in his treatment of the heat
equation) such as θ(τ ) seen above, and more generally theta functions associated
with lattices. These functions can have integral or half-integral weight (see below)
depending on whether the number of variables which occurs (equivalently, the
dimension of the lattice) is even or odd. Later, these theta functions were general-
ized by introducing spherical polynomials associated with the lattice.
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For example, the theta function associated to the lattice Z
2 is simply f (τ ) =∑

(x,y)∈Z2 qx2+y2 , which is clearly equal to θ2, so belongs to M1(Γ0(4), χ−4). But,
we can also consider, for instance

f5(τ ) =
∑

(x,y)∈Z2

(x4 − 6x2y2 + y4)qx2+y2 ,

and show that f5 ∈ S5(Γ0(4), χ−4).

Exercise 6.12 1. Using thenotation and results ofExercise 3.39, show that [θ, θ ]2 =
c f5 for a suitable constant c, so that, in particular, f5 ∈ S5(Γ0(4), χ−4).

2. Show that the polynomial P(x, y) = x4 − 6x2y2 + y4 is a spherical polynomial,
in other words that D(P) = 0, where D is the Laplace differential operator D =
∂2/∂2x + ∂2/∂2y.

• The second occurrence of modular forms is probably Eisenstein series, which, in
fact, are the first that we encountered in this course. We have only seen the most
basic Eisenstein series Gk (or normalized versions) on the full modular group and
a few on Γ0(4), but there are very general constructions over any space such as
Mk(Γ0(N ), χ). Their Fourier expansions can easily be explicitly computed and
are similar to what we have given above. More difficult is the case when k is only
half-integral, but this can also be done.
As we have seen, an important generalization of Eisenstein series is Poincaré
series, which can also be defined over any space as above.

• A third important construction of modular forms comes from the Dedekind eta
function η(τ) defined above. In itself it has a complicated multiplier system,
but if we define an eta quotient as F(τ ) = ∏

m∈I η(mτ)rm for a certain set I
of positive integers and exponents rm ∈ Z, then it is not difficult to write nec-
essary and sufficient conditions for F to belong to some Mk(Γ0(N ), χ). The
first example that we have met is, of course, the Ramanujan delta function
Δ(τ) = η(τ)24.Other examples are, for instance,η(τ)η(23τ) ∈ S1(Γ0(23), χ−23),
η(τ)2η(11τ)2 ∈ S2(Γ0(11)), and η(2τ)30/η(τ)12 ∈ S9(Γ0(8), χ−4).

• Closely related to eta-quotients are q-identities involving the q-Pochhammer sym-
bol (q)n and generalizing those seen in Exercise 3.30, many of which givemodular
forms not related to the eta function.

• A much deeper construction comes from algebraic geometry: by the modularity
theorem ofWiles et al., to any elliptic curve defined overQ is associated a modular
form in S2(Γ0(N )) which is a normalized Hecke eigenform, where N is the so-
called conductor of the curve. For instance, the eta quotient of level 11 just seen
above is the modular form associated to the isogeny class of the elliptic curve of
conductor 11 with equation y2 + y = x3 − x2 − 10x − 20.
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7 More General Modular Forms

In this brief section, we will describe modular forms of a more general kind than
those seen up to now.

7.1 Modular Forms of Half-Integral Weight

Coming back again to the function θ , the formulas seen above suggest that θ itself
must be considered a modular form, of weight 1/2. We have already mentioned that

θ2(γ (τ )) =
(−4

d

)

(cτ + d)θ2(τ ) .

But what about θ itself? For this, we must be very careful about the determination
of the square root:

Notation: z1/2 will always denote the principal determination of the square root,
i.e., such that−π/2 < Arg(z1/2) ≤ π/2. For instance, (2i)1/2 = 1 + i , (−1)1/2 = i .
Warning: we do not, in general, have (z1z2)1/2 = z1/21 z1/22 , but only up to sign. As a
second notation, when k is odd, zk/2 will always denote (z1/2)k and not (zk)1/2 (for
instance, (2i)3/2 = (1 + i)3 = −2 + 2i , while ((2i)3)1/2 = 2 − 2i).

Thus, let us try and take the square root of the modularity equation for θ2:

θ(γ (τ )) = v(γ, τ )

(−4

d

)1/2

(cτ + d)1/2 ,

where v(γ, τ ) = ±1 and may depend on γ and τ . A detailed study of Gauss sums
shows that v(γ, τ ) = (−4c

d

)
, the general Kronecker symbol, so that the modularity

equation for θ is, for any γ ∈ Γ0(4):

θ(γ (τ )) = vθ (γ )(cτ + d)1/2θ(τ ) with vθ (γ ) =
( c

d

)(−4

d

)−1/2

.

Note that there is something very subtle going on here: this complicated theta mul-
tiplier system vθ (γ ) must satisfy a complicated cocycle relation coming from the
trivial identity θ((γ1γ2)(τ )) = θ(γ1(γ2(τ ))) which can be shown to be equivalent to
the general quadratic reciprocity law.

The following definition is due to G. Shimura:

Definition 7.1 Let k ∈ 1/2 + Z. A function F from H to C will be said to be
a modular form of (half-integral) weight k on Γ0(N ) with character χ if for all
γ = (

a b
c d

) ∈ Γ0(N ), we have

F(γ (τ )) = vθ (γ )2kχ(d)(cτ + d)k F(τ ) ,
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and if the usual holomorphy and conditions at the cusps are satisfied (equivalently if
F2 ∈ M2k(Γ0(N ), χ2χ−4)).

Note that if k ∈ 1/2 + Z, we have vθ (γ )4k = χ−4, which explains the extra factor
χ−4 in the above definition.

Since vθ (γ ) is defined only for γ ∈ Γ0(4), we needΓ0(N ) ⊂ Γ0(4), in otherwords
4 | N . In addition, by definition vθ (γ )(cτ + d)1/2 = θ(γ (τ ))/θ(τ ) is invariant if we
change γ into −γ , so if k ∈ 1/2 + Z, the same is true of vθ (γ )2k(cτ + d)k , and
hence it follows that in the above definition, we must have χ(−d) = χ(d), i.e., χ

must be an even character (χ(−1) = 1).
As usual, we denote by Mk(Γ0(N ), χ) and Sk(Γ0(N ), χ), the spaces of modular

and cusp forms. The theory is more difficult than the theory in integral weight, but
is now well developed. We mention a few items as follows:

1. There is an explicit but more complicated dimension formula due to J. Oesterlé
and the author.

2. By a theorem of Serre–Stark, modular forms of weight 1/2 are simply linear
combinations of unary theta functions generalizing the function θ above.

3. One can easily construct Eisenstein series, but the computation of their Fourier
expansion, due to Shimura and the author, is more complicated.

4. As usual, if we can express θm solely in terms of Eisenstein series, this leads
to explicit formulas for rm(n), the number of representation of n as a sum of m
squares. Thus, we obtain explicit formulas for r3(n) (due to Gauss), r5(n) (due to
Smith and Minkowski), and r7(n), so if we complement the formulas in integral
weight, we have explicit formulas for rm(n) for 1 ≤ m ≤ 8 and m = 10.

5. The deeper part of the theory, which is specific to the half-integral weight case,
is the existence of Shimura lifts from Mk(Γ0(N ), χ) to M2k−1(Γ0(N/2), χ2), the
description of theKohnen subspace S+

k (Γ0(N ), χ)which allows both the Shimura
lift to go down to level N/4, and also to define a suitable Atkin–Lehner type new
space, and the deep results of Waldspurger, which nicely complement the work
of Shimura on lifts.

We could try to find other types of interesting modularity properties than those
coming from θ . For instance, we have seen that the Dedekind eta function is a
modular form of weight 1/2 (not in Shimura’s sense), and more precisely it satisfies
the following modularity equation, now for any γ ∈ Γ :

η(γ (τ)) = vη(γ )(cτ + d)1/2η(τ) ,

where vη(γ ) is a very complicated 24-th root of unity. We could, of course, define
η-modular forms of half-integral weight k ∈ 1/2 + Z by requiring F(γ (τ )) =
vη(γ )2k(cτ + d)k F(τ ), but it can be shown that this would not lead to any inter-
esting theory (more precisely the only interesting functions would be eta-quotients
F(τ ) = ∏

m η(mτ)rm , which can be studied directly without any new theory.
Note that there are functional relations between η and θ .
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Proposition 7.2 We have

θ(τ ) = η2(τ + 1/2)

η(2τ + 1)
= η5(2τ)

η2(τ )η2(4τ)
.

Exercise 7.3 1. Prove these relations in the following way: first show that the
right-hand sides satisfy the same modularity equations as θ for T = (

1 1
0 1

)
and

W4 = (
0 −1
4 0

)
, so, in particular, that they are weaklymodular onΓ0(4), and second

show that they are reallymodular forms, in otherwords, that they are holomorphic
onH and at the cusps.

2. Using the definition of η, deduce two product expansions for θ(τ ).

We could also try to study modular forms of fractional or even real weight k
not integral or half-integral, but this would lead to functions with no interesting
arithmetical properties.

In a different direction, we can relax the condition of holomorphy (or meromor-
phy) and ask that the functions be eigenfunctions of the hyperbolic Laplace operator

Δ = −y2
(

∂2

∂2x
+ ∂2

∂2y

)

= −4y2
∂2

∂τ∂τ

which can be shown to be invariant under Γ (more generally, under SL2(R))
together with suitable boundedness conditions. This leads to the important theory
of Maass forms. The case of the eigenvalue 0 reduces to ordinary modular forms
since Δ(F) = 0 is equivalent to F being a linear combination of a holomorphic and
antiholomorphic (i.e., conjugate to a holomorphic) function, each of which will be
modular or conjugate of modular.

The case of the eigenvalue 1/4 also leads to functions having nice arithmeti-
cal properties, but all other eigenvalues give functions with (conjecturally) tran-
scendental coefficients, but these functions are useful in number theory for other
reasons which we cannot explain here. Note that a famous conjecture of Selberg
asserts that for congruence subgroups, there are no eigenvalues λwith 0 < λ < 1/4.
For instance, for the full modular group, the smallest nonzero eigenvalue is λ =
91.1412 · · · , which is quite large.

Exercise 7.4 Using the fact that Δ is invariant under Γ , show that
Δ(ℑ(γ (τ ))) = s(1 − s)ℑ(γ (τ )) and deduce that the non-holomorphic Eisenstein
series E(s) introduced in Definition 5.14 is an eigenfunction of the hyperbolic
Laplace operator with eigenvalue s(1 − s) (note that it does not satisfy the nec-
essary boundedness conditions, so it is not a Maass form: the functions E(s) with
ℜ(s) = 1/2 constitute what is called the continuous spectrum, and the Maass forms
the discrete spectrum of Δ acting on Γ \H ).
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7.2 Modular Forms in Several Variables

The last generalization that we want to mention (there are much more!) is to several
variables. The natural idea is to consider holomorphic functions from H r to C,
now for some r > 1, satisfying suitable modularity properties. If we simply ask
that γ ∈ Γ (or some subgroup) acts component-wise, we will not obtain anything
interesting. The right way to do it, introduced by Hilbert–Blumenthal, is to consider
a totally real number field K of degree r , and denote by ΓK the group of matrices
γ = (

a b
c d

) ∈ SL2(ZK), where ZK is the ring of algebraic integers of K (we could
also consider the larger group GL2(ZK), which leads to a very similar theory). Such
a γ has r embeddings γi into SL2(R), which we will denote by γi = ( ai bi

ci di

)
, and the

correct definition is to ask that

F(γ1(τ1), · · · , γr (τr )) = (c1τ1 + d1)
k · · · (crτr + dr )

k F(τ1, . . . , τr ) .

Note that the restriction to totally real number fields is due to the fact that for γi to
preserve the upper half-plane, it is necessary that γi ∈ SL2(R). Note also that the γi
are not independent, they are conjugates of a single γ ∈ SL2(ZK).

A holomorphic function satisfying the above is called aHilbert–Blumenthalmod-
ular form (of parallel weight k, one can also consider forms where the exponents
for the different embeddings are not equal), or more simply a Hilbert modular form
(note that there are no “conditions at infinity”, since one can prove that they are
automatically satisfied unless K = Q).

SinceT = (
1 1
0 1

) ∈ SL2(ZK) is equal to all its conjugates, suchmodular formshave
Fourier expansions, but using the action of

(
1 α
0 1

)
with α ∈ ZK , it is easy to show that

these expansions are of a special type, involving the codifferent d−1 of K , which is
the fractional ideal of x ∈ K such that Tr(xZK ) ⊂ Z, where Tr denotes the trace.

One can construct Eisenstein series, here called Hecke–Eisenstein series, and
compute their Fourier expansion. One of the important consequences of this com-
putation is that it gives an explicit formula for the value ζK (1 − k) of the Dedekind
zeta function of K at negative integers (hence, by the functional equation of ζK , also
at positive even integers), and, in particular, it proves that these values are rational
numbers, a theorem due to C.-L. Siegel as an immediate consequence of Theorem
3.41. An example is as follows:

Proposition 7.5 Let K = Q(
√
D) be a real quadratic field with D a fundamental

discriminant. Then

1. We have

ζK (−1) = 1

60

∑

|s|<√
D

σ1

(
D − s2

4

)

,

ζK (−3) = 1

120

∑

|s|<√
D

σ3

(
D − s2

4

)

.
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2. We also have formulas such as

∑

|s|<√
D

σ1(D − s2) = 60

(

9 − 2

(
D

2

))

ζK (−1) ,

∑

|s|<√
D

σ3(D − s2) = 120

(

129 − 8

(
D

2

))

ζK (−3) .

We can, of course, reformulate these results in terms of L-functions by using
L(χD,−1) = −12ζK (−1) and L(χD,−3) = 120ζK (−3), where as usual χD is the
quadratic character modulo D.

Exercise 7.6 Using Exercise 6.6 and the above formulas, show that the number
r5(D) of representations of D as a sum of five squares is given by

r5(D) = 480

(

5 − 2

(
D

2

))

ζK (−1) = −40

(

5 − 2

(
D

2

))

L(χD,−1) .

Note that this formula can be generalized to arbitrary D, and is due to Smith and
(much later) to Minkowski. There also exists a similar formula for r7(D): when −D
(not D) is a fundamental discriminant

r7(D) = −28

(

41 − 4

(
D

2

))

L(χ−D,−2) .

Note also that if we restrict to the diagonal τ1 = · · · = τr , a Hilbert modular form
of (parallel) weight k gives rise to an ordinary modular form of weight kr .

We finish this section with some terminology with no explanation: if K is not
a totally real number field, one can also define modular forms, but they will not
be defined on products of the upper half-plane H alone, but will also involve the
hyperbolic 3-space H3. Such forms are called Bianchi modular forms.

A different generalization, close to the Weierstrass ℘-function seen above, is the
theory of Jacobi forms, due to M. Eichler and D. Zagier. One of the many interesting
aspects of this theory is that it mixes in nontrivial way properties of forms of integral
weight with forms of half-integral weight.

Finally, we mention Siegel modular forms, introduced by C.-L. Siegel, which are
defined on higher dimensional symmetric spaces, on which the symplectic groups
Sp2n(R) act. The case n = 1 gives ordinary modular forms, and the next simplest,
n = 2, is closely related to Jacobi forms since the Fourier coefficients of Siegel
modular forms of degree 2 can be expressed in terms of Jacobi forms.
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8 Some Pari/GP Commands

There exist three software packages which are able to compute with modular forms:
magma, Sage, and Pari/GP since the spring of 2018. We give here some basic
Pari/GP commands with little or no explanation (which is available by typing ?
or ??): we encourage the reader to read the tutorial tutorial-mf available with
the distribution and to practice with the package since it is an excellent way to learn
about modular forms. All commands begin with the prefix mf, with the exception of
lfunmf which more properly belongs to the L-function package.

Creation of modular forms: mfDelta (Ramanujan Delta), mfTheta (ordi-
nary theta function), mfEk (normalized Eisenstein series Ek), more generally
mfeisenstein, mffrometaquo (eta-quotients), mffromqf (theta function of
lattices with or without spherical polynomial), mffromell (from elliptic curves
over Q), etc...

Arithmetic operations: mfcoefs (Fourier coefficients at infinity), mflinear
(linear combination, so including addition/subtraction and scalar multiplication),
mfmul, mfdiv, mfpow (clear), etc...

Modular operations: mfbd, mftwist, mfhecke, mfatkin, mfderivE2,
mfbracket, etc...

Creation of modular form spaces: mfinit, mfdim (dimension of the space),
mfbasis (random basis of the space), mftobasis (decomposition of a form on
the mfbasis), mfeigenbasis (basis of normalized eigenforms).

Searching for modular forms with given Fourier coefficients:
mfeigensearch, mfsearch.
Expansion of F |kγ : mfslashexpansion.
Numerical functions: mfeval (evaluation at a point in H or at a cusp),

mfcuspval (valuation at a cusp), mfsymboleval (computation of integrals over
paths in the completed upper half-plane),mfpetersson (Petersson scalar product),
lfunmf (L-function associated to a modular form), etc...

Note that for now Pari/GP is the only package for which these last functions
(beginning with mfslashexpansion) are implemented.

9 Suggestions for Further Reading

The literature on modular forms is vast, so I will only mention the books which I
am familiar with and that in my opinion will be very useful to the reader. Note that
the classic book [4] is absolutely remarkable, but may be difficult for a beginning
course.

In addition to the recent book [1] by Strömberg and the author (which, of course, I
strongly recommend!!!), I also highly recommend the paper [5], which is essentially
a small book. Perhaps the most classical reference is [3]. The more recent book [2] is
more advanced since its ultimate goal is to explain the modularity theorem of Wiles
et al.
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