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Preface

Computational number theory is a flourishing subject, touching a large variety of
mathematical and application areas.

This volume contains lecture notes, complemented by some research and survey
articles, related to the International Autumn School on Computational Number
Theory 2017, a research school that was held at the Izmir Institute of Technology
(IZTECH) in October and November 2017. Organized by Engin Büyükaşık, Ilker
Inam, and Gabor Wiese, the school was supported by Bilecik Şeyh Edebali
University, Izmir Institute of Technology, the Turkish Mathematical Society’s
MAD-Program, and the University of Luxembourg.

Very prominent objects in computational number theory are modular forms and
L-functions: they are of fundamental theoretical importance (for example, for
Wiles’ proof of Fermat’s Last Theorem) and at the same time amenable to explicit
calculations.

Henri Cohen, a world leader in computational number theory, contributes two
comprehensive sets of lecture notes to this volume: one on Modular Forms and one
on Computational Number Theory in Relation with L-functions. This is comple-
mented by Gabor Wiese’s notes on Computational Arithmetic of Modular Forms,
describing among other things how to compute modular forms via the modular
symbols algorithm. Finally, Florian Luca’s lecture notes on Diophantine Equations
explain a core subject of number theory.

Bilecik, Turkey Ilker Inam
İzmir, Turkey Engin Büyükaşık
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Part I
Lecture Notes



An Introduction to Modular Forms

Henri Cohen

Abstract In this course, we introduce the main notions relative to the classical
theory of modular forms. A complete treatise in a similar style can be found in
the author’s book joint with Strömberg (Cohen and Strömberg, Modular Forms: A
Classical Approach, Graduate Studies in Math. 179, American Math. Soc. (2017)
[1]).

1 Functional Equations

Let f be a complex function defined over some subset D ofC. A functional equation
is some type of equation relating the value of f at any point z ∈ D to someother point,
for instance, f (z + 1) = f (z). If γ is some function from D to itself, one can ask
more generally that f (γ (z)) = f (z) for all z ∈ D (or even f (γ (z)) = v(γ, z) f (z)
for some known function v). It is clear that f (γ m(z)) = f (z) for allm ≥ 0, and even
for all m ∈ Z if γ is invertible, and more generally the set of bijective functions u
such that f (u(z)) = f (z) forms a group.

Thus, the basic setting of functional equations (at least of the type thatwe consider)
is that we have a group of transformations G of D, that we ask that f (u(z)) = f (z)
(or more generally f (u(z)) = j (u, z) f (z) for some known j) for all u ∈ G and
z ∈ D, and we ask for some type of regularity condition on f such as continuity,
meromorphy, or holomorphy.

Note that there is a trivial but essential way to construct from scratch functions f
satisfying a functional equation of the above type: simply choose any function g and
set f (z) = ∑

v∈G g(v(z)). SinceG is a group, it is clear that formally f (u(z)) = f (z)
for u ∈ G. Of course there are convergence questions to be dealt with, but this is a
fundamental construction, which we call averaging over the group.

We consider a few fundamental examples.

H. Cohen (B)
Institut de Mathématiques de Bordeaux, Université de Bordeaux,
351 Cours de la Libération, 33405 Talence Cedex, France
e-mail: Henri.Cohen@math.u-bordeaux.fr
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1.1 Fourier Series

We choose D = R and G = Z acting on R by translations. Thus, we ask that f (x +
1) = f (x) for all x ∈ R. It is well known that this leads to the theory of Fourier
series: if f satisfies suitable regularity conditions (we need not specify them here
since in the context of modular forms they will be satisfied) then f has an expansion
of the type

f (x) =
∑

n∈Z

a(n)e2π inx ,

absolutely convergent for all x ∈ R, where the Fourier coefficients a(n) are given by
the formula

a(n) =
∫ 1

0
e−2π inx f (x) dx ,

which follows immediately from the orthonormality of the functions e2π imx (you
may of course replace the integral from 0 to 1 by an integral from z to z + 1 for any
z ∈ R).

An important consequence of this, easily proved, is the Poisson summation for-
mula: define the Fourier transform of f by

f̂ (x) =
∫ ∞

−∞
e−2π i xt f (t) dt .

We ignore all convergence questions, although of course they must be taken into
account in any computation.

Consider the function g(x) = ∑
n∈Z

f (x + n), which is exactly the averaging
procedure mentioned above. Thus g(x + 1) = g(x), so g has a Fourier series, and an
easy computation shows the following (again omitting any convergence or regularity
assumptions):

Proposition 1.1 (Poisson summation) We have

∑

n∈Z

f (x + n) =
∑

m∈Z

f̂ (m)e2π imx .

In particular, ∑

n∈Z

f (n) =
∑

m∈Z

f̂ (m) .

A typical application of this formula is to the ordinary Jacobi theta function: it
is well known (prove it otherwise) that the function e−πx2 is invariant under Fourier
transform. This implies the following:

Proposition 1.2 If f (x) = e−aπx2 for some a > 0, then f̂ (x) = a−1/2e−πx2/a.
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Proof Simple change of variable in the integral. �
Corollary 1.3 Define

T (a) =
∑

n∈Z

e−aπn2 .

We have the functional equation

T (1/a) = a1/2T (a) .

Proof Immediate from the proposition and Poisson summation. �
This is historically the first example of modularity, which we will see in more

detail below.

Exercise 1.4 Set S = ∑
n≥1 e

−(n/10)2 .

1. Compute numerically S to 100 decimal digits, and show that it is apparently equal
to 5

√
π − 1/2.

2. Show that, in fact, S is not exactly equal to 5
√

π − 1/2, and using the above
corollary give a precise estimate for the difference.

Exercise 1.5 1. Show that the function f (x) = 1/ cosh(πx) is also invariant under
Fourier transform.

2. In a manner similar to the corollary, define

T2(a) =
∑

n∈Z

1/ cosh(πna) .

Show that we have the functional equation

T2(1/a) = aT2(a) .

3. Show that, in fact, T2(a) = T (a)2 (this may be more difficult).
4. Do the sameexercise as theprevious onebynoticing that S = ∑

n≥1 1/ cosh(n/10)
is very close to 5π − 1/2.

Above we have mainly considered Fourier series of functions defined on R. We
now consider more generally functions f defined on C or a subset of C. We again
assume that f (z + 1) = f (z), i.e., that f is periodic of period 1. Thus (modulo
regularity), f has a Fourier series, but the Fourier coefficients a(n) now depend on
y = ℑ(z):

f (x + iy) =
∑

n∈Z

a(n; y)e2π inx with a(n; y) =
∫ 1

0
f (x + iy)e−2π inx dx .

If we impose no extra condition on f , the functions a(n; y) are quite arbitrary. But in
almost all of our applications f will beholomorphic; thismeans that ∂( f )(z)/∂z = 0,



6 H. Cohen

or equivalently that (∂/∂(x) + i∂/∂(y))( f ) = 0. Replacing in the Fourier expansion
(recall that we do not worry about convergence issues) gives

∑

n∈Z

(2π ina(n; y) + ia′(n; y))e2π inx = 0 ,

and hence by uniqueness of the expansion, we obtain the differential equation
a′(n; y) = −2πna(n; y), so that a(n; y) = c(n)e−2πny for some constant c(n). This
allows us to write cleanly the Fourier expansion of a holomorphic function in the
form

f (z) =
∑

n∈Z

c(n)e2π inz .

Note that if the function isonlymeromorphic, the regionofconvergencewillbe lim-
ited by the closest pole. Consider, for instance, the function f (z) = 1/(e2π i z − 1) =
e−π i z/(2i sin(π z)). If we set y = ℑ(z), we have |e2π i z| = e−2πy , so if y > 0, we have
the Fourier expansion f (z) = −∑

n≥0 e
2π inz , while if y < 0 we have the different

Fourier expansion f (z) = ∑
n≤−1 e

2π inz .

2 Elliptic Functions

The preceding section was devoted to periodic functions. We now assume that our
functions are defined on some subset of C and assume that they are doubly periodic:
this can be stated either by saying that there exist twoR-linearly independent complex
numbersω1 andω2 such that f (z + ωi ) = f (z) for all z and i = 1, 2, or equivalently
by saying that there exists a rank 2 lattice Λ in C (here Zω1 + Zω2) such that for
any λ ∈ Λ, we have f (z + λ) = f (z).

Note in passing that if ω1/ω2 ∈ Q this is equivalent to (single) periodicity, and
if ω1/ω2 ∈ R \ Q the set of periods would be dense so the only “doubly periodic”
(at least continuous) functions would essentially reduce to functions of one variable.
For a similar reason, there do not exist nonconstant continuous functions which are
triply periodic.

In the case of simply periodic functions considered above there already existed
some natural functions such as e2π inx . In the doubly periodic case no such function
exists (at least on an elementary level), so we have to construct them, and for this
we use the standard averaging procedure seen and used above. Here, the group is the
lattice Λ, so we consider functions of the type f (z) = ∑

ω∈Λ φ(z + ω). For this to
converge φ(z) must tend to 0 sufficiently fast as |z| tends to infinity, and since this is
a double sum (Λ is a two-dimensional lattice), it is easy to see by comparison with
an integral (assuming |φ(z)| is regularly decreasing) that |φ(z)| should decrease at
least like 1/|z|α for α > 2. Thus, a first reasonable definition is to set
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f (z) =
∑

ω∈Λ

1

(z + ω)3
=

∑

(m,n)∈Z2

1

(z + mω1 + nω2)3
.

This will indeed be a doubly periodic function, and by normal convergence it is
immediate to see that it is a meromorphic function onC having only poles for z ∈ Λ,
so this is our first example of an elliptic function, which is by definition a doubly
periodic function which is meromorphic on C. Note for future reference that since
−Λ = Λ this specific function f is odd: f (−z) = − f (z).

However, this is not quite the basic elliptic function that we need.We can integrate
term by term, as long as we choose constants of integration such that the integrated
series continues to converge. To avoid stupid multiplicative constants, we integrate
−2 f (z): all antiderivatives of −2/(z + ω)3 are of the form 1/(z + ω)2 + C(ω) for
someconstantC(ω), andhence to preserve convergencewewill chooseC(0) = 0 and
C(ω) = −1/ω2 for ω �= 0: indeed, |1/(z + ω)2 − 1/ω2| is asymptotic to 2|z|/|ω3|
as |ω| → ∞, so we are again in the domain of normal convergence. We will thus
define

℘(z) = 1

z2
+

∑

ω∈Λ\{0}

(
1

(z + ω)2
− 1

ω2

)

,

theWeierstrass ℘-function.
By construction ℘ ′(z) = −2 f (z), where f is the function constructed above, so

℘ ′(z + ω) = ℘ ′(z) for any ω ∈ Λ, and hence ℘(z + ω) = ℘(z) + D(ω) for some
constant D(ω) depending on ω but not on z. Note a slightly subtle point here: we
use the fact that C \ Λ is connected. Do you see why?

Now as before it is clear that℘(z) is an even function: thus, setting z = −ω/2 we
have ℘(ω/2) = ℘(−ω/2) + D(ω) = ℘(ω/2) + D(ω), so D(ω) = 0, and hence
℘(z + ω) = ℘(z) and ℘ is indeed an elliptic function. There is a mistake in this
reasoning: do you see it?

Since ℘ has poles on Λ, we cannot reason as we do when ω/2 ∈ Λ. Fortu-
nately, this does not matter: since ωi/2 /∈ Λ for i = 1, 2, we have shown at least that
D(ωi ) = 0, and hence that ℘(z + ωi ) = ℘(z) for i = 1, 2, so ℘ is doubly periodic
(so indeed D(ω) = 0 for all ω ∈ Λ).

The theory of elliptic functions is incredibly rich, and whole treatises have been
written about them. Since this course is mainly about modular forms, we will simply
summarize the main properties, and emphasize those that are relevant to us. All are
proved using manipulation of power series and complex analysis, and all the proofs
are quite straightforward. For instance,

Proposition 2.1 Let f be a nonzero elliptic function with period lattice Λ as
above, and denote by P = Pa a “fundamental parallelogram” Pa = {z = a +
xω1 + yω2, 0 ≤ x < 1, 0 ≤ y < 1}, where a is chosen so that the boundary of
Pa does not contain any zeros or poles of f (see Fig.1).

1. The number of zeros of f in P is equal to the number of poles (counted with
multiplicity), and this number is called the order of f .
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Ca

a

ω2+a

ω1+a ω1+ω2+aω1

ω2

Fig. 1 Fundamental Parallelogram Pa

2. The sum of the residues of f at the poles in P is equal to 0.
3. The sum of the zeros and poles of f in P belongs to Λ.
4. If f is nonconstant its order is at least 2.

Proof For (1), (2), and (3), simply integrate f (z), f ′(z)/ f (z), and z f ′(z)/ f (z) along
the boundary of P and use the residue theorem. For (4), we first note that by (2) f
cannot have order 1 since it would have a simple pole with residue 0. But it also
cannot have order 0: this would mean that f has no pole, so it is an entire function,
and since it is doubly periodic its values are those taken in the topological closure of
P which is compact, so f is bounded. By a famous theorem of Liouville (of which
this is the no lessmost famous application), it implies that f is constant, contradicting
the assumption of (4). �

Note that clearly ℘ has order 2, and the last result shows that we cannot find an
elliptic function of order 1. Note however the following:

Exercise 2.2 1. By integrating term by term the series defining −℘(z) show that
if we define the Weierstrass zeta function

ζ(z) = 1

z
+

∑

ω∈Λ\{0}

(
1

z + ω
− 1

ω
+ z

ω2

)

,
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this series converges normally on any compact subset of C \ Λ and satisfies
ζ ′(z) = −℘(z).

2. Deduce that there exist constants η1 and η2 such that ζ(z + ω1) = ζ(z) + η1 and
ζ(z + ω2) = ζ(z) + η2, so that if ω = mω1 + nω2, we have ζ(z + ω) = ζ(z) +
mη1 + nη2. Thus, ζ (which would be of order 1) is not doubly periodic but only
quasi-doubly periodic: this is called a quasi-elliptic function.

3. By integrating around the usual fundamental parallelogram, show the important
relation due to Legendre:

ω1η2 − ω2η1 = ±2π i ,

the sign depending on the ordering of ω1 and ω2.

The main properties of ℘ that we want to mention are as follows: First, for z
sufficiently small and ω �= 0, we can expand

1

(z + ω)2
=

∑

k≥0

(−1)k(k + 1)zk
1

ωk+2
,

so

℘(z) = 1

z2
+

∑

k≥1

(−1)k(k + 1)zkGk+2(Λ) ,

where we have set

Gk(Λ) =
∑

ω∈Λ\{0}

1

ωk
,

which are called Eisenstein series of weight k. Since Λ is symmetrical, it is clear
that Gk = 0 if k is odd, so the expansion of ℘(z) around z = 0 is given by

℘(z) = 1

z2
+

∑

k≥1

(2k + 1)z2kG2k+2(Λ) .

Second, one can show that all elliptic functions are simply rational functions in
℘(z) and ℘ ′(z), so we need not look any further in our construction.

Third, and this is probably one of themost important properties of℘(z), it satisfies
a differential equation of order 1: the proof is as follows. Using the above Taylor
expansion of ℘(z), it is immediate to check that

F(z) = ℘ ′(z)2 − (4℘(z)3 − g2(Λ)℘ (z) − g3(Λ))

has an expansion around z = 0 beginning with F(z) = c1z + · · · , where we have set
g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ). In addition, F is evidently an elliptic
function, and since it has no pole at z = 0 it has no poles on Λ, and hence no
poles at all, so it has order 0. Thus, by Proposition 2.1 (4) f is constant, and since
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by construction it vanishes at 0 it is identically 0. Thus, ℘ satisfies the differential
equation

℘ ′(z)2 = 4℘(z)3 − g2(Λ)℘ (z) − g3(Λ) .

A fourth and somewhat surprising property of the function ℘(z) is connected to
the theory of elliptic curves: the above differential equation shows that (℘ (z), ℘ ′(z))
parametrizes the cubic curve y2 = 4x3 − g2x − g3, which is the general equation of
an elliptic curve (you do not need to know the theory of elliptic curves for what
follows). Thus, if z1 and z2 are in C \ Λ, the two points Pi = (℘ (zi ), ℘ ′(zi )) for
i = 1, 2 are on the curve, and hence if we draw the line through these two points (the
tangent to the curve if they are equal), it is immediate to see from Proposition 2.1
(3) that the third point of intersection corresponds to the parameter −(z1 + z2), and
can of course be computed as a rational function of the coordinates of P1 and P2. It
follows that ℘(z) (and ℘ ′(z)) possess an addition formula expressing ℘(z1 + z2) in
terms of the ℘(zi ) and ℘ ′(zi ).

Exercise 2.3 Find this addition formula. You will have to distinguish the cases
z1 = z2, z1 = −z2, and z1 �= ±z2.

An interesting corollary of the differential equation for℘(z), which we will prove
in a different way below, is a recursion for the Eisenstein series G2k(Λ):

Proposition 2.4 We have the recursion for k ≥ 4:

(k − 3)(2k − 1)(2k + 1)G2k = 3
∑

2≤ j≤k−2

(2 j − 1)(2(k − j) − 1)G2 j G2(k− j) .

Proof Taking the derivative of the differential equation and dividing by 2℘ ′, we
obtain ℘ ′′(z) = 6℘(z)2 − g2(Λ)/2. If we set by convention G0(Λ) = −1 and
G2(Λ) = 0, and for notational simplicity omit Λ which is fixed, we have ℘(z) =∑

k≥−1(2k + 1)z2kG2k+2, so on the one hand

℘ ′′(z) =
∑

k≥−1

(2k + 1)(2k)(2k − 1)z2k−2G2k+2 ,

and on the other hand ℘(z)2 = ∑
K≥−2 a(K )z2K with

a(K ) =
∑

k1+k2=K

(2k1 + 1)(2k2 + 1)G2k1+2G2k2+2 .

Replacing in the differential equation, it is immediate to check that the coefficients
agree up to z2, and for K ≥ 2, we have the identification

6
∑

k1+k2=K
ki≥−1

(2k1 + 1)(2k2 + 1)G2k1+2G2k2+2 = (2K + 3)(2K + 2)(2K + 1)G2K+4
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which is easily seen to be equivalent to the recursion of the proposition using G0 =
−1 and G2 = 0. �

For instance,

G8 = 3

7
G2

4 G10 = 5

11
G4G6 G12 = 18G3

4 + 25G2
6

143
,

and more generally this implies that G2k is a polynomial in G4 and G6 with rational
coefficients which are independent of the lattice Λ.

As other corollary, we note that if we choose ω2 = 1 and ω1 = iT with T tending
to +∞, then the definition G2k(Λ) = ∑

(m,n)∈Z2\{(0,0)}(mω1 + nω2)
−2k implies that

G2k(Λ) will tend to
∑

n∈Z\{0} n−2k = 2ζ(2k), where ζ is the Riemann zeta function.
If follows that for all k ≥ 2, ζ(2k) is a polynomial in ζ(4) and ζ(6) with rational
coefficients. Of course this is a weak but nontrivial result, since we know that ζ(2k)
is a rational multiple of π2k.

To finish this section on elliptic functions and make the transition to modular
forms, we write explicitly Λ = Λ(ω1, ω2) and by abuse of notation G2k(ω1, ω2) :=
G2k(Λ(ω1, ω2)), and we consider the dependence of G2k on ω1 and ω2. We
note two evident facts: first, G2k(ω1, ω2) is homogeneous of degree −2k: for
any nonzero complex number λ, we have G2k(λω1, λω2) = λ−2kG2k(ω1, ω2). In
particular, G2k(ω1, ω2) = ω−2k

2 G2k(ω1/ω2, 1). Second, a general Z-basis of Λ is
given by (ω′

1, ω
′
2) = (aω1 + bω2, cω1 + dω2) with a, b, c, and d integers such that

ad − bc = ±1. If we choose an oriented basis such that ℑ(ω1/ω2) > 0, we, in fact,
have ad − bc = 1.

Thus, G2k(aω1 + bω2, cω1 + dω2) = G2k(ω1, ω2), and using homogeneity this
can be written as

(cω1 + dω2)
−2kG2k

(
aω1 + bω2

cω1 + dω2
, 1

)

= ω−2k
2 G2k

(
ω1

ω2
, 1

)

.

Thus, ifwe set τ = ω1/ω2 and by an additional abuse of notation abbreviateG2k(τ, 1)
to G2k(τ ), we have by definition

G2k(τ ) =
∑

(m,n)∈Z2\{(0,0)}
(mτ + n)−2k ,

and we have shown the following modularity property:

Proposition 2.5 For any
(
a b
c d

) ∈ SL2(Z), the group of 2 × 2 integer matrices of
determinant 1, and any τ ∈ C with ℑ(τ ) > 0, we have

G2k

(
aτ + b

cτ + d

)

= (cτ + d)2kG2k(τ ) .

This will be our basic definition of (weak) modularity.
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3 Modular Forms and Functions

3.1 Definitions

Let us introduce some notation:

• We denote by Γ the modular group SL2(Z). Note that properly speaking the
modular group should be the group of transformations τ 
→ (aτ + b)/(cτ + d),
which is isomorphic to the quotient of SL2(Z) by the equivalence relation saying
that M and −M are equivalent, but for this course, we will stick to this definition. If
γ = (

a b
c d

)
, we will, of course, write γ (τ) for (aτ + b)/(cτ + d).

• The Poincaré upper half-plane H is the set of complex numbers τ such that
ℑ(τ ) > 0. Since for γ = (

a b
c d

) ∈ Γ , we have ℑ(γ (τ )) = ℑ(τ )/|cτ + d|2, we see
that Γ is a group of transformations of H (more generally so is SL2(R), there is
nothing special about Z).

• The completed upper half-planeH is by definitionH = H ∪ P1(Q) = H ∪
Q ∪ {i∞}. Note that this is not the closure in the topological sense since we do not
include any real irrational numbers.

Definition 3.1 Let k ∈ Z and let F be a function fromH to C.

1. We will say that F is weakly modular of weight k for Γ if for all γ = (
a b
c d

) ∈ Γ

and all τ ∈ H , we have

F(γ (τ )) = (cτ + d)k F(τ ) .

2. We will say that F is a modular form if, in addition, F is holomorphic onH and
if |F(τ )| remains bounded as ℑ(τ ) → ∞.

3. We will say that F is a modular cusp form if it is a modular form such that F(τ )

tends to 0 as ℑ(τ ) → ∞.

We make a number of immediate but important remarks.

Remarks 3.2 1. The Eisenstein seriesG2k(τ ) are basic examples of modular forms
of weight 2k, which are not cusp forms since G2k(τ ) tends to 2ζ(2k) �= 0 when
ℑ(τ ) → ∞.

2. With the present definition, it is clear that there are no nonzero modular forms of
odd weight k, since if k is odd we have (−cτ − d)k = −(cτ + d)k and γ (τ) =
(−γ )(τ ). However, when considering modular forms defined on subgroups of Γ

there may be modular forms of odd weight, so we keep the above definition.
3. Applyingmodularity to γ = T = (

1 1
0 1

)
, we see that F(τ + 1) = F(τ ), and hence

F has a Fourier series expansion, and if F is holomorphic, by the remark
made above in the section on Fourier series, we have an expansion F(τ ) =
∑

n∈Z
a(n)e2π inτ witha(n) = e2πny

∫ 1
0 F(x + iy)e−2π inx dx for any y > 0.Thus,

if |F(x + iy)| remains bounded as y → ∞ it follows that as y → ∞, we have
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a(n) ≤ Be2πny for a suitable constant B, so we deduce that a(n) = 0 when-
ever n < 0 since e2πny → 0. Thus, if F is a modular form, we have F(τ ) =∑

n≥0 a(n)e2π inτ , and hence limℑ(τ )→∞ F(τ ) = a(0), so F is a cusp form if and
only if a(0) = 0.

Definition 3.3 We will denote by Mk(Γ ), the vector space of modular forms of
weight k on Γ (M for Modular of course), and by Sk(Γ ) the subspace of cusp forms
(S for the German Spitzenform, meaning exactly cusp form).

Notation: for any matrix γ = (
a b
c d

)
with ad − bc > 0, we will define the weight k

slash operator F |kγ by

F |kγ (τ) = (ad − bc)k/2(cτ + d)−k F(γ (τ )) .

The reason for the factor (ad − bc)k/2 is that λγ has the same action onH as γ , so
this makes the formula homogeneous. For instance, F is weakly modular of weight
k if and only if F |kγ = F for all γ ∈ Γ .

We will also use the universal modular form convention of writing q for e2π iτ , so
that a Fourier expansion is of the type F(τ ) = ∑

n≥0 a(n)qn . We use the additional
convention that if α is any complex number, qα will mean e2π iτα .

Exercise 3.4 Let F(τ ) = ∑
n≥0 a(n)qn ∈ Mk(Γ ), and let γ = (

A B
C D

)
be a matrix

in M+
2 (Z), i.e., A, B, C , and D are integers and Δ = det(γ ) = AD − BC > 0. Set

g = gcd(A,C), let u and v be such that uA + vC = g, set b = uB + vD, and finally
let ζΔ = e2π i/Δ. Prove the matrix identity

(
A B
C D

)

=
(
A/g −v
C/g u

) (
g b
0 Δ/g

)

,

and deduce that we have the more general Fourier expansion

Fig. 2 The fundamental
domain, F, of Γ

1
2−1

2

F



14 H. Cohen

F |kγ (τ) = gk/2

Δk

∑

n≥0

ζ
nbg
Δ a(n)qg2/Δ ,

which is, of course, equal to F if Δ = 1, since then g = 1.

3.2 Basic Results

The first fundamental result in the theory of modular forms is that these spaces are
finite dimensional. The proof uses exactly the same method that we have used to
prove the basic results on elliptic functions. We first note that there is a “fundamental
domain” (which replaces the fundamental parallelogram, see Fig. 2) for the action of
Γ on H , given by

F = {τ ∈ H , −1/2 ≤ ℜ(τ ) < 1/2, |τ | ≥ 1} .

The proof that this is a fundamental domain, in other words that any τ ∈ H has a
unique image by Γ belonging to F is not very difficult and will be omitted. We then
integrate F ′(z)/F(z) along the boundary of F, and using modularity, we obtain the
following result:

Theorem 3.5 Let F ∈ Mk(Γ ) be a nonzero modular form. For any τ0 ∈ H , denote
by vτ0(F) the valuation of F at τ0, i.e., the unique integer v such that F(τ )/(τ − τ0)

v

is holomorphic and nonzero at τ0, and if F(τ ) = G(e2π iτ ), define vi∞(F) = v0(G)

(i.e., the number of first vanishing Fourier coefficients of F). We have the formula

vi∞(F) +
∑

τ∈F

vτ (F)

eτ

= k

12
,

where ei = 2, eρ = 3, and eτ = 1 otherwise (ρ = e2π i/3).

This theorem has many important consequences but, as already noted, the most
important is that it implies that Mk(Γ ) is finite dimensional. First, it trivially implies
that k ≥ 0, i.e., there are no modular forms of negative weight. In addition, it easily
implies the following:

Corollary 3.6 Let k ≥ 0 be an even integer. We have

dim(Mk(Γ )) =
{

�k/12 if k ≡ 2 (mod 12) ,

�k/12 + 1 if k �≡ 2 (mod 12) ,

dim(Sk(Γ )) =

⎧
⎪⎨

⎪⎩

0 if k < 12 ,

�k/12 − 1 if k ≥ 12, k ≡ 2 (mod 12) ,

�k/12 if k ≥ 12, k �≡ 2 (mod 12) .
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Since the product of two modular forms is clearly a modular form (of weight the
sum of the two weights), it is clear that M∗(Γ ) = ⊕

k Mk(Γ ) (and similarly S∗(Γ ))
is an algebra, whose structure is easily described as follows:

Corollary 3.7 We have M∗(Γ ) = C[G4,G6], and S∗(Γ ) = ΔM∗(Γ ), where Δ is
the unique generator of the one-dimensional vector space S12(Γ ) whose Fourier
expansion begins with Δ = q + O(q2).

Thus, for instance, M0(Γ ) = C, M2(Γ ) = {0}, M4(Γ ) = CG4, M6(Γ ) = CG6,
M8(Γ ) = CG8 = CG2

4, M10(Γ ) = CG10 = CG4G6,

M12(Γ ) = CG12 ⊕ CΔ = CG3
4 ⊕ CG2

6 .

In particular, we recover the fact proved differently that G8 is a multiple of G2
4

(the exact multiple being obtained by computing the Fourier expansions), G10 is a
multiple of G4G6, G12 is a linear combination of G3

4 and G2
6. Also, we see that Δ is

a linear combination of G3
4 and G2

6 (we will see this more precisely below).
A basic result on the structure of the modular group Γ is the following:

Proposition 3.8 Set T = (
1 1
0 1

)
, which acts onH by the unit translation τ 
→ τ + 1,

and S = (
0 −1
1 0

)
which acts on H by the symmetry inversion τ 
→ −1/τ . Then, Γ

is generated by S and T , with relations generated by S2 = −I and (ST )3 = −I (I
the identity matrix).

There are several (easy) proofs of this fundamental result, which we do not give.
Simply note that this proposition is essentially equivalent to the fact that the set F
described above is indeed a fundamental domain.

A consequence of this proposition is that to checkwhether some function F has the
modularity property, it is sufficient to check that F(τ + 1) = F(τ ) and F(−1/τ) =
τ k F(τ ).

Exercise 3.9 (Bol’s identity). Let F be any continuous function defined on the upper
half-plane H , and define I0(F, a) = F and for any integer m ≥ 1 and a ∈ H set:

Im(F, a)(τ ) =
∫ τ

a

(τ − z)m−1

(m − 1)! F(z) dz .

1. Show that Im(F, a)′(τ ) = Im−1(F, a)(τ ), so that Im(F, a) is anmth antiderivative
of F .

2. Let γ ∈ Γ , and assume that k ≥ 1 is an integer. Show that

Ik−1(F, a)|2−kγ = Ik−1(F |kγ, γ −1(a)) .

3. Deduce that if we set F∗
a = Ik−1(F, a), then

D(k−1)(F∗
a |2−kγ ) = F |kγ ,
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where D = (1/2π i)d/dτ = qd/dq is the basic differential operator that we will
use (see Sect. 3.10).

4. Assume now that F is weakly modular of weight k ≥ 1 and holomorphic onH
(in particular, if F ∈ Mk(Γ ), but |F | could be unbounded as ℑ(τ ) → ∞). Show
that

(F∗
a |2−k |γ )(τ ) = F∗

a (τ ) + Pk−2(τ ) ,

where Pk−2 is the polynomial of degree less than or equal to k − 2 given by

Pk−2(X) =
∫ a

γ −1(a)

(X − z)k−2

(k − 2)! F(z) dz .

What this exercise shows is that the (k − 1)st derivative of some function which
behaves modularly in weight 2 − k behaves modularly in weight k, and conversely
that the (k − 1)st antiderivative of some function which behaves modularly in weight
k behaves modularly in weight k up to addition of a polynomial of degree at most
k − 2. This duality between weights k and 2 − k is, in fact, a consequence of the
Riemann–Roch theorem.

Note also that this exercise is the beginning of the fundamental theories of periods
and of modular symbols.

Also, it is not difficult to generalize Bol’s identity. For instance, applied to the
Eisenstein series G4 and using Proposition 3.13 below, we obtain:

Proposition 3.10 1. Set

F∗
4 (τ ) = − π3

180

(τ

i

)3 +
∑

n≥1

σ−3(n)qn .

We have the functional equation

τ 2F∗
4 (−1/τ) = F∗

4 (τ ) + ζ(3)

2
(1 − τ 2) − π3

36

τ

i
.

2. Equivalently, if we set

F∗∗
4 (τ ) = − π3

180

(τ

i

)3 − π3

72

(τ

i

)
+ ζ(3)

2
+

∑

n≥1

σ−3(n)qn

we have the functional equation

F∗∗
4 (−1/τ) = τ−2F∗∗

4 (τ ) .

Note that the appearance of ζ(3) comes from the fact that, up to a multiplicative
constant, the L-function associated to G4 is equal to ζ(s)ζ(s − 3), whose value at
s = 3 is equal to −ζ(3)/2.
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3.3 The Scalar Product

We begin by the following exercise:

Exercise 3.11 1. Denote by dμ = dxdy/y2 a measure on H , where as usual x
and y are the real and imaginary parts of τ ∈ H . Show that this measure is
invariant under SL2(R).

2. Let f and g be inMk(Γ ). Show that the function F(τ ) = f (τ )g(τ )yk is invariant
under the modular group Γ .

It follows, in particular, from this exercise that if F(τ ) is any integrable function
which is invariant by the modular group Γ , the integral

∫
Γ \H F(τ )dμ makes sense

if it converges. Since F is a fundamental domain for the action of Γ on H , this
can also be written as

∫
F F(τ )dμ. Thus, it follows from the second part that we can

define

< f, g >=
∫

Γ \H
f (τ )g(τ )yk

dxdy

y2
,

whenever this converges.
It is immediate to show that a necessary and sufficient condition for convergence

is that at least one of f and g be a cusp form, i.e., lies in Sk(Γ ). In particular, it is
clear that this defines a scalar product on Sk(Γ ) called the Petersson scalar product.
In addition, any cusp form in Sk(Γ ) is orthogonal to Gk with respect to this scalar
product. It is instructive to give a sketch of the simple proof of this fact as given
below:

Proposition 3.12 If f ∈ Sk(Γ ), we have < Gk, f >= 0.

Proof Recall that Gk(τ ) = ∑
(m,n)∈Z2\{(0,0)}(mτ + n)−k . We split the sum according

to the GCD of m and n: we let d = gcd(m, n), so that m = dm1 and n = dn1 with
gcd(m1, n1) = 1. It follows that

Gk(τ ) = 2
∑

d≥1

d−k Ek(τ ) = 2ζ(k)Ek(τ ) ,

where Ek(τ ) = (1/2)
∑

gcd(m,n)=1(mτ + n)−k . We thus need to prove that
< Ek, f >= 0.

On the other hand, denote by Γ∞ the group generated by T , i.e., translations(
1 b
0 1

)
for b ∈ Z. This acts by left multiplication on Γ , and it is immediate to check

that a system of representatives for this action is given by matrices ( u v
m n ), where

gcd(m, n) = 1 and u and v are chosen arbitrarily (but only once for each pair (m, n))
such that un − vm = 1. It follows that, we can write

Ek(τ ) =
∑

γ∈Γ∞\Γ
(mτ + n)−k ,
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where it is understood that γ = ( u v
m n ) (the factor 1/2 has disappeared since γ and

−γ have the same action on H ).
Thus

< Ek, f > =
∫

Γ \H

∑

γ∈Γ∞\Γ
(mτ + n)−k f (τ )yk

dxdy

y2

=
∑

γ∈Γ∞\Γ

∫

Γ \H
(mτ + n)−k f (τ )yk

dxdy

y2
.

Now note that by modularity f (τ ) = (mτ + n)−k f (γ (τ )), and since ℑ(γ (τ )) =
ℑ(τ )/|mτ + n|2, it follows that

(mτ + n)−k f (τ )yk = f (γ (τ ))ℑ(γ (τ ))k .

Thus, since dμ = dxdy/y2 is an invariant measure, we have

< Ek, f > =
∑

γ∈Γ∞\Γ

∫

Γ \H
f (γ (τ ))ℑ(γ (τ ))kdμ =

∫

Γ∞\H
f (τ )yk

dxdy

y2
.

Since Γ∞ is simply the group of integer translations, a fundamental domain for
Γ∞\H is simply the vertical strip [0, 1] × [0,∞[, so that

< Ek, f >=
∫ ∞

0
yk−2dy

∫ 1

0
f (x + iy)dx ,

which trivially vanishes since the inner integral is simply the conjugate of the constant
term in the Fourier expansion of f , which is 0 since f ∈ Sk(Γ ).

The above procedure (replacing the complicated fundamental domain of Γ \H
by the trivial one of Γ∞\H ) is very common in the theory of modular forms and is
called unfolding.

3.4 Fourier Expansions

The Fourier expansions of the Eisenstein series G2k(τ ) are easy to compute. The
result is the following:

Proposition 3.13 For k ≥ 4 even, we have the Fourier expansion

Gk(τ ) = 2ζ(k) + 2
(2π i)k

(k − 1)!
∑

n≥1

σk−1(n)qn ,

where σk−1(n) = ∑
d|n, d>0 d

k−1.
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Since we know that when k is even 2ζ(k) = −(2π i)k Bk/k!, where Bk is the k-th
Bernoulli number defined by

t

et − 1
=

∑

k≥0

Bk

k! t
k ,

it follows that Gk = 2ζ(k)Ek , with

Ek(τ ) = 1 − 2k

Bk

∑

n≥1

σk−1(n)qn .

This is the normalization of Eisenstein series that we will use. For instance,

E4(τ ) = 1 + 240
∑

n≥1

σ3(n)qn ,

E6(τ ) = 1 − 504
∑

n≥1

σ5(n)qn ,

E8(τ ) = 1 + 480
∑

n≥1

σ7(n)qn .

In particular, the relations given above which follow from the dimension formula
become much simpler and are obtained simply by looking at the first terms in the
Fourier expansion:

E8 = E2
4 , E10 = E4E6 , E12 = 441E3

4 + 250E2
6

691
, Δ = E3

4 − E2
6

1728
.

Note that the relation E2
4 = E8 (and the others) implies a highly nontrivial relation

between the sum of divisors function: if we set by convention σ3(0) = 1/240, so that
E4(τ ) = ∑

n≥0 σ3(n)qn , we have

E8(τ ) = E2
4(τ ) = 2402

∑

n≥0

qn
∑

0≤m≤n

σ3(m)σ3(n − m) ,

so that by identification σ7(n) = 120
∑

0≤m≤n σ3(m)σ3(n − m), so

σ7(n) = σ3(n) + 120
∑

1≤m≤n−1

σ3(m)σ3(n − m) .

It is quite difficult (but not impossible) to prove this directly, i.e., without using at
least indirectly the theory of modular forms.

Exercise 3.14 Find a similar relation for σ9(n) using E10 = E4E6.
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This type of reasoning is one of the reasons for which the theory of modular forms
is so important (and lots of fun!): if you have a modular form F , you can usually
express it in terms of a completely explicit basis of the space to which it belongs since
spaces of modular forms are finite dimensional (in the present example, the space is
one dimensional), and deduce highly nontrivial relations for the Fourier coefficients.
We will see a further example of this below for the number rk(n) of representations
of an integer n as a sum of k squares.

Exercise 3.15 1. Prove that for any k ∈ C, we have the identity

∑

n≥1

σk(n)qn =
∑

n≥1

nkqn

1 − qn
,

the right-hand side being called a Lambert series.
2. Set F(k) = ∑

n≥1 n
k/(e2πn − 1). Using the Fourier expansions given above,

compute explicitly F(5) and F(9).
3. Using Proposition 3.10, compute explicitly F(−3).
4. Using Proposition 3.23 below, compute explicitly F(1).

Note that in this exercise, we only compute F(k) for k ≡ 1 (mod 4). It is also
possible but more difficult to compute F(k) for k ≡ 3 (mod 4). For instance, we
have

F(3) = Γ (1/4)8

80(2π)6
− 1

240
.

3.5 Obtaining Modular Forms by Averaging

We have mentioned at the beginning of this course that one of the ways to obtain
functions satisfying functional equations is to use averaging over a suitable group or
set: we have seen this for periodic functions in the form of the Poisson summation
formula, and for doubly periodic functions in the construction of the Weierstrass
℘-function. We can do the same for modular forms, but we must be careful in two
different ways. First, we do not want invariance by Γ , but we want an automorphy
factor (cτ + d)k . This is easily dealtwith bynoting that (d/dτ)(γ (τ )) = (cτ + d)−2:
indeed, if φ is some function on H , we can define

F(τ ) =
∑

γ∈Γ

φ(γ (τ))((d/dτ)(γ (τ )))k/2 .

Exercise 3.16 Ignoring all convergence questions, by using the chain rule ( f ◦
g)′ = ( f ′ ◦ g)g′ show that for all δ = (

A B
C D

) ∈ Γ , we have

F(δ(τ )) = (Cτ + D)k F(τ ) .
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But the second important way in which we must be careful is that the above
construction rarely converges. There are, however, examples where it does converge:

Exercise 3.17 Let φ(τ) = τ−m , so that

F(τ ) =
∑

γ=
(
a b
c d

)
∈Γ

1

(aτ + b)m(cτ + d)k−m
.

Show that if 2 ≤ m ≤ k − 2 and m �= k/2, this series converges normally on any
compact subset of H (i.e., it is majorized by a convergent series with positive
terms), so defines a modular form in Mk(Γ ).

Note that the series converges also for m = k/2, but this is more difficult.
One of the essential reasons for non-convergence of the function F is the trivial

observation that for a given pair of coprime integers (c, d) there are infinitely many
elements γ ∈ Γ having (c, d) as their second row. Thus, in general, it seems more
reasonable to define

F(τ ) =
∑

gcd(c,d)=1

φ(γc,d(τ ))(cτ + d)−k ,

where γc,d is any fixedmatrix inΓ with second row equal to (c, d). However, we need
this to make sense: if γc,d = (

a b
c d

) ∈ Γ is one such matrix, it is clear that the general
matrix having second row equal to (c, d) is T n

(
a b
c d

) = (
a+nc b+nd
c d

)
, and as usual

T = (
1 1
0 1

)
is translation by 1: τ 
→ τ + 1. Thus, an essential necessary condition for

our series to make any kind of sense is that the function φ be periodic of period 1.
The simplest such function is, of course, the constant function 1.

Exercise 3.18 (See the proof of Proposition 3.12.) Show that

F(τ ) =
∑

gcd(c,d)=1

(cτ + d)−k = 2Ek(τ ) ,

where Ek is the normalized Eisenstein series defined above.

But by the theory of Fourier series, we know that periodic functions of period 1
are (infinite) linear combinations of the functions e2π inτ . This leads to the definition
of Poincaré series:

Pk(n; τ) = 1

2

∑

gcd(c,d)=1

e2π inγc,d (τ )

(cτ + d)k
,

where we note that we can choose any matrix γc,d with bottom row (c, d) since the
function e2π inτ is 1-periodic, so that Pk(n; τ) ∈ Mk(Γ ).

Exercise 3.19 Assume that k ≥ 4 is even.
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1. Show that if n < 0, the series defining Pk diverges (wildly in fact).
2. Note that Pk(0; τ) = Ek(τ ), so that limτ→i∞ Pk(0; τ) = 1. Show that if n > 0,

the series converges normally and that we have limτ→i∞ Pk(n; τ) = 0. Thus, in
fact, Pk(n; τ) ∈ Sk(Γ ) if n > 0.

3. By using the same unfolding method as in Proposition 3.12, show that if f =∑
n≥0 a(n)qn ∈ Mk(Γ ) and n > 0, we have

< Pk(n), f >= (k − 2)!
(4πn)k−1

a(n) .

It is easy to show that, in fact, the Pk(n) generate Sk(Γ ). We can also compute
their Fourier expansions as we have done for Ek , but they involve Bessel functions
and Kloosterman sums.

3.6 The Ramanujan Delta Function

Recall that by definition Δ is the generator of the one-dimensional space S12(Γ )

whose Fourier coefficient ofq1 is normalized to be equal to 1.By simple computation,
we find the first terms in the Fourier expansion of Δ:

Δ(τ) = q − 24q2 + 252q3 − 1472q4 + · · · ,

with no apparent formula for the coefficients. The nth coefficient is denoted τ(n) (no
confusion with τ ∈ H ), and called Ramanujan’s tau function, and Δ itself is called
Ramanujan’s Delta function.

Of course, using Δ = (E3
4 − E2

6)/1728 and expanding the powers, one can give
a complicated but explicit formula for τ(n) in terms of the functions σ3 and σ5, but
this is far from being the best way to compute them. In fact, the following exercise
already gives a much better method.

Exercise 3.20 Let D be the differential operator (1/(2π i))d/dτ = qd/dq.

1. Show that the function F = 4E4D(E6) − 6E6D(E4) is amodular form ofweight
12, then by looking at its constant term show that it is a cusp form, and finally
compute the constant c such that F = c · Δ.

2. Deduce the formula

τ(n) = n

12
(5σ3(n) + 7σ5(n)) + 70

∑

1≤m≤n−1

(2n − 5m)σ3(m)σ5(n − m) .

3. Deduce, in particular, the congruences τ(n) ≡ nσ5(n) ≡ nσ1(n) (mod 5) and
τ(n) ≡ nσ3(n) (mod 7).

Although there are much faster methods, this is already a very reasonable way to
compute τ(n).
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The cusp form Δ is one of the most important functions in the theory of modular
forms. Its first main property, which is not at all apparent from its definition, is that
it has a product expansion:

Theorem 3.21 We have
Δ(τ) = q

∏

n≥1

(1 − qn)24 .

Proof We are not going to give a complete proof, but sketch a method which is one
of the most natural to obtain the result.

We start backward, from the product R(τ ) on the right-hand side. The logarithm
transforms products into sums, but in the case of functions f , the logarithmic deriva-
tive f ′/ f (more precisely D( f )/ f , where D = qd/dq) also does this, and it is also
more convenient. We have

D(R)/R = 1 − 24
∑

n≥1

nqn

1 − qn
= 1 − 24

∑

n≥1

σ1(n)qn

as is easily seen by expanding 1/(1 − qn) as a geometric series. This is exactly the
case k = 2 of the Eisenstein series Ek , which we have excluded from our discussion
for convergence reasons, so we come back to our series G2k (we will divide by the
normalizing factor 2ζ(2) = π2/3 at the end), and introduce a convergence factor due
to Hecke, setting

G2,s(τ ) =
∑

(m,n)∈Z2\{(0,0)}
(mτ + n)−2|mτ + n|−2s .

As above this converges for ℜ(s) > 0, it satisfies

G2,s(γ (τ )) = (cτ + d)2|cτ + d|2sG2,s(τ )

and hence, in particular, is periodic of period 1. It is straightforward to compute its
Fourier expansion, which we will not do here, and the Fourier expansion shows that
G2,s has an analytic continuation to the whole complex plane. In particular, the limit
as s → 0makes sense; if we denote it byG∗

2(τ ), by continuity it will of course satisfy
G∗

2(γ (τ )) = (cτ + d)2G∗
2(τ ), and the analytic continuation of the Fourier expansion

that has been computed gives

G∗
2(τ ) = π2

3

(

1 − 3

πℑ(τ )
− 24

∑

n≥1

σ1(n)qn

)

.

Note the essential fact that there is now a nonanalytic term 3/(πℑ(τ )). We will, of
course, set the following definition:
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Definition 3.22 We define

E2(τ ) = 1 − 24
∑

n≥1

σ1(n)qn and E∗
2 (τ ) = E2(τ ) − 3

πℑ(τ )
.

Thus, E2(τ ) = D(R)/R, G∗
2(τ ) = (π2/3)E∗

2 (τ ), and we have the following:

Proposition 3.23 For any γ = (
a b
c d

) ∈ Γ , we have E∗
2 (γ (τ )) = (cτ + d)2E∗

2 (τ ).
Equivalently,

E2(γ (τ )) = (cτ + d)2E2(τ ) + 12

2π i
c(cτ + d) .

Proof The first result has been seen above, and the second follows from the formula
ℑ(γ (τ )) = ℑ(τ )/|cτ + d|2. �

Exercise 3.24 Show that

E2(τ ) = −24

(

− 1

24
+

∑

m≥1

m

q−m − 1

)

.

Proof of the theorem. We can now prove the theorem on the product expansion of
Δ: noting that (d/dτ)γ (τ ) = 1/(cτ + d)2, the above formulas imply that if we set
S = R(γ (τ )), we have

D(S)

S
= D(R)

R
(γ (τ ))(d/dτ)(γ (τ ))

= (cτ + d)−2E2(γ (τ )) = E2(τ ) + 12

2π i

c

cτ + d

= D(R)

R
(τ ) + 12

D(cτ + d)

cτ + d
.

By integrating and exponentiating, it follows that

R(γ (τ )) = (cτ + d)12R(τ ) ,

and since clearly R is holomorphic on H and tends to 0 as ℑ(τ ) → ∞ (i.e., as
q → 0), it follows that R is a cusp form of weight 12 on Γ , and since S12(Γ ) is
one-dimensional and the coefficient of q1 in R is 1, we have R = Δ, proving the
theorem. �

Exercise 3.25 Wehave shown in passing that D(Δ) = E2Δ. Expanding the Fourier
expansion of both sides, show that we have the recursion

(n − 1)τ (n) = −24
∑

1≤m≤n−1

σ1(m)τ (n − m) .
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Exercise 3.26 1. Let F ∈ Mk(Γ ), and for some squarefree integer N set

G(τ ) =
∑

d|N
μ(d)dk/2F(dτ) ,

where μ is the Möbius function. Show that G|kWN = μ(N )G, where WN =(
0 −1
N 0

)
is the so-called Fricke involution.

2. Show that if N > 1, the same result is true for F = E2, although E2 is only
quasi-modular.

3. Deduce that if μ(N ) = (−1)k/2−1, we have G(i/
√
N ) = 0.

4. Applying this to E2 and using Exercise 3.24, deduce that ifμ(N ) = 1 and N > 1,
we have

∑

gcd(m,N )=1

m

e2πm/
√
N − 1

= φ(N )

24
,

where φ(N ) is Euler’s totient function.
5. Using directly the functional equation of E∗

2 , show that for N = 1 there is an
additional term −1/(8π), i.e., that

∑

m≥1

m

e2πm − 1
= 1

24
− 1

8π
.

3.7 Product Expansions and the Dedekind Eta Function

We continue our study of product expansions. We first mention an important identity
due to Jacobi, the triple product identity, as well as some consequences:

Theorem 3.27 (Triple product identity) If |q| < 1 and u �= 0, we have

∏

n≥1

(1 − qn)(1 − qnu)
∏

n≥0

(1 − qn/u) =
∑

k≥0

(−1)k(uk − u−(k+1))qk(k+1)/2 .

Proof (sketch): Denote by L(q, u) the left-hand side. We have clearly L(q, u/q) =
−uL(q, u), and since one can write L(q, u) = ∑

k∈Z
ak(q)uk this implies the recur-

sion ak(q) = −qkak−1(q), so ak(q) = (−1)kqk(k+1)/2a0(q), and separating k ≥ 0
and k < 0 this shows that

L(q, u) = a0(q)
∑

k≥0

(−1)k(uk − u−(k+1))qk(k+1)/2 .

The slightly longer part is to show that a0(q) = 1: this is done by setting u = i/q1/2

and u = 1/q1/2, which after a little computation implies that a(q4) = a(q), and from
there it is immediate to deduce that a(q) is a constant, and equal to 1. �
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To give the next corollaries, we need to define the Dedekind eta function η(τ), by

η(τ) = q1/24
∏

n≥1

(1 − qn) ,

(recall that qα = e2π iατ ). Thus, by definition η(τ)24 = Δ(τ). Since Δ(−1/τ) =
τ 12Δ(τ), it follows that η(−1/τ) = c · (τ/ i)1/2η(τ) for some 24th root of unity
c (where we always use the principal determination of the square root), and since
we see from the infinite product that η(i) �= 0, replacing τ by i shows that, in fact,
c = 1. Thus, η satisfies the two basic modular equations

η(τ + 1) = e2π i/24η(τ) and η(−1/τ) = (τ/ i)1/2η(τ) .

Of course, we have more generally

η(γ (τ)) = vη(γ )(cτ + d)1/2η(τ)

for any γ ∈ Γ , with a complicated 24th root of unity vη(γ ), so η is in some (reason-
able) sense amodular form ofweight 1/2, similar to the function θ that we introduced
at the very beginning.

The triple product identity immediately implies the following two identities:

Corollary 3.28 We have

η(τ) = q1/24

(

1 +
∑

k≥1

(−1)k(qk(3k−1)/2 + qk(3k+1)/2)

)

and

η(τ)3 = q1/8
∑

k≥0

(−1)k(2k + 1)qk(k+1)/2 .

Proof In the triple product identity, replace (u, q) by (1/q, q3), we obtain

∏

n≥1

(1 − q3n)(1 − q3n−1)
∏

n≥0

(1 − q3n+1) =
∑

k≥0

(−1)k(q−k − qk+1)q3k(k+1)/2 .

The left-hand side is clearly equal to η(τ), and the right-hand side to

1 − q +
∑

k≥1

(−1)k(qk(3k+1)/2 − q(k+1)(3k+2)/2)

= 1 +
∑

k≥1

(−1)kqk(3k+1)/2 − q +
∑

k≥2

(−1)kqk(3k−1)/2 ,

giving the formula for η(τ). For the second formula, divide the triple product identity
by 1 − 1/u and make u → 1. �
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Thus, the first few terms are

∏

n≥1

(1 − qn) = 1 − q − q2 + q5 + q7 − q12 − q15 + · · ·
∏

n≥1

(1 − qn)3 = 1 − 3q + 5q3 − 7q6 + 9q10 − 11q15 + · · · .

The first identity was proved by L. Euler.

Exercise 3.29 1. Show that 24ΔD(η) = ηD(Δ), and using the explicit Fourier
expansion of η, deduce the recursion

∑

k∈Z

(−1)k(75k2 + 25k + 2 − 2n)τ

(

n − k(3k + 1)

2

)

= 0 .

2. Similarly, from 8ΔD(η3) = η3D(Δ) deduce the recursion

∑

k∈Z

(−1)k(2k + 1)(9k2 + 9k + 2 − 2n)τ

(

n − k(k + 1)

2

)

= 0 .

Exercise 3.30 Define the q-Pochhammer symbol (q)n by (q)n = (1 − q)(1 − q2)

· · · (1 − qn).

1. Set f (a, q) = ∏
n≥1(1 − aqn), and define coefficients cn(q) by setting f (a, q) =∑

n≥0 cn(q)an . Show that f (a, q) = (1 − aq) f (aq, q), deduce that cn(q)(1 −
qn) = −qncn−1(q) and finally the identity

∏

n≥1

(1 − aqn) =
∑

n≥0

(−1)nanqn(n+1)/2/(q)n .

2. Write in terms of theDedekind eta function, the identities obtained by specializing
to a = 1, a = −1, a = −1/q, a = q1/2, and a = −q1/2.

3. Similarly, prove the identity

1/
∏

n≥1

(1 − aqn) =
∑

n≥0

anqn/(q)n ,

and once again write in terms of the Dedekind eta function, the identities obtained
by specializing to the same five values of a.

4. By multiplying two of the above identities and using the triple product identity,
prove the identity

1
∏

n≥1(1 − qn)
=

∑

n≥0

qn2

(q)2n
.
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Note that this last series is the generating function of the partition function p(n),
so if one wants to make a table of p(n) up to n = 10,000, say, using the left-hand
side would require 10,000 terms, while using the right-hand side only requires 100.

3.8 Computational Aspects of the Ramanujan τ Function

Since its introduction, the Ramanujan tau function τ(n) has fascinated number the-
orists. For instance, there is a conjecture due to D. H. Lehmer that τ(n) �= 0, and an
even stronger conjecture (which would imply the former) that for every prime p we
have p � τ(p) (on probabilistic grounds, the latter conjecture is probably false).

To test these conjectures as well as others, it is an interesting computational
challenge to compute τ(n) for large n (because of Ramanujan’s first two conjectures,
i.e., Mordell’s theorem that we will prove in Sect. 4 below, it is sufficient to compute
τ(p) for p prime).

We can have two distinct goals. The first is to compute a table of τ(n) for n ≤ B,
where B is some (large) bound. The second is to compute individual values of τ(n),
equivalently of τ(p) for p prime.

Consider first the construction of a table. The use of the first recursion given in
the above exercise needs O(n1/2) operations per value of τ(n), and hence O(B3/2)

operations in all to have a table for n ≤ B.
However, it is well known that the Fast Fourier Transform (FFT) allows one

to compute products of power series in essentially linear time. Thus, using Corol-
lary3.28, we can directly write the power series expansion of η3, and use the FFT to
compute its eighth power η24 = Δ. This will require O(B log(B)) operations, so it
is much faster than the preceding method; it is essentially optimal since one needs
O(B) time simply to write the result.

Using large computer resources, especially inmemory, it is reasonable to construct
a table up to B = 1012, but notmuchmore.Thus, the problemof computing individual
values of τ(p) is important. We have already seen one such method in Exercise 3.20
above, which gives a method for computing τ(n) in time O(n1+ε) for any ε > 0.

A deep and important theorem of B. Edixhoven, J.-M. Couveignes, et al., says that
it is possible to compute τ(p) in time polynomial in log(p), and, in particular, in time
O(pε) for any ε > 0. Unfortunately, this algorithm is not at all practical, and at least
for now, completely useless for us. The only practical and important application is
for the computation of τ(p) modulo some small prime numbers � (typically � < 50,
so far from being sufficient to apply the Chinese Remainder Theorem).

However, there exists an algorithm which takes time O(n1/2+ε) for any ε > 0, so
much better than the one of Exercise 3.20, and which is very practical. It is based
on the use of the Eichler–Selberg trace formula, together with the computation of
Hurwitz class numbers H(N ) (essentially the class numbers of imaginary quadratic
orders counted with suitable multiplicity): if we set H3(N ) = H(4N ) + 2H(N )

(note that H(4N ) can be computed in terms of H(N )), then for p prime
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τ(p) = 28p6 − 28p5 − 90p4 − 35p3 − 1

− 128
∑

1≤t<p1/2

t6(4t4 − 9pt2 + 7p2)H3(p − t2) .

See [1] Exercise 12.13 of Chap.12 for details. Using this formula and a cluster, it
should be reasonable to compute τ(p) for p of the order of 1016.

3.9 Modular Functions and Complex Multiplication

Although the terminology is quite unfortunate, we cannot change it. By definition, a
modular function is a function F fromH to C which is weakly modular of weight 0
(so that F(γ (τ )) = F(τ ), in otherwords is invariant underΓ , or equivalently defines
a function from Γ \H to C), meromorphic, including at ∞. This last statement
requires some additional explanation, but in simple terms, this means that the Fourier
expansion of F has only finitely many Fourier coefficients for negative powers of q:
F(τ ) = ∑

n≥n0
a(n)qn , for some (possibly negative) n0.

A trivial way to obtain modular functions is simply to take the quotient of two
modular forms having the same weight. The most important is the j-function defined
by

j (τ ) = E3
4(τ )

Δ(τ)
,

whose Fourier expansion begins by

j (τ ) = 1

q
+ 744 + 196884q + 21493760q2 + · · ·

Indeed, one can easily prove the following theorem:

Theorem 3.31 Let F be a meromorphic function onH . The following are equiva-
lent:

1. F is a modular function.
2. F is the quotient of two modular forms of equal weight.
3. F is a rational function of j .

Exercise 3.32 1. Noting that Theorem 3.5 is valid more generally for modular
functions (with vτ ( f ) = −r < 0 if f has a pole of order r at τ ) and using the
specific properties of j (τ ), compute vτ ( f ) for the functions j (τ ), j (τ ) − 1728,
and D( j)(τ ), at the points ρ = e2π i/3, i , i∞, and τ0 for τ0 distinct from these
three special points.

2. Set f = f (a, b, c) = D( j)a/( j b( j − 1728)c). Show that f is a modular form if
and only if 2c ≤ a, 3b ≤ 2a, and b + c ≥ a, and give similar conditions for f to
be a cusp form.
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3. Show that E4 = f (2, 1, 1), E6 = f (3, 2, 1), and Δ = f (6, 4, 3), so that, for
instance, D( j) = −E14 = −E2

4E6/Δ.

An important theory linked to modular functions is the theory of complex mul-
tiplication, which deserves a course in itself. We simply mention one of the basic
results.

We will say that a complex number τ ∈ H is a CM point (CM for Complex
Multiplication), if it belongs to an imaginary quadratic field, or equivalently if there
exist integers a, b, and c with a �= 0 such that aτ 2 + bτ + c = 0. The first basic
theorem is the following:

Theorem 3.33 If τ is a CM point, then j (τ ) is an algebraic integer.

Note that this theorem has two parts: the first and most important part is that j (τ )

is algebraic. This is, in fact, easy to prove. The second part is that it is an algebraic
integer, and this is more difficult. Since any modular function f is a rational function
of j , it follows that if this rational function has algebraic coefficients then f (τ ) will
be algebraic (but not necessarily integral). Another immediate consequence is the
following:

Corollary 3.34 Let τ be a CM point and define�τ = η(τ)2, where η is as usual the
Dedekind eta function. For any modular form f of weight k (in fact, f can also be
meromorphic), the number f (τ )/�k

τ is algebraic. In fact, E4(τ )/�4
τ and E6(τ )/�6

τ

are always algebraic integers.

But the importance of this theorem lies in algebraic number theory. We give the
following theorem without explaining the necessary notions:

Theorem 3.35 Let τ be a CM point, D = b2 − 4ac its discriminant, where we
choose gcd(a, b, c) = 1 and K = Q(

√
D). Then, K ( j (τ )) is the maximal abelian

unramified extension of K , the Hilbert class field of K , and Q( j (τ )) is the ring class
field of discriminant D. In particular, the degree of the minimal polynomial of the
algebraic integer j (τ ) is equal to the class number h(D) of the order of discriminant
D, and its algebraic conjugates are given by an explicit formula called the Shimura
reciprocity law.

Examples:

j ((1 + i
√
3)/2) = 0 = 1728 − 3(24)2

j (i) = 1728 = 123 = 1728 − 4(0)2

j ((1 + i
√
7)/2) = −3375 = (−15)3 = 1728 − 7(27)2

j (i
√
2) = 8000 = 203 = 1728 + 8(28)2

j ((1 + i
√
11)/2) = −32768 = (−32)3 = 1728 − 11(56)2

j ((1 + i
√
163)/2) = −262537412640768000 = (−640320)3
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= 1728 − 163(40133016)2

j (i
√
3) = 54000 = 2(30)3 = 1728 + 12(66)2

j (2i) = 287496 = (66)3 = 1728 + 8(189)2

j ((1 + 3i
√
3)/2) = −12288000 = −3(160)3 = 1728 − 3(2024)2

j ((1 + i
√
15)/2) = −191025 − 85995

√
5

2

= 1 − √
5

2

(
75 + 27

√
5

2

)3

= 1728 − 3

(
273 + 105

√
5

2

)2

Note that we give the results in the above form since show that the functions j1/3

and ( j − 1728)1/2 also have interesting arithmetic properties.
The example with D = −163 is particularly spectacular:

Exercise 3.36 Using the above table, show that

(eπ
√
163 − 744)1/3 = 640320 − ε ,

with 0 < ε < 10−24, and more precisely that ε is approximately equal to
65628e−(5/3)π

√
163 (note that 65628 = 196884/3).

Exercise 3.37 1. Using once again the example of 163, compute heuristically
a few terms of the Fourier expansion of j assuming that it is of the form
1/q + ∑

n≥0 c(n)qn with c(n) reasonably small integers using the following

method. Set q = −e−π
√
163, and let J = (−640320)3 be the exact value of

j ((−1 + i
√
163)/2). By computing J − 1/q, one notices that the result is very

close to 744, so we guess that c(0) = 744.We then compute (J − 1/q − c(0))/q
and note that once again the result is close to an integer, giving c(1), and so on.
Go as far as you can with this method.

2. Do the same for 67 instead of 163. You will find the same Fourier coefficients
(but you can go less far).

3. On the other hand, do the same for 58, starting with J equal to the integer close
to eπ

√
58. You will find a different Fourier expansion: it corresponds, in fact,

to another modular function, this time defined on a subgroup of Γ , called a
Hauptmodul.

4. Try to find other rational numbers D such that eπ
√
D is close to an integer, and

do the same exercise for them (an example where D is not integral is 89/3).
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3.10 Derivatives of Modular Forms

If we differentiate the modular equation f ((aτ + b)/(cτ + d)) = (cτ + d)k f (τ )

with
(
a b
c d

) ∈ Γ using the operator D = (1/(2π i))d/dτ (which gives simpler for-
mulas than d/dτ since D(qn) = nqn), we easily obtain

D( f )

(
aτ + b

cτ + d

)

= (cτ + d)k+2

(

D( f )(τ ) + k

2π i

c

cτ + d
f (τ )

)

.

Thus, the derivative of a weakly modular form of weight k looks like one of weight
k + 2, except that there is an extra term. This term vanishes if k = 0, so the derivative
of a modular function of weight 0 is indeed modular of weight 2 (we have seen above
the example of j (τ ) which satisfies D( j) = −E14/Δ).

If k > 0 and we really want a true weakly modular form of weight k + 2 there
are two ways to do this. The first one is called the Serre derivative:

Exercise 3.38 Using Proposition 3.23, show that if f is weakly modular of weight
k, then D( f ) − (k/12)E2 f is weakly modular of weight k + 2. In particular, if
f ∈ Mk(Γ ), then SDk( f ) := D( f ) − (k/12)E2 f ∈ Mk+2(Γ ).

The second method is to set D∗( f ) := D( f ) − (k/(4πℑ(τ ))) f since by
Proposition3.23, we have D∗( f ) = SDk( f ) − (k/12)E∗

2 f . This loses holomorphy,
but is very useful in certain contexts.

Note that if more than one modular form is involved, there are more ways to make
new modular forms using derivatives.

Exercise 3.39 1. For i = 1, 2 let fi ∈ Mki (Γ ). By considering the modular func-
tion f k21 / f k12 of weight 0, show that

k2 f2D( f1) − k1 f1D( f2) ∈ Sk1+k2+2(Γ ) .

Note that this generalizes Exercise 3.20.
2. Compute constants a, b, and c (depending on k1 and k2 and not all 0) such that

[ f1, f2]2 = aD2( f1) + bD( f1)D( f2) + cD2( f2) ∈ Sk1+k2+4(Γ ) .

This gives the first two of the so-called Rankin–Cohen brackets.
As an application of derivatives of modular forms, we give a proof of a theorem

of Siegel. We begin by the following:

Lemma 3.40 Let a and b be nonnegative integers such that 4a + 6b = 12r + 2.
The constant term of the Fourier expansion of Fr (a, b) = Ea

4 E
b
6/Δ

r vanishes.

Proof By assumption Fr (a, b) is a meromorphic modular form of weight 2. Since
D(

∑
n≥n0

a(n)qn) = ∑
n≥n0

na(n)qn , it is sufficient to find a modular function
Gr (a, b) of weight 0 such that Fr (a, b) = D(Gr (a, b)) (recall that the derivative of a
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modular function of weight 0 is still modular). We prove this by an induction first on
r , then on b. Recall that by Exercise 3.32, we have D( j) = −E14/Δ = −E2

4E6/Δ,
and since 4a + 6b = 14 has only the solution (a, b) = (2, 1) the result is true for
r = 1. Assume it is true for r − 1. We now do a recursion on b, noting that since
2a + 3b = 6r + 1, b is odd. Note that D( j r ) = r jr−1D( j) = −r E3r−1

4 E6/Δ
r , so

the constant term of Fr (a, 1) indeed vanishes. However, since E3
4 − E2

6 = 1728Δ,
if a ≥ 3, we have

Fr (a − 3, b + 2) = Ea−3
4 Eb

6 (E
3
4 − 1728Δ)/Δr = Fr (a, b) − 1728Fr−1(a − 3, b) ,

proving that the result is true for r by induction on b since we assumed it true for
r − 1. �

We can now prove (part of) Siegel’s theorem:

Theorem 3.41 For r = dim(Mk(Γ )) define coefficients cki by

E12r−k+2

Δr
=

∑

i≥−r

cki q
i ,

where by convention we set E0 = 1. Then, for any f = ∑
n≥0 a(n) ∈ Mk(Γ ), we

have the relation ∑

0≤n≤r

ck−na(n) = 0 .

In addition, we have ck0 �= 0, so that a(0) = ∑
1≤n≤r (c

k−n/c
k
0)a(n) is a linear combi-

nation with rational coefficients of the a(n) for 1 ≤ n ≤ r .

Proof First note that by Corollary 3.6, we have r ≥ (k − 2)/12 (with equality only
if k ≡ 2 (mod 12)), so the definition of the coefficients cki makes sense. Note also
that since the Fourier expansion of E12r−k+2 begins with 1 + O(q) and that of Δr

by qr + O(qr+1), that of the quotient begins with q−r + O(q1−r ) (in particular,
ck−r = 1). The proof of the first part is now immediate: the modular form f E12r−k+2

belongs toM12r+2(Γ ), so byCorollary 3.7 is a linear combination of Ea
4 E

b
6 with 4a +

6b = 12r + 2. It follows from the lemma that the constant term of f E12r−k+2/Δ
r

vanishes, and this constant term is equal to
∑

0≤n≤r c
k−na(n), proving the first part

of the theorem. The fact that ck0 �= 0 (which is of course essential) is a little more
difficult and will be omitted, see [1] Theorem 9.5.1. �

This theorem has (at least) two consequences. First, a theoretical one: if one
can construct a modular form whose constant term is some interesting quantity and
whose Fourier coefficients a(n) are rational, this shows that the interesting quantity
is also rational. This is what allowed Siegel to show that the value at negative integers
of Dedekind zeta functions of totally real number fields are rational, see Sect. 7.2.
Second, a practical one: it allows to compute explicitly the constant coefficient a(0)
in terms of the a(n), giving interesting formulas, see again Sect. 7.2.
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4 Hecke Operators: Ramanujan’s Discoveries

We now come to one of the most amazing and important discoveries on modular
forms due to S. Ramanujan, which has led to the modern development of the subject.
Recall that we set

Δ(τ) = q
∏

m≥1

(1 − qm)24 =
∑

n≥1

τ(n)qn .

We have τ(2) = −24, τ(3) = 252, and τ(6) = −6048 = −24 · 252, so that τ(6) =
τ(2)τ (3). After some more experiments, Ramanujan conjectured that if m and n
are coprime, we have τ(mn) = τ(m)τ (n). Thus, by decomposing an integer into
products of prime powers, assuming this conjecture, we are reduced to the study of
τ(pk) for p prime.

Ramanujan then noticed that τ(4) = −1472 = (−24)2 − 211 = τ(2)2 − 211, and
again after some experiments he conjectured that τ(p2) = τ(p)2 − p11, and more
generally that τ(pk+1) = τ(p)τ (pk) − p11τ(pk−1). Thus, uk = τ(pk) satisfies a lin-
ear recurrence relation

uk+1 − τ(p)uk + p11uk−1 = 0 ,

and since u0 = 1 the sequence is entirely determined by the value of u1 = τ(p). It
is well known that the behavior of a linear recurrent sequence is determined by its
characteristic polynomial. Here, it is equal to X2 − τ(p)X + p11, and the third of
Ramanujan’s conjectures is that the discriminant of this equation is always negative,
or equivalently that |τ(p)| < p11/2.

Note that if αp and βp are the roots of the characteristic polynomial (necessarily
distinct since we cannot have |τ(p)| = p11/2), then τ(pk) = (αk+1

p − βk+1
p )/(αp −

βp), and the last conjecture says that αp and βp are complex conjugate, and, in
particular, of modulus equal to p11/2.

These conjectures are all true. The first two (multiplicativity and recursion) were
proved by L. Mordell only 1 year after Ramanujan formulated them, and indeed
the proof is quite easy (in fact, we will prove them below). The third conjecture
|τ(p)| < p11/2 is extremely hard, and was only proved by P. Deligne in 1970 using
the whole machinery developed by the school of A. Grothendieck to solve the Weil
conjectures.

Themain idea ofMordell, whichwas generalized later by E.Hecke, is to introduce
certain linear operators (now called Hecke operators) on spaces of modular forms,
to prove that they satisfy the multiplicativity and recursion properties (this is, in
general, much easier than to prove this on numbers), and finally to use the fact that
S12(Γ ) = CΔ is of dimension 1, so that necessarily Δ is an eigenform of the Hecke
operators whose eigenvalues are exactly its Fourier coefficients.
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Although there are more natural ways of introducing them, we will define
the Hecke operator T (n) on Mk(Γ ) directly by its action on Fourier expansions
T (n)(

∑
m≥0 a(m)qm) = ∑

m≥0 b(m)qm , where

b(m) =
∑

d|gcd(m,n)

dk−1a(mn/d2) .

Note that we can consider this definition as purely formal, apart from the presence of
the integer k this is totally unrelated to the possible fact that

∑
m≥0 a(m)qm ∈ Mk(Γ ).

A simple but slightly tedious combinatorial argument shows that these operators
satisfy

T (n)T (m) =
∑

d|gcd(n,m)

dk−1T (nm/d2) .

In particular, if m and n are coprime, we have T (n)T (m) = T (nm) (multiplicativ-
ity), and if p is a prime and k ≥ 1, we have T (pk)T (p) = T (pk+1) + pk−1T (pk−1)

(recursion). This shows that these operators are indeed good candidates for proving
the first two of Ramanujan’s conjectures.

We need to show the essential fact that they preserve Mk(Γ ) and Sk(Γ ) (the latter
will follow from the former since by the above definition b(0) = ∑

d|n dk−1a(0) =
a(0)σk−1(n) = 0 if a(0) = 0). By recursion and multiplicativity, it is sufficient to
show this for T (p) with p prime. Now, if F(τ ) = ∑

m≥0 a(m)qm , T (p)(F)(τ ) =
∑

m≥0 b(m)qm with b(m) = a(mp) if p � m, and b(m) = a(mp) + pk−1a(m/p) if
p | m.

On the other hand, let us compute G(τ ) = ∑
0≤ j<p F((τ + j)/p). Replacing

directly in the Fourier expansion, we have

G(τ ) =
∑

m≥0

a(m)qm/p
∑

0≤ j<p

e2π im j/p .

The inner sum is a complete geometric sum which vanishes unless p | m, in which
case it is equal to p. Thus, changingm into pm, we haveG(τ ) = p

∑
m≥0 a(pm)qm .

On the other hand, we have trivially
∑

p|m a(m/p)qm = ∑
m≥0 a(m)q pm = F(pτ).

Replacing both of these formulas in the formula for T (p)(F), we see that

T (p)(F)(τ ) = pk−1F(pτ) + 1

p

∑

0≤ j<p

F

(
τ + j

p

)

.

Exercise 4.1 Show more generally that

T (n)(F)(τ ) =
∑

ad=n

ak−1 1

d

∑

0≤b<d

F

(
aτ + b

d

)

.



36 H. Cohen

It is now easy to show that T (p)F is modular: replace τ by γ (τ) in the above
formula and make a number of elementary manipulations to prove modularity. In
fact, since Γ is generated by τ 
→ τ + 1 and τ 
→ −1/τ , it is immediate to check
modularity for these two maps on the above formula.

As mentioned above, the proof of the first two Ramanujan conjectures is now
immediate: since T (n) acts on the one-dimensional space S12(Γ ), we must have
T (n)(Δ) = c · Δ for some constant c. Replacing in the definition of T (n), we thus
have for allm cτ(m) = ∑

d|gcd(n,m) d
11τ(nm/d2). Choosingm = 1 and using τ(1) =

1 shows that c = τ(n), so that

τ(n)τ (m) =
∑

d|gcd(n,m)

d11τ(nm/d2)

which implies (and is equivalent to) the first two conjectures of Ramanujan.
Denote by Pk(n) the characteristic polynomial of the linearmap T (n) on Sk(Γ ). A

strong form of the so-called Maeda’s conjecture states that for n > 1 the polynomial
Pk(n) is irreducible. This has been tested up to very large weights.

Exercise 4.2 The above proof shows that the Hecke operators also preserve the
space of modular functions, so by Theorem 3.31, the image of j (τ )will be a rational
function in j :

1. Show, for instance, that

T (2)( j) = j2/2 − 744 j + 81000 and

T (3)( j) = j3/3 − 744 j2 + 356652 j − 12288000 .

2. Set J = j − 744, i.e., j with no term in q0 in its Fourier expansion. Deduce that

T (2)(J ) = J 2/2 − 196884 and

T (3)(J ) = J 3/3 − 196884J − 21493760 ,

and observe that the coefficients that we obtain are exactly the Fourier coefficients
of J .

3. Prove that T (n)( j) is a polynomial in j . Does the last observation generalize?

5 Euler Products, Functional Equations

5.1 Euler Products

The case of Δ is quite special, in that the modular form space to which it naturally
belongs, S12(Γ ), is only one dimensional. As can easily be seen from the dimension
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formula, this occurs (for cusp forms) only for k = 12, 16, 18, 20, 22, and 26 (there
are no nonzero cusp forms in weight 14 and the space is of dimension 2 in weight
24), and thus the evident cusp forms ΔEk−12 for these values of k (setting E0 = 1)
are generators of the space Sk(Γ ), so are eigenforms of the Hecke operators and
share exactly the same properties as Δ, with p11 replaced by pk−1.

When the dimension is greater than 1, we must work slightly more. From the
formulas given above, it is clear that the T (n) forms a commutative algebra of oper-
ators on the finite-dimensional vector space Sk(Γ ). In addition, we have seen above
that there is a natural scalar product on Sk(Γ ). One can show the not completely
trivial fact that T (n) is Hermitian for this scalar product, and hence, in particular,
is diagonalizable. It follows by an easy and classical result of linear algebra that
these operators are simultaneously diagonalizable, i.e., there exists a basis Fi of
forms in Sk(Γ ) such that T (n)Fi = λi (n)Fi for all n and i . Identifying Fourier coef-
ficients as we have done above for Δ shows that if Fi = ∑

n≥1 ai (n)qn , we have
ai (n) = λi (n)ai (1). This implies first that ai (1) �= 0, otherwise Fi would be iden-
tically zero, so that by dividing by ai (1) we can always normalize the eigenforms
so that ai (1) = 1, and second, as for Δ, that ai (n) = λi (n), i.e., the eigenvalues
are exactly the Fourier coefficients. In addition, since the T (n) are Hermitian, these
eigenvalues are real for any embedding into C, and hence are totally real, in other
words their minimal polynomial has only real roots. Finally, using Theorem 3.5, it
is immediate to show that the field generated by the ai (n) is finite dimensional over
Q, i.e., is a number field.

Exercise 5.1 Consider the space S = S24(Γ ), which is the smallest weight where
the dimension is greater than 1, here 2. By the structure theorem given above, it is
generated, for instance, by Δ2 and ΔE3

4 . Compute the matrix of the operator T (2)
on this basis of S, diagonalize this matrix, so find the eigenfunctions of T (2) on S
(the prime number 144169 should occur). Check that these eigenfunctions are also
eigenfunctions of T (3).

Thus, let F = ∑
n≥1 a(n)qn be a normalized eigenfunction for all the Hecke

operators in Sk(Γ ) (for instance, F = Δ with k = 12), and consider the Dirichlet
series

L(F, s) =
∑

n≥1

a(n)

ns
,

for themoment formally, althoughwewill show below that it converges forℜ(s) suf-
ficiently large. The multiplicativity property of the coefficients (a(nm) = a(n)a(m)

if gcd(n,m) = 1, coming from that of the T (n)) is equivalent to the fact that we
have an Euler product (a product over primes)

L(F, s) =
∏

p∈P

L p(F, s) with L p(F, s) =
∑

j≥0

a(p j )

p js
,

where we will always denote by P the set of prime numbers.
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The additional recursion propertya(p j+1) = a(p)a(p j ) − pk−1a(p j−1) is equiv-
alent to the identity

L p(F, s) = 1

1 − a(p)p−s + pk−1 p−2s

(multiply both sides by the denominator to check this). We have thus proved the
following theorem:

Theorem 5.2 Let F = ∑
n≥1 a(n)qn ∈ Sk(Γ ) be an eigenfunction of all Hecke

operators. We have an Euler product

L(F, s) =
∑

n≥1

a(n)

ns
=

∏

p∈P

1

1 − a(p)p−s + pk−1 p−2s
.

Note that we have not really used the fact that F is a cusp form: the above theorem
is still valid if F = Fk is the normalized Eisenstein series

Fk(τ ) = − Bk

2k
Ek(τ ) = − Bk

2k
+

∑

n≥1

σk−1(n)qn ,

which is easily seen to be a normalized eigenfunction for all Hecke operators. In fact,

Exercise 5.3 Let a ∈ C be any complex number and let as usual σa(n) = ∑
d|n da .

1. Show that

∑

n≥1

σa(n)

ns
= ζ(s − a)ζ(s) =

∏

p∈P

1

1 − σa(p)p−s + pa p−2s
,

with σa(p) = pa + 1.
2. Show that

σa(m)σa(n) =
∑

d|gcd(m,n)

daσa

(mn

d2

)
,

so that, in particular, Fk is indeed a normalized eigenfunction for all Hecke
operators.

5.2 Analytic Properties of L-Functions

Everything that we have done up to now is purely formal, i.e., we do not need to
assume convergence. However, in the sequel, we will need to prove some analytic
results, and for this, we need to prove convergence for certain values of s. We begin
with the following easy bound, due to Hecke:
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Proposition 5.4 Let F = ∑
n≥1 a(n)qn ∈ Sk(Γ ) be a cusp form (not necessarily an

eigenform). There exists a constant c > 0 (depending on F) such that for all n, we
have |a(n)| ≤ cnk/2.

Proof The trick is to consider the function g(τ ) = |F(τ )ℑ(τ )k/2|: since we have
seen that ℑ(γ (τ )) = ℑ(τ )/|cτ + d|2, it follows that g(τ ) is invariant under Γ . It
follows that supτ∈H g(τ ) = supτ∈F g(τ ), where F is the fundamental domain used
above. Now because of the Fourier expansion and the fact that F is a cusp form,
|F(τ )| = O(e−2πℑ(τ )) as ℑ(τ ) → ∞, so g(τ ) tends to 0 also. It immediately follows
that g is bounded on F, and hence onH , so that there exists a constant c1 > 0 such
that |F(τ )| ≤ c1ℑ(τ )−k/2 for all τ .

We can now easily prove Hecke’s bound: from the Fourier series section, we know
that for any y > 0

a(n) = e2πny
∫ 1

0
F(x + iy)e−2π inx dx ,

so that |a(n)| ≤ c1e2πny y−k/2, and choosing y = 1/n proves the proposition with
c = e2πc1. �

The following corollary is now clear:

Corollary 5.5 The L-function of a cusp form of weight k converges absolutely (and
uniformly on compact subsets) for ℜ(s) > k/2 + 1.

Remark 5.6 Deligne’s deep result mentioned above on the third Ramanujan con-
jecture implies that we have the following optimal bound: there exists c > 0 such
that |a(n)| ≤ cσ0(n)n(k−1)/2, and, in particular, |a(n)| = O(n(k−1)/2+ε) for all ε > 0.
This implies that the L-function of a cusp form converges absolutely and uniformly
on compact subsets, in fact, also for ℜ(s) > (k + 1)/2.

Exercise 5.7 Define for all s ∈ C the function σs(n) by σs(n) = ∑
d|n ds if n ∈ Z>0,

σs(0) = ζ(−s)/2 (and σs(n) = 0 otherwise). Set

S(s1, s2; n) =
∑

0≤m≤n

σs1(m)σs2(n − m) .

1. Compute S(s1, s2; n) exactly in terms of σs1+s2+1(n) for (s1, s2) = (3, 3) and
(3, 5), and also for (s1, s2) = (1, 1), (1, 3), (1, 5), and (1, 7) by using properties
of the function E2.

2. Using Hecke’s bound for cusp forms, show that if s1 and s2 are odd positive
integers the ratio S(s1, s2; n)/σs1+s2+1(n) tends to a limit L(s1, s2) as n → ∞,
and compute this limit in terms ofBernoulli numbers. In addition, give an estimate
for the error term |S(s1, s2; n)/σs1+s2+1(n) − L(s1, s2)|.

3. Using the values of the Riemann zeta function at even positive integers in terms
of Bernoulli numbers, show that if s1 and s2 are odd positive integers, we have
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L(s1, s2) = ζ(s1 + 1)ζ(s2 + 1)

(s1 + s2 + 1)
(s1+s2

s1

)
ζ(s1 + s2 + 2)

.

4. (A little project.) Define L(s1, s2) by the above formula for all s1, s2 in C for
which it makes sense, interpreting

(s1+s2
s1

)
as Γ (s1 + s2 + 1)/(Γ (s1 + 1)Γ (s2 +

1)). Check on a computer whether it still seems to be true that

S(s1, s2; n)/σs1+s2+1(n) → L(s1, s2) .

Try to prove it for s1 = s2 = 2, and then for general s1, s2. If you succeed, give
also an estimate for the error term analogous to the one obtained above.

We now do some (elementary) analysis.

Proposition 5.8 Let F ∈ Sk(Γ ). For ℜ(s) > k/2 + 1, we have

(2π)−sΓ (s)L(F, s) =
∫ ∞

0
F(i t)t s−1 dt .

Proof Using Γ (s) = ∫ ∞
0 e−t t s−1 dt , this is trivial by uniform convergence which

insures that we can integrate term by term. �

Corollary 5.9 The function L(F, s) is a holomorphic function which can be ana-
lytically continued to the whole of C. In addition, if we set Λ(F, s) = (2π)−sΓ (s)
L(F, s), we have the functional equation Λ(F, k − s) = i−kΛ(F, s).

Note that in our case k is even, so that i−k = (−1)k/2, but we prefer writing the
constant as above so as to be able to use a similar result in odd weight, which occurs
in more general situations.

Proof Indeed, splitting the integral at 1, changing t into 1/t in one of the integrals,
and using modularity shows immediately that

(2π)−sΓ (s)L(F, s) =
∫ ∞

1
F(i t)(t s−1 + i k t k−1−s) dt .

Since the integral converges absolutely and uniformly for all s (recall that F(i t) tends
exponentially fast to 0 when t → ∞), this immediately implies the corollary. �

As an aside, note that the integral formula used in the above proof is a very
efficient numerical method to compute L(F, s), since the series obtained on the right
by term-by-term integration is exponentially convergent. For instance,

Exercise 5.10 Let F(τ ) = ∑
n≥1 a(n)qn be the Fourier expansion of a cusp form

of weight k on Γ . Using the above formula, show that the value of L(F, k/2) at the
center of the “critical strip” 0 ≤ ℜ(s) ≤ k is given by the following exponentially
convergent series:
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L(F, k/2) = (1 + (−1)k/2)
∑

n≥1

a(n)

nk/2
e−2πn Pk/2(2πn) ,

where Pk/2(X) is the polynomial

Pk/2(X) =
∑

0≤ j<k/2

X j/j ! = 1 + X/1! + X2/2! + · · · + Xk/2−1/(k/2 − 1)! .

Note, in particular, that if k ≡ 2 (mod 4), we have L(F, k/2) = 0. Prove this directly.

Exercise 5.11 1. Prove that if F is not necessarily a cusp form, we have |a(n)| ≤
cnk−1 for some c > 0.

2. Generalize the proposition and the integral formulas so that they are also valid for
non-cusp forms; you will have to add polar parts of the type 1/s and 1/(s − k).

3. Show that L(F, s) still extends to the whole of C with functional equation, but
that it has a pole, simple, at s = k, and compute its residue. In passing, show that
L(F, 0) = −a(0).

5.3 Special Values of L-Functions

A general “paradigm” on L-functions, essentially due to P. Deligne, is that if some
“natural” L-function has both an Euler product and functional equations similar to
the above, then for suitable integral “special points” the value of the L-function
should be a certain (a priori transcendental) number ω times an algebraic number.

In the case of modular forms, this is a theorem of Yu. Manin.

Theorem 5.12 Let F be a normalized eigenform in Sk(Γ ), and denote by K the
number field generated by its Fourier coefficients. There exist two nonzero complex
numbers ω+ and ω− such that for 1 ≤ j ≤ k − 1 integral, we have

Λ(F, j)/ω(−1) j ∈ K ,

where we recall that Λ(F, s) = (2π)−sΓ (s)L(F, s).
In addition, ω± can be chosen such that ω+ω− =< F, F >.

In other words, for j odd, we have L(F, j)/ω− ∈ K while for j even, we have
L(F, j)/ω+ ∈ K .

For instance, in the case F = Δ, if we choose ω− = Λ(F, 3) and ω+ = Λ(F, 2),
we have

(Λ(F, j))1≤ j≤11 odd = (1620/691, 1, 9/14, 9/14, 1, 1620/691)ω−
(Λ(F, j))1≤ j≤11 even = (1, 25/48, 5/12, 25/48, 1)ω+ ,

and ω+ω− = (8192/225) < F, F >.
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Exercise 5.13 (see also Exercise 3.9). For F ∈ Sk(Γ ) define the period polynomial
P(F, X) by

P(F; X) =
∫ i∞

0
(X − τ)k−2F(τ ) dτ .

1. For γ ∈ Γ show that

P(F; X)|2−k =
∫ γ −1(i∞)

γ −1(0)
(X − τ)k−2F(τ ) dτ .

2. Show that P(F; X) satisfies

P(F; X)|2−k S + P(F; X) = 0 and

P(F; X)|2−k(ST )2 + P(F; X)|2−k(ST ) + P(F; X) = 0 .

3. Show that

P(F; X) = −
k−2∑

j=0

(−i)k−1− j

(
k − 2

j

)

Λ(F, k − 1 − j)X j .

4. If F = Δ, using Manin’s theorem above show that up to the multiplicative con-
stant ω+, ℜ(P(F; X)) factors completely in Q[X ] as a product of linear polyno-
mials, and show a similar result for ℑ(P(F; X)) after omitting the extreme terms
involving 691.

5.4 Nonanalytic Eisenstein Series and Rankin–Selberg

If we replace the expression (cτ + d)k by |cτ + d|2s for some complex number s, we
can also obtain functions which are invariant by Γ , although they are nonanalytic.
More precisely:

Definition 5.14 Write as usual y = ℑ(τ ). For ℜ(s) > 1, we define

G(s)(τ ) =
∑

(c,d)∈Z2\{(0,0)}

ys

|cτ + d|2s and

E(s)(τ ) =
∑

γ∈Γ∞\Γ
ℑ(γ (τ ))s = 1

2

∑

gcd(c,d)=1

ys

|cτ + d|2s .

This is again an averaging procedure, and it follows that G(s) and E(s) are
invariant under Γ . In addition, as in the case of the holomorphic Eisenstein series
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Gk and Ek , it is clear that G(s) = 2ζ(2s)E(s). One can also easily compute their
Fourier expansion, and the result is as follows:

Proposition 5.15 Set Λ(s) = π−s/2Γ (s/2)ζ(s). We have the Fourier expansion

Λ(2s)E(s) = Λ(2s)ys + Λ(2 − 2s)y1−s + 4y1/2
∑

n≥1

σ2s−1(n)

ns−1/2 Ks−1/2(2πny) cos(2πnx) .

In the above, Kν(x) is a K -Bessel function which we do not define here. The
main properties that we need is that it tends to 0 exponentially (more precisely
Kν(x) ∼ (π/(2x))1/2e−x as x → ∞) and that K−ν = Kν . It follows from the above
Fourier expansion that E(s) has an analytic continuation to the whole complex
plane, that it satisfies the functional equation E (1 − s) = E (s), where we set E (s) =
Λ(2s)E(s), and that E(s) has a unique pole, at s = 1, which is simple with residue
3/π , independent of τ .

Exercise 5.16 Using the properties of the Riemann zeta function ζ(s), show this
last property, i.e., that E(s) has a unique pole, at s = 1, which is simple with residue
3/π , independent of τ .

There are many reasons for introducing these non-holomorphic Eisenstein series,
but for us the main reason is that they are fundamental in unfolding methods. Recall
that using unfolding, in Proposition 3.12 we showed that Ek (or Gk) was orthogonal
to any cusp form. In the present case, we obtain a different kind of result called a
Rankin–Selberg convolution. Let f and g be in Mk(Γ ), one of them being a cusp
form. Since E(s) is invariant by Γ , the scalar product < E(s) f, g > makes sense,
and the following proposition gives its value:

Proposition 5.17 Let f (τ ) = ∑
n≥0 a(n)qn and g(τ ) = ∑

n≥0 b(n)qn be in Mk(Γ ),
with at least one being a cusp form. For ℜ(s) > 1, we have

< E(s) f, g >= Γ (s + k − 1)

(4π)s+k−1

∑

n≥1

a(n)b(n)

ns+k−1
.

Proof Weessentially copy the proof of Proposition 3.12 sowe skip the details: setting
temporarily F(τ ) = f (τ )g(τ )yk which is invariant by Γ , we have

< E(s) f, g > =
∫

Γ \H

∑

γ∈Γ∞\Γ
ℑ(γ (τ ))s F(γ (τ )) dμ

=
∑

Γ∞\H
ℑ(τ )s F(τ ) dμ

=
∫ ∞

0
ys+k−2

∫ 1

0
F(x + iy) dx dy .
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The inner integral is equal to the constant term in the Fourier expansion of F , and
hence is equal to

∑
n≥1 a(n)b(n)e−4πny (note that by assumption one of f and g is

a cusp form, so the term n = 0 vanishes), and the proposition follows. �

Corollary 5.18 For ℜ(s) > k set

R( f, g)(s) =
∑

n≥1

a(n)b(n)

ns
.

1. R( f, g)(s) has an analytic continuation to the whole complex plane and satisfies
the functional equation R(2k − 1 − s) = R(s) with

R(s) = Λ(2s − 2k + 1)(4π)−sΓ (s)R( f, g)(s) .

2. R( f, g)(s) has a single pole, which is simple, at s = k with residue

3

π

(4π)k

(k − 1)! < f, g > .

Proof This immediately follows from the corresponding properties of E(s): we have

Λ(2s − 2k + 2)(4π)−sΓ (s)R( f, g)(s) =< E (s − k + 1) f, g > ,

and the right-hand side has an analytic continuation to C, and is invariant when
changing s into 2k − 1 − s. In addition, by the proposition E(s − k + 1) = E (s −
k + 1)/Λ(2s − 2k + 2) has a single pole, which is simple, at s = k, with residue
3/π , so R( f, g)(s) also has a single pole, which is simple, at s = k with residue
3

π

(4π)k

(k − 1)! < f, g >. �

It is an important fact (see Theorem 7.9 of my notes on L-functions in the present
volume) that L-functions having analytic continuation and standard functional equa-
tions can be very efficiently computed at any point in the complex plane (see the
note after the proof of Corollary 5.9 for the special case of L(F, s)). Thus, the above
corollary gives a very efficient method for computing Petersson scalar products.

Note that theholomorphicEisenstein series Ek(τ ) can also beused to giveRankin–
Selberg convolutions, but now between forms of different weights.

Exercise 5.19 Let f = ∑
n≥0 a(n)qn ∈ M�(Γ ) and g = ∑

n≥0 b(n)qn ∈ Mk+�(Γ ),
at least one being a cusp form. Using exactly the same unfolding method as in the
above proposition or as in Proposition 3.12, show that

< Ek f, g >= (k + � − 2)!
(4π)k+�−1

∑

n≥1

a(n)b(n)

nk+�−1
.
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6 Modular Forms on Subgroups of Γ

6.1 Types of Subgroups

We have used as basic definition of (weak) modularity F |kγ = F for all γ ∈ Γ .
But there is no reason to restrict to Γ : we could very well ask the same modularity
condition for some group G of transformations of H different from Γ .

There are many types of such groups, and they have been classified: for us, we
will simply distinguish three types, with no justification. For any such group G, we
can talk about a fundamental domain, similar to F that we have drawn above (I do not
want to give a rigorous definition here). We can distinguish essentially three types
of such domains, corresponding to three types of groups.

The first type is when the domain (more precisely its closure) is compact: we say
in that case that G is cocompact. It is equivalent to saying that it does not have any
“cusp” such as i∞ in the case of G. These groups are very important, but we will
not consider them here.

The second type is when the domain is not compact (i.e., it has cusps), but it has
finite volume for the measure dμ = dxdy/y2 on H defined in Exercise 3.11. Such
a group is said to have finite covolume, and the main example is G = Γ that we have
just considered, and hence also evidently all the subgroups of Γ of finite index.

Exercise 6.1 Show that the covolume of the modular group Γ is finite and equal to
π/3.

The third type is when the volume is infinite: a typical example is the group
Γ∞ generated by integer translations, i.e., the set of matrices

(
1 n
0 1

)
. A fundamental

domain is then any vertical strip in H of width 1, which can trivially be shown to
have infinite volume. These groups are not important (at least for us) for the following
reason: they would have “too many” modular forms. For instance, in the case of Γ∞
a “modular form” would simply be a holomorphic periodic function of period 1, and
we come back to the theory of Fourier series, much less interesting.

Wewill, therefore, restrict to groups of the second type, which are calledFuchsian
groups of the first kind. In fact, for this course, we will even restrict to subgroups G
of Γ of finite index.

However, even with this restriction, it is still necessary to distinguish two types of
subgroups: the so-called congruence subgroups, and the others, of course, called non-
congruence subgroups. The theory of modular forms on non-congruence subgroups
is quite a difficult subject and active research is being done on them. One annoying
aspect is that they apparently do not have a theory of Hecke operators.

Thus, will restrict even more to congruence subgroups. We give the following
definitions:

Definition 6.2 Let N ≥ 1 be an integer.

1. We define
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Γ (N ) = {γ =
(
a b
c d

)

∈ Γ, γ ≡
(
1 0
0 1

)

(mod N )} ,

Γ1(N ) = {γ =
(
a b
c d

)

∈ Γ, γ ≡
(
1 ∗
0 1

)

(mod N )} ,

Γ0(N ) = {γ =
(
a b
c d

)

∈ Γ, γ ≡
(∗ ∗
0 ∗

)

(mod N )} ,

where the congruences are component-wise and ∗ indicates that no congruence
is imposed.

2. A subgroup of Γ is said to be a congruence subgroup if it contains Γ (N ) for
some N , and the smallest such N is called the level of the subgroup.

It is clear that Γ (N ) ⊂ Γ1(N ) ⊂ Γ0(N ), and it is trivial to prove that Γ (N )

is normal in Γ (hence, in any subgroup of Γ containing it), that Γ1(N )/Γ (N ) �
Z/NZ (with the map

(
a b
c d

) 
→ b mod N ), and that Γ1(N ) is normal in Γ0(N ) with
Γ0(N )/Γ1(N ) � (Z/NZ)∗ (with the map

(
a b
c d

) 
→ d mod N ).
If G is a congruence subgroup of level N , we have Γ (N ) ⊂ G, so (whatever the

definition) amodular form onG will, in particular, be onΓ (N ). Because of the above
isomorphisms, it is not difficult to reduce the study of forms on Γ (N ) to those on
Γ1(N ), and the latter to forms on Γ0(N ), except that we have to add a slight “twist”
to the modularity property. Thus, for simplicity, we will restrict to modular forms on
Γ0(N ).

6.2 Modular Forms on Subgroups

In view of the definition given for Γ , it is natural to say that F is weakly modular of
weight k on Γ0(N ) if for all γ ∈ Γ0(N ), we have F |kγ = F , where we recall that if
γ = (

a b
c d

)
, then F |kγ (τ) = (cτ + d)−k F(τ ). To obtain amodular form, we need also

to require that F is holomorphic onH , plus some additional technical condition “at
infinity”. In the case of the fullmodular groupΓ , this conditionwas that F(τ ) remains
bounded asℑ(τ ) → ∞. In the case of a subgroup, this condition is not sufficient (it is
easy to show that if we do not require an additional condition the corresponding space
will, in general, be infinite dimensional). There are several equivalent ways of giving
the additional condition.One is the following:writing as usual τ = x + iy,we require
that there exists N such that in the strip −1/2 ≤ x ≤ 1/2, we have |F(τ )| ≤ yN as
y → ∞ and |F(τ )| ≤ y−N as y → 0 (since F is 1-periodic, there is no loss of
generality in restricting to the strip).

It is easily shown that if F is weakly modular and holomorphic, then the above
inequalities imply that |F(τ )| is, in fact, bounded as y → ∞ (but, in general, not as
y → 0), so the first condition is exactly the one that we gave in the case of the full
modular group.
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Similarly, we can define a cusp form by asking that in the above strip |F(τ )| tends
to 0 as y → ∞ and as y → 0.

Exercise 6.3 If F ∈ Mk(Γ ) show that the second condition |F(τ )| ≤ y−N as y → 0
is satisfied.

Now that we have a solid definition of modular form, we can try to proceed as in
the case of the full modular group. A number of things can easily be generalized. It
is always convenient to choose a system of representatives (γ j ) of right cosets for
Γ0(N ) in Γ , so that

Γ =
⊔

j

Γ0(N )γ j .

For instance, if F is the fundamental domain of Γ seen above, one can choose
D = ⊔

γ j (F) as fundamental domain for Γ0(N ). The theorem that we gave on
valuations generalizes immediately:

∑

τ∈D

vτ (F)

eτ

= k

12
[Γ : Γ0(N )] ,

where D is D to which is added a finite number of “cusps” (we do not explain this;
it is not the topological closure), eτ = 2 (resp., 3) if τ is Γ -equivalent to i (resp., to
ρ), and eτ = 1 otherwise, and we can then deduce the dimension of Mk(Γ0(N )) and
Sk(Γ0(N )) as we did for Γ :

Theorem 6.4 We have M0(Γ0(N )) = C (i.e., the only modular forms of weight 0
are the constants) and S0(Γ0(N )) = {0}. For k ≥ 2 even, we have

dim(Mk(Γ0(N ))) = A1 − A2,3 − A2,4 + A3 and

dim(Sk(Γ0(N ))) = A1 − A2,3 − A2,4 − A3 + δk,2 ,

where δk,2 is the Kronecker symbol (1 if k = 2, 0 otherwise) and the Ai are given as
follows:

A1 = k − 1

12
N

∏

p|N

(

1 + 1

p

)

,

A2,3 =
(
k − 1

3
−

⌊
k

3

⌋) ∏

p|N

(

1 +
(−3

p

))

if 9 � N , 0 otherwise,

A2,4 =
(
k − 1

4
−

⌊
k

4

⌋) ∏

p|N

(

1 +
(−4

p

))

if 4 � N , 0 otherwise,

A3 = 1

2

∑

d|N
φ(gcd(d, N/d)) .
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6.3 Examples of Modular Forms on Subgroups

We give a few examples of modular forms on subgroups. First, note the following
easy lemma:

Lemma 6.5 If F ∈ Mk(Γ0(N )), then for any m ∈ Z≥1, we have F(mτ) ∈
Mk(Γ0(mN )).

Proof Trivial since when
(
a b
c d

) ∈ Γ0(mN ) one can write (m(aτ + b)/(cτ + d)) =
(a(mτ) + mb)/((c/m)τ + d). �

Thus, we can already construct many forms on subgroups, but in a sense they are
not very interesting, since they are “old” in a precise sense that we will define below.

A second more interesting example is Eisenstein series: there are more general
Eisenstein series than those that we have seen for Γ , but we simply give the follow-
ing important example: using a similar proof to the above lemma we can construct
Eisenstein series ofweight 2 as follows. Recall that E2(τ ) = 1 − 24

∑
n≥1 σ1(n)qn is

not quite modular, and that E∗
2 (τ ) = E2(τ ) − 3/(πℑ(τ )) is weakly modular (but of

course non-holomorphic). Consider the function F(τ ) = NE2(Nτ) − E2(τ ), anal-
ogous to the construction of the lemma with a correction term.

We have the evident but crucial fact that we also have F(τ ) = NE∗
2 (Nτ) − E∗

2 (τ )

(since ℑ(τ ) is multiplied by N ), so F is also weakly modular on Γ0(N ), but since it
is holomorphic, we have thus constructed a (nonzero) modular form of weight 2 on
Γ0(N ).

A third important example is provided by theta series. This would require a book
in itself, so we restrict to the simplest case. We have seen in Corollary 1.3 that the
function T (a) = ∑

n∈Z
e−aπn2 satisfies T (1/a) = a1/2T (a), which looks like (and

is) a modularity condition. This was for a > 0 real. Let us generalize and for τ ∈ H
set

θ(τ ) =
∑

n∈Z

qn2 =
∑

n∈Z

e2π in
2τ ,

so that, for instance, we simply have T (a) = θ(ia/2). The proof of the functional
equation for T that we gave using Poisson summation is still valid in this more
general case and shows that

θ(−1/(4τ)) = (2τ/ i)1/2θ(τ ) .

On the other hand, the definition trivially shows that θ(τ + 1) = θ(τ ). If we denote
by W4 the matrix

(
0 −1
4 0

)
corresponding to the map τ 
→ −1/(4τ) and as usual T =(

1 1
0 1

)
, we thus have θ |1/2W4 = cθ and θ1/2T = θ for some eighth root of unity c.

(Note: we always use the principal determination of the square roots; if you are
uncomfortable with this, simply square everything, this is what we will do below
anyway.) This implies that if we let Γθ be the intersection of Γ with the group
generated by W4 and T (as transformations ofH ), then for all γ ∈ Γθ we will have
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θ |1/2γ = c(γ )θ for some eighth root of unity c(γ ), but in fact c(γ ) is a fourth root
of unity which we will give explicitly below.

One can easily describe this groupΓθ , and in particular show that it containsΓ0(4)
as a subgroup of index 2. This implies that θ4 ∈ M2(Γ0(4)), and more generally of
course θ4m ∈ M2m(Γ0(4)).

As one of the most famous application of the finite dimensionality of modular
form spaces, solve the following exercise:

Exercise 6.6 1. Using the dimension formulas, show that 2E2(2τ) − E2(τ )

together with 4E2(4τ) − E2(τ ) form a basis of M2(Γ0(4)).
2. Using the Fourier expansion of E2, deduce an explicit formula for the Fourier

expansion of θ4, and hence that r4(n), the number of representations of n as a
sum of four squares (in Z, all permutations counted) is given for n ≥ 1 by the
formula

r4(n) = 8(σ1(n) − 4σ1(n/4)) ,

where it is understood thatσ1(x) = 0 if x /∈ Z. In particular, show that this trivially
implies Lagrange’s theorem that every integer is a sum of four squares.

3. Similarly, show that r8(n), the nth Fourier coefficient of θ8, is given for n ≥ 1 by

r8(n) = 16(σ3(n) − 2σ3(n/2) + 16σ3(n/4)) .

Remark 6.7 Using more general methods one can give “closed” formulas for rk(n)

for k = 1, 2, 3, 4, 5, 6, 7, 8, and 10, see, e.g., [1].

6.4 Hecke Operators and L-Functions

We can introduce the same Hecke operators as before, but to have a reasonable
definition we must add a coprimality condition: we define T (n)(

∑
m≥0 a(m)qm) =∑

m≥0 b(m)qm , with

b(m) =
∑

d|gcd(m,n)
gcd(d,N )=1

dk−1a(mn/d2) .

This additional condition gcd(d, N ) = 1 is, of course, automatically satisfied if n is
coprime to N , but not otherwise.

One then shows exactly like in the case of the full modular group that

T (n)T (m) =
∑

d|gcd(n,m)
gcd(d,N )=1

dk−1T (nm/d2) ,

that they preserve modularity, so, in particular, the T (n) form a commutative algebra
of operators on Sk(Γ0(N )). And this is where the difficulties specific to subgroups of
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Γ begin: in the case of Γ , we stated (without proof nor definition) that the T (n)were
Hermitian with respect to the Petersson scalar product, and deduced the existence of
eigenforms for all Hecke operators. Unfortunately, here the same proof shows that
the T (n) are Hermitian when n is coprime to N , but not otherwise.

It follows that there exist common eigenforms for the T (n), but only for n coprime
to N , which creates difficulties.

An analogous problemoccurs forDirichlet characters: ifχ is aDirichlet character
modulo N , it may, in fact, come by natural extension from a character modulo
M for some divisor M | N , M < N . The characters which have nice properties,
in particular, with respect to the functional equation of their L-functions, are the
primitive characters, for which such an M does not exist.

A similar but slightly more complicated thing can be done for modular forms. It
is clear that if M | N and F ∈ Mk(Γ0(M)), then, of course, F ∈ Mk(Γ0(N )). More
generally, by Lemma 6.5, for any d | N/M , we have F(dτ) ∈ Mk(Γ0(N )). Thus, we
want to exclude such “oldforms”. However, it is not sufficient to say that a newform
is not an oldform. The correct definition is to define a newform as a form which is
orthogonal to the space of oldformswith respect to the scalar product, and, of course,
the new space is the space of newforms. Note that in the case of Dirichlet characters,
this orthogonality condition (for the standard scalar product of two characters) is
automatically satisfied so need not be added.

This theory was developed by Atkin–Lehner–Li, and the new space Snewk (Γ0(N ))

can be shown to have all the nice properties that we require. Although not trivial,
one can prove that it has a basis of common eigenforms for all Hecke operators, not
only those with n coprime to N . More precisely, one shows that in the new space
an eigenform for the T (n) for all n coprime to N is automatically an eigenform for
any operator which commutes with all the T (n), such as, of course, the T (m) for
gcd(m, N ) > 1.

In addition, we have not really lost anything by restricting to the new space, since
it is easy to show that

Sk(Γ0(N )) =
⊕

M |N

⊕

d|N/M

B(d)Snewk (Γ0(M)) ,

where B(d) is the operator sending F(τ ) to F(dτ). Note that the sums in the above
formula are direct sums.

Exercise 6.8 The above formula shows that

dim(Sk(Γ0(N ))) =
∑

M |N
σ0(N/M) dim(Snewk (Γ0(M))) ,

where σ0(n) is the number of divisors of n.

1. Using theMöbius inversion formula, show that if we define an arithmetic function
β by β(p) = −2, β(p2) = 1, and β(pk) = 0 for k ≥ 3, and extend bymultiplica-
tivity (β(

∏
pvii ) = ∏

β(pvii )), we have the following dimension formula for the
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new space:

dim(Snewk (Γ0(N ))) =
∑

M |N
β(N/M) dim(Sk(Γ0(M))) .

2. Using Theorem 6.4, deduce a direct formula for the dimension of the new space.

Proposition 6.9 Let F ∈ Sk(Γ0(N )) and WN = (
0 −1
N 0

)
.

1. We have F |kWN ∈ Sk(Γ0(N )), where

F |kWN (τ ) = N−k/2τ−k F(−1/(Nτ)) .

2. If F is an eigenform (in the new space), then F |kWN = ±F for a suitable sign
±.

Proof (1): This simply follows from the fact thatWN normalizes Γ0(N ):W−1
N Γ0(N )

WN = Γ0(N ) as can easily be checked, and the same result would be true for any
other normalizing operator such as the Atkin–Lehner operators which we will not
define. The operator WN is called the Fricke involution.

(2): It is easy to show that WN commutes with all Hecke operators T (n) when
gcd(n, N ) = 1, so bywhat we havementioned above, if F is an eigenform in the new
space, it is automatically an eigenform for WN , and since WN acts as an involution,
its eigenvalues are ±1. �

The eigenforms can again be normalized with a(1) = 1, and their L-function has
an Euler product, of a slightly more general shape:

L(F, s) =
∏

p�N

1

1 − a(p)p−s + pk−1 p−2s

∏

p|N

1

1 − a(p)p−s
.

Proposition 5.8 is, of course, still valid, but is not the correct normalization to obtain
a functional equation. We replace it by

Ns/2(2π)−sΓ (s)L(F, s) =
∫ ∞

0
F(i t/N 1/2)t s−1 dt ,

which, of course, is trivial from the proposition by replacing t by t/N 1/2. Indeed,
thanks to the above proposition, we split the integral at t = 1, and using the action
of WN , we deduce the following proposition:

Proposition 6.10 Let F ∈ Snewk (Γ0(N )) be an eigenform for all Hecke operators,
and write F |kWN = εF for some ε = ±1. The L-function L(F, s) extends to a
holomorphic function in C, and if we set Λ(F, s) = Ns/2(2π)−sΓ (s)L(F, s), we
have the functional equation

Λ(F, k − s) = εi−kΛ(F, s) .
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Proof Indeed, the trivial change of variable t into 1/t proves the formula

Ns/2(2π)−sΓ (s)L(F, s) =
∫ ∞

1
F(i t/N 1/2)(t s−1 + εi k t k−1−s) dt ,

from which the result follows. �

Once again, we leave to the reader to check that if F(τ ) = ∑
n≥1 a(n)qn , we have

L(F, k/2) = (1 + ε(−1)k/2)
∑

n≥1

a(n)

nk/2
e−2πn/N 1/2

Pk/2(2πn/N 1/2) .

6.5 Modular Forms with Characters

Consider again the problem of sums of squares, in other words of the powers of
θ(τ ). We needed to raise it to a power which is a multiple of 4 so as to have a pure
modularity property as we defined it above. But consider the function θ2(τ ). The
same proof that we mentioned for θ4 shows that for any γ = (

a b
c d

) ∈ Γ0(4), we have

θ2(γ (τ )) =
(−4

d

)

(cτ + d)θ2(τ ) ,

where
(−4

d

)
is the Legendre–Kronecker character (in this specific case equal to

(−1)(d−1)/2 since d is odd, being coprime to c). Thus, it satisfies a modularity prop-
erty, except that it is “twisted” by

(−4
d

)
. Note that the equation makes sense since

if we change γ into −γ (which does not change γ (τ)), then (cτ + d) is changed
into −(cτ + d), and

(−4
d

)
is changed into

( −4
−d

) = − (−4
d

)
. It is thus essential that

the multiplier that we put in front of (cτ + d)k , here
(−4

d

)
, has the same parity as k.

We mentioned above that the study of modular forms on Γ1(N ) could be reduced
to those on Γ0(N ) “with a twist”. Indeed, more precisely it is trivial to show that

Mk(Γ1(N )) =
⊕

χ(−1)=(−1)k

Mk(Γ0(N ), χ) ,

where χ ranges through all Dirichlet characters modulo N of the specified parity,
and where Mk(Γ0(N ), χ) is defined as the space of functions F satisfying

F(γ (τ )) = χ(d)(cτ + d)k F(τ )

for all γ = (
a b
c d

) ∈ Γ0(N ), plus the usual holomorphy and conditions at the cusps
(note that γ 
→ χ(d) are the group homomorphism from Γ0(N ) toC

∗ which induces
the abovementioned isomorphism from Γ0(N )/Γ1(N ) to (Z/NZ)∗).
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Exercise 6.11 1. Show that a system of coset representatives of Γ1(N )\Γ0(N ) is
given by matrices Md = (

u −v
N d

)
, where 0 ≤ d < N such that gcd(d, N ) = 1 and

u and v are such that ud + vN = 1.
2. Let f ∈ Mk(Γ1(N )). Show that in the above decomposition of Mk(Γ1(N )), we

have f = ∑
χ(−1)=(−1)k fχ with

fχ =
∑

0≤d<N , gcd(d,N )=1

χ(d) f |kMd .

These spaces are just as nice as the spaces Mk(Γ0(N )) and share exactly the same
properties. They have finite dimension (which we do not give), there are Eisenstein
series, Hecke operators, newforms, Euler products, L-functions, etc. An excellent
rule of thumb is simply to replace any formula containing dk−1 (or pk−1) byχ(d)dk−1

(or χ(p)pk−1). In fact, in the Euler product of the L-function of an eigenform, we
do not need to distinguish p � N and p | N since we have

L(F, s) =
∏

p∈P

1

1 − a(p)p−s + χ(p)pk−1−2s
,

and χ(p) = 0 if p | N since χ is a character modulo N .
Thus, for instance, θ2 ∈ M1(Γ0(4), χ−4), more generally θ4m+2 ∈ M2m+1

(Γ0(4), χ−4), where we use the notation χD for the Legendre–Kronecker symbol(
D
d

)
.
The space M1(Γ0(4), χ−4) has dimension 1, generated by the single Eisenstein

series

1 + 4
∑

n≥1

σ
(−4)
0 (n)qn , where σ

(D)
k−1(n) =

∑

d|n

(
D

d

)

dk−1

according to our rule of thumb (which does not tell us the constant 4). Comparing
constant coefficients, we deduce that r2(n) = 4σ (−4)

0 (n), where as usual r2(n) is the
number of representations of n as a sum of two squares. This formula was in essence
discovered by Fermat.

For r6(n), we must work slightly more: θ6 ∈ M3(Γ0(4), χ−4), and this space has
dimension 2, generated by two Eisenstein series. The first is the natural “rule of
thumb” one (which again does not give us the constant)

F1 = 1 − 4
∑

n≥1

σ
(−4)
2 (n)qn ,

and the second is
F2 =

∑

n≥1

σ
(−4,∗)
2 (n)qn ,

where
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σ
(D,∗)
k−1 =

∑

d|n

(
D

n/d

)

dk−1 ,

a sort of dual to σ
(D)
k−1 (these are my notation). Since θ6 = 1 + 12q + · · · , comparing

the Fourier coefficients of 1 and q shows that θ6 = F1 + 16F2, so we deduce that

r6(n) = −4σ (−4)
2 (n) + 16σ (−4,∗)

2 (n) =
∑

d|n

(

16

( −4

n/d

)

− 4

(−4

d

))

d2 .

6.6 Remarks on Dimension Formulas and Galois
Representations

The explicit dimension formulas alluded to above are valid for k ∈ Z except for
k = 1; in addition, thanks to the theorems mentioned below, we also have explicit
dimension formulas for k ∈ 1/2 + Z. Thus, the theory of modular forms of weight
1 is very special, and their general construction is more difficult.

This is also reflected in the construction of Galois representations attached to
modular eigenforms, which is an important and deep subject that wewill not mention
in this course, except to say the following: in weight k ≥ 2 these representations are
�-adic (or modulo �), i.e., with values in GL2(Q�) (or GL2(F�)), while in weight
1 they are complex representations, i.e., with values in GL2(C). The construction
in weight 2 is quite old, and comes directly from the construction of the so-called
Tate module T (�) attached to an Abelian variety (more precisely the Jacobian of a
modular curve), while the construction in higher weight, due to Deligne, is much
deeper since it implies the third Ramanujan conjecture |τ(p)| < p11/2. Finally, the
case of weight 1 is due to Deligne–Serre, in fact, using the construction for k ≥ 2
and congruences.

6.7 Origins of Modular Forms

Modular forms are all pervasive in mathematics, physics, and combinatorics. We just
want to mention the most important constructions:

• Historically, the first modular forms were probably theta functions (this dates
back to J. Fourier at the end of the eighteenth century in his treatment of the heat
equation) such as θ(τ ) seen above, and more generally theta functions associated
with lattices. These functions can have integral or half-integral weight (see below)
depending on whether the number of variables which occurs (equivalently, the
dimension of the lattice) is even or odd. Later, these theta functions were general-
ized by introducing spherical polynomials associated with the lattice.
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For example, the theta function associated to the lattice Z
2 is simply f (τ ) =∑

(x,y)∈Z2 qx2+y2 , which is clearly equal to θ2, so belongs to M1(Γ0(4), χ−4). But,
we can also consider, for instance

f5(τ ) =
∑

(x,y)∈Z2

(x4 − 6x2y2 + y4)qx2+y2 ,

and show that f5 ∈ S5(Γ0(4), χ−4).

Exercise 6.12 1. Using thenotation and results ofExercise 3.39, show that [θ, θ ]2 =
c f5 for a suitable constant c, so that, in particular, f5 ∈ S5(Γ0(4), χ−4).

2. Show that the polynomial P(x, y) = x4 − 6x2y2 + y4 is a spherical polynomial,
in other words that D(P) = 0, where D is the Laplace differential operator D =
∂2/∂2x + ∂2/∂2y.

• The second occurrence of modular forms is probably Eisenstein series, which, in
fact, are the first that we encountered in this course. We have only seen the most
basic Eisenstein series Gk (or normalized versions) on the full modular group and
a few on Γ0(4), but there are very general constructions over any space such as
Mk(Γ0(N ), χ). Their Fourier expansions can easily be explicitly computed and
are similar to what we have given above. More difficult is the case when k is only
half-integral, but this can also be done.
As we have seen, an important generalization of Eisenstein series is Poincaré
series, which can also be defined over any space as above.

• A third important construction of modular forms comes from the Dedekind eta
function η(τ) defined above. In itself it has a complicated multiplier system,
but if we define an eta quotient as F(τ ) = ∏

m∈I η(mτ)rm for a certain set I
of positive integers and exponents rm ∈ Z, then it is not difficult to write nec-
essary and sufficient conditions for F to belong to some Mk(Γ0(N ), χ). The
first example that we have met is, of course, the Ramanujan delta function
Δ(τ) = η(τ)24.Other examples are, for instance,η(τ)η(23τ) ∈ S1(Γ0(23), χ−23),
η(τ)2η(11τ)2 ∈ S2(Γ0(11)), and η(2τ)30/η(τ)12 ∈ S9(Γ0(8), χ−4).

• Closely related to eta-quotients are q-identities involving the q-Pochhammer sym-
bol (q)n and generalizing those seen in Exercise 3.30, many of which givemodular
forms not related to the eta function.

• A much deeper construction comes from algebraic geometry: by the modularity
theorem ofWiles et al., to any elliptic curve defined overQ is associated a modular
form in S2(Γ0(N )) which is a normalized Hecke eigenform, where N is the so-
called conductor of the curve. For instance, the eta quotient of level 11 just seen
above is the modular form associated to the isogeny class of the elliptic curve of
conductor 11 with equation y2 + y = x3 − x2 − 10x − 20.



56 H. Cohen

7 More General Modular Forms

In this brief section, we will describe modular forms of a more general kind than
those seen up to now.

7.1 Modular Forms of Half-Integral Weight

Coming back again to the function θ , the formulas seen above suggest that θ itself
must be considered a modular form, of weight 1/2. We have already mentioned that

θ2(γ (τ )) =
(−4

d

)

(cτ + d)θ2(τ ) .

But what about θ itself? For this, we must be very careful about the determination
of the square root:

Notation: z1/2 will always denote the principal determination of the square root,
i.e., such that−π/2 < Arg(z1/2) ≤ π/2. For instance, (2i)1/2 = 1 + i , (−1)1/2 = i .
Warning: we do not, in general, have (z1z2)1/2 = z1/21 z1/22 , but only up to sign. As a
second notation, when k is odd, zk/2 will always denote (z1/2)k and not (zk)1/2 (for
instance, (2i)3/2 = (1 + i)3 = −2 + 2i , while ((2i)3)1/2 = 2 − 2i).

Thus, let us try and take the square root of the modularity equation for θ2:

θ(γ (τ )) = v(γ, τ )

(−4

d

)1/2

(cτ + d)1/2 ,

where v(γ, τ ) = ±1 and may depend on γ and τ . A detailed study of Gauss sums
shows that v(γ, τ ) = (−4c

d

)
, the general Kronecker symbol, so that the modularity

equation for θ is, for any γ ∈ Γ0(4):

θ(γ (τ )) = vθ (γ )(cτ + d)1/2θ(τ ) with vθ (γ ) =
( c

d

)(−4

d

)−1/2

.

Note that there is something very subtle going on here: this complicated theta mul-
tiplier system vθ (γ ) must satisfy a complicated cocycle relation coming from the
trivial identity θ((γ1γ2)(τ )) = θ(γ1(γ2(τ ))) which can be shown to be equivalent to
the general quadratic reciprocity law.

The following definition is due to G. Shimura:

Definition 7.1 Let k ∈ 1/2 + Z. A function F from H to C will be said to be
a modular form of (half-integral) weight k on Γ0(N ) with character χ if for all
γ = (

a b
c d

) ∈ Γ0(N ), we have

F(γ (τ )) = vθ (γ )2kχ(d)(cτ + d)k F(τ ) ,
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and if the usual holomorphy and conditions at the cusps are satisfied (equivalently if
F2 ∈ M2k(Γ0(N ), χ2χ−4)).

Note that if k ∈ 1/2 + Z, we have vθ (γ )4k = χ−4, which explains the extra factor
χ−4 in the above definition.

Since vθ (γ ) is defined only for γ ∈ Γ0(4), we needΓ0(N ) ⊂ Γ0(4), in otherwords
4 | N . In addition, by definition vθ (γ )(cτ + d)1/2 = θ(γ (τ ))/θ(τ ) is invariant if we
change γ into −γ , so if k ∈ 1/2 + Z, the same is true of vθ (γ )2k(cτ + d)k , and
hence it follows that in the above definition, we must have χ(−d) = χ(d), i.e., χ

must be an even character (χ(−1) = 1).
As usual, we denote by Mk(Γ0(N ), χ) and Sk(Γ0(N ), χ), the spaces of modular

and cusp forms. The theory is more difficult than the theory in integral weight, but
is now well developed. We mention a few items as follows:

1. There is an explicit but more complicated dimension formula due to J. Oesterlé
and the author.

2. By a theorem of Serre–Stark, modular forms of weight 1/2 are simply linear
combinations of unary theta functions generalizing the function θ above.

3. One can easily construct Eisenstein series, but the computation of their Fourier
expansion, due to Shimura and the author, is more complicated.

4. As usual, if we can express θm solely in terms of Eisenstein series, this leads
to explicit formulas for rm(n), the number of representation of n as a sum of m
squares. Thus, we obtain explicit formulas for r3(n) (due to Gauss), r5(n) (due to
Smith and Minkowski), and r7(n), so if we complement the formulas in integral
weight, we have explicit formulas for rm(n) for 1 ≤ m ≤ 8 and m = 10.

5. The deeper part of the theory, which is specific to the half-integral weight case,
is the existence of Shimura lifts from Mk(Γ0(N ), χ) to M2k−1(Γ0(N/2), χ2), the
description of theKohnen subspace S+

k (Γ0(N ), χ)which allows both the Shimura
lift to go down to level N/4, and also to define a suitable Atkin–Lehner type new
space, and the deep results of Waldspurger, which nicely complement the work
of Shimura on lifts.

We could try to find other types of interesting modularity properties than those
coming from θ . For instance, we have seen that the Dedekind eta function is a
modular form of weight 1/2 (not in Shimura’s sense), and more precisely it satisfies
the following modularity equation, now for any γ ∈ Γ :

η(γ (τ)) = vη(γ )(cτ + d)1/2η(τ) ,

where vη(γ ) is a very complicated 24-th root of unity. We could, of course, define
η-modular forms of half-integral weight k ∈ 1/2 + Z by requiring F(γ (τ )) =
vη(γ )2k(cτ + d)k F(τ ), but it can be shown that this would not lead to any inter-
esting theory (more precisely the only interesting functions would be eta-quotients
F(τ ) = ∏

m η(mτ)rm , which can be studied directly without any new theory.
Note that there are functional relations between η and θ .
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Proposition 7.2 We have

θ(τ ) = η2(τ + 1/2)

η(2τ + 1)
= η5(2τ)

η2(τ )η2(4τ)
.

Exercise 7.3 1. Prove these relations in the following way: first show that the
right-hand sides satisfy the same modularity equations as θ for T = (

1 1
0 1

)
and

W4 = (
0 −1
4 0

)
, so, in particular, that they are weaklymodular onΓ0(4), and second

show that they are reallymodular forms, in otherwords, that they are holomorphic
onH and at the cusps.

2. Using the definition of η, deduce two product expansions for θ(τ ).

We could also try to study modular forms of fractional or even real weight k
not integral or half-integral, but this would lead to functions with no interesting
arithmetical properties.

In a different direction, we can relax the condition of holomorphy (or meromor-
phy) and ask that the functions be eigenfunctions of the hyperbolic Laplace operator

Δ = −y2
(

∂2

∂2x
+ ∂2

∂2y

)

= −4y2
∂2

∂τ∂τ

which can be shown to be invariant under Γ (more generally, under SL2(R))
together with suitable boundedness conditions. This leads to the important theory
of Maass forms. The case of the eigenvalue 0 reduces to ordinary modular forms
since Δ(F) = 0 is equivalent to F being a linear combination of a holomorphic and
antiholomorphic (i.e., conjugate to a holomorphic) function, each of which will be
modular or conjugate of modular.

The case of the eigenvalue 1/4 also leads to functions having nice arithmeti-
cal properties, but all other eigenvalues give functions with (conjecturally) tran-
scendental coefficients, but these functions are useful in number theory for other
reasons which we cannot explain here. Note that a famous conjecture of Selberg
asserts that for congruence subgroups, there are no eigenvalues λwith 0 < λ < 1/4.
For instance, for the full modular group, the smallest nonzero eigenvalue is λ =
91.1412 · · · , which is quite large.

Exercise 7.4 Using the fact that Δ is invariant under Γ , show that
Δ(ℑ(γ (τ ))) = s(1 − s)ℑ(γ (τ )) and deduce that the non-holomorphic Eisenstein
series E(s) introduced in Definition 5.14 is an eigenfunction of the hyperbolic
Laplace operator with eigenvalue s(1 − s) (note that it does not satisfy the nec-
essary boundedness conditions, so it is not a Maass form: the functions E(s) with
ℜ(s) = 1/2 constitute what is called the continuous spectrum, and the Maass forms
the discrete spectrum of Δ acting on Γ \H ).
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7.2 Modular Forms in Several Variables

The last generalization that we want to mention (there are much more!) is to several
variables. The natural idea is to consider holomorphic functions from H r to C,
now for some r > 1, satisfying suitable modularity properties. If we simply ask
that γ ∈ Γ (or some subgroup) acts component-wise, we will not obtain anything
interesting. The right way to do it, introduced by Hilbert–Blumenthal, is to consider
a totally real number field K of degree r , and denote by ΓK the group of matrices
γ = (

a b
c d

) ∈ SL2(ZK), where ZK is the ring of algebraic integers of K (we could
also consider the larger group GL2(ZK), which leads to a very similar theory). Such
a γ has r embeddings γi into SL2(R), which we will denote by γi = ( ai bi

ci di

)
, and the

correct definition is to ask that

F(γ1(τ1), · · · , γr (τr )) = (c1τ1 + d1)
k · · · (crτr + dr )

k F(τ1, . . . , τr ) .

Note that the restriction to totally real number fields is due to the fact that for γi to
preserve the upper half-plane, it is necessary that γi ∈ SL2(R). Note also that the γi
are not independent, they are conjugates of a single γ ∈ SL2(ZK).

A holomorphic function satisfying the above is called aHilbert–Blumenthalmod-
ular form (of parallel weight k, one can also consider forms where the exponents
for the different embeddings are not equal), or more simply a Hilbert modular form
(note that there are no “conditions at infinity”, since one can prove that they are
automatically satisfied unless K = Q).

SinceT = (
1 1
0 1

) ∈ SL2(ZK) is equal to all its conjugates, suchmodular formshave
Fourier expansions, but using the action of

(
1 α
0 1

)
with α ∈ ZK , it is easy to show that

these expansions are of a special type, involving the codifferent d−1 of K , which is
the fractional ideal of x ∈ K such that Tr(xZK ) ⊂ Z, where Tr denotes the trace.

One can construct Eisenstein series, here called Hecke–Eisenstein series, and
compute their Fourier expansion. One of the important consequences of this com-
putation is that it gives an explicit formula for the value ζK (1 − k) of the Dedekind
zeta function of K at negative integers (hence, by the functional equation of ζK , also
at positive even integers), and, in particular, it proves that these values are rational
numbers, a theorem due to C.-L. Siegel as an immediate consequence of Theorem
3.41. An example is as follows:

Proposition 7.5 Let K = Q(
√
D) be a real quadratic field with D a fundamental

discriminant. Then

1. We have

ζK (−1) = 1

60

∑

|s|<√
D

σ1

(
D − s2

4

)

,

ζK (−3) = 1

120

∑

|s|<√
D

σ3

(
D − s2

4

)

.
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2. We also have formulas such as

∑

|s|<√
D

σ1(D − s2) = 60

(

9 − 2

(
D

2

))

ζK (−1) ,

∑

|s|<√
D

σ3(D − s2) = 120

(

129 − 8

(
D

2

))

ζK (−3) .

We can, of course, reformulate these results in terms of L-functions by using
L(χD,−1) = −12ζK (−1) and L(χD,−3) = 120ζK (−3), where as usual χD is the
quadratic character modulo D.

Exercise 7.6 Using Exercise 6.6 and the above formulas, show that the number
r5(D) of representations of D as a sum of five squares is given by

r5(D) = 480

(

5 − 2

(
D

2

))

ζK (−1) = −40

(

5 − 2

(
D

2

))

L(χD,−1) .

Note that this formula can be generalized to arbitrary D, and is due to Smith and
(much later) to Minkowski. There also exists a similar formula for r7(D): when −D
(not D) is a fundamental discriminant

r7(D) = −28

(

41 − 4

(
D

2

))

L(χ−D,−2) .

Note also that if we restrict to the diagonal τ1 = · · · = τr , a Hilbert modular form
of (parallel) weight k gives rise to an ordinary modular form of weight kr .

We finish this section with some terminology with no explanation: if K is not
a totally real number field, one can also define modular forms, but they will not
be defined on products of the upper half-plane H alone, but will also involve the
hyperbolic 3-space H3. Such forms are called Bianchi modular forms.

A different generalization, close to the Weierstrass ℘-function seen above, is the
theory of Jacobi forms, due to M. Eichler and D. Zagier. One of the many interesting
aspects of this theory is that it mixes in nontrivial way properties of forms of integral
weight with forms of half-integral weight.

Finally, we mention Siegel modular forms, introduced by C.-L. Siegel, which are
defined on higher dimensional symmetric spaces, on which the symplectic groups
Sp2n(R) act. The case n = 1 gives ordinary modular forms, and the next simplest,
n = 2, is closely related to Jacobi forms since the Fourier coefficients of Siegel
modular forms of degree 2 can be expressed in terms of Jacobi forms.
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8 Some Pari/GP Commands

There exist three software packages which are able to compute with modular forms:
magma, Sage, and Pari/GP since the spring of 2018. We give here some basic
Pari/GP commands with little or no explanation (which is available by typing ?
or ??): we encourage the reader to read the tutorial tutorial-mf available with
the distribution and to practice with the package since it is an excellent way to learn
about modular forms. All commands begin with the prefix mf, with the exception of
lfunmf which more properly belongs to the L-function package.

Creation of modular forms: mfDelta (Ramanujan Delta), mfTheta (ordi-
nary theta function), mfEk (normalized Eisenstein series Ek), more generally
mfeisenstein, mffrometaquo (eta-quotients), mffromqf (theta function of
lattices with or without spherical polynomial), mffromell (from elliptic curves
over Q), etc...

Arithmetic operations: mfcoefs (Fourier coefficients at infinity), mflinear
(linear combination, so including addition/subtraction and scalar multiplication),
mfmul, mfdiv, mfpow (clear), etc...

Modular operations: mfbd, mftwist, mfhecke, mfatkin, mfderivE2,
mfbracket, etc...

Creation of modular form spaces: mfinit, mfdim (dimension of the space),
mfbasis (random basis of the space), mftobasis (decomposition of a form on
the mfbasis), mfeigenbasis (basis of normalized eigenforms).

Searching for modular forms with given Fourier coefficients:
mfeigensearch, mfsearch.
Expansion of F |kγ : mfslashexpansion.
Numerical functions: mfeval (evaluation at a point in H or at a cusp),

mfcuspval (valuation at a cusp), mfsymboleval (computation of integrals over
paths in the completed upper half-plane),mfpetersson (Petersson scalar product),
lfunmf (L-function associated to a modular form), etc...

Note that for now Pari/GP is the only package for which these last functions
(beginning with mfslashexpansion) are implemented.

9 Suggestions for Further Reading

The literature on modular forms is vast, so I will only mention the books which I
am familiar with and that in my opinion will be very useful to the reader. Note that
the classic book [4] is absolutely remarkable, but may be difficult for a beginning
course.

In addition to the recent book [1] by Strömberg and the author (which, of course, I
strongly recommend!!!), I also highly recommend the paper [5], which is essentially
a small book. Perhaps the most classical reference is [3]. The more recent book [2] is
more advanced since its ultimate goal is to explain the modularity theorem of Wiles
et al.
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Computational Arithmetic of Modular
Forms

Gabor Wiese

Abstract These course notes are about computing modular forms and some of
their arithmetic properties. Their aim is to explain and prove the modular symbols
algorithm in as elementary and as explicit terms as possible, and to enable the devoted
student to implement it over any ring (such that a sufficient linear algebra theory is
available in the chosen computer algebra system). The chosen approach is based on
group cohomology and along the way the needed tools from homological algebra
are provided.

1 Motivation and Survey

This section serves as an introduction to the topics of the course. We will briefly
review the theory of modular forms and Hecke operators. Then we will define the
modular symbols formalism and state a theorem by Eichler and Shimura establishing
a link betweenmodular forms andmodular symbols. This link is the central ingredient
since themodular symbols algorithm for the computation ofmodular forms is entirely
based on it. In this introduction, we shall also be able to give an outline of this
algorithm.

1.1 Theory: Brief Review of Modular Forms and Hecke
Operators

Congruence Subgroups

We first recall the standard congruence subgroups of SL2(Z). By N we shall always
denote a positive integer.
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Consider the group homomorphism

SL2(Z) → SL2(Z/NZ).

ByExercise1.22 it is surjective. Its kernel is called the principal congruence subgroup
of level N and denoted Γ (N ).

The group SL2(Z/NZ) acts naturally on (Z/NZ)2 (by multiplying the matrix
with a vector). We look at the orbit and the stabiliser of

(
1
0

)
. The orbit is

SL2(Z/NZ)
(
1
0

) = {( a
c ) | a, c generate Z/NZ}

because the determinant is 1. We also point out that the orbit of
(
1
0

)
can and should

be viewed as the set of elements in (Z/NZ)2 which are of precise (additive) order N .
We now consider the stabiliser of

(
1
0

)
and define the group Γ1(N ) as the preimage of

that stabiliser group in SL2(Z). Explicitly, this means that Γ1(N ) consists of those
matrices in SL2(Z) whose reduction modulo N is of the form

(
1 ∗
0 1

)
.

The group SL2(Z/NZ) also acts on P
1(Z/NZ), the projective line over Z/NZ,

which one can define as the tuples (a : c)with a, c ∈ Z/NZ such that 〈a, c〉 = Z/NZ

modulo the equivalence relation given by multiplication by an element of (Z/NZ)×.
The action is the natural one (we should actually view (a : c) as a column vector, as
above). The orbit of (1 : 0) for this action is P

1(Z/NZ). The preimage in SL2(Z)

of the stabiliser group of (1 : 0) is called Γ0(N ). Explicitly, it consists of those
matrices in SL2(Z) whose reduction is of the form ( ∗ ∗

0 ∗ ). We also point out that the
quotient of SL2(Z/NZ) modulo the stabiliser of (1 : 0) corresponds to the set of
cyclic subgroups of precise order N in (Z/NZ)2. These observations are at the base
of defining level structures for elliptic curves.

It is clear that Γ1(N ) is a normal subgroup of Γ0(N ) and that the map

Γ0(N )/Γ1(N )

(
a b
c d

)
�→a mod N

−−−−−−−−−−→ (Z/NZ)×

is a group isomorphism.
The quotient Γ0(N )/Γ1(N ) will be important in the sequel because it will act on

modular forms and modular symbols for Γ1(N ). For that purpose, we shall often
consider characters (i.e. group homomorphisms) of the form

χ : (Z/NZ)× → C
×.

We shall also often extend χ to a map (Z/NZ) → C by imposing χ(r) = 0 if
(r, N ) �= 1.

On the number theory side, the group (Z/NZ)× enters as the Galois group of a
cyclotomic extension. More precisely, by class field theory or Exercise1.23 we have
the isomorphism

Gal(Q(ζN )/Q)
Frob� �→�−−−−→ (Z/NZ)×
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for all primes � � N . By Frob� we denote (a lift of) the Frobenius endomorphism
x �→ x�, and by ζN we denote any primitive N -th root of unity. We shall, thus, later
on also consider χ as a character of Gal(Q(ζN )/Q). The name Dirichlet character
(here of modulus N ) is common usage for both.

Modular Forms

We now recall the definitions of modular forms. Standard references are [5, 10],
but I still vividly recommend [9], which gives a concise and yet rather complete
introduction. We denote by

H = {z ∈ C|im(z) > 0}

the upper half plane. The set of cusps is by definition P
1(Q) = Q ∪ {∞}. The group

PSL2(Z) acts onH byMöbius transforms; more explicitly, for M = ( a b
c d

) ∈ SL2(Z)

and z ∈ H ∪ P
1(Q) one sets

M.z = az + b

cz + d
. (1)

For M = ( a b
c d

)
an integer matrix with non-zero determinant, an integer k and a

function f : H → C, we put

( f |kM)(z) = ( f |M)(z) := f
(
M.z
)det(M)k−1

(cz + d)k
.

Fix integers k ≥ 1 and N ≥ 1. A function

f : H → C

given by a convergent power series (the an( f ) are complex numbers)

f (z) =
∞∑

n=0

an( f )(e
2π i z)n =

∞∑

n=0

an( f )q
n with q(z) = e2π i z

is called a modular form of weight k for Γ1(N ) if

(i) ( f |k
(
a b
c d

)
)(z) = f ( az+b

cz+d )(cz + d)−k = f (z) for all
(
a b
c d

) ∈ Γ1(N ), and
(ii) the function ( f |k

(
a b
c d

)
)(z) = f ( az+b

cz+d )(cz + d)−k admits a limit when z tends to
i∞ (we often just write ∞) for all

(
a b
c d

) ∈ SL2(Z) (this condition is called f is
holomorphic at the cusp a/c).

We use the notation Mk(Γ1(N ) ; C). If we replace (ii) by

(ii)’ the function ( f |k
(
a b
c d

)
)(z) = f ( az+b

cz+d )(cz + d)−k is a holomorphic function and
the limit f ( az+b

cz+d )(cz + d)−k is 0 when z tends to i∞,

then f is called a cusp form. For these, we introduce the notation Sk(Γ1(N ) ; C).
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Let us now suppose that we are given a Dirichlet character χ of modulus N as
above. Then we replace (i) as follows:

(i)’ f ( az+b
cz+d )(cz + d)−k = χ(d) f (z) for all

(
a b
c d

) ∈ Γ0(N ).

Functions satisfying this condition are calledmodular forms (respectively, cusp forms
if they satisfy (ii)’) of weight k, character χ and level N . The notationMk(N , χ ; C)

(respectively, Sk(N , χ ; C)) will be used.
All these are finite dimensional C-vector spaces. For k ≥ 2, there are dimension

formulae, which one can look up in [20]. We, however, point the reader to the fact
that for k = 1 nearly nothing about the dimension is known (except that it is smaller
than the respective dimension for k = 2; it is believed to be much smaller, but only
very weak results are known to date).

Hecke Operators

At the base of everything that we will do with modular forms are the Hecke operators
and the diamond operators. One should really define them more conceptually (e.g.
geometrically), but this takes some time. Here is a definition by formulae.

If a is an integer coprime to N , by Exercise1.24 we may let σa be a matrix in
Γ0(N ) such that

σa ≡ ( a−1 0
0 a

)
mod N . (2)

We define the diamond operator 〈a〉 (you see the diamond in the notation, with
some phantasy) by the formula

〈a〉 f = f |kσa .

If f ∈ Mk(N , χ ; C), then we have by definition 〈a〉 f = χ(a) f . The diamond oper-
ators give a group action of (Z/NZ)× onMk(Γ1(N ) ; C) and on Sk(Γ1(N ) ; C), and
the Mk(N , χ ; C) and Sk(N , χ ; C) are the χ -eigenspaces for this action. We thus
have the isomorphism

Mk(Γ1(N ) ; C) ∼=
⊕

χ

Mk(N , χ ; C)

for χ running through the characters of (Z/NZ)× (and similarly for the cuspidal
spaces).

Let � be a prime. We let

R� := {( 1 r
0 �

) |0 ≤ r ≤ � − 1} ∪ {σ�

(
� 0
0 1

)}, if � � N (3)

R� := {( 1 r
0 �

) |0 ≤ r ≤ � − 1}, if � | N (4)

We use these sets to define the Hecke operator T� acting on f as above as follows:

f |kT� := T� f :=
∑

δ∈R �

f |kδ.
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Lemma 1.1 Suppose f ∈ Mk(N , χ ; C). Recall that we have extended χ so that
χ(�) = 0 if � divides N. We have the formula

an(T� f ) = a�n( f ) + �k−1χ(�)an/�( f ).

In the formula, an/�( f ) is to be read as 0 if � does not divide n.

Proof Exercise1.25. �

The Hecke operators for composite n can be defined as follows (we put T1 to be
the identity):

T�r+1 = T� ◦ T�r − �k−1〈�〉T�r−1 for all primes � and r ≥ 1,
Tuv = Tu ◦ Tv for coprime positive integers u, v.

(5)

We derive the very important formula (valid for every n)

a1(Tn f ) = an( f ). (6)

It is the only formula that we will really need.
From Lemma1.1 and the above formulae, it is also evident that the Hecke oper-

ators commute among one another. By Exercise1.26 eigenspaces for a collection of
operators (i.e. each element of a given set of Hecke operators acts by scalar multi-
plication) are respected by all Hecke operators. Hence, it makes sense to consider
modular forms which are eigenvectors for every Hecke operator. These are called
Hecke eigenforms, or often just eigenforms. Such an eigenform f is called normalised
if a1( f ) = 1. We shall consider eigenforms in more detail in the following section.

Finally, let us point out the formula (for � prime and � ≡ d mod N )

�k−1〈d〉 = T 2
� − T�2 . (7)

Hence, the diamond operators can be expressed as Z-linear combinations of Hecke
operators. Note that divisibility is no trouble since we may choose �1, �2, both
congruent to d modulo N satisfying an equation 1 = �k−1

1 r + �k−1
2 s for appropriate

r, s ∈ Z.

Hecke Algebras and the q-Pairing

We now quickly introduce the concept of Hecke algebras. It will be treated in more
detail in later sections. In fact, when we claim to compute modular forms with the
modular symbols algorithm, we are really computing Hecke algebras. In the couple
of lines to follow, we show that the Hecke algebra is the dual of modular forms, and
hence all knowledge about modular forms can—in principle—be derived from the
Hecke algebra.

For the moment, we define the Hecke algebra of Mk(Γ1(N ) ; C) as the sub-C-
algebra inside the endomorphism ring of the C-vector space Mk(Γ1(N ) ; C) gener-
ated by all Hecke operators and all diamond operators. We make similar definitions
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for Sk(Γ1(N ) ; C), Mk(N , χ ; C) and Sk(N , χ ; C). Let us introduce the pieces of
notation

TC(Mk (Γ1(N ) ; C)), TC(Sk (Γ1(N ) ; C)), TC(Mk (N , χ ; C)) and TC(Sk (N , χ ; C)),

respectively.We nowdefine a bilinear pairing,whichwe call the (complex) q-pairing,
as

Mk(N , χ ; C) × TC(Mk(N , χ ; C)) → C, ( f, T ) �→ a1(T f )

(compare with Eq.6).

Lemma 1.2 Suppose k ≥ 1. The complex q-pairing is perfect, as is the analogous
pairing for Sk(N , χ ; C). In particular,

Mk(N , χ ; C) ∼= HomC(TC(Mk(N , χ ; C)), C), f �→ (T �→ a1(T f ))

and similarly for Sk(N , χ ; C). For Sk(N , χ ; C), the inverse is given by sending φ

to
∑∞

n=1 φ(Tn)qn.

Proof Let us first recall that a pairing over a field is perfect if and only if it is non-
degenerate. That is what we are going to check. It follows from Eq.6 like this. If for
all n we have 0 = a1(Tn f ) = an( f ), then f = 0 (this is immediately clear for cusp
forms; for general modular forms at the first place we can only conclude that f is
a constant, but since k ≥ 1, non-zero constants are not modular forms). Conversely,
if a1(T f ) = 0 for all f , then a1(T (Tn f )) = a1(TnT f ) = an(T f ) = 0 for all f and
all n, whence T f = 0 for all f . As the Hecke algebra is defined as a subring in the
endomorphism of Mk(N , χ ; C) (resp. the cusp forms), we find T = 0, proving the
non-degeneracy. �

The perfectness of the q-pairing is also called the existence of a q-expansion
principle. Due to its central role for this course, we repeat and emphasise that the
Hecke algebra is the linear dual of the space of modular forms.

Lemma 1.3 Let f inMk(Γ1(N ) ; C) be a normalised eigenform. Then

Tn f = an( f ) f for all n ∈ N.

Moreover, the natural map from the above duality gives a bijection

{Normalised eigenforms in Mk(Γ1(N ) ; C)}
↔ HomC−algebra(TC(Mk(Γ1(N ) ; C)), C).

Similar results hold, of course, also in the presence of χ .

Proof Exercise1.27. �
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1.2 Theory: The Modular Symbols Formalism

In this section, we give a definition of formal modular symbols, as implemented in
Magma and like the one in [6, 16, 20], except that we do not factor out torsion, but
intend a common treatment for all rings.

Contrary to the texts just mentioned, we prefer to work with the group

PSL2(Z) = SL2(Z)/〈−1〉,

since it will make some of the algebra much simpler and since it has a very simple
description as a free product (see later). The definitions of modular forms could have
been formulated using PSL2(Z) instead of SL2(Z), too (Exercise1.28).

We introduce some definitions and pieces of notation to be used in all the course.

Definition 1.4 Let R be a ring, Γ a group and V a left R[Γ ]-module. The Γ -
invariants of V are by definition

V Γ = {v ∈ V |g.v = v ∀ g ∈ Γ } ⊆ V .

The Γ -coinvariants of V are by definition

VΓ = V/〈v − g.v|g ∈ Γ, v ∈ V 〉.

If H ≤ Γ is a finite subgroup, we define the norm of H as

NH =
∑

h∈H
h ∈ R[Γ ].

Similarly, if g ∈ Γ is an element of finite order n, we define the norm of g as

Ng = N〈g〉 =
n−1∑

i=0

gi ∈ R[Γ ].

Please look at the important Exercise1.29 for some properties of these definitions.
We shall make use of the results of this exercise in the section on group cohomology.

For the rest of this section, we let R be a commutative ring with unit and Γ be a
subgroup of finite index in PSL2(Z). For the time being, we allow general modules;
so we let V be a left R[Γ ]-module. Recall that PSL2(Z) acts on H ∪ P

1(Q) by
Möbius transformations, as defined earlier. A generalised version of the definition
below appeared in [23].
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Definition 1.5 We define the R-modules

MR := R[{α, β}|α, β ∈ P
1(Q)]/〈{α, α}, {α, β}+{β, γ } + {γ, α}|α, β, γ

∈ P
1(Q)〉

and
BR := R[P1(Q)].

We equip both with the natural left Γ -action. Furthermore, we let

MR(V ) := MR ⊗R V and BR(V ) := BR ⊗R V

for the left diagonal Γ -action.

(a) We call the Γ -coinvariants

MR(Γ, V ) := MR(V )Γ = MR(V )/〈(x − gx)|g ∈ Γ, x ∈ MR(V )〉

the space of (Γ, V )-modular symbols.
(b) We call the Γ -coinvariants

BR(Γ, V ) := BR(V )Γ = BR(V )/〈(x − gx)|g ∈ Γ, x ∈ BR(V )〉

the space of (Γ, V )-boundary symbols.
(c) We define the boundary map as the map

MR(Γ, V ) → BR(Γ, V )

which is induced from the map MR → BR sending {α, β} to {β} − {α}.
(d) The kernel of the boundary map is denoted by CM R(Γ, V ) and is called the

space of cuspidal (Γ, V )-modular symbols.
(e) The image of the boundary map inside BR(Γ, V ) is denoted by ER(Γ, V ) and

is called the space of (Γ, V )-Eisenstein symbols.

The reader is now invited to prove that the definition ofMR(Γ, V ) behaves well
with respect to base change (Exercise1.30).

The Modules Vn(R) and V χ
n (R)

Let R be a ring. We put Vn(R) = R[X,Y ]n ∼= Symn(R2) (see Exercise1.31). By
R[X,Y ]n we mean the homogeneous polynomials of degree n in two variables with
coefficients in the ring R. By Mat2(Z)det �=0 we denote the monoid of integral 2 × 2-
matrices with non-zero determinant (for matrix multiplication), i.e., Mat2(Z)det �=0 =
GL2(Q) ∩ Z

2×2. Then Vn(R) is a Mat2(Z)det �=0-module in several natural ways.
One can give it the structure of a left Mat2(Z)det �=0-module via the polynomials

by putting
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(
(
a b
c d

)
. f )(X,Y ) = f

(
(X,Y )

(
a b
c d

) ) = f
(
(aX + cY, bX + dY )

)
.

Merel and Stein, however, consider a different one, and that is the one implemented
inMagma, namely

(
(
a b
c d

)
. f )(X,Y ) = f

(
(
(
a b
c d

)
)ι
(
X
Y

) ) = f
( (

d −b−c a

) (
X
Y

) ) = f
( (

dX−bY
−cX+aY

) )
.

Here, ι denotes Shimura’s main involution whose definition can be read off from the
line above (note that M ι is the inverse of M if M has determinant 1). Fortunately,
both actions are isomorphic due to the fact that the transpose of (

(
a b
c d

)
)ι
(
X
Y

)
is equal

to (X,Y )σ−1
(
a b
c d

)
σ , where σ = ( 0 1−1 0

)
. More precisely, we have the isomorphism

Vn(R)
f �→σ−1. f−−−−−→ Vn(R), where the left-hand side module carries ‘our’ action and the

right-hand side module carries the other one. By σ−1. f we mean ‘our’ σ−1. f .
Of course, there is also a natural right action by Mat2(Z)det �=0, namely

( f.
(
a b
c d

)
)(
(
X
Y

)
) = f (

(
a b
c d

) (
X
Y

)
) = f (

(
aX+bY
cX+dY

)
).

By the standard inversion trick, also both left actions described above can be turned
into right ones.

Let now (Z/NZ)× → R× be aDirichlet character, whichwe shall also consider as

a character χ : Γ0(N )

(
a b
c d

)
�→a

−−−−−→ (Z/NZ)×
χ−→ R×. By Rχ we denote the R[Γ0(N )]-

module which is defined to be R with the Γ0(N )-action through χ , i.e.
(
a b
c d

)
.r =

χ(a)r = χ−1(d)r for
(
a b
c d

) ∈ Γ0(N ) and r ∈ R.
For use with Hecke operators, we extend this action to matrices

(
a b
c d

) ∈ Z
2×2

which are congruent to an upper triangular matrix modulo N (but not necessarily of
determinant 1). Concretely, we also put

(
a b
c d

)
.r = χ(a)r for r ∈ R in this situation.

Sometimes, however, we want to use the coefficient d in the action. In order to do so,
we let Rι,χ be R with the action

(
a b
c d

)
.r = χ(d)r for matrices as above. In particular,

the Γ0(N )-actions on Rι,χ and Rχ−1
coincide.

Note that due to (Z/NZ)× being an abelian group, the same formulae as above
make Rχ also into a right R[Γ0(N )]-module. Hence, putting

( f ⊗ r).
(
a b
c d

) = ( f |k
(
a b
c d

)
) ⊗ ( a b

c d

)
r

makesMk(Γ1(N ) ; C) ⊗C C
χ into a rightΓ0(N )-module andwehave the description

(Exercise1.32)

Mk(N , χ ; C) = (Mk(Γ1(N ) ; C) ⊗C C
χ )(Z/NZ)× (8)

and similarly for Sk(N , χ ; C).
We let

V χ
n (R) := Vn(R) ⊗R Rχ and V ι,χ

n (R) := Vn(R) ⊗R Rι,χ
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equipped with the natural diagonal left Γ0(N )-actions. Note that unfortunately these
modules are in general not SL2(Z)-modules, but we will not need that. Note, more-
over, that if χ(−1) = (−1)n , then minus the identity acts trivially on V χ

n (R) and
V ι,χ
n (R), whence we consider these modules also as Γ0(N )/{±1}-modules.

The Modular Symbols Formalism for Standard Congruence Subgroups

We now specialise the general set-up on modular symbols that we have used so far
to the precise situation needed for establishing relations with modular forms.

So we let N ≥ 1, k ≥ 2 be integers and fix a character χ : (Z/NZ)× → R×,
which we also sometimes view as a group homomorphism Γ0(N ) → R× as above.
We impose that χ(−1) = (−1)k .

We define
Mk(N , χ ; R) := MR(Γ0(N )/{±1}, V χ

k−2(R)),

CM k(N , χ ; R) := CM R(Γ0(N )/{±1}, V χ

k−2(R)),

Bk(N , χ ; R) := BR(Γ0(N )/{±1}, V χ

k−2(R))

and
Ek(N , χ ; R) := ER(Γ0(N )/{±1}, V χ

k−2(R)).

We make the obvious analogous definitions forMk(Γ1(N ) ; R), etc.
Let

η := ( −1 0
0 1

)
. (9)

Because of
η
(
a b
c d

)
η = ( a −b

−c d

)

we have
ηΓ1(N )η = Γ1(N ) and ηΓ0(N )η = Γ0(N ).

We can use the matrix η to define an involution (also denoted by η) on the various
modular symbols spaces. We just use the diagonal action onMR(V ) := MR ⊗R V ,
provided, of course, that η acts on V . On Vk−2(R) we use the usual Mat2(Z)det �=0-
action, and on V χ

k−2(R) = Vk−2(R) ⊗ Rχ we let η only act on the first factor. We
will denote by the superscript + the subspace invariant under this involution, and by
the superscript − the anti-invariant one. We point out that there are other very good
definitions of+-spaces and−-spaces. For instance, in many applications it can be of
advantage to define the+-space as the η-coinvariants, rather than the η-invariants. In
particular, formodular symbols, wherewe are using quotients and coinvariants all the
time, this alternative definition is more suitable. The reader should just think about
the differences between these two definitions. Note that here we are not following
the conventions of [20], p. 141. Our action just seems more natural than adding an
extra minus sign.
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Hecke Operators

The aimof this part is to state the definition ofHecke operators and diamond operators
on formal modular symbolsMk(N , χ ; R) and CM k(N , χ ; R). One immediately
sees that it is very similar to the one on modular forms. One can get a different
insight in the defining formulae by seeing how they are derived from a double coset
formulation in Sect. 7.

The definition given here is also explained in detail in [20].We should alsomention
the very important fact that one can transfer Hecke operators in an explicit way to
Manin symbols using Heilbronn matrices. We shall not do this explicitly in this
course. This point is discussed in detail in [16, 20].

We now give the definition only for T� for a prime � and the diamond operators.
The Tn for composite n can be computed from those by the formulae already stated
in (5). Notice that the R[Γ0(N )]-action on V χ

k−2(R) (for the usual conventions, in par-
ticular, χ(−1) = (−1)k) extends naturally to an action of the semi-group generated
by Γ0(N ) andR� (see Eq.3). Thus, this semi-group acts onMk(N , χ ; R) (and the
cusp space) by the diagonal action on the tensor product. Let x ∈ Mk(Γ1(N ) ; R)

or x ∈ Mk(N , χ ; R). We put

T�x =
∑

δ∈R �

δ.x .

If a is an integer coprime to N , we define the diamond operator as

〈a〉x = σax

with σa as in Eq. (2).When x = (m ⊗ v ⊗ 1)Γ0(N )/{±1} ∈ Mk(N , χ ; R) form ∈ MR

and v ∈ Vk−2, we have 〈a〉x = (σam ⊗ σav) ⊗ χ(a−1))Γ0(N )/{±1} = x , thus (σa(m ⊗
v) ⊗ 1)Γ0(N )/{±1} = χ(a)(m ⊗ v ⊗ 1)Γ0(N )/{±1}.

As in the section on Hecke operators on modular forms, we define Hecke algebras
onmodular symbols in a very similarway.Wewill take the freedomof taking arbitrary
base rings (we will do that for modular forms in the next section, too).

Thus for any ring R we let TR(Mk(Γ1(n) ; R)) be the R-subalgebra of the R-
endomorphism algebra of the R-module Mk(Γ1(n) ; R) generated by the Hecke
operators Tn . For a character χ : Z/NZ → R×, we make a similar definition. We
also make a similar definition for the cuspidal subspace and the +- and −-spaces.

The following fact will be obvious from the description of modular symbols as
Manin symbols (see Theorem5.7), which will be derived in a later chapter. Here, we
already want to use it.

Proposition 1.6 The R-modules Mk(Γ1(N ) ; R), CM k(Γ1(N ) ; R),
Mk(N , χ ; R), CM k(N , χ ; R) are finitely presented.

Corollary 1.7 Let R beaNoetherian ring. TheHeckealgebrasTR(Mk(Γ1(N ) ; R)),
TR(CM k(Γ1(N ) ; R)), TR(Mk(N , χ ; R)) and TR(CM k(N , χ ; R)) are finitely
presented R-modules.
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Proof This follows from Proposition1.6 since the endomorphism ring of a finitely
generated module is finitely generated and submodules of finitely generated modules
over Noetherian rings are finitely generated. Furthermore, over a Noetherian ring,
finitely generated implies finitely presented. �

This very innocent looking corollary will give—together with the Eichler–
Shimura isomorphism—that coefficient fields of normalised eigenforms are number
fields. We next prove that the formation of Hecke algebras for modular symbols
behaves well with respect to flat base change. We should have in mind the example
R = Z or R = Z[χ ] := Z[χ(n) : n ∈ N] (i.e. the ring of integers of the cyclotomic
extension of Q generated by the values of χ or, equivalently, Z[e2π i/r ] where r is the
order of χ ) and S = C.

Proposition 1.8 Let R be a Noetherian ring and R → S a flat ring homomorphism.

(a) The natural map

TR(Mk(Γ1(N ) ; R)) ⊗R S ∼= TS(Mk(Γ1(N ) ; S))

is an isomorphism of S-algebras.
(b) The natural map

HomR(TR(Mk(Γ1(N ) ; R)), R) ⊗R S ∼= HomS(TS(Mk(Γ1(N ) ; S)), S)

is an isomorphism of S-modules.
(c) The map

HomR(TR(Mk(Γ1(N ) ; R)), S)

φ �→(T⊗s �→φ(T )s)−−−−−−−−−−−→ HomS(TR(Mk(Γ1(N ) ; R)) ⊗R S, S)

is also an isomorphism of S-modules.
(d) Suppose in addition that R is an integral domain and S a field extension of the

field of fractions of R. Then the natural map

TR(Mk(Γ1(N ) ; R)) ⊗R S → TR(Mk(Γ1(N ) ; S)) ⊗R S

is an isomorphism of S-algebras.

For a character χ : (Z/NZ)× → R×, similar results hold. Similar statements also
hold for the cuspidal subspace.

Proof We only prove the proposition for M := Mk(Γ1(N ) ; R). The arguments are
exactly the same in the other cases.

(a) By Exercise1.30 it suffices to prove

TR(M) ⊗R S ∼= TS(M ⊗R S).
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Due to flatness and the finite presentation of M the natural homomorphism

EndR(M) ⊗R S → EndS(M ⊗R S)

is an isomorphism (see [13], Prop. 2.10). By definition, the Hecke algebra TR(M)

is an R-submodule of EndR(M). As injections are preserved by flat morphisms, we
obtain the injection

TR(M) ⊗R S ↪→ EndR(M) ⊗R S ∼= EndS(M ⊗R S).

The image is equal toTS(M ⊗R S), since all Hecke operators are hit, establishing (a).
(b) follows from the same citation from [13] as above.
(c) Suppose that under the map from Statement (c) φ ∈ HomR(TR(M), S) is

mapped to the zero map. Then φ(T )s = 0 for all T and all s ∈ S. In particular
with s = 1 we get φ(T ) = 0 for all T , whence φ is the zero map, showing injectiv-
ity. Suppose now that ψ ∈ HomS(TR(M) ⊗R S, S) is given. Call φ the composite

TR(M) → TR(M) ⊗R S
ψ−→ S. Then ψ is the image of φ, showing surjectivity.

(d) We first define

N := ker
(
M

π :m �→m⊗1−−−−−−→ M ⊗R S
)
.

We claim that N consists only of R-torsion elements. Let x ∈ N . Then x ⊗ 1 = 0. If
r x �= 0 for all r ∈ R − {0}, then themap R

r �→r x−−−→ N is injective.We call F the image
to indicate that it is a free R-module. Consider the exact sequence of R-modules:

0 → F → M → M/F → 0.

From flatness we get the exact sequence

0 → F ⊗R S → M ⊗R S → M/F ⊗R S → 0.

But, F ⊗R S is 0, since it is generated by x ⊗ 1 ∈ M ⊗R S. However, F is free,
whence F ⊗R S is also S. This contradiction shows that there is some r ∈ R − {0}
with r x = 0.

As N is finitely generated, there is some r ∈ R − {0} such that r N = 0.Moreover,
N is characterised as the set of elements x ∈ M such that r x = 0. For, we already
know that x ∈ N satisfies r x = 0. If, conversely, r x = 0 with x ∈ M , then 0 =
r x ⊗ 1/r = x ⊗ 1 ∈ M ⊗R S.

Every R-linear (Hecke) operator T on M clearly restricts to N , since rT n =
Trn = T 0 = 0. Suppose now that T acts as 0 on M ⊗R S. We claim that then
rT = 0 on all of M . Let m ∈ M . We have 0 = Tπm = πTm. Thus Tm ∈ N and,
so, rTm = 0, as claimed. In otherwords, the kernel of the homomorphismTR(M) →
TR(M ⊗R S) is killed by r . This homomorphism is surjective, since by definition
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TR(M ⊗R S) is generated by all Hecke operators acting on M ⊗R S. Tensoring with
S kills the torsion and the statement follows. �

Some words of warning are necessary. It is essential that R → S is a flat
homomorphism. A similar result for Z → Fp is not true in general. I call this a
‘faithfulness problem’, since then Mk(Γ1(N ) ; Fp) is not a faithful module for
TZ(Mk(Γ1(N ) ; C)) ⊗Z Fp. Some effort goes into finding k and N , where this mod-
ule is faithful. See, for instance, [22]. Moreover, Mk(Γ1(N ) ; R) need not be a free
R-module and can contain torsion. Please have a look at Exercise1.33 now to find
out whether one can use the +- and the −-space in the proposition.

1.3 Theory: The Modular Symbols Algorithm

The Eichler–Shimura Theorem

At the basis of the modular symbols algorithm is the following theorem by Eichler,
which was extended by Shimura. One of our aims in this lecture is to provide a proof
for it. In this introduction, however, we only state it and indicate how the modular
symbols algorithm can be derived from it.

Theorem 1.9 (Eichler–Shimura) There are isomorphisms respecting the Hecke
operators

(a) Mk(N , χ ; C)) ⊕ Sk(N , χ ; C)∨ ∼= Mk(N , χ ; C),

(b) Sk(N , χ ; C)) ⊕ Sk(N , χ ; C)∨ ∼= CM k(N , χ ; C),

(c) Sk(N , χ ; C) ∼= CM k(N , χ ; C)+.

Similar isomorphisms hold for modular forms and modular symbols on Γ1(N ) and
Γ0(N ).

Proof Later in this lecture (Theorems5.9 and 6.15, Corollary7.30). �

Corollary 1.10 Let R be a subring ofC and χ : (Z/NZ)× → R× a character. Then
there is the natural isomorphism

TR(Mk(N , χ ; C)) ∼= TR(Mk(N , χ ; C)).

A similar result holds cusp forms, and also for Γ1(N ) without a character as well as
for Γ0(N ).

Proof We only prove this for the full space of modular forms. The arguments in the
other cases are very similar. Theorem1.9 tells us that the R-algebra generated by the
Hecke operators inside the endomorphism ring ofMk(N , χ ; C) equals the R-algebra
generated by the Hecke operators inside the endomorphism ring of Mk(N , χ ; C),
i.e. the assertion to be proved. To see this, one just needs to see that the algebra
generated by all Hecke operators on Mk(N , χ ; C) ⊕ Sk(N , χ ; C)∨ is the same as
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the one generated by all Hecke operators on Mk(N , χ ; C), which follows from the
fact that if some Hecke operator T annihilates the full space of modular forms, then
it also annihilates the dual of the cusp space. �

The following corollary of the Eichler–Shimura theorem is of utmost importance
for the theory of modular forms. It says that Hecke algebras of modular forms have
an integral structure (take R = Z or R = Z[χ ]). We will say more on this topic in
the next section.

Corollary 1.11 Let R be a subring ofC and χ : (Z/NZ)× → R× a character. Then
the natural map

TR(Mk(N , χ ; C)) ⊗R C ∼= TC(Mk(N , χ ; C))

is an isomorphism. A similar result holds cusp forms, and also for Γ1(N ) without a
character as well as for Γ0(N ).

Proof We again stick to the full space of modular forms. Tensoring the isomorphism
from Corollary1.10 with C we get

TR(Mk(N , χ ; C)) ⊗R C ∼=TR(Mk(N , χ ; C)) ⊗R C

∼= TC(Mk(N , χ ; C)) ∼= TC(Mk(N , χ ; C)),

using Proposition1.8(d) and again Theorem1.9. �

The next corollary is at the base of the modular symbols algorithm, since it
describes modular forms in linear algebra terms involving only modular symbols.

Corollary 1.12 Let R be a subring ofC and χ : (Z/NZ)× → R× a character. Then
we have the isomorphisms

Mk(N , χ ; C) ∼= HomR(TR(Mk(N , χ ; R)), R) ⊗R C

∼= HomR(TR(Mk(N , χ ; R)), C) and

Sk(N , χ ; C) ∼= HomR(TR(CM k(N , χ ; R)), R) ⊗R C

∼= HomR(TR(CM k(N , χ ; R)), C).

Similar results hold for Γ1(N ) without a character and also for Γ0(N ).

Proof This follows from Corollaries1.10, 1.11, Proposition1.8 and Lemma1.2. �

Please look at Exercise1.34 to find out which statement should be included in
this corollary concerning the +-spaces. Here is another important consequence of
the Eichler–Shimura theorem.

Corollary 1.13 Let f =∑∞
n=1 an( f )q

n ∈ Sk(Γ1(N ) ; C) be a normalised Hecke
eigenform. Then Q f := Q(an( f )|n ∈ N) is a number field of degree less than or
equal to dimC Sk(Γ1(N ) ; C).
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If f has Dirichlet character χ , thenQ f is a finite field extension ofQ(χ) of degree
less than or equal to dimC Sk(N , χ ; C). Here Q(χ) is the extension of Q generated
by all the values of χ .

Proof It suffices to apply the previous corollaries with R = Q or R = Q(χ) and to
remember that normalisedHecke eigenforms correspond to algebra homomorphisms
from the Hecke algebra into C. �

Sketch of the Modular Symbols Algorithm

It may now already be quite clear how the modular symbols algorithm for computing
cusp forms proceeds. We give a very short sketch.

Algorithm 1.14 Input: A field K ⊂ C, integers N ≥ 1, k ≥ 2, P , a character χ :
(Z/NZ)× → K×.
Output: A basis of the space of cusp forms Sk(N , χ ; C); each form is given by its
standard q-expansion with precision P .

(1) create M := CM k(N , χ ; K ).
(2) L ← [] (empty list), n ← 1.
(3) repeat
(4) compute Tn on M .
(5) join Tn to the list L .
(6) T ← the K -algebra generated by all T ∈ L .
(7) n ← n + 1
(8) until dimK (T) = dimC Sk(N , χ ; C)

(9) compute a K -basis B of T.
(10) compute the basis B∨ of T

∨ dual to B.
(11) for φ in B∨ do
(12) output

∑P
n=1 φ(Tn)qn ∈ K [q].

(13) end for.

We should make a couple of remarks concerning this algorithm. Please remember
that there are dimension formulae for Sk(N , χ ; C), which can be looked up in [20].
It is clear that the repeat-until loop will stop, due to Corollary1.12. We can even give
an upper bound as to when it stops at the latest. That is the so-called Sturm bound,
which is the content of the following proposition.

Proposition 1.15 (Sturm) Let f ∈ Mk(N , χ ; C) such that an( f ) = 0 for all n ≤
kμ
12 , where μ = N

∏
l|N prime(1 + 1

l ).
Then f = 0.

Proof Apply Corollary9.20 of [20] with m = (0). �
Corollary 1.16 Let K , N , χ etc. as in the algorithm. Then TK (CM k(N , χ ; K ))

can be generated as a K -vector space by the operators Tn for 1 ≤ n ≤ kμ
12 .

Proof Exercise1.35. �
We shall see later how to compute eigenforms and how to decompose the space

of modular forms in a ‘sensible’ way.
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1.4 Theory: Number Theoretic Applications

We close this survey and motivation section by sketching some number theoretic
applications.

Galois Representations Attached to Eigenforms

We mention the sad fact that until 2006 only the one-dimensional representations
of Gal(Q/Q) were well understood. In the case of finite image one can use the
Kronecker–Weber theorem, which asserts that any cyclic extension of Q is con-
tained in a cyclotomic field. This is generalised by global class field theory to one-
dimensional representations of Gal(Q/K ) for each number field K . Since we now
have a proof of Serre’smodularity conjecture [17] (a theorembyKhare,Wintenberger
[15]), we also know a little bit about two-dimensional representations of Gal(Q/Q),
but, replacing Q by any other number field, all one has is conjectures.

The great importance of modular forms for modern number theory is due to the
fact that one may attach a two-dimensional representation of the Galois group of the
rationals to each normalised cuspidal eigenform. The following theorem is due to
Shimura for k = 2 and due to Deligne for k ≥ 2.

Until the end of this section, we shall use the language of Galois representations
(e.g. irreducible, unramified, Frobenius element, cyclotomic character)without intro-
ducing it. It will not be used elsewhere. Themeanwhile quite old lectures byDarmon,
Diamond and Taylor are still an excellent introduction to the subject [7].

Theorem 1.17 Let k ≥ 2, N ≥ 1, p a prime, and χ : (Z/NZ)× → C
× a character.

Then to any normalised eigenform f ∈ Sk(N , χ ; C) with f =∑n≥1 an( f )q
n

one can attach a Galois representation, i.e. a continuous group homomorphism,

ρ f : Gal(Q/Q) → GL2(Qp)

such that

(i) ρ f is irreducible,
(ii) det(ρ f (c)) = −1 for any complex conjugation c ∈ Gal(Q/Q) (one says that

ρ f is odd),
(iii) for all primes � � Np the representation ρ f is unramified at �,

tr(ρ f (Frob�)) = a�( f ) and det(ρ f (Frob�)) = �k−1χ(�).

In the statement, Frob� denotes a Frobenius element at �.

By choosing a ρ(Gal(Q/Q))-stable lattice in Q
2
p and applying reduction and

semi-simplification one obtains the following consequence.

Theorem 1.18 Let k ≥ 2, N ≥ 1, p a prime, and χ : (Z/NZ)× → C
× a character.

Then to any normalised eigenform f ∈ Sk(N , χ ; C) with f =∑n≥1 an( f )q
n

and to any prime ideal P of the ring of integers O f of Q f = Q(an( f ) : n ∈ N)



80 G. Wiese

with residue characteristic p (and silently a fixed embedding O f /P ↪→ Fp), one
can attach a Galois representation, i.e. a continuous group homomorphism (for the
discrete topology on GL2(Fp)),

ρ f : Gal(Q/Q) → GL2(Fp)

such that

(i) ρ f is semi-simple,
(ii) det(ρ f (c)) = −1 for any complex conjugation c ∈ Gal(Q/Q) (one says that

ρ f is odd),
(iii) for all primes � � Np the representation ρ f is unramified at �,

tr(ρ f (Frob�)) ≡ a�( f ) mod P and det(ρ f (Frob�)) ≡ �k−1χ(�) mod P.

Translation to Number Fields

Proposition 1.19 Let f , Q f , P and ρ f be as in Theorem1.18. Then the following
hold:

(a) The image of ρ f is finite and its image is contained in GL2(Fpr ) for some r.
(b) The kernel of ρ f is an open subgroup of Gal(Q/Q) and is hence of the form

Gal(Q/K ) for some Galois number field K . Thus, we can and do consider
Gal(K/Q) as a subgroup of GL2(Fpr ).

(c) The characteristic polynomial of Frob� (more precisely, of FrobΛ/� for any prime
Λ of K dividing �) is equal to X2 − a�( f )X + χ(�)�k−1 mod P for all primes
� � Np.

Proof Exercise1.36. �

To appreciate the information obtained from the a�( f ) mod P, the reader is
invited to do Exercise1.37 now.

Images of Galois Representations

One can also often tell what the Galois group Gal(K/Q) is as an abstract group.
There are not so many possibilities, as we see from the following theorem.

Theorem 1.20 (Dickson) Let p be a prime and H a finite subgroup of PGL2(Fp).
Then a conjugate of H is isomorphic to one of the following groups:

• finite subgroups of the upper triangular matrices,
• PSL2(Fpr ) or PGL2(Fpr ) for r ∈ N,
• dihedral groups Dr for r ∈ N not divisible by p,
• A4, A5 or S4.
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Formodular forms, there are several resultsmostly byRibet concerning the groups
that occur as images [18]. Roughly speaking, they say that the image is ‘as big as
possible’ for almost allP (for a given f ). For modular forms without CM and inner
twists (we do not define these notions in this course) this means that if G is the
image, then G modulo scalars is equal to PSL2(Fpr ) or PGL2(Fpr ), where Fpr is the
extension of Fp generated by the an( f ) mod P.

An interesting question is to study which groups (i.e. which PSL2(Fpr )) actually
occur. It would be nice to prove that all of them do, since—surprisingly—the simple
groups PSL2(Fpr ) are still resisting a lot to all efforts to realise them as Galois groups
over Q in the context of inverse Galois theory.

Serre’s Modularity Conjecture

Serre’smodularity conjecture is the following. Let p be a prime andρ : Gal(Q/Q) →
GL2(Fp) be a continuous, odd, irreducible representation.

• Let Nρ be the (outside of p) conductor of ρ (defined by a formula analogous to
the formula for the Artin conductor, except that the local factor for p is dropped).

• Let kρ be the integer defined by [17].
• Let χρ be the prime-to-p part of det ◦ρ considered as a character (Z/NρZ)× ×

(Z/pZ)× → F
×
p .

Theorem 1.21 (Khare, Wintenberger, Kisin: Serre’s Modularity Conjecture) Let p
be a prime and ρ : Gal(Q/Q) → GL2(Fp) be a continuous, odd, irreducible repre-
sentation.

Then there exists a normalised eigenform

f ∈ Skρ
(Nρ, χρ ; C)

such that ρ is isomorphic to the Galois representation

ρ f : Gal(Q/Q) → GL2(Fp)

attached to f by Theorem1.18.

Serre’s modularity conjecture implies that we can compute (in principle, at least)
arithmetic properties of all Galois representations of the type in Serre’s conjecture
by computing the mod p Hecke eigenforms they come from. Conceptually, Serre’s
modularity conjecture gives an explicit description of all irreducible, odd and con-
tinuous ‘mod p’ representations of Gal(Q/Q) and, thus, in a sense generalises class
field theory.

Edixhoven et al. [12] have succeeded in giving an algorithm which computes
the actual Galois representation attached to a mod p modular form. Hence, with
Serre’s conjecture we have a way of—in principle—obtaining all information on
2-dimensional irreducible, odd continuous representations of Gal(Q/Q).
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1.5 Theory: Exercises

Exercise 1.22 (a) The group homomorphism

SL2(Z) → SL2(Z/NZ)

given by reducing the matrices modulo N is surjective.
(b) Check the bijections

SL2(Z)/Γ1(N ) = {( a
c ) |〈a, c〉 = Z/NZ}

and
SL2(Z)/Γ0(N ) = P

1(Z/NZ),

which were given in the beginning.

Exercise 1.23 Let N be an integer and ζN ∈ C any primitive N -th root of unity.
Prove that the map

Gal(Q(ζN )/Q)
Frob� �→�−−−−→ (Z/NZ)×

(for all primes � � N ) is an isomorphism.

Exercise 1.24 Prove that a matrix σa as in Eq.2 exists.

Exercise 1.25 Prove Lemma1.1. See also [10, Proposition5.2.2].

Exercise 1.26 (a) Let K be a field, V a vector space and T1, T2 two commut-
ing endomorphisms of V , i.e. T1T2 = T2T1. Let λ1 ∈ K and consider the λ1-
eigenspace of T1, i.e. V1 = {v|T1v = λ1v}. Prove that T2V1 ⊆ V1.

(b) Suppose that MN (Γ1(k) ; C) is non-zero. Prove that it contains a Hecke eigen-
form.

Exercise 1.27 Prove Lemma1.3.
Hint: use the action of Hecke operators explicitly described on q-expansions.

Exercise 1.28 Check that it makes sense to replace SL2(Z) by PSL2(Z) in the def-
inition of modular forms.

Hint: for the transformation rule: if −1 is not in the congruence subgroup in
question, there is nothing to show; if −1 is in it, one has to verify that it acts trivially.
Moreover, convince yourself that the holomorphy at the cusps does not depend on
replacing a matrix by its negative.

Exercise 1.29 Let R be a ring, Γ a group and V a left R[Γ ]-module.

(a) Define the augmentation ideal IΓ by the exact sequence

0 → IΓ → R[Γ ] γ �→1−−→ R → 1.
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Prove that IΓ is the ideal in R[Γ ] generated by the elements 1 − g for g ∈ Γ .
(b) Conclude that VΓ = V/IΓ V .
(c) Conclude that VΓ

∼= R ⊗R[Γ ] V .
(d) Suppose that Γ = 〈T 〉 is a cyclic group (either finite or infinite (isomorphic to

(Z,+))). Prove that IΓ is the ideal generated by (1 − T ).
(e) Prove that V Γ ∼= HomR[Γ ](R, V ).

Exercise 1.30 Let R, Γ and V as in Definition1.5 and let R → S be a ring homo-
morphism.

(a) Prove that
MR(Γ, V ) ⊗R S ∼= MS(Γ, V ⊗R S).

(b) Suppose R → S is flat. Prove a similar statement for the cuspidal subspace.
(c) Are similar statements true for the boundary or the Eisenstein space?What about

the +- and the −-spaces?

Exercise 1.31 Prove that the map

Symn(R2) → R[X,Y ]n,
( a1
b1

)⊗ · · · ⊗ ( anbn
) �→ (a1X + b1Y ) · · · (an X + bnY )

is an isomorphism, where Symn(R2) is the n-th symmetric power of R2, which is
defined as the quotient of R2 ⊗R · · · ⊗R R2

︸ ︷︷ ︸
n-times

by the span of all elements v1 ⊗ · · · ⊗

vn − vσ(1) ⊗ · · · ⊗ vσ(n) for all σ in the symmetric group on the letters {1, 2, . . . , n}.
Exercise 1.32 Prove Eq.8.

Exercise 1.33 Can one use+- or−-spaces in Proposition1.8?What could we say if
we defined the+-space as M/(1 − η)M with M standing for some space of modular
symbols?

Exercise 1.34 Which statements in the spirit of Corollary1.12(b) are true for the
+-spaces?

Exercise 1.35 Prove Corollary1.16.

Exercise 1.36 Prove Proposition1.19.

Exercise 1.37 In how far is a conjugacy class in GL2(Fpr ) determined by its char-
acteristic polynomial? Same question as above for a subgroup G ⊂ GL2(Fpr ).

1.6 Computer Exercises

Computer Exercise 1.38 (a) Create a list L of all primes in between 234325 and
3479854? How many are there?
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(b) For n = 2, 3, 4, 5, 6, 7, 997 compute for each a ∈ Z/nZ how often it appears as
a residue in the list L .

Computer Exercise 1.39 In this exercise, you verify the validity of the prime num-
ber theorem.

(a) Write a function NumberOfPrimes with the following specifications. Input:
Positive integers a, b with a ≤ b. Output: The number of primes in [a, b].

(b) Write a function TotalNumberOfPrimes with the following specifications.
Input: Positive integers x, s. Output: A list [n1, n2, n3, . . . , nm] such that ni is
the number of primes between 1 and i · s and m is the largest integer smaller
than or equal to x/s.

(c) Compare the output of TotalNumberOfPrimes with the predictions of the
prime number theorem:Make a function that returns the list [r1, r2, . . . , rm]with
ri = si

log si . Make a function that computes the quotient of two lists of ‘numbers’.
(d) Play with these functions. What do you observe?

Computer Exercise 1.40 Write a function ValuesInField with: Input: a uni-
tary polynomial f with integer coefficients and K a finite field. Output: the set of
values of f in K .

Computer Exercise 1.41 (a) Write a function BinaryExpansion that com-
putes the binary expansion of a positive integer. Input: positive integer n. Output:
list of 0’s and 1’s representing the binary expansion.

(b) Write a function Expo with: Input: two positive integers a, b. Output ab. You
must not use the in-built function ab, but write a sensible algorithm making
use of the binary expansion of b. The only arithmetic operations allowed are
multiplications.

(c) Write similar functions using the expansion with respect to a general base d.

Computer Exercise 1.42 In order to contemplate recursive algorithms, the monks
inHanoi used to play the followinggame. First they choose a degree of contemplation,
i.e. a positive integer n. Then they create three lists:

L1 := [n, n − 1, . . . , 2, 1]; L2 := []; L3 := [];

The aim is to exchange L1 and L2. However, the monks may only perform the
following step: Remove the last element from one of the lists and append it to one of
the other lists, subject to the important condition that in all steps all three lists must
be descending.

Contemplate how themonks can achieve their goal.Write a procedurewith input n
that plays the game. After each step, print the number of the step, the three lists and
test whether all lists are still descending.

[Hint: For recursive procedures, i.e. procedures calling themselves, in Magma
one must put the command forward my_procedure in front of the definition
of my_procedure.]
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Computer Exercise 1.43 This exercise concerns the normalised cuspidal eigen-
forms in weight 2 and level 23.

(a) What is the number field K generated by the coefficients of each of the two
forms?

(b) Compute the characteristic polynomials of the first 100 Fourier coefficients of
each of the two forms.

(c) Write a function that for a given prime p computes the reduction modulo p of
the characteristic polynomials from the previous point and their factorisation.

(d) Now use modular symbols over Fp for a given p. Compare the results.
(e) Now do the same for weight 2 and level 37. In particular, try p = 2. What do

you observe? What could be the reason for this behaviour?

Computer Exercise 1.44 Implement Algorithm1.14.

2 Hecke Algebras

An important pointmade in the previous section is that for computingmodular forms,
one computes Hecke algebras. This perspective puts Hecke algebras in its centre.
The present section is written from that point of view. Starting from Hecke algebras,
we define modular forms with coefficients in arbitrary rings, we study integrality
properties and also present results on the structure of Hecke algebras, which are very
useful for studying the arithmetic of modular forms.

It is essential for studying arithmetic properties of modular forms to have some
flexibility for the coefficient rings. For instance, when studying mod p Galois rep-
resentations attached to modular forms, it is often easier and sometimes necessary
to work with modular forms whose q-expansions already lie in a finite field. More-
over, the concept of congruences of modular forms only gets its seemingly correct
framework when working over rings such as extensions of finite fields or rings like
Z/pnZ.

There is a very strong theory of modular forms over a general ring R that uses
algebraic geometry over R. One can, however, already get very far if one just defines
modular forms over R as the R-linear dual of theZ-Hecke algebra of the holomorphic
modular forms, i.e. by taking q-expansions with coefficients in R. In this course we
shall only use this. Precise definitions will be given in a moment. A priori it is maybe
not clear whether non-trivial modular forms with q-expansions in the integers exist
at all. The situation is as good as it could possibly be: the modular forms with q-
expansion in the integers form a lattice in the space of all modular forms (at least
for Γ1(N ) and Γ0(N ); if we are working with a Dirichlet character, the situation is
slightly more involved). This is an extremely useful and important fact, which we
shall derive from the corollaries of the Eichler–Shimura isomorphism given in the
previous section.

Hecke algebras of modular forms over R are finitely generated R-modules. This
leads us to a study, belonging to the theory of Commutative Algebra, of finite R-
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algebras, that is, R-algebras that are finitely generated as R-modules. We shall prove
structure theorems when R is a discrete valuation ring or a finite field. Establishing
back the connection with modular forms, we will, for example, see that the maximal
ideals ofHecke algebras correspond toGalois conjugacy classes of normalised eigen-
forms, and, for instance, the notion of a congruence can be expressed as a maximal
prime containing two minimal ones.

2.1 Theory: Hecke Algebras and Modular Forms over Rings

We start by recalling and slightly extending the concept of Hecke algebras ofmodular
forms. It is of utmost importance for our treatment of modular forms over general
rings and their computation. In fact, as pointed out a couple of times, wewill compute
Hecke algebras and not modular forms. We shall assume that k ≥ 1 and N ≥ 1.

As in the introduction, we define the Hecke algebra of Mk(Γ1(N ) ; C) as the
subring (i.e. the Z-algebra) inside the endomorphism ring of the C-vector space
Mk(Γ1(N ) ; C) generated by all Hecke operators. Remember that due to Formula 7
all diamond operators are contained in the Hecke algebra. Of course, we make sim-
ilar definitions for Sk(Γ1(N ) ; C) and use the notations TZ(Mk(Γ1(N ) ; C)) and
TZ(Sk(Γ1(N ) ; C)).

If we are working with modular forms with a character, we essentially have
two possibilities for defining the Hecke algebra, namely, first as above as the Z-
algebra generated by all Hecke operators inside the endomorphism ring of the C-
vector space Mk(N , χ ; C) (notation TZ(Mk(N , χ ; C))) or, second, as the Z[χ ]-
algebra generated by the Hecke operators inside EndC(Mk(N , χ ; C)) (notation
TZ[χ](Mk(N , χ ; C))); similarly for the cusp forms. Here Z[χ ] is the ring exten-
sion of Z generated by all values of χ , it is the integer ring of Q(χ). For two reasons
we prefer the second variant. The first reason is that we needed to work over Z[χ ]
(or its extensions) for modular symbols. The second reason is that on the natural Z-
structure inside Mk(Γ1(N ) ; C) the decomposition into (Z/NZ)×-eigenspaces can
only be made after a base change to Z[χ ]. So, the C-dimension of Mk(N , χ ; C)

equals the Q[χ ]-dimension of TQ[χ](Mk(N , χ ; C)) and not the Q-dimension of
TQ(Mk(N , χ ; C)).

Lemma 2.1 (a) The Z-algebras TZ(Mk(Γ1(N ) ; C)) and TZ(Mk(N , χ ; C)) are
free Z-modules of finite rank; the same holds for the cuspidal Hecke algebras.

(b) TheZ[χ ]-algebraTZ[χ](Mk(N , χ ; C)) is a torsion-free finitely generatedZ[χ ]-
module; the same holds for the cuspidal Hecke algebra.

Proof (a) Due to the corollaries of the Eichler–Shimura theorem (Corollary1.11) we
know that these algebras are finitely generated as Z-modules. As they lie inside a
vector space, they are free (using the structure theory of finitely generated modules
over principal ideal domains).

(b) This is like (a), except that Z[χ ] need not be a principal ideal domain, so that
we can only conclude torsion-freeness, but not freeness. �



Computational Arithmetic of Modular Forms 87

Modular Forms over Rings

Let k ≥ 1 and N ≥ 1. Let R be any Z-algebra (ring). We now use the q-pairing to
define modular (cusp) forms over R. We let

Mk(Γ1(N ) ; R) := HomZ(TZ(Mk(Γ1(N ) ; C)), R)

∼= HomR(TZ(Mk(Γ1(N ) ; C)) ⊗Z R, R).

We stress the fact that HomR denotes the homomorphisms as R-modules (and not
as R-algebras; those will appear later). The isomorphism is proved precisely as in
Proposition1.8(c), where we did not use the flatness assumption. Every element f of
Mk(Γ1(N ) ; R) thus corresponds to a Z-linear function Φ : TZ(Mk(Γ1(N ) ; C)) →
R and is uniquely identified by its formal q-expansion

f =
∑

n

Φ(Tn)q
n =
∑

n

an( f )q
n ∈ R[[q]].

We note that TZ(Mk(Γ1(N ) ; C)) acts naturally on HomZ(TZ(Mk(Γ1(N ) ; C)), R),
namely by

(T .Φ)(S) = Φ(T S) = Φ(ST ). (10)

This means that the action ofTZ(Mk(Γ1(N ) ; C)) onMk(Γ1(N ) ; R) gives the same
formulae as usual on formal q-expansions. For cusp forms we make the obvious
analogous definition, i.e.

Sk(Γ1(N ) ; R) := HomZ(TZ(Sk(Γ1(N ) ; C)), R)

∼= HomR(TZ(Sk(Γ1(N ) ; C)) ⊗Z R, R).

We caution the reader that for modular forms which are not cusp forms there
also ought to be some 0th coefficient in the formal q-expansion, for example, for
recovering the classical holomorphic q-expansion. Of course, for cusp forms, we do
not need to worry.

Nowwe turn our attention tomodular formswith a character. Letχ : (Z/NZ)× →
C

× be a Dirichlet character and Z[χ ] → R a ring homomorphism. We now proceed
analogously to the treatment of modular symbols for a Dirichlet character. We work
with Z[χ ] as the base ring (and not Z). We let

Mk(N , χ ; R) := HomZ[χ](TZ[χ](Mk(N , χ ; C)), R)

∼= HomR(TZ[χ](Mk(N , χ ; C)) ⊗Z[χ] R, R)

and similarly for the cusp forms.
We remark that these definitions ofMk(Γ1(N ) ; C), Mk(N , χ ; C) etc. agree with

those from Sect. 1; thus, it is justified to use the same pieces of notation. As a special
case, we get that Mk(Γ1(N ) ; Z) precisely consists of those holomorphic modular
forms in Mk(Γ1(N ) ; C) whose q-expansions take values in Z.



88 G. Wiese

If Z[χ ] π−→ R = F with F a finite field of characteristic p or Fp, we call
Mk(N , χ ; F) the space of mod p modular forms of weight k, level N and char-
acter χ . Of course, for the cuspidal space similar statements are made and we use
similar notation.

We furthermore extend the notation for Hecke algebras introduced in Sect. 1 as
follows. If S is an R-algebra and M is an S-module admitting the action of Hecke
operators Tn for n ∈ N, then we let TR(M) be the R-subalgebra of EndS(M) gener-
ated by all Tn for n ∈ N.

We now study base change properties of modular forms over R.

Proposition 2.2 (a) Let Z → R → S be ring homomorphisms. Then the following
statements hold.

(i) The natural map

Mk(Γ1(N ) ; R) ⊗R S → Mk(Γ1(N ) ; S)

is an isomorphism.
(ii) The evaluation pairing

Mk(Γ1(N ) ; R) × TZ(Mk(Γ1(N ) ; C)) ⊗Z R → R

is the q-pairing and it is perfect.
(iii) The Hecke algebra TR(Mk(Γ1(N ) ; R)) is naturally isomorphic to

TZ(Mk(Γ1(N ) ; C)) ⊗Z R.

(b) If Z[χ ] → R → S are flat, then Statement (i) holds forMk(N , χ ; R).
(c) If TZ[χ ](Mk(N , χ ; C)) is a free Z[χ ]-module and Z[χ ] → R → S are ring

homomorphisms, statements (i)-(iii) hold forMk(N , χ ; R).

Proof (a) We use the following general statement, in which M is assumed to be a
free finitely generated R-module and N , T are R-modules:

HomR(M, N ) ⊗R T ∼= HomR(M, N ⊗R T ).

To see this, just see M as
⊕

R and pull the direct sum out of the Hom, do the tensor
product, and put the direct sum back into the Hom.

(i) Write TZ for TZ(Mk(Γ1(N ) ; C)). It is a free Z-module by Lemma2.1. We
have

Mk(Γ1(N ) ; R) ⊗R S = HomZ(TZ, R) ⊗R S,

whichby the above is isomorphic toHomZ(TZ, R ⊗ RS) andhence toMk(Γ1(N ) ; S).
(ii) The evaluation pairing HomZ(TZ, Z) × TZ → Z is perfect, since TZ is free

as a Z-module. The result follows from (i) by tensoring with R.
(iii) We consider the natural map

TZ ⊗Z R → EndR(HomR(TZ ⊗Z R, R))
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and show that it is injective. Its image is by definition TR(Mk(Γ1(N ) ; R)). Let T
be in the kernel. Then φ(T ) = 0 for all φ ∈ HomR(TZ ⊗Z R, R). As the pairing in
(ii) is perfect and, in particular, non-degenerate, T = 0 follows.

(b) Due to flatness we have

HomR(TZ[χ] ⊗Z[χ] R, R) ⊗R S ∼= HomS(TZ[χ] ⊗Z[χ] S, S),

as desired.
(c) The same arguments as in (a) work. �

Galois Conjugacy Classes

By the definition of the Hecke action in Eq. (10), the normalised Hecke eigen-
forms in Mk(Γ1(N ) ; R) are precisely the set of Z-algebra homomorphisms inside
HomZ(TZ(Mk(Γ1(N ) ; C)), R), where the normalisation means that the identity
operator T1 is sent to 1. Such an algebra homomorphism Φ is often referred to as a
system of eigenvalues, since the image of each Tn corresponds to an eigenvalue of Tn ,
namely to Φ(Tn) = an( f ) (if f corresponds to Φ).

Let us now consider a perfect field K (if we are workingwith a Dirichlet character,
we also want that K admits a ring homomorphism Z[χ ] → K ). Denote by K an
algebraic closure, so that we have

Mk(Γ1(N ) ; K ) = HomZ(TZ(Mk(Γ1(N ) ; C)), K )

∼= HomK (TZ(Mk(Γ1(N ) ; C)) ⊗Z K , K ).

We can compose any Φ ∈ HomZ(TZ(Mk(Γ1(N ) ; C)), K ) by any field automor-
phism σ : K → K fixing K . Thus, we obtain an action of the absolute Galois group
Gal(K/K ) on Mk(Γ1(N ) ; K ) (on formal q-expansions, we only need to apply σ to
the coefficients). All this works similarly for the cuspidal subspace, too.

Like this, we also obtain a Gal(K/K )-action on the normalised eigenforms, and
can hence speak about Galois conjugacy classes of eigenforms.

Proposition 2.3 We have the following bijective correspondences:

Spec(TK (·)) 1−1↔ HomK-alg(TK (·), K )/Gal(K/K )

1−1↔ {normalised eigenf. in·}/Gal(K/K )

and with K = K

Spec(TK (·)) 1−1↔ HomK-alg(TK (·), K )
1−1↔ {normalised eigenforms in ·}.

Here, · stands for either Mk(Γ1(N ) ; K ), Sk(Γ1(N ) ; K ) or the respective spaces
with a Dirichlet character.
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We recall that Spec of a ring is the set of prime ideals. In the next section we
will see that in TK (·) and TK (·) all prime ideals are already maximal (it is an easy
consequence of the finite dimensionality).

Proof Exercise2.19. �

We repeat that the coefficients of any eigenform f in Mk(N , χ ; K ) lie in a finite
extension of K , namely in TK (Mk(N , χ ; K ))/m, when m is the maximal ideal
corresponding to the conjugacy class of f .

Let us note that the above discussion applies to K = C, K = Q, K = Qp, as well
as to K = Fp. In the next sections, we will also take into account the finer structure
of Hecke algebras over O , or rather over the completion of O at one prime.

2.1.1 Some Commutative Algebra

In this section, we leave the special context of modular forms for a moment and
provide quite useful results from commutative algebra that will be applied to Hecke
algebras in the sequel.

We start with a simple casewhichwewill prove directly. LetT be anArtinian alge-
bra, i.e. an algebra in which every descending chain of ideals becomes stationary. Our
main example will be finite dimensional algebras over a field. That those are Artinian
is obvious, since in every proper inclusion of ideals the dimension diminishes.

For any ideal a of T the sequence an becomes stationary, i.e. an = an+1 for all n
‘big enough’. Then we will use the notation a∞ for an .

Proposition 2.4 Let T be an Artinian ring.

(a) Every prime ideal of T is maximal.
(b) There are only finitely many maximal ideals in T.
(c) Let m be a maximal ideal of T. It is the only maximal ideal containing m∞.
(d) Let m �= n be two maximal ideals. For any k ∈ N and k = ∞ the ideals mk and

nk are coprime.
(e) The Jacobson radical

⋂
m∈Spec(T) m is equal to the nilradical and consists of the

nilpotent elements.
(f) We have

⋂
m∈Spec(T) m

∞ = (0).
(g) (Chinese Remainder Theorem) The natural map

T
a �→(...,a+m∞,... )−−−−−−−−−→

∏

m∈Spec(T)

T/m∞

is an isomorphism.
(h) For every maximal ideal m, the ring T/m∞ is local with maximal ideal m and

is hence isomorphic to Tm, the localisation of T at m.
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Proof (a) Let p be a prime ideal of T. The quotient T � T/p is an Artinian integral
domain, since ideal chains in T/p lift to ideal chains in T. Let 0 �= x ∈ T/p. We
have (x)n = (x)n+1 = (x)∞ for some n big enough. Hence, xn = yxn+1 with some
y ∈ T/p and so xy = 1, as T/p is an integral domain.

(b) Assume there are infinitely many maximal ideals, number a countable subset
of them by m1,m2, . . . . Form the descending ideal chain

m1 ⊃ m1 ∩ m2 ⊃ m1 ∩ m2 ∩ m3 ⊃ . . . .

This chain becomes stationary, so that for some n we have

m1 ∩ · · · ∩ mn = m1 ∩ · · · ∩ mn ∩ mn+1.

Consequently, m1 ∩ · · · ∩ mn ⊂ mn+1. We claim that there is i ∈ {1, 2, . . . , n} with
mi ⊂ mn+1. Due to the maximality of mi we obtain the desired contradiction. To
prove the claim we assume that mi � mn+1 for all i . Let xi ∈ mi − mn+1 and y =
x1 · x2 · · · xn . Then y ∈ m1 ∩ · · · ∩ mn , but y /∈ mn+1 due to the primality of mn+1,
giving a contradiction.

(c) Let m ∈ Spec(T) be a maximal ideal. Assume that n is a different maximal
ideal withm∞ ⊂ n. Choose x ∈ m. Some power xr ∈ m∞ and, thus, xr ∈ n. As n is
prime, x ∈ n follows, implying m ⊆ n, contradicting the maximality of m.

(d) Assume that I := mk + nk �= T. Then I is contained in some maximal ideal
p. Hence, m∞ and n∞ are contained in p, whence by (c), m = n = p; contradiction.

(e) It is a standard fact from Commutative Algebra that the nilradical (the ideal
of nilpotent elements) is the intersection of the minimal prime ideals.

(f) For k ∈ N and k = ∞, (d) implies

⋂

m∈Spec(T)

mk =
∏

m∈Spec(T)

mk = (
∏

m∈Spec(T)

m)k = (
⋂

m∈Spec(T)

m)k .

By (e) we know that
⋂

m∈Spec(T) m is the nilradical. It can be generated by finitely
many elements a1, . . . , an all of which are nilpotent. So a high enough power of⋂

m∈Spec(T) m is zero.
(g) The injectivity follows from (f). It suffices to show that the elements of the

form (0, . . . , 0, 1, 0, . . . , 0) are in the image of the map. Suppose the 1 is at the place
belonging to m. Due to coprimeness (d) for any maximal ideal n �= m we can find
an ∈ n∞ and am ∈ m∞ such that 1 = am + an. Let x :=∏n∈Spec(T),n �=m an.We have
x ∈∏n∈Spec(T),n �=m n∞ and x =∏n∈Spec(T),n �=m(1 − am) ≡ 1 mod m. Hence, the
map sends x to (0, . . . , 0, 1, 0, . . . , 0), proving the surjectivity.

(h) By (c), the only maximal ideal ofT containingm∞ ism. Consequently,T/m∞
is a local ring with maximal ideal the image of m. Let s ∈ T − m. As s + m∞ /∈
m/m∞, the element s + m∞ is a unit in T/m∞. Thus, the map

Tm

y
s �→ys−1+m∞

−−−−−−−→ T/m∞
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is well-defined. It is clearly surjective. Suppose y
s maps to 0. Since the image of s is a

unit, y ∈ m∞ follows. The element x constructed in (g) is in
∏

n∈Spec(T),n �=m n∞, but
not inm. By (f) and (d), (0) =∏m∈Spec(T) m

∞. Thus, y · x = 0 and also y
s = yx

sx = 0,
proving the injectivity. �

A useful and simple way to rephrase a product decomposition as in (g) is to use
idempotents. In concrete terms, the idempotents of T (as in the proposition) are
precisely the elements of the form (. . . , xm, . . . ) with xm ∈ {0, 1} ⊆ T/m∞.

Definition 2.5 Let T be a ring. An idempotent of T is an element e that satisfies
e2 = e. Two idempotents e, f are orthogonal if e f = 0. An idempotent e is primitive
if eT is a local ring. A set of idempotents {e1, . . . , en} is said to be complete if
1 =∑n

i=1 ei .

In concrete terms forT =∏m∈Spec(T) T/m∞, a complete set of primitive pairwise
orthogonal idempotents is given by

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0), (0, . . . , 0, 1).

In Exercise2.20, you are asked (among other things) to prove that in the above case
m∞ is a principal ideal generated by an idempotent.

Below we will present an algorithm for computing a complete set of primitive
pairwise orthogonal idempotents for an Artinian ring.

We now come to a more general setting, namely working with a finite algebra T

over a complete local ring instead of a field. We will lift the idempotents of the
reduction of T (for the maximal ideal of the complete local ring) to idempotents of T

by Hensel’s lemma. This gives us a proposition very similar to Proposition2.4.

Proposition 2.6 (Hensel’s lemma) Let R be a ring that is complete with respect to
the ideal m and let f ∈ R[X ] be a polynomial. If

f (a) ≡ 0 mod ( f ′(a))2m

for some a ∈ R, then there is b ∈ R such that

f (b) = 0 and b ≡ a mod f ′(a)m.

If f ′(a) is not a zero divisor, then b is unique with these properties.

Proof [13], Theorem7.3. �

Recall that the height of a prime ideal p in a ring R is the supremum among all
n ∈ N such that there are inclusions of prime ideals p0 � p1 � · · · � pn−1 � p. The
Krull dimension of R is the supremum of the heights of the prime ideals of R.

Proposition 2.7 LetO be an integral domain of characteristic zerowhich is a finitely
generated Z-module. Write Ô for the completion of O at a maximal prime of O and
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denote by F the residue field and by K̂ the fraction field of Ô . Let furthermore T be
a commutative O-algebra which is finitely generated as an O-module. For any ring
homomorphism O → S write TS for T ⊗O S. Then the following statements hold.

(a) The Krull dimension ofTÔ is less than or equal to 1, i.e. between any prime ideal
and any maximal ideal p ⊂ m there is no other prime ideal. The maximal ideals
of TÔ correspond bijectively under taking pre-images to the maximal ideals of
TF. Primes p of height 0 (i.e. those that do not contain any other prime ideal)
which are properly contained in a prime of height 1 (i.e. a maximal prime) of
TÔ are in bijection with primes of TK̂ under extension (i.e. pTK̂ ), for which the
notation pe will be used.
Under the correspondences, one has

TF,m
∼= TÔ ,m ⊗Ô F

and
TÔ ,p

∼= TK̂ ,pe .

(b) The algebra TÔ decomposes as

TÔ
∼=
∏

m

TÔ ,m,

where the product runs over the maximal ideals m of TÔ .
(c) The algebra TF decomposes as

TF
∼=
∏

m

TF,m,

where the product runs over the maximal ideals m of TF.
(d) The algebra TK̂ decomposes as

TK̂
∼=
∏

p

TK̂ ,pe
∼=
∏

p

TÔ ,p,

where the products run over the minimal prime ideals p of TÔ which are con-
tained in a prime ideal of height 1.

Proof We first need that Ô has Krull dimension 1. This, however, follows from
the fact that O has Krull dimension 1, as it is an integral extension of Z, and the
correspondence between the prime ideals of a ring and its completion. As TÔ is a
finitely generated Ô-module, TÔ /p with a prime p is an integral domain which is
a finitely generated Ô/(p ∩ Ô)-module. Hence, it is either a finite field (when the
prime ideal p ∩ Ô is the unique maximal ideal of Ô) or a finite extension of Ô (when
p ∩ Ô = 0 so that the structure map Ô → TÔ /p is injective). This proves that the
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height of p is less than or equal to 1. The correspondences and the isomorphisms of
Part (a) are the subject of Exercise2.21.

We have already seen Parts (c) and (d) in Lemma2.4. Part (b) follows from (c) by
applying Hensel’s lemma (Proposition2.6) to the idempotents of the decomposition
of (c).We follow [13], Corollary7.5, for the details. Since Ô is complete with respect
to some ideal p, so is TÔ as it is a finitely generated Ô-module. Hence, we may use
Hensel’s lemma in TÔ . Given an idempotent e of TF, we will first show that it lifts
to a unique idempotent of TÔ . Let e be any lift of e and let f (X) = X2 − X be a
polynomial annihilating e. We have that f ′(e) = 2e − 1 is a unit since (2e − 1)2 =
4e2 − 4e + 1 ≡ 1 mod p. Hensel’s lemma now gives us a unique root e1 ∈ TÔ of f ,
i.e. an idempotent, lifting e.

We now lift every element of a set of pairwise orthogonal idempotents of TF. It
now suffices to show that the lifted idempotents are also pairwise orthogonal (their
sum is 1; otherwise we would get a contradiction in the correspondences in (a): there
cannot be more idempotents in TÔ than in TF). As their reductions are orthogonal, a
product ei e j of lifted idempotents is in p. Hence, ei e j = edi e

d
j ∈ pd for all d, whence

ei e j = 0, as desired. �

2.1.2 Commutative Algebra of Hecke Algebras

Let k ≥ 1, N ≥ 1 and χ : (Z/NZ)× → C
×. Moreover, let p be a prime,O := Z[χ ],

P a maximal prime of O above p, and let F be the residue field of O moduloP. We
let Ô denote the completion of O at P. Moreover, the field of fractions of Ô will

be denoted by K̂ and an algebraic closure by K̂ . For TO (Mk(N , χ ; C)) we only
write TO for short, and similarly over other rings. We keep using the fact that TO is
finitely generated as an O-module. We shall now apply Proposition2.7 to TÔ .

Proposition 2.8 The Hecke algebras TO and TÔ are pure of Krull dimension 1, i.e.
every maximal prime contains some minimal prime ideal.

Proof It suffices to prove that TÔ is pure of Krull dimension 1 because completion
of TO at a maximal ideal of O does not change the Krull dimension. First note that
Ô is pure of Krull dimension 1 as it is an integral extension of Zp (and the Krull
dimension is an invariant in integral extensions). With the same reasoning, TÔ is
of Krull dimension 1; we have to see that it is pure. According to Proposition2.7,
TÔ is the direct product of finite local Ô-algebras Ti . As each Ti embeds into a
finite dimensional matrix algebra over K̂ , it admits a simultaneous eigenvector (after
possibly a finite extension of K̂ ) for the standard action of the matrix algebra on
the corresponding K̂ -vector space and the map ϕ sending an element of Ti to its
eigenvalue is non-trivial and its kernel is a prime ideal strictly contained in the
maximal ideal of Ti . To see this, notice that the eigenvalues are integral, i.e. lie
in the valuation ring of a finite extension of K̂ , and can hence be reduced modulo
the maximal ideal. The kernel of ϕ followed by the reduction map is the required
maximal ideal. This proves that the height of the maximal ideal is 1. �
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By Proposition2.7, minimal primes of TÔ correspond to the maximal primes

of TK̂ and hence to Gal(K̂/K̂ )-conjugacy classes of eigenforms in Mk(N , χ ; K̂ ).

By a brute force identification of K̂ = Qp with C we may still think about these
eigenforms as the usual holomorphic ones (the Galois conjugacy can then still be
seen as conjugacy by a decomposition group above p inside the absolute Galois
group of the field of fractions of O).

Again by Proposition2.7, maximal prime ideals of TÔ correspond to the maxi-
mal prime ideals of TF and hence to Gal(F/F)-conjugacy classes of eigenforms in
Mk(N , χ ; F).

The spectrum of TÔ allows one to phrase very elegantly when conjugacy classes
of eigenforms are congruent modulo a prime above p. Let us first explain what that
means. Normalised eigenforms f take their coefficients an( f ) in rings of integers
of number fields (TO /m, when m is the kernel of the O-algebra homomorphism
TO → C, given by Tn �→ an( f )), so they can be reduced modulo primes above p
(for which we will often just say ‘reduced modulo p’). The reduction modulo a
prime above p of the q-expansion of a modular form f in Mk(N , χ ; C) is the
formal q-expansion of an eigenform in Mk(N , χ ; F).

If two normalised eigenforms f, g in Mk(N , χ ; C) or Mk(N , χ ; K̂ ) reduce to
the same element in Mk(N , χ ; F), we say that they are congruent modulo p.

Due to Exercise2.22, we may speak about reductions modulo p of Gal(K̂/K̂ )-
conjugacy classes of normalised eigenforms to Gal(F/F)-conjugacy classes. We

hence say that two Gal(K̂/K̂ )-conjugacy classes, say corresponding to normalised
eigenforms f, g, respectively, minimal ideals p1 and p2 of TÔ , are congruent mod-
ulo p, if they reduce to the same Gal(F/F)-conjugacy class.

Proposition 2.9 TheGal(K̂/K̂ )-conjugacy classes belonging to minimal primes p1
and p2 of TÔ are congruent modulo p if and only if they are contained in a common
maximal prime m of TÔ .

Proof Exercise2.23. �

Wemention the fact that if f is a newform belonging to themaximal idealm of the
Hecke algebra T := TQ(Sk(Γ1(N ), C)), then Tm is isomorphic to Q f = Q(an|n ∈
N). This follows from newform (Atkin–Lehner) theory (see [10, §5.6–5.8]), which
implies that the Hecke algebra on the newspace is diagonalisable, so that it is the
direct product of the coefficient fields.

We include here the famous Deligne–Serre lifting lemma [8, Lemme 6.11], which
we can easily prove with the tools developed so far.

Proposition 2.10 (Deligne–Serre lifting lemma) Any normalised eigenform f ∈
Sk(Γ1(N ) ; Fp) is the reduction of a normalised eigenform f ∈ Sk(Γ1(N ) ; C).

Proof Let TZ = TZ(Sk(Γ1(N ) ; C)). By definition, f is a ring homomorphism
TZ → Fp and its kernel is a maximal ideal m of TZ. According to Proposition2.8,
the Hecke algebra is pure of Krull dimension one, hence m is of height 1, meaning



96 G. Wiese

that it strictly contains a minimal prime ideal p ⊂ TZ. Let f be the composition of
the maps in the first line of the diagram:

TZ
�� ��

�� ���
��

��
��

��
�

f

����
���

���
���

���
���

���
TZ/p

� � ��

����

Z

����

� � �� C

TZ/m
� � �� Fp

where all surjections and all injections are the natural ones, and the map Z � Fp

is chosen in order to make the diagram commutative. Note that f is a ring homo-
morphism and thus a normalised eigenform in Sk(Γ1(N ) ; C). By the diagram, its
reduction is f . �

2.2 Algorithms and Implementations: Localisation
Algorithms

Let K be a perfect field, K an algebraic closure and A a finite dimensional commu-
tative K -algebra. In the context of Hecke algebras we would like to compute a local
decomposition of A as in Proposition2.7.

2.2.1 Primary Spaces

Definition 2.11 An A-module V which is finite dimensional as K -vector space is
called a primary space for A if the minimal polynomial for all a ∈ A is a prime
power in K [X ].
Lemma 2.12 (a) A is local if and only if the minimal polynomial of a (in K [X ]) is

a prime power for all a ∈ A.
(b) Let V be an A-module which is finite dimensional as K -vector space and which

is a primary space for A. Then the image of A in EndK (V ) is a local algebra.
(c) Let V be an A-module which is finite dimensional as K -vector space and let

a1, . . . , an be generators of the algebra A. Suppose that for i ∈ {1, . . . , n} the
minimal polynomial ai on V is a power of (X − λi ) in K [X ] for some λi ∈ K
(e.g. if K = K). Then the image of A in EndK (V ) is a local algebra.

Proof (a) Suppose first that A is local and take a ∈ A. Let φa : K [X ] → A be the
homomorphismof K -algebras defined by sending X toa. Let ( f ) be the kernelwith f
monic, so that by definition f is the minimal polynomial of a. Hence, K [X ]/( f ) ↪→
A, whence K [X ]/( f ) is local, as it does not contain any non-trivial idempotent.
Thus, f cannot have two different prime factors.
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Conversely, if A were not local, we would have an idempotent e /∈ {0, 1}. The
minimal polynomial of e is X (X − 1), which is not a prime power.

(b) follows directly. For (c) one canuse the following. Suppose that (a − λ)r V = 0
and (b − μ)sV = 0. Then ((a + b) − (λ + μ))r+sV = 0, as one sees by rewriting
((a + b) − (λ + μ)) = (a − λ) + (b − μ) and expanding out. From this it also fol-
lows that (ab − λμ)2(r+s)V = 0 by rewriting ab − λμ = (a − λ)(b − μ) + λ(b −
μ) + μ(a − λ). �

We warn the reader that algebras such that a set of generators acts primarily need
not be local, unless they are defined over an algebraically closed field, as we have
seen in Part (c) above. In Exercise2.24 you are asked to find an example.

The next proposition, however, tells us that an algebra over a field having a basis
consisting of primary elements is local. I found the idea for that proof in [11].

Proposition 2.13 Let K be a field of characteristic 0 or a finite field. Let A be a finite
dimensional commutative algebra over K and let a1, . . . , an be a K -basis of A with
the property that the minimal polynomial of each ai is a power of a prime polynomial
pi ∈ K [X ].

Then A is local.

Proof We assume that A is not local and take a decomposition α : A ∼−→∏r
j=1 A j

with r ≥ 2. Let K j be the residue field of A j and consider the finite dimensional
K -algebra A :=∏r

j=1 K j . Write a1, . . . , an for the images of the ai in A. They form
a K -basis. In order to have access to the components, also write ai = (ai,1, . . . , ai,r ).
Since the minimal polynomial of an element in a product is the lowest common
multiple of the minimal polynomials of the components, the assumption implies
that, for each i = 1, . . . , r , the minimal polynomial of ai, j is independent of j ; call
it pi ∈ K [X ]. Let N/K be the splitting field of the polynomials p1, . . . , pr . This
means that N is the normal closure of K j over K for any j . As a particular case,
note that N = K j for all j if K is a finite field since finite extensions of finite fields
are automatically normal. Now consider the trace TrN/K and note that TrN/K (ai ) is
a diagonal element in A for all i = 1, . . . , r since the components ai, j are roots of
the same minimal polynomial. Consequently, TrN/K (a) is a diagonal element for all
a ∈ A since the ai form a K -basis of A.

In order to come to a contradiction, it now suffices to produce an element the trace
of which is not diagonal. By Exercise2.25 there is x ∈ K1 such that TrN/K (x) �= 0.
Then the element (x, 0, . . . , 0) ∈ A clearly provides an example of an element with
non-diagonal trace. �

Lemma 2.14 Let A be a local finite dimensional commutative algebra over a perfect
field K . Let a1, . . . , an be a set of K -algebra generators of A such that the minimal
polynomial of each ai is a prime polynomial. Then A is a field.

Proof As the ai are simultaneously diagonalisable over a separable closure (con-
sidering the algebra as a matrix algebra) due to their minimal polynomials being
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squarefree (using here the perfectness of K ), so are sums and products of the ai .
Hence, 0 is the only nilpotent element in A. As the maximal ideal in an Artinian
local algebra is the set of nilpotent elements, the lemma follows. �

Proposition 2.15 Let A be a local finite dimensional commutative algebra over a
perfect field K . Let a1, . . . , an be a set of K -algebra generators of A. Let peii be the
minimal polynomial of ai (see Lemma2.12).

Then the maximal ideal m of A is generated by {p1(a1), . . . , pn(an)}.
Proof Let a be the ideal generated by {p1(a1), . . . , pn(an)}. The quotient A/a
is generated by the images of the ai , call them ai . As pi (ai ) ∈ a, it follows
pi (ai ) = 0, whence the minimal polynomial of ai equals the prime polynomial pi .
By Lemma2.14, we know that A/a is a field, whence a is the maximal ideal. �

2.2.2 Algorithm for Computing Common Primary Spaces

It may help to think about finite dimensional commutative algebras over a field
as algebras of matrices. Then the localisation statements of this section just mean
choosing a basis such that one obtains block matrices.

By a common primary space for commuting matrices we mean a direct summand
of the underlying vector space on which the minimal polynomials of the given matri-
ces are prime powers. By Proposition2.13, a common primary space of a basis of a
matrix algebra is a local factor of the algebra.

By a generalised eigenspace for commuting matrices we mean a vector subspace
of the underlying vector space onwhich theminimal polynomial of the givenmatrices
are irreducible. Allowing base changes to extension fields, the matrices restricted to
the generalised eigenspace are diagonalisable.

In this section, we present a straight forward algorithm for computing common
primary spaces and common generalised eigenspaces.

Algorithm 2.16 Input: list ops of commuting operators acting on the K -vector
space V .

Output: list of the common primary spaces inside V for all operators in ops.

(1) List := [V];
(2) for T in ops do
(3) newList := [];
(4) for W in List do
(5) compute the minimal polynomial f ∈K [X ] of T restricted toW .
(6) factor f over K into its prime powers f (X) =∏n

i=1 pi (X)ei .
(7) if n equals 1, then
(8) append W to newList,
(9) else for i := 1 to n do

(10) compute W̃ as the kernel of pi (T |W )α with α = ei for
common primary spaces or α = 1 for common generalised eigenspaces.
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(11) append W̃ to newList.
(12) end for; end if;
(13) end for;
(14) List := newList;
(15) end for;
(16) return List and stop.

2.2.3 Algorithm for Computing Idempotents

UsingAlgorithm2.16 it is possible to compute a complete set of orthogonal primitive
idempotents for A. We now sketch a direct algorithm.

Algorithm 2.17 Input: matrix M .
Output: complete set of orthogonal primitive idempotents for the matrix algebra

generated by M and 1.

(1) compute the minimal polynomial f of M .
(2) factor it f = (

∏n
i=1 p

ei
i )Xe over K with pi distinct irreducible polynomials

different from X .
(3) List := [];
(4) for i = 1 to n do
(5) g := f/peii ;
(6) M1 := g(M). If we think about M1 in block form, then there is only one

non-empty block on the diagonal, the rest is zero. In the next steps this block
is replaced by the identity.

(7) compute the minimal polynomial h of M1.
(8) strip possible factors X from h and normalise h so that h(0) = 1.
(9) append 1 − h(M1) to List. Note that h(M1) is the identity matrix except

at the block corresponding to pi , which is zero. Thus 1 − h(M1) is the idempo-
tent being zero everywhere and being the identity in the block corresponding
to pi .

(10) end for;
(11) if e > 0 then
(12) append 1 −∑e∈ List e to List.
(13) end if;
(14) return List and stop.

The algorithm for computing a complete set of orthogonal primitive idempotents
for a commutative matrix algebra consists of multiplying together the idempotents
of every matrix in a basis. See Computer Exercise2.31.
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2.3 Theoretical Exercises

Exercise 2.18 Use your knowledge on modular forms to prove that a modular form
f =∑∞

n=0 an( f )q
n of weight k ≥ 1 and level N (and Dirichlet character χ ) is

uniquely determined by
∑∞

n=1 an( f )q
n .

Exercise 2.19 Prove Proposition2.3.
Hint: use that the kernel of a ring homomorphism into an integral domain is a

prime ideal; moreover, use that all prime ideals in the Hecke algebra in the exercise
are maximal; finally, use that field homomorphisms can be extended to separable
extensions (using here that K is perfect).

Exercise 2.20 Let T be an Artinian ring.

(a) Let m be a maximal ideal of T. Prove that m∞ is a principal ideal generated by
an idempotent. Call it em.

(b) Prove that the idempotents 1 − em and 1 − en for different maximal ideals m
and n are orthogonal.

(c) Prove that the set {1 − em|m ∈ Spec(T)} forms a complete set of pairwise orthog-
onal idempotents.

Hint: see [2, §8].

Exercise 2.21 Prove the correspondences and the isomorphisms from Part (a) of
Proposition2.7.

Hint: you only need basic reasonings from commutative algebra.

Exercise 2.22 Let f, g ∈ Mk(N , χ ; K̂ ) be normalised eigenforms that we assume

to be Gal(K̂/K )-conjugate. Prove that their reductions modulo p are Gal(F/F)-
conjugate.

Exercise 2.23 Prove Proposition2.9.
Hint: it suffices to write out the definitions.

Exercise 2.24 Find a non-local algebra A over a field K (of your choice) such
that A is generated as a K -algebra by a1, . . . , an having the property that the minimal
polynomial of each ai is a power of an irreducible polynomial in K [X ].
Exercise 2.25 Let K be a field of characteristic 0 or a finite field. Let L be a finite
extension of K with Galois closure N over K . Show that there is an element x ∈ L
with TrN/K (x) �= 0.

Exercise 2.26 Let A be a commutative matrix algebra over a perfect field K . Sup-
pose that the minimal polynomial of each element of a generating set is the power
of a prime polynomial (i.e. it is primary).

Show that there exist base change matrices such that the base changed algebra
consists only of lower triangular matrices. You may and you may have to extend
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scalars to a finite extension of K . In Computer Exercise2.33 you are asked to find
and implement an algorithm computing such base change matrices.

2.4 Computer Exercises

Computer Exercise 2.27 Change Algorithm1.14 (see Computer Exercise1.44) so
that it works for modular forms over a given ring R.

Computer Exercise 2.28 Let A be a commutative matrix algebra over a perfect
field K .

(a) Write an algorithm to test whether A is local.
(b) Suppose A is local. Write an algorithm to compute its maximal ideal.

Computer Exercise 2.29 Let A be a commutative algebra over a field K . The reg-
ular representation is defined as the image of the injection

A → EndK (A), a �→ (b �→ a · b).

Write a function computing the regular representation.

Computer Exercise 2.30 Implement Algorithm2.16. Also write a function that
returns the local factors as matrix algebras (possibly using regular representations).

Computer Exercise 2.31 (a) Implement Algorithm2.17.
(b) Let S be a set of idempotents. Write a function selecting a subset of S consisting

of pairwise orthogonal idempotents such that the subset spans S (all idempotents
in S can be obtained as sums of elements in the subset).

(c) Write a function computing a complete set of pairwise orthogonal idempotents
for a commutative matrix algebra A over a field by multiplying together the
idempotents of the matrices in a basis and selecting a subset as in (b).

(d) Use Computer Exercise2.28 to compute the maximal ideals of A.

Computer Exercise 2.32 Let A be a commutative matrix algebra over a perfect
field K . Suppose that A is a field (for instance obtained as the quotient of a local A
by itsmaximal ideal computed inComputerExercise2.28).Write a function returning
an irreducible polynomial p such that A is K [X ]/(p).

If possible, the algorithm should not use factorisations of polynomials. It is a
practical realisation of Kronecker’s primitive element theorem.

Computer Exercise 2.33 Let A be a commutative matrix algebra over a perfect
field K . Suppose that the minimal polynomial of each element of a generating set is
the power of a prime polynomial (i.e. it is primary).

Write a function computing base change matrices such that the base changed
algebra consists only of lower triangular matrices (cf. Exercise2.26).
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3 Homological Algebra

In this section, we provide the tools from homological algebra that will be necessary
for the modular symbols algorithm (in its group cohomological version). A good
reference is [21].

We will be sloppy about categories. When we write category below, we really
mean abelian category, since we obviously need the existence of kernels, images,
quotients etc. For what we have in mind, we should really understand the word
category not in its precise mathematical sense but as a placeholder for R − modules,
or (co-)chain complexes of R − modules and other categories from everyday life.

3.1 Theory: Categories and Functors

Definition 3.1 A category C consists of the following data:

• a class obj(C ) of objects,
• a set HomC (A, B) of morphisms for every ordered pair (A, B) of objects,
• an identity morphism idA ∈ HomC (A, A) for every object A, and
• a composition function

HomC (A, B) × HomC (B,C) → HomC (A,C), ( f, g) �→ g ◦ f

for every ordered triple (A, B,C) of objects

such that

• (Associativity) (h ◦ g) ◦ f = h ◦ (g ◦ f ) for all f ∈ HomC (A, B), g ∈
HomC (B,C), h ∈ HomC (C, D) and

• (Unit Axiom) idB ◦ f = f = f ◦ idA for f ∈ HomC (A, B).

Example 3.2 Examples of categories are

• Sets: objects are sets, morphisms are maps.
• Let R be a not necessarily commutative ring. Left R-modules (R − modules):
objects are R-modules, morphisms are R-module homomorphisms. This is the
category we are going to work with most of the time. Note that the category of
Z-modules is the category of abelian groups.

• Right R-modules (modules − R): as above.

Definition 3.3 Let C and D be categories. A covariant/contravariant functor F :
C → D is

• a rule obj(C ) → obj(D), C �→ F(C) and

• a rule

{
covariant: HomC (C1,C2) → HomD (F(C1), F(C2)), f �→ F( f )

contravariant: HomC (C1,C2) → HomD (F(C2), F(C1)), f �→ F( f )
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such that

• F(idC) = idF(C) and

•
{
covariant: F(g ◦ f ) = F(g) ◦ F( f )

contravariant: F(g ◦ f ) = F( f ) ◦ F(g)

Example 3.4 • Let M ∈ obj(R − modules). Define

HomR(M, ·) : R − modules → Z − modules, A �→ HomR(M, A).

This is a covariant functor.
• Let M ∈ obj(R − modules). Define

HomR(·, M) : R − modules → Z − modules, A �→ HomR(A, M).

This is a contravariant functor.
• Let M ∈ obj(R − modules). Define

· ⊗R M : modules − R → Z − modules, A �→ A ⊗R M.

This is a covariant functor.
• Let M ∈ obj(modules − R). Define

M ⊗R · : R − modules → Z − modules, A �→ M ⊗R A.

This is a covariant functor.

Definition 3.5 Let C and D be categories and F,G : C → D be both covariant or
both contravariant functors. A natural transformation α : F ⇒ G is a collection of
morphisms α = (αC)C∈C : F(C) → G(C) in D for C ∈ C such that for all mor-
phisms f : C1 → C2 in C the following diagram commutes:

covariant: contravariant:

F(C1)
F( f )��

αC1 ��

F(C2)

αC2��
G(C1)

G( f )�� G(C2)

F(C1) ��
F( f )

αC1 ��

F(C2)

αC2 ��
G(C1) ��

G( f )
G(C2).

Example 3.6 Let R be a not necessarily commutative ring and let A, B ∈ obj(R −
modules) together with a morphism A → B. Then there are natural transformations
HomR(B, ·) ⇒ HomR(A, ·) and HomR(·, A) ⇒ HomR(·, B) as well as · ⊗R A ⇒
· ⊗R B and A ⊗R · ⇒ B ⊗R ·.
Proof Exercise3.31. �

Definition 3.7 • A covariant functor F : C → D is called left-exact, if for every
exact sequence
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0 → A → B → C

the sequence
0 → F(A) → F(B) → F(C)

is also exact.
• Acontravariant functor F : C → D is called left-exact, if for every exact sequence

A → B → C → 0

the sequence
0 → F(C) → F(B) → F(A)

is also exact.
• A covariant functor F : C → D is called right-exact, if for every exact sequence

A → B → C → 0

the sequence
F(A) → F(B) → F(C) → 0

is also exact.
• A contravariant functor F : C → D is called right-exact, if for every exact
sequence

0 → A → B → C

the sequence
F(C) → F(B) → F(A) → 0

is also exact.
• A covariant or contravariant functor is exact if it is both left-exact and right-exact.

Example 3.8 Both functors HomR(·, M) and HomR(M, ·) for M ∈ obj
(R − modules) are left-exact. Both functors · ⊗R M for M ∈ obj(R − modules) and
M ⊗R · for M ∈ obj(modules − R) are right-exact.

Proof Exercise3.32. �

Definition 3.9 Let R be a not necessarily commutative ring. A left R-module P
is called projective if the functor HomR(P, ·) is exact. A left R-module I is called
injective if the functor HomR(·, I ) is exact.
Lemma 3.10 Let R be a not necessarily commutative ring and let P be a left R-
module. Then P is projective if and only if P is a direct summand of some free
R-module. In particular, free modules are projective.

Proof Exercise3.33. �
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3.2 Theory: Complexes and Cohomology

Definition 3.11 A (right) chain complex C• in the category R − modules is a col-
lection of objects Cn ∈ obj(R − modules) for n ≥ m for some m ∈ Z together with

homomorphisms Cn+1
∂n+1−−→ Cn , i.e.

· · · → Cn+1
∂n+1−−→ Cn

∂n−→ Cn−1 → · · · → Cm+2
∂m+2−−→ Cm+1

∂m+1−−→ Cm
∂m−→ 0,

such that
∂n ◦ ∂n+1 = 0

for all n ≥ m. The group of n-cycles of this chain complex is defined as

Zn(C•) = ker(∂n).

The group of n-boundaries of this chain complex is defined as

Bn(C•) = im(∂n+1).

The n-th homology group of this chain complex is defined as

Hn(C•) = ker(∂n)/ im(∂n+1).

The chain complex C• is exact if Hn(C•) = 0 for all n. If C• is exact and m = −1,
one often says that C• is a resolution of C−1.

A morphism of right chain complexes φ• : C• → D• is a collection of homomor-
phisms φn : Cn → Dn for n ∈ N0 such that all the diagrams

Cn+1
∂n+1−−−−→ Cn

φn+1

⏐⏐� φn

⏐⏐�

Dn+1
∂n+1−−−−→ Dn

are commutative.
If all φn are injective, we regard C• as a sub-chain complex of D•. If all φn are

surjective, we regard D• as a quotient complex of C•.

Definition 3.12 A (right) cochain complex C• in the category R − modules is a
collection of objects Cn ∈ obj(R − modules) for n ≥ m for some m ∈ Z together

with homomorphisms Cn ∂n+1−−→ Cn+1, i.e.

0
∂m−→ Cm ∂m+1−−→ Cm+1 ∂m+2−−→ Cm+2 → · · · → Cn−1 ∂n−→ Cn ∂n+1−−→ Cn+1 → · · · ,
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such that
∂n+1 ◦ ∂n = 0

for all n ≥ m. The group of n-cocycles of this cochain complex is defined as

Zn(C•) = ker(∂n+1).

The group of n-coboundaries of this cochain complex is defined as

Bn(C•) = im(∂n).

The n-th cohomology group of this cochain complex is defined as

Hn(C•) = ker(∂n+1)/ im(∂n).

The cochain complexC• is exact if Hn(C•) = 0 for all n. IfC• is exact andm = −1,
one often says that C• is a resolution of C−1.

A morphism of right cochain complexes φ• : C• → D• is a collection of homo-
morphisms φn : Cn → Dn for n ∈ N0 such that all the diagrams

Cn ∂n+1−−−−→ Cn+1

φn

⏐
⏐� φn+1

⏐
⏐�

Dn ∂n+1−−−−→ Dn+1

are commutative.
If all φn are injective, we regard C• as a sub-chain complex of D•. If all φn are

surjective, we regard D• as a quotient complex of C•.

In Exercise3.34 you are asked to define kernels, cokernels and images of mor-
phisms of cochain complexes and to show that morphisms of cochain complexes
induce natural maps on the cohomology groups. In fact, cochain complexes of R-
modules form an abelian category.

Example: Standard Resolution of a Group

Let G be a group and R a commutative ring. Write Gn for the n-fold direct prod-
uct G × · · · × G and equip R[Gn] with the diagonal R[G]-action. We describe the
standard resolution F(G)• of R by free R[G]-modules:

0 �� ��

∂0

R �� ε
F(G)0 := R[G] �� ∂1

F(G)1 := R[G2] �� ∂2 · · · ,

where we put (the ‘hat’ means that we leave out that element):
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∂n :=
n∑

i=0

(−1)i di and di (g0, . . . , gn) := (g0, . . . , ĝi , . . . , gn).

The map ε is the usual augmentation map defined by sending g ∈ G to 1 ∈ R. By
‘standard resolution’ we refer to the straight maps. We have included the bended
arrow ∂0, which is 0 by definition, because it will be needed in the definition of
group cohomology (Definition3.13). In Exercise3.35 you are asked to check that the
standard resolution is indeed a resolution, i.e. that the above complex is exact.

Example: Bar Resolution of a Group

We continue to treat the standard resolution R by R[G]-modules, but we will write it
differently. [21] calls the following the unnormalised bar resolution of G. We shall
simply say bar resolution. If we let hr := g−1

r−1gr , then we get the identity

(g0, g1, g2, . . . , gn) = g0.(1, h1, h1h2, . . . , h1h2 . . . hn) =: g0.[h1|h2| . . . hn].

The symbols [h1|h2| . . . |hn] with arbitrary hi ∈ G hence form an R[G]-basis
of F(G)n , and one has F(G)n = R[G] ⊗R (free R-module on [h1|h2| . . . |hn]). One
computes the action of ∂n on this basis and gets ∂n =∑n

i=0(−1)i di where

di ([h1| . . . |hn]) =

⎧
⎪⎨

⎪⎩

h1[h2| . . . |hn] i = 0

[h1| . . . |hihi+1| . . . |hn] 0 < i < n

[h1| . . . |hn−1] i = n.

We will from now on, if confusion is unlikely, simply write (h1, . . . , hn) instead of
[h1| . . . |hn].
Example: Resolution of a Cyclic Group

Let G = 〈T 〉 be an infinite cyclic group (i.e. a group isomorphic to (Z,+)). Here is
a very simple resolution of R by free R[G]-modules:

0 → R[G] T−1−−→ R[G] ε−→ R → 0. (11)

Let now G = 〈σ 〉 be a finite cyclic group of order n and let Nσ :=∑n−1
i=0 σ i . Here is

a resolution of R by free R[G]-modules:

· · · → R[G] Nσ−→ R[G] 1−σ−−→ R[G] Nσ−→ R[G] 1−σ−−→ R[G] → · · ·
· · · → R[G] 1−σ−−→ R[G] ε−→ R → 0.

(12)

In Exercise3.36 you are asked to verify the exactness of these two sequences.
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Group Cohomology

A standard reference for group cohomology is [4].

Definition 3.13 Let R be a ring, G a group and M a left R[G]-module. Recall that
F(G)• denotes the standard resolution of R by free R[G]-modules.

(a) Let M be a left R[G]-module. When we apply the functor HomR[G](·, M) to the

standard resolution F(G)• cut off at 0 (i.e. F(G)1
∂1−→ F(G)0

∂0−→ 0), we get the
cochain complex HomR[G](F(G)•, M):

→ HomR[G](F(G)n−1, M)
∂n−→ HomR[G](F(G)n, M)

∂n+1−−→ HomR[G](F(G)n+1, M) → .

Define the n-th cohomology group of G with values in the G-module M as

Hn(G, M) := Hn(HomR[G](F(G)•, M)).

(b) Let M be a right R[G]-module. When we apply the functor M ⊗R[G] · to the
standard resolution F(G)• cut off at 0we get the chain complexM ⊗R[G] F(G)•:

→ M ⊗R[G] F(G)n+1
∂n+1−−→ M ⊗R[G] F(G)n

∂n−→ M ⊗R[G] F(G)n−1 → .

Define the n-th homology group of G with values in the G-module M as

Hn(G, M) := Hn(M ⊗R[G] F(G)•).

In this lecture, we shall only use group cohomology. As a motivation for looking
at group cohomology in this lecture, we can already point out that

H1(Γ1(N ), Vk−2(R)) ∼= Mk(Γ1(N ), R),

provided that 6 is invertible in R (see Theorem5.9). The reader is invited to compute
explicit descriptions of H0, H0 and H1 in Exercise3.37.

3.3 Theory: Cohomological Techniques

The cohomology of groups fits into a general machinery, namely that of derived
functor cohomology. Derived functors are universal cohomological δ-functors and
many properties of them can be derived in a purely formal way from the universality.
What this means will be explained in this section. We omit all proofs.
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Definition 3.14 Let C and D be (abelian) categories (for instance, C the right
cochain complexes of R − modules and D = R − modules). A positive covariant
cohomological δ-functor between C and D is a collection of functors Hn : C → D
for n ≥ 0 together with connecting morphisms

δn : Hn(C) → Hn+1(A)

which are defined for every short exact sequence 0 → A → B → C → 0 in C such
that the following hold:

(a) (Positivity) Hn is the zero functor if n < 0.
(b) For every short exact sequence 0 → A → B → C → 0 in C there is the long

exact sequence in D :

· · · → Hn−1(C)
δn−1−−→ Hn(A) → Hn(B) → Hn(C)

δn−→ Hn+1(A) → · · · ,

where the maps Hn(A) → Hn(B) → Hn(C) are those that are induced from the
homomorphisms in the exact sequence 0 → A → B → C → 0.

(c) For every commutative diagram in C

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

f

⏐⏐� g

⏐⏐� h

⏐⏐�

0 −−−−→ A′ −−−−→ B ′ −−−−→ C ′ −−−−→ 0

with exact rows the following diagram in D commutes, too:

Hn−1(C)
δn−1−−−−→ Hn(A) −−−−→ Hn(B) −−−−→ Hn(C)

δn−−−−→ Hn+1(A)

Hn−1(h)

⏐
⏐� Hn( f )

⏐
⏐� Hn(g)

⏐
⏐� Hn(h)

⏐
⏐� Hn+1( f )

⏐
⏐�

Hn−1(C ′) δn−1−−−−→ Hn(A′) −−−−→ Hn(B ′) −−−−→ Hn(C ′) δn−−−−→ Hn+1(A′)

Theorem 3.15 Let R be a ring (not necessarily commutative). Let C stand for the
category of cochain complexes of left R-modules. Then the cohomology functors

Hn : C → R − modules, C• �→ Hn(C•)

form a cohomological δ-functor.

Proof This theorem is proved by some ’diagram chasing’ starting from the snake
lemma. See Chap.1 of [21] for details. �

It is not difficult to conclude that group cohomology also forms a cohomological
δ-functor.

Proposition 3.16 Let R be a commutative ring and G a group.
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(a) The functor from R[G] − modules to cochain complexes of R[G] − modules
which associates to a left R[G]-module M the cochain complex HomR[G]
(F(G)•, M) with F(G)• the bar resolution of R by free R[G]-modules is exact,
i.e. it takes an exact sequence 0 → A → B → C → 0 of R[G]-modules to the
exact sequence

0 → HomR[G](F(G)•, A) → HomR[G](F(G)•, B) → HomR[G](F(G)•,C) → 0

of cochain complexes.
(b) The functors

Hn(G, ·) : R[G] − modules → R − modules, M �→ Hn(G, M)

form a positive cohomological δ-functor.

Proof Exercise3.38. �

We will now come to universal δ-functors. Important examples of such (among
them group cohomology) are obtained from injective resolutions. Although the fol-
lowing discussion is valid in any abelian category (with enough injectives),we restrict
to R − modules for a not necessarily commutative ring R.

Definition 3.17 Let R be a not necessarily commutative ring and let M ∈ obj(R −
modules).

A projective resolution of M is a resolution

· · · → P2
∂2−→ P1

∂1−→ P0 → M → 0,

i.e. an exact chain complex, in which all the Pn for n ≥ 0 are projective R-modules.
An injective resolution of M is a resolution

0 → M → I 0
∂1−→ I 1

∂2−→ I 2 → · · · ,

i.e. an exact cochain complex, in which all the I n for n ≥ 0 are injective R-modules.

We state the following lemma as a fact. It is easy for projective resolutions and
requires work for injective ones (see e.g. [13]).

Lemma 3.18 Injective and projective resolutions exist in the category of R-modules,
where R is any ring (not necessarily commutative).

Note that applying a left-exact covariant functor F to an injective resolution

0 → M → I 0 → I 1 → I 2 → · · ·

of M gives rise to a cochain complex
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0 → F (M) → F (I 0) → F (I 1) → F (I 2) → · · · ,

of which only the part 0 → F (M) → F (I 0) → F (I 1) need to be exact. This
means that the H0 of the (cut off at 0) cochain complex F (I 0) → F (I 1) →
F (I 2) → · · · is equal toF (M).

Definition 3.19 Let R be a not necessarily commutative ring.

(a) LetF be a left-exact covariant functor on the category of R-modules (mapping
for instance to Z − modules).
The right derived functors RnF (·) of F are the functors on the category of
R − modules defined as follows. ForM ∈ obj(R − modules) choose an injective
resolution 0 → M → I 0 → I 1 → · · · and let

RnF (M) := Hn
(
F (I 0) → F (I 1) → F (I 2) → · · · ).

(b) Let G be a left-exact contravariant functor on the category of R-modules.
The right derived functors RnG (·) of G are the functors on the category of
R − modules defined as follows. ForM ∈ obj(R − modules) choose aprojective
resolution · · · → P1 → P0 → M → 0 and let

RnG (M) := Hn
(
G (P0) → G (P1) → G (P2) → · · · ).

We state the following lemma without a proof. It is a simple consequence of the
injectivity, respectively, projectivity of the modules in the resolution.

Lemma 3.20 The right derived functors donot dependon the choice of the resolution
and they form a cohomological δ-functor.

Of course, one can also define left derived functors of right-exact functors. An
important example is the Tor-functorwhich is obtained by deriving the tensor product
functor in a way dual to Ext (see below). As already mentioned, the importance of
right and left derived functors comes from their universality.

Definition 3.21 (a) Let (Hn)n and (T n)n be cohomological δ-functors. Amorphism
of cohomological δ-functors is a collection of natural transformations ηn : Hn ⇒
T n that commutewith the connectinghomomorphisms δ, i.e. for every short exact
sequence 0 → A → B → C → 0 and every n the diagram

Hn(C)
δ−−−−→ Hn+1(A)

ηn
C

⏐
⏐� ηn+1

A

⏐
⏐�

T n(C)
δ−−−−→ T n+1(A)

commutes.
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(b) The cohomological δ-functor (Hn)n is universal if for every cohomological δ-
functor (T n)n and every natural transformation η0 : H0(·) ⇒ T 0(·) there is a
unique natural transformation ηn : Hn(·) ⇒ T n(·) for all n ≥ 1 such that the ηn

form a morphism of cohomological δ-functors between (Hn)n and (T n)n .

For the proof of the following central result, we refer to [21], Chap. 2.

Theorem 3.22 Let R be a not necessarily commutative ring and let F be a left-
exact covariant or contravariant functor on the category of R-modules (mapping for
instance to Z − modules).

The right derived functors (RnF (·))n of F form a universal cohomological δ-
functor.

Example 3.23 (a) Let R be a commutative ring and G a group. The functor

(·)G : R[G] − modules → R − modules, M �→ MG

is left-exact and covariant, hence we can form its right derived functors Rn(·)G .
Since we have the special case (R0(·)G)(M) = MG , universality gives a mor-
phism of cohomological δ-functors Rn(·)G ⇒ Hn(G, ·). We shall see that this
is an isomorphism.

(b) Let R be a not necessarily commutative ring. We have seen that the functors
HomR(·, M) and HomR(M, ·) are left-exact. We write

ExtnR(·, M) := RnHomR(·, M) and ExtnR(M, ·) := RnHomR(M, ·).

See Theorem3.24 below.
(c) Many cohomology theories in (algebraic) geometry are also of a right derived

functor nature. For instance, let X be a topological space and consider the cat-
egory of sheaves of abelian groups on X . The global sections functor F �→
F (X) = H0(X,F ) is left-exact and its right derived functors Rn(H0(X, ·)) can
be formed. They are usually denoted byHn(X, ·) and they define ’sheaf cohomol-
ogy’ on X . Etale cohomology is an elaboration of this based on a generalisation
of topological spaces.

Universal Properties of Group Cohomology

Theorem 3.24 Let R be a not necessarily commutative ring. The Ext-functor is
balanced. This means that for any two R-modules M, N there are isomorphisms

(ExtnR(·, N ))(M) ∼= (ExtnR(M, ·))(N ) =: ExtnR(M, N ).

Proof [21], Theorem2.7.6. �

Corollary 3.25 Let R be a commutative ring and G a group. For every R[G]-
module M there are isomorphisms
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Hn(G, M) ∼= ExtnR[G](R, M) ∼= (Rn(·)G)(M)

and the functors (Hn(G, ·))n form a universal cohomological δ-functor. Moreover,
apart from the standard resolution of R by free R[G]-modules, any resolution of R
by projective R[G]-modules may be used to compute Hn(G, M).

Proof We may compute ExtnR[G](·, M)(R) by any resolution of R by projective
R[G]-modules. Our standard resolution is such a resolution, since any free mod-
ule is projective. Hence, Hn(G, M) ∼= ExtnR[G](·, M)(R). The key is now that
Ext is balanced (Theorem3.24), since it gives Hn(G, M) ∼= ExtnR[G](R, ·)(M) ∼=
Rn(·)G(M) ∼= ExtnR[G](R, M). As the Ext-functor is universal (being a right derived
functor), also Hn(G, ·) is universal. For the last statement we recall that right
derived functors do not depend on the chosen projective respectively injective
resolution. �

You are invited to look at Exercise3.39 now.

3.4 Theory: Generalities on Group Cohomology

Wenowapply the universality of the δ-functor of group cohomology. Letφ : H → G
be a group homomorphism and A an R[G]-module. Via φ we may consider A also
as an R[H ]-module and res0 : H0(G, ·) → H0(H, ·) is a natural transformation. By
the universality of H•(G, ·) we get natural transformations

resn : Hn(G, ·) → Hn(H, ·).

These maps are called restrictions. See Exercise3.40 for a description in terms of
cochains. Very often φ is just the embedding map of a subgroup.

Assume now that H is a normal subgroup ofG and A is an R[G]-module. Thenwe
can consider φ : G → G/H and the restriction above gives natural transformations
resn : Hn(G/H, (·)H ) → Hn(G, (·)H ). We define the inflation maps to be

infln : Hn(G/H, AH )
resn−−→ Hn(G, AH ) −→ Hn(G, A)

where the last arrow is induced from the natural inclusion AH ↪→ A.
Under the same assumptions, conjugation by g ∈ G preserves H and we have

the isomorphism H 0(H, A) = AH a �→ga−−−→ AH = H 0(H, A). Hence by universality
we obtain natural maps Hn(H, A) → Hn(H, A) for every g ∈ G. One even gets an
R[G]-action on Hn(H, A). As h ∈ H is clearly the identity on H0(H, A), the above
action is in fact also an R[G/H ]-action.

Let now H ≤ G be a subgroup of finite index. Then the norm NG/H :=∑{gi } ∈
R[G] with {gi } a system of representatives of G/H gives a natural transformation
cores0 : H0(H, ·) → H0(G, ·)where · is an R[G]-module. By universality we obtain
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coresn : Hn(H, ·) → Hn(G, ·),

the corestriction (transfer) maps.
The inflation map, the R[G/H ]-action and the corestriction can be explicitly

described in terms of cochains of the bar resolution (see Exercise3.40).
It is clear that cores0 ◦ res0 is multiplication by the index (G : H). By universality,

also coresn ◦ resn is multiplication by the index (G : H). Hence we have proved the
first part of the following proposition.

Proposition 3.26 (a) Let H < G be a subgroup of finite index (G : H). For all i
and all R[G]-modules M one has the equality

coresGH ◦ resGH = (G : H)

on all Hi (G, M).
(b) Let G be a finite group of order n and R a ring in which n is invertible. Then

Hi (G, M) = 0 for all i ≥ 1 and all R[G]-modules M.

Proof Part (b) is an easy consequence with H = 1, since

Hi (G, M)
resGH−−→ Hi (1, M)

coresGH−−−→ Hi (G, M)

is the zero map (as Hi (1, M) = 0 for i ≥ 1), but it also is multiplication by n. �

The following exact sequence turns out to be very important for our purposes.

Theorem 3.27 (Hochschild–Serre) Let H ≤ G be a normal subgroup and A an
R[G]-module. There is the exact sequence:

0 → H1(G/H, AH )
infl−→ H1(G, A)

res−→ H1(G, A)G/H

→ H2(G/H, AH )
infl−→ H2(G, A).

Proof We only sketch the proof for those who know spectral sequences. It is, how-
ever, possible to verify the exactness on cochains explicitly (after having defined the
missing map appropriately). Grothendieck’s theorem on spectral sequences ([21],
6.8.2) associates to the composition of functors

(A �→ AH �→ (AH )G/H ) = (A �→ AG)

the spectral sequence

E p,q
2 : H p(G/H, Hq(H, A)) ⇒ H p+q(G, A).

The statement of the theorem is then just the 5-term sequence that one can associate
with every spectral sequence of this type. �
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Coinduced Modules and Shapiro’s Lemma

Let H < G be a subgroup and A be a left R[H ]-module. The R[G]-module

CoindGH (A) := HomR[H ](R[G], A)

is called the coinduction or the coinduced module from H to G of A. We make
CoindGH (A) into a left R[G]-module by

(g.φ)(g′) = φ(g′g) ∀ g, g′ ∈ G, φ ∈ HomR[H ](R[G], A).

Proposition 3.28 (Shapiro’s Lemma) For all n ≥ 0, the map

Sh : Hn(G,CoindGH (A)) → Hn(H, A)

given on cochains is given by

c �→ ((h1, . . . , hn) → (c(h1, . . . , hn))(1G))

is an isomorphism.

Proof Exercise3.41. �

Mackey’s Formula and Stabilisers

If H ≤ G are groups and V is an R[G]-module, we denote byResGH (V ) themodule V
considered as an R[H ]-module if we want to stress that the module is obtained by
restriction. In later sections, we will often silently restrict modules to subgroups.

Proposition 3.29 Let R be a ring, G be a group and H, K subgroups of G. Let
furthermore V be an R[H ]-module. Mackey’s formula is the isomorphism

ResGKCoind
G
HV ∼=

∏

g∈H\G/K

CoindK
K∩g−1Hg

g(ResHH∩gKg−1V ).

Here g(ResHH∩gKg−1V ) denotes the R[K ∩ g−1Hg]-module obtained from V via the

conjugated action g−1hg.gv := h.v for v ∈ V and h ∈ H such that g−1hg ∈ K.

Proof We consider the commutative diagram

ResGKHomR[H ](R[G], V ) ��

�������
������

������
∏

g∈H\G/K HomR[K∩g−1Hg](R[K ], g(ResH
H∩gKg−1V ))

∼
��∏

g∈H\G/K HomR[H∩gKg−1](R[gKg−1],ResH
H∩gKg−1V )).
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The vertical arrow is just given by conjugation and is clearly an isomorphism. The
diagonal map is the product of the natural restrictions. From the bijection

(
H ∩ gKg−1)\gKg−1 gkg−1 �→Hgk−−−−−−−→ H\HgK

it is clear that also the diagonal map is an isomorphism, proving the proposition. �

From Shapiro’s Lemma3.28 we directly get the following.

Corollary 3.30 In the situation of Proposition3.29 one has

Hi (K ,CoindGHV ) ∼=
∏

g∈H\G/K

Hi (K ∩ g−1Hg, g(ResHH∩gKg−1V )

∼=
∏

g∈H\G/K

Hi (H ∩ gKg−1,ResHH∩gKg−1V )

for all i ∈ N.

3.5 Theoretical Exercises

Exercise 3.31 Check the statements made in Example3.6.

Exercise 3.32 Verify the statements of Example3.8.

Exercise 3.33 Prove Lemma3.10.
Hint: take a free R-module F which surjects onto P , i.e. π : F � P , and use the

definition of P being projective to show that the surjection admits a split s : P → F ,
meaning that π ◦ s is the identity on P . This is then equivalent to the assertion.

Exercise 3.34 Let φ• : C• → D• be a morphism of cochain complexes.

(a) Show that ker(φ•) is a cochain complex and is a subcomplex of C• in a natural
way.

(b) Show that im(φ•) is a cochain complex and is a subcomplex of D• in a natural
way.

(c) Show that coker(φ•) is a cochain complex and is a quotient of D• in a natural
way.

(d) Show that φ• induces homomorphisms Hn(C•)
Hn(φ•)−−−→ Hn(D•) for all n ∈ N.

Exercise 3.35 Check the exactness of the standard resolution of a group G.

Exercise 3.36 Check the exactness of the resolutions (11) and (12) for an infinite
and a finite cyclic group, respectively.

Exercise 3.37 Let R, G, M be as in the definition of group (co-)homology.
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(a) Prove H0(G, M) ∼= MG , the G-invariants of M .
(b) Prove H0(G, M) ∼= MG , the G-coinvariants of M .
(c) Prove the explicit descriptions:

Z1(G, M) = { f : G → M map | f (gh) = g. f (h) + f (g) ∀g, h ∈ G},
B1(G, M) = { f : G → M map | ∃m ∈ M : f (g) = (1 − g)m ∀g ∈ G},
H1(G, M) = Z1(G, M)/B1(G, M).

In particular, if the action of G on M is trivial, the boundaries B1(G, M) are
zero, and one has:

H1(G, M) = Homgroup(G, M).

Exercise 3.38 Prove Proposition3.16.
Hint: for (a), use that free modules are projective. (b) follows from (a) together

with Theorem3.15 or, alternatively, by direct calculation. See also [4, III.6.1].

Exercise 3.39 Let R be a commutative ring.

(a) Let G = 〈T 〉 be a free cyclic group and M any R[G]-module. Prove

H0(G, M) = MG, H1(G, M) = M/(1 − T )M and Hi (G, M) = 0

for all i ≥ 2.
(b) For a finite cyclic group G = 〈σ 〉 of order n and any R[G]-module M prove

that

H0(G, M) ∼= MG, H1(G, M) ∼= {m ∈ M | Nσm = 0}/(1 − σ)M,

H2(G, M) ∼= MG/Nσ M, Hi (G, M) ∼= Hi+2(G, M) for all i ≥ 1.

Exercise 3.40 Let R be a commutative ring.

(a) Let φ : H → G be a group homomorphism and A an R[G]-module. Prove
that the restriction maps resn : Hn(G, A) → Hn(H, A) are given in terms of
cochains of the bar resolution by composing the cochains by φ.

(b) Let H be a normal subgroup of G. Describe the inflation maps in terms of
cochains of the bar resolution.

(c) Let H be a normal subgroup ofG and A an R[G]-module.Describe the R[G/H ]-
action on Hn(H, A) in terms of cochains of the bar resolution.

(d) Let now H ≤ G be a subgroup of finite index. Describe the corestriction maps
in terms of cochains of the bar resolution.

Exercise 3.41 Prove Shapiro’s lemma, i.e. Proposition3.28.
Hint: see [21, (6.3.2)] for an abstract proof; see also [4, III.6.2] for the underlying

map.
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4 Cohomology of PSL2(Z)

In this section,we shall calculate the cohomologyof thegroupPSL2(Z) and important
properties thereof. This will be at the basis of our treatment of Manin symbols in the
following section. The key in this is the description of PSL2(Z) as a free product of
two cyclic groups.

4.1 Theory: The Standard Fundamental Domain for
PSL2(Z)

We define the matrices of SL2(Z)

σ := ( 0 −1
1 0

)
, τ := ( −1 1

−1 0

)
, T = ( 1 1

0 1

) = τσ.

By the definition of the action of SL2(Z) on H in Eq.1, we have for all z ∈ H:

σ.z = −1

z
, τ.z := 1 − 1

z
, T .z = z + 1.

These matrices have the following conceptual meaning:

〈±σ 〉 = StabSL2(Z)(i), 〈±τ 〉 = StabSL2(Z)(ζ6) and 〈±T 〉 = StabSL2(Z)(∞)

with ζ6 = e2π i/6. Fromnowonwewill often represent classes ofmatrices in PSL2(Z)

by matrices in SL2(Z). The orders of σ and τ in PSL2(Z) are 2 and 3, respectively.
These statements are checked by calculation. Exercise4.19 is recommended at this
point.

Even though in this section our interest concerns the full group SL2(Z), we give
the definition of fundamental domain for general subgroups of SL2(Z) of finite index.

Definition 4.1 Let Γ ≤ SL2(Z) be a subgroup of finite index. A fundamental
domain for the action of Γ on H is a subset F ⊂ H such that the following hold:

(i) F is open.
(ii) For every z ∈ H, there is γ ∈ Γ such that γ.z ∈ F .
(iii) If γ.z ∈ F for z ∈ F and γ ∈ Γ , then one has γ = ± ( 1 0

0 1

)
.

In other words, a fundamental domain is an open set, which is small enough not
to contain any two points that are equivalent under the operation by Γ , and which is
big enough that every point in the upper half plane is equivalent to some point in the
closure of the fundamental domain.
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Proposition 4.2 The set

F := {z ∈ H | |z| > 1 and − 1

2
< Re(z) <

1

2
}

is a fundamental domain for the action of SL2(Z) on H.

It is clear that F is open. For (ii), we use the following lemma.

Lemma 4.3 Let z ∈ H. The orbit SL2(Z).z contains a point γ.z with maximal imag-
inary part (geometrically also called ‘height’), i.e.

Im(γ.z) ≥ Im(g.z) ∀g ∈ SL2(Z).

A point z ∈ H is of maximal height if |cz + d| ≥ 1 for all coprime c, d ∈ Z.

Proof We have the simple formula Im(γ.z) = Im(z)
|cz+d|2 . It implies

Im(z) ≤ Im(γ.z) ⇔ |cz + d| ≤ 1.

For fixed z = x + iy with x, y ∈ R, consider the inequality

1 ≥ |cz + d|2 = (cx + d)2 + c2y2.

This expression admits only finitely many solutions c, d ∈ Z. Among these finitely
many, we may choose a coprime pair (c, d) with minimal |cz + d|. Due to the
coprimeness, there are a, b ∈ Z such that the matrix M := ( a b

c d

)
belongs to SL2(Z).

It is now clear that M.z has maximal height. �
We next use a simple trick to show (ii) in Definition4.1 for F . Let z ∈ H. By

Lemma4.3, we choose γ ∈ SL2(Z) such that γ.z hasmaximal height.We now ‘trans-
port’ γ.z via an appropriate translation T n in such a way that −1/2 ≤ Re(T nγ.z) <

1/2. The height is obviously left invariant. Now we have |T nγ.z| ≥ 1 because oth-
erwise the height of T nγ.z would not be maximal. For, if |T nγ.z + 0| < 1 then
applying σ (corresponding to reflection on the unit circle) would make the height
strictly bigger. More precisely, we have the following result.

Lemma 4.4 Every point of maximal height inH can be translated into the closure of
the fundamental domainF . Conversely,F only contains points of maximal height.

Proof The first part was proved in the preceding discussion. The second one follows
from the calculation

|cz + d|2 =(cx + d)2 + c2y2 = c2|z|2 + 2cdx + d2

≥ c2|z|2 − |cd| + d2 ≥ c2 − |cd| + d2 ≥ (|c| − |d|)2 + |cd| ≥ 1
(13)

for all coprime integers c, d and z = x + iy ∈ H with x, y ∈ R. �
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Proof (End of the proof of Proposition4.2.) Let z ∈ F and γ := ( a b
c d

) ∈ SL2(Z)

such that γ.z ∈ F . By Lemma4.4, z and γ.z both have maximal height, whence
|cz + d| = 1. Hence the inequalities in Eq.13 are equalities, implying c = 0. Thus,
γ = ±T n for some n ∈ Z. But only n = 0 is compatible with the assumption γ.z ∈
F . This proves (iii) in Definition4.1 forF . �

Proposition 4.5 The group SL2(Z) is generated by the matrices σ and τ .

Proof Let Γ := 〈σ, τ 〉 be the subgroup of SL2(Z) generated by σ and T .
We prove that for any z ∈ H there is γ ∈ Γ such that γ.z ∈ F . For that, note that

the orbit Γ.z contains a point γ.z for γ ∈ Γ of maximal height as it is a subset of
SL2(Z).z, for which we have seen that statement. As Γ contains T = τσ , we can
translate γ.z so as to have real part in between − 1

2 and 1
2 . As Γ also contains σ , the

absolute value of the new point has to be at least 1 because other σ would make the
height bigger.

In order to conclude, choose any point z ∈ F and let M ∈ SL2(Z). We consider
the point M.z and ‘transport’ it back into F via a matrix γ ∈ Γ . We thus have
(γ M).z ∈ F . As F is a fundamental domain for SL2(Z), it follows γ M = ±1,
showing M ∈ Γ . �

An alternative algorithmic proof is provided in Algorithm5.10 below.

4.2 Theory: PSL2(Z) as a Free Product

We now apply the knowledge about the (existence of the) fundamental domain for
PSL2(Z) to derive that PSL2(Z) is a free product.

Definition 4.6 Let G and H be two groups. The free product G ∗ H of G and H
is the group having as elements all the possible words, i.e. sequences of symbols,
a1a2 . . . an with ai ∈ G − {1} or ai ∈ H − {1} such that elements from G and H
alternate (i.e. if ai ∈ G, then ai+1 ∈ H and vice versa) together with the empty
word, which we denote by 1. The integer n is called the length of the group element
(word) w = a1a2 . . . an and denoted by l(w). We put l(1) = 0 for the empty word.

The group operation in G ∗ H is concatenation of words followed by ‘reduction’
(in order to obtain a new word obeying to the rules). The reduction rules are: for all
words v,w, all g1, g2 ∈ G and all h1, h2 ∈ H :

• v1w = vw,
• vg1g2w = v(g1g2)w (i.e. the multiplication of g1 and g2 in G is carried out),
• vh1h2w = v(h1h2)w (i.e. the multiplication of h1 and h2 in H is carried out).

In Exercise4.18 you are asked to verify that G ∗ H is indeed a group and to prove
a universal property. Alternatively, if G is given by the set of generators GG together
with relations RG and similarly for the group H , then the free product G ∗ H can
be described as the group generated by GG ∪ GH with relations RG ∪ RH .
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Theorem 4.7 LetP be the free product 〈σ 〉 ∗ 〈τ 〉 of the cyclic groups 〈σ 〉 of order 2
and 〈τ 〉 of order 3.

ThenP is isomorphic to PSL2(Z). In particular, as an abstract group, PSL2(Z)

can be represented by generators and relations as 〈σ, τ | σ 2 = τ 3 = 1〉.
In the proof, we will need the following statement, which we separate because it

is entirely computational.

Lemma 4.8 Let γ ∈ P be 1 or any word starting in σ on the left, i.e. στ e1στ e2 . . . .
Then Im(τ 2γ.i) < 1.

Proof For γ = 1, the statement is clear. Suppose γ = στ e1στ e2σ . . . τ er−1στ er with
r ≥ 0, ei ∈ {1, 2} for i = 1, . . . , r . We prove more generally

Im(τ 2γ.i) = Im(τ 2(γ σ ).i) > Im(τ 2(γ σ )τ e.i) = Im(τ 2(γ σ )τ eσ.i)

for any e = 1, 2.Thismeans that extending theword to the right byστ e , the imaginary
part goes strictly down for both e = 1, 2.

We first do some matrix calculations. Let us say that an integer matrix
(
a b
c d

)

satisfies (*) if (c + d)2 > max(c2, d2). The matrix τ 2σ = ( −1 0
−1 −1

)
clearly satis-

fies (*). Let us assume that γ = ( a b
c d

)
satisfies (*). We show that γ τσ = ( ∗ ∗

c c+d

)

and γ τ 2σ = ( ∗ ∗−c−d −d

)
also satisfy (*). The first one follows once we know

(2c + d)2 > max(c2, (c + d)2). This can be seen like this:

(2c + d)2 = (c2 + 2cd) + 2c2 + (c + d)2 > 2c2 + (c + d)2 ≥ max(c2, (c + d)2),

where we used that (*) implies (c + d)2 > d2 and, thus, c2 + 2cd > 0. The second
inequality is obtained by exchanging the roles of c and d.

We thus see that τ 2γ = ( a b
c d

)
satisfies (*) for all words γ starting and ending in σ .

Finally, we have for all such γ :

Im(τ 2γ i) = 1

|ci + d|2 = 1

c2 + d2
,

Im(τ 2γ τ i) = Im(τ 2γ (i + 1)) = 1

|c(i + 1) + d|2 = 1

(c + d)2 + c2
,

Im(τ 2γ τ 2i) = Im(τ 2γ
1 + i

2
) = 1/2

|c(i/2 + 1/2) + d|2 = 2

(c + 2d)2 + c2
.

Now (*) implies the desired inequalities of the imaginary parts. �

Proof (Proof of Theorem4.7) As SL2(Z) is generated by σ and τ due to Proposi-
tion4.5, the universal property of the free product gives us a surjection of groups
P � PSL2(Z).

Let B be the geodesic path from ζ6 to i , i.e. the arc between ζ6 and i in positive
orientation (counter clockwise) on the circle of radius 1 around the origin, lying
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entirely on the closureF of the standard fundamental domain from Proposition4.2.
Define the map

PSL2(Z)
φ−→ {Paths in H}

which sends γ ∈ PSL2(Z) to γ.B, i.e. the image of B under γ . The proof of the
theorem is finished by showing that the composite

P � PSL2(Z)
φ−→ {Paths in H}

is injective, as then the first map must be an isomorphism.
This composition is injective because its image is a tree, that is, a graph without

circles. By drawing it, one convinces oneself very quickly hereof. We, however, give
a formal argument, which can also be nicely visualised on the geometric realisation
of the graph as going down further and further in every step.

In order to prepare for the proof, let us first suppose that γ1.B and γ2.B for
some γ1, γ2 ∈ PSL2(Z) meet in a point which is not the endpoint of either of the two
paths. Then γ.B intersects B in some interior point for γ := γ −1

1 γ2. This intersection
point lies on the boundary of the fundamental domain F . Consequently, by (iii) in
Definition4.1, γ = ±1 and γ1.B = γ2.B. This implies that if Im(γ1.i) �= Im(γ2.i)
where i = √−1, then γ1.B and γ2.B do not meet in any interior point and are thus
distinct paths.

It is obvious that B, σ.B, τ.B are distinct paths. They share the property that their
point that is conjugate to i has imaginary part 1 (in fact, the points conjugate to i in
the paths are i , i , i + 1, respectively).

By Lemma4.8, for γ equal to 1 or any word inP starting with σ on the left, we
obtain that τ 2γ.B is distinct from B, σ.B, τ.B because it lies ‘lower’. In particular,
τ 2γ.B �= B. As τ 2γ.B �= τ.B, we also find τγ.B �= B. Finally, if γ.B = B and
γ = στ eγ ′ with e ∈ {1, 2} and γ ′ starting in σ or γ ′ = 1, then τ eγ ′.B = σ.B, which
has already been excluded. We have thus found that for any non-trivial word γ ∈ P ,
the conjugate γ.B is distinct from B. This proves the desired injectivity. �

4.3 Theory: Mayer–Vietoris for PSL2(Z)

Motivated by the description PSL2(Z) = C2 ∗ C3, we now consider the cohomology
of a group G which is the free product of two finite groups G1 and G2, i.e. G =
G1 ∗ G2.

Proposition 4.9 Let R be a commutative ring. The sequence

0 → R[G] α−→ R[G/G1] ⊕ R[G/G2] ε−→ R → 0

with α(g) = (gG1,−gG2) and ε(gG1, 0) = 1 = ε(0, gG2) is exact.
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Proof This proof is an even more elementary version of an elementary proof that I
found in [3]. Clearly, ε is surjective and also ε ◦ α = 0.

Next we compute exactness at the centre. We first claim that for every element
g ∈ G we have

g − 1 =
∑

j

α j g j (h j − 1) ∈ R[G/G1]

for certain α j ∈ R and certain g j ∈ G, h j ∈ G2 and analogously with the roles of
G1 and G2 exchanged. To see this, we write g = a1a2 . . . an with ai alternatingly
in G1 and G2 (we do not need the uniqueness of this expression). If n = 1, there is
nothing to do. If n > 1, we have

a1a2 . . . an − 1 = a1a2 . . . an−1(an − 1) + (a1a2 . . . an−1 − 1)

and we obtain the claim by induction. Consequently, we have for all λ =∑i ri giG1

and all μ =∑k r̃k g̃kG2 with ri , r̃k ∈ R and gi , g̃k ∈ G

λ −
∑

i

ri1GG1 =
∑

j

α j g j (h j − 1) ∈ R[G/G1]

and
μ −
∑

k

r̃k1GG2 =
∑

l

α̃l g̃l(h̃l − 1) ∈ R[G/G2]

for certain α j , α̃l ∈ R, certain g j , g̃l ∈ G and certain h j ∈ G2, h̃l ∈ G1. Suppose
now that with λ and μ as above we have

ε(λ, μ) =
∑

i

ri +
∑

k

r̃k = 0.

Then we directly get

α(
∑

j

α j g j (h j − 1) −
∑

l

α̃l g̃l(h̃l − 1) +
∑

i

ri1G
) = (λ, μ)

and hence the exactness at the centre.
It remains to prove that α is injective. Now we use the freeness of the product. Let

λ =∑w aww ∈ R[G] be an element in the kernel of α. Hence,
∑

w awwG1 = 0 and∑
w awwG2 = 0. Let us assume that λ �= 0. It is clear that λ cannot just be a multiple

of 1 ∈ G, as otherwise it would not be in the kernel of α. Now pick the g ∈ G with
ag �= 0 having maximal length l(g) (among all the l(w) with aw �= 0). It follows that
l(g) > 0. Assume without loss of generality that the representation of g ends in a
non-zero element of G1. Further, since ag �= 0 and 0 =∑w awwG2, there must be
an h ∈ G with g �= h, gG2 = hG2 and ah �= 0. As g does not end in G2, we must
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have h = gy for some 0 �= y ∈ G2. Thus, l(h) > l(g), contradicting the maximality
and proving the proposition. �

Recall that we usually denote the restriction of a module to a subgroup by the
same symbol. For example, in the next proposition we will write H1(G1, M) instead
of H1(G1,ResGG1

(M)).

Proposition 4.10 (Mayer–Vietoris) Let G = G1 ∗ G2 be a free product. Let M be
a left R[G]-module. Then the Mayer–Vietoris sequence gives the exact sequences

0 → MG → MG1 ⊕ MG2 → M → H1(G, M)
res−→H1(G1, M)

⊕ H1(G2, M) → 0.

and for all i ≥ 2 an isomorphism

Hi (G, M) ∼= Hi (G1, M) ⊕ Hi (G2, M).

Proof We see that all terms in the exact sequence of Proposition4.9 are free
R-modules.We now apply the functor HomR(·, M) to this exact sequence and obtain
the exact sequence of R[G]-modules

0 → M → HomR[G1](R[G], M)
︸ ︷︷ ︸

∼=CoindGG1
(M)

⊕HomR[G2](R[G], M)
︸ ︷︷ ︸

∼=CoindGG2
(M)

→ HomR(R[G], M)
︸ ︷︷ ︸

∼=CoindG1 (M)

→ 0.

The central terms, as well as the term on the right, can be identified with coinduced
modules. Hence, the statements on cohomology follow by taking the long exact
sequence of cohomology and invoking Shapiro’s Lemma3.28. �

We now apply the Mayer–Vietoris sequence (Proposition4.10) to PSL2(Z) and
get that for any ring R and any left R[PSL2(Z)]-module M the sequence

0 → MPSL2(Z) → M 〈σ 〉 ⊕ M 〈τ 〉 → M
m �→ fm−−−→ H1(PSL2(Z), M)

res−→ H1(〈σ 〉, M) ⊕ H1(〈τ 〉, M) → 0 (14)

is exact and for all i ≥ 2 one has isomorphisms

Hi (PSL2(Z), M) ∼= Hi (〈σ 〉, M) ⊕ Hi (〈τ 〉, M). (15)

The 1-cocycle fm can be explicitly described as the cocycle given by fm(σ ) = (1 −
σ)m and fm(τ ) = 0 (see Exercise4.21).

Lemma 4.11 LetΓ ≤ PSL2(Z) be a subgroup of finite index and let x ∈ H ∪ P
1(Q)

be any point. Recall thatPSL2(Z)x denotes the stabiliser of x for thePSL2(Z)-action.
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(a) The map

Γ \PSL2(Z)/PSL2(Z)x
g �→gx−−−→ Γ \PSL2(Z)x

is a bijection.
(b) For g ∈ PSL2(Z) the stabiliser of gx for the Γ -action is

Γgx = Γ ∩ gPSL2(Z)x g
−1.

(c) For all i ∈ N, and all R[Γ ]-modules, Mackey’s formula (Proposition3.29) gives
an isomorphism

Hi (PSL2(Z)x ,Coind
PSL2(Z)
Γ V ) ∼=

∏

y∈Γ \PSL2(Z)x

Hi (Γy, V ).

Proof (a) and (b) are clear and (c) follows directly from Mackey’s formula. �

Corollary 4.12 Let R be a ring and Γ ≤ PSL2(Z) be a subgroup of finite index
such that all the orders of all stabiliser groups Γx for x ∈ H are invertible in R. Then
for all R[Γ ]-modules V one has

H1(Γ, V ) ∼= M/(M 〈σ 〉 + M 〈τ 〉)

with M = CoindPSL2(Z)
Γ (V ) and

Hi (Γ, V ) = 0

for all i ≥ 2.

Proof ByLemma4.11(b), all non-trivial stabiliser groups for the action ofΓ onH are
of the form g〈σ 〉g−1 ∩ Γ or g〈τ 〉g−1 ∩ Γ for some g ∈ PSL2(Z). Due to the invert-
ibility assumption we get from Proposition3.26 that the groups on the right in the
equation in Lemma4.11(c) are zero. Hence, by Shapiro’s lemma (Proposition3.28)
we have

Hi (Γ, V ) ∼= Hi (PSL2(Z), M)

for all i ≥ 0, so that by Eqs. (14) and (15) we obtain the proposition. �

By Exercise4.19, the assumptions of the proposition are for instance always sat-
isfied if R is a field of characteristic not 2 or 3. Look at Exercise4.20 to see for
which N the assumptions hold for Γ1(N ) and Γ0(N ) over an arbitrary ring (e.g. the
integers).
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4.4 Theory: Parabolic Group Cohomology

Before going on, we include a description of the cusps as PSL2(Z)-orbits that is very
useful for the sequel.

Lemma 4.13 The cusps P
1(Q) lie in a single PSL2(Z)-orbit. The stabiliser group

of ∞ for the PSL2(Z)-action is 〈T 〉 and the map

PSL2(Z)/〈T 〉 g〈T 〉�→g∞−−−−−→ P
1(Q)

is a PSL2(Z)-equivariant bijection.

Proof The claim on the stabiliser follows from a simple direct computation. This
makes the map well-defined and injective. The surjectivity is equivalent to the claim
that the cusps lie in a single PSL2(Z)-orbit and simply follows from the fact that any
pair of coprime integers (a, c) appears as the first column of a matrix in SL2(Z). �

Let R be a ring,Γ ≤ PSL2(Z) a subgroupoffinite index.Onedefines theparabolic
cohomology group for the left R[Γ ]-module V as the kernel of the restriction map
in

0 → H1
par(Γ, V ) → H1(Γ, V )

res−→
∏

g∈Γ \PSL2(Z)/〈T 〉
H1(Γ ∩ 〈gTg−1〉, V ). (16)

Proposition 4.14 Let R be a ring and Γ ≤ PSL2(Z) be a subgroup of finite index
such that all the orders of all stabiliser groupsΓx for x ∈ H are invertible in R. Let V
be a left R[Γ ]-module. Write for short G = PSL2(Z) and M = HomR[Γ ](R[G], V ).
Then the following diagram is commutative, its vertical maps are isomorphisms and
its rows are exact:

0 �� H1
par(Γ, V ) �� H1(Γ, V )

res �� ∏

g∈Γ \PSL2(Z)/〈T 〉
H1(Γ ∩ 〈gTg−1〉, V ) �� VΓ

�� 0

0 �� H1
par(G, M) ��

Shapiro

		

H1(G, M)
res ��

Shapiro

		

H1(〈T 〉, M) ��

Mackey
		

VΓ
�� 0

0 �� H1
par(G, M) �� M/(M 〈σ 〉 + M 〈τ 〉)

m �→(1−σ)m ��

m �→ fm

		

M/(1 − T )M ��
��

c �→c(T )

MG ��

φ

		

0

The map φ : MG → VΓ is given as f �→∑g∈Γ \G f (g).

Proof The commutativity of the diagram is checked in Exercise4.22. By Exer-
cise3.39 we have H1(〈T 〉, M) ∼= M/(1 − T )M . Due to the assumptions we may

apply Corollary4.12. The cokernel of M/(M 〈σ 〉 + M 〈τ 〉) m �→(1−σ)m−−−−−−→ M/(1 − T )M
is immediately seen to be M/((1 − σ)M + (1 − T )M), which is equal to MG , as T
and σ generate PSL2(Z). Hence, the lower row is an exact sequence.



Computational Arithmetic of Modular Forms 127

We now check that the map φ is well-defined. For this we verify that the image
of f (g) in VΓ only depends on the coset Γ \G:

f (g) − f (γ g) = f (g) − γ f (g) = (1 − γ ) f (g) = 0 ∈ VΓ .

Hence, for any h ∈ G we get

φ((1 − h). f ) =
∑

g∈Γ \PSL2(Z)

( f (g) − f (gh)) = 0,

as gh runs over all cosets. Thus, φ is well-defined. To show that φ is an isomorphism,
we give an inverse ψ to φ by

ψ : VΓ → HomR[Γ ](R[G], V )G, v �→ ev with ev(g) =
{
gv, for g ∈ Γ

0, for g /∈ Γ.

It is clear thatφ ◦ ψ is the identity. Themapφ is an isomorphism, asψ is surjective. In
order to see this, fix a system of representatives {1 = g1, g2, . . . , gn} forΓ \PSL2(Z).
We first have f =∑n

i=1 g
−1
i .e f (gi ) because for all h ∈ G we find

f (h) = g−1
j .e f (g j )(h) = e f (g j )(hg

−1
j ) = hg−1

j . f (g j ) = . f (hg−1
j g j ) = f (h),

where 1 ≤ j ≤ n is the unique index such that h ∈ Γ g j . Thus

f =
n∑

i=1

e f (gi ) −
n∑

i=2

(1 − g−1
i ).e f (gi ) ∈ im(ψ),

as needed.
More conceptually, one can first identify the coinduced module CoindPSL2(Z)

Γ (V )

with the induced one IndPSL2(Z)
Γ (V ) = R[G] ⊗R[Γ ] V . We claim that the

G-coinvariants are isomorphic to R ⊗R[Γ ] V ∼= VΓ . As R-modules we have R[G] =
IG ⊕ R1G since r �→ r1G defines a splitting of the augmentation map. Here IG
is the augmentation ideal defined in Exercise1.29. Consequently, R[G] ⊗R[Γ ] V ∼=
(IG ⊗R[Γ ] V ) ⊕ R ⊗R[Γ ] V . The claim follows, since IG(R[G] ⊗R[Γ ] V )
∼= IG ⊗R[Γ ] V .

Since all the terms in the upper and themiddle row are isomorphic to the respective
terms in the lower row, all rows are exact. �

4.5 Theory: Dimension Computations

This seems to be a good place to compute the dimension of H1(Γ, Vk−2(K )) and
H1

par(Γ, Vk−2(K )) over a field K under certain conditions. The results will be impor-
tant for the proof of the Eichler–Shimura theorem.
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Lemma 4.15 Let R be a ring and let n ≥ 1 be an integer, t = ( 1 N
0 1

)
and t ′ = ( 1 0

N 1

)
.

(a) If n!N is not a zero divisor in R, then for the t-invariants we have

Vn(R)〈t〉 = 〈Xn〉

and for the t ′-invariants
Vn(R)〈t

′〉 = 〈Y n〉.

(b) If n!N is invertible in R, then the coinvariants are given by

Vn(R)〈t〉 = Vn(R)/〈Y n, XYn−1, . . . , Xn−1Y 〉

respectively
Vn(R)〈t ′〉 = Vn(R)/〈Xn, Xn−1Y, . . . , XYn−1〉.

(c) If n!N is not a zero divisor in R, then the R-module of Γ (N )-invariants
Vn(R)Γ (N ) is zero. In particular, if R is a field of characteristic 0 and Γ is
any congruence subgroup, then Vn(R)Γ is zero.

(d) If n!N is invertible in R, then the R-module of Γ (N )-coinvariants Vn(R)Γ (N ) is
zero. In particular, if R is a field of characteristic 0 and Γ is any congruence
subgroup, then Vn(R)Γ is zero.

Proof (a) The action of t is t.(Xn−i Y i ) = Xn−i (N X + Y )i and consequently

(t − 1).(Xn−i Y i ) = (

i∑

j=0

(
i
j

)
Ni− j X i− j Y j )Xn−i − Xn−i Y i =

i−1∑

j=0

ri, j X
n− j Y j

with ri, j = Ni− j
(
i
j

)
, which is not a zero divisor, respectively invertible, by assump-

tion. For x =∑n
i=0 ai X

n−i Y i we have

(t − 1).x =
n∑

i=0

ai

i−1∑

j=0

ri, j X
n− j Y j =

n−1∑

j=0

Xn− j Y j (

n∑

i= j+1

airi, j )

= XYn−1anrn,n−1 + X2Y n−2(anrn,n−2 + an−1rn−1,n−2) + . . . .

If (t − 1).x = 0, we conclude for j = n − 1 that an = 0. Next, for j = n − 2 it
follows that an−1 = 0, and so on, until a1 = 0. This proves the statement on the
t-invariants. The one on the t ′-invariants follows from symmetry.

(b) The claims on the coinvariants are proved in a very similar and straightforward
way.

(c) and (d) As Γ (N ) contains the matrices t and t ′, this follows from Parts (a)
and (b). �
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Proposition 4.16 Let K be a field of characteristic 0 and Γ ≤ SL2(Z) be a congru-
ence subgroup of finite index μ such that Γy = {1} for all y ∈ H (e.g. Γ = Γ1(N )

with N ≥ 4). We can and do consider Γ as a subgroup of PSL2(Z).
Then

dimK H1(Γ, Vk−2(K )) = (k − 1)
μ

6
+ δk,2

and
dimK H1

par(Γ, Vk−2(K )) = (k − 1)
μ

6
− ν∞ + 2δk,2,

where ν∞ is the number of cusps of Γ , i.e. the cardinality of Γ \P
1(Q), and δk,2 ={

1 if k = 2

0 otherwise.

Proof LetM = CoindPSL2(Z)
Γ (Vk−2(K )). Thismodule has dimension (k − 1)μ. From

the Mayer–Vietoris exact sequence

0 → MPSL2(Z) → M 〈σ 〉 ⊕ M 〈τ 〉 → M → H1(PSL2(Z), M) → 0,

we obtain

dimH1(Γ, Vk−2(K )) = dim M + dim MPSL2(Z) − dimH0(〈σ 〉, M) − dimH0(〈τ 〉, M).

Recall the left PSL2(Z)-action on HomK [Γ ](K [PSL2(Z)], Vk−2(K )), which is given
by (g.φ)(h) = φ(hg). It follows immediately that every function in the K -vector
space HomK [Γ ](K [PSL2(Z)], Vk−2(K ))PSL2(Z) is constant and equal to its value at 1.
TheΓ -invariance, however, imposes additionally that this constant lies in Vk−2(K )Γ .
Hence, by Lemma4.15, dim MPSL2(Z) = δk,2. The term H0(〈σ 〉, M) is handled by
Mackey’s formula:

dim H0(〈σ 〉, M)

=
∑

x∈Γ \PSL2(Z).i

dim Vk−2(K )Γx = (k − 1)#(Γ \PSL2(Z).i) = (k − 1)
μ

2
,

since all Γx are trivial by assumption and there are hence precisely μ/2 points in YΓ

lying over i in YSL2(Z). By the same argument we get

dim H0(〈τ 〉, M) = μ

3
.

Putting these together gives the first formula:

dimK H1(Γ, Vk−2(K )) = (k − 1)(μ − μ

2
− μ

3
) + δk,2 = (k − 1)

μ

6
+ δk,2.
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The second formula can be read off from the diagram in Proposition4.14. It gives
directly

dimH1
par(Γ, Vk−2(K )) = dimH1(Γ, Vk−2(K )) + dim Vk−2(K )Γ

−
∑

g∈Γ \PSL2(Z)/〈T 〉
dimH1(Γ ∩ 〈gTg−1〉, Vk−2(K )).

All the groups Γ ∩ 〈gTg−1〉 are of the form 〈T n〉 for some n ≥ 1. Since they are
cyclic, we have

dimH1(Γ ∩ 〈gTg−1〉, Vk−2(K )) = dim Vk−2(K )〈T n〉 = 1

by Lemma4.15. As the set Γ \PSL2(Z)/〈T 〉 is the set of cusps of Γ , we conclude

∑

g∈Γ \PSL2(Z)/〈T 〉
dimH1(Γ ∩ 〈gTg−1〉, Vk−2(K )) = ν∞.

Moreover, also by Lemma4.15, dim Vk−2(K )Γ = δk,2. Putting everything together
yields the formula

dimH1
par(Γ, Vk−2(K )) = (k − 1)

μ

6
+ 2δk,2 − ν∞,

as claimed. �

Remark 4.17 One can derive a formula for the dimension even if Γ is not torsion-
free. One only needs to compute the dimensions Vk−2(K )〈σ 〉 and Vk−2(K )〈τ 〉 and to
modify the above proof slightly.

4.6 Theoretical Exercises

Exercise 4.18 (a) Verify that G ∗ H is a group.
(b) Prove the universal property represented by the commutative diagram

P

G
� �

ηG


�������

� �

ιG ����
���

� H�	

ηH
���������


�

ιH���
���

G ∗ H.

φ

��

More precisely, let ιG : G → G ∗ H and ιH : H → G ∗ H be the natural inclu-
sions. Let P be any group together with group injections ηG : G → P and
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ηH : H → P , then there is a unique group homomorphism φ : G ∗ H → P
such that ηG = φ ◦ ιG and ηH = φ ◦ ιH .

Exercise 4.19 (a) Let M ∈ SLn(Z) be an element of finite order m. Determine the
primes that may divide m. [Hint: Look at the characteristic polynomial of M .]

(b) Determine all conjugacy classes of elements of finite order in PSL2(Z).

Exercise 4.20 (a) Determine the N ≥ 1 for which Γ1(N ) has no element of finite
order apart from the identity. [Hint: You should get N ≥ 4.]

(b) Determine the N ≥ 1 forwhichΓ0(N ) has no element of order 4. Also determine
the cases in which there is no element of order 6.

Exercise 4.21 (a) Prove that the explicit description of fm in the Mayer–Vietoris
sequence (Eq.14) satisfies the properties required for the 0-th connecting homo-
morphism in Definition3.21.
Hint: Prove that if fm is a boundary, thenm ∈ M 〈σ 〉 + M 〈τ 〉.Moreover, prove that
a 1-cocycle in H1(PSL2(Z), M) which becomes a coboundary when restricted
to either 〈σ 〉 or 〈τ 〉 can be changed by a coboundary to be of the form fm for
some m ∈ M .

(b) Let 0 → A → B → C → 0 be an exact sequence of G-modules for some
group G. Let c ∈ CG and write it as a class b + A ∈ B/A ∼= C . As it is
G-invariant, we have 0 = (1 − g)c = (1 − g)(b + A), whence (1 − g)b ∈ A
for all g ∈ G. Define the 1-cocycle δ0(c) as the map G → A sending g to
(1 − g)b ∈ A.
Prove that δ0 satisfies the properties required for the 0-th connecting homomor-
phism in Definition3.21.
Note that the connecting homomorphisms are not unique (one can, e.g. replace
them by their negatives).

(c) As an alternative approach to (a), you may apply (b) to the exact sequence from
which theMayer–Vietoris sequence is derived as the associated long cohomology
sequence in Proposition4.10.

Exercise 4.22 Verify the commutativity of the diagram in Proposition4.14.

4.7 Computer Exercises

Computer Exercise 4.23 Let N ≥ 1. Compute a list of the elements of P
1(Z/NZ).

Compute a list of the cusps of Γ0(N ) and Γ1(N ) (cf. [20], p. 60). I recommend to
use the decomposition of P

1(Z/NZ) into P
1(Z/pnZ).

Computer Exercise 4.24 Let K be some field. Let χ : (Z/NZ)× → K× be a
Dirichlet character of modulus N . For given N and K , compute the group of all
Dirichlet characters. Every Dirichlet character should be implemented as a map
φ : Z → K× such that φ(a) = 0 for all a ∈ Z with (a, N ) �= 1 and φ(a) = χ(a
mod N ) otherwise.
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5 Modular Symbols and Manin Symbols

5.1 Theory: Manin Symbols

This section is an extended version of a specialisation of parts of my article [23] to
the group PSL2(Z). Manin symbols provide an alternative description of modular
symbols. See Definition5.6 below. We shall use this description for the comparison
with group cohomology and for implementing the modular symbols formalism. We
stay in the general setting over a ring R.

Proposition 5.1 The sequence of R-modules

0 → R[PSL2(Z)]Nσ+R[PSL2(Z)]Nτ

→ R[PSL2(Z)] g �→ g(1−σ)∞−−−−−−−→ R[P1(Q)] g∞ �→ 1−−−−→ R → 0

is exact. Here we are considering R[PSL2(Z)] as a right R[PSL2(Z)]-module.
Proof Let H be a finite subgroup of a group G and let H\G = {gi | i ∈ I } stand
for a fixed system of representatives of the cosets. We write R[H\G] for the free
R-module on the set of representatives. The map

HomR(R[H ], R[H\G]) → R[G], f �→
∑

h∈H
h. f (h)

is an isomorphism. Indeed, suppose that for f ∈ HomR(R[H ], R[H\G]) we have

0 =
∑

h∈H
h.( f (h)) =

∑

h∈H
h.(
∑

i∈I
ah,i gi ) =

∑

h∈H
(
∑

i∈I
ah,i hgi ),

then ah,i = 0 for all h ∈ H and all i ∈ I (since the elements hgi are all distinct),
whence f = 0. For the surjectivity, note that all elements in R[G] can be written
as (finite) sums of the form

∑
h∈H
∑

i∈I ah,i hgi because any element in G is of the
form hgi for a unique h ∈ H and a unique i ∈ I .

This yields via Shapiro’s lemma that

Hi (〈σ 〉, R[PSL2(Z)]) = Hi (〈1〉, R[〈σ 〉\PSL2(Z)]) = 0

for all i ≥ 1, and similarly for 〈τ 〉. The resolution for a finite cyclic group (12) gives

R[PSL2(Z)]Nσ = kerR[PSL2(Z)](1 − σ) = R[PSL2(Z)]〈σ 〉,

R[PSL2(Z)]Nτ = kerR[PSL2(Z)](1 − τ) = R[PSL2(Z)]〈τ 〉,
R[PSL2(Z)](1 − σ) = kerR[PSL2(Z)] Nσ and

R[PSL2(Z)](1 − τ) = kerR[PSL2(Z)] Nτ .
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By Proposition4.9, we have the exact sequence

0 → R[PSL2(Z)] → R[PSL2(Z)]〈σ 〉 ⊕ R[PSL2(Z)]〈τ 〉 → R → 0.

The injectivity of thefirstmap in the exact sequence (whichwe recall is a consequence
of PSL2(Z) = 〈σ 〉 ∗ 〈τ 〉) leads to

R[PSL2(Z)](1 − σ) ∩ R[PSL2(Z)](1 − τ) = 0.

Sending g to g∞ yields a bijection between R[PSL2(Z)]/R[PSL2(Z)](1 − T )

and R[P1(Q)]. In order to prove the exactness at R[PSL2(Z)], we show that
the equality x(1 − σ) = y(1 − T ) for x, y ∈ R[PSL2(Z)] yields that x belongs to
R[PSL2(Z)]〈σ 〉 + R[PSL2(Z)]〈τ 〉.

Note that x(1 − σ) = y(1 − T ) = y(1 − τ) − yT (1 − σ)becauseof the equality
τ = Tσ . This yields x(1 − σ) + yT (1 − σ) = y(1 − τ). This expression, however,
is equal to zero. Hence, there exists a z ∈ R[PSL2(Z)] satisfying y = zNτ . We have
NτT = Nτ σ because of T = τσ . Consequently, we get

y(1 − T ) = zNτ (1 − T ) = zNτ (1 − σ) = y(1 − σ).

The equality x(1 − σ) = y(1 − σ) implies that x − y belongs to R[PSL2(Z)]〈σ 〉.
Since y ∈ R[PSL2(Z)]〈τ 〉, we see get that x = (x − y) + y lies in R[PSL2(Z)]〈σ 〉 +
R[PSL2(Z)]〈τ 〉, as required.

It remains to prove the exactness at R[P1(Q)]. The kernel of R[PSL2(Z)] g �→1−−→ R
is the augmentation ideal, which is generated by all elements of the 1 − g for g ∈
PSL2(Z). Noticing further that we can write

1 − αβ = α.(1 − β) + (1 − α)

for α, β ∈ PSL2(Z), the fact that σ and T = τσ generate PSL2(Z) implies that the

kernel of R[PSL2(Z)] g �→1−−→ R equals

R[PSL2(Z)](1 − σ) + R[PSL2(Z)](1 − T )

inside R[PSL2(Z)] It suffices to take the quotient by R[PSL2(Z)](1 − T ) to obtain
the desired exactness. �

Lemma 5.2 The sequence of R-modules

0 → MR
{α,β}�→β−α−−−−−−→ R[P1(Q)] α �→1−−→ R → 0

is exact.

Proof Note that, using the relations defining MR , any element in MR can be
written as

∑
α �=∞ rα{∞, α} with rα ∈ R. This element is mapped to

∑
α �=∞ rαα −
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(
∑

α �=∞ rα)∞. If this expression equals zero, all coefficients rα have to be zero. This
shows the injectivity of the first map.

Let
∑

α rαα ∈ R[P1(Q)] be an element in the kernel of the second map. Then∑
α rα = 0, so that we can write

∑

α

rαα =
∑

α �=∞
rαα − (

∑

α �=∞
rα)∞

to obtain an element in the image of the first map. �

Proposition 5.3 The homomorphism of R-modules

R[PSL2(Z)] φ−→ MR, g �→ {g.0, g.∞}

is surjective with kernel R[PSL2(Z)]Nσ + R[PSL2(Z)]Nτ .

Proof This follows from Proposition5.1 and Lemma5.2. �

We have now provided all the input required to prove the description of modular
symbols in terms of Manin symbols. For this we need the notion of an induced mod-
ule. In homology it plays the role that the coinduced module plays in cohomology.

Definition 5.4 Let R be a ring, G a group, H ≤ G a subgroup and V a left R[H ]-
module. The induced module of V from H to G is defined as

IndGH (V ) := R[G] ⊗R[H ] V,

where we view R[G] as a right R[H ]-module via the natural action. The induced
module is a left R[G]-module via the natural left action of G on R[G].

In case of H having a finite index in G (as in our standard example Γ1(N ) ≤
PSL2(Z)), the induced module is isomorphic to the coinduced one:

Lemma 5.5 Let R be a ring, G a group, H ≤ G a subgroup of finite index and V a
left R[H ]-module.
(a) IndGH (V ) and CoindGH (V ) are isomorphic as left R[G]-modules.
(b) Equip (R[G] ⊗R V ) with the diagonal left H-action h.(g ⊗ v) = hg ⊗ h.v and

the right G-action (g ⊗ v).g̃ = gg̃ ⊗ v. Consider the induced module IndGH (V )

as a right R[G]-module by inverting the left action in the definition. Then

IndGH (V ) → (R[G] ⊗R V )H , g ⊗ v �→ g−1 ⊗ v

is an isomorphism of right R[G]-modules.
Proof Exercise5.11. �
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Definition 5.6 Let Γ ⊆ PSL2(Z) a finite index subgroup, V a left R[Γ ]-module
and M = IndPSL2(Z)

Γ (V ), which we identify with the right R[PSL2(Z)]-module
(R[PSL2(Z)] ⊗R V )Γ as in Lemma5.5(b).

Elements in M/(MNσ + MNτ ) are called Manin symbols over R (for the sub-
group Γ ⊆ PSL2(Z) and the left R[Γ ]-module V ).

Theorem 5.7 In the setting of Definition5.6, the following statements hold:

(a) The homomorphism φ from Proposition5.3 induces the exact sequence of R-
modules

0 → MNσ + MNτ → M → MR(Γ, V ) → 0,

and the homomorphism M → MR(Γ, V ) is given by g ⊗ v �→ {g.0, g.∞} ⊗ v.
In other words, this map induces an isomorphism betweenManin symbols over R
(for the subgroup Γ ⊆ PSL2(Z) and the left R[Γ ]-module V ) and the modular
symbols module MR(Γ, V ).

(b) The homomorphism R[PSL2(Z)] → R[P1(Q)] sending g to g.∞ induces the
exact sequence of R-modules

0 → M(1 − T ) → M → BR(Γ, V ) → 0.

(c) The identifications of (a) and (b) imply the isomorphism

CM R(Γ, V ) ∼= ker
(
M/(MNσ + MNτ )

m �→m(1−σ)−−−−−−→ M/M(1 − T )
)
.

Proof (a) Proposition5.3 gives the exact sequence

0 → R[PSL2(Z)]Nσ + R[PSL2(Z)]Nτ → R[PSL2(Z)] → MR → 0,

which we tensor with V over R, yielding the exact sequence of left R[Γ ]-modules

0 → (R[PSL2(Z)] ⊗R V )Nσ+(R[PSL2(Z)] ⊗R V )Nτ

→ (R[PSL2(Z)] ⊗R V ) → MR(V ) → 0.

Passing to left Γ -coinvariants yields (a) because MNσ and MNτ are the images
of (R[PSL2(Z)] ⊗R V )Nσ and (R[PSL2(Z)] ⊗R V )Nτ inside M , respectively. (b)
is clear from the definition and (c) has already been observed in the proof of
Proposition5.1. �

In the literature on Manin symbols one usually finds a more explicit version of
the induced module. This is the contents of the following proposition. It establishes
the link with the main theorem on Manin symbols in [20], namely Theorem8.4.

Since in the following proposition left and right actions are involved, we some-
times indicate left (co-)invariants by using left subscripts (resp. superscripts) and
right (co-)invariants by right ones.
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Proposition 5.8 Letχ : (Z/NZ)× → R× be a character such thatχ(−1) = (−1)k .
Consider the R-module

X := R[Γ1(N )\SL2(Z)] ⊗R Vk−2(R) ⊗R Rχ

equipped with the right SL2(Z)-action (Γ1(N )h ⊗ V ⊗ r)g = (Γ1(N )hg ⊗ g−1v ⊗
r) and with the left Γ1(N )\Γ0(N )-action g(Γ1(N )h ⊗ v ⊗ r) = (Γ1(N )gh ⊗ v ⊗
χ(g)r).

Then
X ∼= IndSL2(Z)

Γ1(N ) (V χ

k (R))

as a right R[SL2(Z)]-module and a left R[Γ1(N )\Γ0(N )]-module. Moreover,

Γ1(N )\Γ0(N )X ∼= IndSL2(Z)

Γ0(N ) (V χ

k (R)).

If N ≥ 3, then the latter module is isomorphic to IndPSL2(Z)

Γ0(N )/{±1}(V
χ

k (R)).

Proof Mapping g ⊗ v ⊗ r to g ⊗ g−1v ⊗ r defines an isomorphism of right
R[SL2(Z)]-modules and of left R[Γ1(N )\Γ0(N )]-modules

Γ1(N )(R[SL2(Z)] ⊗R Vk−2(R) ⊗R Rχ ) → X.

As we have seen above, the left-hand side module is naturally isomorphic to
the induced module IndSL2(Z)

Γ1(N ) (V χ

k (R)) (equipped with its right R[SL2(Z)]-action
described before). This establishes the first statement. The second one follows
from Γ1(N )\Γ0(N )

(
Γ1(N )M

) = Γ0(N )M for any Γ0(N )-module M . The third state-
ment is due to the fact that 〈−1〉(R[SL2(Z)] ⊗R V χ

k−2(R)) is naturally isomorphic
to R[PSL2(Z)] ⊗R V χ

k−2(R), since −1 acts trivially on the second factor, as the
assumption assures that −1 ∈ Γ0(N ) but −1 /∈ Γ1(N ). �

For one more description of the induced module IndPSL2(Z)

Γ0(N )/{±1}(V
χ

k (R)) see
Exercise5.12. It is this description that uses up the least memory in an implementa-
tion. Now all the prerequisites have been provided for implementing Manin symbols
(say for Γ0(N ) and a character). This is the task of Computer Exercise5.14.

5.2 Theory: Manin Symbols and Group Cohomology

Let Γ ≤ PSL2(Z) be a subgroup of finite index, and V a left R[Γ ]-module for a
ring R.

Theorem 5.9 Suppose that the orders of all stabiliser subgroups of Γ for the action
on H are invertible in R. Then we have isomorphisms:

H1(Γ, V ) ∼= MR(Γ, V )
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and
H1

par(Γ, V ) ∼= CM R(Γ, V ).

Proof As before, set M = IndPSL2(Z)
Γ (V ) and recall that this module is isomorphic to

CoindPSL2(Z)
Γ (V ). To see the first statement, in view of Theorem5.7 and the corollary

of the Mayer–Vietoris exact sequence (Corollary4.12), it suffices to show M 〈σ 〉 =
MNσ and M 〈τ 〉 = MNτ . By the resolution of R for a cyclic group in (12), the
quotient M 〈σ 〉/MNσ is equal to H 2(〈σ 〉, M), but this one is zero by the application
of Mackey’s formula done in Lemma4.11(c). The same argument works with τ

instead of σ .
The passage to the parabolic/cuspidal subspaces is immediate because the bound-

ary map with source M has the same explicit description in both cases (see Theo-
rem5.7(c) and Proposition4.14). �

5.3 Algorithms and Implementations: Conversion Between
Manin and Modular Symbols

We now use the Euclidean Algorithm to represent any element g ∈ PSL2(Z) in terms
of σ and T .

Algorithm 5.10 Input: A matrix M = ( a b
c d

)
with integer entries and determinant 1.

Output: A list of matrices [A1, A2, . . . , An]where all Ai ∈ {T n|n ∈ Z} ∪ {σ } and
σ and T n alternate.

(1) create an empty list output.
(2) if |c| > |a| then
(3) append σ to output.
(4) M := σM .
(5) end if;
(6) while c �= 0 do
(7) q := a div c.
(8) append T q to output.
(9) append σ to output.
(10) M := σT−qM .
(11) end while;
(12) if M /∈ {( 1 0

0 1

)
,
( −1 0

0 −1

)} then [At this point M ∈ {( 1 ∗
0 1

)
,
( −1 ∗

0 −1

)}.]
(13) append M to output.
(14) end if;
(15) return output.

This algorithmgives a constructive proof of the fact (Proposition4.5) that PSL2(Z)

is generated by σ and T , and hence also by σ and τ . Note, however, that the algorithm
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does not necessarily give the shortest such representation. See Exercise5.13 for a
relation to continued fractions.

We can use the algorithm to make a conversion between modular symbols and
Manin symbols, as follows. Suppose we are given the modular symbols {α,∞} (this
is no loss of generality, as we can represent {α, β} = {α,∞} − {β,∞}). Suppose
α is given as g∞ with some g ∈ SL2(Z) (i.e. representing the cusp as a fraction a

c
with (a, c) = 1, then we can find b, d by the Euclidean Algorithm such that g =(
a b
c d

) ∈ SL2(Z) satisfies the requirements). We now use Algorithm5.10 to represent
g as σT a1σT a2σ . . . T anσ (for example). Then we have

{α,∞} = σT a1σT a2σ . . . T an {0,∞} + σT a1σT a2σ . . . T an−1{0,∞}+
· · · + σT a1{0,∞} + {0,∞}.

If g does not end in σ but T an , then we must drop T an from the above formula (since
T stabilises∞). If g starts in T a1 (instead of σ ), then wemust drop the last summand.

Since we are in weight 2 (i.e. trivial module V ), the space of Manin symbols is a
quotient of R[PSL2(Z)]/Γ (see Definition5.6). TheManin symbol corresponding to
the above example chosen for the modular symbol {α,∞} is then simply represented
by the formal sum

σT a1σT a2σ . . . T an + σT a1σT a2σ . . . T an−1 + · · · + σT a1 + 1. (17)

If themodule V is not trivial, a modular symbol would typically look like {α,∞} ⊗ v
for v ∈ V and the corresponding Manin symbol would be the formal sum in (17)
tensored with v.

In Computer Exercise5.15 you are asked to implement a conversion between
Manin and modular symbols.

5.4 Theoretical Exercises

Exercise 5.11 Prove Lemma5.5.

Exercise 5.12 Assume the set-up of Proposition5.8. Describe a right PSL2(Z)-
action on

Y := R[P1(Z/NZ)] ⊗R Vk−2(R) ⊗R Rχ

and an isomorphism
Γ1(N )\Γ0(N )X → Y

of right PSL2(Z)-modules.

Exercise 5.13 Provide a relationship between Algorithm5.10 and continued frac-
tions.
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5.5 Computer Exercises

Computer Exercise 5.14 Use the description of Exercise5.12 and your results from
Computer Exercises4.23 and 4.24 to implement Manin symbols for Γ0(N ) and a
character over a field. As a first approach you may use the trivial character only.

Computer Exercise 5.15 (a) Write an algorithm to represent any element of the
group PSL2(Z) in terms of σ and T .

(b) Write an algorithm that represents anymodular symbol {α, β} as aManin symbol
(inside the vector space created in Computer Exercise5.14).

6 Eichler–Shimura

This section is devoted to proving the theorem by Eichler and Shimura that is at
the basis of the modular symbols algorithm and its group cohomological variant.
The standard reference for the Eichler–Shimura theorem is [19, §8.2]. In the entire
section, let k ≥ 2 be an integer.

6.1 Theory: Petersson Scalar Product

Recall the standard fundamental domain for SL2(Z)

F = {z = x + iy ∈ H | |z| > 1, |x | <
1

2
}

from Proposition4.2. Every subgroup Γ ≤ SL2(Z) of finite index has a fundamental
domain, for example,

⋃
γ∈Γ \PSL2(Z) γF for any choice of system of representatives

of the cosets Γ \PSL2(Z), where we put Γ = Γ/(〈±1〉 ∩ Γ ).

Lemma 6.1 (a) Let γ ∈ GL2(R)+ be a real matrix with positive determinant. Let
f ∈ Mk(Γ ; C) and g ∈ Sk(Γ ; C). We have with z ∈ H

f (γ z)g(γ z)(γ z − γ z)k = det(γ )2−k f |γ (z)g|γ (z)(z − z)k

for all γ ∈ SL2(R). The function G(z) := f (z)g(z)(z − z)k is bounded on H.
(b) We have dγ z = det(γ )

(cz+d)2
dz for all γ ∈ GL2(R)+.

(c) The differential form dz∧dz
(z−z)2 is GL2(R)+-invariant. In terms of z = x + iy we

have dz∧dz
(z−z)2 = i

2
dx∧dy

y2 .

(d) LetΓ ≤ SL2(Z) be a subgroupwith finite indexμ = (PSL2(Z) : Γ ). The volume
of any fundamental domainFΓ forΓ with respect to the differential form 2dz∧dz

i(z−z)2 ,
i.e.
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vol(FΓ ) =
∫

FΓ

2dz ∧ dz

i(z − z)2
,

is equal to μπ
3 .

Proof (a) The first statement is computed as follows:

f (γ z)g(γ z)(γ z − γ z)k

= det(γ )2(1−k)( f |γ (z)(cz + d)k)(g|γ (z)(cz + d)k)(
az + b

cz + d
− az + b

cz + d
)k

= det(γ )2−2k f |γ (z)g|γ (z)((az + b)(cz + d) − (az + b)(cz + d))k

= det(γ )2−k f |γ (z)g|γ (z)(z − z)k,

where we write γ = ( a b
c d

)
. By the preceding computation, the function G(z) is

invariant under γ ∈ Γ . Hence, it suffices to check that |G(z)| is bounded on the
closure of any fundamental domain FΓ for Γ . For this, it is enough to verify for
every γ in a system of representatives of Γ \SL2(Z) that any of the functions G(γ z)
is bounded on the closure of the standard fundamental domainF . By the preceding
computation, we also have G(γ z) = f |γ (z)g|γ (z)(z − z)k for γ ∈ SL2(Z). Note
that f (z)g(z) is a cusp form in S2k(Γ ; C), in particular, for every γ ∈ SL2(Z) the
function f |γ (z)g|γ (z) has a Fourier expansion in∞ of the form

∑∞
n=1 ane

2π i zn . This
series converges absolutely and uniformly on compact subsets of H, in particular,
for any C > 1

Kγ :=
∞∑

n=1

|ane2π i(x+iC)n| =
∞∑

n=1

|an|e−2πCn

is a positive real number, depending on γ (in a system of representatives Γ \SL2(Z)).
We have with z = x + iy and y ≥ C

|G(γ z)| ≤ (2y)k
∞∑

n=1

|an|e−2πyn = (2y)ke−2πy
∞∑

n=1

|an|e−2πy(n−1)

≤ (2y)ke−2πy
∞∑

n=1

|an|e−2πC(n−1)

≤ (2y)ke−2πy Kγ e
2πC .

This tends to 0 if y tends to ∞. Consequently, the function G(γ z) is bounded on the
closure of the standard fundamental domain, as desired.

(b) Again writing γ = ( a b
c d

)
we have

dγ z

dz
= d az+b

cz+d

dz
= 1

(cz + d)2
(a(cz + d) − (az + b)c) = det(γ )

(cz + d)2
,

which gives the claim.



Computational Arithmetic of Modular Forms 141

(c) This is again a simple computation:

(γ z − γ z)−2dγ z ∧ dγ z = det(γ )2(
az + b

cz + d
− az + b

cz + d
)−2(cz + d)−2(cz + d)−2dz ∧ dz

= (z − z)−2dz ∧ dz,

using (b). The last statement is

dz ∧ dz

(z − z)2
= (dx + idy) ∧ (dx − idy)

(2iy)2
= −2idx ∧ dy

−4y2
= idx ∧ dy

2y2
.

(d) Due to the Γ -invariance, it suffices to show

∫

F

dz ∧ dz

(z − z)2
= iπ

6
.

Let ω = − dz
z−z . The total derivative of ω is

dω = ((z − z)−2dz − (z − z)−2dz) ∧ dz = dz ∧ dz

(z − z)2
.

Hence, Stokes’ theorem yields

∫

F

dz ∧ dz

(z − z)2
= −
∫

∂F

dz

z − z
,

where ∂F is the positively oriented border of F , which we describe concretely as
the path A from ∞ to ζ3 on the vertical line, followed by the path C from ζ3 to ζ6 on
the unit circle and finally followed by −T A. Hence with z = x + iy we have

∫

F

dz ∧ dz

(z − z)2
= − 1

2i

( ∫

A

dz

y
−
∫

T A

dz

y
+
∫

C

dz

y

) = − 1

2i

∫

C

dz

y
,

since dz = dT z. Using the obvious parametrisation of C we obtain

− 1

2i

∫

C

dz

y
= − 1

2i

∫ 2π/6

2π/3

1

Im(eiφ)

deiφ

dφ
dφ = −1

2

∫ 2π/6

2π/3

eiφ

Im(eiφ)
dφ

= −1

2

∫ 2π/6

2π/3
(
cos(φ)

sin(φ)
+ i)dφ = − i

2
(
2π

6
− 2π

3
) = iπ

6
,

since sin is symmetric around π/2 and cos is antisymmetric, so that the integral over
cos(φ)

sin(φ)
cancels. �

Definition 6.2 LetΓ ≤SL2(Z) be a subgroup of finite index andμ := (PSL2(Z) : Γ )

be the index of Γ = Γ/(〈±1〉 ∩ Γ ) in PSL2(Z). We define the Petersson pairing as
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Mk(Γ ; C) × Sk(Γ ; C) →C

( f, g) �→ −1

(2i)k−1μ

∫

FΓ

f (z)g(z)(z − z)k
dz ∧ dz

(z − z)2

= 1

μ

∫

FΓ

f (z)g(z)yk−2dx ∧ dy =: ( f, g),

where FΓ is any fundamental domain for Γ .

Proposition 6.3 (a) The integral in the Petersson pairing converges. It does not
depend on the choice of the fundamental domain FΓ .

(b) ThePetersson pairing is a sesqui-linear pairing (linear in the first and anti-linear
in the second variable).

(c) The restriction of the Petersson pairing to Sk(Γ ; C) is a positive definite scalar
product (the Petersson scalar product).

(d) If f, g are modular (cusp) forms for the group Γ and Γ ′ ≤ Γ is a subgroup of
finite index, then the Petersson pairing of f and g with respect to Γ gives the
same value as the one with respect to Γ ′.

Proof (a) By Lemma6.1 the integral converges, since the function

G(z) := f (z)g(z)(z − z)k

is bounded on FΓ and the volume of FΓ for the measure in question is finite. The
integral does not depend on the choice of the fundamental domain by the invariance
of G(z) under Γ .

(b) is clear.
(c) We have

( f, f ) = 1

μ

∫

FΓ

| f (z)|2yk−2dx ∧ dy,

which is clearly non-negative. It is 0 if and only if f is the zero function, showing
that the product is positive definite.

(d) If FΓ is a fundamental domain for Γ , then
⋃

γ∈Γ ′\Γ γFΓ is a fundamental
domain for Γ ′ (for any choice of representatives of Γ ′\Γ ). But on every γFΓ the
integral takes the same value. �

Proposition 6.4 Let f, g ∈ Sk(Γ ; C). We have

( f, g) = −1

(2i)k−1μ

∑

γ∈Γ \PSL2(Z)

∫ i

ζ3

∫ 0

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz.
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Proof Let us write for shortGγ (z, z) = f |γ (z)g|γ (z)(z − z)k for γ ∈ SL2(Z). Then

−(2i)k−1μ( f, g) =
∫

⋃
γ γF

G(z, z)
dz ∧ dz

(z − z)2
=
∑

γ

∫

F
Gγ (z, z)

dz ∧ dz

(z − z)2

by Lemma6.1, where the union resp. sum runs over a fixed system of coset represen-
tatives of Γ \PSL2(Z); by our observations, everything is independent of this choice.
Consider the differential form

ωγ := (
∫ z

∞
f |γ (u)(u − z)k−2du

)
g|γ (z)dz.

Note that the integral converges since f is a cusp form. The total derivative of ωγ is
dωγ = Gγ (z, z) dz∧dz

(z−z)2 . Consequently, Stokes’ theorem gives

∑

γ

∫

F
Gγ (z, z)

dz ∧ dz

(z − z)2
=
∑

γ

∫

∂F

( ∫ z

∞
f |γ (u)(u − z)k−2du

)
g|γ (z)dz,

where as above ∂F is the positively oriented border of the standard fundamental
domain F , which we describe as the path A along the vertical line from ∞ to ζ3,
followed by the path B from ζ3 to i along the unit circle, followed by −σ B and
by −T A.

We now make a small calculation. Let for this C be any (piecewise continuously
differentiable) path in H and M ∈ SL2(Z):

∫

MC

∫ z

∞
f |γ (u)g|γ (z)(u − z)k−2dudz

=
∫

C

∫ Mz

∞
f |γ (u)g|γ (Mz)(u − Mz)k−2du

dMz

dz
dz

=
∫

C

∫ z

M−1∞
f |γ M (u)g|γ M (z)(u − z)k−2dudz

=
∫

C

∫ z

∞
f |γ M (u)g|γ M (z)(u − z)k−2dudz −

∫

C

∫ M−1∞

∞
f |γ M (u)g|γ M (z)(u − z)k−2dudz.

This gives

∫

C−MC

∫ z

∞
f |γ (u)g|γ (z)(u − z)k−2dudz =

∫

C

∫ z

∞
(Gγ (u, z) − Gγ M (u, z))dudz +

∫

C

∫ M−1∞

∞
Gγ M (u, z)dudz.
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Continuing with the main calculation, we have

− (2i)k−1μ( f, g)

=
∑

γ

[ ∫

A

∫ z

∞
(Gγ (u, z) − Gγ T (u, z))dudz +

∫

A

∫ T−1∞

∞
Gγ T (u, z)dudz

]

+
∑

γ

[ ∫

B

∫ z

∞
(Gγ (u, z) − Gγ σ (u, z))dudz +

∫

B

∫ σ−1∞

∞
Gγ σ (u, z)dudz

]

=
∑

γ

∫

B

∫ 0

∞
Gγ σ (u, z)dudz,

using T−1∞ = ∞, σ−1∞ = 0 and the fact that the γ T and γ σ are just permutations
of the cosets. �

6.2 Theory: The Eichler–Shimura Map

Let Γ ≤ SL2(Z) be a subgroup of finite index. We fix some z0 ∈ H. For f ∈
Mk(Γ ; C) with k ≥ 2 and γ, δ in Z

2×2 with positive determinant, let

I f (γ z0, δz0) :=
∫ δz0

γ z0

f (z)(Xz + Y )k−2dz ∈ Vk−2(C).

The integral is to be taken coefficient-wise. Note that it is independent of the
chosen path since we are integrating holomorphic functions.

Lemma 6.5 For any z0 ∈ H and anymatrices γ, δ ∈ Z
2×2 with positive determinant

we have
I f (z0, γ δz0) = I f (z0, γ z0) + I f (γ z0, γ δz0)

and

I f (γ z0, γ δz0) = det(γ )2−k(γ.
(
I f |γ (z0, δz0)

)
) = (det(γ )−1γ ).

(
I f |γ (z0, δz0)

)
.

Proof The first statement is clear. Write γ = ( a b
c d

)
. Recall that by Lemma6.1(b),

we have dγ z = det(γ )

(cz+d)2
dz. We compute further
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I f (γ z0, γ δz0) =
∫ γ δz0

γ z0

f (z)(Xz + Y )k−2dz

=
∫ δz0

z0

f (γ z)(Xγ z + Y )k−2 dγ z

dz
dz

= det(γ )2−k
∫ δz0

z0

f |γ (z)(cz + d)k−2(X
az + b

cz + d
+ Y )k−2dz

= det(γ )2−k
∫ δz0

z0

f |γ (z)(X (az + b) + Y (cz + d))k−2dz

= det(γ )2−k
∫ δz0

z0

f |γ (z)((Xa + Yc)z + (Xb + Yd))k−2dz

= det(γ )2−k
∫ δz0

z0

f |γ (z)(γ.(Xz + Y ))k−2dz

= det(γ )2−k · γ.
( ∫ δz0

z0

f |γ (z)(Xz + Y )k−2dz
)

= det(γ )2−k · γ.
(
I f |γ (z0, δz0)

)
.

We recall that for a polynomial P(X, Y ) we have the action

(g.P)(X,Y ) = P((X, Y )
(
a b
c d

)
) = P(Xa + Yc, Xb + Yd).

�

Definition 6.6 The space of antiholomorphic cusp forms Sk(Γ ; C) consists of the
functions z �→ f (z) := f (z) with f ∈ Sk(Γ ; C).

We can consider an antiholomorphic cusp form as a power series in z. For instance,
if f (z) =∑∞

n=1 ane
2π inz , then f (z) =∑∞

n=1 ane
2π in(−z) = f̃ (−z), where f̃ (z) =∑∞

n=1 ane
2π inz . Note that

∫

α

F(z)dz =
∫ 1

0
F(α(t))

dα

dt
dt =
∫ 1

0
F(α(t))

dα

dt
dt

=
∫ 1

0
F(α(t))

dα

dt
dt =
∫

α

F(z)dz (18)

for any piecewise analytic path α : [0, 1] → C and any integrable complex valued
function F . This means for f ∈ Sk(Γ ; C):

I f (γ z0, δz0) =
∫ δz0

γ z0

f (z)(Xz + Y )k−2dz ∈ Vk−2(C).

Proposition 6.7 Let k ≥ 2 and Γ ≤ SL2(Z) be a subgroup of finite index and fix
z0, z1 ∈ H.
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(a) The Eichler–Shimura map

Mk(Γ ; C) ⊕ Sk(Γ ; C) → H1(Γ, Vk−2(C)),

( f, g) �→ (γ �→ I f (z0, γ z0) + Ig(z1, γ z1))

is a well-defined homomorphism of C-vector spaces. It does not depend on the
choice of z0 and z1.

(b) The induced Eichler–Shimura map

Mk(Γ ; C) ⊕ Sk(Γ ; C) → H1(SL2(Z),HomC[Γ ](C[SL2(Z)], Vk−2(C))),

( f, g) �→ (a �→ (b �→ I f (bz0, baz0) + Ig(bz1, baz1)))

is a well-defined homomorphism of C-vector spaces. It does not depend on the
choice of z0 and z1. Via the map from Shapiro’s lemma, this homomorphism
coincides with the one from (a).

Proof (a) For checking that the map is well-defined, it suffices to compute that
γ �→ I f (z0, γ z0) is a 1-cocycle:

I f (z0, γ δz0) = I f (z0, γ z0) + I f (γ z0, γ δz0) = I f (z0, γ z0) + γ.I f (z0, δz0),

using Lemma6.5 and f |γ = f since γ ∈ Γ .
The independence of the base point is seen as follows. Let z̃0 be any base point.

I f (z̃0, γ z̃0) = I f (z̃0, z0) + I f (z0, γ z0) + I f (γ z0, γ z̃0) = I f (z0, γ z0) + (1 − γ )I f (z̃0, z0).

The difference of the cocycles (γ �→ I f (z̃0, γ z̃0)) and (γ �→ I f (z0, γ z0)) is hence
the coboundary (γ �→ (1 − γ )I f (z̃0, z0)).

(b) We first check that the map (b �→ I f (bz0, baz0) + Ig(bz1, baz1)) is indeed in
the coinduced module HomC[Γ ](C[SL2(Z)], Vk−2(C)). For that let γ ∈ Γ . We have

I f (γ bz0, γ baz0) = γ.(I f (bz0, baz0))

by Lemma6.5, as desired. The map φ(a) := (b �→ I f (bz0, baz0) + Ig(bz1, baz1))
is a cocycle:

φ(a1a2)(b) = I f (bz0, ba1a2z0) + Ig(bz1, ba1a2z1) =
I f (bz0, ba1z0) + I f (ba1z0, ba1a2z0) + Ig(bz1, ba1z1) + Ig(ba1z1, ba1a2z1)

= φ(a1)(b) + φ(a2)(ba1) = φ(a1)(b) + (a1.(φ(a2)))(b),

by the definition of the left action of SL2(Z) on the coinduced module. Note that the
map in Shapiro’s lemma in our situation is given by
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φ �→ (γ �→ φ(γ )(1) = I f (z0, γ z0)) + Ig(z1, γ z1)),

which shows that the maps from (a) and (b) coincide. The independence from the
base point in (b) now follows from the independence in (a). �

Next we identify the cohomology of SL2(Z) with the one of PSL2(Z).

Proposition 6.8 Let Γ ≤ SL2(Z) be a subgroup of finite index and let R be a ring
in which 2 is invertible. Let V be a left R[Γ ]-module. Assume that either −1 /∈ Γ or
−1 ∈ Γ acts trivially on V . Then the inflation map

H1(PSL2(Z),HomR[Γ ](R[PSL2(Z)], V ))
infl−−→ H1(SL2(Z),HomR[Γ ](R[SL2(Z)], V ))

is an isomorphism. We shall identify these two R-modules from now on.

Proof If −1 /∈ Γ , then Γ ∼= Γ and HomR[Γ ](R[SL2(Z)], V )〈−1〉 consists of all the
functions satisfying f (g) = f (−g) for all g ∈ SL2(Z), which are precisely the func-
tions in HomR[Γ ](R[PSL2(Z)], V ).

If −1 ∈ Γ and −1 acts trivially on V , then f (−g) = (−1). f (g) = f (g) and
so −1 already acts trivially on HomR[Γ ](R[SL2(Z)], V ). This R[SL2(Z)]-module
is then naturally isomorphic to HomR[Γ ](R[PSL2(Z)], V ) since any function is
uniquely determined on its classes modulo 〈−1〉.

Due to the invertibility of 2, the Hochschild–Serre exact sequence (Theorem3.27)
shows that inflation indeed gives the desired isomorphism because the third term
H1(〈±1〉,HomR[Γ ](R[SL2(Z)], V )) in the inflation-restriction sequence is zero (see
Proposition3.26). �

Proposition 6.9 The kernel of the Eichler–Shimura map composed with the restric-
tion

Mk(Γ ; C) ⊕ Sk(Γ ; C) → H1(Γ, Vk−2(C)) →
∏

c∈Γ \P1(Q)

H1(Γc, Vk−2(C))

is equal to Sk(Γ ; C)⊕Sk(Γ ; C). In particular, the image of Sk(Γ ; C)⊕Sk(Γ ; C)

under the Eichler–Shimura map lies in the parabolic cohomologyH1
par(Γ, Vk−2(C)).

Proof In order to simplify the notation of the proof, we shall only prove the case of
a modular form f ∈ Mk(Γ ; C). The statement for antihomolorphic forms is proved
in the same way. The composition maps the modular form f to the 1-cocycle (for
γ ∈ Γc)

γ �→
∫ γ z0

z0

f (z)(Xz + Y )k−2dz

with a fixed base point z0 ∈ H. The aim is now to move the base point to the cusps.
We cannot just replace z0 by ∞, as then the integral might not converge any more
(it converges on cusp forms). Let c = M∞ be any cusp with M = ( a b

c d

) ∈ SL2(Z).
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We then have Γc = 〈MTM−1〉 ∩ Γ = 〈MTrM−1〉 for some r ≥ 1. Since f is holo-
morphic in the cusps, we have

f |M(z) =
∞∑

n=0

ane
2π in/r z = a0 + g(z)

and thus
f (z) = a0|M−1(z) + g|M−1(z) = a0

(−cz + a)k
+ g|M−1(z).

Now we compute the cocycle evaluated at γ = MTrM−1:

∫ γ z0

z0
f (z)(Xz + Y )k−2dz = a0

∫ γ z0

z0

(Xz + Y )k−2

(−cz + a)k
dz +
∫ γ z0

z0
g|M−1 (z)(Xz + Y )k−2dz.

Before we continue by evaluating the right summand, we remark that the integral

Ig|M−1 (z0, M∞) =
∫ M∞
z0

g|M−1 (z)(Xz + Y )k−2dz = M.

∫ ∞
M−1z0

g(z)(Xz + Y )k−2dz

converges. We have

∫ γ z0

z0

g|M−1(z)(Xz + Y )k−2dz = (

∫ M∞

z0

+
∫ γ z0

γ M∞
)g|M−1(z)(Xz + Y )k−2dz

= (1 − γ ).

∫ M∞

z0

g|M−1(z)(Xz + Y )k−2dz

since g|M−1γ (z) = g|T r M−1(z) = g|M−1(z). The 1-cocycle γ �→ ∫ γ z0
z0

g|M−1(z)(Xz +
Y )k−2dz is thus a 1-coboundary. Consequently, the class of the image of f is equal
to the class of the 1-cocycle

γ �→ a0

∫ γ z0

z0

(Xz + Y )k−2

(−cz + a)k
dz.

We have the isomorphism (as always for cyclic groups)

H1(Γc, Vk−2(C))
φ �→φ(MTr M−1)−−−−−−−−−→ Vk−2(C)Γc .

Furthermore, we have the isomorphism

Vk−2(C)Γc

P �→M−1P−−−−−→ Vk−2(C)〈T r 〉
P �→P(0,1)−−−−−→ C
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with polynomials P(X,Y ). Note that the last map is an isomorphism by the explicit
description of Vk−2(C)〈T r 〉. Under the composition the image of the cocycle coming
from the modular form f is

a0M
−1.

∫ γ z0

z0

(Xz + Y )k−2

(−cz + a)k
dz(0, 1) = a0

∫ γ z0

z0

(Xz + Y )k−2

(−cz + a)k
dz(−c, a)

= a0

∫ γ z0

z0

1

(−cz + a)2
dz = a0

∫ T r M−1z0

M−1z0

dz = a0(M
−1z0 + r − M−1z0) = ra0,

as (0, 1)M−1 = (0, 1)
(

d −b−c a

) = (−c, a). This expression is zero if and only if a0 =
0, i.e. if and only if f vanishes at the cusp c.

A similar argument works for antiholomorphic cusp forms. �

6.3 Theory: Cup Product and Petersson Scalar Product

This part owes much to the treatment of the Petersson scalar product by Haberland
in [14] (see also [5, §12]).

Definition 6.10 Let G be a group and M and N be two left R[G]-modules. We
equip M ⊗R N with the diagonal left R[G]-action. Let m, n ≥ 0. Then we define
the cup product

∪ : Hn(G, M) ⊗R Hm(G, N ) → Hn+m(G, M ⊗R N )

by

φ ∪ ψ :=((g1, . . . , gn, gn+1, . . . , gn+m)

�→ φ(g1, . . . , gn) ⊗ (g1 · · · gn).ψ(gn+1, . . . , gn+m)

on cochains of the bar resolution.

This description can be derived easily from the natural one on the standard reso-
lution. For instance, [4, §5.3] gives the above formula up to a sign (which does not
matter in our application anyway because we work in fixed degree). In Exercise6.17
it is checked that the cup product is well-defined.

Lemma 6.11 Keep the notation of Definition6.10 and let φ ∈ Hn(G, M) and ψ ∈
Hm(G, N ). Then

φ ∪ ψ = (−1)mnψ ∪ φ

via the natural isomorphism M ⊗R N ∼= N ⊗R M.

Proof Exercise6.18. �
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We are now going to formulate a pairing on cohomology, which will turn out to be
a version of the Petersson scalar product. We could introduce compactly supported
cohomology for writing it in more conceptual terms, but have decided not to do this
in order not to increase the amount of new material even more.

Definition 6.12 Let M be an R[PSL2(Z)]-module. The parabolic 1-cocycles are
defined as

Z1
par(Γ, M) = ker(Z1(Γ, M)

res−→
∏

g∈Γ \PSL2(Z)/〈T 〉
Z1(Γ ∩ 〈gTg−1〉, M)).

Proposition 6.13 Let R be a ring in which 6 is invertible. Let M and N be
left R[PSL2(Z)]-modules together with a R[PSL2(Z)]-module homomorphism π :
M ⊗R N → R where we equip M ⊗R N with the diagonal action. Write G for
PSL2(Z). We define a pairing

〈, 〉 : Z1(G, M) × Z1(G, N ) → R

as follows: Let (φ,ψ) be a pair of 1-cocycles. Form their cup product ρ :=
π∗(φ ∪ ψ) in Z2(G, R) via Z2(G, M ⊗R N )

π∗−→ Z2(G, R). As H2(G, R) is zero
(Corollary4.12), ρ must be a 2-coboundary, i.e. there is a : G → R (depending
on (φ,ψ)) such that

ρ(g, h) = π(φ(g) ⊗ g.ψ(h)) = a(h) − a(gh) + a(g).

We define the pairing by
〈φ,ψ〉 := a(T ).

(a) The pairing is well-defined and bilinear. It can be expressed as

〈φ,ψ〉 = −ρ(τ, σ ) + 1

2
ρ(σ, σ ) + 1

3
(ρ(τ, τ ) + ρ(τ, τ 2)).

(b) If φ ∈ Z1
par(G, M), then ρ(τ, σ ) = ρ(σ, σ ) and

〈φ,ψ〉 = −1

2
ρ(σ, σ ) + 1

3
(ρ(τ, τ ) + ρ(τ, τ 2)).

Moreover, 〈φ,ψ〉 only depends on the class of ψ in H1(G, N ).
(c) If ψ ∈ Z1

par(G, N ), then ρ(τ, σ ) = ρ(τ, τ 2) and

〈φ,ψ〉 = 1

2
ρ(σ, σ ) + 1

3
ρ(τ, τ ) − 2

3
ρ(τ, τ 2).

Moreover, 〈φ,ψ〉 only depends on the class of φ in H1(G, M).
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(d) If φ ∈ Z1
par(G, M) and ψ ∈ Z1

par(G, N ), then ρ(σ, σ ) = ρ(τ, τ 2) and

〈φ,ψ〉 = −1

6
ρ(σ, σ ) + 1

3
ρ(τ, τ ).

Proof (a) We first have

0 = π(φ(1) ⊗ ψ(1)) = ρ(1, 1) = a(1) − a(1) + a(1) = a(1),

since φ and ψ are 1-cocycles. Recall that the value of a 1-cocycle at 1 is always 0
due to φ(1) = φ(1 · 1) = φ(1) + φ(1). Furthermore, we have

ρ(τ, σ ) = a(σ ) − a(T ) + a(τ )

ρ(σ, σ ) = a(σ ) − a(1) + a(σ ) = 2a(σ )

ρ(τ, τ 2) = a(τ 2) − a(1) + a(τ ) = a(τ ) + a(τ 2)

ρ(τ, τ ) = a(τ ) − a(τ 2) + a(τ ) = 2a(τ ) − a(τ 2)

Hence, we get a(T ) = −ρ(τ, σ ) + a(σ ) + a(τ ) and a(σ ) = 1
2ρ(σ, σ ) as well as

a(τ ) = 1
3 (ρ(τ, τ ) + ρ(τ, τ 2)), fromwhich the claimed formula follows.The formula

also shows the independence of the choice of a and the bilinearity.
(b) Now assume φ(T ) = 0. Using T = τσ we obtain

ρ(τ, σ ) = π(φ(τ)⊗τψ(σ)) = −π(τ.φ(σ ) ⊗ τψ(σ))

= −π(φ(σ ) ⊗ ψ(σ)) = π((φ(σ ) ⊗ σψ(σ))) = ρ(σ, σ )

because 0= φ(T )= φ(τσ)= τ.φ(σ )+φ(τ) and 0 = ψ(1) = ψ(σ 2) = σ.ψ(σ) +
ψ(σ). This yields the formula.

We now show that the pairing does not depend on the choice of 1-cocycle in the
class of ψ . To see this, let ψ(g) = (g − 1)n with n ∈ N be a 1-coboundary. Put
b(g) := π(−φ(g) ⊗ gn). Then, using φ(gh) = g(φ(h)) + φ(g), one immediately
checks the equality

ρ(g, h) = π(φ(g) ⊗ g(h − 1)n) = g.b(h) − b(gh) + b(g).

Hence, (φ,ψ) is mapped to b(T ) = π(−φ(T ) ⊗ Tn) = π(0 ⊗ Tn) = 0.
(c) Let now ψ(T ) = 0. Then 0 = ψ(T ) = ψ(τσ) = τψ(σ) + ψ(τ) and 0 =

ψ(τ 3) = τψ(τ 2) + ψ(τ), whence τψ(τ 2) = τψ(σ). Consequently,

ρ(τ, σ ) = π(φ(τ) ⊗ τψ(σ)) = π(φ(τ) ⊗ τψ(τ 2)) = ρ(τ, τ 2),

implying the formula.
The pairing does not depend on the choice of 1-cocycle in the class of φ. Let

φ(g) = (g − 1)m be a 1-coboundary and put c(g) := π(m ⊗ ψ(g)). Then the equal-



152 G. Wiese

ity
ρ(g, h) = π((g − 1)m ⊗ gψ(h)) = g.c(h) − c(gh) + c(g)

holds. Hence, (φ,ψ) is mapped to c(T ) = π(m ⊗ ψ(T )) = π(m ⊗ 0) = 0.
(d) Suppose now that φ(T ) = 0 = ψ(T ), then by what we have just seen

ρ(τ, σ ) = ρ(σ, σ ) = ρ(τ, τ 2).

This implies the claimed formula. �

Our next aim is to specialise this pairing to the cocycles coming from modular
forms under the Eichler–Shimura map. Wemust first define a pairing on the modules
used in the cohomology groups.

On themodules Symk−2(R2)wenowdefine the symplectic pairing over any ring R
in which (k − 2)! is invertible. Let n = k − 2 for simplicity. The pairing for n = 0
is just the multiplication on R. We now define the pairing for n = 1 as

R2 × R2 → R, ( a
c ) • ( bd

) := det
(
a b
c d

)
.

For any g ∈ SL2(Z) we have

g( a
c ) • g
(
b
d

) = det g
(
a b
c d

) = det
(
a b
c d

) = ( a
c ) • ( bd

)
.

As the next step, we define a pairing on the n-th tensor power of R2

(R2 ⊗R · · · ⊗R R2) × (R2 ⊗R · · · ⊗R R2) → R

by

(
( a1
c1

)⊗ · · · ⊗ ( ancn
)
) • (
( b1
d1

)⊗ · · · ⊗ ( bndn
)
) :=

n∏

i=1

( ai
ci

) • ( bidi
)
.

This pairing is still invariant under the SL2(Z)-action.
Now we use the assumption on the invertibility of n! in order to embed Symn(R2)

as an R[Sn]-module in the n-th tensor power, where the action of the symmetric
group Sn is on the indices. We have that the map (in fact, 1/n! times the norm)

Symn(R2) → R2 ⊗R · · · ⊗R R2, [( a1c1
)⊗ · · · ⊗ ( ancn

)] �→ 1

n!
∑

σ∈Sn

( aσ(1)
cσ(1)

)
⊗ · · · ⊗

( aσ(n)
cσ(n)

)

is injective (one can use Tate cohomology groups to see this) as the order of Sn is
invertible in the ring.

Finally, we define the pairing on Symn(R2) as the restriction of the pairing on
the n-th tensor power to the image of Symn(R2) under the embedding that we just
described. This pairing is, of course, still SL2(Z)-invariant.

We point to the important special case
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( a
c )

⊗(k−2) • ( bd
)⊗(k−2) = (ad − bc)k−2.

Hence, after the identification Symk−2(R2) ∼= Vk−2(R) from Exercise1.31, the
resulting pairing on Vk−2(R) has the property

(aX + cY )k−2 • (bX + dY )k−2 �→ (ad − bc)k−2.

This pairing extends to a paring on coinduced modules

π : HomR[Γ ](R[PSL2(Z)], Vk−2(R)) ⊗R HomR[Γ ](R[PSL2(Z)], Vk−2(R)) → R
(19)

by mapping (α, β) to
∑

γ∈Γ \PSL2(Z) α(γ ) • β(γ ).

Proposition 6.14 Let k ≥ 2. Assume −1 /∈ Γ (whence we view Γ as a subgroup of
PSL2(Z)). Let f, g ∈ Sk(Γ ; C) be cusp forms. Denote by φ f the 1-cocycle associ-
ated with f under the Eichler–Shimura map for the base point z0 = ∞, i.e.

φ f (a) = (b �→ I f (b∞, ba∞)) ∈ Z1(PSL2(Z),CoindPSL2(Z)
Γ (Vk−2(C))).

Further denote

φ f (a) = (b �→ I f (b∞, ba∞)) ∈ Z1(PSL2(Z),CoindPSL2(Z)
Γ (Vk−2(C))).

Similarly, denote by ψg the 1-cocycle associated with g for the base point z1 = ζ6.
Define a bilinear pairing as in Proposition6.13

〈, 〉 : (Z1(PSL2(Z),CoindPSL2(Z)
Γ (Vk−2(C)))

)2 → C

with the product on the coinduced modules described in (19). Then the equation

〈φ f , ψg〉 = (2i)k−1μ( f, g)

holds where ( f, g) denotes the Petersson scalar product and μ the index of Γ in
PSL2(Z).

Proof Note that the choice of base point ∞ is on the one hand well-defined (the
integral converges, as it is taken over a cusp form) and on the other hand it ensures
that φ f (T ) = φ f (T ) = 0. But note thatψg is not a parabolic cocycle in general since
the chosen base point is not ∞ even though g is also a cusp form.

Nowconsider 〈φ f , ψg〉. Letρ(a, b) := π(φ f (a) ⊗ aψg(b)),whereπ is from (19).
We describe ρ(a, b):
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ρ(a, b) =
∑

γ

( ∫ γ a∞

γ∞
f (z)(Xz + Y )k−2dz

) • (
∫ γ abζ6

γ aζ6

g(z)(Xz + Y )k−2dz
)

=
∑

γ

∫ γ abζ6

γ aζ6

∫ γ a∞

γ∞
f (z)g(z)

(
(Xz + Y )k−2 • (Xz + Y )k−2

)
dzdz

=
∑

γ

∫ γ abζ6

γ aζ6

∫ γ a∞

γ∞
f (z)g(z)(z − z)k−2dzdz

=
∑

γ

∫ abζ6

aζ6

∫ a∞

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz.

where the sums run over a system of representatives of Γ \PSL2(Z). We obtain

ρ(σ, σ )

=
∑

γ

∫ σ2ζ6

σζ6

∫ σ∞
∞

f |γ (z)g|γ (z)(z − z)k−2dzdz

=
∑

γ

∫ ζ6

ζ3

∫ 0

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz,

=
∑

γ

[ ∫ i

ζ3

∫ 0

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz +

∫ σ i

σζ3

∫ σ0

σ∞
f |γ (z)g|γ (z)(z − z)k−2dzdz

]

=
∑

γ

[ ∫ i

ζ3

∫ 0

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz +

∫ i

ζ3

∫ 0

∞
f |γ σ (z)g|γ σ (z)(z − z)k−2dzdz

]

=2
∑

γ

∫ i

ζ3

∫ 0

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz,

and

ρ(τ, τ ) =
∑

γ

∫ τ 2ζ6

τζ6

∫ τ∞

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz = 0

ρ(τ, τ 2) =
∑

γ

∫ τ 3ζ6

τζ6

∫ τ∞

∞
f |γ (z)g|γ (z)(z − z)k−2dzdz = 0,

since τ stabilises ζ6. It now suffices to compare with the formulas computed before
(Propositions6.13 and 6.4) to obtain the claimed formula. �
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6.4 Theory: The Eichler–Shimura Theorem

Wecan now, finally, prove that the Eichler–Shimuramap is an isomorphism. It should
be pointed out again that the cohomology groups can be replaced bymodular symbols
according to Theorem5.9.

Theorem 6.15 (Eichler–Shimura) Let N ≥ 4 and k ≥ 2. The Eichler–Shimura map
and the induced Eichler–Shimura map (Proposition6.7) are isomorphisms for Γ =
Γ1(N ). The image of Sk(Γ1(N ) ; C) ⊕ Sk(Γ1(N ) ; C) is isomorphic to the parabolic
subspace.

Proof We first assert that the dimensions of both sides of the Eichler–Shimura map
agree and also that twice the dimension of the space of cusp forms equals the dimen-
sion of the parabolic subspace. The dimension of the cohomology group and its
parabolic subspace was computed in Proposition4.16. For the dimension of the left-
hand side we refer to [20, §6.2].

Suppose that ( f, g) are in the kernel of the Eichler–Shimura map. Then by Propo-
sition6.9 it follows that f and g are both cuspidal. Hence, it suffices to prove that
the restriction of the Eichler–Shimura map to Sk(Γ1(N ) ; C) ⊕ Sk(Γ1(N ) ; C) is
injective. In order to do this we choose z0 = z1 = ∞ as base points for the Eichler–
Shimura map, which is possible as the integrals converge on cusp forms (as in Propo-
sition6.7 one sees that this choice of base point does not change the cohomology
class). As in Proposition6.14, we write φ f for the 1-cocycle associated with a cusp
form f for the base point ∞.

We now make use of the pairing from Proposition6.14 on

Z1(PSL2(Z),CoindPSL2(Z)
Γ (Vk−2(C))),

where we put Γ := Γ1(N ) for short. This pairing induces a C-valued pairing 〈 , 〉
on

H1
par(PSL2(Z),CoindPSL2(Z)

Γ (Vk−2(C))).

Next observe that the map

Sk(Γ1(N ) ; C) ⊕ Sk(Γ1(N ) ; C)
( f,g) �→( f +g, f −g)−−−−−−−−−−→ Sk(Γ1(N ) ; C) ⊕ Sk(Γ1(N ) ; C)

is an isomorphism. Let f, g ∈ Sk(Γ1(N ) ; C) be cusp forms and assume now that
( f + g, f − g) is sent to the zero-class in H1

par(PSL2(Z),CoindPSL2(Z)
Γ (Vk−2(C))).

In that cohomology space, we thus have

0 = φ f + φg + φ f − φg = (φ f + φ f ) + (φg − φg) = 2Re(φ f ) + 2i Im(φg).

We conclude that the cohomology classes of φ f + φ f and φg − φg are both zero.
Now we apply the pairing as follows:
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0 = 〈φ f , φ f + φ f 〉 = 〈φ f , φ f 〉 + 〈φ f , φ f 〉 = (2i)k−1μ( f, f )

where we used 〈φ f , φ f 〉 = 0 because of Lemma6.11 (since the pairing is given by
the cup product), as well as Proposition6.14. Hence, ( f, f ) = 0 and, thus, f = 0
since the Petersson scalar product is positive definite. Similar arguments with 0 =
〈φg, φg − φg〉 show g = 0. This proves the injectivity. �

Remark 6.16 The Eichler–Shimura map is, in fact, an isomorphism for all sub-
groupsΓ of SL2(Z) of finite index. The proof is the same, butmust usemore involved
dimension formulae for the cohomologygroup (seeRemark4.17) andmodular forms.

In Corollary7.30, we will see that there also is an Eichler–Shimura isomorphism
with a Dirichlet character.

6.5 Theoretical Exercises

Exercise 6.17 Check that the cup product is well-defined.
Hint: this is a standard exercise that can be found in many textbooks (e.g. [4]).

Exercise 6.18 Prove Lemma6.11.
Hint: [4, (5.3.6)].

7 Hecke Operators

In this section, we introduce Hecke operators on group cohomology using the double
cosets approach and we prove that the Eichler–Shimura isomorphism is compatible
with the Hecke action on group cohomology and modular forms.

7.1 Theory: Hecke Rings

Definition 7.1 Let N , n ∈ N. We define

Δn
0(N ) = {( a b

c d

) ∈ M2(Z)| ( a b
c d

) ≡ ( ∗ ∗
0 ∗ ) mod N , (a, N ) = 1, det

(
a b
c d

) = n},
Δn

1(N ) = {( a b
c d

) ∈ M2(Z)| ( a b
c d

) ≡ ( 1 ∗
0 ∗
)

mod N , det
(
a b
c d

) = n},
Δ0(N ) =

⋃

n∈N

Δn
0(N ),

Δ1(N ) =
⋃

n∈N

Δn
1(N ).

From now on, let (Δ, Γ ) = (Δ1(N ), Γ1(N )) or (Δ, Γ ) = (Δ0(N ), Γ0(N )).
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Lemma 7.2 Let α ∈ Δ. We put

Γα = Γ ∩ α−1Γ α and Γ α = Γ ∩ αΓ α−1.

Then Γα has finite index in Γ and α−1Γ α (one says that Γ and α−1Γ α are com-
mensurable), and also Γ α has finite index in Γ and αΓ α−1 (hence, Γ and αΓ α−1

are commensurable).

Proof Let n = det α. One checks by matrix calculation that

α−1Γ (Nn)α ⊂ Γ (N ).

Thus,
Γ (Nn) ⊂ α−1Γ (N )α ⊂ α−1Γ α.

Hence, we have Γ (Nn) ⊂ Γα and the first claim follows. For the second claim, one
proceeds similarly. �
Example 7.3 Let Γ = Γ0(N ) and p a prime. The most important case for the sequel
is α = ( 1 0

0 p

)
. An elementary calculation shows Γ α = Γ0(Np).

Definition 7.4 Let α ∈ Δ. We consider the diagram

Γα\H
α

τ �→ατ
��

πα

��

Γ α\H

πα

��
Γ \H Γ \H,

in which πα and πα are the natural projections. One checks that this is well-defined
by using αΓαα−1 = Γ α .

Thegroupof divisorsDiv(S)onaRiemann surface S consists of all formalZ-linear
combinations of points of S. For amorphism π : S → T of Riemann surfaces, define
the pull-back π∗ : Div(T ) → Div(S) and the push-forward π∗ : Div(S) → Div(T )

uniquely by the rules π∗(t) =∑s∈S:π(s)=t s and π∗(s) = π(s) for points t ∈ T and
s ∈ S.

The modular correspondence or Hecke correspondence τα is defined as

τα : Div(YΓ )
π∗

α−→ Div(YΓα
)

α∗−→ Div(YΓ α )
πα∗−→ Div(YΓ ).

These modular correspondences will be described more explicitly in a moment.
First a lemma:

Lemma 7.5 Let αi ∈ Γ for i ∈ I with some index set I . Then we have

Γ =
⊔

i∈I
Γααi ⇔ Γ αΓ =

⊔

i∈I
Γ ααi .
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Proof This is proved by quite a straight forward calculation. �

Corollary 7.6 Let α ∈ Δ andΓ αΓ =⊔i∈I Γ ααi . Then theHecke correspondence
τα : Div(YΓ ) → Div(YΓ ) is given by τ �→∑i∈I ααiτ for representatives τ ∈ H.

Proof It suffices to check the definition using Lemma7.5. �

Remark 7.7 We have Δn =⋃α∈Δ,det α=n Γ αΓ and one can choose finitely many αi

for i ∈ I such that Δn =⊔i∈I Γ αiΓ .

Definition 7.8 LetΔn =⊔i∈I Γ αiΓ . The Hecke operator Tn onDiv(YΓ ) is defined
as

Tn =
∑

i∈I
ταi .

Let us recall from Eq. (2) the matrix σa ∈ Γ0(N ) (for (a, N ) = 1) which satisfies

σa ≡ ( a−1 0
0 a

)
mod N .

Proposition 7.9 (a) We have the decomposition

Δn
0(N ) =

⊔

a

⊔

b

Γ0(N )
(
a b
0 d

)
,

where a runs through the positive integers with a | n and (a, N ) = 1 and b runs
through the integers such that 0 ≤ b < d := n/a.

(b) We have the decomposition

Δn
1(N ) =

⊔

a

⊔

b

Γ1(N )σa
(
a b
0 d

)

with a, b, d as in (a).

Proof This proof is elementary. �

Note that due to σa ∈ Γ0(N ), the matrices σa
(
a b
0 d

)
used in part (b) also work

in part (a). One can thus use the same representatives regardless if one works with
Γ0(N ) or Γ1(N ). Note also that for n = � a prime, these representatives are exactly
the elements of R� from Eq. (3).

Next, we turn to the important description of the Hecke algebra as a double coset
algebra.

Definition 7.10 The Hecke ring R(Δ, Γ ) is the free abelian group on the double
cosets Γ αΓ for α ∈ Δ.

As our next aim we would like to define a multiplication, which then also justifies
the name ‘ring’. First let Γ αΓ =⊔n

i=1 Γ αi and ΓβΓ =⊔m
j=1 Γβ j . We just start

computing.



Computational Arithmetic of Modular Forms 159

Γ αΓ · ΓβΓ =
⋃

j

Γ αΓβ j =
⋃

i, j

Γ αiβ j .

This union is not necessarily disjoint. The left-hand side can be written as a disjoint
union of double cosets

⊔r
k=1 Γ γkΓ . Each of these double cosets is again of the form

Γ γkΓ =
nk⊔

l=1

Γ γk,l .

We obtain in summary

Γ αΓ · ΓβΓ =
⋃

i, j

Γ αiβ j =
⊔

k

⊔

l

Γ γk,l .

Wewill now introduce a piece of notation for the multiplicity with which every coset
on the right appears in the centre of the above equality. For fixed k we define for
every l

mk,l = #{(i, j)|Γ γk,l = Γ αiβ j }.

The important point is the following lemma.

Lemma 7.11 The number mk,l is independent of l. We put mk := mk,l .

Proof The proof is combinatorial and quite straight forward. �

Definition 7.12 We define the multiplication on R(Δ, Γ ) by

Γ αΓ · ΓβΓ =
n∑

k=1

mkΓ γkΓ,

using the preceding notation.

In Exercise7.34 you are asked to check that the Hecke ring is indeed a ring. The
definition of the multiplication makes sense, as it gives for Hecke correspondences:

τα ◦ τβ =
n∑

k=1

mkτγk .

Definition 7.13 For α ∈ Δ let τα = Γ αΓ . We define (as above)

Tn =
∑

α

τα ∈ R(Δ, Γ ),

where the sum runs over a set ofα such thatΔn =⊔α Γ αΓ . Fora | d and (d, N ) = 1
we let
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T (a, d) = Γ σa
(
a 0
0 d

)
Γ ∈ R(Δ, Γ ).

From Exercise7.35, we obtain the following important corollary.

Corollary 7.14 We have TmTn = TnTm and hence R(Δ, Γ ) is a commutative ring.

7.2 Theory: Hecke Operators on Modular Forms

In this section, we again let (Δ, Γ ) = (Δ0(N ), Γ0(N )) or (Δ1(N ), Γ1(N )). We now
define an action of the Hecke ring R(Δ, Γ ) on modular forms.

Definition 7.15 Let α ∈ Δ. Suppose Γ αΓ =⊔n
i=1 Γ αi and let f ∈ Mk(Γ ). We

put

f.τα :=
n∑

i=1

f |αi .

Lemma 7.16 The function f.τα again lies in Mk(Γ ).

Proof For γ ∈ Γ we check the transformation rule:

∑

i

f |αi |γ =
∑

i

f |αiγ =
∑

i

f |αi ,

since the cosets Γ (αiγ ) are a permutation of the cosets Γ αi . The holomorphicity of
f.τα is clear and the holomorphicity in the cusps is not difficult. �

This thus gives the desired operation of R(Δ, Γ ) on Mk(Γ ).

Proposition 7.17 Let (Δ, Γ ) = (Δ0(N ), Γ0(N )) and f ∈ Mk(Γ ). The following
formulae hold:

(a) ( f.Tm)(τ ) = 1
m

∑
a|m,(a,N )=1

∑ m
a −1
b=0 ak f ( aτ+b

m/a ),

(b) an( f.Tm) =∑a|(m,n),(a,N )=1 a
k−1amn

a2
.

Similar formulae hold for (Δ1(N ), Γ1(N )), if one includes a Dirichlet character at
the right places.

Proof (a) follows directly from Proposition7.9.

(b) is a simple calculation using
∑d−1

b=0 e
2π i bd n =

{
0, if d � n

d, if d | n.
�

Remark 7.18 The Hecke ring R(Δ, Γ ) also acts on Sk(Γ ).

Corollary 7.19 Let (Δ, Γ ) = (Δ0(N ), Γ0(N )). For the action of the Hecke opera-
tors on Mk(Γ ) and Sk(Γ ) the following formulae hold:
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(a) TnTm = Tnm for (n,m) = 1,
(b) Tpr+1 = TpTpr − pk−1Tpr−1 , if p � N, and
(c) Tpr+1 = TpTpr , if p | N.

Here, p always denotes a prime number. Similar formulae hold for (Δ1(N ), Γ1(N )),
if one includes a Dirichlet character at the right places.

Proof These formulae follow from Exercise7.35 and the definition of the action.
�

Even though it is not directly relevant for our purposes, we include Euler products,
which allow us to express the formulae from the corollary in a very elegant way.

Proposition 7.20 (Euler product) The action of the Hecke operators Tn on modular
forms satisfies the formal identity:

∞∑

n=1

Tnn
−s =
∏

p�N

(1 − Tp p
−s + pk−1−2s)−1 ·

∏

p|N
(1 − Tp p

−s)−1.

That the identity is formal means that we can arbitrarily permute terms in sums
and products without considering questions of convergence.

Proof The proof is carried out in three steps.
1st step: Let g : Z → C be any function. Then we have the formal identity

∏

p prime

∞∑

r=0

g(pr ) =
∞∑

n=1

∏

pr‖n
g(pr ).

For its proof, let first S be a finite set of prime numbers. Then we have the formal
identity:

∏

p∈S

∞∑

r=0

g(pr ) =
∞∑

n=1,n only has prime factors in S

∏

pr‖n
g(pr ),

which one proves bymultiplying out the left-hand side (Attention!Here one permutes
the terms!). We finish the first step by letting S run through arbitrarily large sets.

2nd step: For p � N we have

(

∞∑

r=0

Tpr p
−rs)(1 − Tp p

−s + pk−1−2s) = 1

and for p | N :

(

∞∑

r=0

Tpr p
−rs)(1 − Tp p

−s) = 1.
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The proof of the second step consists of multiplying out these expressions and to
identify a ‘telescope’.

3rd step: The proposition now follows byusing thefirst stepwith g(pr ) = Tpr p−rs

and plugging in the formulae from the second step. �

7.3 Theory: Hecke Operators on Group Cohomology

In this section, we again let (Δ, Γ ) = (Δ0(N ), Γ0(N )) or (Δ1(N ), Γ1(N )). Let R
be a ring and V a left R[Γ ]-module which extends to a semi-group action by the
semi-group consisting of all αι for α ∈ Δn for all n. Recall that

(
a b
c d

)ι = ( d −b−c a

)
.

We now give the definition of the Hecke operator τα on Div(Γ \H) (see, for
instance, [9] or [22]).

Definition 7.21 Let α ∈ Δ. The Hecke operator τα acting on group cohomology is
the composite

H1(Γ, V )
res−→ H1(Γ α, V )

conjα−−→ H1(Γα, V )
cores−−→ H1(Γ, V ).

The first map is the restriction, and the third one is the corestriction. We explicitly
describe the second map on cocycles:

conjα : H1(Γ α, V ) → H1(Γα, V ), c �→ (gα �→ αι.c(αgαα−1)
)
.

There is a similar description on the parabolic subspace and the two are compatible,
see Exercise7.36.

Proposition 7.22 Let α ∈ Δ. Suppose that Γ αΓ =⋃n
i=1 Γ δi is a disjoint union.

Then the Hecke operator τα acts onH1(Γ, V ) andH1
par(Γ, V ) by sending the cocycle

c to ταc defined by

(ταc)(g) =
n∑

i=1

δι
i c(δi gδ

−1
σg(i)

)

for g ∈ Γ . Here σg(i) is the index such that δi gδ
−1
σg(i)

∈ Γ .

Proof We only have to describe the corestriction explicitly. For that we use that
Γ =⋃n

i=1 Γαgi with αgi = δi . Furthermore, by Exercise7.37 the corestriction of a
cocycle u ∈ H1(Γα, V ) is the cocycle cores(u) uniquely given by

cores(u)(g) =
n∑

i=1

g−1
i u(gi gg

−1
σg(i)

) (20)

for g ∈ Γ . Combining with the explicit description of themap conjα yields the result.
�
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Definition 7.23 For a positive integer n, the Hecke operator Tn is defined as∑
α τα , where the sum runs through a system of representatives of the double cosets

Γ \Δn/Γ .
Let a be an integer coprime to N . The diamond operator 〈a〉 is defined as τα for

the matrix σa ∈ Γ0(N ), defined in Eq.2 (if the Γ -action on V extends to an action of
the semi-group generated by Γ and αι; note that α ∈ Δ1

0, but in general not in Δ1
1).

It is clear that the Hecke and diamond operators satisfy the ‘usual’ Euler product.

Proposition 7.24 The Eichler–Shimura isomorphism is compatible with the Hecke
operators.

Proof We recall the definition of Shimura’s main involution:
(
a b
c d

)ι = ( d −b−c a

)
. In

other words, for matrices with a non-zero determinant, we have

(
a b
c d

)ι = (det
(
a b
c d

)
) · ( a b

c d

)−1
.

Let now f ∈ Mk(Γ ; C) be a modular form, γ ∈ Γ and z0 ∈ H. For any matrix g
with non-zero determinant, Lemma6.5 yields

I f |g (z0, γ z0) = gι I f (gz0, gγ z0).

Let α ∈ Δ. We show the compatibility of the Hecke operator τα with the map

f �→ (γ �→ I f (z0, γ z0))

betweenMk(Γ ; C) and H1(Γ, Vk−2(C)). The same arguments will also work, when
I f (z0, γ z0) is replaced by Jg(z1, γ z1)) with antiholomorphic cusp forms g.

Consider a coset decomposition Γ αΓ =⊔i Γ δi . We use notation as in Proposi-
tion7.22 and compute:

Iτα f (z0, γ z0)

=I∑
i f |δi (z0, γ z0) =

∑

i

I f |δi (z0, γ z0) =
∑

i

δι
i I f (δi z0, δiγ z0)

=
∑

i

δι
i

(
I f (δi z0, z0) + I f (z0, δiγ δ−1

σγ (i)z0) + I f (δiγ δ−1
σγ (i)z0, δiγ δ−1

σγ (i)δσγ (i)z0)
)

=
∑

i

δι
i I f (z0, δiγ δ−1

σγ (i)z0) +
∑

i

δι
i I f (δi z0, z0) −

∑

i

δι
iδiγ δ−1

σγ (i) I f (δσγ (i)z0, z0)

=
∑

i

δι
i I f (z0, δiγ δ−1

σγ (i)z0) + (1 − γ )
∑

i

δι
i I f (δi z0, z0),

since δι
iδiγ δ−1

σγ (i) = γ δι
σγ (i). Up to coboundaries, the cocycle γ �→ Iτα f (z0, γ z0) is

thus equal to the cocycle γ �→∑i δ
ι
i I f (z0, δiγ δ−1

σγ (i)z0), which by Proposition7.22
is equal to τα applied to the cocycle γ �→ I f (z0, γ z0), as required. �
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Remark 7.25 The conceptual reason why the above proposition is correct, is, of
course, that the Hecke operators come from Hecke correspondences.

7.4 Theory: Hecke Operators and Shapiro’s Lemma

We now prove that the Hecke operators are compatible with Shapiro’s lemma. This
was first proved by Ash and Stevens [1]. We need to say what the action of α ∈ Δ on
the coinduced module HomR[Γ ](R[SL2(Z)], V ) should be. Here we are assuming
that V carries an action by the semi-group Δι (that is, ι applied to all elements of Δ).

Let UN be the image of Δι in Mat2(Z/NZ). The natural map

Γ \SL2(Z) → UN\Mat2(Z/NZ)

is injective. Its image consists of those UNg such that

(0, 1)g = (u, v) with 〈u, v〉 = Z/NZ. (21)

If that is so, then we say for short that g satisfies (21). Note that this condition does
not depend on the choice of g in UNg. Define the R[Δι]-module C (N , V ) as

{ f ∈ HomR(R[UN\Mat2(Z/NZ)], V ) | f (g) = 0 if g does not satisfy (21)}

with the action of δ ∈ Δι given by (δ. f )(g) = δ.( f (gδ)). The module C (N , V ) is
isomorphic to the coinduced module HomR[Γ ](R[SL2(Z)], V ) as an R[Γ ]-module
by

HomR[Γ ](R[SL2(Z)], V ) → C (N , V ),

f �→
{

(g �→ g f (g−1)) for any g ∈ SL2(Z),

0 if g does not satisfy (21).

One might wonder why we introduce the module C (N , V ) instead of working with
HomR[Γ ](R[SL2(Z)], V ). The point is that we cannot directly act on the latter with a
matrix of determinant different from 1. Hence we need a way to naturally extend the
action. We do this by embedding Γ \SL2(Z) into UN\Mat2(Z/NZ). Of course, we
thenwant towork on the image of this embedding, which is exactly described by (21).
The module C (N , V ) is then immediately written down in view of the identification
between HomR[Γ ](R[SL2(Z)], V ) and HomR(R[Γ \SL2(Z)], V ) given by sending
f to (g �→ g. f (g−1)) (which is clearly independent of the choice of g in the coset
Γ g).

Proposition 7.26 TheHecke operators are compatible with Shapiro’s Lemma.More
precisely, for all n ∈ N the following diagram commutes:
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H1(Γ, V )
Tn �� H1(Γ, V )

H1(SL2(Z),C (N , V ))
Tn ��

Shapiro

		

H1(SL2(Z),C (N , V )).

Shapiro

		

Proof Let j ∈ {0, 1} indicate whether weworkwithΓ0 orΓ1. Let δi , for i = 1, . . . , r
be the representatives of SL2(Z)\Δn

j (1) provided by Proposition7.9. Say, that they
are ordered such that δi for i = 1, . . . , s with s ≤ r are representatives forΓ \Δn

j (N ).
This explicitly means that the lower row of δι

i is (0, a) with (a, N ) = 1 (or even
(0, 1) if j = 1) for i = 1, . . . , s. If s < i ≤ r , then the lower row is (u, v) with
〈u, v〉 � Z/NZ.

Let c ∈ H1(SL2(Z),C (N , V )) be a 1-cochain. Then, as required, we find

Shapiro(Tn(c))(γ ) =
r∑

i=1

(δι
i .c(δ

iγ δ−1
σγ (i)))(

(
1 0
0 1

)
) =

r∑

i=1

δι
i (c(δ

iγ δ−1
σγ (i))(δ

ι
i ))

=
s∑

i=1

(δι
i .c(δ

iγ δ−1
σγ (i)))(

(
1 0
0 1

)
)) = Tn(Shapiro(c))(γ ),

where the second equality is due to the definition of the action and the third one holds
since c(δiγ δ−1

σγ (i)) lies in C (N , V ) and thus evaluates to 0 on δι
i for i > s. �

Remark 7.27 A very similar description exists involving PSL2(Z).

Remark 7.28 It is possible to give an explicit description of Hecke operators on
Manin symbols from Theorem5.7 by using Heilbronn matrices and variations as, for
instance, done in [16].

Remark 7.29 One can show that the isomorphisms fromTheorem5.9 are compatible
with Hecke operators.

7.5 Theory: Eichler–Shimura Revisited

In this section, we present some corollaries and extensions of the Eichler–Shimura
theorem.Wefirst come tomodular symbolswith a character and, thus, also tomodular
symbols for Γ0(N ).

Corollary 7.30 (Eichler–Shimura) Let N ≥ 1, k ≥ 2 and χ : (Z/NZ)× → C
× be

a Dirichlet character. Then the Eichler–Shimura map gives isomorphisms

Mk(N , χ ; C) ⊕ Sk(N , χ ; C) → H1(Γ0(N ), V ι,χ

k−2(C)),

and
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Sk(N , χ ; C) ⊕ Sk(N , χ ; C) → H1
par(Γ0(N ), V ι,χ

k−2(C)),

which are compatible with the Hecke operators.

Proof Recall that the σa form a system of coset representatives for Γ0(N )/Γ1(N ) =:
Δ and that the group Δ acts on H1(Γ0(N ), V ) by sending a cocycle c to the cocycle
δc (for δ ∈ Δ) which is defined by

γ �→ δ.c(δ−1γ δ).

With δ = σ−1
a = σ ι

a , this reads

γ �→ σ ι
a .c(σaγ σ−1

a ) = τσa c = 〈a〉c.

Hence, σa ∈ Δ-action acts through the inverse of the diamond operators.
We now appeal to the Hochschild–Serre exact sequence, using that the cohomol-

ogy groups (from index 1 onwards) vanish if the group order is finite and invertible.
We get the isomorphism

H1(Γ0(N ), V ι,χ

k−2(C))
res−→ H1(Γ1(N ), V ι,χ

k−2(C))Δ.

Moreover, the Eichler–Shimura isomorphism is an isomorphism of Hecke modules

Mk(Γ1(N ) ; C) ⊕ Sk(Γ1(N ) ; C) → H1(Γ1(N ), V ι,χ

k−2(C)),

since for matrices inΔ1(N ) acting through the Shimura main involution the modules
V ι,χ

k−2(C) and Vk−2(C) coincide. Note that it is necessary to take V ι,χ

k−2(C) because the
action on group cohomology involves the Shimura main involution. Moreover, with
this choice, the Eichler–Shimura isomorphism is Δ-equivariant.

To finish the proof, it suffices to takeΔ-invariants on both sides, i.e. to take invari-
ants for the action of the diamond operators. The result on the parabolic subspace is
proved in the same way.

Since Hecke and diamond operators commute, the Hecke action is compatible
with the decomposition into χ -isotypical components. �

Next we consider the action of complex conjugation.

Corollary 7.31 Let Γ = Γ1(N ). The maps

Sk(Γ ; C) → H1
par(Γ, Vk−2(R)), f �→ (γ �→ Re(I f (z0, γ z0)))

and
Sk(Γ ; C) → H1

par(Γ, Vk−2(R)), f �→ (γ �→ Im(I f (z0, γ z0)))

are isomorphisms (of real vector spaces) compatible with the Hecke operators. A
similar result holds in the presence of a Dirichlet character.



Computational Arithmetic of Modular Forms 167

Proof We consider the composite

Sk(Γ ; C)
f �→ 1

2 ( f + f )−−−−−−→ Sk(Γ ; C) ⊕ Sk(Γ ; C)
Eichler–Shimura−−−−−−−−→ H1

par(Γ, Vk−2(C)).

It is clearly injective. As J f (z0, γ z0) = I f (z0, γ z0), the composite map coincides
with the first map in the statement. Its image is thus already contained in the real
vector space H1

par(Γ, Vk−2(R)). Since the real dimensions coincide, the map is an

isomorphism. In order to prove the second isomorphism, we use f �→ 1
2i ( f − f )

and proceed as before. �

We now treat the + and the −-space for the involution attached to the matrix η =( −1 0
0 1

)
from Eq. (9). The action of η on H1(Γ, V ) is the action of the Hecke operator

τη; strictly speaking, this operator is not defined because the determinant is negative,
however we use the same definition. To be precise we have

τη : H1(Γ, V ) → H1(Γ, V ), c �→ (γ �→ ηι.c(ηγ η)),

provided, of course, that ηι acts on V (compatibly with the Γ -action).
We also want to define an involution τη on Sk(Γ ; C) ⊕ Sk(Γ ; C). For that recall

that if f (z) =∑ ane2π inz , then f̃ (z) :=∑ ane2π inz is again a cusp form inSk(Γ ; C)

since we only applied a field automorphism (complex conjugation) to the coefficients
(think of cusp forms as maps from the Hecke algebra over Q to C). We define τη as
the composite

τη : Sk(Γ ; C)
f �→(−1)k−1 f̃−−−−−−−→ Sk(Γ ; C)

f̃ �→ f̃−−−→ Sk(Γ ; C).

Similarly, we also define τη : Sk(Γ ; C) → Sk(Γ ; C) and obtain in consequence an

involution τη on Sk(Γ ; C) ⊕ Sk(Γ ; C). We consider the function (−1)k−1 f̃ (z) as
a function of z. We have

τη( f )(z) = (−1)k−1 f̃ (z) = (−1)k−1
∑

n

ane2π inz = (−1)k−1
∑

n

ane
2π in(−z)

= (−1)k−1 f (−z) = f |η(z).

Proposition 7.32 The Eichler–Shimura map commutes with τη.

Proof Let f ∈ Sk(Γ ; C) (for simplicity).Wehave to checkwhether τη of the cocycle
attached to f is the same as the cocycle attached to τη( f ). We evaluate the latter at
a general γ ∈ Γ and compute:
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J
(−1)k−1 f̃

(∞, γ∞) = (−1)k−1
∫ γ∞

∞
f (−z)(Xz + Y )k−2dz

= −
∫ γ∞

∞
f (−z)(X (−z) − Y )k−2dz

=
∫ ∞

γ∞
f (−z)(X (−z) − Y )k−2dz

=
∫ ∞

0
f (−(γ∞ + i t))(X (−(γ∞ + i t)) − Y )k−2(−i)dt

= −
∫ ∞

0
f (−γ∞ + i t)(X (−γ∞ + i t) − Y )k−2idt

=
∫ −γ∞

∞
f (z)(Xz − Y )k−2dz

= ηι.I f (∞,−γ∞) = ηι.I f (∞, ηγ η∞).

This proves the claim. �
Corollary 7.33 Let Γ = Γ1(N ). The maps

Sk(Γ ; C) → H1
par(Γ, Vk−2(C))+, f �→ (1 + τη).(γ �→ I f (z0, γ z0))

and

Sk(Γ ; C) → H1
par(Γ, Vk−2(C))−, f �→ (1 − τη).(γ �→ I f (z0, γ z0))

are isomorphisms compatible with the Hecke operators, where the + (respectively
the −) indicate the subspace invariant (respectively anti-invariant) for the involu-
tion τη. A similar result holds in the presence of a Dirichlet character.

Proof Both maps are clearly injective (consider them as being given by f �→ f +
τη f followed by the Eichler–Shimura map) and so dimension considerations show
that they are isomorphisms. �

7.6 Theoretical Exercises

Exercise 7.34 Check that R(Δ, Γ ) is a ring (associativity and distributivity).

Exercise 7.35 Show the formula

TmTn =
∑

d|(m,n),(d,N )=1

dT (d, d)Tmn
d2

.

Also show that R(Δ, Γ ) is generated by Tp and T (p, p) for p running through all
prime numbers.
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Exercise 7.36 Check that the Hecke operator τα from Definition7.21 restricts to
H1

par(Γ, V ).

Exercise 7.37 Prove Eq.20.

7.7 Computer Exercises

Computer Exercise 7.38 Implement Hecke operators.
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Computational Number Theory
in Relation with L-Functions

Henri Cohen

Abstract We give a number of theoretical and practical methods related to the
computation of L-functions, both in the local case (counting points on varieties over
finite fields, involving in particular a detailed study of Gauss and Jacobi sums), and in
the global case (for instance, Dirichlet L-functions, involving in particular the study
of inverse Mellin transforms); we also give a number of little-known but very useful
numerical methods, usually but not always related to the computation of L-functions.

1 L-Functions

This course is divided into five parts. In the first part (Sects. 1 and 2), we introduce
the notion of L-function, give a number of results and conjectures concerning them,
and explain some of the computational problems in this theory. In the second part
(Sects. 3–6), we give a number of computational methods for obtaining the Dirich-
let series coefficients of the L-function, so is arithmetic in nature. In the third part
(Sect. 7), we give a number of analytic tools necessary for working with L-functions.
In the fourth part (Sects. 8 and 9), we give a number of very useful numerical methods
which are not sufficiently well known,most of which being also related to the compu-
tation of L-functions. The fifth part (Sects. 10 and 11) gives thePari/GP commands
corresponding to most of the algorithms and examples given in the course. A final
Sect. 12 gives as an appendix some basic definitions and results used in the course
which may be less familiar to the reader.

1.1 Introduction

The theory of L-functions is one of the most exciting subjects in number theory.
It includes, for instance, two of the crowning achievements of twentieth-century
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mathematics, first the proof of theWeil conjectures and of the Ramanujan conjecture
by Deligne in the early 1970s, using the extensive development of modern algebraic
geometry initiated by Weil himself and pursued by Grothendieck and followers in
the famous EGA and SGA treatises, and second the proof of the Shimura–Taniyama–
Weil conjecture by Wiles et al., implying among other things the proof of Fermat’s
last theorem. It also includes two of the seven 1-million dollar Clay problems for the
twenty-first century, first theRiemann hypothesis, and second theBirch–Swinnerton-
Dyer conjecture which in my opinion is the most beautiful, if not the most important,
conjecture in number theory, or even in the whole of mathematics, together with
similar conjectures such as the Beilinson–Bloch conjecture.

There are twokinds ofL-functions: localL-functions andglobalL-functions. Since
the proof of the Weil conjectures, local L-functions are rather well understood from
a theoretical standpoint, but somewhat less from a computational standpoint. Much
less is known on global L-functions, even theoretically, so here the computational
standpoint is much more important since it may give some insight on the theoretical
side.

Before giving a definition of L-functions, we look in some detail at a large number
of special cases of global L-functions.

1.2 The Prototype: The Riemann Zeta Function ζ(s)

The simplest of all (global) L-function is the Riemann zeta function ζ(s) defined by

ζ(s) =
∑

n≥1

1

ns
.

This is an example of aDirichlet series (more generally
∑

n≥1 a(n)/n
s, or even more

generally
∑

n≥1 1/λ
s
n, but we will not consider the latter). As such, it has a half-plane

of absolute convergence, here ℜ(s) > 1.
The properties of this function, studied initially by Bernoulli and Euler, are as

follows, given historically:

1. (Bernoulli, Euler): it has special values. When s = 2, 4,... is a strictly positive
even integer, ζ(s) is equal to π s times a rational number. π is here a period,
and is of course the usual π used for measuring circles. These rational numbers
have elementary generating functions, and are equal up to easy terms to the so-
called Bernoulli numbers. For example, ζ(2) = π2/6, ζ(4) = π4/90, etc. This
was conjectured by Bernoulli and proved by Euler. Note that the proof in 1735
of the so-called Basel problem:

ζ(2) = 1 + 1

22
+ 1

32
+ 1

42
+ · · · = π2

6
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is one of the crowning achievements of mathematics of that time.
2. (Euler): it has an Euler product: for ℜ(s) > 1 one has the identity

ζ(s) =
∏

p∈P

1

1 − 1/ps
,

where P is the set of prime numbers. This is exactly equivalent to the so-called
fundamental theoremof arithmetic.Note in passing (this does not seem interesting
here but will be important later) that if we consider 1 − 1/ps as a polynomial in
1/ps = T , its reciprocal roots all have the same modulus, here 1, this being of
course trivial.

3. (Riemann, but already “guessed” by Euler in special cases): it has an analytic
continuation to ameromorphic function in thewhole complex plane, with a single
pole, at s = 1, with residue 1, and a functional equation Λ(1 − s) = Λ(s), where
Λ(s) = ΓR(s)ζ(s), withΓR(s) = π−s/2Γ (s/2), andΓ is the gamma function (see
appendix).

4. As a consequence of the functional equation, we have ζ(s) = 0 when s = −2,
−4,..., ζ(0) = −1/2, but we also have special values at s = −1, s = −3,... which
are symmetrical to those at s = 2, 4,... (for instance, ζ(−1) = −1/12, ζ(−3) =
1/120, etc.). This is the part which was guessed by Euler.

Roughly speaking, one can say that a global L-function is a function having
properties similar to all the above. We will of course be completely precise below.
Two things should be added immediately: first, the existence of special values will
not be a part of the definition but, at least conjecturally, a consequence. Second, all
the global L-functions that we will consider should conjecturally satisfy a Riemann
hypothesis: when suitably normalized, and excluding “trivial” zeros, all the zeros of
the function should be on the line ℜ(s) = 1/2, axis of symmetry of the functional
equation. Note that even for the simplest L-function, ζ(s), this is not proved.

1.3 Dedekind Zeta Functions

TheRiemann zeta function is perhaps too simple an example to get the correct feeling
about global L-functions, so we generalize:

Let K be a number field (a finite extension of Q) of degree d . We can define its
Dedekind zeta function ζK (s) for ℜ(s) > 1 by

ζK (s) =
∑

a

1

N (a)s
=

∑

n≥1

i(n)

ns
,

where a ranges over all (nonzero) integral ideals of the ring of integers ZK of K ,
N (a) = [ZK : a] is the norm of a, and i(n) denotes the number of integral ideals of
norm n.
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This function has very similar properties to those of ζ(s) (which is the special
case K = Q). We give them in a more logical order:

1. It can be analytically continued to the whole complex plane into a meromorphic
function having a single pole, at s = 1, with known residue, and it has a functional
equation ΛK (1 − s) = ΛK (s), where

ΛK (s) = |DK |s/2ΓR(s)r1+r2ΓR(s + 1)r2 ,

where (r1, 2r2) are the number of real and complex embeddings of K and DK its
discriminant.

2. It has an Euler product ζK (s) = ∏
p 1/(1 − 1/N (p)s), where the product is over

all prime ideals of ZK . Note that this can also be written

ζK (s) =
∏

p∈P

∏

p|p

1

1 − 1/pf (p/p)s
,

where f (p/p) = [ZK/p : Z/pZ] is the so-called residual index of p above p. Once
again, note that if we set as usual 1/ps = T , the reciprocal roots of 1 − T f (p/p)

all have modulus 1.
3. It has special values, but only when K is a totally real number field (r2 = 0,

r1 = d ): in that case ζK (s) is a rational number if s is a negative odd integer, or
equivalently by the functional equation, it is a rational multiple of

√|DK |πds if s
is a positive even integer.

An important newphenomenon occurs: recall that
∑

p|p e(p/p)f (p/p) = d , where
e(p/p) is the so-called ramification index, which is equivalent to the defining equality
pZK = ∏

p|p pe(p/p). In particular
∑

p|p f (p/p) = d if and only if e(p/p) = 1 for all
p, which means that p is unramified in K/Q; one can prove that this is equivalent
to p � DK . Thus, the local L-function LK,p(T ) = ∏

p|p(1 − T f (p/p)) has degree in T
exactly equal to d for all but a finite number of primes p, which are exactly those
which divide the discriminant DK , and for those “bad” primes the degree is strictly
less than d . In addition, note that the number of ΓR factors in the completed function
ΛK (s) is equal to r1 + 2r2, hence once again equal to d .

Examples:

1. Let D be the discriminant of a quadratic field, and let K = Q(
√
D). In that

case, ζK (s) factors as ζK (s) = ζ(s)L(χD, s), where χD = (
D
.

)
is the Legendre–

Kronecker symbol, and L(χD, s) = ∑
n≥1 χD(n)/ns. Thus, the local L-function

at a prime p is given by

LK,p(T ) = (1 − T )(1 − χD(p)T ) = 1 − apT + χD(p)T 2 ,

with ap = 1 + χD(p). Note that ap is equal to the number of solutions in Fp of
the equation x2 = D.
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2. Let us consider two special cases of (1): first K = Q(
√
5). Since it is a real

quadratic field, it has special values, for instance,

ζK (−1) = 1

30
, ζK (−3) = 1

60
, ζK (2) = 2

√
5π4

375
, ζK (4) = 4

√
5π8

84375
.

In addition, note that its gamma factor is 5s/2ΓR(s)2.
Second, considerK = Q(

√−23). Since it is not a totally real field, ζK (s) does not
have special values. However, because of the factorization ζK (s) = ζ(s)L(χD, s),
we can look separately at the special values of ζ(s), which we have already seen
(negative odd integers and positive even integers), and of L(χD, s). It is easy to
prove that the special values of this latter function occurs at negative even integers
and positive odd integers, which have empty intersection which those of ζ(s) and
explains why ζK (s) itself has none. For instance,

L(χD,−2) = −48 , L(χD,−4) = 6816 , L(χD, 3) = 96
√
23π3

12167
.

In addition, note that its gamma factor is

23s/2ΓR(s)ΓR(s + 1) = 23s/2ΓC(s) ,

where we set by definition

ΓC(s) = ΓR(s)ΓR(s + 1) = 2 · (2π)−sΓ (s)

by the duplication formula for the gamma function.
3. Let K be the unique cubic field up to isomorphism of discriminant −23, defined,

for instance, by a root of the equation x3 − x − 1 = 0. We have (r1, 2r2) = (1, 2)
and DK = −23. Here, one can prove (it is less trivial) that ζK (s) = ζ(s)L(ρ, s),
where L(ρ, s) is a holomorphic function. Using both properties of ζK and ζ , this
L-function has the following properties:

• It extends to an entire function onCwith a functional equationΛ(ρ, 1 − s) =
Λ(ρ, s), with

Λ(ρ, s) = 23s/2ΓR(s)ΓR(s + 1)L(ρ, s) = 23s/2ΓC(s)L(ρ, s) .

Note that this is the same gamma factor as for Q(
√−23). However the func-

tions are fundamentally different, since ζ
Q(

√−23)(s) has a pole at s = 1, while
L(ρ, s) is an entire function.

• It is immediate to show that if we let Lρ,p(T ) = LK,p(T )/(1 − T ) be the local
L function for L(ρ, s), we have Lρ,p(T ) = 1 − apT + χ−23(p)T 2, with ap = 1

if p = 23, ap = 0 if
(

−23
p

)
= −1, and ap = 1 or 2 if

(
−23
p

)
= 1.
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Remark 1.1 In all of the above examples, the function ζK (s) is divisible by the
Riemann zeta function ζ(s), i.e., the function ζK (s)/ζ(s) is an entire function. This
is known for some number fields K , but is not known in general, even in degree
d = 5 for instance: it is a consequence of the more precise Artin conjecture on the
holomorphy of Artin L-functions.

1.4 Further Examples in Weight 0

It is now time to give examples not coming from number fields. Define a1(n) by the
formal equality

q
∏

n≥1

(1 − qn)(1 − q23n) =
∑

n≥1

a1(n)q
n = q − q2 − q3 + q6 + q8 − · · · ,

and set L1(s) = ∑
n≥1 a1(n)/n

s. The theory of modular forms (here of the Dedekind
eta function) tells us that L1(s) will satisfy exactly the same properties as L(ρ, s)
with ρ as above.

Define a2(n) by the formal equality

1

2

⎛

⎝
∑

(m,n)∈Z×Z

qm
2+mn+6n2 − q2m

2+mn+3n2

⎞

⎠ =
∑

n≥1

a2(n)q
n ,

and setL2(s) = ∑
n≥1 a2(n)/n

s. The theory ofmodular forms (here of theta functions)
tells us that L2(s) will satisfy exactly the same properties as L(ρ, s).

And indeed, it is an interesting theorem that

L1(s) = L2(s) = L(ρ, s) :

The “moral” of this story is the following,which can bemademathematically precise:
if two L-functions are holomorphic, have the same gamma factor (including in this
case the 23s/2), then (conjecturally in general) they belong to a finite-dimensional
vector space. Thus, in particular, if this vector space is 1-dimensional and the L-
functions are suitably normalized (usually with a(1) = 1), this implies as here that
they are equal.

1.5 Examples in Weight 1

Although we have not yet defined the notion of weight, let me give two further
examples.

Define a3(n) by the formal equality
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q
∏

n≥1

(1 − qn)2(1 − q11n)2 =
∑

n≥1

a3(n)q
n = q − 2q2 − q3 + 2q4 + · · · ,

and set L3(s) = ∑
n≥1 a3(n)/n

s. The theory of modular forms (again of the Dedekind
eta function) tells us that L3(s) will satisfy the following properties, analogous but
more general than those satisfied by L1(s) = L2(s) = L(ρ, s):

• It has an analytic continuation to the whole complex plane, and if we set

Λ3(s) = 11s/2ΓR(s)ΓR(s + 1)L3(s) = 11s/2ΓC(s)L3(s) ,

we have the functional equation Λ3(2 − s) = Λ3(s). Note the crucial difference
that here 1 − s is replaced by 2 − s.

• There exists an Euler product L3(s) = ∏
p∈P 1/L3,p(1/ps) similar to the preceding

ones in that L3,p(T ) is for all but a finite number of p a second-degree polynomial in
T . More precisely, if p = 11 we have L3,p(T ) = 1 − T , while for p �= 11 we have
L3,p(T ) = 1 − apT + pT 2, for some ap such that |ap| < 2

√
p. This is expressed

more vividly by saying that for p �= 11 we have L3,p(T ) = (1 − αpT )(1 − βpT ),
where the reciprocal roots αp and βp have modulus exactly equal to p1/2. Note
again the crucial difference with “weight 0” in that the coefficient of T 2 is equal
to p instead of ±1, hence that |αp| = |βp| = p1/2 instead of 1.

As a second example, consider the equation y2 + y = x3 − x2 − 10x − 20 (an
elliptic curve E), and denote by Nq(E) the number of projective points of this curve
over the finite field Fq (it is clear that there is a unique point at infinity, so if you
want Nq(E) is one plus the number of affine points). There is a universal recipe to
construct an L-function out of a variety which we will recall below, but here let us
simplify: for p prime, set ap = p + 1 − Np(E) and

L4(s) =
∏

p∈P
1/(1 − app

−s + χ(p)p1−2s) ,

where χ(p) = 1 for p �= 11 and χ(11) = 0. It is not difficult to show that L4(s)
satisfies exactly the same properties as L3(s) (using, for instance, the elementary
theory of modular curves), so by the moral explained above, it should not come as a
surprise that in fact L3(s) = L4(s).

1.6 Definition of a Global L-Function

With all these examples at hand, it is quite natural to give the following definition of
an L-function, which is not the most general but will be sufficient for us.
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Definition 1.2 Let d be a nonnegative integer. We say that a Dirichlet series L(s) =∑
n≥1 a(n)n

−switha(1) = 1 is anL-function ofdegree d andweight0 if the following
conditions are satisfied:

1. (Ramanujan bound): We have a(n) = O(nε) for all ε > 0, so that in particular
the Dirichlet series converges absolutely and uniformly in any half-plane ℜ(s) ≥
σ > 1.

2. (Meromorphy and Functional equation): The function L(s) can be extended to
C to a meromorphic function of order 1 (see appendix) having a finite number
of poles; furthermore there exist complex numbers λi with nonnegative real part
and an integer N called the conductor such that if we set

γ (s) = Ns/2
∏

1≤i≤d

ΓR(s + λi) and Λ(s) = γ (s)L(s) ,

we have the functional equation

Λ(s) = ωΛ(1 − s)

for some complex number ω, called the root number, which will necessarily be
of modulus 1.

3. (Euler Product): For ℜ(s) > 1, we have an Euler product

L(s) =
∏

p∈P
1/Lp(1/p

s) with Lp(T ) =
∏

1≤j≤d

(1 − αp,jT ) ,

and the reciprocal roots αp,j are called the Satake parameters.
4. (Local Riemann hypothesis): for p � N we have |αp,j| = 1, and for p | N we have

either αp,j = 0 or |αp,j| = p−m/2 for some m such that 1 ≤ m ≤ d .

Remarks 1.3 1. More generally Selberg has defined a more general class of L-
functions, which first allows Γ (μis + λi) with μi positive real in the gamma
factors and second allows weaker assumptions on N and the Satake parameters.

2. Note that d is both the number of ΓR factors, and the degree in T of the Euler
factors Lp(T ), at least for p � N , while the degree decreases for the “bad” primes
p which divide N .

3. The Ramanujan bound (1) is easily seen to be a consequence of the conditions that
we have imposed on the Satake parameters: in Selberg’s more general definition
this is not the case.

It is important to generalize this definition in the following trivial way:

Definition 1.4 Let w be a nonnegative integer. A function L(s) is said to be an L-
function of degree d andmotivic weight w if L(s + w/2) is an L-function of degree d
and weight 0 as above (with the slight additional technical condition that the nonzero
Satake parameters αp,j for p | N satisfy |αp,j| = p−m/2 with 1 ≤ m ≤ w).
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For an L-function of weight w, it is clear that the functional equation is Λ(s) =
ωΛ(k − s) with k = w + 1, and that the Satake parameters will satisfy |αp,j| = pw/2

for p � N , and for p | N we have either αp,j = 0 or |αp,j| = p(w−m)/2 for some integer
m such that 1 ≤ m ≤ w.

Thus, the first examples that we have given are all of weight 0, and the last two
(which are in fact equal) are of weight 1. For those who know the theory of modular
forms, note that the motivic weight (that we denote by w) is one less than the weight
k of the modular form.

2 Origins of L-Functions

As can already be seen in the above examples, it is possible to construct L-functions
in many different ways. In the present section, we look at three different ways for
constructingL-functions: the first is by the theory ofmodular forms ormore generally
of automorphic forms (of which we have seen a few examples above), the second
is by using Weil’s construction of local L-functions attached to varieties, and more
generally to motives, and third, as a special but much simpler case of this, by the
theory of hypergeometric motives.

2.1 L-Functions Coming from Modular Forms

The basic notion thatwe need here is that ofMellin transform: if f (t) is a nice function
tending to zero exponentially fast at infinity, we can define its Mellin transform
Λ(f ; s) = ∫ ∞

0 tsf (t) dt/t, the integral being written in this way because dt/t is the
invariant Haar measure on the locally compact groupR>0. If we set g(t) = t−k f (1/t)
and assume that g also tends to zero exponentially fast at infinity, it is immediate to
see by a change of variable that Λ(g; s) = Λ(f ; k − s). This is exactly the type of
functional equation needed for an L-function.

The other fundamental property of L-functions that we need is the existence of an
Euler product of a specific type. This will come from the theory of Hecke operators.

A crash course in modular forms (see for instance, [6] for a complete intro-
duction): we use the notation q = e2π iτ , for τ ∈ C such that �(τ ) > 0, so that
|q| < 1. A function f (τ ) = ∑

n≥1 a(n)q
n is said to be a modular cusp form of

(positive, even) weight k if f (−1/τ) = τ k f (τ ) for all �(τ ) > 0. Note that because
of the notation q we also have f (τ + 1) = f (τ ), hence it is easy to deduce that
f ((aτ + b)/(cτ + d)) = (cτ + d)k f (τ ) if

(
a b
c d

)
is an integer matrix of determi-

nant 1. We define the L-function attached to f as L(f ; s) = ∑
n≥1 a(n)/n

s, and
the Mellin transform Λ(f ; s) of the function f (it) is on the one hand equal to
(2π)−sΓ (s)L(f ; s) = (1/2)ΓC(s)L(f ; s), and on the other hand as we have seen
above satisfies the functional equation Λ(k − s) = (−1)k/2Λ(s).
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One can easily show the fundamental fact that the vector space of modular forms
of given weight k is finite dimensional, and compute its dimension explicitly.

If f (τ ) = ∑
n≥1 a(n)q

n is a modular form and p is a prime number, one defines
T (p)(f ) by T (p)(f ) = ∑

n≥1 b(n)q
n with b(n) = a(pn) + pk−1a(n/p), where a(n/p)

is by convention 0 when p � n, or equivalently

T (p)(f )(τ ) = pk−1f (pτ) + 1

p

∑

0≤j<p

f

(
τ + j

p

)
.

Then T (p)f is also a modular cusp form, so T (p) is an operator on the space of
modular forms, and it is easy to show that the T (p) commute and are diagonalizable,
so they are simultaneously diagonalizable hence there exists a basis of common
eigenforms for all the T (p). Since one can show that for such an eigenform one has
a(1) �= 0, we can normalize them by asking that a(1) = 1, and we then obtain a
canonical basis.

If f (τ ) = ∑
n≥1 a(n)q

n is such a normalized eigenform, it follows that the corre-
sponding L function

∑
n≥1 a(n)/n

s will indeed have an Euler product, and using the
elementary properties of the operators T (p) that it will in fact be of the form:

L(f ; s) =
∏

p∈P

1

1 − a(p)p−s + pk−1−2s
.

As a final remark, note that the analytic continuation and functional equation of this
L-function is an elementary consequence of the definition of a modular form. This
is totally different from the motivic cases that we will see below, where this analytic
continuation is in general completely conjectural.

The above describes briefly the theory of modular forms on the modular group
PSL2(Z). One can generalize (nontrivially) this theory to subgroups of the modular
group, the most important being Γ0(N ) (matrices as above with N | c), to other
Fuchsian groups, to forms in several variables, and even more generally to reductive
groups.

2.2 Local L-Functions of Algebraic Varieties

The second very important source of L-functions comes from algebraic geometry.
Let V be some algebraic object. In modern terms, V may be a motive, whatever that
may mean for the moment, but assume, for instance, that V is an algebraic variety, in
otherwords that for each suitable fieldK , V (K) is the set of common zeros of a family
of polynomials in several variables. If K is a finite field Fq (recall that we must then
have q = pn for some prime p and that Fq exists and is unique up to isomorphism),
then V (Fq) will also be finite.
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After studying a number of special cases, such as elliptic curves (due to Hasse),
and quasi-diagonal hypersurfaces in Pd , in 1949 Weil was led to make a number
of more precise conjectures concerning the number of projective points |V (Fq)|,
assuming that V is a smooth projective variety, and proved these conjectures in the
special case of curves (the proof is already quite deep).

The firstWeil conjecture says that (for p fixed) the number |V (Fpn)| of projective
points of V over the finite field Fpn satisfies a (nonhomogeneous) linear recurrence
with constant coefficients. For instance, if V is an elliptic curve defined over Q (such
as y2 = x3 + x + 1) and if we set a(pn) = pn + 1 − |V (Fpn)|, then

a(pn+1) = a(p)a(pn) − χ(p)pa(pn−1) ,

where χ(p) = 1 unless p divides the so-called conductor of the elliptic curve, in
which case χ(p) = 0 (this is not quite true because we must choose a suitable model
for V , but it suffices for us).

Exercise 2.1 Using the above recursion for a(pn), find the corresponding recursion
for vn = |V (Fpn)|.
Exercise 2.2 1. Given a prime p and n ≥ 1, write a computer program which runs

through all the elements of Fpn , represented in a suitable way.
2. For the elliptic curve y2 = x3 + x + 1, compute (on a computer) a(5) and a(52),

and check the recursion.
3. Similarly, compute a(31) and a(312), and check the recursion (here χ(31) = 0).

This first Weil conjecture was proved by Dwork in the early 1960s. It is better
reformulated in terms of local L-functions as follows: define the Hasse–Weil zeta
function of V as the formal power series in T given by the formula

Zp(V ;T ) = exp

(∑

n≥1

|V (Fpn)|
n

Tn

)
.

There should be no difficulty in understanding this: setting for simplicity vn =
|V (Fpn)|, we have

Zp(V ;T ) = exp(v1T + v2T
2/2 + v3T

3/3 + · · · )
= 1 + v1T + (v21 + v2)T

2/2 + (v31 + 3v1v2 + 2v3)T
3/6 + · · ·

For instance, if V is projective d -space Pd , we have |V (Fq)| = qd + qd−1 + · · · + 1,
and since

∑
n≥1 p

njT n/n = − log(1 − pjT ), we deduce that Zp(Pd ;T ) = 1/((1 −
T )(1 − pT ) · · · (1 − pdT )).

In terms of this language, the existence of the recurrence relation is equivalent to
the fact that Zp(V ;T ) is a rational function of T , and as already mentioned, this was
proved by Dwork in 1960.
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The second conjecture of Weil states that this rational function is of the form

Zp(V ;T ) =
∏

0≤i≤2d

Pi,p(V ;T )(−1)i+1 = P1,p(V ;T ) · · ·P2d−1,p(V ;T )

P0,p(V ;T )P2,p(V ;T ) · · ·P2d ,p(V ;T )
,

where d = dim(V ), and the Pi,p are polynomials in T . Furthermore, a basic result
in algebraic geometry called Poincaré duality implies that Zp(V ; 1/(pdT )) =
±pde/2TeZp(V ;T ), where e is the degree of the rational function (called the Euler
characteristic of V ), which means that there is a relation between Pi,p and P2d−i,p.
In addition the Pi,p have integer coefficients, and P0,p(T ) = 1 − T , P2d ,p(T ) =
1 − pdT . For instance, for curves, this means that Zp(V ;T ) = P1(V ;T )/

((1 − T )(1 − pT )), the polynomial P1 is of even degree 2g (g is the so-called genus
of the curve) and satisfies pdgP1(V ; 1/(pdT )) = ±P1(V ;T ).

For knowledgeable readers, in highbrow language, the polynomial Pi,p is the
reverse characteristic polynomial of the Frobenius endomorphism acting on the ith
�-adic cohomology group Hi(V ; Q�) for any � �= p.

The third, most important and most difficult of the Weil conjectures is the local
Riemann hypothesis, which says that the reciprocal roots ofPi,p havemodulus exactly
equal to pi/2, in other words that

Pi,p(V ;T ) =
∏

j

(1 − αi,jT ) with |αi,j| = pi/2 .

This last is the most important in applications.
The Weil conjectures were completely proved by Deligne in the early 1970s

following a strategy already put forward byWeil, and is considered as one of the two
or three major accomplishments of mathematics of the second half of the twentieth
century.

Exercise 2.3 (You need to know some algebraic number theory for this) Let P ∈
Z[X ] be a monic irreducible polynomial and K = Q(θ), where θ is a root of P be the
corresponding number field. Assume that p2 � disc(P). Show that the Hasse–Weil
zeta function at p of the 0-dimensional variety defined by P = 0 is the Euler factor
at p of the Dedekind zeta function ζK (s) attached to K , where p−s is replaced by T .

2.3 Global L-Function Attached to a Variety

We are now ready to “globalize” the above construction, and build global L-functions
attached to a variety.

Let V be an algebraic variety defined over Q, say. We assume that V is “nice”,
meaning, for instance, that we choose V to be projective, smooth, and absolutely irre-
ducible. For all but a finite number of primes pwe can consider V as a smooth variety
over Fp, so for each i we can set Li(V ; s) = ∏

p 1/Pi,p(V ; p−s), where the product
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is over all the “good” primes, and the Pi,p are as above. The factor 1/Pi,p(V ; p−s)

is as usual called the Euler factor at p. These functions Li can be called the global
L-functions attached to V .

This naïve definition is insufficient to construct interesting objects. First and most
importantly, we have omitted a finite number of Euler factors at the so-called “bad
primes”, which include in particular those for which V is not smooth over Fp, and
although there do exist cohomological recipes to define them, as far as the author is
aware these recipes do not really give practical algorithms. (In highbrow language,
these recipes are based on the computation of �-adic cohomology groups, for which
the known algorithms are useless in practice; in the simplest case ofArtinL-functions,
one must determine the action of Frobenius on the vector space fixed by the inertia
group, which can be done reasonably easily.)

Another much less important reason is the fact that most of the Li are uninteresting
or related. For instance, in the case of elliptic curves seen above, we have (up to a
finite number of Euler factors) L0(V ; s) = ζ(s) and L2(V ; s) = ζ(s − 1), so the only
interesting L-function, called the L-function of the elliptic curve, is the function
L1(V ; s) = ∏

p(1 − a(p)p−s + χ(p)p1−2s)−1 (if the model of the curve is chosen
to be minimal, this happens to be the correct definition, including for the “bad”
primes). For varieties of higher dimension d , as we have mentioned as part of the
Weil conjecture the functions Li and L2d−i are related by Poincaré duality, and L0
and L2d are translates of the Riemann zeta function (as above), so only the Li for
1 ≤ i ≤ d need to be studied.

2.4 Hypergeometric Motives

Still another way to construct L-functions is through the use of hypergeometric
motives, due to Katz and Rodriguez-Villegas. Although this construction is a special
case of the construction of L-functions of varieties studied above, the corresponding
variety is hidden (although it can be recovered if desired), and the computations are
in some sense much simpler.

Letme give a short and unmotivated introduction to the subject: let γ = (γn)n≥1 be
a finite sequence of (positive or negative) integers satisfying the essential condition∑

n nγn = 0. For any finite field Fq with q = pf and any character χ of F∗
q, recall

that the Gauss sum g(χ) is defined by

g(χ) =
∑

x∈F∗
q

χ(x) exp(2π i TrFq/Fp(x)/p) ,

see Sect. 4.1 below. We set

Qq(γ ;χ) =
∏

n≥1

g(χn)γn
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and for any t ∈ Fq \ {0, 1}

aq(γ ; t) = 1

1 − q

⎛

⎝1 +
∑

χ �=ε

χ(Mt)Qq(γ ;χ)

⎞

⎠ ,

where ε is the trivial character and M = ∏
n n

nγn is a normalizing constant (this is
not quite the exact formula but it will suffice for our purposes). The theorem of Katz
is that for t �= 0, 1 the quantity aq(γ ; t) is the trace of Frobenius on some motive
defined over Q. In the language of L-functions, this means the following: define as
usual the local L-function at p by the formal power series

Lp(γ ; t;T ) = exp

⎛

⎝
∑

f ≥1

apf (γ ; t)T
f

f

⎞

⎠ .

Then Lp is a rational function of T , satisfies the local Riemann hypothesis, and if we
set

L(γ ; t; s) =
∏

p

Lp(γ ; t; p−s)−1 ,

then L once completed at the “bad” primes should be a global L-function of the
standard type described above.

Let me give one of the simplest examples of a hypergeometric motive, and
show how one can recover the underlying algebraic variety. We choose γ1 = 4,
γ2 = −2, γn = 0 for n > 2, which does satisfy the condition

∑
n nγn = 0 (we could

choose the simpler values γ1 = 2, γ2 = −1, but this would give a 0-dimensional
variety, i.e., a number field, so less representative of the general case). We thus
have Qq(γ, χ) = g(χ)4/g(χ2)2 and M = 1/4. By the results on Jacobi sums that
we will see below (Proposition 4.9), if χ2 is not the trivial character ε we have
Qq(γ, χ) = J (χ, χ)2, where J (χ, χ) = ∑

x∈Fq\{0,1} χ(x)χ(1 − x). As mentioned
above, we did not give the precise formula, here it simply corresponds to setting
Qq(γ, χ) = J (χ, χ)2, including when χ2 = ε. Thus

aq(γ ; t) = 1

1 − q

⎛

⎝1 +
∑

χ �=ε

χ(t/4)J (χ, χ)2

⎞

⎠ .

If by a temporary abuse of notation1 we define J (ε, ε) by the same formula as above,
we have J (ε, ε) = (q − 2)2 hence

1The definition of J given below is a sum over all x ∈ Fq, so that J (ε, ε) = q2 and not (q − 2)2.
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aq(γ ; t) = 1

1 − q

(
1 − (q − 2)2 +

∑

χ

χ(t/4)J (χ, χ)2

)
.

Now

∑

χ

χ(t/4)J (χ, χ)2 =
∑

x,y∈Fq\{0,1}

∑

χ

χ(t/4)χ(x)χ(1 − x)χ(y)χ(1 − y) .

Thepoint ofwriting it thisway is that because of orthogonality of characters (Exercise
4.4 below) the sum on χ vanishes unless the argument is equal to 1 in which case it
is equal to q − 1, so that

∑

χ

χ(t/4)J (χ, χ)2 = (q − 1)Nq(t) , where Nq(t) =
∑

x,y∈Fq\{0,1}
(t/4)x(1−x)y(1−y)=1

1

is the number of affine points over Fq of the algebraic variety defined by (t/4)x(1 −
x)y(1 − y) = 1 (which automatically implies x and y are different from 0 and 1). We
have thus shown that

aq(γ ; t) = 1

1 − q
(1 − (q − 2)2 + (q − 1)Nq(t)) = q − 3 − Nq(t) .

Exercise 2.4 By making the change of variables X = (4/t)(1 − 1/x), Y = (4/t)
(y − 1)(1 − 1/x), show that

aq(γ ; t) = q + 1 − |E(Fq)| ,

where |E(Fq)| is the number of projective points over Fq of the elliptic curve
Y 2 + XY = X (X − 4/t)2. Thus, the global L-function attached to the hypergeomet-
ric motive defined by γ is equal to the L-function attached to the elliptic curve E.

Since we will see below fast methods for computing expressions such
as

∑
χ χ(t/4)J (χ, χ)2, these will consequently give fast methods for computing

|E(Fq)| for an arbitrary elliptic curve E.

Exercise 2.5 1. In a similar way, study the hypergeometric motive corresponding
to γ1 = 3, γ3 = −1, and γn = 0 otherwise, assuming that the correct formula
for Qq corresponds as above to the replacement of quotients of Gauss sums by
Jacobi sums for all characters χ , not only those allowed by Proposition 4.9. To
find the elliptic curve, use the change of variable X = −xy, Y = x2y.

2. Deduce that the global L-function of this hypergeometric motive is equal to
the L-function attached to the elliptic curve y2 = x3 + x2 + 4x + 4 and to the
L-function attached to the modular form q

∏
n≥1(1 − q2n)2(1 − q10n)2.
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2.5 Other Sources of L-Functions

There exist many other sources of L-functions in addition to those that we have
already mentioned, that we will not expand upon:

• Hecke L-functions, attached to Hecke Grössencharacters.
• Artin L-functions, of which we have met a couple of examples in Sect. 1.
• Functorial constructions of L-functions such as Rankin–Selberg L-functions, sym-
metric squares and more generally symmetric powers.

• L-functions attached to Galois representations.
• General automorphic L-functions.

Of course these are not disjoint sets, and as already mentioned, when some L-
functions lie in an intersection, this usually corresponds to an interesting arithmetic
property. Probably, the most general such correspondence is the Langlands program.

2.6 Results and Conjectures on L(V; s)

The problem with global L-functions is that most of their properties are only con-
jectural. We mention these conjectures in the case of global L-functions attached to
algebraic varieties:

1. The function Li is only defined through its Euler product, and thanks to the last of
Weil’s conjectures, the local Riemann hypothesis, proved byDeligne, it converges
absolutely for ℜ(s) > 1 + i/2. Note that, with the definitions introduced above,
Li is an L-function of degree di, the common degree of Pi,p for all but a finite
number of p, and of motivic weight exactly w = i since the Satake parameters
satisfy |αi,p| = pi/2, again by the local Riemann hypothesis.

2. A first conjecture is that Li should have an analytic continuation to the whole
complex plane with a finite number of known poles with known polar part.

3. A second conjecture, which can in fact be considered as part of the first, is that this
extended L-function should satisfy a functional equation when s is changed into
i + 1 − s. More precisely, when completed with the Euler factors at the “bad”
primes as mentioned (but not explained) above, then if we set

Λi(V ; s) = Ns/2
∏

1≤j≤di

ΓR(s + μj)Li(V ; s)

then Λi(V ; i + 1 − s) = ωΛi(V ∗; s) for some variety V ∗ in some sense “dual”
to V and a complex number ω of modulus 1. In the above, N is some integer
divisible exactly by all the “bad” primes, i.e., essentially (but not exactly) the
primes for which V reduced modulo p is not smooth, and the μj are in this case
(varieties) integers which can be computed in terms of the Hodge numbers hp,q
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of the variety thanks to a recipe due to Serre [15]. The number i is called the
motivic weight, and it is important to note that the “weight” k usually attached to
an L-function with functional equation s 
→ k − s is equal to k = i + 1, i.e., to
one more than the motivic weight.
In many cases, the L-function is self-dual, in which case the functional equation
is simply of the form Λi(V ; i + 1 − s) = ±Λi(V ; s).

4. The function Λi should satisfy the generalized Riemann hypothesis (GRH): all
its zeros in C are on the vertical line ℜ(s) = (i + 1)/2. Equivalently, the zeros
of Li are on the one hand real zeros at some integers coming from the poles of
the gamma factors, and all the others satisfy ℜ(s) = (i + 1)/2.

5. The function Λi should have special values: for the integer values of s (called
special points) which are those for which neither the gamma factor at s nor at
i + 1 − s has a pole, it should be computable “explicitly”: it should be equal
to a period (integral of an algebraic function on an algebraic cycle) times an
algebraic number. This has been stated (conjecturally) in great detail by Deligne
in the 1970s.

It is conjectured that all L-functions of degree di and weight i as defined at the
beginning should satisfy all the above properties, not only the L-functions coming
from varieties.

I now give the status of these conjectures.

1. The first conjecture (analytic continuation) is known only for a very restricted
class of L-functions: first L-functions of degree 1, which can be shown to be
Dirichlet L-functions, L-functions of Hecke characters, L-functions attached to
modular forms as shown above, and more generally to automorphic forms. For
L-functions attached to varieties, one knows this onlywhen one can prove that the
corresponding L-function comes from an automorphic form: this is how Wiles
proves the analytic continuation of the L-function attached to an elliptic curve
defined over Q, a very deep and difficult result, with Deligne’s proof of the Weil
conjectures one of the most important result of the end of the twentieth century.
More results of this type are known for certain higher dimensional varieties such
as certain Calabi–Yau manifolds. Note, however, that for such simple objects as
most Artin L-functions (degree 0, in which case only meromorphic continuation
is known) or abelian surfaces, this is not known, although the work of Brumer–
Kramer–Poor–Yuen, as well as more recent work of G. Boxer, F. Calegari, T. Gee,
and V. Pilloni on the paramodular conjecture may someday lead to a proof in
this last case.

2. The second conjecture on the existence of a functional equation is of course
intimately linked to the first, and the work ofWiles et al. also proves the existence
of this functional equation. But in addition, in the case of Artin L-functions for
which only meromorphy (possibly with infinitely many poles) is known thanks
to a theorem of Brauer, this same theorem implies the functional equation which
is thus known in this case. Also, as mentioned, the Euler factors which we must
include for the “bad” primes in order to have a clean functional equation are often
quite difficult to compute.
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3. The (global) Riemann hypothesis is not known for any global L-function of the
type mentioned above, not even for the simplest one, the Riemann zeta function
ζ(s). Note that it is known for other kinds of L-functions such as Selberg zeta
functions, but these are functions of order 2, so are not in the class considered
above.

4. Concerning special values: many cases are known, and many conjectured. This
is probably one of the most fun conjectures since everything can be computed
explicitly to thousands of decimals if desired. For instance, for modular forms it
is a theorem of Manin, for symmetric squares of modular forms it is a theorem
of Rankin, and for higher symmetric powers one has very precise conjectures of
Deligne, which check perfectly on a computer, but none of them are proved. For
the Riemann zeta function or Dirichlet L-functions, of course all these results
such as ζ(2) = π2/6 date back essentially to Euler.
In the case of an elliptic curve E over Q, the only special point is s = 1, and
in this case the whole subject revolves around the Birch and Swinnerton-Dyer
conjecture (BSD) which predicts the behavior of L1(E; s) around s = 1. The only
known results, already quite deep, due to Kolyvagin and Gross–Zagier, deal with
the case where the rank of the elliptic curve is 0 or 1.

There exist a number of other very important conjectures linked to the behavior
of L-functions at integer points which are not necessarily special, such as the Bloch,
Beilinson, Kato, Lichtenbaum, or Zagier conjectures, but it would carry us too far
afield to describe them in general. However, in the next subsections, we will give
three completely explicit numerical examples of these conjectures, so that the reader
can convince himself both that they are easy to check numerically, and that the results
are spectacular.

2.7 An Explicit Numerical Example of BSD

Let us now be a little more precise. Even if this subsection involves notions not
introduced in these notes, we ask the reader to be patient since the numerical work
only involves standard notions.

Let E be an elliptic curve defined over Q. Elliptic curves have a natural abelian
group structure, and it is a theorem of Mordell that the group of rational points on
E is finitely generated, i.e., E(Q) � Zr ⊕ Etors(Q), where Etors(Q) is a finite group,
and r is called the rank of the curve.

On the analytic side, we havementioned thatE has an L-function L(E, s) (denoted
L1 above), and the deep theoremofWiles et al. says that it has an analytic continuation
to the whole of C into an entire function with a functional equation linking L(E, s)
to L(E, 2 − s). The only special point in the above sense is s = 1, and a weak form
of the Birch and Swinnerton-Dyer conjecture states that the order of vanishing v of
L(E, s) at s = 1 should be equal to r.
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This has been proved for r = 0 (by Kolyvagin) and for r = 1 (by Gross–Zagier–
Kolyvagin), and nothing is known for r ≥ 2. However, this is not quite true: if r = 2
then we cannot have v = 0 or 1 by the previous results, so v ≥ 2. On the other hand,
for any given elliptic curve it is easy to check numerically that L′′(E, 1) �= 0, so
to check that v = 2. Similarly, if r = 3 we again cannot have v = 0 or 1. But for
any given elliptic curve one can compute the sign of the functional equation linking
L(E, s) to L(E, 2 − s), and this will show that if r = 3 all derivatives L(k)(E, s) for k
even will vanish. Thus we cannot have v = 2, and once again for any E it is easy to
check that L′′′(E, 1) �= 0, hence to check that v = 3.

Unfortunately, this argument does not work for r ≥ 4. Assume for instance r = 4.
The same reasoning will show that L(E, 1) = 0 (by Kolyvagin), that L′(E, 1) =
L′′′(E, 1) = 0 (because the sign of the functional equation will be +), and that
L′′′′(E, 1) �= 0 by direct computation. The BSD conjecture tells us that L′′(E, 1) = 0,
but this is not known for a single curve.

Let us give the simplest numerical example, based on an elliptic curve with r = 4.
I emphasize that no knowledge of elliptic curves is needed for this.

For every prime p, consider the congruence

y2 + xy ≡ x3 − x2 − 79x + 289 (mod p) ,

and denote by N (p) the number of pairs (x, y) ∈ (Z/pZ)2 satisfying it. We define an
arithmetic function a(n) in the following way:

1. a(1) = 1.
2. If p is prime, we set a(p) = p − N (p).
3. For k ≥ 2 and p is prime, we define a(pk) by induction:

a(pk) = a(p)a(pk−1) − χ(p)p · a(pk−2) ,

where χ(p) = 1 unless p = 2 or p = 117223, in which case χ(p) = 0.
4. For arbitrary n, we extend by multiplicativity: if n = ∏

i p
ki
i then a(n) = ∏

i a
(pk1i ).

Remarks 2.6 • The number 117223 is simply a prime factor of the discriminant of
the cubic equation obtained by completing the square in the equation of the above
elliptic curve.

• Even though the definition of a(n) looks complicated, it is very easy to compute
(see below), for instance, only a few seconds for a million terms. In addition a(n)
is quite small: for n = 1, 2, . . . we have

a(n) = 1,−1,−3, 1,−4, 3,−5,−1, 6, 4,−6,−3,−6, 5, . . .

On the analytic side, define a function f (x) for x > 0 by
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f (x) =
∫ ∞

1
e−xt log(t)2 dt .

Note that it is very easy to compute this integral to thousands of digits if desired
and also note that f tends to 0 exponentially fast as x → ∞ (more precisely f (x) ∼
2e−x/x3).

In this specific situation, the BSD conjecture tells us that S = 0, where

S =
∑

n≥1

a(n)f

(
2πn√
234446

)
.

It takes only a few seconds to compute thousands of digits of S, and we can indeed
check that S is extremely close to 0, but as of now nobody knows how to prove that
S = 0.

2.8 An Explicit Numerical Example of Beilinson–Bloch

This subsection is entirely due to V. Golyshev (personal communication) whom I
heartily thank.

Let u > 1 be a real parameter. Consider the elliptic curveE(u)with affine equation

y2 = x(x + 1)(x + u2) .

As usual one can define its L-function L(E(u), s) using a general recipe. The BSD
conjecture deals with the value of L(E(u), s) (and its derivatives) at s = 1. The
Beilinson–Bloch conjectures deal with values at other integer values of s, in the
present case we consider L(E(u), 2). Once again it is very easy to compute thousands
of decimals of this quantity if desired.

On the other hand, for u > 1 consider the function

g(u) = 2π
∫ 1

0

asin(t)√
1 − t2/u2

dt

t
+ π2 acosh(u) = π2

2

⎛

⎝2 log(4u) −
∑

n≥1

(2n
n
)2

n
(4u)−2n

⎞

⎠ .

The conjecture says that when u is an integer, L(E(u), 2)/g(u) should be a
rational number. In fact, if we let N (u) be the conductor of E(u) (notion that
I have not defined), then it seems that when u �= 4 and u �= 8 we even have
F(u) = N (u)L(E(u), 2)/g(u) ∈ Z.

Once again, this is a conjecture which can immediately be tested on modern
computer algebra systems such as Pari/GP. For instance, for u = 2, 3, . . . we find
numerically to thousands of decimal digits (remember that nothing is proved)

F(u) = 1, 2, 4/11, 8, 32, 8, 4/3, 8, 32, 64, 8, 96, 256, 48, 16, 16, 192, . . .
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Exercise 2.7 Check numerically that the conjecture seems still to be true when
4u ∈ Z, i.e., if u is a rational number with denominator 2 or 4. On the other hand, it
is definitely wrong, for instance, if 3u ∈ Z (and u /∈ Z), i.e., when the denominator
is 3. It is possible that there is a replacement formula, but Bloch and Golyshev tell
me that this is unlikely.

2.9 An Explicit Numerical Example of Mahler Measures

This example is entirely due toW.Zudilin (personal communication),whomIheartily
thank. The reader does not need any knowledge of Mahler measures since we are
again going to give the example as an equality between values of L-functions and
integrals. Note that this can also be considered an isolated example of the Bloch–
Beilinson conjecture.

Consider the elliptic curve E with equation y2 = x3 − x2 − 4x + 4, of conductor
24. Its associated L-function L(E, s) can easily be shown to be equal to the L-function
associated to the modular form

q
∏

n≥1

(1 − q2n)(1 − q4n)(1 − q6n)(1 − q12n)

(we do not need this for this example, but this will give us two ways to create the
L-function in Pari/GP). We have the conjectural identity due to Zudilin:

L(E, 3) = π2

36

(
πG +

∫ 1

0
asin(x) asin(1 − x)

dx

x

)
,

where G = ∑
n≥0(−1)n/(2n + 1)2 = 0.91596559 · · · is Catalan’s constant.

At the end of this course, the reader will find three complete Pari/GP scripts
which implement the BSD, Beilinson–Bloch, and Mahler measure examples that we
have just given.

2.10 Computational Goals

Now that we have a handle on what L-functions are, we come to the computational
and algorithmic problems, which are the main focus of these notes. This involves
many different aspects, all interesting in their own right.

In a first type of situation, we assume that we are “given” the L-function, in other
words that we are given a reasonably “efficient” algorithm to compute the coefficients
a(n) of the Dirichlet series (or the Euler factors), and that we know the gamma factor
γ (s). The main computational goals are then the following:
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1. Compute L(s) for “reasonable” values of s: for example, compute ζ(3). More
sophisticated, but muchmore interesting: check the Birch–Swinnerton-Dyer con-
jecture, the Beilinson–Bloch conjecture, and the conjectures of Deligne concern-
ing special values of symmetric powers L-functions of modular forms.

2. Check the numerical validity of the functional equation, and in passing, if
unknown, compute the numerical value of the root number ω occurring in the
functional equation.

3. Compute L(s) for s = 1/2 + it for rather large real values of t (in the case of
weight 0, more generally for s = (w + 1)/2 + it), and/or make a plot of the
corresponding Z function (see below).

4. Compute all the zeros of L(s) on the critical line up to a given height, and check
the corresponding Riemann hypothesis.

5. Compute the residue of L(s) at s = 1 (typically): for instance, if L is the Dedekind
zeta function of a number field, this gives the product hR.

6. Compute the order of the zeros of L(s) at integer points (if it has one), and the
leading term in the Taylor expansion: for instance, for the L-function of an elliptic
curve and s = 1, this gives the analytic rank of an elliptic curve, together with
the Birch and Swinnerton-Dyer data.

Unfortunately, we are not always given an L-function completely explicitly. We
can lack more or less partial information on the L-function:

1. One of the most frequent situations is that one knows the Euler factors for the
“good” primes, as well as the corresponding part of the conductor, and that one is
lacking both the Euler factors for the bad primes and the bad part of the conductor.
The goal is then to find numerically the missing factors and missing parts.

2. A more difficult but much more interesting problem is when essentially nothing
is known on the L-function except γ (s), in other words the ΓR factors and the
constantN , essentially equal to the conductor. It is quite amazing that nonetheless
one can quite often tell whether an L-function with the given data can exist, and
give some of the initial Dirichlet coefficients (even when several L-functions may
be possible).

3. Even more difficult is when essentially nothing is known except the degree d and
the constantN , and one looks for possible ΓR factors: this is the case in the search
for Maass forms over SLn(Z), which has been conducted very successfully for
n = 2, 3, and 4.

We will not consider these more difficult problems.

2.11 Available Software for L-Functions

Many people working on the subject have their own software. I mention the available
public data.
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• M. Rubinstein’s C++ program lcalc, which can compute values of L-
functions, make large tables of zeros, and so on. The program uses C++ language
double, so is limited to 15 decimal digits, but is highly optimized, hence very fast,
and used in most situations. Also optimized for large values of the imaginary part
using Riemann–Siegel. Available in Sage.

• T. Dokchitser’s program computel, initially written in GP/Pari, rewritten
for magma, and also available in Sage. Similar to Rubinstein’s, but allows arbitrary
precision, hence slower, and has no built-in zero finder, although this is not too
difficult to write. It is not optimized for large imaginary parts.

• Since June 2015, Pari/GP has a complete package for computing with L-
functions, written by B. Allombert, K. Belabas, P. Molin, and myself, based on
the ideas of T. Dokchitser for the computation of inverse Mellin transforms (see
below) but put on a more solid footing, and on the ideas of P. Molin for computing
the L-function values themselves, which avoid computing generalized incomplete
gamma functions (see also below). Note the related complete Pari/GP package for
computing with modular forms, available since July 2018.

• Last but not least, not a program but a huge database of L-functions, modular
forms, number fields, etc., which is the result of a collaborative effort of approxi-
mately 30–40 people headed by D. Farmer. This database can, of course, be queried
in many different ways, it is possible and useful to navigate between related pages,
and it also contains knowls, bits of knowledge which give the main definitions. In
addition to the stored data, the site can compute additional required information on
the fly using the software mentioned above, i.e., Pari, Sage, magma, and lcalc)
Available at:

http://www.lmfdb.org

3 Arithmetic Methods: Computing a(n)

Wenow come to the second part of this course: the computation of theDirichlet series
coefficients a(n) and/or of the Euler factors, which is usually the same problem. Of
course, this depends entirely on how the L-function is given: in view of what we
have seen, it can be given, for instance, (but not only) as the L-function attached to a
modular form, to a variety, or to a hypergeometric motive. Since there are so many
relations between these L-functions (we have seen several identities above), we will
not separate the way in which they are given, but treat everything at once.

In view of the preceding section, an important computational problem is the
computation of |V (Fq)| for a variety V . This may, of course, be done by a naïve
point count: if V is defined by polynomials in n variables, we can range through the
qn possibilities for the n variables and count the number of common zeros. In other
words, there always exists a trivial algorithm requiring qn steps. We, of course, want
something better.
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3.1 General Elliptic Curves

Let us first look at the special case of elliptic curves, i.e., a projective curve V with
affine equation y2 = x3 + ax + b such that p � 6(4a3 + 27b2), which is almost the
general equation for an elliptic curve. For simplicity assume that q = p, but it is
immediate to generalize. If you know the definition of the Legendre symbol, you

know that the number of solutions in Fp to the equation y2 = n is equal to 1 +
(
n
p

)
.

If you do not, since Fp is a field, it is clear that this number is equal to 0, 1, or 2, and

so one can define
(
n
p

)
as one less, so −1, 0, or 1. Thus, since it is immediate to see

that there is a single projective point at infinity, we have

|V (Fp)| = 1 +
∑

x∈Fp

(
1 +

(
x3 + ax + b

p

))
= p + 1 − a(p) , with

a(p) = −
∑

0≤x≤p−1

(
x3 + ax + b

p

)
.

Now a Legendre symbol can be computed very efficiently using the quadratic reci-
procity law. Thus, considering that it can be computed in constant time (which is not
quite true but almost), this gives aO(p) algorithm for computing a(p), already much
faster than the trivial O(p2) algorithm consisting in looking at all pairs (x, y).

To do better, we have to use an additional and crucial property of an elliptic
curve: it is an abelian group. Using this combined with the so-called Hasse bounds
|a(p)| < 2

√
p (a special case of the Weil conjectures), and the so-called baby-step

giant-step algorithm due to Shanks, one can obtain a O(p1/4) algorithm, which is
very fast for all practical purposes.

However, a remarkable discovery due to Schoof in the early 1980s is that there
exists a practical algorithm for computing a(p) which is polynomial in log(p), for
instance,O(log6(p)). The idea is to compute a(p) modulo � for small primes � using
�-division polynomials, and then use the Chinese remainder theorem and the bound
|a(p)| < 2

√
p to recover a(p). Several important improvements have been made

on this basic algorithm, in particular by Atkin and Elkies, and the resulting SEA
algorithm (which is implemented in many computer packages) is able to compute
a(p) for p with several thousand decimal digits. Note, however, that in practical
ranges (say p < 1012), the O(p1/4) algorithm mentioned above is sufficient.

3.2 Elliptic Curves with Complex Multiplication

In certain special cases, it is possible to compute |V (Fq)| for an elliptic curve V much
faster than with any of the above methods: when the elliptic curve V has complex
multiplication. Let us consider the special cases y2 = x3 − nx (the general case is
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more complicated but not really slower). By the general formula for a(p), we have
for p ≥ 3:

a(p) = −
∑

−(p−1)/2≤x≤(p−1)/2

(
x(x2 − n)

p

)

= −
∑

1≤x≤(p−1)/2

((
x(x2 − n)

p

)
+

(−x(x2 − n)

p

))

= −
(
1 +

(−1

p

)) ∑

1≤x≤(p−1)/2

(
x(x2 − n)

p

)

by the multiplicative property of the Legendre symbol. This already shows that if(
−1
p

)
= −1, in other words p ≡ 3 (mod 4), we have a(p) = 0. But we can also find

a formula when p ≡ 1 (mod 4): recall that in that case by a famous theorem due to
Fermat, there exist integers u and v such that p = u2 + v2. If necessary by exchanging
u and v, and/or changing the sign of u, we may assume that u ≡ −1 (mod 4), in
which case the decomposition is unique, up to the sign of v. It is then not difficult to
prove the following theorem (see Sect. 8.5.2 of [3] for the proof):

Theorem 3.1 Assume that p ≡ 1 (mod 4) and p = u2 + v2 with u ≡ −1 (mod 4).
The number of projective points on the elliptic curve y2 = x3 − nx (where p � n) is
equal to p + 1 − a(p), where

a(p) = 2

(
2

p

)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−u if n(p−1)/4 ≡ 1 (mod p)

u if n(p−1)/4 ≡ −1 (mod p)

−v if n(p−1)/4 ≡ −u/v (mod p)

v if n(p−1)/4 ≡ u/v (mod p)

(note that one of these four cases must occur).

To apply this theorem from a computational standpoint, we note the following
two facts:

(1) The quantity n(p−1)/4 mod p can be computed efficiently by the binary power-
ing algorithm (inO(log3(p)) operations). It is, however, possible to compute it more
efficiently in O(log2(p)) operations using the quartic reciprocity law.

(2) The numbers u and v, such that u2 + v2 = p, can be computed efficiently (in
O(log2(p)) operations) using Cornacchia’s algorithm which is very easy to describe
but not so easy to prove. It is a variant of Euclid’s algorithm. It proceeds as follows:

• As a first step, we compute a square root of −1 modulo p, i.e., an x such that
x2 ≡ −1 (mod p). This is done by choosing randomly a z ∈ [1, p − 1] and comput-

ing the Legendre symbol
(
z
p

)
until it is equal to−1 (we can also simply try z = 2, 3,

...). Note that this is a fast computation. When this is the case, we have by definition
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z(p−1)/2 ≡ −1 (mod p), hence x2 ≡ −1 (mod p) for x = z(p−1)/4 mod p. Reducing
x modulo p and possibly changing x into p − x, we normalize x so that p/2 < x < p.

•As a second step, we perform the Euclidean algorithm on the pair (p, x), writing
a0 = p, a1 = x, and an−1 = qnan + an+1 with 0 ≤ an+1 < an, andwe stop at the exact
n for which a2n < p. It can be proved (this is the difficult part) that for this specific
n we have a2n + a2n+1 = p, so up to exchange of u and v and/or change of signs, we
can take u = an and v = an+1.

Note that Cornacchia’s algorithm can easily be generalized to solving efficiently
u2 + dv2 = p or u2 + dv2 = 4p for any d ≥ 1, see Sect. 1.5.2 of [2] (incidentally
one can also solve this for d < 0, but it poses completely different problems since
there may be infinitely many solutions).

The above theorem is given for the special elliptic curves y2 = x3 − nx, which
have complex multiplication by the (ring of integers of the) field Q(i), but a similar
theorem is valid for all curves with complex multiplication, see Sect. 8.5.2 of [3].

3.3 Using Modular Forms of Weight 2

By Wiles’ celebrated theorem, the L-function of an elliptic curve is equal to the
L-function of a modular form of weight 2 for Γ0(N ), where N is the conductor of
the curve. We do not need to give the precise definitions of these objects, but only a
specific example.

Let V be the elliptic curve with affine equation y2 + y = x3 − x2. It has conductor
11. It can be shown using classical modular form methods (i.e., without Wiles’
theorem) that the global L-function L(V ; s) = ∑

n≥1 a(n)/n
s is the same as that of

the modular form of weight 2 over Γ0(11) given by

f (τ ) = q
∏

m≥1

(1 − qm)2(1 − q11m)2 ,

with q = exp(2π iτ). Even with no knowledge of modular forms, this simply means
that if we formally expand the product on the right-hand side as

q
∏

m≥1

(1 − qm)2(1 − q11m)2 =
∑

n≥1

b(n)qn ,

we have b(n) = a(n) for all n, and in particular for n = p prime.We have already seen
this example above with a slightly different equation for the elliptic curve (which
makes no difference for its L-function outside of the primes 2 and 3).

We see that this gives an alternate method for computing a(p) by expanding the
infinite product. Indeed, the function
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η(τ) = q1/24
∏

m≥1

(1 − qm)

is a modular form of weight 1/2 with known expansion:

η(τ) =
∑

n≥1

(
12

n

)
qn

2/24 ,

and sousingFast FourierTransform techniques for formal power seriesmultiplication
we can compute all the coefficients a(n) simultaneously (as opposed to one by one)
for n ≤ B in time O(B log2(B)). This amounts to computing each individual a(n)
in time O(log2(n)), so it seems to be competitive with the fast methods for elliptic
curves with complex multiplication, but this is an illusion since we must store all B
coefficients, so it can be used only for B ≤ 1012, say, far smaller than what can be
reached using Schoof’s algorithm, which is truly polynomial in log(p) for each fixed
prime p.

3.4 Higher Weight Modular Forms

It is interesting to note that the dichotomy between elliptic curves with or without
complex multiplication is also valid for modular forms of higher weight (again,
whatever that means, you do not need to know the definitions). For instance, consider

Δ(τ) = Δ24(τ ) = η24(τ ) = q
∏

m≥1

(1 − qm)24 :=
∑

n≥1

τ(n)qn .

The function τ(n) is a famous function called the Ramanujan τ function, and has
many important properties, analogous to those of the a(p) attached to an elliptic
curve (i.e., to a modular form of weight 2).

There are several methods to compute τ(p) for p prime, say. One is to do as
above, using FFT techniques. The running time is similar, but again we are limited
to B ≤ 1012, say. A second more sophisticated method is to use the Eichler–Selberg
trace formula, which enables the computation of an individual τ(p) in timeO(p1/2+ε)

for all ε > 0. A third very deep method, developed by Edixhoven, Couveignes, et
al., is a generalization of Schoof’s algorithm. While in principle polynomial time in
log(p), it is not yet practical compared to the preceding method.

For those who want to see the formula using the trace formula explicitly, we let
H (N ) be theHurwitz class number H (N ) (essentially the class number of imaginary
quadratic orders counted with suitable multiplicity): if we set H3(N ) = H (4N ) +
2H (N ) (note that H (4N ) can be computed in terms of H (N )), then for p prime
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τ(p) = 28p6 − 28p5 − 90p4 − 35p3 − 1

− 128
∑

1≤t<p1/2

t6(4t4 − 9pt2 + 7p2)H3(p − t2) ,

which is the fastest practical formula that I know for computing τ(p).

On the contrary, consider

Δ26(τ ) = η26(τ ) = q13/12
∏

m≥1

(1 − qm)26 := q13/12
∑

n≥1

τ26(n)q
n .

This is what is called a modular form with complex multiplication. Whatever the
definition, this means that the coefficients τ26(p) can be computed in time polynomial
in log(p) using a generalization of Cornacchia’s algorithm, hence very fast.

Exercise 3.2 (You need some extra knowledge for this) In the literature, find an exact
formula for τ26(p) in terms of values of Hecke Grössencharacters, and program this
formula. Use it to compute some values of τ26(p) for p prime as large as you can go.

3.5 Computing |V (Fq)| for Quasi-diagonal Hypersurfaces

We now consider a completely different situation, where |V (Fq)| can be computed
without too much difficulty.

As we have seen, in the case of elliptic curves V defined over Q, the correspond-
ing L-function is of degree 2, in other words is of the form

∏
p 1/(1 − a(p)p−s +

b(p)p−2s), where b(p) �= 0 for all but a finite number of p. L-functions of degree
1 such as the Riemann zeta function are essentially L-functions of Dirichlet char-
acters, in other words simple “twists” of the Riemann zeta function. L-functions
of degree 2 are believed to be always L-functions attached to modular forms, and
b(p) = χ(p)pk−1 for a suitable integer k (k = 2 for elliptic curves), the weight (note
that this is one more than the so-called motivic weight). Even though many unsolved
questions remain, this case is also quite well understood. Much more mysterious are
L-functions of higher degree, such as 3 or 4, and it is interesting to study natural
mathematical objects leading to such functions. A case where this can be done rea-
sonably easily is the case of diagonal or quasi-diagonal hypersurfaces. We study a
special case:

Definition 3.3 Letm ≥ 2, for 1 ≤ i ≤ m let ai ∈ F∗
q be nonzero, and let b ∈ Fq. The

quasi-diagonal hypersurface defined by this data is the hypersurface in Pm−1 defined
by the projective equation

∑

1≤i≤m

aix
m
i − b

∏

1≤i≤m

xi = 0 .
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When b = 0, it is a diagonal hypersurface.

Of course, we could study more general equations, for instance, where the degree
is not equal to the number of variables, but we stick to this special case.

To compute the number of (projective) points on this hypersurface, we need an
additional definition:

Definition 3.4 We let ω be a generator of the group of characters of F∗
q, either with

values in C, or in the p-adic field Cp (do not worry if you are not familiar with this).

Indeed, by a well-known theorem of elementary algebra, the multiplicative group
F∗
q of a finite field is cyclic, so its group of characters, which is non-canonically

isomorphic to F∗
q, is also cyclic, so ω indeed exists.

It is not difficult to prove the following theorem:

Theorem 3.5 Assume that gcd(m, q − 1) = 1 and b �= 0, and set B = ∏
1≤i≤m

(ai/b). If V is the above quasi-diagonal hypersurface, the number |V (Fq)| of affine
points on V is given by

|V (Fq)| = qm−1 + (−1)m−1 +
∑

1≤n≤q−2

ω−n(B)Jm(ωn, . . . , ωn) ,

where Jm is the m-variable Jacobi sum.

We will study in great detail below the definition and properties of Jm.
Note that the number of projective points is simply (|V (Fq)| − 1)/(q − 1).
There also exists a more general theorem with no restriction on gcd(m, q − 1),

which we do not give.
The occurrence of Jacobi sums is very natural and frequent in point counting

results. It is, therefore, important to look at efficient ways to compute them, and this
is what we do in the next section, where we also give complete definitions and basic
results.

4 Gauss and Jacobi Sums

In this long section, we study in great detail Gauss and Jacobi sums. Most results are
standard, and I would like to emphasize that almost all of them can be proved with
little difficulty by easy algebraic manipulations.

4.1 Gauss Sums over Fq

We can define and study Gauss and Jacobi sums in two different contexts: first, and
most importantly, over finite fields Fq, with q = pf a prime power (note that from
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now on we write q = pf and not q = pn). Second, over the ring Z/NZ. The two
notions coincide when N = q = p is prime, but the methods and applications are
quite different.

To give the definitions over Fq we need to recall some fundamental (and easy)
results concerning finite fields.

Proposition 4.1 Let p be a prime, f ≥ 1, and Fq be the finite field with q = pf

elements, which exists and is unique up to isomorphism.

1. The map φ such that φ(x) = xp is a field isomorphism from Fq to itself leaving
Fp fixed. It is called the Frobenius map.

2. The extension Fq/Fp is a normal (i.e., separable and Galois) field extension, with
Galois group which is cyclic of order f generated by φ.

In particular, we can define the trace TrFq/Fp and the norm N Fq/Fp , and we have
the formulas (where from now on we omit Fq/Fp for simplicity):

Tr(x) =
∑

0≤j≤f −1

xp
j

and N (x) =
∏

0≤j≤f −1

xp
j = x(pf −1)/(p−1) = x(q−1)/(p−1) .

Definition 4.2 Let χ be a character from F∗
q to an algebraically closed field C of

characteristic 0. For a ∈ Fq we define the Gauss sum g(χ, a) by

g(χ, a) =
∑

x∈F∗
q

χ(x)ζ Tr(ax)
p ,

where ζp is a fixed primitive pth root of unity in C. We also set g(χ) = g(χ, 1).

Note that strictly speaking this definition depends on the choice of ζp. However,
if ζ ′

p is some other primitive pth root of unity we have ζ ′
p = ζ k

p for some k ∈ F∗
p, so

∑

x∈F∗
q

χ(x)ζ ′
p
Tr(ax) = g(χ, ka) .

In fact, it is trivial to see (this follows from the next proposition) that g(χ, ka) =
χ−1(k)g(χ, a).

Definition 4.3 We define ε to be the trivial character, i.e., such that ε(x) = 1 for all
x ∈ F∗

q. We extend characters χ to the whole of Fq by setting χ(0) = 0 if χ �= ε and
ε(0) = 1.

Note that this apparently innocuous definition of ε(0) is crucial because it sim-
plifies many formulas. Note also that the definition of g(χ, a) is a sum over x ∈ F∗

q
and not x ∈ Fq, while for Jacobi sums we will use all of Fq.

Exercise 4.4 1. Show that g(ε, a) = −1 if a ∈ F∗
q and g(ε, 0) = q − 1.
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2. If χ �= ε, show that g(χ, 0) = 0, in other words that

∑

x∈Fq

χ(x) = 0

(here it does not matter if we sum over Fq or F∗
q).

3. Deduce that if χ1 �= χ2 then

∑

x∈F∗
q

χ1(x)χ
−1
2 (x) = 0 .

This relation is called for evident reasons orthogonality of characters.
4. Dually, show that if x �= 0, 1 we have

∑
χ χ(x) = 0, where the sum is over all

characters of F∗
q.

Because of this exercise, if necessary we may assume that χ �= ε and/or that
a �= 0.

Exercise 4.5 Let χ be a character of F∗
q of exact order n.

1. Show that n | (q − 1) and that χ(−1) = (−1)(q−1)/n. In particular, if n is odd and
p > 2 we have χ(−1) = 1.

2. Show that g(χ, a) ∈ Z[ζn, ζp], where as usual ζm denotes a primitive mth root of
unity.

Proposition 4.6 1. If a �= 0 we have

g(χ, a) = χ−1(a)g(χ) .

2. We have
g(χ−1) = χ(−1)g(χ) .

3. We have
g(χp, a) = χ1−p(a)g(χ, a) .

4. If χ �= ε we have
|g(χ)| = q1/2 .

4.2 Jacobi Sums over Fq

Recall that we have extended characters of F∗
q by setting χ(0) = 0 if χ �= ε and

ε(0) = 1.
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Definition 4.7 For 1 ≤ j ≤ k let χj be characters of F∗
q. We define the Jacobi sum

Jk(χ1, . . . , χk; a) =
∑

x1+···+xk=a

χ1(x1) · · · χk(xk)

and Jk(χ1, . . . , χk) = Jk(χ1, . . . , χk; 1).
Note that, as mentioned above, we do not exclude the cases where some xi = 0,

using the convention of Definition 4.3 for χ(0).
The following easy lemma shows that it is only necessary to study Jk(χ1, . . . , χk):

Lemma 4.8 Set χ = χ1 · · · χk .

1. If a �= 0 we have

Jk(χ1, . . . , χk; a) = χ(a)Jk(χ1, . . . , χk) .

2. If a = 0, abbreviating Jk(χ1, . . . , χk; 0) to Jk(0) we have

Jk(0) =

⎧
⎪⎨

⎪⎩

qk−1 if χj = ε for all j ,

0 if χ �= ε ,

χk(−1)(q − 1)Jk−1(χ1, . . . , χk−1) if χ = ε and χk �= ε .

As we have seen, a Gauss sum g(χ) belongs to the rather large ring Z[ζq−1, ζp]
(and in general not to a smaller ring). The advantage of Jacobi sums is that they belong
to the smaller ring Z[ζq−1], and as we are going to see, that they are closely related
to Gauss sums. Thus, when working algebraically, it is almost always better to use
Jacobi sums instead of Gauss sums. On the other hand, when working analytically
(for instance in C or Cp), it may be better to work with Gauss sums: we will see
below the use of root numbers (suggested by Louboutin), and of the Gross–Koblitz
formula.

Note that J1(χ1) = 1. Outside of this trivial case, the close link betweenGauss and
Jacobi sums is given by the following easy proposition, whose apparently technical
statement is only due to the trivial character ε: if none of the χj nor their product is
trivial, we have the simple formula given by (3).

Proposition 4.9 Denote by t the number of χj equal to the trivial character ε, and
as above set χ = χ1 . . . χk .

1. If t = k then Jk(χ1, . . . , χk) = qk−1.
2. If 1 ≤ t ≤ k − 1 then Jk(χ1, . . . , χk) = 0.
3. If t = 0 and χ �= ε then

Jk(χ1, . . . , χk) = g(χ1) · · · g(χk)

g(χ1 · · · χk)
= g(χ1) · · · g(χk)

g(χ)
.
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4. If t = 0 and χ = ε then

Jk(χ1, . . . , χk) = −g(χ1) · · · g(χk)

q

= −χk(−1)
g(χ1) · · · g(χk−1)

g(χ1 · · · χk−1)
= −χk(−1)Jk−1(χ1, . . . , χk−1) .

In particular, in this case we have

g(χ1) · · · g(χk) = χk(−1)qJk−1(χ1, . . . , χk−1) .

Corollary 4.10 With the same notation, assume that k ≥ 2 and all the χj are non-
trivial. Setting ψ = χ1 · · · χk−1, we have the following recursive formula:

Jk(χ1, . . . , χk) =
{
Jk−1(χ1, . . . , χk−1)J2(ψ, χk) if ψ �= ε ,

χk−1(−1)qJk−2(χ1, . . . , χk−2) if ψ = ε .

The point of this recursion is that the definition of a k-fold Jacobi sum Jk involves
a sum over qk−1 values for x1, . . . , xk−1, the last variable xk being determined by
xk = 1 − x1 − · · · − xk−1, so neglecting the time to compute the χj(xj) and their
product (which is a reasonable assumption), using the definition takes timeO(qk−1).
On the other hand, using the above recursion boils down at worst to computing k − 1
Jacobi sums J2, for a total time ofO((k − 1)q). Nonetheless, we will see that in some
cases it is still better to use directly Gauss sums and formula (3) of the proposition.

Since Jacobi sums J2 are the simplest and the above recursion in fact shows that
one can reduce to J2, we will drop the subscript 2 and simply write J (χ1, χ2). Note
that

J (χ1, χ2) =
∑

x∈Fq

χ1(x)χ2(1 − x) ,

where the sum is over the whole of Fq and not Fq \ {0, 1} (which makes a difference
only if one of the χi is trivial). More precisely it is clear that J (ε, ε) = q2, and that if
χ �= ε we have J (χ, ε) = ∑

x∈Fq
χ(x) = 0, which are special cases of Proposition

4.9.

Exercise 4.11 Let n | (q − 1) be the order of χ . Prove that g(χ)n ∈ Z[ζn].
Exercise 4.12 Assume that none of the χj is equal to ε, but that their product χ is
equal to ε. Prove that (using the same notation as in Lemma 4.8):

Jk(0) =
(
1 − 1

q

)
g(χ1) · · · g(χk) .

Exercise 4.13 Prove the following reciprocity formula for Jacobi sums: if the χj are
all nontrivial and χ = χ1 · · ·χk , we have
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Jk(χ
−1
1 , . . . , χ−1

k ) = qk−1−δ

Jk(χ1, . . . , χk)
,

where δ = 1 if χ = ε, and otherwise δ = 0.

4.3 Applications of J(χ, χ)

In this short subsection, we give without proof a couple of applications of the spe-
cial Jacobi sums J (χ, χ). Once again the proofs are not difficult. We begin by the
following result, which is a special case of the Hasse–Davenport relations that we
will give below.

Lemma 4.14 Assume that q is odd, and let ρ be the unique character of order 2 on
F∗
q. For any nontrivial character χ we have

χ(4)J (χ, χ) = J (χ, ρ) .

Equivalently, if χ �= ρ we have

g(χ)g(χρ) = χ−1(4)g(ρ)g(χ2) .

Exercise 4.15 1. Prove this lemma.
2. Show that g(ρ)2 = (−1)(q−1)/2q.

Proposition 4.16 1. Assume that q ≡ 1 (mod 4), let χ be one of the two charac-
ters of order 4 on F∗

q, and write J (χ, χ) = a + bi. Then q = a2 + b2, 2 | b, and
a ≡ −1 (mod 4).

2. Assume that q ≡ 1 (mod 3), let χ be one of the two characters of order 3 on
F∗
q, and write J (χ, χ) = a + bρ, where ρ = ζ3 is a primitive cube root of unity.

Then q = a2 − ab + b2, 3 | b, a ≡ −1 (mod 3), and a + b ≡ q − 2 (mod 9).
3. Let p ≡ 2 (mod 3), q = p2m ≡ 1 (mod 3), and let χ be one of the two charac-

ters of order 3 on F∗
q. We have

J (χ, χ) = (−1)m−1pm = (−1)m−1q1/2 .

Corollary 4.17 1. (Fermat.) Any prime p ≡ 1 (mod 4) is a sum of two squares.
2. Any prime p ≡ 1 (mod 3) is of the form a2 − ab + b2 with 3 | b, or equivalently

4p = (2a − b)2 + 27(b/3)2 is of the form c2 + 27d2.
3. (Gauss.) p ≡ 1 (mod 3) is itself of the form p = u2 + 27v2 if and only if 2 is a

cube in F∗
p.

Exercise 4.18 Assuming the proposition, prove the corollary.
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4.4 The Hasse–Davenport Relations

All the results that we have given up to now on Gauss and Jacobi sums have rather
simple proofs, which is one of the reasons we have not given them. Perhaps sur-
prisingly, there exist other important relations which are considerably more difficult
to prove. Before giving them, it is instructive to explain how one can “guess” their
existence, if one knows the classical theory of the gamma function Γ (s) (of course
skip this part if you do not know it, since it would only confuse you, or read the
appendix).

Recall that Γ (s) is defined (at least for ℜ(s) > 0) by

Γ (s) =
∫ ∞

0
e−t tsdt/t ,

and the beta function B(a, b) by B(a, b) = ∫ 1
0 ta−1(1 − t)b−1 dt. The function e−t

transforms sums into products, so is an additive character, analogous to ζ t
p. The

function ts transforms products into products, so is a multiplicative character, anal-
ogous to χ(t) (dt/t is simply the Haar invariant measure on R>0). Thus Γ (s) is a
continuous analogue of the Gauss sum g(χ).

Similarly, since J (χ1, χ2) = ∑
t χ1(t)χ2(1 − t), we see the similarity with the

function B. Thus, it does not come too much as a surprise that analogous formulas
are valid on both sides. To begin with, it is not difficult to show that B(a, b) =
Γ (a)Γ (b)/Γ (a + b), exactly analogous to J (χ1, χ2) = g(χ1)g(χ2)/g(χ1χ2). The
analogue of Γ (s)Γ (−s) = −π/(s sin(sπ)) is

g(χ)g(χ−1) = χ(−1)q .

But, it is well known that the gamma function has a duplication formula Γ (s)Γ (s +
1/2) = 21−2sΓ (1/2)Γ (2s), andmore generally amultiplication (or distribution) for-
mula. This duplication formula is clearly the analogue of the formula

g(χ)g(χρ) = χ−1(4)g(ρ)g(χ2)

given above. The Hasse–Davenport product relation is the analogue of the distribu-
tion formula for the gamma function.

Theorem 4.19 Let ρ be a character of exact order m dividing q − 1. For any char-
acter χ of F∗

q we have

∏

0≤a<m

g(χρa) = χ−m(m)k(p, f ,m)q(m−1)/2g(χm) ,

where k(p, f ,m) is the fourth root of unity given by
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k(p, f ,m) =

⎧
⎪⎪⎨

⎪⎪⎩

( p

m

)f
if m is odd ,

(−1)f +1

(
(−1)m/2+1m/2

p

)f (−1

p

)f /2

if m is even,

where (−1)f /2 is to be understood as if when f is odd.

Remark 4.20 For some reason, in the literature this formula is usually stated in the
weaker form where the constant k(p, f ,m) is not given explicitly.

Contrary to the proof of the distribution formula for the gamma function, the
proof of this theorem is quite long. There are essentially two completely different
proofs: one using classical algebraic number theory, and one using p-adic analysis.
The latter is simpler and gives directly the value of k(p, f ,m). See Sect. 3.7.2 of [3]
and Sect. 11.7.4 of [4] for both detailed proofs.

Gauss sums satisfy another type of nontrivial relation, also due to Hasse–
Davenport, the so-called lifting relation, as follows:

Theorem 4.21 Let Fqn/Fq be an extension of finite fields, let χ be a character of F∗
q,

and define the lift of χ to Fqn by the formula χ(n) = χ ◦ N Fqn /Fq . We have

g(χ(n)) = (−1)n−1g(χ)n .

This relation is essential in the initial proof of the Weil conjectures for diagonal
hypersurfaces done by Weil himself. This is not surprising, since we have seen in
Theorem 3.5 that |V (Fq)| is closely related to Jacobi sums, hence also to Gauss sums.

5 Practical Computations of Gauss and Jacobi Sums

As above, let ω be a character of order exactly q − 1, so that ω is a generator of
the group of characters of F∗

q. For notational simplicity, we will write J (r1, . . . , rk)
instead of J (ωr1 , . . . , ωrk ). Let us consider the specific example of efficient compu-
tation of the quantity

S(q; z) =
∑

0≤n≤q−2

ω−n(z)J5(n, n, n, n, n) ,

which occurs in the computation of the Hasse–Weil zeta function of a quasi-diagonal
threefold, see Theorem 3.5.
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5.1 Elementary Methods

By the recursion of Corollary 4.10, we have generically (i.e., except for special values
of n which will be considered separately):

J5(n, n, n, n, n) = J (n, n)J (2n, n)J (3n, n)J (4n, n) .

Since J (n, an) = ∑
x ωn(x)ωan(1 − x), the cost of computing J5 as written is Õ(q),

where here and after we write Õ(qα) to meanO(qα+ε) for all ε > 0 (soft-O notation).
Thus computing S(q; z) by this direct method requires time Õ(q2).

We can, however, do much better. Since the values of the characters are all in
Z[ζq−1], we work in this ring. In fact, even better, we work in the ring with zero
divisors R = Z[X ]/(X q−1 − 1), together with the natural surjective map sending the
class of X in R to ζq−1. Indeed, let g be the generator of F∗

q such that ω(g) = ζq−1.
We have, again generically:

J (n, an) =
∑

1≤u≤q−2

ωn(gu)ωan(1 − gu) =
∑

1≤u≤q−2

ζ
nu+an logg(1−gu)
q−1 ,

where logg is the discrete logarithm to base g defined modulo q − 1, i.e., such that
glogg(x) = x. If (q − 1) � n but (q − 1) | an we have ωan = ε so we must add the
contribution of u = 0, which is 1, and if (q − 1) | n we must add the contribution
of u = 0 and of x = 0, which is 2 (recall the essential convention that χ(0) = 0 if
χ �= ε and ε(0) = 1, see Definition 4.3).

In other words, if we set

Pa(X ) =
∑

1≤u≤q−2

X (u+a logg(1−gu)) mod (q−1) ∈ R ,

we have

J (n, an) = Pa(ζ
n
q−1) +

⎧
⎪⎨

⎪⎩

0 if (q − 1) � an ,

1 if (q − 1) | an but (q − 1) � n , and

2 if (q − 1) | n .

Thus, if we set finally

P(X ) = P1(X )P2(X )P3(X )P4(X ) mod X q−1 ∈ R ,

we have (still generically) J5(n, n, n, n, n) = P(ζ n
q−1). Assume for the moment that

this is true for all n (we will correct this below), let � = logg(z), so that ω(z) =
ω(g�) = ζ �

q−1, and write

P(X ) =
∑

0≤j≤q−2

ajX
j .
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We thus have

ω−n(z)J5(n, n, n, n, n) = ζ−n�
q−1

∑

0≤j≤q−2

ajζ
nj
q−1 =

∑

0≤j≤q−2

ajζ
n(j−�)

q−1 ,

hence

S(q; z) =
∑

0≤n≤q−2

ω−n(z)J5(n, n, n, n, n) =
∑

0≤j≤q−2

aj
∑

0≤n≤q−2

ζ
n(j−�)

q−1

= (q − 1)
∑

0≤j≤q−2, j≡� (mod q−1)

aj = (q − 1)a� .

The result is thus immediate as soon as we know the coefficients of the polynomial
P. Since there exist fast methods for computing discrete logarithms, this leads to a
Õ(q) method for computing S(q; z).

To obtain the correct formula, we need to adjust for the special n for which
J5(n, n, n, n, n) is not equal to J (n, n)J (n, 2n)J (n, 3n)J (n, 4n), which are the same
for which (q − 1) | an for some a such that 2 ≤ a ≤ 4, together with a = 5. This is
easy but boring, and should be skipped on first reading.

1. For n = 0 we have J5(n, n, n, n, n) = q4, and on the other hand P(1) =
(J (0, 0) − 2)4 = (q − 2)4, so the correction term isq4 − (q − 2)4 = 8(q − 1)(q2 −
2q + 2).

2. For n = (q − 1)/2 (if q is odd) we have

J5(n, n, n, n, n) = g(ωn)5/g(ω5n) = g(ωn)4 = g(ρ)4

since 5n ≡ n (mod q − 1), where ρ is the character of order 2, and we have
g(ρ)2 = (−1)(q−1)/2q, so J5(n, n, n, n, n) = q2. On the other hand

P(ζ n
q−1) = J (ρ, ρ)(J (ρ, 2ρ) − 1)J (ρ, ρ)(J (ρ, 2ρ) − 1)

= J (ρ, ρ)2 = g(ρ)4/q2 = 1 ,

so the correction term is ρ(z)(q2 − 1).
3. For n = ±(q − 1)/3 (if q ≡ 1 (mod 3)), writing χ3 = ω(q−1)/3, which is one of

the two cubic characters, we have

J5(n, n, n, n, n) = g(ωn)5/g(ω5n) = g(ωn)5/g(ω−n)

= g(ωn)6/(g(ω−n)g(ωn)) = g(ωn)6/q

= qJ (n, n)2

(check all this). On the other hand
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P(ζ n
q−1) = J (n, n)J (n, 2n)(J (n, 3n) − 1)J (n, 4n)

= g(ωn)2

g(ω2n)

g(ωn)g(ω2n)

q

g(ωn)2

g(ω2n)

= g(ωn)5

qg(ω−n)
= g(ωn)6

q2
= J (n, n)2 ,

so the correction term is 2(q − 1)ℜ(χ−1
3 (z)J (χ3, χ3)

2).
4. For n = ±(q − 1)/4 (if q ≡ 1 (mod 4)), writing χ4 = ω(q−1)/4, which is one of

the two quartic characters, we have

J5(n, n, n, n, n) = g(ωn)5/g(ω5n) = g(ωn)4 = ωn(−1)qJ3(n, n, n) .

In addition, we have

J3(n, n, n) = J (n, n)J (n, 2n) = ωn(4)J (n, n)2 = ρ(2)J (n, n)2 ,

so
J5(n, n, n, n, n) = g(ωn)4 = ωn(−1)qρ(2)J (n, n)2 .

Note that
χ4(−1) = χ−1

4 (−1) = ρ(2) = (−1)(q−1)/4 ,

(Exercise: prove it!), so that ωn(−1)ρ(2) = 1 and the above simplifies to
J5(n, n, n, n, n) = qJ (n, n)2.
On the other hand,

P(ζ n
q−1) = J (n, n)J (n, 2n)J (n, 3n)(J (n, 4n) − 1)

= g(ωn)2

g(ω2n)

g(ωn)g(ω2n)

g(ω3n)

g(ωn)g(ω3n)

q

= g(ωn)4

q
= ωn(−1)ρ(2)J (n, n)2 = J (n, n)2

as above, so the correction term is 2(q − 1)ℜ(χ−1
4 (z)J (χ4, χ4)

2).
5. For n = a(q − 1)/5 with 1 ≤ a ≤ 4 (if q ≡ 1 (mod 5)), writing χ5 = ω(q−1)/5

we have J5(n, n, n, n, n) = −g(χa
5 )5/q, while abbreviating g(χam

5 ) to g(m) we
have

P(ζ n
q−1) = J (n, n)J (n, 2n)J (n, 3n)J (n, 4n)

= − g(n)2

g(2n)

g(n)g(2n)

g(3n)

g(n)g(3n)

g(4n)

g(n)g(4n)

q

= −g(n)5

q
,
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so there is no correction term.

Summarizing, we have shown the following:

Proposition 5.1 Let S(q; z) = ∑
0≤n≤q−2 ω−n(z)J5(n, n, n, n, n). Let � = logg(z)

and let P(X ) = ∑
0≤j≤q−2 ajX

j be the polynomial defined above. We have

S(q; z) = (q − 1)(T1 + T2 + T3 + T4 + a�) ,

where Tm = 0 if m � (q − 1) and otherwise

T1 = 8(q2 − 2q + 2) , T2 = ρ(z)(q + 1) ,

T3 = 2ℜ(χ−1
3 (z)J (χ3, χ3)

2) , and T4 = 2ℜ(χ−1
4 (z)J (χ4, χ4)

2) ,

with the above notation.

Note that thanks to Proposition 4.16, these supplementary Jacobi sums J (χ3, χ3)

and J (χ4, χ4) can be computed in logarithmic time using Cornacchia’s algorithm
(this is not quite true, one needs an additional slight computation, do you see why?).

Note also for future reference that the above proposition proves that (q − 1) |
S(q, z), which is not clear from the definition.

5.2 Sample Implementations

For simplicity, assume that q = p is prime. I have written simple implementations
of the computation of S(q; z). In the first implementation, I use the naïve formula
expressing J5 in terms of J (n, an) and sum on n, except that I use the reciprocity
formula which gives J5(−n,−n,−n,−n,−n) in terms of J5(n, n, n, n, n) to sum
only over (p − 1)/2 terms instead of p − 1. Of course to avoid recomputation, I
precompute a discrete logarithm table.

The timings for p ≈ 10k for k = 2, 3, and 4 are 0.03, 1.56, and 149s respectively,
compatible with Õ(q2) time.

On the other hand, implementing in a straightforward manner the algorithm given
by the above proposition gives timings for p ≈ 10k for k = 2, 3, 4, 5, 6, and 7 of 0,
0.02, 0.08, 0.85, 9.90, and 123s respectively, of course much faster and compatible
with Õ(q) time.

The main drawback of this method is that it requires O(q) storage: it is thus
applicable only for q ≤ 108, say, which is more than sufficient for many applications,
but of course not for all. For instance, the case p ≈ 107 mentioned above already
required a few gigabytes of storage.
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5.3 Using Theta Functions

A completely different way of computing Gauss and Jacobi sums has been suggested
by S. Louboutin. It is related to the theory of L-functions of Dirichlet characters that
we study below, and in our context is valid only for q = p prime, not for prime powers,
but in the context of Dirichlet characters it is valid in general (simply replace p by
N and Fp by Z/NZ in the following formulas when χ is a primitive character of
conductor N , see below for definitions):

Definition 5.2 Let χ be a nontrivial character of F∗
p, and let e = 0 or 1 be such that

χ(−1) = (−1)e. The theta function associated to χ is the function defined on the
upper half-plane by

Θ(χ, τ) = 2
∑

m≥1

meχ(m)eiπm
2τ/p .

The main property of this function, which is a direct consequence of the Poisson
summation formula, and is equivalent to the functional equation of Dirichlet L-
functions, is as follows:

Proposition 5.3 We have the functional equation

Θ(χ,−1/τ) = ω(χ)(τ/i)(2e+1)/2Θ(χ−1, τ ) ,

with the principal determination of the square root, andwhereω(χ) = g(χ)/(iep1/2)
is the so-called root number.

Corollary 5.4 If χ(−1) = 1 we have

g(χ) = p1/2
∑

m≥1 χ(m) exp(−πm2/pt)

t1/2
∑

m≥1 χ−1(m) exp(−πm2t/p)

and if χ(−1) = −1 we have

g(χ) = p1/2i

∑
m≥1 χ(m)m exp(−πm2/pt)

t3/2
∑

m≥1 χ−1(m)m exp(−πn2t/p)

for any t such that the denominator does not vanish.

Note that the optimal choice of t is t = 1, and (at least for p prime) it seems that
the denominator never vanishes (there are counterexamples when p is not prime, but
apparently only four, see [8]).

It follows from this corollary that g(χ) can be computed numerically as a complex
number in Õ(p1/2) operations. Thus, if χ1 and χ2 are nontrivial characters such
that χ1χ2 �= ε (otherwise J (χ1, χ2) is trivial to compute), the formula J (χ1, χ2) =
g(χ1)g(χ2)/g(χ1χ2) allows the computation of J2 numerically as a complex number
in Õ(p1/2) operations.
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To recover J itself as an algebraic number, we could either compute all its conju-
gates, but this would require more time than the direct computation of J , or possibly
use the LLL algorithm, which although fast, would also require some time. In prac-
tice, to perform computations such as that of the sum S(q; z) above, we only need J
to sufficient accuracy: we perform all the elementary operations in C, and since we
know that at the end the result will be an integer for which we know an upper bound,
we thus obtain a proven exact result.

More generally, we have generically J5(n, n, n, n, n) = g(ωn)5/g(ω5n), which can
thus be computed in Õ(p1/2) operations. It follows that S(p; z) can be computed in
Õ(p3/2) operations, which is slower than the elementary method seen above. The
main advantage is that we do not need much storage: more precisely, we want to
compute S(p; z) to sufficiently small accuracy that we can recognize it as an integer,
so a priori up to an absolute error of 0.5. However, we have seen that (p − 1) |
S(p; z): it is thus sufficient to have an absolute error less than (p − 1)/2 thus at
worse each of the p − 1 terms in the sum to an absolute error less than 1/2. Since
generically |J5(n, n, n, n, n)| = p2, we need a relative error less than 1/(2p2), so less
than 1/(10p2) on each Gauss sum. In practice, of course, this is overly pessimistic,
but it does not matter. For p ≤ 109, this means that 19 decimal digits suffice.

The main term in the theta function computation (with t = 1) is exp(−πm2/p), so
we need exp(−πm2/p) ≤ 1/(100p2), say, in other words πm2/p ≥ 4.7 + 2 log(p),
so m2 ≥ p(1.5 + 0.7 log(p)).

This means that we will need the values of ω(m) only up to this limit, of the
order of O((p log(p))1/2), considerably smaller than p. Thus, instead of computing
a full discrete logarithm table, which takes some time but more importantly a lot
of memory, we compute only discrete logarithms up to that limit, using specific
algorithms for doing so which exist in the literature, some of which being quite easy.

A straightforward implementation of this method gives timings for k = 2, 3, 4,
and 5 of 0.02, 0.40, 16.2, and 663s respectively, compatible with Õ(p3/2) time. This
is faster than the completely naïve method, but slower than the method explained
above. Its advantage is that it requires much less memory. For p around 107, however,
it is much too slow so this method is rather useless. We will see that its usefulness
is mainly in the context where it was invented, i.e., for L-functions of Dirichlet
characters.

5.4 Using the Gross–Koblitz Formula

This section is of a higher mathematical level than the preceding ones, but is very
important since it gives the best method for computing Gauss (and Jacobi) sums. We
refer to Sects. 11.6 and 11.7 of [4] for complete details, and urge the reader to try to
understand what follows.

In the preceding sections, we have considered Gauss sums as belonging to a
number of different rings: the ring Z[ζq−1, ζp] or the field C of complex numbers,
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and for Jacobi sums the ring Z[ζq−1], but also the ring Z[X ]/(X q−1 − 1), and again
the field C.

In number theory, there exist other algebraically closed fields which are useful in
many contexts, the fields C� of �-adic numbers, one for each prime number �. These
fields come with a topology and analysis which are rather special: one of the main
things to remember is that a sequence of elements tends to 0 if and only the �-adic
valuation of the elements (the largest exponent of � dividing them) tends to infinity.
For instance, 2m tends to 0 in C2, but in no other C�, and 15m tends to 0 in C3 and in
C5.

The most important subrings of C� are the ringZ� of �-adic integers, the elements
of which can be written as x = a0 + a1� + · · · + ak�k + · · · with aj ∈ [0, � − 1],
and its field of fractionsQ�, which containsQ, whose elements can be represented in
a similar way as x = a−m�−m + a−(m−1)�

−(m−1) + · · · + a−1�
−1 + a0 + a1� + · · · .

In dealingwithGauss and Jacobi sums overFq with q = pf , the onlyC� which is of
use for us is the one with � = p (in highbrow language, we are going to use implicitly
crystalline p-adic methods, while for � �= p it would be étale �-adic methods).

Apart from this relatively strange topology, many definitions and results valid on
C have analogues in Cp. The main object that we will need in our context is the
analogue of the gamma function, naturally called the p-adic gamma function, in the
present case due to Morita (there is another one, see Sect. 11.5 of [4]), and denoted
Γp. Its definition is in fact quite simple:

Definition 5.5 For s ∈ Zp we define

Γp(s) = lim
m→s

(−1)m
∏

0≤k<m
p�k

k ,

where the limit is taken over any sequence of positive integers m tending to s for the
p-adic topology.

It is, of course, necessary to show that this definition makes sense, but this is not
difficult, and most of the important properties of Γp(s), analogous to those of Γ (s),
can be deduced from it.

Exercise 5.6 Choose p = 5 and s = −1/4, so that p-adically s = 1/(1 − 5) = 1 +
5 + 52 + 53 + · · · .
1. Compute the right-hand side of the above definition with small 5-adic accuracy

for m = 1, 1 + 5, and 1 + 5 + 52.
2. It is in fact easy to compute that

Γ5(−1/4) = 4 + 4 · 5 + 53 + 3 · 54 + 2 · 55 + 2 · 56 + 2 · 57 + 4 · 58 + · · ·

Using this, show that Γ5(−1/4)2/16 seems to be a 5-adic root of the polynomial
5X 2 + 4X + 1. This is in fact true, see the Gross–Koblitz formula below.
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We need a much deeper property of Γp(s) known as the Gross–Koblitz formula: it
is in fact an analogue of a formula for Γ (s) known as the Chowla–Selberg formula,
and it is also closely related to the Davenport–Hasse relations that we have seen
above.

The proof of the Gross–Koblitz formula was initially given using tools of crys-
talline cohomology, but an elementary proof due to A. Robert now exists, see for
instance, Sect. 11.7 of [4] once again.

The Gross–Koblitz formula tells us that certain products of p-adic gamma func-
tions at rational arguments are in fact algebraic numbers, more preciselyGauss sums
(explaining their importance for us). This is quite surprising since usually transcen-
dental functions such as Γp take transcendental values.

To give a specific example, we have Γ5(1/4)2 = −2 + √−1, where
√−1 is the

square root in Z5 congruent to 3 modulo 5. In view of the elementary properties of
the p-adic gamma function, this is equivalent to the result stated in the above exercise
as Γ5(−1/4)2 = −(16/5)(2 + √−1).

Before stating the formula we need to collect a number of facts, both on classical
algebraic number theory and on p-adic analysis. None are difficult to prove, see
Chap.4 of [3]. Recall that q = pf .

• We let K = Q(ζp) and L = K(ζq−1) = Q(ζq−1, ζp) = Q(ζp(q−1)), so that L/K
is an extension of degree φ(q − 1). There exists a unique prime ideal p of K above
p, and we have p = (1 − ζp)ZK and pp−1 = pZK , and ZK/p � Fp. The prime ideal p
splits into a product of g = φ(q − 1)/f prime idealsPj of degree f in the extension
L/K , i.e., pZL = P1 · · ·Pg , and for any prime ideal P = Pj we have ZL/P � Fq.

Exercise 5.7 Prove directly that for any f we have f | φ(pf − 1).

•Fix one of the prime idealsP as above. There exists a unique group isomorphism
ω = ωP from (ZL/P)∗ to the group of (q − 1)st roots of unity in L, such that for
all x ∈ (ZL/P)∗ we have ω(x) ≡ x (mod P). It is called the Teichmüller character,
and it can be considered as a character of order q − 1 on F∗

q � (ZL/P)∗. We can thus
instantiate the definition of a Gauss sum over Fq by defining it as g(ω−r

P ) ∈ L.

• Let ζp be a primitive pth root of unity in Cp, fixed once and for all. There
exists a unique π ∈ Z[ζp] satisfying πp−1 = −p, π ≡ 1 − ζp (mod π2), and we set
Kp = Qp(π) = Qp(ζp), and LP the completion of L atP. The field extension LP/Kp

is Galois, with Galois group isomorphic to Z/f Z (which is the same as the Galois
group of Fq/Fp, where Fp (resp., Fq) is the so-called residue field of K (resp., L)).

• We set the following:

Definition 5.8 We define the p-adic Gauss sum by

gq(r) =
∑

x∈LP, xq−1=1

x−rζ
TrLP/Kp (x)
p ∈ LP .



Computational Number Theory in Relation with L-Functions 215

Note that this depends on the choice of ζp, or equivalently of π . Since gq(r) and
g(ω−r

P ) are algebraic numbers, it is clear that they are equal, although viewed in
fields having different topologies. Thus, results about gq(r) translate immediately
into results about g(ω−r

P ), hence about general Gauss sums over finite fields.

The Gross–Koblitz formula is as follows:

Theorem 5.9 (Gross–Koblitz) Denote by s(r) the sum of digits in base p of the
integer r mod (q − 1), i.e., of the unique integer r′ such that r′ ≡ r (mod q − 1)
and 0 ≤ r′ < q − 1. We have

gq(r) = −π s(r)
∏

0≤i<f

Γp

({
pf −ir

q − 1

})
,

where {x} denotes the fractional part of x.
Let us show how this can be used to compute Gauss or Jacobi sums, and in

particular our sum S(q; z). Assume for simplicity that f = 1, in other words that
q = p: the right-hand side is thus equal to −π s(r)Γp({pr/(p − 1)}). Since we can
always choose r such that 0 ≤ r < p − 1, we have s(r) = r and {pr/(p − 1)} = {r +
r/(p − 1)} = r/(p − 1), so the RHS is −π rΓp(r/(p − 1)). Now an easy property
of Γp is that it is differentiable: recall that p is “small” in the p-adic topology, so
r/(p − 1) is close to −r, more precisely r/(p − 1) = −r + pr/(p − 1) (this is how
we obtained it in the first place!). Thus in particular, if p > 2 we have the Taylor
expansion

Γp(r/(p − 1)) = Γp(−r) + (pr/(p − 1))Γ ′
p(−r) + O(p2)

= Γp(−r) − prΓ ′
p(−r) + O(p2) .

Since gq(r) depends only on r modulo p − 1, we will assume that 0 ≤ r < p − 1.
In that case, it is easy to show from the definition that

Γp(−r) = 1/r! and Γ ′
p(−r) = (−γp + Hr)/r! ,

where Hr = ∑
1≤n≤r 1/n is the harmonic sum, and γp = −Γ ′

p(0) is the p-adic ana-
logue of Euler’s constant.

Exercise 5.10 Prove these formulas, as well as the congruence for γp given below.

There exist infinite (p-adic) series enabling accurate computation of γp, but since
we only need it modulo p, we use the easily proved congruence γp ≡ ((p − 1)! +
1)/p = Wp (mod p), the so-called Wilson quotient.

We will see below that, as a consequence of the Weil conjectures proved by
Deligne, it is sufficient to compute S(p; z) modulo p2. Thus, in the following p-adic
computation we only work modulo p2.
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The Gross–Koblitz formula tells us that for 0 ≤ r < p − 1 we have

gq(r) = −π r

r! (1 − pr(Hr − Wp) + O(p2)) .

It follows that for (p − 1) � 5r we have

J (−r,−r,−r,−r,−r) = g(ωP)5

g(ω5
P)

= gq(r)5

gq(5r)
= π f (r)(a + bp + O(p2)) ,

where a and b will be computed below and

f (r) = 5r − (5r mod p − 1) = 5r − (5r − (p − 1)�5r/(p − 1)�)
= (p − 1)�5r/(p − 1)� ,

so that π f (r) = (−p)�5r/(p−1)� since πp−1 = −p. Since we want the result modulo p2,
we consider three intervals together with special cases:

1. If r > 2(p − 1)/5 but (p − 1) � 5r, we have

J (−r,−r,−r,−r,−r) ≡ 0 (mod p2) .

2. If (p − 1)/5 < r < 2(p − 1)/5 we have

J (−r,−r,−r,−r,−r) ≡ (−p)
(5r − (p − 1))!

r!5 (mod p2) .

3. If 0 < r < (p − 1)/5 we have f (r) = 0 and 0 ≤ 5r < (p − 1) hence

J (−r,−r,−r,−r,−r) = (5r)!
r!5 (1 − 5pr(Hr − Wp) + O(p2))·

· (1 + 5pr(H5r − Wp) + O(p2))

≡ (5r)!
r!5 (1 + 5pr(H5r − Hr)) (mod p2) .

4. Finally, if r = j(p − 1)/5wehave J (−r,−r,−r,−r,−r) = p4 ≡ 0 (mod p2) if
j = 0, and otherwise J (−r,−r,−r,−r,−r) = −gq(r)5/p, and since the p-adic
valuation of gq(r) is equal to r/(p − 1) = j/5, that of J (−r,−r,−r,−r,−r) is
equal to j − 1, which is greater or equal to 2 as soon as j ≥ 3. For j = 2, i.e.,
r = 2(p − 1)/5, we thus have

J (−r,−r,−r,−r,−r) ≡ p
1

r!5 ≡ (−p)
(5r − (p − 1))!

r!5 (mod p2) ,
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which is the same formula as for (p − 1)/5 < r ≤ 2(p − 1)/5. For j = 1, i.e.,
r = (p − 1)/5, we thus have

J (−r,−r,−r,−r,−r) ≡ − 1

r!5 (1 − 5pr(Hr − Wp)) (mod p2) ,

while on the other hand

(5r)! = (p − 1)! = −1 + pWp ≡ −1 − p(p − 1)Wp ≡ −1 − 5prWp ,

and H5r = Hp−1 ≡ 0 (mod p) (Wolstenholme’s congruence, easy), so

(5r)!
r!5 (1 + 5pr(H5r − Hr)) ≡ − 1

r!5 (1 − 5prHr)(1 + 5prWp)

≡ − 1

r!5 (1 − 5pr(Hr − Wp)) (mod p2) ,

which is the same formula as for 0 < r < (p − 1)/5.

An important point to note is that we are working p-adically, but the final result
S(p; z) being an integer, it does not matter at the end. There is one small additional
detail to take care of: we have

S(p; z) =
∑

0≤r≤p−2

ω−r(z)J (r, r, r, r, r)

=
∑

0≤r≤p−2

ωr(z)J (−r,−r,−r,−r,−r) ,

so we must express ωr(z) in the p-adic setting. Since ω = ωP is the Teichmüller
character, in the p-adic setting it is easy to show that ω(z) is the p-adic limit of zp

k
as

k → ∞, in particular ω(z) ≡ z (mod p), but more precisely ω(z) ≡ zp (mod p2).

Exercise 5.11 Let p ≥ 3. Assume that z ∈ Zp \ pZp (for instance that z ∈ Z \ pZ).
Prove that zp

k
has a p-adic limit ω(z) when k → ∞, that ωp−1(z) = 1, that ω(z) ≡ z

(mod p), and ω(z) ≡ zp (mod p2).

We have thus proved the following.

Proposition 5.12 We have

S(p; z) ≡
∑

0<r≤(p−1)/5

(5r)!
r!5 (1 + 5pr(H5r − Hr))z

pr

− p
∑

(p−1)/5<r≤2(p−1)/5

(5r − (p − 1))!
r!5 zr (mod p2) .
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In particular

S(p; z) ≡
∑

0<r≤(p−1)/5

(5r)!
r!5 zr (mod p) .

Remarks 5.13 1. Note that, as must be the case, all mention of p-adic numbers has
disappeared from this formula. We used the p-adic setting only in the proof. It
can be proved “directly”, but with some difficulty.

2. We used the Taylor expansion only to order 2. It is, of course, possible to use it
to any order, thus giving a generalization of the above proposition to any power
of p.

The point of giving all these details is as follows: it is easy to show that (p − 1) |
S(p; z) (in fact we have seen this in the elementarymethod above).We can thus easily
compute S(p; z)modulo p2(p − 1). On the other hand, it is possible to prove (but not
easy, it is part of theWeil conjectures proved byDeligne), that |S(p; z) − p4| < 4p5/2.
It follows that as soon as 8p5/2 < p2(p − 1), in other words p ≥ 67, the computation
that we perform modulo p2 is sufficient to determine S(p; z) exactly. It is clear that
the time to perform this computation is Õ(p), and in fact much faster than any that
we have seen.

In fact, implementing in a reasonable way the algorithm given by the above propo-
sition gives timings for p ≈ 10k for k = 2, 3, 4, 5, 6, 7, and 8 of 0, 0.01, 0.03, 0.21,
2.13, 21.92, and 229.6s, respectively, of course much faster and compatible with
Õ(p) time. The great additional advantage is that we use very small memory. This
is, therefore, the best known method.

Numerical example: Choose p = 106 + 3 and z = 2. In 2.13s we find that
S(p; z) ≡ a (mod p2) with a = 356022712041. Using the Chinese remainder for-
mula

S(p; z) = p4 + ((a − (1 + a)p2) mod ((p − 1)p2)) ,

we immediately deduce that

S(p; z) = 1000012000056356142712140 .

Here is a summary of the timings (in seconds) that we have mentioned:

k 2 3 4 5 6 7 8
Naïve 0.03 1.56 149 ∗ ∗ ∗ ∗
Theta 0.02 0.40 16.2 663 ∗ ∗ ∗

Mod X q−1 − 1 0 0.02 0.08 0.85 9.90 123 ∗
Gross–Koblitz 0 0.01 0.03 0.21 2.13 21.92 229.6

Time for computing S(p; z) for p ≈ 10k



Computational Number Theory in Relation with L-Functions 219

6 Gauss and Jacobi Sums over Z/NZ

Another context in which one encounters Gauss sums is over finite rings such as
Z/NZ. The theory coincides with that over Fq when q = p = N is prime, but is
rather different otherwise. These other Gauss sums enter in the important theory of
Dirichlet characters.

6.1 Definitions

We recall the following definition:

Definition 6.1 Let χ be a (multiplicative) character from the multiplicative group
(Z/NZ)∗ of invertible elements of Z/NZ to the complex numbers C. We denote by
abuse of notation again by χ the map from Z to C defined by χ(x) = χ(x mod N )

when x is coprime toN , and χ(x) = 0 if x is not coprime toN , and call it the Dirichlet
character modulo N associated to χ .

It is clear that a Dirichlet character satisfies χ(xy) = χ(x)χ(y) for all x and y,
that χ(x + N ) = χ(x), and that χ(x) = 0 if and only if x is not coprime with N .
Conversely, it immediate that these properties characterize Dirichlet characters.

A crucial notion (which has no equivalent in the context of characters of F∗
q) is

that of primitivity:
Assume that M | N . If χ is a Dirichlet character modulo M , we can transform

it into a character χN modulo N by setting χN (x) = χ(x) if x is coprime to N , and
χN (x) = 0 otherwise.We say that the charactersχ andχN are equivalent. Conversely,
if ψ is a character modulo N , it is not always true that one can find χ modulo M
such that ψ = χN . If it is possible, we say that ψ can be defined modulo M .

Definition 6.2 Letχ be a character moduloN .We say thatχ is a primitive character
if χ cannot be defined moduloM for any proper divisorM of N , i.e., for anyM | N
such that M �= N .

Exercise 6.3 Assume that N ≡ 2 (mod 4). Show that there do not exist any primi-
tive characters modulo N .

Exercise 6.4 Assume that pa | N with p prime. Show that ifχ is a primitive character
moduloN , the order ofχ (the smallest k such thatχ k is a trivial character) is divisible
by pa−1.

Aswewill see, questions about general Dirichlet characters can always be reduced
to questions about primitive characters, and the latter have much nicer properties.

Proposition 6.5 Let χ be a character modulo N . There exists a divisor f of N called
the conductor of χ (this f has nothing to do with the f used above such that q = pf ),
having the following properties:
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1. The character χ can be defined modulo f , in other words there exists a character
ψ modulo f such that χ = ψN using the notation above.

2. f is the smallest divisor of N having this property.
3. The character ψ is a primitive character modulo f .

There is also the notion of trivial charactermoduloN : howeverwemust be careful
here, and we set the following.

Definition 6.6 The trivial character modulo N is the Dirichlet character associated
with the trivial character of (Z/NZ)∗. It is usually denoted by χ0 (but be careful, the
index N is implicit, so χ0 may represent different characters), and its values are as
follows: χ0(x) = 1 if x is coprime to N , and χ0(x) = 0 if x is not coprime to N .

In particular, χ0(0) = 0 if N �= 1. The character χ0 can also be characterized as
the only character modulo N of conductor 1.

Definition 6.7 Let χ be a character modulo N . The Gauss sum associated to χ and
a ∈ Z is

g(χ, a) =
∑

x mod N

χ(x)ζ ax
N ,

and we write simply g(χ) instead of g(χ, 1).

The most important results concerning these Gauss sums is the following.

Proposition 6.8 Let χ be a character modulo N .

1. If a is coprime to N we have

g(χ, a) = χ−1(a)g(χ) = χ(a)g(χ) ,

and more generally g(χ, ab) = χ−1(a)g(χ, b) = χ(a)g(χ, b).
2. If χ is a primitive character, we have

g(χ, a) = χ(a)g(χ)

for all a, in other words, in addition to (1), we have g(χ, a) = 0 if a is not coprime
to N .

3. If χ is a primitive character, we have |g(χ)|2 = N.

Note that (1) is trivial, and that since χ(a) has modulus 1 when a is coprime to N ,
we can write indifferently χ−1(a) or χ(a). On the other hand, (2) is not completely
trivial.

We leave to the reader the easy task of defining Jacobi sums and of proving the
easy relations between Gauss and Jacobi sums.
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6.2 Reduction to Prime Gauss Sums

A fundamental and little-known fact is that in the context of Gauss sums over Z/NZ

(as opposed to Fq), one can in fact always reduce to prime N . First note (with proof)
the following easy result:

Proposition 6.9 Let N = N1N2 with N1 and N2 coprime, and let χ be a character
modulo N .

1. There exist unique characters χi modulo Ni such that χ = χ1χ2 in an evident
sense, and if χ is primitive, the χi will also be primitive.

2. We have the identity (valid even if χ is not primitive):

g(χ) = χ1(N2)χ2(N1)g(χ1)g(χ2) .

Proof (1) SinceN1 andN2 are coprime there exist u1 and u2 such that u1N1 + u2N2 =
1. We define χ1(x) = χ(xu2N2 + u1N1) and χ2(x) = χ(xu1N1 + u2N2). We leave to
the reader to check (1) using these definitions.

(2) When xi ranges modulo Ni, x = x1u2N2 + x2u1N1 ranges modulo N (check it,
in particular that the values are distinct!), and χ(x) = χ1(x)χ2(x) = χ1(x1)χ2(x2).
Furthermore,

ζN = exp(2π i/N ) = exp(2π i(u1/N2 + u2/N1)) = ζ
u2
N1

ζ
u1
N2

,

hence

g(χ) =
∑

x mod N

χ(x)ζ x
N

=
∑

x1 mod N1, x2 mod N2

χ1(x1)χ2(x2)ζ
u2x1
N1

ζ
u1x2
N2

= g(χ1; u2)g(χ2; u1) = χ−1
1 (u2)χ

−1
2 (u1)g(χ1)g(χ2) ,

so the result follows since N2u2 ≡ 1 (mod N1) and N1u1 ≡ 1 (mod N2). �

Thanks to the above result, the computation of Gauss sums modulo N can be
reduced to the computation of Gauss sums modulo prime powers.

Here a remarkable simplification occurs, due to Odoni: Gauss sums modulo pa

for a ≥ 2 can be “explicitly computed”, in the sense that there is a direct formula
not involving a sum over pa terms for computing them. Although the proof is not
difficult, we do not give it, and refer instead to [5] which can be obtained from the
author. We use the classical notation e(x) to mean e2π ix. Furthermore, we use the p-
adic logarithm logp(m), but in a totally elementary manner since we will always have
m ≡ 1 (mod p) and the standard expansion − logp(1 − x) = ∑

k≥1 x
k/k, which we

stop as soon as all the terms are divisible by pn:
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Theorem 6.10 (Odoni et al.) Let χ be a primitive character modulo pn.

1. Assume that p ≥ 3 is prime and n ≥ 2. Write χ(1 + p) = e(−b/pn−1) with p � b.
Define

A(p) = p

logp(1 + p)
and B(p) = A(p)(1 − logp(A(p))) ,

except when pn = 33, in which case we define B(p) = 10. Then

g(χ) = pn/2e
(
bB(p)

pn

)
χ(b) ·

⎧
⎨

⎩

1 if n ≥ 2 is even,(
b

p

)
ip(p−1)/2 if n ≥ 3 is odd .

2. Let p = 2 and assume that n ≥ 4. Writeχ(1 + p2) = e(b/pn−2)with p � b. Define

A(p) = − p2

logp(1 + p2)
and B(p) = A(p)(1 − logp(A(p))) ,

except when pn = 24, in which case we define B(p) = 13. Then

g(χ) = pn/2e
(
bB(p)

pn

)
χ(b) ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e
(
b

8

)
if n ≥ 4 is even,

e
(

(b2 − 1)/2 + b

8

)
if n ≥ 5 is odd .

3. If pn = 22, or pn = 23 and χ(−1) = 1, we have g(χ) = pn/2, and if pn = 23 and
χ(−1) = −1 we have g(χ) = pn/2i.

Thanks to this theorem, we see that the computation of Gauss sums in the context
of Dirichlet characters can be reduced to the computation of Gauss sums modulo p
for prime p. This is, of course, the same as the computation of a Gauss sum for a
character of F∗

p.
We recall the available methods for computing a single Gauss sum of this type:

1. The naïve method, time Õ(p) (applicable in general, time Õ(N )).
2. Using the Gross–Koblitz formula, also time Õ(p), but the implicit constant is

much smaller, and also computations can be done modulo p or p2, for instance,
if desired (applicable only to N = p, or in the context of finite fields).

3. Using theta functions, time Õ(p1/2) (applicable in general, time Õ(N 1/2)).
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6.3 General Complete Exponential Sums over Z/NZ

We have just seen the (perhaps surprising) fact that Gauss sums modulo pa for a ≥ 2
can be “explicitly computed”. This is in fact a completely general fact. Let χ be
a Dirichlet character modulo N , and let F ∈ Q[X ] be integer valued. Consider the
following complete exponential sum:

S(F,N ) =
∑

x mod N

χ(x)e2π iF(x)/N .

For this to make sense, we must, of course, assume that x ≡ y (mod N ) implies
F(x) ≡ F(y) (mod N ), which is, for instance, the case if F ∈ Z[X ]. As we did for
Gauss sums, using Chinese remaindering we can reduce the computation to the case
where N = pa is a prime power. But the essential point is that if a ≥ 2, S(F, pa)
can be “explicitly computed”, see [5] for the detailed statement and proof, so we are
again reduced to the computation of S(F, p).

A simplified version and incomplete version of the result when χ is the trivial
character is as follows:

Theorem 6.11 Let S = ∑
x mod pa e

2π iF(x)/pa , and assume that a ≥ 2 andp > 2. Then
under suitable assumptions on F we have the following:

1. If there does not exist y such that F ′(y) ≡ 0 (mod p) then S = 0.
2. Otherwise, there exists u ∈ Zp such that F ′(u) = 0 and vp(F ′′(u)) = 0, u is

unique, and we have
S = pa/2e2π iF(u)/pa g(u, p, a) ,

where g(u, p, a) = 1 if a is even and otherwise

g(u, p, a) =
(
F ′′(u)
p

)
ip(p−1)/2 .

Exercise 6.12 Let F(x) = cx3 + dx with c and d integers, and let p be a prime
number such that p � 6cd . The assumptions of the theorem will then be satisfied.
Compute explicitly

∑
x mod pa e

2π iF(x)/pa for a ≥ 2.Youwill need to introduce a square
root of −3cd modulo pa.

For instance, using a variant of the above theorem, it is immediate to prove the
following result due to Salié:

Proposition 6.13 The Kloosterman sum K(m, n,N ) is defined by

K(m, n,N ) =
∑

x∈(Z/NZ)∗
e2π i(mx+nx−1)/N ,

where x runs over the invertible elements of Z/NZ. If p > 2 is a prime such that
p � n and a ≥ 2 we have
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K(n, n, pa) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2pa/2 cos(4πn/pa) if 2 | a,
2pa/2

(
n

p

)
cos(4πn/pa) if 2 � a and p ≡ 1 (mod 4),

−2pa/2
(
n

p

)
sin(4πn/pa) if 2 � a and p ≡ 3 (mod 4).

Note that it is immediate to reduce general K(m, n,N ) to the case m = n and
N = pa, and to give formulas also for the case p = 2. As usual the case N = p is
not explicit, and, contrary to the case of Gauss sums where it is easy to show that
|g(χ)| = √

p for a primitive character χ , the bound |K(m, n, p)| ≤ 2
√
p for p � nm

due to Weil is much more difficult to prove, and in fact follows from his proof of the
Riemann hypothesis for curves.

7 Numerical Computation of L-Functions

7.1 Computational Issues

Let L(s) be a general L-function as defined in Sect. 1, and let N be its conductor.
There are several computational problems that we want to solve. The first, but not
necessarily the most important, is the numerical computation of L(s) for given com-
plex values of s. This problem is of very varying difficulty depending on the size of
N and of the imaginary part of s (note that if the real part of s is quite large, the
defining series for L(s) converges quite well, if not exponentially fast, so there is no
problem in that range, and by the functional equation the same is true if the real part
of 1 − s is quite large).

The problems for �(s) large are quite specific, and are already crucial in the case
of the Riemann zeta function ζ(s). It is by an efficient management of this problem
(for instance, by using the so-called Riemann–Siegel formula) that one is able to
compute billions of nontrivial zeros of ζ(s). We will not consider these problems
here, but concentrate on reasonable ranges of s.

The second problem is specific to general L-functions as opposed to L-functions
attached to Dirichlet characters. For instance, in the general situation, we are given
an L-function by an Euler product known outside of a finite and small number of
“bad primes”. Using recipes dating to the late 1960s and well explained in a beautiful
paper of Serre [15], one can give the “gamma factor” γ (s), and some (but not all)
the information about the “conductor”, which is the exponential factor, at least in the
case of L-functions of varieties, or more generally of motives.

We will ignore these problems and assume that we know all the bad primes,
gamma factor, conductor, and root number. Note that if we know the gamma factor
and the bad primes, using the formulas that we will give below for different values
of the argument it is easy to recover the conductor and the root number. What is most
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difficult to obtain are the Euler factors at the bad primes, and this is the object of
current work.

7.2 Dirichlet L-Functions

Let χ be a Dirichlet character modulo N . We define the L-function attached to χ as
the complex function

L(χ, s) =
∑

n≥1

χ(n)

ns
.

Since |χ(n)| ≤ 1, it is clear that L(χ, s) converges absolutely for ℜ(s) > 1. Further-
more, since χ is multiplicative, as for the Riemann zeta function we have an Euler
product

L(χ, s) =
∏

p

1

1 − χ(p)/ps
.

The denominator of this product being generically of degree 1, this is also called an
L-function of degree 1, and conversely, with a suitable definition of the notion of
L-function, one can show that these are the only L-functions of degree 1.

If f is the conductor of χ and χf is the character modulo f equivalent to χ , it is
clear that

L(χ, s) =
∏

p|N ,p�f

(1 − χf (p)p
−s)L(χf , s) ,

so if desired we can always reduce to primitive characters, and this is what we will
do from now on.

Dirichlet L-series have important analytic and arithmetic properties, some of them
conjectural (such as the Riemann Hypothesis), which should (again conjecturally)
be shared by all global L-functions, see the discussion in the introduction. We first
give the following:

Theorem 7.1 Let χ be a primitive character modulo N , and let e = 0 or 1 be such
that χ(−1) = (−1)e.

1. (Analytic continuation.) The function L(χ, s) can be analytically continued to the
whole complex plane into a meromorphic function, which is in fact holomorphic
except in the special case N = 1, L(χ, s) = ζ(s), where it has a unique pole, at
s = 1, which is simple with residue 1.

2. (Functional equation.) There exists a functional equation of the following form:
letting γR(s) = π−s/2Γ (s/2), we set

Λ(χ, s) = N (s+e)/2γR(s + e)L(χ, s) ,
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where e is as above. Then

Λ(χ, 1 − s) = ω(χ)Λ(χ, s) ,

where ω(χ), the so-called root number, is a complex number of modulus 1 given
by the formula ω(χ) = g(χ)/(ieN 1/2).

3. (Special values.) For each integer k ≥ 1 we have the special values

L(χ, 1 − k) = −Bk(χ)

k
− δN ,1δk,1 ,

where δ is the Kronecker symbol, and the generalized Bernoulli numbers Bk(χ)

are easily computable algebraic numbers. In particular, when k �≡ e (mod 2)we
have L(χ, 1 − k) = 0 (except when k = N = 1).
By the functional equation this is equivalent to the formula for k ≡ e (mod 2),
k ≥ 1:

L(χ, k) = (−1)k−1+(k+e)/2ω(χ)
2k−1π kBk(χ)

mk−1/2k! .

To state the next theorem,which for themomentwe state forDirichletL-functions,
we need still another important special function:

Definition 7.2 For x > 0 we define the incomplete gamma function Γ (s, x) by

Γ (s, x) =
∫ ∞

x
tse−t dt

t
.

Note that this integral converges for all s ∈ C, and that it tends to 0 exponentially
fast when x → ∞, more precisely Γ (s, x) ∼ xs−1e−x. In addition (but this would
carry us too far here) there are many efficient methods to compute it; see, however,
the section on inverse Mellin transforms below.

Theorem 7.3 Let χ be a primitive character modulo N . For all A > 0 we have:

Γ

(
s + e

2

)
L(χ, s) = δN ,1π

s/2

(
A(s−1)/2

s − 1
− As/2

s

)
+

∑

n≥1

χ(n)

ns
Γ

(
s + e

2
,
πn2A

N

)

+ ω(χ)
( π

N

)s−1/2 ∑

n≥1

χ(n)

n1−s
Γ

(
1 − s + e

2
,
πn2

AN

)
.

Remarks 7.4 1. Thanks to this theorem, we can compute numerical values of
L(χ, s) (for s in a reasonable range) in time Õ(N 1/2).

2. The optimal value of A is A = 1, but the theorem is stated in this form for several
reasons, one of them being that by varying A (for instance, taking A = 1.1 and
A = 0.9) one can check the correctness of the implementation, or even compute
the root number ω(χ) if it is not known.
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3. To compute values of L(χ, s) when �(s) is large, one does not use the theorem
as stated, but variants, see [13].

4. The above theorem, called the approximate functional equation, evidently implies
the functional equation itself, so it seems to be more precise; however, this is an
illusion since one can show that under verymild assumptions functional equations
in a large class imply corresponding approximate functional equations.

7.3 Approximate Functional Equations

In fact, let us make this last statement completely precise. For the sake of simplicity
we will assume that the L-functions have no poles (this corresponds for Dirichlet
L-functions to the requirement that χ not be the trivial character). We begin by
the following (where we restrict to certain kinds of gamma products, but it is easy
to generalize; incidentally recall the duplication formula for the gamma function
Γ (s/2)Γ ((s + 1)/2) = 21−sπ1/2Γ (s), which allows the reduction of factors of the
type Γ (s + a) to several of the type Γ (s/2 + a′) and conversely).

Definition 7.5 Recall that we have defined ΓR(s) = π−s/2Γ (s/2), which is the
gamma factor attached to L-functions of even characters, for instance to ζ(s). A
gamma product is a function of the type

γ (s) = f s/2
∏

1≤i≤d

ΓR(s + bj) ,

where f > 0 is a real number. The number d of gamma factors is called the degree
of γ (s).

Note that the bj may not be real numbers, but in the case of L-functions attached
to motives, they will always be, and in fact be integers.

Proposition 7.6 Let γ be a gamma product.

1. There exists a function W (t) called the inverse Mellin transform of γ such that

γ (s) =
∫ ∞

0
tsW (t) dt/t

for ℜ(s) sufficiently large (greater than the real part of the rightmost pole of γ (s)
suffices).

2. W (t) is given by the following Mellin inversion formula for t > 0:

W (t) = M−1(γ )(t) = 1

2π i

∫ σ+i∞

σ−i∞
t−sγ (s) ds ,

for any σ larger than the real part of the poles of γ (s).
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3. W (t) tends to 0 exponentially fast when t → +∞. More precisely, as t → ∞ we
have

W (t) ∼ C · (t/f 1/2)B exp(−πd(t/f 1/2)2/d )

with B = (1 − d + ∑
1≤j≤d bj)/d and C = 2(d+1)/2/d1/2.

Definition 7.7 Let γ (s) be a gamma product andW (t) its inverse Mellin transform.
The incomplete gamma product γ (s, x) is defined for x > 0 by

γ (s, x) =
∫ ∞

x
tsW (t)

dt

t
.

Note that this integral always converges since W (t) tends to 0 exponentially fast
when t → ∞. In addition, thanks to the above proposition it is immediate to show
the following:

Corollary 7.8 1. For any σ larger than the real part of the poles of γ (s) we have

γ (s, x) = xs

2π i

∫ σ+i∞

σ−i∞
x−zγ (z)

z − s
dz .

2. For s fixed, as x → ∞ we have with the same constants B and C as above

γ (s, x) ∼ C

2π
xs(x/f 1/2)B−2/d exp(−πd(x/f 1/2)2/d )

so has essentially the same exponential decay as W (x).

The first theorem, essentially due to Lavrik, which is an exercise in complex
integration is as follows (recall that a function f is of finite order α ≥ 0 if for all
ε > 0 and sufficiently large |z| we have |f (z)| ≤ exp(|z|α+ε)):

Theorem 7.9 For i = 1 and i = 2, let Li(s) = ∑
n≥1 ai(n)n

−s be Dirichlet series
converging in some right half-plane ℜ(s) ≥ σ0. For i = 1 and i = 2, let γi(s) be
gamma products having the same degree d. Assume that the functions Λi(s) =
γi(s)Li(s) extend analytically to C into holomorphic functions of finite order, and
that we have the functional equation

Λ1(k − s) = w · Λ2(s)

for some constant w ∈ C∗ and some real number k.
Then for all A > 0, we have

Λ1(s) =
∑

n≥1

a1(n)

ns
γ1(s, nA) + w

∑

n≥1

a2(n)

nk−s
γ2

(
k − s,

n

A

)

and symmetrically
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Λ2(s) =
∑

n≥1

a2(n)

ns
γ2

(
s,

n

A

)
+ w−1

∑

n≥1

a1(n)

nk−s
γ1(k − s, nA) ,

where γi(s, x) are the corresponding incomplete gamma products.

Note that, as already mentioned, it is immediate to modify this theorem to take
into account possible poles of Li(s).

Since the incomplete gamma products γi(s, x) tend to 0 exponentially fast when
x → ∞, the above formulas are rapidly convergent series. We can make this more
precise: if wewrite as above γi(s, x) ∼ CixB

′
i exp(−πd(x/f 1/2i )2/d ), since the conver-

gence of the series is dominated by the exponential term, choosing A = 1, to have the
nth termof the series less than e−D, say,weneed (approximately)πd(n/f 1/2)2/d > D,
in other words n > (D/(πd))d/2f 1/2, with f = max(f1, f2). Thus, if the “conductor”
f is large, we may have some trouble. But this stays reasonable for f < 108, say.

The above argument leads to the belief that, apart from special valueswhich can be
computed by other methods, the computation of values of L-functions of conductor f
requires at least C · f 1/2 operations. It has, however, been shown by Hiary (see [10]),
that if f is far from squarefree (for instance, if f = m3 for Dirichlet L-functions), the
computation can be done faster (in Õ(m) in the case f = m3), at least in the case of
Dirichlet L-functions.

For practical applications, it is very useful to introduce an additional function as a
parameter. We state the following version due to Rubinstein (see [13]), whose proof
is essentially identical to that of the preceding version. To simplify the exposition,
we again assume that the L function has no poles (it is easy to generalize), but also
that L2 = L1.

Theorem 7.10 Let L(s) = ∑
n≥1 a(n)n

−s be an L-function as above with functional
equation Λ(k − s) = wΛ(s) with Λ(s) = γ (s)L(s). For simplicity of exposition,
assume that L(s) has no poles inC. Let g(s) be an entire function such that for fixed s
we have |Λ(z + s)g(z + s)/z| → 0 as �(z) → ∞ in any bounded strip |ℜ(z)| ≤ α.
We have

Λ(s)g(s) =
∑

n≥1

a(n)

ns
f1(s, n) + ω

∑

n≥1

a(n)

nk−s
f2(k − s, n) ,

where

f1(s, x) = xs

2π i

∫ σ+i∞
σ−i∞

γ (z)g(z)x−z

z − s
dz and f2(s, x) = xs

2π i

∫ σ+i∞
σ−i∞

γ (z)g(k − z)x−z

z − s
dz ,

where σ is any real number greater than the real parts of all the poles of γ (z) and
than ℜ(s).
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Several comments are in order concerning this theorem:

1. As alreadymentioned, the proof is a technical but elementary exercise in complex
analysis. In particular, it is very easy to modify the formula to take into account
possible poles of L(s), see [13] once again.

2. As in the unsmoothed case, the functions fi(s, x) are exponentially decreasing as
x → ∞. Thus, this gives fast formulas for computing values ofL(s) for reasonable
values of s. The very simplest case of this approximate functional equation, even
simpler than the Riemann zeta function, is for the computation of the value at
s = 1 of the L-function of an elliptic curve E: if the sign of its functional equation
is equal to +1 (otherwise L(E, 1) = 0), the (unsmoothed) formula reduces to

L(E, 1) = 2
∑

n≥1

a(n)

n
e−2πn/N 1/2

,

where N is the conductor of the curve.
3. It is not difficult to show that as n → ∞ we have a similar behavior for the

functions fi(s, n) as in the unsmoothed case (Corollary 7.8), i.e.,

fi(s, n) ∼ Ci · nB′
i e−πd(n/N 1/2)2/d

for some explicit constants Ci and B′
i (in the preceding example d = 2).

4. The theoremcan be usedwith g(s) = 1 to compute values ofL(s) for “reasonable”
values of s.When s is unreasonable, for instance, when s = 1/2 + iT with T large
(to check the Riemann hypothesis for instance), one chooses other functions g(s)
adapted to the computation to be done, such as g(s) = eisθ or g(s) = e−a(s−s0)2 ;
I refer to Rubinstein’s paper for detailed examples.

5. By choosing two very simple functions g(s) such as as for two different values
of a close to 1, one can compute numerically the value of the root number ω

if it is unknown. In a similar manner, if the a(n) are known but not ω nor the
conductor N , by choosing a few easy functions g(s) one can find them. But much
more surprisingly, if almost nothing is known apart from the gamma factors and
N , say, by cleverly choosing a number of functions g(s) and applying techniques
from numerical analysis such as singular value decomposition and least squares
methods, one can prove or disprove (numerically of course) the existence of
an L-function having the given gamma factors and conductor, and find its first
few Fourier coefficients if they exist. This method has been used extensively
by D. Farmer in his search for GL3(Z) and GL4(Z) Maass forms, by Poor and
Yuen in computations related to the paramodular conjecture of Brumer–Kramer
and abelian surfaces, and by A. Mellit in the search of L-functions of degree 4
with integer coefficients and small conductor. Although a fascinating and active
subject, it would carry us too far afield to give more detailed explanations.
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7.4 Inverse Mellin Transforms

Wethus see that it is necessary to compute inverseMellin transformsof somecommon
gamma factors. Note that the exponential factors (either involving the conductor
and/or π ) are easily taken into account: if γ (s) = M (W )(s) = ∫ ∞

0 W (t)ts dt/t is
the Mellin transform of W (t), we have for a > 0, setting u = at:

∫ ∞

0
W (at)ts dt/t =

∫ ∞

0
W (u)usa−s du/u = a−sγ (s) ,

so the inverse Mellin transform of a−sγ (s) is simply W (at).
As we have seen, there exists an explicit formula for the inverse Mellin transform,

which is immediate from the Fourier inversion formula. We will see that although
this looks quite technical, it is in practice very useful for computing inverse Mellin
transforms.

Let us look at the simplest examples (omitting the exponential factor f s/2 thanks
to the above remark):

1. M−1(ΓR(s)) = 2e−πx2 (this occurs for L-functions of even characters, and in
particular for ζ(s)).

2. M−1(ΓR(s + 1)) = 2xe−πx2 (this occurs for L-functions of odd characters).
3. M−1(ΓC(s)) = 2e−2πx (this occurs for L-functions attached to modular forms

and to elliptic curves).
4. M−1(ΓR(s)2) = 4K0(2πx) (this occurs, for instance, forDedekind zeta functions

of real quadratic fields). Here, K0(z) is a well-known special function called a
K-Bessel function. Of course this is just a name, but it can be computed quite
efficiently and can be found in all computer algebra packages.

5. M−1(ΓC(s)2) = 8K0(4πx1/2).
6. M−1(ΓC(s)ΓC(s − 1)) = 8K1(4πx1/2)/x1/2, where K1(z) is another K-Bessel

function which can be defined by K1(z) = −K ′
0(z).

Exercise 7.11 Prove all these formulas.

It is clear, however, that when the gamma factor is more complicated, we can-
not write such “explicit” formulas, for instance, what must be done for γ (s) =
ΓC(s)ΓR(s) or γ (s) = ΓR(s)3? In fact all of the above formulas involving K-Bessel
functions are “cheats” in the sense that we have simply given a name to these inverse
Mellin transform, without explaining how to compute them.

However, the Mellin inversion formula does provide such a method. The main
point to remember (apart, of course, from the crucial use of the Cauchy residue for-
mula and contour integration), is that the gamma function tends to zero exponentially
fast on vertical lines, uniformly in the real part (this may seem surprising if you have
never seen it since the gamma function grows so fast on the real axis, see appendix).
This exponential decrease implies that in the Mellin inversion formula we can shift
the line of integration without changing the value of the integral, as long as we take
into account the residues of the poles which are encountered along the way.
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The line ℜ(s) = σ has been chosen so that σ is larger than the real part of any
pole of γ (s), so shifting to the right does not bring anything. On the other hand,
shifting toward the left shows that for any r < 0 not a pole of γ (s) we have

W (t) =
∑

s0 pole of γ (s)
ℜ(s0)>r

Ress=s0(t
−sγ (s)) + 1

2π i

∫ r+i∞

r−i∞
t−sγ (s) ds .

Using the reflection formula for the gamma function Γ (s)Γ (1 − s) = π/ sin(sπ), it
is easy to show that if r stays say half-way between the real part of two consecutive
poles of γ (s) then γ (s)will tend to 0 exponentially fast on ℜ(s) = r as r → −∞, in
other words that the integral tends to 0 (exponentially fast). We thus have the exact
formula

W (t) =
∑

s0 pole of γ (s)

Ress=s0(t
−sγ (s)) .

Let us see the simplest examples of this, taken from those given above.

1. Forγ (s) = ΓC(s) = 2 · (2π)−sΓ (s) the poles ofγ (s) are for s0 = −n,n a positive
or zero integer, and since Γ (s) = Γ (s + n + 1)/((s + n)(s + n − 1) · · · s), the
residue at s0 = −n is equal to

2 · (2π t)nΓ (1)/((−1)(−2) · · · (−n)) = (−1)n(2π t)n/n! ,

so we obtain W (t) = 2
∑

n≥0(−1)n(2π t)n/n! = 2 · e−2π t . Of course, we knew
that!

2. For γ (s) = ΓC(s)2 = 4(2π)−2sΓ (s)2, the inverse Mellin transform is
8K0(4πx1/2) whose expansion we do not yet know. The poles of γ (s) are again
for s0 = −n, but here all the poles are double poles, so the computation is slightly
more complicated. More precisely, we have

Γ (s)2 = Γ (s + n + 1)2/((s + n)2(s + n − 1)2 · · · s2) ,

so setting s = −n + ε with ε small this gives

Γ (−n + ε)2 = Γ (1 + ε)2

ε2

1

(1 − ε)2 · · · (n − ε)2

= 1 + 2Γ ′(1)ε + O(ε2)

n!2ε2 (1 + 2ε/1)(1 + 2ε/2) · · · (1 + 2ε/n)

= 1 + 2Γ ′(1)ε + O(ε2)

n!2ε2 (1 + 2Hnε) ,

where we recall that Hn = ∑
1≤j≤n 1/j is the harmonic sum. Since (4π2t)−(−n+ε)

= (4π2t)n−ε = (4π2t)n(1 − ε log(4π2t) + O(ε2)), it follows that
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(4π2t)−(−n+ε)Γ (−n + ε)2 = (4π2t)n

n!2ε2 (1 + ε(2Hn + 2Γ ′(1) − log(4π2t))) ,

so that the residue of γ (s) at s = −n is equal to 4((4π2t)n/n!2)(2Hn + 2Γ ′(1) −
log(4π2t)). We thus have 2K0(4π t1/2) = ∑

n≥0((4π
2t)n/n!2)(2Hn + 2Γ ′(1) −

log(4π2t)), hence using the easily proven fact that Γ ′(1) = −γ , where

γ = lim
n→∞(Hn − log(n)) = 0.57721566490 . . .

is Euler’s constant, this gives finally the expansion

K0(t) =
∑

n≥0

(t/2)2n

n!2 (Hn − γ − log(t/2)) .

Exercise 7.12 In a similar manner, or directly from this formula, find the expansion
of K1(t).

Exercise 7.13 Like all inverse Mellin transforms of gamma factors, the function
K0(x) tends to 0 exponentially fast as x → ∞ (morepreciselyK0(x) ∼ (2x/π)−1/2e−x).
Note that this is absolutely not “visible” on the expansion given above. Use this
remark and the above expansion to write an algorithm which computes Euler’s con-
stant γ very efficiently to a given accuracy.

It must be remarked that even though the series defining the inverse Mellin trans-
form converge for all x > 0, one need a large number of terms before the terms
become very small when x is large. For instance, we have seen that for γ (s) = Γ (s)
we have W (t) = M−1(γ )(t) = ∑

n≥0(−1)ntn/n! = e−t , but this series is not very
good for computing e−t .

Exercise 7.14 Show that for t > 0, to compute e−t to any reasonable accuracy (even
to 1 decimal) we must take at least n > 3.6 · t (e = 2.718...), and work to accuracy
at most e−2t in an evident sense.

The reason that this is not a good way is that there is catastrophic cancelation in
the series. One way to circumvent this problem is to compute e−t as

e−t = 1/et = 1/
∑

n≥0

tn/n! ,

and the cancelation problem disappears. However, this is very special to the expo-
nential function, and is not applicable, for instance, to the K-Bessel function.

Nonetheless, an important result is that for any inverseMellin transform as above,
or more importantly for the corresponding incomplete gamma product, there exist
asymptotic expansions as x → ∞, in other words nonconvergent series which, how-
ever, give a good approximation if limited to a few terms.
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Let us take the simplest example of the incomplete gamma function Γ (s, x) =∫ ∞
x tse−t dt/t. The power series expansion is easily seen to be (at least for s not a
negative or zero integer, otherwise the formula must be slightly modified):

Γ (s, x) = Γ (s) −
∑

n≥0

(−1)n
xn+s

n!(s + n)
,

which has the same type of (bad when x is large) convergence behavior as e−x. On
the other hand, it is immediate to prove by integration by parts that

Γ (s, x) = e−xxs−1

(
1 + s − 1

x
+ (s − 1)(s − 2)

x2
+ · · ·

+ (s − 1)(s − 2) · · · (s − n)

xn
+ Rn(s, x)

)
,

and one can show that in reasonable ranges of s and x the modulus of Rn(s, x) is
smaller than the first “neglected term” in an evident sense. This is, therefore, quite a
practical method for computing these functions when x is rather large.

Exercise 7.15 Explain why the asymptotic series above terminates when s is a
strictly positive integer.

7.5 Hadamard Products and Explicit Formulas

This could be the subject of a course in itself, so we will be quite brief. I refer to
Mestre’s paper [11] for a precise and general statement (note that there are quite a
number of evident misprints in the paper).

In Theorem 7.9, we assume that the L-series that we consider satisfy a functional
equation, together with some mild growth conditions, in particular that they are of
finite order. According to a well-known theorem of complex analysis, this implies
that they have a so-calledHadamard product, see appendix. For instance, in the case
of the Riemann zeta function, which is of order 1, we have

ζ(s) = ebs

s(s − 1)Γ (s/2)

∏

ρ

(
1 − s

ρ

)
es/ρ ,

where the product is over all nontrivial zeros of ζ(s) (i.e., such that 0 ≤ ℜ(ρ) ≤ 1),
and b = log(2π) − 1 − γ . In fact, this can be written in amuch nicer way as follows:
recall that Λ(s) = π−s/2Γ (s/2)ζ(s) satisfies Λ(1 − s) = Λ(s). Then

s(s − 1)Λ(s) =
∏

ρ

(
1 − s

ρ

)
,
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where it is now understood that the product is taken as the limit as T → ∞ of∏
|�(ρ)|≤T (1 − s/ρ).

However, almost all L-functions that are used in number theory not only have the
above properties, but have also Euler products. Taking again the example of ζ(s),
we have for ℜ(s) > 1 the Euler product ζ(s) = ∏

p(1 − 1/ps)−1. It follows that (in a
suitable range of s) we have equality between two products, hence taking logarithms,
equality between two sums. In our case the Hadamard product gives

log(Λ(s)) = − log(s(s − 1)) +
∑

ρ

log(1 − s/ρ) ,

while the Euler product gives

log(Λ(s)) = −(s/2) log(π) + log(Γ (s/2)) −
∑

p

log(1 − 1/ps)

= −(s/2) log(π) + log(Γ (s/2)) +
∑

p,k≥1

1/(kpks) ,

Equating the two sides gives a relation between on the one hand a sum over the
nontrivial zeros of ζ(s), and on the other hand a sum over prime powers.

In itself, this is not very useful. The crucial idea is to introduce a test function F
which we will choose to the best of our interests, and obtain a formula depending on
F and some transforms of it.

This is in fact quite easy to do, and even though not very useful in this case, let
us perform the computation for Dirichlet L-function of even primitive characters.

Theorem 7.16 Let χ be an even primitive Dirichlet character of conductor N , and
let F be a real function satisfying a number of easy technical conditions (see [11]).
We have the explicit formula:

∑

ρ

Φ(ρ) − 2δN ,1

∫ ∞

−∞
F(x) cosh(x/2) dx

= −
∑

p,k≥1

log(p)

pk/2
(χ k(p)F(k log(p)) + χ k(p)F(−k log(p)))

+ F(0) log(N/π)

+
∫ ∞

0

(
e−x

x
F(0) − e−x/4

1 − e−x

F(x/2) + F(−x/2)

2

)
dx ,

where we set

Φ(s) =
∫ ∞

−∞
F(x)e(s−1/2)x dx ,
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and as above the sum on ρ is a sum over all the nontrivial zeros of L(χ, s) taken
symmetrically (

∑
ρ = limT→∞

∑
|�(ρ)|≤T ).

Remarks 7.17 1. Write ρ = 1/2 + iγ (if the GRH is true all γ are real, but even
without GRH we can always write this). Then

Φ(ρ) =
∫ ∞

−∞
F(x)eiγ x dx = F̂(γ )

is simply the value at γ of the Fourier transform F̂ of F .
2. It is immediate to generalize to odd χ or more general L-functions:

Exercise 7.18 After studying the proof, generalize to an arbitrary pair ofL-functions
as in Theorem 7.9.

Proof The proof is not difficult, but involves a number of integral transform compu-
tations. We will omit some detailed justifications which are in fact easy but boring.

As in the theorem, we set

Φ(s) =
∫ ∞

−∞
F(x)e(s−1/2)x dx ,

and we first prove some lemmas.

Lemma 7.19 We have the inversion formulas valid for any c > 1:

F(x) = ex/2
∫ c+i∞

c−i∞
Φ(s)e−sx ds .

F(−x) = ex/2
∫ c+i∞

c−i∞
Φ(1 − s)e−sx ds .

Proof This is in fact a hidden version of the Mellin inversion formula: setting t = ex

in the definition of Φ(s), we deduce that Φ(s) = ∫ ∞
0 F(log(t))ts−1/2 dt/t, so that

Φ(s + 1/2) is the Mellin transform of F(log(t)). By Mellin inversion, we thus have
for sufficiently large σ :

F(log(t)) = 1

2π i

∫ σ+i∞

σ−i∞
Φ(s + 1/2)t−s ds ,

so changing s into s − 1/2 and t into ex gives the first formula for c = σ + 1/2
sufficiently large, and the assumptions on F (which we have not given) imply that
we can shift the line of integration to any c > 1 without changing the integral.
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For the second formula, we simply note that

Φ(1 − s) =
∫ ∞

−∞
F(x)e−(s−1/2)x dx =

∫ ∞

−∞
F(−x)e(s−1/2)x dx ,

so we simply apply the first formula to F(−x). �

Corollary 7.20 For any c > 1 and any p ≥ 1 we have

∫ c+i∞

c−i∞
Φ(s)p−ks ds = F(k log(p))p−k/2 and

∫ c+i∞

c−i∞
Φ(1 − s)p−ks ds = F(−k log(p))p−k/2 .

Proof Simply apply the lemma to x = k log(p). �

Note that we will also use this corollary for p = 1.

Lemma 7.21 Denote as usual by ψ(s) the logarithmic derivative Γ ′(s)/Γ (s) of the
gamma function. We have

∫ c+i∞

c−i∞
Φ(s)ψ(s/2) =

∫ ∞

0

(
e−x

x
F(0) − e−x/4

1 − e−x
F(x/2)

)
dx and

∫ c+i∞

c−i∞
Φ(1 − s)ψ(s/2) =

∫ ∞

0

(
e−x

x
F(0) − e−x/4

1 − e−x
F(−x/2)

)
dx .

Proof Weuse one of themost common integral representations ofψ , see Proposition
9.6.43 of [4]: we have

ψ(s) =
∫ ∞

0

(
e−x

x
− e−sx

1 − e−x

)
dx .

Thus, assuming that we can interchange integrals (which is easy to justify), we have,
using the preceding lemma:

∫ c+i∞

c−i∞
Φ(s)ψ(s/2) ds =

∫ ∞

0

(
e−x

x

∫ c+i∞

c−i∞
Φ(s) ds

− 1

1 − e−x

∫ c+i∞

c−i∞
Φ(s)e−(s/2)x ds

)
dx

=
∫ ∞

0

(
e−x

x
F(0) − e−x/4

1 − e−x
F(x/2)

)
dx ,

proving the first formula, and the second follows by changing F(x) into F(−x). �
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Proof of the theorem. Recall from above that if we set Λ(s) = Ns/2π−s/2Γ (s/2)
L(χ, s) we have the functional equation Λ(1 − s) = ω(χ)Λ(χ, s) for some ω(χ) of
modulus 1.

For c > 1, consider the following integral

J = 1

2iπ

∫ c+i∞

c−i∞
Φ(s)

Λ′(s)
Λ(s)

ds ,

which by our assumptions does not depend on c > 1. We shift the line of integration
to the left (it is easily seen that this is allowed) to the line ℜ(s) = 1 − c, so by the
residue theorem we obtain

J = S + 1

2iπ

∫ 1−c+i∞

1−c−i∞
Φ(s)

Λ′(s)
Λ(s)

ds ,

where S is the sum of the residues in the rectangle [1 − c, c] × R. We first have
possible poles at s = 0 and s = 1, which occur only for N = 1, and they contribute
to S

−δN ,1(Φ(0) + Φ(1)) = −2δN ,1

∫ ∞

−∞
F(x) cosh(x/2) dx ,

and of course second we have the contributions from the nontrivial zeros ρ, which
contribute

∑
ρ Φ(ρ), where it is understood that zeros are counted with multiplicity,

so that

S = −2δN ,1

∫ ∞

−∞
F(x) cosh(x/2) dx +

∑

ρ

Φ(ρ) .

On the other hand, by the functional equation we have Λ′(1 − s)/Λ(1 − s) =
−Λ

′
(s)/Λ(s) (note that this does not involveω(χ)), wherewewriteΛ(s) forΛ(χ, s),

so that

∫ 1−c+i∞

1−c−i∞
Φ(s)

Λ′(s)
Λ(s)

ds =
∫ c+i∞

c−i∞
Φ(1 − s)

Λ′(1 − s)

Λ(1 − s)
ds

= −
∫ c+i∞

c−i∞
Φ(1 − s)

Λ
′
(s)

Λ(s)
ds .

Thus,

S = J − 1

2iπ

∫ 1−c+i∞

1−c−i∞
Φ(s)

Λ′(s)
Λ(s)

ds

= 1

2iπ

∫ c+i∞

c−i∞

(
Φ(s)

Λ′(s)
Λ(s)

+ Φ(1 − s)
Λ

′
(s)

Λ(s)

)
ds .

Now by definition, we have as above
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log(Λ(s)) = s

2
log(N/π) + log

(
Γ

( s

2

))
+

∑

p,k≥1

χ k(p)

kpks

(where the double sum is over primes and integers k ≥ 1), so

Λ′(s)
Λ(s)

= 1

2
log(N/π) + 1

2
ψ(s/2) −

∑

p,k≥1

χ k(p) log(p)p−ks ,

and similarly for Λ
′
(s)/Λ(s). Thus, by the above lemmas and corollaries, we have

S = log(N/π)F(0) + J1 −
∑

p,k≥1

log(p)

pk/2
(χk (p)F(k log(p)) + χk (p)F(−k log(p))) ,

where

J1 =
∫ ∞

0

(
e−x

x
F(0) − e−x/4

1 − e−x

F(x/2) + F(−x/2)

2

)
dx ,

proving the theorem. �
This theorem can be used in several different directions, and has been an extremely

valuable tool in analytic number theory. Just to mention a few:

1. Since the conductor N occurs, we can obtain bounds on N , assuming certain
conjectures such as the generalized Riemann hypothesis. For instance, this is
howStark–Odlyzko–Poitou–Serre find lower bounds for discriminants of number
fields. This is also how Mestre finds lower bounds for conductors of abelian
varieties, and so on.

2. When the L-function has a zero at its central point (here of course it usually does
not, but for more general L-functions it is important), this can give good upper
bounds for the order of the zero.

3. More generally, suitable choices of the test functions can give information on the
nontrivial zeros ρ of small imaginary part.

8 Some Useful Analytic Computational Tools

We finish this course by giving a number of little-known numerical methods which
are not always directly related to the computation of L-functions, but which are often
very useful.
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8.1 The Euler–Maclaurin Summation Formula

This numerical method is very well known (there is in fact even a whole chapter
in Bourbaki devoted to it!), and is as old as Taylor’s formula, but deserves to be
mentioned since it is very useful. We will be vague on purpose, and refer to [1]
or Sect. 9.2 of [4] for details. Recall that the Bernoulli numbers are defined by the
formal power series

T

eT − 1
=

∑

n≥0

Bn

n! T
n .

We have B0 = 0, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, and B2k+1 = 0 for
k ≥ 1.

Let f be a C∞ function defined on R > 0. The basic statement of the Euler–
MacLaurin formula is that there exists a constant z = z(f ) such that

N∑

n=1

f (n) =
∫ N

1
f (t) dt + z(f ) + f (N )

2
+

∑

1≤k≤p

B2k

(2k)! f
(2k−1)(N ) + Rp(N ) ,

where Rp(N ) is “small”, in general smaller than the first neglected term, as in most
asymptotic series.

The above formula can be slightly modified at will, first by changing the lower
bound of summation and/or of integration (which simply changes the constant z(f )),
and second by writing

∫ N
1 f (t) dt + z(f ) = z′(f ) − ∫ ∞

N f (t) dt (when f tends to 0
sufficiently fast for the integral to converge), where z′(f ) = z(f ) + ∫ ∞

1 f (t) dt.

The Euler–MacLaurin summation formula can be used in many contexts, but we
mention the two most important ones.

• First, to have some idea of the size of
∑N

n=1 f (n). Let us take an example.
Consider S2(N ) = ∑N

n=1 n
2 log(n). Note incidentally that

exp(S2(N )) =
N∏

n=1

nn
2 = 11

2
22

2 · · ·NN 2
.

What is the size of this generalized kind of factorial? Euler–MacLaurin tells us that
there exists a constant z such that

S2(N ) =
∫ N

1
t2 log(t) dt + z + N 2 log(N )

2

+ B2

2! (N 2 log(N ))′ + B4

4! (N 2 log(N ))′′′ + · · · .

We have
∫ N
1 t2 log(t) dt = (N 3/3) log(N ) − (N 3 − 1)/9, (N 2 log(N ))′ = 2N log

(N ) + N , (N 2 log(N ))′′ = 2 log(N ) + 3, and (N 2 log(N ))′′′ = 2/N , so using B2 =
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1/6 we obtain for some other constant z′:

S2(N ) = N 3 log(N )

3
− N 3

9
+ N 2 log(N )

2
+ N log(N )

6
+ N

12
+ z′ + O

(
1

N

)
,

which essentially answers our question, up to the determination of the constant z′.
Thus we obtain a generalized Stirling’s formula:

exp(S2(N )) = NN 3/3+N 2/2+N/6e−(N 3/9−N/12)C ,

whereC = exp(z′) is an a priori unknown constant. In the case of the usual Stirling’s
formula we have C = (2π)1/2, so we can ask for a similar formula here. And indeed,
such a formula exists: we have

C = exp(ζ(3)/(4π2)) .

Exercise 8.1 Do a similar (but simpler) computation for S1(N ) = ∑
1≤n≤N n log(n).

The corresponding constant is explicit but more difficult (it involves ζ ′(−1); more
generally the constant in Sr(N ) involves ζ ′(−r)).

• The second use of the Euler–MacLaurin formula is to increase considerably
the speed of convergence of slowly convergent series. For instance, if you want to
compute ζ(3) directly using the series ζ(3) = ∑

n≥1 1/n
3, since the remainder term

afterN terms is asymptotic to 1/(2N 2) youwill never getmore than 15 or 20 decimals
of accuracy. On the other hand, it is immediate to use Euler–MacLaurin:

Exercise 8.2 Write a computer program implementing the computation of ζ(3) (and
more generally of ζ(s) for reasonable s) using Euler–MacLaurin, and compute it to
100 decimals.

A variant of the method is to compute limits: a typical example is the computation
of Euler’s constant

γ = lim
N→∞

(
N∑

n=1

1

n
− log(N )

)
.

Using Euler–MacLaurin, it is immediate to find the asymptotic expansion

N∑

n=1

1

n
= log(N ) + γ + 1

2N
−

∑

k≥1

B2k

2kN 2k

(note that this is not a misprint, the last denominator is 2kN 2k , not (2k)!N 2k ).

Exercise 8.3 Implement the above, and compute γ to 100 decimal digits.

Note that this is not the fastest way to compute Euler’s constant, the method using
Bessel functions given in Exercise 7.13 is better.



242 H. Cohen

8.2 Variant: Discrete Euler–MacLaurin

One problem with the Euler–MacLaurin method is that we need to compute the
derivatives f (2k−1)(N ). When k is tiny, say k = 2 or k = 3 this can be done explicitly.
When f (x) has a special form, such as f (x) = 1/xα , it is very easy to compute all
derivatives. In fact, this is more generally the case when the expansion of f (1/x)
around x = 0 is known explicitly. But in general none of this is available.

One way around this is to use finite differences instead of derivatives: we can
easily compute

Δδ(f )(x) = (f (x + δ) − f (x − δ))/(2δ)

and iterates of this, where δ is some fixed and nonzero number. The choice of δ is
essential: it should not be too large, otherwise Δδ(f ) would be too far away from the
true derivative (which will be reflected in the speed of convergence of the asymptotic
formula), and it should not be too small, otherwise catastrophic cancelation errors
will occur. After numerous trials, the value δ = 1/4 seems reasonable.

One last thing must be done: find the analogue of the Bernoulli numbers. This is
a very instructive exercise which we leave to the reader.

8.3 Zagier’s Extrapolation Method

The following nice trick is due to D. Zagier. Assume that you have a sequence un
that you suspect of converging to some limit a0 when n → ∞ in a regular manner.
How do you give a reasonable numerical estimate of a0?

Assume, for instance, that as n → ∞we have un = ∑
0≤i≤p ai/n

i + O(n−p−1) for
any p. One idea would be to choosing for n suitable values and solve a linear system.
This would in general be quite unstable and inaccurate. Zagier’s trick is instead to
proceed as follows: choose some reasonable integer k, say k = 10, set u′

n = nkun, and
compute the kth forward difference Δk(u′

n) of this sequence (the forward difference
of a sequence wn is the sequence Δ(w)n = wn+1 − wn). Note that

u′
n = a0n

k +
∑

1≤i≤k

ain
k−i + O(1/n) .

The two crucial points are the following:

• The kth forward difference of a polynomial of degree less than or equal to k − 1
vanishes, and that of nk is equal to k!.

• Assuming reasonable regularity conditions, the kth forward difference of an
asymptotic expansion beginning at 1/n will begin at 1/nk+1.

Thus, under reasonable assumptions we have
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a0 = Δk(v)n/k! + O(1/nk+1) ,

so choosing n large enough can give a good estimate for a0.
A number of remarks concerning this basic method:

Remarks 8.4 1. It is usually preferable to apply this not to the sequence un itself,
but for instance to the sequence un+100, if it is not too expensive to compute, since
the first terms of un are usually far from the asymptotic expansion.

2. It is immediate to modify the method to compute further coefficients a1, a2, etc.
3. If the asymptotic expansion of un is (for instance) in powers of 1/n1/2, it is not

difficult to modify this method, see below.

Example. Let us compute numerically the constant occurring in the first example of
the use of Euler–MacLaurin that we have given. We set

uN =
∑

1≤n≤N

n2 log(n) − (N 3/3 + N 2/2 + N/6) log(N ) + N 3/9 − N/12 .

We compute, for instance, that u1000 = 0.0304456 · · · , which has only 4 correct
decimal digits. On the other hand, if we apply the above trick with k = 12 and
N = 100, we find

a0 = lim
N→∞ uN = 0.0304484570583932707802515304696767 · · ·

with 28 correct decimal digits: recall that the exact value is

ζ(3)/(4π2) = 0.03044845705839327078025153047115477 · · · .

Assume now that un has an asymptotic expansion in integral powers of 1/n1/2,
i.e., un = ∑

0≤i≤p ai/n
i/2 + O(n−(p+1)/2) for any p. We can modify the above method

as follows. First write un = vn + wn/n1/2, where vn = ∑
0≤i≤q a2i/n

i + O(n−q−1)

and wn = ∑
0≤i≤q a2i+1/ni + O(n−q−1) are two sequences as above. Once again we

choose some reasonable integer k such as k = 10, and we nowmultiply the sequence
un by nk−1/2, so we set u′

n = nk−1/2un = nk−1/2vn + nk−1wn. Thus, when we compute
the kth forward difference we will have

Δk(nk−1/2vn) = (k − 1/2)(k − 3/2) · · · 1/2
n1/2

⎛

⎝a0 +
∑

0≤i≤q+k

bk,i/n
i

⎞

⎠

for certain coefficients bk,i, while as above since nk−1wn = Pk−1(n) + O(1/n) for
some polynomial Pk−1(n) of degree k − 1, we have Δk(nk−1wn) = O(1/nk). Thus
we have essentially eliminated the sequence wn, so we now apply the usual method
to v′

n = n1/2Δk(nk−1/2vn), which has an expansion in integral powers of 1/n: we will
thus have
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Δk(v′
n)/k! = ((k − 1/2)(k − 3/2) · · · (1/2))a(0) + O(1/nk)

(in fact we do not even have to take the same k for this last step).
Thismethod can immediately be generalized to sequencesun having an asymptotic

expansion in integral powers of n1/q for small integers q.

8.4 Computation of Euler Sums and Euler Products

Assume that we want to compute numerically

S1 =
∏

p

(
1 + 1

p2

)
,

where here and elsewhere, the expression
∏

p always means the product over all
prime numbers. Trying to compute it using a large table of prime numbers will not
give much accuracy: if we use primes up to X , we will make an error of the order of
1/X , so it will be next to impossible to have more than 8 or 9 decimal digits.

On the other hand, if we simply notice that 1 + 1/p2 = (1 − 1/p4)/(1 − 1/p2),
by definition of the Euler product for the Riemann zeta function this implies that

S1 = ζ(2)

ζ(4)
= π2/6

π4/90
= 15

π2
= 1.519817754635066571658 · · ·

Unfortunately, this is based on a special identity. What if we wanted instead to
compute S2 = ∏

p(1 + 2/p2)? There is no special identity to help us here.
The way around this problem is to approximate the function of which we want to

take the product (here 1 + 2/p2) by infinite products of values of the Riemann zeta
function. Let us do it step by step before giving the general formula.

When p is large, 1 + 2/p2 is close to 1/(1 − 1/p2)2, which is the Euler factor
for ζ(2)2. More precisely, (1 + 2/p2)(1 − 1/p2)2 = 1 − 3/p4 + 2/p6, so we deduce
that

S2 = ζ(2)2
∏

p

(1 − 3/p4 + 2/p6) = (π4/36)
∏

p

(1 − 3/p4 + 2/p6) .

Even though this looks more complicated, what we have gained is that the new
Euler product converges much faster. Once again, if we compute it for p up to 108,
say, instead of having 8 decimal digits we now have approximately 24 decimal
digits (convergence in 1/X 3 instead of 1/X ). But there is no reason to stop there:
we have (1 − 3/p4 + 2/p6)/(1 − 1/p4)3 = 1 + O(1/p6) with evident notation and
explicit formulas if desired, so we get an even better approximation by writing S2 =
ζ(2)2/ζ(4)3

∏
p(1 + O(1/p6)), with convergence in 1/X 5. More generally, it is easy
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to compute by induction exponents an ∈ Z such that S2 = ∏
2≤n≤N ζ(n)an

∏
p(1 +

O(1/pN+1)) (in our case an = 0 for n odd but this will not be true in general). It can
be shown in essentially all examples that one can pass to the limit, and, for instance,
here write S2 = ∏

n≥2 ζ(n)an .

Exercise 8.5 1. Compute explicitly the recursion for the an in the example of S2.
2. More generally, if S = ∏

p f (p), where f (p) has a convergent series expansion in
1/p starting with f (p) = 1 + 1/pb + o(1/pb) with b > 1 (not necessarily inte-
gral), express S as a product of zeta values raised to suitable exponents, and find
the recursion for these exponents.

An important remark needs to be made here: even though the product
∏

n≥2 ζ(n)an

may be convergent, it may converge rather slowly: remember that when n is large
we have ζ(n) − 1 ∼ 1/2n, so that in fact if the an grow like 3n the product will not
even converge. The way around this, which must be used even when the product
converges, is as follows: choose a reasonable integer N , for instance N = 50, and
compute

∏
p≤50 f (p), which is of course very fast. Then the tail

∏
p>50 f (p) of the

Euler product will be equal to
∏

n≥2 ζ>50(n)an , where ζ>N (n) is the zeta function
without its Euler factors up to N , in other words ζ>N (n) = ζ(n)

∏
p≤N (1 − 1/pn). (I

am assuming here that we have zeta values at integers as in the S2 example above,
but it is immediate to generalize.) Since ζ>N (n) − 1 ∼ 1/(N + 1)n, the convergence
of our zeta product will of course be considerably faster.

Note that by using the power series expansion of the logarithm together with
Möbius inversion, it is immediate to do the same for Euler sums, for instance, to
compute

∑
p 1/p

2 and the like, see Sect. 10.3.6 of [4] for details. Using derivatives
of the zeta function we can compute Euler sums of the type

∑
p log(p)/p

2, and using
antiderivatives we can compute sums of the type

∑
p 1/(p

2 log(p)). We can even
compute sums of the form

∑
p log(log(p))/p

2, but this is slightly more subtle: it
involves taking derivatives with respect to the order of fractional derivation.

We can also compute products and sums over primes which involve Dirichlet
characters, as long as their conductor is small, as well as such products and sums
where the primes are restricted to certain congruence classes:

Exercise 8.6 Compute to 100 decimal digits

∏

p≡1 (mod 4)

(1 − 1/p2) and
∏

p≡1 (mod 4)

(1 + 1/p2)

by using products of ζ(ns) and of L(χ−4, ns) as above, where as usual χ−4 is the
character

(−4
n

)
.

8.5 Summation of Alternating Series

This is due to F. Rodriguez–Villegas, D. Zagier, and the author [7].
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We have seen above the use of the Euler–Maclaurin summation formula to sum
quite general types of series. If the series is alternating (the terms alternate in sign),
the method cannot be used as is, but it is trivial to modify it: simply write

∑

n≥1

(−1)nf (n) =
∑

n≥1

f (2n) −
∑

n≥1

f (2n − 1)

and apply Euler–Maclaurin to each sum.One can even do better and avoid this double
computation, but this is not what I want to mention here.

A completely different method which is much simpler since it avoids completely
the computation of derivatives and Bernoulli numbers, due to the above authors, is
as follows. The idea is to express (if possible) f (n) as a moment

f (n) =
∫ 1

0
xnw(x) dx

for some weight function w(x). Then it is clear that

S =
∑

n≥0

(−1)nf (n) =
∫ 1

0

1

1 + x
w(x) dx .

Assume that Pn(X ) is a polynomial of degree n such that Pn(−1) �= 0. Evidently

Pn(X ) − Pn(−1)

X + 1
=

n−1∑

k=0

cn,kX
k

is still a polynomial (of degree n − 1), and we note the trivial fact that

S = 1

Pn(−1)

∫ 1

0

Pn(−1)

1 + x
w(x) dx

= 1

Pn(−1)

(∫ 1

0

Pn(−1) − Pn(x)

1 + x
w(x) dx +

∫ 1

0

Pn(x)

1 + x
w(x) dx

)

= 1

Pn(−1)

n−1∑

k=0

cn,k f (k) + Rn ,

with

|Rn| ≤ Mn

|Pn(−1)|
∫ 1

0

1

1 + x
w(x) dx = Mn

|Pn(−1)|S ,

and where Mn = supx∈[0,1] |Pn(x)|. Thus, if we can manage to have Mn/|Pn(−1)|
small, we obtain a good approximation to S.
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It is a classical result that the best choice for Pn are the shifted Chebychev polyno-
mials definedbyPn(sin2(t)) = cos(2nt), but in any casewecanuse these polynomials
and ignore that they are the best.

This leads to an incredibly simple algorithm which we write explicitly:

d ← (3 + √
8)n; d ← (d + 1/d)/2; b ← −1; c ← −d ; s ← 0; For k = 0, . . . ,

n − 1 do:
c ← b − c; s ← s + c · f (k); b ← (k + n)(k − n)b/((k + 1/2)(k + 1));
The result is s/d .

The convergence is in 5.83−n.
It is interesting to note that, even though this algorithm is designed to work with

functions f of the form f (n) = ∫ 1
0 xnw(x) dx with w continuous and positive, it is in

fact valid outside its proven region of validity. For example:

Exercise 8.7 It is well known that the Riemann zeta function ζ(s) can be extended
analytically to the whole complex plane, and that we have, for instance, ζ(−1) =
−1/12 and ζ(−2) = 0. Apply the above algorithm to the alternating zeta function

β(s) =
∑

n≥1

(−1)n−1 1

ns
=

(
1 − 1

2s−1

)
ζ(s)

(incidentally, prove this identity), and by using the above algorithm, show the non-
convergent “identities”

1 − 2 + 3 − 4 + · · · = 1/4 and 1 − 22 + 32 − 42 + · · · = 0 .

Exercise 8.8 (B. Allombert) Let χ be a periodic arithmetic function of period m,
say, and assume that

∑
0≤j<m χ(j) = 0 (for instance, χ(j) = (−1)j with m = 2).

1. Using the same polynomials Pn as above, write a similar algorithm for computing∑
n≥0 χ(n)f (n), and estimate its rate of convergence.

2. Using this, compute to 100 decimalsL(χ−3, k) = 1 − 1/2k + 1/4k − 1/5k + · · ·
for k = 1, 2, and 3, and recognize the exact value for k = 1 and k = 3.

8.6 Numerical Differentiation

The problem is as follows: given a function f , say defined and C∞ on a real interval,
compute f ′(x0) for a given value of x0. To be able to analyze the problem, we will
assume that f ′(x0) is not too close to 0, and that we want to compute it to a given
relative accuracy, which is what is usually required in numerical analysis.

The naïve, although reasonable, approach, is to choose a small h > 0 and compute
(f (x0 + h) − f (x0))/h. However, it is clear that (using the same number of function
evaluations) the formula (f (x0 + h) − f (x0 − h))/(2h) will be better. Let us analyze
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this in detail. For simplicity, we will assume that all the derivatives of f around x0
that we consider are neither too small nor too large in absolute value. It is easy to
modify the analysis to treat the general case.

Assume f computed to a relative accuracy of ε, in other words that we know val-
ues f̃ (x) such that f̃ (x)(1 − ε) < f (x) < f̃ (x)(1 + ε) (the inequalities being reversed
if f (x) < 0). The absolute error in computing (f (x0 + h) − f (x0 − h))/(2h) is thus
essentially equal to ε|f (x0)|/h. On the other hand, by Taylor’s theorem we have
(f (x0 + h) − f (x0 − h))/(2h) = f ′(x0) + (h2/6)f ′′′(x) for some x close to x0, so the
absolute error made in computing f ′(x0) as (f (x0 + h) − f (x0 − h))/(2h) is close
to ε|f (x0)|/h + (h2/6)|f ′′′(x0)|. For a given value of ε (i.e., the accuracy to which
we compute f ) the optimal value of h is (3ε|f (x0)/f ′′′(x0)|)1/3 for an absolute
error of (1/2)(3ε|f (x0)f ′′′(x0)|)2/3 hence a relative error of (3ε|f (x0)f ′′′(x0)|)2/3/
(2|f ′(x0)|).

Since we have assumed that the derivatives have reasonable size, the relative error
is roughly Cε2/3, so if we want this error to be less than η, say, we need ε of the order
of η3/2, and h will be of the order of η1/2.

Note that this result is not completely intuitive. For instance, assume that we want
to compute derivatives to 38 decimal digits. With our assumptions, we choose h
around 10−19, and perform the computations with 57 decimals of relative accuracy.
If for some reason or other we are limited to 38 decimals in the computation of f , the
“intuitive” way would be also to choose h = 10−19, and the above analysis shows
that wewould obtain only approximately 19 decimals. On the other hand, if we chose
h = 10−13, for instance, close to 10−38/3, we would obtain 25 decimals.

There are, of course, many other formulas for computing f ′(x0), or for computing
higher derivatives, which can all easily be analyzed as above. For instance (exer-
cise), one can look for approximations to f ′(x0) of the form S = (

∑
1≤i≤3 λif (x0 +

h/ai))/h, for any nonzero and pairwise distinct ai, and we find that this is pos-
sible as soon as

∑
1≤i≤3 ai = 0 (for instance, if (a1, a2, a3) = (−3, 1, 2) we have

(λ1, λ2, λ3) = (−27,−5, 32)/20), and the absolute error is then of the form C1/h +
C2h3, so the same analysis shows that we should work with accuracy ε4/3 instead of
ε3/2. Even though we have 3/2 times more evaluations of f , we require less accu-
racy: for instance, if f requires timeO(Da) to be computed toD decimals, as soon as
(3/2) · ((4/3)D)a < ((3/2)D)a, i.e., 3/2 < (9/8)a, hence a ≥ 3.45, this newmethod
will be faster.

Perhaps, the best known method with more function evaluations is the approxi-
mation

f ′(x0) ≈ (f (x − 2h) − 8f (x − h) + 8f (x + h) − f (x + 2h))/(12h) ,

which requires accuracy ε5/4, and since this requires 4 evaluations of f , this is faster
than the first method as soon as 2 · (5/4)a < (3/2)a, in other words a > 3.81, and
faster than the second method as soon as (4/3) · (5/4)a < (4/3)a, in other words
a > 4.46. To summarize, use the first method if a < 3.45, the second method if
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3.45 ≤ a < 4.46, and the third if a > 4.46. Of course this game can be continued at
will, but there is not much point in doing so. In practice the first method is sufficient.

8.7 Double Exponential Numerical Integration

A remarkable although little-known technique invented around 1970 deals with
numerical integration (the numerical computation of a definite integral

∫ b
a f (t) dt,

where a and b are allowed to be ±∞). In usual numerical analysis courses, one
teaches very elementary techniques such as the trapezoidal rule, Simpson’s rule, or
more sophisticated methods such as Romberg or Gaussian integration. These meth-
ods apply to very general classes of functions f (t), but are unable to compute more
than a few decimal digits of the result, except for Gaussian integration which we will
mention below.

However, in most mathematical (as opposed, for instance, to physical) contexts,
the function f (t) is extremely regular, typically holomorphic or meromorphic, at
least in some domain of the complex plane. It was observed in the late 1960s by
Takahashi and Mori [14] that this property can be used to obtain a very simple and
incredibly accurate method to compute definite integrals of such functions. It is
now instantaneous to compute 100 decimal digits, and takes only a few seconds to
compute 500 decimal digits, say.

In view of its importance, it is essential to have some knowledge of this method. It
can, of course, be applied in a wide variety of contexts, but note also that in his thesis
[12], P. Molin has applied it specifically to the rigorous and practical computation
of values of L-functions, which brings us back to our main theme.

There are two basic ideas behind this method. The first is in fact a theorem, which
I state in a vague form: If F is a holomorphic function which tends to 0 “sufficiently
fast” when x → ±∞, x real, then the most efficient method to compute

∫
R
F(t) dt

is indeed the trapezoidal rule. Note that this is a theorem, not so difficult but a little
surprising nonetheless. The definition of “sufficiently fast” can be made precise. In
practice, it means at least like e−ax2 (e−a|x| is not fast enough), but it can be shown
that the best results are obtained with functions tending to 0 doubly exponentially
fast such as exp(− exp(a|x|)). Note that it would be (very slightly) worse to choose
functions tending to 0 even faster.

To be more precise, we have an estimate coming, for instance, from the Euler–
Maclaurin summation formula:

∫ ∞

−∞
F(t) dt = h

N∑

n=−N

F(nh) + RN (h) ,

and under suitable holomorphy conditions on F , if we choose h = a log(N )/N
for some constant a close to 1, the remainder term RN (h) will satisfy Rn(h) =
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O(e−bN/ log(N )) for some other (reasonable) constant b, showing exponential con-
vergence of the method.

The second and, of course, crucial idea of the method is as follows: evidently
not all functions are doubly exponentially tending to 0 at ±∞, and definite integrals
are not all from −∞ to +∞. But it is possible to reduce to this case by using
clever changes of variable (the essential condition of holomorphy must, of course,
be preserved).

Let us consider the simplest example, but others that we give below are variations
on the same idea. Assume that we want to compute

I =
∫ 1

−1
f (x) dx .

We make the “magical” change of variable x = φ(t) = tanh(sinh(t)), so that if we
set F(t) = f (φ(t)) we have

I =
∫ ∞

−∞
F(t)φ′(t) dt .

Because of the elementary properties of the hyperbolic sine and tangent, we have
gained two things at once: first the integral from −1 to 1 is now from −∞ to ∞, but
most importantly the function φ′(t) is easily seen to tend to 0 doubly exponentially.
We thus obtain an exponentially good approximation

∫ 1

−1
f (x) dx = h

N∑

n=−N

f (φ(nh))φ′(nh) + RN (h) .

To give an idea of the method, if one takes h = 1/200 andN = 500, hence only 1000
evaluations of the function f , one can compute I to several hundred decimal places!

Before continuing, I would like to comment that in this theory many results are
not completely rigorous: the method works very well, but the proof that it does is
sometimes missing. Thus I cannot resist giving a proven and precise theorem due
to P. Molin (which is, of course, just an example). We keep the above notation
φ(t) = tanh(sinh(t)), and note that φ′(t) = cosh(t)/ cosh2(sinh(t)).

Theorem 8.9 (P. Molin) Let f be holomorphic on the disc D = D(0, 2) centered at
the origin and of radius 2. Then for all N ≥ 1, if we choose h = log(5N )/N we have

∫ 1

−1
f (x) dx = h

N∑

n=−N

f (φ(nh))φ′(nh) + RN ,

where
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|RN | ≤
(
e4 sup

D
|f |

)
exp(−5N/ log(5N )) .

Coming back to the general situation, I briefly comment on the computation of
general definite integrals

∫ b
a f (t) dt.

1. If a and b are finite, we can reduce to [−1, 1] by affine changes of variable.
2. If a (or b) is finite and the function has an algebraic singularity at a (or b), we

remove the singularity by a polynomial change of variable.
3. If a = 0 (say) and b = ∞, then if f does not tend to 0 exponentially fast (for

instance, f (x) ∼ 1/xk ), we use x = φ(t) = exp(sinh(t)).
4. If a = 0 (say) and b = ∞ and if f does tend to 0 exponentially fast (for instance,

f (x) ∼ e−ax or f (x) ∼ e−ax2 ), we use x = φ(t) = exp(t − exp(−t)).
5. If a = −∞ and b = ∞, use x = φ(t) = sinh(sinh(t)) if f does not tend to 0

exponentially fast, and x = φ(t) = sinh(t) otherwise.

The problem of oscillating integrals such as
∫ ∞
0 f (x) sin(x) dx is more subtle, but

there does exist similar methods when, as here, the oscillations are completely under
control.

Remark 8.10 The theorems are valid when the function is holomorphic in a suffi-
ciently large region containing the path of integration. If the function is only mero-
morphic, with known poles, the direct application of the formulas may give totally
wrong answers. However, if we take into account the poles, we can recover perfect
agreement. Example of bad behavior: f (t) = 1/(1 + t2) (poles ±i). Integrating on
the intervals [0,∞], [0, 1000], or even [−∞,∞], which involve different changes
of variables, give perfect results (the latter being somewhat surprising). On the other
hand, integrating on [−1000, 1000] gives a totally wrong answer because the poles
are “too close”, but it is easy to take them into account if desired.

Apart from the above pathological behavior, let us give a couple of exampleswhere
we must slightly modify the direct use of doubly exponential integration techniques.

• Assume, for instance, that we want to compute

J =
∫ ∞

1

(
1 + e−x

x

)2

dx ,

and that we use the built-in function intnum of Pari/GP for doing so. The
function tends to 0 slowly at infinity, so we should compute it using the GP
syntax oo to represent ∞, so we write f(x)=((1+exp(-x))/x)ˆ2;, then
intnum(x=1,oo,f(x)). This will give some sort of error, because the soft-
ware will try to evaluate exp(−x) for large values of x, which it cannot do since
there is exponent underflow. To compute the result, we need to split it into its slow
part and fast part: when a function tends exponentially fast to 0 like exp(−ax), ∞ is
represented as [oo,a], so we write J = J1 + J2, with J1 and J2 computed by
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J1=intnum(x=1,[oo,1],(exp(-2*x)+2*exp(-x))/xˆ2); and
J2=intnum(x=1,oo,1/xˆ2); (which, of course, is equal to 1), giving

J = 1.3345252753723345485962398139190637 · · · .

Note that we could have tried to “cheat” and written directly
intnum(x=1,[oo,1],f(x)), but the answer would be wrong, because the

software would have assumed that f (x) tends to 0 exponentially fast, which is not
the case.

• A second situation where we must be careful is when we have “appar-
ent singularities”, which are not real singularities. Consider the function f (x) =
(exp(x) − 1 − x)/x2. It has an apparent singularity at x = 0 but in fact it is com-
pletely regular. If you ask J=intnum(x=0,1,f(x)), you will get a result which
is reasonably correct, but never more than 19 decimals, say. The reason is not due
to a defect in the numerical integration routine, but more in the computation of f (x):
if you simply write f(x)=(exp(x)-1-x)/xˆ2;, the results will be bad for x
close to 0.

Assuming that you want 38 decimals, say, the solution is to write
f(x)=if(x<10ˆ(-10),1/2+x/6+xˆ2/24+xˆ3/120,(exp(x)-1-x)/xˆ2);

and now we obtain the value of our integral as

J = 0.59962032299535865949972137289656934022 · · ·

8.8 The Use of Abel–Plana for Definite Summation

We finish this course by describing an identity, which is first quite amusing and
second can be used efficiently for definite summation. Consider, for instance, the
following theorem:

Theorem 8.11 Define by convention sin(n/10)/n as equal to its limit 1/10 when
n = 0, and define

∑′
n≥0 f (n) as f (0)/2 + ∑

n≥1 f (n). We have

∑′

n≥0

(
sin(n/10)

n

)k

=
∫ ∞

0

(
sin(x/10)

x

)k

for 1 ≤ k ≤ 62, but not for k ≥ 63.

If you do not like all these conventions, replace the left-hand side by

1

2 · 10k +
∑

n≥1

(
sin(n/10)

n

)k

.
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It is clear that something is going on: it is the Abel–Plana formula. There are
several forms of this formula, here is one of them:

Theorem 8.12 (Abel–Plana) Assume that f is an entire function and that f (z) =
o(exp(2π |�(z)|)) as |�(z)| → ∞ uniformly in vertical strips of bounded width, and
a number of less important additional conditions which we omit. Then

∑

m≥1

f (m) =
∫ ∞

0
f (t) dt − f (0)

2
+ i

∫ ∞

0

f (it) − f (−it)

e2π t − 1
dt

=
∫ ∞

1/2
f (t) dt − i

∫ ∞

0

f (1/2 + it) − f (1/2 − it)

e2π t + 1
dt .

In particular, if the function f is even, we have

f (0)

2
+

∑

m≥1

f (m) =
∫ ∞

0
f (t) dt .

Since we have seen above that using doubly exponential techniques it is easy
to compute numerically a definite integral, the Abel–Plana formula can be used to
compute numerically a sum. Note that in the first version of the formula there is an
apparent singularity (but which is not a singularity) at t = 0, and the second version
avoids this problem.

In practice, this summation method is very competitive with other methods if we
use the doubly exponential method to compute

∫ ∞
0 f (t) dt, but most importantly if

we use a variant ofGaussian integration to compute the complex integrals, since the
nodes and weights for the function t/(e2π t − 1) can be computed once and for all by
using continued fractions, see Sect. 9.4.

9 The Use of Continued Fractions

9.1 Introduction

The last idea that I would like to mention and that is applicable in quite different
situations is the use of continued fractions. Recall that a continued fraction is an
expression of the form

a0 + b0

a1 + b1

a2 + b2

a3 + . . .

.
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The problemof convergence of such expressions (when they are unlimited) is difficult
and will not be considered here. We refer to any good textbook on the elementary
properties of continued fractions. In particular, recall that if we denote by pn/qn the
nth partial quotient (obtained by stopping at bn−1/an) then both pn and qn satisfy the
same recursion un = anun−1 + bn−1un−2.

We will mainly consider continued fractions representing functions as opposed
to simply numbers. Whatever the context, the interest of continued fractions (in
addition to the fact that they are easy to evaluate) is that they give essentially the best
possible approximations, both for real numbers (this is the standard theory of regular
continued fractions, where bn = 1 and an ∈ Z≥1 for n ≥ 1), and for functions (this
is the theory of Padé approximants).

9.2 The Two Basic Algorithms

The first algorithm that we need is the following: assume that we want to expand
a (formal) power series S(z) (without loss of generality such that S(0) = 1) into a
continued fraction:

S(z) = 1 + c(1)z + c(2)z2 + · · · = 1 + b(0)z

1 + b(1)z

1 + b(2)z

1 + . . .

.

The following method, called the quotient-difference (QD) algorithm does what is
required:

We define two arrays e(j, k) for j ≥ 0 and q(j, k) for j ≥ 1 by e(0, k) = 0,
q(1, k) = c(k + 2)/c(k + 1) for k ≥ 0, and by induction for j ≥ 1 and k ≥ 0:

e(j, k) = e(j − 1, k + 1) + q(j, k + 1) − q(j, k) ,

q(j + 1, k) = q(j, k + 1)e(j, k + 1)/e(j, k) .

Then b(0) = c(1) and b(2n − 1) = −q(n, 0) and b(2n) = −e(n, 0) for n ≥ 1.
Three essential implementation remarks: first keeping the whole arrays is costly,

it is sufficient to keep the latest vectors of e and q. Second, even if the c(n) are rational
numbers it is essential to do the computation with floating point approximations to
avoid coefficient explosion. The algorithm can become unstable, but this is corrected
by increasing theworking accuracy. Third, it is, of course, possible that some division
by 0 occurs, and this is in fact quite frequent. There are several ways to overcome
this, probably the simplest being to multiply or divide the power series by something
like 1 − z/π .

The second algorithm is needed to evaluate the continued fraction for a given
value of z. It is well known that this can be done from bottom to top (start at b(n)z/1,



Computational Number Theory in Relation with L-Functions 255

then b(n − 1)/(1 + b(n)z/1), etc.), or from top to bottom (start at (p(−1), q(−1)) =
(1, 0), (p(0), q(0)) = (1, 1), and use the recursion). It is in general better to evaluate
from bottom to top, but before doing this we can considerably improve on the speed
by using an identity due to Euler:

1 + b(0)z

1 + b(1)z

1 + b(2)z

1 + . . .

= 1 + B(0)Z

Z + A(1) + B(1)

Z + A(2) + B(2)

Z + A(3) + . . .

,

where Z = 1/z, A(1) = b(1), A(n) = b(2n − 2) + b(2n − 1) for n ≥ 2, B(0) =
b(0), B(n) = −b(2n)b(2n − 1) for n ≥ 1. The reason for which this is much faster is
that we replace n multiplications (b(j) ∗ z) plus n divisions by 1 multiplication plus
approximately 1 + n/2 divisions, counting as usual additions as negligible.

This is still not the end of the story sincewe can “compress” any continued fraction
by taking, for instance, two steps at once instead of one, which reduces the cost . In
any case this leads to a very efficient method for evaluating continued fractions.

9.3 Using Continued Fractions for Inverse Mellin
Transforms

We have mentioned above that one can use asymptotic expansions to compute the
incomplete gamma function Γ (s, x) when x is large. But this method cannot give us
great accuracy since we must stop the asymptotic expansion at its smallest term. We
can, of course, always use the power series expansion, which has infinite radius of
convergence, but when x is large this is not very efficient (remember the example of
computing e−x).

In the case of Γ (s, x), continued fractions save the day: indeed, one can prove
that

Γ (s, x) = xse−x

x + 1 − s − 1(1 − s)

x + 3 − s − 2(2 − s)

x + 5 − s − . . .

,

with precisely known speed of convergence. This formula is the best method for
computing Γ (s, x) when x is large (say x > 50), and can give arbitrary accuracy.

However, here we were in luck: we had an “explicit” continued fraction repre-
senting the function that we wanted to compute. Evidently, in general this will not
be the case.
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It is a remarkable idea of Dokchitser [9] that it does not really matter if the
continued fraction is not explicit, at least in the context of computing L-functions,
for instance, for inverse Mellin transforms. Simply do the following:

1. First compute sufficiently many terms of the asymptotic expansion of the func-
tion to be computed. This is very easy because our functions all satisfy a linear
differential equationwith polynomial coefficients, which gives a recursion on the
coefficients of the asymptotic expansion.

2. Using the quotient-difference algorithm seen above, compute the corresponding
continued fraction, and write it in the form due to Euler to evaluate it as efficiently
as possible.

3. Compute the value of the function at all desired arguments by evaluating the Euler
continued fraction.

The first two steps are completely automatic and rigorous. The whole problem
lies in the third step, the evaluation of the continued fraction. In the case of the
incomplete gamma function, we had a theorem giving us the speed of convergence.
In the case of inverse Mellin transforms, not only do we not have such a theorem, but
we do not even know how to prove that the continued fraction converges! However,
experimentation shows that not only does the continued fraction converge, but rather
fast, in fact at a similar speed to that of the incomplete gamma function.

Even though this step is completely heuristic, since its introduction by T. Dok-
chitser it is used in all packages computing L-functions since it is so useful. It would,
of course, be nice to have a proof of its validity, but for now this seems completely
out of reach, except for the simplest examples where there are at most two gamma
factors (for instance, the problem is completely open for the inverseMellin transform
of Γ (s)3).

9.4 Using Continued Fractions for Gaussian Integration and
Summation

We have seen above the doubly exponential method for numerical integration, which
is robust and quite generally applicable. However, an extremely classical method is
Gaussian integration: it is orders of magnitude faster, but note the crucial fact that it
is much less robust, in that it works much less frequently.

The setting of Gaussian integration is the following: we have a measure dμ on a
(compact or infinite) interval [a, b]; you can, of course, think of dμ as K(x)dx for
some fixed function K(x). We want to compute

∫ b
a f (x)dμ by means of nodes and

weights, i.e., for a given n compute xi and wi for 1 ≤ i ≤ n such that
∑

1≤i≤n wif (xi)
approximates as closely as possible the exact value of the integral.
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Note that classicalGaussian integration such asGauss–Legendre integration (inte-
gration of a continuous function on a compact interval) is easy to perform because
one can easily compute explicitly the necessary nodes and weights using standard
orthogonal polynomials. What I want to stress here is that general Gaussian integra-
tion can be performed very simply using continued fractions, as follows.

In general, the measure dμ is (or can be) given through its moments Mk =∫ b
a xkdμ. The remarkably simple algorithm to compute the xi andwi using continued
fractions is as follows:

1. Set Φ(z) = ∑
k≥0 Mkzk+1, and using the quotient-difference algorithm compute

c(m) such thatΦ(z) = c(0)z/(1 + c(1)z/(1 + c(2)z/(1 + · · · ))) (see the remark
made above in case the algorithm has a division by 0; it may also happen that the
odd or even moments vanish, so that the continued fraction is only in powers of
z2, but this is also easily dealt with).

2. For any m, denote as usual by pm(z)/qm(z) the mth convergent obtained by stop-
ping the continued fraction at c(m)z/1, and denote by Nn(z) the reciprocal poly-
nomial of p2n−1(z)/z (which has degree n − 1) and by Dn(z) the reciprocal poly-
nomial of q2n−1 (which has degree n).

3. The xi are the n roots of Dn (which are all simple and in the interval ]a, b[), and
the wi are given by the formula wi = Nn(xi)/D′

n(xi).

By construction, this Gaussian integration method will work when the function
f (x) to be integrated is well approximated by polynomials, but otherwise will fail
miserably, and this is why we say that the method is much less “robust” than doubly
exponential integration.

The fact that Gaussian “integration” can also be used very efficiently for numerical
summationwasdiscovered quite recently byH.Monien.Weexplain the simplest case.
Consider the measure on ]0, 1] given by dμ = ∑

n≥1 δ1/n/n2, where δx is the Dirac

measure centered at x. Thus, by definition
∫ 1
0 f (x)dμ = ∑

n≥1 f (1/n)/n
2. Let us

apply the recipe given above: the kthmomentMk is givenbyMk = ∑
n≥1(1/n)

k/n2 =
ζ(k + 2), so that Φ(z) = ∑

k≥1 ζ(k + 1)zk . Note that this is closely related to the
digamma function ψ(z), but we do not need this. Applying the quotient-difference
algorithm, we writeΦ(z) = c(0)z/(1 + c(1)z/(1 + · · · )), and compute the xi andwi

as explained above. We will then have that
∑

i wif (xi) is a very good approximation
to

∑
n≥1 f (1/n)/n

2, or equivalently (changing the definition of f ) that
∑

i wif (yi) is
a very good approximation to

∑
n≥1 f (n), with yi = 1/xi.

To take essentially the simplest example, stopping the continued fraction after
two termswe find that y1 = 1.0228086266 · · · ,w1 = 1.15343168 · · · , y2 = 4.37108
2834 · · · , and w2 = 10.3627543 · · · , and (by definition) we have

∑
1≤i≤2 wif (yi) =∑

n≥1 f (n) for f (n) = 1/nk with k = 2, 3, 4, and 5.
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10 Pari/GP Commands

In this section, we give some of the Pari/GP commands related to the subjects
studied in this course, together with examples. Unless mentioned otherwise, the
commands assume that the current default accuracy is the default, i.e., 38 decimal
digits.

zeta(s): Riemann zeta function at s.

? zeta(3)

% = 1.2020569031595942853997381615114499908

? zeta(1/2+14*I)

% = 0.022241142609993589246213199203968626387

- 0.10325812326645005790236309555257383451*I

lfuncreate(obj): create L-function attached to mathematical object obj.
lfun(pol,s): Dedekind zeta function of the number field K defined by pol

at s. Identical to L=lfuncreate(pol); lfun(L,s).

? L = lfuncreate(xˆ3-x-1); lfunan(L,10)

% = [1, 0, 0, 0, 1, 0, 1, 1, 0, 0]

? lfun(L,1)

% = 0.36840932071582682111186846662888526986*xˆ-1 + O(xˆ0)

? lfun(L,2)

% = 1.1100010060250153929372222560595385375

lfunlambda(pol,s): same, but for the completed function ΛK (s), identical
to lfunlambda(L,s) where L is as above.

? lfunlambda(L,2)

% = 0.41169121016707136240079852448689476625

lfun(D,s): L-function of quadratic character (D/.) at s.
Identical to L=lfuncreate(D); lfun(L,s).

? lfun(-23,-2)

% = -48.000000000000000000000000000000000000

? lfun(5,-1)

% = -0.4000000000000000000000000000000000000

L1=lfuncreate(pol); L2=lfuncreate(1); L=lfundiv
(L1,L2): L function attached to ζK (s)/ζ(s).

? L1 = lfuncreate(xˆ3-x-1); L2 = lfuncreate(1);

? L = lfundiv(L1,L2); lfunan(L,14)
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% = [1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0]

lfunetaquo([m1, r1;m2, r2]): L-function of eta product η(m1τ)r1η(m2τ)r2 , for
instance with [1,1;23,1] or [1,2;11,2].

? L1 = lfunetaquo([1,1;23,1]); lfunan(L1,14)

% = [1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0]

? L2 = lfunetaquo([1,2;11,2]); lfunan(L2,14)

% = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4]

lfuncreate(ellinit(e)): L-function of elliptic curve e, for instance with
e = [0,−1, 1,−10,−20].

? e = ellinit([0,-1,1,-10,-20]);

? L = lfuncreate(e); lfunan(L,14)

% = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4]

ellap(e,p): compute a(p) for an elliptic curve e.

? ellap(e,nextprime(10ˆ42))

% = -1294088699019102994696

eta(q+O(qˆB))ˆm: compute the mth power of η to B terms.

? eta(q+O(qˆ5))ˆ26

% = 1 - 26*q + 299*qˆ2 - 1950*qˆ3 + 7475*qˆ4 + O(qˆ5)

D=mfDelta(); mfcoefs(D,B): computeB + 1 terms of the Fourier expan-
sion of Δ.

? D = mfDelta(); mfcoefs(D,7)

% = [0, 1, -24, 252, -1472, 4830, -6048, -16744]

ramanujantau(n): compute Ramanujan’s tau function τ(n) using the trace
formula.

? ramanujantau(nextprime(10ˆ7))

% = 110949191154874445294730241687634133420

qfbhclassno(n): Hurwitz class number H (n).

? vector(13,n,qfbhclassno(n-1))

% = [-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, 0, 0, 1, 4/3]
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qfbsolve(Q,n): solveQ(x, y) = n for a binary quadratic formQ (contains in
particular Cornacchia’s algorithm).

? Q = Qfb(1,0,1); p = 10ˆ16+61; qfbsolve(Q,p)

% = [86561206, 50071525]

gamma(s): gamma function at s.

? gamma(1/4)*gamma(3/4)-Pi*sqrt(2)

% = 2.350988701644575016 E-38

incgam(x,s): incomplete gamma function Γ (s, x).

? incgam(1,5/2)

% = 0.082084998623898795169528674467159807838

G=gammamellininvinit(A): initialize data for computing inverse Mellin
transforms of

∏
1≤i≤d ΓR(s + ai), with A = [a1, . . . , ad ].

gammamellininv(G,t): inverseMellin transform at t ofA, withG initialized
as above.

? G = gammamellininvinit([0,0]); gammamellininv(G,2)

% = 4.8848219774465217355974384319702281090 E-6

K(nu,x): Kν(x), K-Bessel function of (complex) index ν at x.

? 4*besselk(0,4*Pi)

% = 4.8848219774465217355974384319702281090 E-6

sumnum(n=a,f(n)): numerical summationof
∑

n≥a f (n)usingdiscreteEuler–
MacLaurin.

? sumnum(n=1,1/(nˆ2+nˆ(4/3)))

% = 0.95586324768586066988568837766973815238

sumnumap(n=a,f(n)): numerical summation of
∑

n≥a f (n) using Abel–
Plana.

sumnummonien(n=a,f(n)): numerical summation using Monien’s Gaus-
sian summation method,

(there also exists sumnumlagrange, which can also be very useful).
limitnum(n->f(n)): limit of f (n) as n → ∞ using a variant of Zagier’s

method, assuming asymptotic expansion in integral powers of 1/n (also asympnum
to obtain more coefficients).
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? limitnum(n->(1+1/n)ˆn)

% = 2.7182818284590452353602874713526624978

? asympnum(n->(1+1/n)ˆn*exp(-1))

% = [1, -1/2, 11/24, -7/16, 2447/5760, -959/2304,...]

sumeulerrat(f(x)):
∑

p≥2 f (p), p ranging over primes (more general vari-
ant exists form

∑
p≥a f (p

s)).

? sumeulerrat(1/(xˆ2+x))

% = 0.33022992626420324101509458808674476056

prodeulerrat(f(x)):
∏

p≥2 f (p), p ranging over primes, with same vari-
ants.

? prodeulerrat((1-1/x)ˆ2*(1+2/x))

% = 0.28674742843447873410789271278983844644

sumalt(n=a,(-1)ˆn*f(n)):
∑

n≥a(−1)nf (n), assuming f positive.

? sumalt(n=1,(-1)ˆn/(nˆ2+n))

% = -0.38629436111989061883446424291635313615

f’(x) (or deriv(f)(x)): numerical derivative of f at x.

? -zeta’(-2)

% = 0.030448457058393270780251530471154776647

? zeta(3)/(4*Piˆ2)

% = 0.030448457058393270780251530471154776647

intnum(x=a,b,f(x)): numerical computation of
∫ b
a f (x) dx using general

doubly exponential integration.
intnumgauss(x=a,b,f(x)): numerical integration usingGaussian integra-

tion.

? intnum(t=0,1,lngamma(t+1))

% = -0.081061466795327258219670263594382360139

For instance, for 500 decimal digits, after the initial computation of nodes and
weights in both cases (intnuminit(0,1) and intnumgaussinit()) this
examples requires 2.5s by doubly exponential integration but only 0.25s byGaussian
integration.
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11 Three Pari/GP Scripts

11.1 The Birch–Swinnerton-Dyer Example

Here is a list of commands which implements the explicit BSD example given in
Sect. 2.7, again assuming the default accuracy of 38 decimal digits.

? E = ellinit([1,-1,0,-79,289]); /* initialize */

? N = ellglobalred(E)[1] /* compute conductor */

% = 234446

? /* define the integral $f(x)$ */

? f(x) = intnum(t=1,[oo,x],exp(-x*t)*log(t)ˆ2);

? /* check that f(100) is small enough for 38D */

? f(100)

% = 7.2... E-50

? A = ellan(E,8000); /* compute 8000 coefficients */

? /* Note that $2\pi 8000/sqrt(N) > 100$ */

? S = sum(n=1,8000,A[n]*f(2*Pi*n/sqrt(N)))

% = 9.02... E-35 /* almost 0 */

? /* compute APPARENT order of vanishing of L(E,s) */

? ellanalyticrank(E)[1]

% = 4

Note that for illustrative purposes we use the intnum command to compute f (x),
corresponding to the use of doubly exponential integration, but in the present case
there are methods which are orders of magnitude faster. The last command, which
is almost immediate, implements these methods.

11.2 The Beilinson–Bloch Example

The code for the explicit Beilinson–Bloch example seen in Sect. 2.8 is simpler (I
have used the integral representation of g(u), but of course I could have used the
series expansion instead.):

? e(u) =

{

my(E = ellinit([0,uˆ2+1,0,uˆ2,0]));

lfun(E,2)*ellglobalred(E)[1];

}

? g(u) =

{

my(S);
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S = 2*Pi*intnum(t=0,1,asin(t)/(t*sqrt(1-(t/u)ˆ2)));

S+Piˆ2*acosh(u);

}

? e(5)/g(5)

% = 8.0000000000000000000000000000000000000

? /* we obtain perfect accuracy */

? /* for example: */

? for(u = 2,18,print1(bestappr(e(u)/g(u),10ˆ6)," "))

% = 1 2 4/11 8 32 8 4/3 8 32 64 8 96 256 48 16 16 192

11.3 The Mahler Measure Example

? L=lfunetaquo([2,1;4,1;6,1;12,1]);

\\ Equivalently L=lfuncreate(ellinit([0,-1,0,-4,4]));

? lfun(L,3)

% = 0.95050371329356644983179739940014855951

? (Piˆ2/36)*(Catalan*Pi+intnum(t=0,1,asin(t)*asin(1-t)/t))

% = 0.95050371329356644983179739940014855950

12 Appendix: Selected Results

12.1 The Gamma Function

The Gamma function, denoted by Γ (s), can be defined in several different ways.
My favorite is the one I give in Sect. 9.6.2 of [4], but for simplicity I will recall the
classical definition. For s ∈ C we define

Γ (s) =
∫ ∞

0
e−t ts

dt

t
.

It is immediate to see that this converges if and only ifℜ(s) > 0 (there is no problemat
t = ∞, the only problem is at t = 0), and integration by parts shows that Γ (s + 1) =
sΓ (s), so that if s = n is a positive integer, we have Γ (n) = (n − 1)!. We can now
define Γ (s) for all complex s by using this recursion backwards, i.e., setting Γ (s) =
Γ (s + 1)/s. It is then immediate to check that Γ (s) is a meromorphic function on C

having poles at s = −n for n = 0, 1, 2,…, which are simple with residue (−1)n/n!.
The gamma function has numerous additional properties, themost important being

recalled below:

1. (Stirling’s formula for largeℜ(s)): as s → ∞, s ∈ R (say, there is a more general
formulation) we have Γ (s) ∼ ss−1/2e−s(2π)1/2.
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2. (Stirling’s formula for large �(s)): as |T | → ∞, σ ∈ R being fixed (say,
once again there is a more general formulation), we have |Γ (σ + iT )| ∼
|T |σ−1/2e−π |T |/2(2π)1/2. In particular, it tends to 0 exponentially fast on ver-
tical strips.

3. (Reflection formula): we have Γ (s)Γ (1 − s) = π/ sin(πs).
4. (Duplication formula): we have Γ (s)Γ (s + 1/2) = 21−2sπ1/2Γ (2s) (there is

also a more general distribution formula giving
∏

0≤j<N Γ (s + j/N ) which
we do not need). Equivalently, if we set ΓR(s) = π−s/2Γ (s/2) and ΓC(s) =
2 · (2π)−sΓ (s), we have ΓR(s)ΓR(s + 1) = ΓC(s).

5. (Link with the beta function): let a and b in C with ℜ(a) > 0 and ℜ(b) > 0. We
have

B(a, b) :=
∫ 1

0
ta−1(1 − t)b−1 dt = Γ (a)Γ (b)

Γ (a + b)
.

12.2 Order of a Function: Hadamard Factorization

Let F be a holomorphic function in the whole of C (it is immediate to generalize to
the case of meromorphic functions, but for simplicity we stick to the holomorphic
case). We say that F has finite order if there exists α ≥ 0 such that as |s| → ∞ we
have |F(s)| ≤ e|s|α . The infimum of such α is called the order of F . It is an immediate
consequence of Liouville’s theorem that functions of order 0 are polynomials. Most
functions occurring in number theory, and in particular all L-functions occurring in
this course, have order 1. The Selberg zeta function, which we do not consider, is
also an interesting function and has order 2.

The Weierstrass–Hadamard factorization theorem is the following:

Theorem 12.1 Let F be a holomorphic function of order ρ, set p = �ρ�, let (an)n≥1

be the nonzero zeros of F repeated with multiplicity, and let m be the order of the
zero at z = 0. There exists a polynomial P of degree at most p such that for all z ∈ C

we have

F(z) = zmeP(z)
∏

n≥1

(
1 − z

an

)
exp

(
z/an
1

+ (z/an)2

2
+ · · · + (z/an)p

p

)
.

In the case of order 1 which is of interest to us, this reads

F(z) = B · zmeAz
∏

n≥1

(
1 − z

an

)
ez/an .

For example, we have

sin(πz) = πz
∏

n≥1

(
1 − z2

n2

)
and

1

Γ (z + 1)
= eγ z

∏

n≥1

(
1 + z

n

)
e−z/n ,
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where as usual γ = 0.57721 · · · is Euler’s constant.
Exercise 12.2 1. Using these expansions, prove the reflection formula and the

duplication formula for the gamma function, and find the distribution formula
giving

∏
0≤j<N Γ (s + j/N ).

2. Show that the above expansion for the sine function is equivalent to the formula
expressing ζ(2k) in terms of Bernoulli numbers.

3. Show that the above expansion for the gamma function is equivalent to the Taylor
expansion

log(Γ (z + 1)) = −γ z +
∑

n≥2

(−1)n
ζ(n)

n
zn ,

and prove the validity of this Taylor expansion for |z| < 1, hence of the above
Hadamard product.

12.3 Elliptic Curves

We will not need the abstract definition of an elliptic curve. For us, an elliptic curve
E defined over a field K will be a nonsingular projective curve defined by the (affine)
generalized Weierstrass equation with coefficients in K :

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 .

This curve has a discriminant (obtained essentially by completing the square and
computing the discriminant of the resulting cubic), and the essential property of
being nonsingular is equivalent to the discriminant being nonzero.

This curve has a unique pointO at infinity, with projective coordinates (0 : 1 : 0).
Using chord and tangents, one can define an addition law on this curve, and the first
essential (but rather easy) result is that it is an abelian group lawwith neutral element
O , making E into an algebraic group.

In the case where K = Q (or more generally a number field), a deeper theorem
due to Mordell states that the group E(Q) of rational points of E is a finitely gener-
ated abelian group, i.e., is isomorphic to Zr ⊕ E(Q)tors, where E(Q)tors (the torsion
subgroup) is a finite group, and the integer r is called the (algebraic) rank of the
curve.

Still in the case K = Q, for all prime numbers p except a finite number, we can
reduce the equation modulo p, thus obtaining an elliptic curve over the finite field Fp.
Using an algorithm due to J. Tate, we can find first a minimal Weierstrass equation
for E, second the behavior of E reduced at the “bad” primes in terms of so-called
Kodaira symbols, and third the algebraic conductor N ofE, product of the bad primes
raised to suitable exponents (and other important quantities).
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The deep theorem ofWiles et al. tells us that the L-function of E (as defined in the
main text) is equal to the L-function of a rational Hecke eigenform in the modular
form space M2(Γ0(N )), where N is the conductor of E.

A weak form of the Birch and Swinnerton-Dyer conjecture says that the algebraic
rank r is equal to the analytic rank defined as the order of vanishing of the L-function
of E at s = 1.
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Exponential Diophantine Equations

Florian Luca

Abstract This paper is a verygentle introduction to solving exponentialDiophantine
equations using the technology of linear forms in logarithms of algebraic numbers.

1 Introduction

This is a very gentle introduction on how to solve certain exponential Diophantine
equations. The paper contains two main parts, one on binary recurrent sequences
(Sects. 2–10) and one on linear forms in logarithms (Sects. 11–14), as well as a short
part explaining how to use LLL in order to reduce the initial bounds coming from
applying linear forms in logarithms. In Sects. 2–10, we take a brief tour of the theory
of linear recurrent sequences of order 2.We define the Lucas sequences in Sect. 5 and
observe that the sequence of Fibonacci numbers is an example of such a sequence. The
most important result here is the Theorem of Primitive Divisors, which is formulated
in itsmost general form in Sect. 7, but is proved only for Lucas sequenceswith integer
roots in Sect. 6 using results on Cyclotomic Polynomials briefly outlined in Sect. 4
and results on the indices of appearance of primes in Lucas sequences in Sect. 5. We
present some applications in Sect. 8, in particular related to the largest prime factor
of x2 − 1 when x tends to infinity in the set of natural numbers. Sections9 and 10
contain some exercises and notes. In Sect. 11, we give various specific statements
which belong to what is known as the theory of lower bounds for linear forms in
logarithms of algebraic numbers. To illustrate the importance of this machinery, we
give three examples in Sect. 12. We shall see, for example, that the largest Fibonacci
number having only one repeated digit in its decimal expansion is 55 and give two
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proofs of that, one using linear forms in complex logarithms and one using linear
forms in p-adic logarithms. Sections13 and 14 contain some problems/exercises and
notes. In the last section, we give an example on how to use the LLL algorithm to
reduce the large bounds from Baker’s method to a range, which can be checked with
a computer. The proposed exercises and problems can be attempted with the methods
explained in the previous sections. There are certain little computations along the
way which can be done with either Maple or Mathematica. Versions of these notes
exist on the Internet in .pdf form from short courses give by the author in Mérida,
Venezuela (2007), Debrecen, Hungary (2009), Dangbo, Benin (2014), and Krakow,
Poland (2017).

2 Binary Recurrent Sequences

Definition 2.1 Let k ≥ 1 be an integer. A sequence (un)n≥0 ⊂ C is called linearly
recurrent of order k if the recurrence

un+k = a1un+k−1 + a2un+k−2 + · · · + akun (1)

holds for all n ≥ 0 with some fixed coefficients a1, . . . , ak ∈ C.

Let us suppose that ak �= 0 (for if not, the sequence (un)n≥0 satisfies a linear
recurrence of order smaller than k). If a1, . . . , ak ∈ Z and u0, . . . , uk−1 ∈ Z, then,
by induction on n, we get that un is an integer for all n ≥ 0. The polynomial

f (X) = Xk − a1X
k−1 − · · · − ak ∈ C[X ]

is called the characteristic polynomial of (un)n≥0. Suppose that

f (X) =
s∏

i=1

(X − αi )
σi ,

whereα1, . . . , αs are the distinct roots of f (X)withmultiplicities σ1, . . . , σs , respec-
tively.

Proposition 2.2 Suppose that f (X) ∈ Z[X ] has k distinct roots. Then there exist
constants c1, . . . , ck ∈ K = Q(α1, . . . , αk) such that the formula

un =
k∑

i=1

ciα
n
i holds for all n ≥ 0. (2)

Proof Let
u(z) =

∑

n≥0

unz
n.
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We observe that

u(z)(1 − a1z − · · · − akz
k) = u0 + (u1 − u0a1)z + · · ·

+
∑

m≥k

(um − a1um−1 − · · · − akum−k)z
m

:= P(z),

where P(z) = ∑k−1
m=0(um − a1um−1 − · · · − amu0)zm ∈ C[z]. Thus,

u(z) = P(z)

1 − a1z − · · · − akzk
= P(z)

zk f (1/z)
= P(z)

zk
∏k

i=1(1/z − αi )

= P(z)
∏k

i=1(1 − zαi )
=

k∑

i=1

ci
1 − zαi

for some coefficients ci ∈ K. For the last step, we have used the theory of the partial
fractions together with the fact that the roots α1, . . . , αk are distinct and the degree
of P(z) is smaller than k. If

|z| < ρ := min{|αi |−1 : i = 1, . . . , k},

then we can write

1

1 − zαi
=

∑

n≥0

(zαi )
n =

∑

n≥0

αn
i z

n for all n ≥ 0.

Thus, for |z| < ρ, we get that

∑

n≥0

unz
n = u(z) =

k∑

i=1

ci
∑

n≥0

αn
i z

n =
∑

n≥0

(
k∑

i=1

ciα
n
i

)
zn.

Identifying coefficients, we get the relation (2).
If k = 2, the sequence (un)n≥0 is called binary recurrent. In this case, its charac-

teristic polynomial is of the form

f (X) = X2 − a1X − a2 = (X − α1)(X − α2).

Suppose that α1 �= α2. Proposition2.2 tells us that

un = c1α
n
1 + c2α

n
2 for all n ≥ 0. (3)

Definition 2.3 A binary recurrent sequence (un)n≥0 whose general term is given by
formula (3) is called nondegenerate if c1c2α1α2 �= 0 and α1/α2 is not a root of 1.
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3 Examples of Binary Recurrent Sequences

3.1 The Fibonacci and Lucas Sequences

The Fibonacci sequence (Fn)n≥0 is given by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn

for all n ≥ 0. Its characteristic equation is

f (X) = X2 − X − 1 = (X − α)(X − β),

where α = (1 + √
5)/2 and β = (1 − √

5)/2. In order to find c1 and c2 starting with
formula (3), we give to n the values 0 and 1 and obtain the system

c1 + c2 = F0 = 0, c1α + d1β = F1 = 1.

Solving it, we get c1 = 1/
√
5, c2 = −1/

√
5. Since

√
5 = (α − β), we can write

Fn = αn − βn

α − β
for all n ≥ 0. (4)

A sequence related to the Fibonacci sequence is the Lucas sequence (Ln)n≥0 given by
L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln for all n ≥ 0. It has the same characteristic
equation as the Fibonacci sequence, therefore, there exist two constants d1 and d2
such that

Ln = d1α
n + d2β

n for all n ≥ 0.

Giving to n the values 0 and 1, we get that

d1 + d2 = L0 = 2, d1α + d2β = L1 = 1.

Solving the above system of linear equations, we see that d1 = d2 = 1, and so

Ln = αn + βn for all n ≥ 0. (5)

Using the formulas (4) and (5), one can easily prove various formulas which involve
Fn and Ln .

Example 3.1 The formula
L2
n − 5F2

n = 4(−1)n

holds for all n ≥ 0. In fact,

L2
n − 5F2

n = (αn + βn)2 − 5

(
αn − βn

α − β

)2

= (αn + βn)2 − (αn − βn)2 = 4(αβ)n = 4(−1)n,

where we used the fact that (α − β)2 = 5.
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3.2 Binary Recurrences Associated to Pell Equations
with N = ±1

Let d > 1 be an integer which is not a perfect square and let (x1, y1) be the minimal
solution in positive integers of the equation

x2 − dy2 = ±1. (6)

We put
ζ = x1 + √

dy1 and η = x1 − √
dy1.

There is a theorem from the theory of Pell equations, which tells us that (x1, y1)
always exists and that all positive integer solutions (x, y) of the Eq. (6) are of the
form (x, y) = (x�, y�) for some positive integer �, where

x� + √
dy� = (x1 + √

dy1)
� = ζ �.

Conjugating the above relation (in Q[√d]), we get

x� − √
dy� = (x1 − √

dy1)
� = η�.

From here, we deduce that

x� = ζ � + η�

2
and y� = ζ � − η�

2
√
d

for all � ≥ 1. (7)

It turns out to be useful to put (x0, y0) = (1, 0) so that formula (7) holds also with
� = 0.

It is easy to see that (x�)�≥0 and (y�)�≥0 are binary recurrent sequences of char-
acteristic equation

f (X) = X2 − a1X − a2 = (X − ζ )(X − η)

= X2 − (ζ + η)X + ζη = X2 − 2x1X ± 1.

3.3 Binary Recurrences Associated to Pell Equations
with N �= ±1

Let d > 1 be an integer which is not a perfect square and let N be a nonzero integer.
Let (u, v) be a positive integer solution of the equation

u2 − dv2 = N . (8)
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Theorem 3.2 Let d > 1 be an integer which is not a perfect square and let N �= 0.
Then all the positive integer solutions (u, v) of the Eq. (8) belong to a finite set of
binary recurrent sequences. These sequences have the same characteristic equation
X2 − 2x1X + 1 = 0, where (x1, y1) is the minimal solution in positive integers of
the equation x2 − dy2 = 1.

Proof Let us observe first that if there is a solution (u0, v0) of the Eq. (8), then
there are infinitely many of them. In fact, let (x1, y1) be the minimal solution of
x2 − dy2 = 1, and put ζ = x1 + √

dy1, η = x1 − √
dy1. Putting

u� + √
dv� = (u0 + √

dv0)ζ
�

and conjugating (in Q[√d]), we get

u� − √
dv� = (u0 − √

dv0)η
�.

Multiplying the two relations, above we get

u2� − dv2� = (u20 − dv20)(ζη)� = N ,

from where we read that (u�, v�) is also a solution of the Pell equation (8). Observe
that

u� = c1ζ � + c2η�

2
and v� = c1ζ � − c2η�

2
√
d

,

where c1 = u0 + √
dv0 and c2 = u0 − √

dv0. The sequences (u�)�≥0 and (v�)�≥0 are
both binary recurrent of characteristic equation

f (X) = (X − ζ )(X − η) = X2 − (ζ + η)X + ζη = X2 − 2x1X + 1.

Finally, let us prove that all the positive integer solutions (u, v) of the Eq. (8) are
obtained the way we described above from some “small” positive integer solution
(u0, v0). Let (u, v) be a positive integer solution of the Eq. (8). Assuming that u +√
dv ≤ |N |ζ, there are only finitely many possibilities for the pair (u, v). Suppose

now that u + √
dv > |N |ζ, and let � ≥ 1 be the minimal positive integer � such that

(u + √
dv)ζ−� ≤ Nζ. We write

u0 + √
dv0 = (u + √

dv)ζ−� = (u + √
dv)(x� − √

dy�)

= (ux� − dvy�) + √
d(−uy� + vx�).

Since u and v are positive, by the definition of �, we have that u0 + v0
√
d > |N |, for

if not then we would have 0 < u0 + √
dv0 < |N |, therefore

(u + √
dv)ζ−(�−1) < (u0 + √

dv0)ζ < |N |ζ,
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contradicting the way we chose �. Let us now prove that u0 and v0 are positive. It is
clear that at least one of them is positive. Since u20 − dy20 = N, we have that |u0 −√
dv0| = |N |/(u0 + √

dv0) < 1. If u0 and v0 would have opposite signs, then 1 >

|u0 − √
dv0| = |u0| + √

d|v0|, which is not possible. The above argument shows,
therefore, that for every positive integer solution (u, v) of the Pell equation (8) there
is some nonnegative integer � and some positive integer solution (u0, v0) of theEq. (8)
with u0 + √

dv0 < |N |ζ , such that

u + √
dv = (u0 + √

dv0)ζ
�,

which, via the argument from the beginning of this section, confirms that (u, v)
belongs to a finite union of binary recurrent sequences.

Up to now, we looked at some algebraic properties of linear recurrent sequences of
order 2.Next, we delve into their number theoretic properties. In particular, we look at
a very powerful theoremon the divisibility of elements of certain linear recurrences of
order by primes. But before, we take a detour and talk about cyclotomic polynomials.

4 Cyclotomic Polynomials

The family of polynomials of the form Xn − 1 has the very important property that
their roots are precisely the nth roots of unity. However, many of these polynomials
have common factors: for example, for any positive integers m and n, we have that
(Xm − 1, Xn − 1) = X (m,n) − 1. These common factors show that there are mth
roots of unity that are also nth roots of unity. Thus, to remove all common factors
among these polynomials, we can define a polynomial Φn(X) whose roots are all
nth roots of unity, yet are not mth roots of unity for any m < n.

Definition 4.1 The polynomial

Φn(X) =
∏

d:(d,n)=1
d<n

(X − e2iπd/n)

is called the nth cyclotomic polynomial. Note that its degree is φ(n), the Euler
function of n, which counts the number of positive integers k ≤ n with (k, n) = 1.

Example 4.2 The relation
Xn − 1 =

∏

d|n
Φd(X) (9)

is very important. To prove it, look at the list

1

n
,
2

n
, · · · ,

n

n
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and write in this list every fraction k/n as a reduced fraction �/d with (�, d) = 1 and
some divisor d of n. It is easy to see that all divisors d of n appear in this way, and
for each fixed d, all �s which have 1 ≤ � ≤ d and are coprime to d appear as well.
Since the root e2π i�/n as a root of Xn − 1 is in fact a root of Φd(X), we get (9). To
see how it works, note that

(1/6, 2/6, 3/6, 4/6, 5/6, 6/6) = (1/6, 1/3, 1/2, 2/3, 5/6, 1).

The last number 1 leads to the only root of Φ1(X) = X − 1. The number 1/2 cor-
responds to the only root of unity of order 2, which is −1, so Φ2(X) = X + 1.
The numbers 1/3 and 2/3 correspond to cubic roots of unity so they participate in
Φ3(X) = X2 + X + 1. Finally, 1/6 and 5/6 lead to the two roots of unity of order 6
and Φ6(X) = X2 − X + 1.

Proposition 4.3 For all n ∈ N, Φn(X) ∈ Z[X ].
Proof We proceed by strong induction on n. Clearly Φ1(X) = X − 1 ∈ Z[X ]. Now
assume, for all n ≤ k, that Φn(X) ∈ Z[X ]. Let

Ln(X) =
∏

d|n
d<n

Φd(X).

Wemust then have thatΦn(X) · Ln(X) = Xn − 1. Since Ln(X) ∈ Z[X ], from poly-
nomial division, we have that Φn(X) ∈ Q[X ]. We also have that Φn(X) ∈ Z[X ] by
definition (here, Z is the ring of algebraic integers), so Φn(X) ∈ Q[X ] ∩ Z[X ] =
Z[X ].

5 Lucas Sequences

Definition 5.1 A Lucas sequence {un}n≥0 is a linearly recurrent sequence of
order 2

un+2 = run+1 + sun, n ≥ 0

with nonzero integers r, s such that (r, s) = 1, u0 = 0, u1 = 1, and the ratio α/β of
the roots α, β of the quadratic x2 − r x − s = 0 is not a root of unity.

Note that

(α, β) =
(
r + √

r2 + 4s

2
,
r − √

r2 + 4s

2

)
.

Also, r = α + β and s = −αβ. The initial conditions lead to

un = αn − βn

α − β
, n = 0, 1, . . . .
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Example 5.2 The Fibonacci sequence {Fn}n≥0 is a Lucas sequence since

Fn = αn − βn

α − β
, (α, β) =

(
1 + √

5

2
,
1 − √

5

2

)
.

Its companion Lucas sequence {Ln}n≥0 has Ln = αn + βn = F2n/Fn .

Example 5.3 Let d > 0 be an integer not a square and (xn, yn) be all positive integer
solutions to the Pell equation x2 − dy2 = ±1. Let (x1, y1) be the smallest such
solution. Then

xn + yn
√
d = (x1 + y1

√
d)n.

Put α = x1 + y1
√
d and β = x1 − y1

√
d . Then α + β = 2x1 and αβ = ±1. Further-

more,

xn = αn + βn

2
and yn = αn − βn

2
√
d

,

so in fact {yn/y1}n≥1 is the Lucas sequence of roots (α, β) and characteristic poly-
nomial x2 − r x − s, where r = 2x1 and s = ±1.

Let {un}n≥0 be a Lucas sequence.

Proposition 5.4 If p | s is a prime, then p does not divide un for any n ≥ 1.

Proof Sinceu1 = 1, u2 = r and (r, s) = 1, it follows that if p | s and p | un for some
n ≥ 1, then n ≥ 3. Let n0 be theminimal n with p | un . Since un0 = run0−1 + sun0−2

and p divides both un0 and s, we get that p | run0−1, and since (r, s) = 1, we get
p | un0−1, in contradiction with the definition of n0. This contradiction proves the
proposition.

Proposition 5.5 Let {un}n≥1 be a Lucas sequence. Then (um, un) = u(m,n).

Proof Note that u(m,n) | (um, un), because if a | b then ua | ub. To see this, write
b = a� and then

ub
ua

= (αa)� − (βa)�

αa − βa
= (αa)�−1 + · · · + (βa)�−1.

The expression in the right-hand side is an integer (either because it is symmetric in
α, β, therefore a polynomial with integer coefficients in α + β = r and αβ = −s, or
because it is both a rational number and an algebraic integer). Hence, ua | ub.

Now, we prove that (um, un) | u(m,n). Let D = (um, un) and assume that m > n.
Then

αm − βm = αm−n(αn − βn) + βn(αm−n − βm−n),

leading to um = αm−nun + βnum−n . Since D divides um and un , we get that D divides
βnum−n . Here, we say that an algebraic integer η divides an algebraic integer λ if their
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ratio is an algebraic integer. Thus, D divides (αβ)num−n = (−s)num−n , and since by
the previous proposition D and s are coprime, we get that D | um−n . Continuing in
this way, we use the Euclidean algorithm to arrive at the conclusion that D divides
u(m,n). Thus, (um, un) | u(m,n). Hence, (um, un) = u(m,n).

We put Δ = (α − β)2 = r2 + 4s. For an odd prime p and an integer a, we use(
a
p

)
for the Legendre symbol of a with respect to p, which is

(
a

p

)
=

⎧
⎨

⎩

0 if p | a;
1 if a ≡ x2 (mod p) and p � a;

−1 otherwise.

Proposition 5.6 Assume p � s is odd. The following hold:

(i) If p | Δ, then p | u p.
(ii) If p � Δ, and α ∈ Q, then p | u p−1.
(iii) If p � Δ and α /∈ Q, then

p |
⎧
⎨

⎩
u p−1 if

(
Δ
p

)
= 1,

u p+1 if
(

Δ
p

)
= −1.

Proof (i) Since p | (α − β)2, we know that α ≡ β (mod p). Here and in what fol-
lows we say that two algebraic integers γ, δ are congruent modulo a nonzero integer
m if (γ − δ)/m is an algebraic integer. Hence,

u p = α p − β p

α − β
= α p−1 + α p−2β + · · · + β p−1 ≡ p · α p−1 ≡ 0 (mod p).

(ii) Here, p � α, p � β, and p � (α − β). We use Fermat’s Little Theorem to get that
α p−1 ≡ β p−1 ≡ 1 (mod p), so

u p−1 = α p−1 − β p−1

α − β
≡ 0 (mod p).

(iii) Expand

2pα p = r p +
(
p

1

)
r p−1

√
Δ + · · · + √

Δ · Δ(p−1)/2 ≡ r + √
Δ · Δ(p−1)/2 (mod p).

(10)

If
(

Δ
p

)
= 1, then Δ(p−1)/2 ≡ 1 (mod p). The above leads to 2pα p ≡ 2α (mod p).

Since 2p ≡ 2 (mod p) and p is odd, we get that p divides α(α p−1 − 1). Thus,
p | (αβ)(α p − 1) and since αβ = s is coprime to p, we get α p−1 ≡ 1 (mod p). The
same argument works with α replaced by β, so we get that α p−1 ≡ β p−1 (mod p).
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Hence, p divides (α − β)u p−1, therefore it divides also Δu p−1, and since p is
coprime to Δ, we get that p | u p−1.

This was when
(

Δ
p

)
= 1. Assume now that

(
Δ
p

)
= −1. Equation (10) together

with the fact that Δ(p−1)/2 ≡ −1 (mod p) now shows that α p ≡ β (mod p), there-
fore α p+1 ≡ −s (mod p). The same argument works with α replaced by β so we get
β p+1 ≡ −s (mod p). Thus, α p+1 ≡ β p+1 (mod p), which leads, via an argument
similar to the one above, to the conclusion that p | u p+1.

Lemma 5.7 Assume that p | um, m | n and p | un/um. Then p | n/m.

Proof Note that un/um = ((αm)n/m − (βm)n/m)/(αm − βm) is the n/mth term of the
Lucas sequence {Uk}k≥1 of roots (αm, βm) and discriminant (αm − βm)2 = Δu2m , a
multiple of p. By (i) of the previous lemma, p | Up and by the hypothesis, p | Un/m .
Hence, p | (Up,Un/m) = U(p,n/m), and the conclusion follows since if p � n/m, then
(p, n/m) = 1, so p | U1 = 1, a contradiction.

Lemma 5.8 Assume that m is a positive integer and p is an odd prime such that
p | um. Then p | ump/um, but p2 � ump/um.

Proof Note that
ump

um
= (αm)p − (βm)p

αm − βm
.

We are given that p | um , so αm − βm = pλ for some algebraic integer λ. Therefore

ump

um
=

p−1∑

i=0

(αm)i (βm)p−i−1 =
p−1∑

i=0

(βm + pλ)i (βm)p−i−1.

We expand this sum and take it modulo p2:

ump

um
≡ p(βm)p−1 +

p−1∑

i=0

i pλβ p−2 ≡ p(βm)p−1 + pλ(βm)p−2 p(p − 1)

2

≡ p(βm)p−1 (mod p2).

This means that p2 does not divide the fraction from the left-hand side above.

Definition 5.9 For a prime p, let z(p) be the order of appearance of p in {un}n≥0;
i.e., the minimal positive integer k such that p | uk .

If such k does not exist (for example, if p | s), we put z(p) = ∞.

Exercise 5.10 If p | un , then z(p) | n.
Proof Note that p | un and p | uz(p), so p | (un, uz(p)) = u(n,z(p)). But we have that
(n, z(p)) ≥ z(p) since z(p) is minimal, but (n, z(p)) ≤ z(p) from the definition of
the greatest common divisor; so, (n, z(p)) = z(p), therefore z(p) | n. �
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Exercise 5.11 Let ψ(p) be the period of the Fibonacci sequence modulo p. Then
ψ(p) ∈ {z(p), 2z(p), 4z(p)}.
Theorem 5.12 If p � sΔ, then p ≡ ±1 (mod z(p)).

Proof Since p � Δ, we have that p divides either u p−1 or u p+1, while p | uz(p).
Hence, p | u(z(p),p±1) = uz(p). Thus, z(p) | p ± 1.

6 Zsigmondy’s Theorem

We now have the tools we need to prove Zsigmondy’s Theorem.

Definition 6.1 p | un is a primitive divisor of un if p � Δ and z(p) = n.

Theorem 6.2 (Zsigmondy) If the roots of the characteristic polynomial of the Lucas
sequence {un}n≥0 are integers, and if n > 6, then un has a primitive divisor.

Proof Assume that a > b > 0. Let

Φn(X,Y ) =
∏

1≤k≤n
(k,n)=1

(X − e2π ik/nY ) ∈ Z[X,Y ]

be the homogenization of the cyclotomic polynomial for n. Recall that the homoge-
nization of a polynomial

f (X) = ad X
d + aa X

d−1 + · · · + a0, ad �= 0,

is simply the homogeneous polynomial

f (X,Y ) = ad X
d + a1X

d−1Y + · · · + a0Y
d .

The formula
Xn − 1 =

∏

d | n
Φd(X)

homogenizes to
Xn − Y n =

∏

d | n
Φd(X,Y ). (11)

We write Φn(a, b) = AB, where each prime p | B is primitive and the primes q | A
are not primitive. Let p | A. Then p | un and p | ud for some d < n. Wemay assume
that d | n (otherwise,we replace d by (d, n)). Since p | A | Φn(A, B) | un/ud , where
the last divisibility relation follows from Eq. (11) with (X,Y ) = (a, b), we get that
p | (ud , un/ud), so, by Lemma5.7, we get that p | n/d. Thus, d | n/p, therefore
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p | ud | un/p. But A | Φn(a, b) | un/un/p. By Lemma5.8(iii) with d = n/p, we get
that p‖A if p is odd.When p = 2, then un is odd when a and b have different parities
or when n is odd. If 2‖n, then A | un/u2 = ((a2)n/2 − (b2)n/2)/(a2 − b2) is again
odd, and if 4 | n, then A | un/un/2 = an/2 + bn/2 = (an/4)2 + (bn/4)2, and since a
and b are odd, we have that the above sum of two odd squares is congruent to 2
(mod 4). Thus, the exponent of 2 in the factorization of A is at most 1 also. This
shows that A is square free and A | n. But note that, by the Principle of Inclusion
and Exclusion,

Φn(a, b) = an − bn∏
p|n(an/p − bn/p)

·
∏

p<q
pq|n

(an/pq − bn/pq)

∏
p<q<r
pqr |n

(an/pqr − bn/pqr )
· · · . (12)

Since
ad > ad − bd = (a − b)(ad−1 + . . . + bd−1) ≥ ad−1, (13)

it follows that a lower bound onΦn(a, b) is obtained by replacing each factor ad − bd

from the top of (12) by ad−1 and each factor from bottom of (9) by ad thus getting

Φn(a, b) ≥ an−∑
p | n

n
p +∑

pq | n
n
pq −···−2ω(n)−1 ≥ aφ(n)−2ω(n)−1

,

where ω(n) is the number of distinct prime factors of n. Since A ≤ n, we get that

B ≥ aφ(n)−2ω(n)−1

n
. (14)

Thus, if B = 1, (which is equivalent to saying that un has no primitive prime factors),
we then get that

φ(n) − 2ω(n)−1 ≤ log2 n

where log2 n is the logarithm to base 2. Note that if p1, . . . , pk are all the prime
factors of n, then 2k ≤ p1 · · · pk ≤ n, so k ≤ log2 n. Thus,

φ(n) = n
k∏

i=1

(
1 − 1

pi

)
≥ n

�log2 n+1∏

i=2

(
1 − 1

i

)
= n

�log2 n + 1 .

Also, since n ≥ 2 · 3 · 5k−2, we get that 4k−2 < n/6, so 2k−1 < 2
√
n/6 <

√
n. Thus,

log2 n ≥ φ(n) − 2k−1 ≥ n

log2(2n)
− √

n, (15)

and Mathematica shows that n ≤ 200. Thus, k ≤ 4, and the inequality (15) becomes

7 ≥ φ(n) − 8
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giving φ(n) ≤ 15 (so φ(n) ≤ 14 because φ(n) is even for n > 2), so we conclude
that 14 ≥ φ(n) ≥ n(1 − 1/2)(1 − 1/3)(1 − 1/5)(1 − 1/7) giving n ≤ 122, so k ≤
3. Hence,

6 ≥ φ(n) − 4,

giving 10 ≥ φ(n) ≥ n(1 − 1/2)(1 − 1/3)(1 − 1/5), yielding n ≤ 37. This gives

5 ≥ φ(n) − 4,

soφ(n) ≤ 9 (thereforeφ(n) ≤ 8), giving8 ≥ φ(n) ≥ (1 − 1/2)(1 − 1/3)(1 − 1/5),
so n ≤ 30. For n ∈ [7, 30], φ(n) − 2k−1 > 0, so for each such positive integer n the
inequality n > aφ(n)−2k−1

gives a bound on a. Now one checks all cases to conclude
that the theoremholds. The theorem fails forn = 6not only becauseφ(n) − 2k−1 = 0
for n = 6 but also because when un = 2n − 1, then u6 = 26 − 1 = 63 = 32 · 7 =
u22 · u3.

If the characteristic polynomial of (un)n≥0 has real roots (not necessarily integers),
then exceptions to Primitive Divisors appear up to the index n = 12. This theorem
was proved by Carmichael [9] in 1913.

Example 6.3 The first 20 terms of the Fibonacci sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765.

Observe that F1 = F2 = 1, F5 = 5 (and 5 = Δ), F6 = 23 (and 2 | F3), F12 = 144 =
24 32 (and 2 | F3, 3 | F4), and all the other terms in the above list have primitive
divisors.

7 The Primitive Divisor Theorem

The Primitive Divisor Theorem is an extension of Zsigmondy’s theorem and
Carmichael’s theorem and says that if n /∈ {1, 2, 3, 4, 6}, then un has a primitive
divisor except in finitely many instances all of which are known.

Theorem 7.1 If n /∈ {1, 2, 3, 4, 6}, then un has a primitive divisor except when
((α1, α2), n) is of the form

(
±((a1 + √

Δ)/2, (a1 − √
Δ)/2)), n

)
,

where (a1,Δ, n) is one of the following triples:
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n (a1,Δ)

5 (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76), (12,−1364)
7 (1,−7), (1,−19)
8 (2,−24), (1,−7)
10 (2,−8), (5,−3), (5,−47)
12 (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19)
13 (1,−7)
18 (1,−7)
30 (1,−7)

The preceding theorem is due to Zsigmondy [47] and rediscovered, independently,
by Birkhoff and Vandiver [5] more than 10 years later for the case in which the roots
(α1, α2) are integers. Later, Carmichael [9] proved it for the case when the roots are
real. Bilu, Hanrot, and Voutier [4], building upon prior work of Schinzel [38] and
Stewart [41], finished off the case when the roots are complex nonreal.

8 Applications

Proposition 8.1 The largest solution of the equation

Fn = m1!m2! · · ·mk !
with 2 ≤ m1 ≤ m2 ≤ · · · ≤ mk is F12 = 3! 4! = 2!23!2.
Proof If n > 12, then, by Theorem7.1, Fn has a primitive prime factor p. Since
p ≡ ±1 (mod n), we get that mk ≥ p ≥ n − 1. By the inequality mk ! ≥ (mk/e)mk ,
we get that mk ! ≥ ((n − 1)/e)n−1. Since n > 12, we have that (n − 1)/e > α, so
mk ! > αn−1. We have obtained

Fn = m1! · · ·mk ! ≥ mk ! > αn−1,

which is false because Fn ≤ αn−1 for all n. This last inequality can be proved by
checking it for n = 1, 2 and by using induction for n ≥ 3 via the recurrence

Fn = Fn−1 + Fn−2 ≤ αn−2 + αn−3 = αn−1.

In 1844, E. Catalan [10] conjectured that the only solution in positive integers of
the equation

xm − yn = 1 m ≥ 2, n ≥ 2 (16)

is 32 − 23 = 1. This conjecture was proved by Mihăilescu [32] in 2002. It is clear
that we may assume thatm and n are primes, because if (x, y,m, n) is a solution and
p | m and q | n are primes, then (xm/p, yn/q , p, q) is also a solution. Furthermore,
m and n are distinct, because if m = n, then

1 = xm − ym = (x − y)(xm−1 + · · · + ym−1) > x − y ≥ 1,

which is impossible.
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In what follows, we present a result of Lebesque of 1850 [25] concerning this
equation using the language of primitive divisors of terms of Lucas sequences.

Proposition 8.2 Equation (16) has no solution with n = 2.

Proof Assume that there is a solution of the equation

xm = y2 + 1.

It is clear that y is even, because if y were odd, then y2 + 1 ≡ 2 (mod 4) cannot be a
perfect power. Factoring the right-hand side inZ[i], we get (y + i)(y − i) = xm. The
two numbers y + i and y − i are coprime in Z[i]. In fact, if q is some prime of Z[i]
dividing both y + i and y − i , then q | (y + i) − (y − i) = 2i | 2, and q | xm where
x is odd (because y is even), which is a contradiction. Thus, since y + i and y − i are
coprime and their product is xm , we infer that there exists α1 = a + bi ∈ Z[i] such
that y + i = ζαm

1 , where ζ is a unit. Furthermore, x = a2 + b2. The only units ofZ[i]
are±1,±i of finite orders dividing 4, and sincem is odd, we can replace α1 by one of
its associates (for example, by ζmα1) and conclude that ζαm

1 = ζm2
αm
1 = (ζmα1)

m.
Thus, we can take ζ = 1 to infer that

y + i = αm
1 .

Conjugating the above relation and eliminating y between the two equations, we get

2i = αm
1 − αm

2 , where α2 = α1.

Since α1 − α2 = 2bi divides 2i , we get that b = ±1 and

± 1 = αm
1 − αm

2

α1 − α2
. (17)

Interchanging α1 and α2, we may assume that b = 1. The right-hand side of the
above equation is the mth term of a Lucas sequence with a1 = α1 + α2 = 2a and
a2 = −(α1α2) = −(a2 + 1) = −x , which is odd. Thus, a1 are a2 coprime. We need
that α1/α2 is not a root of 1. If it were, since it is also in Q[i], then it would be
±1 or ±i . If α1/α2 = ±1, we get either that a + i = a − i , which is false, or that
a + i = −a + i , leading to a = 0, so x = 1, which is also false. If α1/α2 = ±i ,
we then get a + i = ai + 1, so either a = 1, or a + i = −ai − 1, so a = −1. In
both cases, we get x = 2, contradicting the fact that x is odd. Thus, the right-hand
side of (17) is the mth term of a Lucas sequence, and clearly it has no primitive
divisors. Now either m ∈ {2, 3, 4, 6}, or the triple (α1, α2,m) appears in the table
from Theorem7.1. A rapid inspection of the table shows that none of the pairs of
roots (α1, α2) appearing in the table has components in Q[i], therefore it must be the
case that m = 3. In this way, we get
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±1 = (a + i)3 − (a − i)3

2i
= (a + i)2 + (a + i)(a − i) + (a − i)2 = 3a2 − 1,

which gives us 3a2 ∈ {0, 2}, and none of these possibilities leads to a solution of the
initial equation.

Let P(m) be the maximal prime factor of m.

Proposition 8.3 The largest solution of P(x2 − 1) ≤ 29 is

361714092 − 1 = 25 · 3 · 5 · 73 · 11 · 133 · 17 · 23 · 292.

Proof We write x2 − 1 = dy2, where d is squarefree. The only primes that can
divide d are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}. Thus, there are only 1023 possible
values for d. For each one of such d, let (x1(d), y1(d)) be the minimal solution of
the Pell equation x2 − dy2 = 1, and let (x�(d), y�(d)) be its �th solution. Let u� =
y�(d)/y1(d),which, fromwhatwehave seen is aLucas sequence (seeExample5.3). It
follows, by Theorem7.1, that if � ≥ 31, then y�(d) has a prime factor ≥ � − 1 ≥ 30.
Thus, for each of the 1023 values of d it suffices to generate the first 30 terms
of the sequence (x�(d))�≥1 and observe that all the positive integers x such that
P(x2 − 1) ≤ 29 are obtained in this way. A quick computation with Mathematica
shows that out of all these 1023 · 30 = 30690 candidates, x = 36171409 is the largest
solution to our problem. Other interesting examples are

165375992 − 1 = 212 · 52 · 72 · 11 · 17 · 19 · 232 · 29;
129017802 − 1 = 32 · 11 · 194 · 232 · 293.

9 Problems

1. Formulate and prove an analogue of Proposition2.2 for the case when the roots
α1, . . . , αs of f (X) are not necessarily simple.

2. Prove that (1 + √
5)/2 = [1], and that the kth convergent of (1 + √

5)/2 is
Fk+1/Fk . The notation [1] stands for the periodic continued fraction [1, 1, . . .] (see
also Sect. 11.5).

3. Find the simple continued fraction of (F10n+1/F10n)
5.

4. Let n ≥ 2 be an integer. Prove that n does not divide 2n − 1.

5. Let k ≥ 2 and n1, n2, . . . , nk positive integers such that

n2 | 2n1 − 1, n3 | 2n2 − 1, . . . nk | 2nk−1 − 1, nk | 2n1 − 1.

Prove that n1 = · · · = nk = 1.
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6. Determine if there exists an integer n with precisely 2000 distinct prime factors
such that n | 2n + 1.

7. Letm and n be positive integers such that A = ((m + 3)n + 1)/(3m) is an integer.
Prove that A is odd.

8. Prove that
n∑

k=0

(
2n + 1

2k + 1

)
23k

is not a multiple of 5 for any n ≥ 0.

9. Let p1, . . . , pn be distinct primes. Prove that 2p1···pn + 1 has at least 4n divisors.

10. Let b, m, n be positive integers with b > 1 and m �= n such that bm − 1 and
bn − 1 have the same prime factors. Prove that b + 1 is a power of 2.

11. (i) Suppose that 2n + 1 is prime. Prove that n is a power of 2.
(ii) Suppose that 4n + 2n + 1 is prime. Prove that n is a power of 3.

12. Determine all positive integers n such that (2n + 1)/n2 is an integer.

13. Determine all pairs (n, p) of positive integers with p prime, n < 2p, and such
that pn−1 + 1 is divisible by np−1.

14. Determine all triples (a,m, n) of positive integers such that am + 1 | (a + 1)n .

15. (i) Find all positive integers n such that 3n − 1 is divisible by 2n.
(ii) Find all positive integers n such that 9n − 1 is divisible by 7n.

16. Prove that the Diophantine equation (n − 1)! + 1 = nk has no solutions with
n > 5.

17. Prove that
F2
2n−1 + F2

2n+1 + 1 = 3F2n−1F2n+1

holds for all n ≥ 1.

18. The sequence (an)n≥1 is given by

a1 = 1, a2 = 12, a3 = 20, an+3 = 2an+2 + 2an+1 − an.

Prove that 1 + 4anan+1 is a perfect square for all n ≥ 1.

19. Prove that every positive integer can be represented as a sum of Fibonacci
numbers in such a way that there are no two consecutive ones.
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20. Prove that the largest solution of the equation

Fn1Fn2 · · · Fnk = m1!m2! · · ·m�!
with 1 ≤ n1 < n2 < · · · < nk and 2 ≤ m1 ≤ m2 ≤ · · · ≤ m� is

F1F2F3F4F5F6F8F10F12 = 11!.

21. Let (x�, y�) be the �th solution of the Pell equation x2 − dy2 = 1. For a positive
integer m, let P(m) be the largest prime factor of m. Prove that if P(x�) ≤ 5, then
� = 1.

22. If p ≥ 5 is prime, prove that the Diophantine equation

x2 + 2a · 3b = y p

has no solutions x ≥ 1, a ≥ 0, b ≥ 0 and gcd(x, y) = 1.

23. Find all Fibonacci numbers of the form
1

n + 1

(
2n

n

)
.

24. Prove that the only solution of the equation

xn − 1

x − 1
= y2

with n odd is (x, n, y) = (3, 5, 11).

25. Let φ(n) be the Euler function of n. Prove that if φ(n)2 | n2 − 1, then n ∈
{1, 2, 3}.
26. Let φ(n) and σ(n) be the Euler function and the sum of divisors of n, respec-
tively.

(i) Prove P(φ(n)σ (n)) tends to infinity with n.
(ii) Prove that P(φ(n)σ (n)) ≥ (1 + o(1)) log log n as n → ∞.

27. Find all positive integers n such that n! | σ(n!).
28. Suppose that m > n ≥ 0 and that 2m − 2n divides 3m − 3n. Prove that 2m − 2n

divides xm − xn for all positive integers x .

29. Find all positive integers n such that
(2n
n

) | σ(σ(
(2n
n

)
)).

10 Notes

Problem 1 is well known in the theory of linearly recurrent sequences (see [20], or
[40] for example). For Problem 3, see [12]. Problems 4–19 are from the book [44].
Some of these problems have appeared in mathematical competitions at national
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levels in various countries, or at the International Mathematical Olympiad. While
their solutions are considered, in general, a collection of isolated tricks, we leave it
to the solver to note that most of these problems are pretty easy consequences of
either Theorem7.1, or of the arguments that appear in the lemmas that we used to
prove this beautiful result. For Problem 22, see [28]. Problem 25 is a result of Křížek
and Luca [23]. Problem 27 is due to Pomerance, see [36]. For Problem 28, see [37].
For Problem 29, see [30].

11 Linear Forms in Logarithms

11.1 Statements

In 1966,A.Baker [1] gave an effective lower bound on the absolute value of a nonzero
linear form in logarithms of algebraic numbers; that is, for a nonzero expression of
the form

n∑

i=1

bi logαi ,

where α1, . . . , αn are algebraic numbers and b1, . . . , bn are integers. His result
marked the dawn of the era of effective resolution of the Diophantine equations
of certain types, namely the ones that can be reduced to exponential ones; i.e., where
the unknown variables are in the exponents. Many of the computer programs avail-
able today which are used to solve Diophantine equations (PARI, MAGMA, KASH,
etc.) use some version of Baker’s inequality. For our purpose, we shall give some of
the Baker-type inequalities available today which are easy to apply. We start with
some preliminaries about algebraic numbers. Let α be an algebraic number of degree
d. Let

f (x) =
d∑

i=0

ai x
d−i ∈ Z[x]

be the minimal polynomial of α with a0 > 0 and (a0, . . . , ad) = 1. We then put
H(α) := max{|ai | : i = 0, . . . , d} and call it the height of α. Now write

f (X) = a0

d∏

i=1

(X − α(i)),

where α = α(1). The numbers α(i) are called the conjugates of α. The logarithmic
height of α is

h(α) = 1

d

(
log |a0| +

d∑

i=1

logmax{|α(i)|, 1}
)

.
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Example 11.1 If α = p/q is a rational number, where p and q > 0 are coprime
integers, then H(α) = max{|p|, q} and h(α) = logmax{|p|, q}.

11.2 The Complex Case

The following result is due to Matveev [31]. Let L be a number field of degree D;
that is, a finite extension of degree D of Q. Let α1, . . . , αn be nonzero elements of
L and let b1, . . . , bn be integers. Put

B = max{|b1|, . . . , |bn|},

and

� =
n∏

i=1

α
bi
i − 1.

Let A1, . . . , An be positive real numbers such that

A j ≥ h′(α j ) := max{Dh(α j ), | logα j |, 0.16} for all j = 1, . . . , n. (18)

Here and everywhere else log is a principal determination of the natural logarithm.
With these notations, Matveev proved the following theorem (see also Theorem9.4
in [8]).

Theorem 11.2 If � �= 0, then

log |�| > −3 · 30n+4(n + 1)5.5D2(1 + log D)(1 + log nB)A1A2 · · · An. (19)

If furthermore L is real, then

log� > −1.4 · 30n+3n4.5D2(1 + log D)(1 + log B)A1A2 · · · An. (20)

11.3 The p-Adic Case

In this section, we shall present a p-adic version of a lower bound for linear forms
in logarithms of algebraic numbers due to Kunrui Yu [45]. Let π be a prime ideal in
OL. Let eπ and fπ be its indices of ramification and inertia, respectively. It is known
that if p ∈ Z is the unique prime number such that π | p, then

pOL =
k∏

i=1

π
ei
i ,
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where π1, . . . , πk are prime ideals ofOŁ. The prime π is one of the primes πi , say π1,
and its eπ equals e1. The number fπ is the dimension of π over its prime field Z/pZ,
or, to say it differently, can be computed via the formula #OL/π = p fπ . Observe
that eπ fπ ≤ D. For an algebraic number α ∈ L, we write ordπ (α) for the exponent
of π in the factorization of the fractional ideal αOL generated by α inside L. Let

Hj ≥ max{h(α j ), log p} for all j = 1, . . . , n.

In case we are in Q, π is a prime, D = 1, eπ = fπ = 1. With the above definitions
and notations, Yu proved the following result.

Theorem 11.3 If � �= 0, then

ordπ (�) ≤ 19(20
√
n + 1D)2(n+1)en−1

π

p fπ

( fπ log p)2
log(e5nD)H1 · · · Hn log B.

(21)

11.4 Linear Forms in Two Logarithms

The modern French school of transcendence theory developed some lower bounds
for linear forms in two logarithms of algebraic numbers, which have a slightly worse
dependence in the parameter log B than the Baker–Matveev–Yu bounds, but have the
property that the multiplicative constants involved are much smaller. Consequently,
in applications they yield better results. Let us now see two of their results.

Let α1 and α2 be algebraic numbers and put L = Q[α1, α2]. Next, let D1 = D, if
L is real, and D1 = D/2, otherwise. Suppose that

A j ≥ max{D1h(α j ), | logα j |, 1} for both j = 1, 2.

Let
Γ = b2 logα2 − b1 logα1, (22)

and

b′ = b1
A2

+ b2
A1

.

With these notations, Laurent, Mignotte, and Nesterenko [24] proved the following
theorem. Recall that two nonzero complex numbers α, β are multiplicatively inde-
pendent if the only solution of the equation αxβ y = 1 in integers x, y is x = y = 0
(see also Exercise 42).

Theorem 11.4 (i) If α1 and α2 are multiplicatively independent, then

log |Γ | ≥ −30.9
(
max{D1 log b

′, 21, D1/2}
)2

A1A2 (23)
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(ii) If furthermore α1 and α2 are real and positive, then

log |Γ | ≥ −23.34
(
max{D1 log b

′ + 0.14D1, 21, D1/2}
)2

A1A2 (24)

Suppose next that π is a prime ideal inOL which does not divide α1α2. Furthermore,
let D2 = D/ fπ and let g be the minimal positive integer such that both α

g
1 − 1 and

α
g
2 − 1 belong to π . Suppose further that

Hj ≥ max{D2h(α j ), log p} holds for both j = 1, 2.

We put, as before,
� = α

b1
1 α

b2
2 − 1,

and

b′′ = b1
H2

+ b2
H1

.

With these notations, Bugeaud and Laurent [7] proved the following theorem.

Theorem 11.5 Suppose that α1 and α2 are multiplicatively independent. Then,

ordπ (�) ≤ 24pgH1H2D2
2

(p − 1)(log p)4
(
max{log b′′ + log log p + 0.4, 10(log p)/D2, 10}

)2
.

11.5 Reducing the Bounds

The upper bounds provided by the lower bounds for the linear forms in logarithms
are in general too large to allow any meaningful computation, so they need to be
reduced. There is an entire theory concerning reducing such bounds, an algorithm
called LLL, from the name of its inventors (Lenstra–Lenstra–Lovász), which we will
describe in the next section with an application. For now, we resume ourselves to
the case of two logarithms, a case in which the following reduction lemma based on
continued fractions expansions of the involved numbers is surprisingly effective. Let
us recall what is a continued fraction expansion.

Given α = α0 ∈ R\Q, let (an)n≥0 be defined as

ak = �αk, αk+1 = 1

αk − ak
for all k ≥ 0.

For each n ≥ 0, put
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pn
qn

= a0 + 1

a1 + 1

a2 + · · · + 1

an−1 + 1

an

.

The rational number pn/qn is called the nth convergent of α and is denoted
[a0, . . . , an]. The sequences {pn}n≥0 and {qn}n≥0 satisfy

p0 = a0, q0 = 1;
p1 = a0a1 + 1, q1 = a1;
pk = ak pk−1 + pk−2, qk = akqk−1 + qk−2;

Further, ∣∣∣∣α − pn
qn

∣∣∣∣ <
1

qnqn+1
for all n ≥ 0.

Hence, pn/qn converges to α and we write α = [a0, a1, . . .]. The last expression is
referred to as the continued fraction of α.

The following result is a variationof a lemmaofBaker andDavenport [2] and is due
to Dujella and Pethő [17]. For a real number x , we use ‖x‖ = min{|x − n| : n ∈ Z}
for the distance from x to the nearest integer.

Lemma 11.6 Let M be a positive integer and p/q be a convergent of the continued
fraction of the irrational γ such that q > 6M and let μ be some real number. Let
ε = ‖μq‖ − M‖γ q‖. If ε > 0, then there is no solution to the inequality

0 < |mγ − n + μ| < AB−m

in positive integers m and n with

log(Aq/ε)

log B
≤ m ≤ M.

12 Applications

In this section, we give two applications of the results mentioned in the previous
section.
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12.1 Matt’s Equation

At the Awesome Math Camp at UT Dallas (June 8–25, 2014) while this lecturer was
teaching the Advanced Number Theory Course (NT3), Matt Babbitt observed that

2x − 3y2 = 13

has the solutions (x, y) = (4, 1), (8, 9), and wondered if there are others or how
would one go to prove that these are the only ones. We prove this here.

Theorem 12.1 The only positive integer solutions (x, y) to

2x − 3y2 = 13

are (x, y) = (4, 1), (8, 9).

Proof Modulo 3 we see that x is even. Write x = 2z, we get

(2z)2 − 3y2 = 13.

With d = 3 and N = 13, this is a norm form equation. The fundamental solution
(u, v) to u2 − 3v2 = 1 is (2, 1), so that ζ = 2 + √

3. We search for solutions to

X2 − 3Y 2 = 13,

with X + √
3Y ∈ [√13,

√
13(2 + √

3)] = [3.6055 . . . , 13.4561 . . .]getting thepos-
sibilities 4 + √

3 = 5.73205 . . . and 5 + 2
√
3 = 8.4641 . . .. However, since in fact

5 + 2
√
3 = (4 − √

3)(2 + √
3), it follows that

X = un for some n ∈ Z,

where

2z = un = (4 + √
3)ζ n + (4 − √

3)ζ−n

2
. (25)

Assume first n ≥ 0. Then

∣∣∣2z+1(4 + √
3)−1ζ−n − 1

∣∣∣ = 4 − √
3

(4 + √
3)ζ 2n

<
1

ζ 2|n| . (26)

In case n < 0, we get

∣∣∣2z+1(4 − √
3)−1ζ 2n − 1

∣∣∣ = 4 + √
3

(4 − √
3)ζ−2n

<
1

ζ 2|n|−1
. (27)
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WeapplyMatveev for the left-hand side.Here,n = 3,α1 = 2, α2 = 4 ± √
3,α3 = ζ ,

b1 = z + 1, b2 = −1, b3 = −|n|. Equation (25) shows that

2z > ζ |n| > 2|n|,

so B = z + 1. Here L = Q[√3], so D = 2 and L is real. The left-hand sides in (26)
and (27) are nonzero, since one of them being zero means

(4 ± √
3)ζ |n| = 2z+1

and taking norms in L we get

13 = N ((4 ± √
3)ζ |n|) = N (2z+1) = 22z+2,

a contradiction. The minimal polynomials of α1, α2, α3 are

X − 2,

X2 − 8X + 13 = (X − (4 + √
3))(X − (4 − √

3),

X2 − 4X + 1 = (X − (2 + √
3))(X − (2 − √

3)),

so that

h(α1) = log 2,

h(α2) = 1

2

(
log(4 + √

3) + log(4 − √
3)

)
= log 13

2
,

h(α3) = 1

2
log(2 + √

3).

So, we choose the bounds A2 = 2 log 2, A2 = log 13, A3 = log(2 + √
3). Denoting

by � the left-hand side of either (26) or (27), we get

log� > −1.4 × 306 × 34.5 × 22(1 + log 2)(1 + log(z + 1))(2 log 2)(log 13)(log(2 + √
3)).

The left–hand side above is > −5 × 1012(1 + log((z + 1))). Putting this into (26),
(27), we get

−5 × 1012 log(1 + log((z + 1))) < −(2|n| − 1) log ζ,

or
(2|n| − 1) log ζ < 5 × 1012(1 + log((z + 1))). (28)

Since from (25) we also have

2z < (4 + √
3)ζ |n| < 8ζ |n|, (29)
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we get |n| log ζ > (z − 3) log 2. Putting this into (28), we get

(z − 3)2 log 2 − log ζ < 5 × 1012(1 + log((z + 1))).

Mathematica tells us that z < 1.3 × 1014. Now we have to lower the bound. For this,
we go back to (26) and (27) and with

Γ = (z + 1) log 2 − |n| log ζ − log(4 ± √
3).

We note that

0 < eΓ − 1 = 4 ∓ √
3

(4 ± √
3)ζ 2|n| ,

so Γ > 0. Since then Γ < eΓ − 1, we get from (26) and (27) that

0 < Γ <
4 ∓ √

3

(4 ± √
3)ζ 2|n| .

Dividing across by log ζ , we get that

0 < mγ − |n| + μ <
4 ∓ √

3

(4 ± √
3)(log ζ )ζ 2|n| <

2

ζ 2|n| <
2 × 82 × 22

22(z+1)
= A

Bm
,

where

m = z + 1, γ = log 2

log ζ
, μ = log(4 ± √

3)

log ζ
, A = 512, B = 4.

Now we have set ourselves up to apply Lemma11.6. We take M = 1.3 × 1014. The
first 32 terms of the continued fraction for η are

[0, 1, 1, 8, 1, 317, 1, 5, 2, 4, 2, 2, 2, 3, 1, 1, 1, 1, 30, 1, 1, 3, 1, 1, 11, 1, 16, 3, 1, 3, 4, 2].

Further,
p31
q31

= 749871422424301

1424732176854786
.

Thus, q31 = 1.42 · · · × 1015 > 1015 > 6M. Computing ε = ‖|qμ‖ − M‖qγ ‖ for
the value q = q31 and M = 1.3 × 1014, we get ε > 0.15. Now Lemma11.6 tells
us that

z + 1 <
log(Aq/ε)

log B
≤ log(512q31/0.15)

log 4
= 31.0383 . . . ,
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so that z ≤ 30. Hence, |n| < z log 2/ log ζ ≤ 30 log 2 log ζ = 15.7897 . . ., so we
conclude that |n| ≤ 15. We now generate un for |n| ≤ 15, and get the following
numbers:

4, 5, 11, 16, 40, 59, 149, 220, 556, 821, 2075, 3064, 7744, 11435, 28901, 42676, 107860,

159269, 402539, 594400, 1502296, 2218331, 5606645, 8278924, 20924284, 30897365,

78090491, 115310536, 291437680, 430344779, 1087660229.

The only powers of 2 are 4 and 16.

12.2 Rep-Digit Fibonacci Numbers

Recall that a rep-digit is a positive integer having only one distinct digit when written
in base 10. The concept can be generalized to every base b > 1 the resulting numbers
being called base b rep-digits. In this section, we look at those Fibonacci numbers
Fn which are rep-digits. Putting d for the repeated digit and assuming that Fn has m
digits, the problem reduces to finding all the solutions of the Diophantine equation

Fn = dd · · · d(10) = d · 10m−1 + d · 10m−2 + · · · + d = d

(
10m − 1

10 − 1

)
, d ∈ {1, . . . , 9}.

(30)
The result is the following.

Proposition 12.2 The largest solution of Eq. (30) is F10 = 55.

The above result was first proved by Luca in 2000 [26]. That proof was elementary
in that only congruences and Quadratic Reciprocity was used. Here, we give two
nonelementary proofs using linear forms in logarithms.

Proof Suppose that n > 1000. We start by proving something a bit weaker.

12.2.1 Obtaining Some Bound on n

With α = (1 + √
5)/2 and β = (1 − √

5)/2, Eq. (30) can be rewritten as

αn − βn

√
5

= d

(
10m − 1

9

)
.

We rewrite the above equation by separating on the one side the large terms and in
the other side the small terms. That is, we rewrite the equation under the form

|αn − (d
√
5/9)10m | = |βn − d

√
5/9| ≤ α−1000 + √

5 < 2.5. (31)
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We need some estimates for m in terms of n. By induction over n, it is easy to prove
that

αn−2 < Fn < αn−1 for all n ≥ 3.

Thus,
αn−2 < Fn < 10m or n < (log 10/ logα)m + 2,

and
10m−1 < Fn < αn−1.

On the other hand,

n > (log 10/ logα)(m − 1) + 1 = (log 10/ logα)m − (log 10/ logα − 1)

> (log 10/ logα)m − 4.

We then deduce that

n ∈ [c1m − 4, c1m + 2] with c1 = log 10/ logα = 4.78497 . . . (32)

Since c1 > 4, we check easily that for n > 1000 we have n = max{m, n}. We now
rewrite inequality (31) as

� = |(d√
5/9)α−n10m − 1| <

2.5

αn
<

1

αn−2
,

which leads to
log� < −(n − 2) logα. (33)

We compare this upper bound with the lower bound on the quantity � given by
Theorem11.2. Observe first that � is not zero, for if it were, then

√
5 would be of

the form qαn with some q ∈ Q. In particular, since on the one hand its square is 5
and on the other hand it is of the form q2α−2n , we get that α2n ∈ Q, which is false
for any n > 0. With the notations of that theorem, we take

α1 = d
√
5/9, α2 = α, α3 = 10; b1 = 1, b2 = −n, b3 = m.

Observe that L = Q[α1, α2, α3] = Q[√5], so D = 2. The above comments show
that B = n. We note also that the conjugates of α1, α2, and α3 are

α′
1 = −d

√
5/9, α′

2 = β, α′
3 = 10.

Furthermore, α2 and α3 are algebraic integers, while the minimal polynomial of α1

over Q is
(X − α1)(X − α′

1) = X2 − 5d2/81.
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Thus, the minimal polynomial of α1 over the integers is a divisor of 81X2 − 5d2.
Hence,

h(α1) <
1

2

(
log 81 + 2 log

√
5
)

= 1

2
log(405) < 3.01.

Clearly,

h(α2) = 1

2
(logα + 1) < 0.75, h(α3) = log 10 < 2.31.

Hence, we can take A1 = 6.02, A2 = 1.5, A3 = 4.62 and then the inequalities (18)
hold. Theorem11.2 tells us that

log� > −1.4 · 306 · 34.5 · 4 · (1 + log 4) · 6.02 · 1.5 · 4.62(1 + log n).

Comparing this last inequality with (33), leads to

(n − 2) logα < 1.4 · 306 · 34.5 · 4 · (1 + log 4) · 6.02 · 1.5 · 4.62(1 + log n),

giving
n − 2 < 1.2 · 1014(1 + log n).

Mathematica tells us that n < 4.5 · 1015.

12.2.2 Reducing the Bound

Observe that in the equality

1 − (d
√
5/9)α−n10m = 1

αn

(
βn − d

√
5

9

)

the right-hand side is negative. Thus, writing

z = logα1 − n logα2 + m logα3,

we get that

−2.5

αn
< 1 − ez < 0.

In particular, z > 0. Furthermore, since n > 1000, the right- hand side exceeds−1/2,
therefore ez < 1.5. We thus have that

0 < ez − 1 <
2.5ez

αn
<

4

αn
.

Since ez − 1 > z, we get
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0 < m logα3 − n logα2 + logα1 <
4

αn
,

which can be rewritten as

0 < m

(
logα3

logα2

)
− n +

(
logα1

logα2

)
<

4

αn logα2
<

9

αn
.

Since
|1 − (d

√
510m/αn)| < 1,

we have that
d
√
510m

αn
< 2,

therefore

αn >
d
√
510m

2
> 10m .

We have obtained

0 < m

(
logα3

logα2

)
− n +

(
logα1

logα2

)
<

9

10m
. (34)

Since n < 4.5 · 1015, inequality (32) shows that m < 9.5 · 1014. With

γ = logα3

logα2
, μ = logα1

logα2
, A = 9, B = 10,

we get

0 < mγ − n + μ <
A

Bm
,

where m < M := 1015. The conditions to apply Lemma11.6 are fulfilled. Observe
that

p35
q35

= C35 = 970939497358931987

202914354378543655
for γ

and q35 > 202914354378543655 > 2 · 1017 > 6M . We compute

M‖q35γ ‖ = 0.00216711 . . . < 0.01.

For each one of the values of d ∈ {1, . . . , 9}, we compute ‖q35μ‖. Theminimal value
of this expression is obtained when d = 5 and is

0.029 . . . > 0.02.
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Thus, we can take ε = 0.01 < 0.02 − 0.01 < ‖q35μ‖ − M‖q35γ ‖. Since
log(Aq35/ε)

log B
= 21.2313 . . . ,

Lemma11.6 tells us that there is no solution in the range m ∈ [22, 1015]. Thus,
m ≤ 21 and now inequality (32) tells us that n ≤ 102. However, we have assumed
that n > 1000. To finish, we use Mathematica to print the values of all the Fibonacci
numbers modulo 10000 (that is, their last four digits) and convince ourselves that
there are no Fibonacci numbers Fn which are rep-digits in the range 11 ≤ n ≤ 1000.

12.2.3 Using Linear Forms in Two p-Adic Logarithms

Given that the multiplicative constant that appears in Theorem11.2 is very large, it is
better to use the Theorems from Sect. 11.4 whenever this is possible. In what follows,
we illustrate this phenomenon with our problem. We rewrite our equation

αn − εα−n

√
5

= d(10m − 1)

9
, with ε = (−1)n ∈ {±1},

as

αn + d
√
5

9
− εα−n = d2m

√
5
2m+1

9
,

or, equivalently, as

α−n(αn − z1)(α
n − z2) = d2m

√
5
2m+1

9
, (35)

where

z1,2 = −d
√
5 ± √

5d2 + 324ε

18

are the solutions to the quadratic equation

z2 + d
√
5

9
z − ε = 0.

The left-hand side of Eq. (35) is not zero, an observation which is necessary in order
to apply the machinery of lower bounds for linear forms in logarithms of algebraic
numbers. Assume first that d �= 9. We then claim that z1 and α are multiplicatively
independent and that the same is true with z2 instead of z1. To see this, observe
that if ε = −1, then 5d2 + 324ε < 0, while if ε = 1, then 5d2 + 324ε is coprime
to 5 and it is not a perfect square for any d ∈ {1, . . . , 8}. Thus, z1,2 are of the form
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x1
√
5 ± x2

√
ewith x1, x2 ∈ Q

∗ and some squarefree integer e �= 0, 1, 5. Hence, no
power of z1,2 can be in Q[√5], which contains the powers of α. Let L = Q[z1, z2].
ThenQ[√5] ⊂ L and D = 4. Let π be a prime ideal inL dividing

√
5. Equation (35)

gives us
2m + 1 ≤ ordπ (αn − z1) + ordπ (αn − z2).

To bound the two orders from the right-hand side above, we use Theorem11.5.
Observe that all the conjugates of z1,2 are of the form

±d
√
5 ± √

5d2 + 324ε

18
,

and their absolute values are ≤ (8
√
5 + √

5 · 64 + 324)/18 < 2.41. Moreover, the
minimal polynomial of z1,2 over the integers divides

92
(
X2 − d

√
5

9
X − ε

) (
X2 + d

√
5

9
X − ε

)
= 81(X2 − ε)2 − 5d2X2 ∈ Z[X ],

therefore

h(z1,2) <
log 81 + 4 · log 2.41

4
< 2.

Observe next that 5 is a perfect square in Q[√5] ⊆ L. Furthermore, 5 splits into two
distinct prime ideals in the quadratic field Q[√5d2 + 324ε] ⊂ L because

(
5d2 + 324ε

5

)
=

(
324ε

5

)
=

(
182

5

) (±1

5

)
= 1.

Hence, we have that eπ = 2 and fπ = 1 giving D2 = 4. From the preceding calcula-
tions, we know that h(α) < 0.75. Thus, taking α1 = α, α2 = z1,2, b1 = n, b2 = 1,
it follows that we can take

H1 = 3 > max{4h(α), log 5},

and
H2 = 8 > max{4h(z1,2), log 5}.

To find g, observe that

z21 ≡ −d
√
5

9
z1 + ε (mod π) ≡ ε (mod π),

so that z41 ≡ 1 (mod π). The same happens when we replace z1 by z2. Finally,
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(2α)4 = (1 + √
5)4 ≡ 1 (mod π)

and since 24 = 16 ≡ 1 (mod 5), we have that α4 ≡ 1 (mod π). Thus, we can take
g = 4. Clearly,

b′′ ≤ n

8
+ 1

3
<

n + 3

8
.

Since n < 4.8m + 2 (see inequality (32)), we have that

b′′ < 0.6m + 3.8.

Finally, let us see that π cannot divide both αn − z1 and αn − z2, since if it were,
then it would divide their difference

z1 − z2 =
√
5d2 + 324ε

9
,

which is an algebraic number whose norm is a rational number having both the
numerator and the denominator coprime to 5. Thus, applying Theorem11.5 for
ordπ (αn − zi ) for one of the indices i = 1 or 2 and the fact that ordπ (αn − z j ) = 0 for
the other index j such that {i, j} = {1, 2}, and using also the fact that 2.5 log 5 < 10
gives us

2m + 1 <
24 · 5 · 3 · 8 · 16

4(log 5)4
(max {log(0.6m + 3.8) + log log 5 + 0.4, 10})2 ,

which implies that

2m + 1 < 1717 (max{log(0.6m + 3.8) + 1, 10})2 .

If the maximum is 10, then 2m + 1 < 1717 · 102, so m < 858500. In the other case,

2m + 1 < 1717(log(0.6m + 3.8) + 1)2,

givingm < 104808. Thus,m < 104808, leading to n < 501506. This is much better
than the bound we have obtained by applying Theorem11.2. In order to finish, it
suffices to use Mathematica to generate Fn (mod 107) for all 1 ≤ n ≤ 501506 (that
is, generate the last 6 digits of Fn) and verify that there are no solutions to our problem
for n > 10. It is interesting to note that

F142266 ≡ 1888888 (mod 107)

F238103 ≡ 5777777 (mod 107)

F242740 ≡ 9555555 (mod 107)

F252314 ≡ 8777777 (mod 107)

F490387 ≡ 9333333 (mod 107)
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but the above positive integers n are the only ones in the interval [1, 501506] such
that the last five digits of Fn are all equal to each other and nonzero.

Assume now that d = 9. We then get that Fn = 10m − 1. Thus, 10m = Fn + 1.
On the other hand, for all positive integers k ≥ 0, the formulas

F4k + 1 = F2k−1L2k+1, F4k+1 + 1 = F2k+1L2k, (36)

F4k+2 + 1 = F2k+2L2k, F4k+3 + 1 = F2k+1L2k+2 (37)

hold. In particular, 10m = F(n−δ)/2L(n+δ)/2, where δ ∈ {±1,±2} and n ≡ δ (mod 2).
However, if n > 26, then (n − δ)/2 > 12, and by Theorem7.1, F(n−δ)/2 has a primi-
tive prime factor p > 12 that does not divide 10m . Thus, our equation has no solutions
with d = 9 and n > 26. A calculation by hand finishes the proof.

13 Problems

30. Let P = {p1, · · · , pk} be a finite set of primes and put

S = {±pα1
1 · · · pαk

k : αi ∈ Z, i = 1, . . . , k}

for the set of all rational numbers which when written in reduced form have both the
numerator and denominator divisible only by primes inP . Prove, using the theorems
from the Sects. 11.2 and 11.3, that the equation

x + y = 1, x, y ∈ S

has only finitely many solutions (x, y) which, in practice (namely, givenP) can be
computed explicitly.

31. Prove that given integers a > b > 1 the Pillai equation

ax − by = ax1 − by1 , (x, y) �= (x1, y1) (38)

has only finitely many positive integer solutions (x, y, x1, y1).

32. Compute all the solutions of the equation

2x + 3y = 5z

in nonnegative integers x, y, z.

33. Compute all solutions of the equation

5u7v − 5w = 7x + 1

in nonnegative integers u, v, w, x .
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34. Prove that if k ≥ 2 and d > 0 are integers such that (k − 1)d + 1, (k + 1)d + 1,
and 4kd + 1 are all three perfect squares, then d = 16k3 − 4k.

35. Prove that if k ≥ 2 and d > 0 are integers such that F2(k−1)d + 1, F2kd + 1 and
F2(k+1)d + 1 are all three perfect squares, then d = 4F2k−1F2k F2k+1.

36. Let pk be the kth prime number. Find all the solutions of the Diophantine
equation

n! + 1 = pak p
b
k+1 with pk−1 ≤ n < pk

in integer unknowns n ≥ 1, k ≥ 2, a ≥ 0, b ≥ 0.

37. (i) Prove that if Fn = xk with n ≥ 3, x ≥ 2, k ≥ 2 integers, then k is bounded
(that is, there are no perfect powers of exponent arbitrarily large in the Fibonacci
sequence).

(ii) Prove that the conclusion of (i) holds also when we replace Fn by the nth term
of a nondegenerate binary recurrent sequence (see Definition2.3) whose roots
are real.

38. Using Theorem11.2, prove that there are only finitely many triples (α, β, n)

with n /∈ {1, 2, 3, 4, 6} and coprime integers α + β = r and αβ = s and such that
furthermore α/β is not a root of 1, such that the nth term of the Lucas sequence of
roots α and β does not admit a primitive divisor. This statement if a weak version
of Theorem7.1 whose proof was given only under the hypothesis that α and β are
integers.

39. Recall that a palindrome in base b ≥ 2 is a positive integer such that the sequence
of its base b reads the same from left to right as from right to left. Prove that the
number 99 = 1100011(2) is the largest positive integer of the form 10n ± 1 which
furthermore is a binary palindrome.

40. Prove that F10 = 55 is the largest Fibonacci number which in base 10 is the
concatenation of two other Fibonacci numbers (i.e., is the largest solution of the
equation Fn = FκF�(10)).

41. Let (un)n≥0 be the ternary recurrent sequence such that u0 = u1 = 0, u2 = 1
and un+3 = un+1 + un . Find all solutions of the equation un = Fm in nonnegative
integers n and m.

42. Let (un)n≥1 and (vm)m≥1 be linearly recurrent sequences such that

un = c1α
n
1 +

s∑

i=2

ciα
n
i ; vm = d1β

m
1 +

t∑

j=2

d jβ
m
j ,

where c1d1 �= 0, |α1| > max{|αi | : i = 2, . . . , s} and |β1| > max{|β j | : j =
2, . . . , t}. Suppose furthermore that α1 and β1 are multiplicatively independent; that
is, the only solution to the equation
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αx
1β

y
1 = 1

in integers x and y is x = y = 0. Prove that the Diophantine equation un = vm has
only finitely many, effectively computable, positive integer solutions (m, n).

43. Let P(m) be the largest prime factor of m. Prove that

P(2p − 1) > c1 p log p

holds with some absolute positive constant c1.

44. Let (un)n≥0 be a binary recurrent sequence which is nondegenerate. Prove that
P(|un|) > c2n1/(d+1) holds with a positive constant c2 depending on {un}n≥0, where
d = [K : Q] and K = Q[α] is the splitting field of the characteristic equation of the
sequence (un)n≥0.

45. Prove that there are only finitely many positive integer solutions (p, a, k) with
p ≥ 3 prime such that

a p−1 + (p − 1)! = pk .

Can you compute them all?

46. (i) Prove that if k ≥ 1 is fixed, then there are only finitely many positive
integer solutions of the equation

Fn = m1! + m2! + · · · + mk !, with 1 ≤ m1 ≤ · · · ≤ mk .

(ii) Prove that when k = 2 the largest solution of the equation appearing at (i) is
F12 = 3! + 4!.

47. (i) Prove that

P(2n + 3n + 5n) → ∞ as n → ∞.

(ii) Deduce that there are only finitely many n such that P(2n + 3n + 5n) < 23.
Can you find them all? For example,

21 + 31 + 51 = 2 · 5;

22 + 32 + 52 = 2 · 19;

23 + 33 + 53 = 25 · 5;

24 + 34 + 54 = 2 · 192;

25 + 35 + 55 = 23 · 52 · 17.

Are there other values of n?
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14 Notes

An elementary proof of Proposition12.2 appears in [26]. The conclusion of Problem
30 is known as the theorem of the finiteness of the number of solutions of an equation
in two S -units. Problem 31 has been studied by Pillai (see [35]). See the first two
chapters of the book [40]. See [33] for a problem which is slightly more general, and
[6] for an elementary treatment of Problems 32 and 33. The results of Problems 34
and 35 are due to Dujella [14] and [15]. A set {a1, . . . , am} of positive integers such
that aia j + 1 is a perfect square is called aDiophantine m-tuple. It is conjectured that
m ≤ 4. Dujella [16], proved that m ≤ 5 and that there can be at most finitely many
Diophantine quintuples which are, in practice, effectively computable. Recently, He,
Togbé, and Ziegler announced a proof that there are no Diophantine quintuples (see
[22]). All the solutions to the equation appearing in Problem 36 were computed by
Luca in [27]. The largest one is 5! + 1 = 112.ConcerningProblem37, it is known that
the largest perfect power in the Fibonacci sequence is F12 = 144 (see [8]). The result
of (ii) was obtained independently by Pethő [34] and by Shorey and Stewart [39].
For Problem 38, see Stewart’s paper [41], or the more modern paper [4]. Problem
39 is due to Luca and Togbé [29]. Problem 40 is a result of Banks and Luca [3].
For Problem 41, see De Weger’s paper [13]. The result of Problem 43 was obtained
idependently by Erdős and Shorey in [19] and Stewart in [43]. The result of Problem
44 is due to Stewart [42]. Computing all triples (a, p, k) of Problem 45was a problem
proposed by Erdős and Graham in [18] and solved by Yu and Liu in [46]. The only
solutions are (a, p, k) = (1, 3, 1), (1, 5, 2), (5, 3, 3). The result of Problem 46 is due
to Grossman and Luca [21].

15 An Application of the LLL Algorithm

Using theorems from the previous sections, one can find all solutions of the equation

x + y = z

where (x, y) = 1 and x, y, z are integers having all their prime factors in some
finite setP of primes. All such solutions can be effectively bounded. In general, the
bounds arising from linear forms in logs are very large.

To reduce them, one can use the LLL. We illustrate this by a concrete example.

Proposition 1 The equation

|2a · 3b · 5c − 7d · 11e · 13 f | < 10

has 69 nonnegative integer solutions (a, b, c, d, e, f ). The largest is

25 · 3 · 52 − 74 = −1.



Exponential Diophantine Equations 305

Proof Let B = max{a, b, c, d, e, f }. A search in the box B ≤ 23 gives the 69 solu-
tions mentioned in the statement.

From now on, we assume that B ≥ 24. If B ∈ {a, b, c}, then by Yu’s theorem, we
have

B = ordp(7
d · 11e · 13 f − (−k))

≤ 19(20
√
5)2·5

p

(log p)2
log(e54) log |k| log 7 log 11 log 13 log B,

where k = 2a · 3b · 5c − 7d · 11e · 13 f , and p ∈ {2, 3, 5}. Since p/(log p)2 ≤ 4.2,
we get

B ≤ 19 · 2010 · 55 · 4.2 · log 7 · log 11 · log 13 · log 9 · log(e5 · 4) log B,

which gives B < 2.8 · 1022.
If B is one of {c, d, e}, then by the same theorem we have

B = ordp(2
a · 3b · 5c − k)

≤ 19(20 · √
5)2·5

p

(log p)2
log(e5 · 4)(log p)4 log B,

where p ∈ {7, 11, 13}. This gives

B ≤ 19 · 2010 · 55 · 17(log 17)2 · log(e5 · 4) log B,

or B < 3 · 1023. Thus, B < 3 · 1023. We now take

� = −a log 2 − b log 3 − c log 5 + d log 7 + e log 11 + f log 13.

If B is one of {a, b, c}, then

|e� − 1| ≤ 10

2B
<

1

2B−4
.

In the other case

|1 − e−�| ≤ 10

7B
≤ 1

7B−2
<

1

2B−2
.

Since B ≥ 24, the above inequalities give

|�| <
1

2B−5
. (39)

The next step consists in finding a lower bound on |�| when

max{|a|, |b|, |c|, |d|, |e|, | f |} = B < 3 · 1022.
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For this we describe the LLL algorithm. We use the version from Henri Cohen’s
book (see Chap.2.6 in [11]).

The following algorithm finds a lower bound for

m = min{|
n∑

i=1

xi logαi | : |xi | ≤ X, (x1, . . . , xn) �= 0},

where logα1, . . . , logαn are logarithms of algebraic numbers, real and independent
over Q.
Step 1. Let C > (nX)n .We form the n × n matrix given by

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0

�C logα1 �C logα2 �C logα3 · · · �Cαn−1 �C logαn

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Step 2. For the lattice Γ generated by the columns of the above matrix we compute
a reduced basis (see below). Let this basis be b1, . . . ,bn .
Step 3. We compute the Gram–Schmidt basis b∗

1, . . . ,b
∗
n , of b1, . . . ,bn . That is,

b∗
i = bi −

∑

1≤ j<i

μi, jb∗
j where μi, j = bi · b∗

j

b∗
j · b∗

j

.

Step 4. We compute

c1 = max
1≤i≤n

{‖b1‖
‖b∗

i ‖
}

,

and

d = ‖b1‖
c1

.

Step 5. If d2 > nX2 and
√
d2 − nX2 > (1 + nX)/2, then

m >

√
d2 − nX2 − (1 + nX)/2

C
.

In the above algorithm, the reduced basis is a basis satisfying the following technical
condition for {b1, . . . ,bn}:
(i) |μi, j | ≤ 1/2 for all i = 1, . . . , n and j < i ;
(ii) for i ≥ 2 we have

‖b∗
i + μi,i−1b∗

i−1‖2 ≥ 3

4
‖bi−1‖2.
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Given the basis there is an algorithm which produces a reduced basis in polynomial
time. Various software like Mathematica, MAPLE, etc., have this algorithm as part
of their libraries, so we do not explain how such a basis is found, we just limit ourself
to what we need.

Going back to our example, we take X = 1023 and C > (6 · 1023)6. We can take
for example C > 10150. We compute the reduced basis b1, . . . ,b6. For example, the
first vector is

b1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

4546080841331590178058124
4374795057043709667281085

−1869249439796078878453047
2212132469572082716281439
5664246846772059856891579
1345434977173738964138866

⎞

⎟⎟⎟⎟⎟⎟⎠

We compute b∗
1, . . . ,b

∗
6, and afterwards c1. The numbers ‖b1‖/‖b∗

i ‖ for 1 ≤ i ≤ 6
are

1, 0.884943, 0.905395, 0.849188, 0.712015, 0.480536,

so c1 = 1. Then d = ‖b1‖ > 9 · 1024. Thus,

d2 > 81 · 1046 > nX2 = 6(1023)2 = 6 · 1046.

Therefore √
d2 − nX2 − (1 + nX)/2

C
> 10−126.

Thus, together with (39), we got

10−126 < | − a log 2 − b log 3 − c log 5 + d log 7 + e log 11 + f log 13|
<

1

2B−5
,

which gives
(B − 5) log 2 < 126 log 10,

so B ≤ 423.
Thus, in one step we got from 1023 down to 423. We now apply the algorithm

again. We take C = 1021 > (6 · 423)6. After reducing the basis of the lattice we can
take c1 = 1.43 and d = ‖b1‖/c1 > 3283. Thus, the new bound is

|�| ≥ (32832 − 6 · 4232)1/2 − (1 + 6 · 423)/2
1021

≥ 1.8

1018
,
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and then
(B − 5) log 2 ≤ 18 log 10 − log(1.8),

so B ≤ 23, which is a contradiction.

Acknowledgements We thank the referee for a careful reading of themanuscript and for comments
which improved the quality of this paper.
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Nullstellensatz via Nonstandard Methods

Haydar Göral

Abstract In this short note, we survey some degree and height bound results for
arithmetic Nullstellensatz from the literature. We also introduce the notion of height
functions, ultraproducts and nonstandard extensions. As our main remark, we find
height bounds for polynomial rings over integral domains via nonstandard methods.

1 Introduction

The arithmetic version of the Nullstellensatz states that if f1, . . . , fs belong to the
polynomial ring Z[X1, . . . , Xn] without a common zero in C, then there exist a in
Z \ {0} and g1, . . . , gs in Z[X1, . . . , Xn] such that

a = f1g1 + · · · + fsgs . (1)

By deg f , we mean the total degree of the polynomial f in several variables. Finding
degree bounds for the idealmembership problem for fields, and finding height bounds
for a and g1, . . . , gs above have received extensive attention using computational
methods, and also via nonstandard methods. To explain this, let K be a field. If
f0, f1, . . . , fs in K [X1, . . . , Xn] all have degree less than D and f0 is in the ideal
〈 f1, . . . , fs〉, then

f0 =
s∑

i=1

fi hi (2)

for certain hi whose degrees are bounded by a constant C = C(n, D) depending
only on n and D. Hermann [9] was the first one who proved the existence of
the bound C(n, D) above using computational methods. Seidenberg [17] recon-
sidered Hermann’s result. Furthermore, Seidenberg showed that in fact one may
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take C(n, D) = (2D)2
n
. In other words, one has the degree bound effectively to

test the ideal membership problem. The doubly exponential bound (2D)2
n
can be

improved immensely, if we take f0 = 1 and deal with Nullstellensatz. By the fun-
damental work of Kollár [11], if f0 = 1 then one can choose C(n, D) = Dn for
D ≥ 3. When f0 = 1, the case D = 2 was investigated by Sombra [18], and we can
take C(n, 2) = 2n+1. Nonstandard analysis also gives noneffective criteria for the
ideal membership problem. The result of [9] was also proved by van den Dries and
Schmidt [3] using nonstandard methods, however the bound C(n, D) is ineffective
with this method. We also refer the reader to [15, 16]. Nonstandard analysis yields
existence results ineffectively, but it prevents us from doing many computations.
Once we have an existence result, then one can pursue an effective result. In this
note, we follow a similar approach as of [3], and we apply nonstandard methods in
order to prove the existence of bounds for the complexity of the coefficients of hi
in (2) by taking f0 = 1. We also define an abstract height function (see Sect. 2) on
integral domains which generalizes the absolute value function and the height func-
tion on the field of algebraic numbers. A height function measures the arithmetic
complexity of the coefficients of polynomials over R[X1, . . . , Xn], where R is an
integral domain. The notion of a height function is a fundamental concept in number
theory. The Mordell–Weil theorem states that elliptic curves over number fields are
finitely generated abelian groups and the canonical height function (the Néron-Tate
height) attached to them plays a significant role in the proof. Basically, this finiteness
theorem is based on another finiteness result which is Northcott’s theorem, and it
states that there are only finitely many algebraic numbers of bounded degree and
bounded height. In particular, in a number field we have only finitely many elements
of bounded height. The ideal membership problem over Z and for some other rings
were also considered. A precise degree bound in the ideal membership problem over
Z was deduced in [1]. Effective height estimates for a and g1, . . . , gs in arithmetic
Nullstellensatz (in Eq. (1)) were studied in [12, 14], however these bounds may also
depend on s. Besides, finding effective bounds in Nullstellensatz is also related to
theoretical computer science, see [4].

In this note, we assume that all rings are commutative with unity. Moreover,
throughout this note R stands for an integral domain and K for its field of fractions.
The symbol h denotes a height function on R which will be defined in the next
section. Our goal in this note is to show how nonstandard analysis can be useful to
obtain bounds in commutative algebra. We prove the existence of the constant c2 in
the following result using nonstandard methods (see also Remark 1). We note that
our constant c2 for the height function does not depend on R or s, but it is ineffective.
Precisely, our main remark in this note is the following:

Main Remark Given n ≥ 1, D ≥ 1, H ≥ 1 and a function θ : N → N, there are
two constants c1(n, D)andc2(n, D, H, θ) such that for all rings R with a height
function h of θ -type, if f1, . . . , fs in R[X1, . . . , Xn] have no common zero in K alg

wi th deg( fi ) ≤ D and h( fi ) ≤ H , then there exist nonzero a in R and h1, . . . , hs in
R[X1, . . . , Xn] such that
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(i) a = f1h1 + · · · + fshs
(ii) deg(hi ) ≤ c1
(iii) h(a), h(hi ) ≤ c2.

Remark 1 There is also a standard proof of theMain Remark as follows very briefly:
Using the degree bound c1 = (2D)2

n
of [17] for the polynomials g1, . . . , gs in the

Bézout expression 1 = f1g1 + · · · + gs fs , one translates the problem into solving a
system of linear equations over K with precise number of unknowns equations. As
the height function satisfies some additive and multiplicative properties (see Sect. 2),
we can derive a height bound c2 using the Gauss–Jordan method or Corollary 1
as used in our approach. However, this computational method can be complicated
since the bounds for the height function depend on θ which is implicitly given. Our
approach for the Main Remark will be nonstandard analysis (see the next section
for the definition) as in [3], and it is a typical application of compactness theo-
rem from model theory. For a similar result on the field of algebraic numbers, see
[7, Theorem 2].

Remark 2 Both of the constants c1 and c2 do not depend on s because the K -vector
space V (n, D) = { f ∈ K [X1, . . . , Xn] : deg( f ) ≤ D} is finite dimensional over K .
In fact, the dimension is q(n, D) = (n+D

n

)
. Thus, given 1 = f1g1 + · · · + fsgs , we

may always assume s ≤ q = q(n, D).

Short Outline: In the next section, we introduce the notion of height functions and
we give a quick introduction to ultraproducts and nonstandard analysis. Then in the
same section, we give some known results from commutative algebra. In Sect. 3, we
prove our Main Remark.

2 Preliminaries

2.1 Height Functions

In this subsection, we define generalized height functions (see [6, 7]) ultraproducts
and nonstandard extensions.

Definition 1 Let θ : N → N be a function. The function

h : R → [0,∞)

is said to be a height function of θ -type if for any x and y in R with h(x) ≤ n and
h(y) ≤ n, then both h(x + y) ≤ θ(n) and h(xy) ≤ θ(n) hold. We say that h is a
height function on R if h is a height function of θ -type for some θ : N → N.
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One can extend the height function h to the polynomial ring R[X1, . . . , Xn] as

h

( ∑

α

aαX
α

)
= max

α
h(aα),

where Xα = Xα1
1 · · · Xαn

n is a monomial in R[X1, . . . , Xn]. Observe that this exten-
sion does not have to be a height function on the polynomial ring. Nowwe give some
examples of height functions that generalize absolute values and the height function
on the field of algebraic numbers.

Example 1

• Absolute values: If (R, | · |) is an absolute valued ring then h(x) = |x | is a height
function of θ -type where θ(n) = n2 + 1.

• The degree function: The degree function on R[X1, . . . , Xn] is a height function
of θ -type where θ(n) = 2n.

• Theheight functionH on the field of algebraic numbers: By conventionwe define
H(0) = 1. Let α be a non-zero algebraic number in Q with irreducible polynomial
f (X) ∈ Z[X ] of degree d. Write

f (X) = ad(X − α1) · · · (X − αd),

where α1, . . . , αd ∈ Q are all conjugates of α and ad ∈ Z. Then the height of α is
defined as

H(α) =
(

|ad |
∏

|α j |≥1

|α j |
)1/d

.

The height function measures the arithmetic complexity of an algebraic number
and it behaves well under arithmetic operations:

– For a non-zero rational number a/b where a and b are coprime integers,

H(a/b) = max{|a|, |b|}.

– For all α in Q and n ∈ N, we have H(αn) = H(α)n .
– For all α and β in Q, we have H(α + β) ≤ 2H(α)H(β).
– For all α and β in Q, we have H(αβ) ≤ H(α)H(β).
– For all non-zero α in Q, we have H(1/α) = H(α).

Observe that H is a height function of θ -type where θ(n) = 2n2. As mentioned in
the introduction, Northcott’s theorem yields that if F is a number field and B is a
real number, then the set

{α ∈ F : H(α) ≤ B}

is finite. More details and properties of the height function on Q can be found in
[2, 10].
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2.2 Ultraproducts, Nonstandard Extensions and Height
Functions

Definition 2 (Language) A language L is given by specifying the following data:

(i) A set of function symbols F and positive integers n f for each f inF ,

(ii) A set of relation symbols R and positive integers nE for each E inR,

(iii) A set of constant symbols C .

The number n f indicates that f is a function of n f variables and the number nE

indicates that E is an nE -ary relation. For instance, the language {+,−, ·, 0, 1} is
called the language of rings where +,−, · are binary function symbols and 0,1 are
constants. Now, we define structures with respect to a language L .

Definition 3 (Structure) AnL -structure M is given by the following data:

(i) A nonempty set M called the domain of M,

(ii) A function f M : Mn f → M for each f ∈ F ,

(iii) A set EM ⊆ MnE for each E ∈ R,

(iv) An element cM ∈ M for each c ∈ C .

We regard f M, EM and cM as the interpretations of f, E and c, and we write the
structure as M = (M, f M, EM, cM : f ∈ F , E ∈ R, c ∈ C ). For example, a ring
is an L -structure (R,+,−, ·, 0, 1) in the language of rings.

Next, we define ultraproducts and nonstandard extensions which we will need in
our approach for the Main Remark.

Definition 4 (Filter) A filter D on N is a set of subsets of N such that

(i) If A is in D and A ⊆ B, then B is also in D.

(ii) If A and B are in D, then so is A ∩ B.

(iii) N ∈ D, ∅ /∈ D.

A filter D on N is called an ultrafilter (maximal) if for each X ⊆ N, exactly
one of X and N \ X belongs to D. By Zorn’s lemma, one can show that every
filter is contained in an ultrafilter. An ultrafilter is said to be non-principal if it
contains all cofinite sets, in other words it does not contain any finite set. Now we
fix an ultrafilter D and let (Mn)n be a sequence ofL -structures. Two elements (two
infinite tuples) (xn)n and (yn)n from

∏

n∈N
Mn are said to be D-equivalent and denoted

by (xn)n ≡D (yn)n , if {n : xn = yn} ∈ D. The D-equivalence class (xn)n/D of (xn)n
is defined as

{(yn)n ∈
∏

n∈N
Mn : (yn)n ≡D (xn)n}.
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The ultraproduct
U =

∏

n∈N
Mn/D

of the structuresMn is defined by the D-equivalence classes, and it is anL -structure
as follows:

• For a function symbol f ∈ F of arity k,

f U : (
(a1n)n/D, . . . , (akn)n/D

) → ( f Mn (a1n, . . . , a
k
n))n/D.

• For a relation symbol E ∈ R of arity k,

EU =
{(

(a1n)n/D, . . . , (akn)n/D
) ∈ U k : {n ∈ N : (a1n, . . . , a

k
n) ∈ EMn } ∈ D

}
.

• For a constant symbol c ∈ C ,

cU = (cMn )/D.

One can see that this definition is well-defined. If all the structures Mn are the
same structure M, then the ultraproduct is called the ultrapower. The notion of
ultraproducts and their properties apply to many-sorted structures.

Definition 5 (NonstandardExtension of a Structure) LetM be a nonempty structure.
A nonstandard extension ∗

M of M is an ultrapower of M with respect to a non-
principal ultrafilter on N.

Now let M be a nonempty structure and ∗
M be a nonstandard extension of M

with respect to a non-principal ultrafilter D on N. We can regard each element x of
M as the class of the constant sequence (x)n/D of ∗

M. Identifying M as a subset
of ∗

M, the structure M becomes an elementary substructure of ∗
M, this means that

they satisfy exactly the same first-order sentences. For a subset A of M, the set ∗A
is defined to be the set

{(an)n/D : {n : an ∈ A} ∈ D}.

Note that ∗A contains A. Every function on a subset A of M extends to ∗A coordi-
natewise and this is well-defined. This means that if f is a function from A to B,
then f extends to a function ∗ f from ∗A to ∗B. More precisely, let a = (an)n/D
be an element of ∗A. Then ∗ f (a) = ( f (an)n)/D which is an element of ∗B. The
totally ordered field ∗

R is called hyperreals and the order is defined by as follows:
(xn)n/D ≤ (yn)n/D if {n : xn ≤ yn} ∈ D. The elements ∗

R \ R are called nonstan-
dard real numbers. Let

Rfin = {x ∈ ∗
R : |x | < n for some n ∈ N}
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be the set of all finite nonstandard real numbers. The elements in ∗
R \ Rfin are called

infinite. Note that Rfin is a subring of ∗
R containing R. Let ε = (1/n)n/D. Observe

that ε is a nonstandard positive number and ε < 1/n for all n ≥ 1, in other words ε

is an infinitesimal.
Let Rm be a ring with a height function htm of θ -type, where m ∈ N. Let Km

be the field of fractions of Rm . Let (S, hS) be the ultraproduct of the structures
(Rm, htm)with respect to a non-principal ultrafilter D onN.ThenSbecomes a domain
with coordinatewise addition and multiplication. As discussed before, similarly the
function θ : N → N extends to a function ∗θ : ∗

N → ∗
N, where ∗

N is a nonstandard
extension of N with respect to D. Let a = (am)m/D be an element of S, where
am ∈ Rm . Then, hS(a) is defined as (htm(am))m/D and this is again well-defined.
Note that hS is a function from S to ∗

R, where ∗
R is a nonstandard extension of R

with respect to D. In fact, if x , y in S with hS(x) ≤ n and hS(y) ≤ n, where n ∈ ∗
N,

then we have both hS(x + y) ≤ ∗θ(n) and hS(xy) ≤ ∗θ(n). Define

Sfin = {x ∈ S : hS(x) ∈ Rfin}.

By the properties of the height function hS, we see that Sfin is a subring of S. Put
L = Frac(Sfin) which is a subfield of F = Frac(S). Note that the ultraproduct of
the fields Km with respect to D is the field of fractions of S. For more detailed
information about ultraproducts, nonstandard analysis and model theory, the reader
might consult [5, 8, 13].

2.3 Proper Ideals and Degree Bounds

In this subsection, we give some results from commutative algebra that we need for
the Main Remark.

Lemma 1 Let F be a field and f1, . . . , fs ∈ F[X1, . . . , Xn]. The following are
equivalent:

(1) 1 ∈ 〈 f1, . . . , fs〉,
(2) f1, . . . , fs have no common zeros in Falg,
(3) f1, . . . , fs have no common zeros in any field extension F1 of F.

Proof Cleary if 1 ∈ 〈 f1, . . . , fs〉, then f1, . . . , fs have no common zeros in any
field extension F1 of F , thus the first condition gives the third condition. The third
condition immediately implies the second condition. Now assume that the second
condition holds and we will prove the first condition. By Hilbert’s Nullstellensatz,
there are g1, . . . , gs ∈ Falg[X1, . . . , Xn] such that

1 = f1g1 + · · · + fsgs .

This is a system of linear equations when we consider the coefficients of all the
polynomials. Therefore the linear system 1 = f1Y1 + · · · + fsYs has a solution in
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Falg. Now by the Gauss–Jordan method, one can see that this linear system has a
solution in F. So there are h1, . . . , hs ∈ F[X1, . . . , Xn] such that 1 = f1h1 + · · · +
fshs .

Corollary 1 Let F ⊆ F1 be a field extension and I ⊂ F[X1, . . . , Xn] be a proper
ideal. Then the ideal I F1[X1, . . . , Xn] is also proper in F1[X1, . . . , Xn].
Proof Let I ⊂ F[X1, . . . , Xn] be a proper ideal. Then since I is finitely generated,
I = 〈 f1, . . . , fs〉 for some f1, . . . , fs ∈ F[X1, . . . , Xn]. By Lemma 1, we see that
f1, . . . , fs have a common zero in a field extension F2 of F.Moreover,we can assume
that F2 also contains F1.So byLemma1 again, I F1[X1, . . . , Xn] �= F1[X1, . . . , Xn].

Recall the result of [9, 17] from the introduction (see also [3, Theorem 1.11]):

Theorem 1 [9, 17] If f0, f1, . . . , fs in K [X1, . . . , Xn] all have degree less than

D and f0 is in 〈 f1, . . . , fs〉, then f0 =
s∑

i=1

fi hi for certain hi whose degrees are

bounded by a constant c1 = c1(n, D) depending only on n and D.

From the nonstandard point of view, the proof of Theorem 1 follows from the
fact that ∗(K [X1, . . . , Xn]) is a faithfully flat ∗K [X1, . . . , Xn]-module, see [3, The-
orem 1.8]. Note that ∗K [X1, . . . , Xn] �

∗(K [X1, . . . , Xn]), as the degree function
is unbounded.

3 Proof of the Main Remark

By Theorem 1, the constant c1 exists and it only depends on n and D. Now we prove
the existence of the constant c2. Assume that n, D, H and θ are given. To prove the
Main Remark, we will first show that there is a constant c3(n, D, H, θ) such that
for all rings R with a height function h of θ -type, if f1, . . . , fs in R[X1, . . . , Xn]
have no common zero in K alg with deg( fi ) ≤ D and h( fi ) ≤ H , then there exist
h1, . . . , hs in K [X1, . . . , Xn] such that 1 = f1h1 + · · · + fshs , deg(hi ) ≤ c1 and
h(e) ≤ c3 where e is an element that occurs as a numerator or denominator of some
coefficient of some hi . In fact, one can see that the existence of c2 and the existence
of c3 are equivalent.

Proof of the existence of c3: To obtain a contradiction, suppose that c3 does
not exist. Therefore, for every m ≥ 1 there exist an integral domain Rm with a
height function htm of θ -type and f1, . . . , fs in Rm[X1, . . . , Xn] with deg fi ≤ D
and htm( fi ) ≤ H witnessing to this. This means that in the field of fractions Km of
Rm , there exist g1, . . . , gs in Km[X1, . . . , Xn] with deg gi ≤ c1 and

1 = f1g1 + · · · + fsgs,

but for all h1, . . . , hs ∈ Km[X1, . . . , Xn] with deg hi ≤ c1,
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1 = f1h1 + · · · + fshs

implies max
j

htm(a j ) > m where a j ∈ Rm is an element that occurs as a numerator

or denominator of some coefficient of some hi . As the constant c1 exists, the coun-
terexamples above are coming from formulas ϕm of uniformly bounded length and
we are quantifying over these tuples coming from R. Now consider the ultraproduct
of structures (Rm, htm) with respect to a non-principal ultrafilter D on N, and call
it (S, hS), as defined in Sect. 2.2. Let F be the field of fractions of S. Recall that
hS is a function from S to ∗

R of θ -type. By the counterexamples above, there are
polynomials f1, . . . , fs in Sfin[X1, . . . , Xn] of degrees less than D and heights less
than H such that the linear system

f1Y1 + · · · + fsYs = 1

has a solution in F[X1, . . . , Xn], but not in L[X1, . . . , Xn], where L is field of
fractions of Sfin and F = Frac(S). This contradicts Corollary 1, since the ideal
〈 f1, . . . , fs〉 is proper in L[X1, . . . , Xn], but it is not proper in F[X1, . . . , Xn]. �

Hence for any integral domain R with a height function h of θ -type, we know
that given f1, . . . , fs ∈ R[X1, .., Xn] with no common zeros in K alg with deg( fi ) ≤
D and h( fi ) ≤ H , there are h1, . . . , hs in K [X1, . . . , Xn] such that 1 = f1h1 + · ·
· + fshs and deg(hi ) ≤ c1(n, D).Moreover s ≤ q(n, D) and h(e) ≤ c3(n, D, H, θ)

where e ∈ R is an element which occurs as a numerator or denominator for some
coefficient of some hi , and q(n, D) = (n+D

n

)
as defined in Remark 2. Let b1, . . . , bm

be all the elements in R that occur as a denominator for some coefficient of some
hi . Note that m = m(n, D) ≤ q2 depends only on n and D. Also we know that
h(bi ) ≤ c3.Put a = b1 · · · bm .By themultiplicative properties of the height function,
we get h(a) ≤ c4(n, D, H, θ) for some c4. Now we see that

a =
s∑

i=1

fi · (ahi ),

fi and ahi are in R[X1, .., Xn] and deg(ahi ) = deg(hi ) ≤ c1.Moreover, again by the
multiplicative properties of the height function, we have h(ahi ) ≤ c5(n, D, H, θ).

Now take c2 = max(c4, c5). Therefore, we obtain (i), (i i) and (i i i) from the Main
Remark for the constant c2 as defined above. �
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On the (1 + u2 + u3)-Constacyclic
and Cyclic Codes Over the Finite Ring
F2 + uF2 + u2F2 + u3F2 + vF2

G. Gözde Güzel, Abdullah Dertli and Yasemin Çengellenmiş

Abstract In this paper a new finite ring is introduced along with its algebraic
properties. In addition, a new Gray map is defined on the ring. The Gray images
of both the cyclic and the (1 + u2 + u3)-constacyclic codes over the finite ring are
found to be permutation equivalent to binary quasicyclic codes.

1 Introduction

Studies on error-correcting codes over finite rings were raised by Blake in the1970s
[3, 4]. In order to obtain codes on finite fields using finite rings, mapping between
the ring and the field has to be defined. This mapping, called a Gray map, is a linear
distance-preserving map. Using mapping, the first Gray images of codes on ring Z4

were defined, which were binary non-linear codes with good parameters [9]. This
turning point in algebraic coding theory increased the volume of work on different
types of rings, with different properties, such as finite chain rings, Frobenious rings,
and finite non-chain rings [1, 2, 5, 6, 8, 10–15]. Thus, in recent studies, a large
number of optimal codes have been obtained over finite fields using Gray images of
cyclic and constacyclic codes for many various finite rings [2, 7, 8, 10, 11, 13].

The paper is organized as follows. In Sect. 2, a new finite ring is introduced and
some knowledge about it is provided. In Sect. 3, the relationship between the cyclic
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and (1 + u2 + u3)-constacyclic codes and the finite ring R = F2 + uF2 + u2F2 +
u3F2 + vF2 is given. In Sect. 4, a new Gray map on R is defined. Gray images of
both cyclic codes with odd length and λ− constacyclic codes over the finite ring.

2 Preliminaries

Consider the quotient ring F2[u, v]/〈u4, v2 − v, uv = vu〉. For conditions u4 = 0,
v2 = v, and uv = vu = 0, ring F2 + uF2 + u2F2 + u3F2 + vF2 is isomorphic to the
quotient ring F2[u, v]/〈u4, v2 − v, uv = vu〉. Let R be the ring F2 + uF2 + u2F2 +
u3F2 + vF2 with properties u4 = 0, v2 = v, and uv = vu = 0. R is a finite and
commutative ring and its characteristic is 2 because of the finite field F2 with
characteristic 2.

Elements of ring R, givenwith obvious addition andmultiplication operations, are
written as 0, u2 + v + 1, u3 + v, u2, u2 + u, u3 + u, u3 + u2 + v + 1, u2 + u + 1,
u3 + u2 + u + 1, u3, u2 + u + v, u3 + u2, u3 + u2 + u + v + 1, u3 + u2 + u + v, 1,
u3 + v + 1, u + v + 1, u3 + u + v + 1, u3 + u + 1, v + 1, u3 + u2 + 1, v, u, u + 1,
u2 + 1, u3 + u + v, u3 + 1, u3 + u2 + v, u2 + u + v + 1, u3 + u2 + u, u + v,
u2 + v.

Each unit element of ring R takes the form 1 + bu + cu2 + du3. Namely, units are
1, 1 + u, 1 + u2, 1 + u + u2, 1 + u3, 1 + u + u3, 1 + u + u2 + u3, 1 + u2 + u3.

The ideals of R are < 0 >,< v >,< u3 >,< u2 >,< u + u2 >,< 1 + u2 +
v >,< v + u3 >,< u2 + v >,< u + v + u2 >,< 1 >. Ring R has two maximal
ideals: < 1 + v > and < u + v >. Therefore, R is a semilocal ring. Since all ideals
of ring R are principally generated, R is a principal ideal ring.

Definition 1 A linear code C over R (or Fq ) of length n is an R-submodule (Fq
subspace) of Rn (Fn

q ). The elements of a linear code are called codewords.

Definition 2 If D is a linear code over F2, of length n, then the Hamming weight
wH (d) of a codeword d = (d0, ..., dn−1) in D is the number of non-zero coordinates.

Definition 3 The minimum Hamming distance of D is defined as dH (D)=min
dH (d, d

′
), where for any d

′ ∈ D , d �= d
′
and dH (d, d

′
) is the Hamming distance

between two codewords with dH (d, d
′
) = wH (d − d

′
).

Definition 4 Let λ be a unit in R. Let σ and ν be cyclic and λ-constacyclic shift,
respectively. A code of length n is cyclic if and only if σ(C) = C ; a code of length
n is λ-constacyclic if and only if ν(C) = C .

Definition 5 Let a ∈ F6n
2 with a = (a0, a1, ..., a6n−1) = (

a(0)|a(1)|a(2)|a(3)|a(4)|
a(5)

)
, a(i) ∈ Fn

2 for i = 0, 1, 2, 3, 4, 5. Let σ⊗6 be a map from F6n
2 to F6n

2 given
by σ⊗6 (a) = (

σ
(
a(0)

) ∣
∣σ

(
a(1)

)∣∣ σ
(
a(2)

) |σ (
a(3)

) |σ (
a(4)

) |σ (
a(5)

))
, where σ is

a cyclic shift from Fn
2 to Fn

2 given by σ
(
a(i)

) = ((a(i,n−1)), (a(i,0)), (a(i,1)), ...,

(a(i,n−2))) for every a(i) = (a(i,0), ..., a(i,n−1)), where a(i, j) ∈ F2, j = 0, 1, ..., n − 1.
A code of length 6n over F2 is said to be a binary quasicyclic code of index 6 and
length 6n, if σ⊗6 (C) = C.
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Proposition 1 A subset C of Rn is a cyclic code of length n if and only if its
polynomial representation is an ideal of R[x]/〈xn − 1〉.
Proposition 2 A subset C of Rn is a λ-constacyclic code of length n if and only if
its polynomial representation is an ideal of R[x]/〈xn − λ〉.

3 λ-Constacyclic Codes of Odd Length

In order to define constacyclic codes over any ring, unit elements not equal to 1 must
be chosen. In this paper, to make the Gray image more appropriate and the code
length an odd number, a unit element is chosen as follows: λ = (1 + u2 + u3).

Remark 1 Forλ = (1 + u2 + u3), note thatλn = λ if n is odd andλn = 1 if n is even.
Throughout this section, we consider length n as odd in order to use this property.

Proposition 3 Let n be odd. Then μ is a map of R[x]/〈xn − 1〉 to R[x]/〈xn − λ〉,
defined byμ( f (x)) = f (λx), where λ = 1 + u2 + u3 andμ is a ring isomorphisms.

Proof Let f (x) ≡ g(x)mod(xn − 1), there are some polynomials like h(x) ∈ R[x]
such that f (x) − g(x) = h(x)(xn − 1). When the equality is rewritten by replacing
x with λx , we obtain the equality f (λx) − g(λx) = h(λx)(λnxn − 1). Since n is
odd, the equalities λn = λ and λ2 = 1 hold. By using these truths, if the last equality
is rearranged then we get μ( f (x)) − μ(g(x)) = h(λx)λ(xn − λ). So, μ( f (x)) ≡
μ(g(x)) mod(xn − λ). Therefore, μ is a well-defined map. Since the same process
can be reversed, μ is injective.

For any f (x) and g(x) in R[x]/〈xn − 1〉, using the definition of addition in
the functions and the definition of μ, μ( f (x) + g(x)) = μ(( f + g)(x)) = ( f +
g)(λx) = f (λx) + g(λx) = μ( f (x)) + μ(g(x)). μ is a homomorphism, since it
can also be proved in a similar manner for multiplication. Hence μ is a ring isomor-
phism.

The immediate corollary of the above proposition is as follows:

Corollary 1 If n is odd, then I is an ideal of R[x]/〈xn − 1〉 if and only if μ(I ) is
an ideal of R[x]/〈xn − λ〉, where λ = 1 + u2 + u3.

Corollary 2 Let n be odd and C be a subset of Rn. Let μ be the permutation of Rn,
defined by μ(c0, c1, ..., cn−1) = (

c0, λc1, ..., λi ci , ..., λn−1cn−1
)
. Then, C is a cyclic

code if and only if μ(C) is a λ-constacyclic code, where λ = 1 + u2 + u3.

Proof Let C be a cyclic code. Consider its polynomial representation as again C .
Then C is an ideal in R[x]/〈xn − 1〉. Since the above corollary is satisfied, μ(C)

is an ideal in R[x]/〈xn − λ〉. Hence, μ(C) is a linear λ-constacyclic code, where
λ = 1 + u2 + u3.
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Table 1 Gray weights of elements of the finite ring R

wG(x) x

0 0

1 u2 + v

2 u2, u2 + u, u3 + u, u2 + u + 1, u3 + u2, u, u + 1, u2 + 1, u3 + 1, u3 + u2 + u

3 u3 + v, u3 + u2 + v + 1, u2 + u + v, u3 + u2 + u + v,

u + v + 1, v + 1, v, u3 + u + v, u2 + u + v + 1, u + v

4 u3 + u2 + u + 1, u3, 1, u3 + u + 1, u3 + u2 + 1

5 u2 + v + 1, u3 + u2 + u + v + 1, u3 + v + 1, u3 + u + v + 1, u3 + u2 + v

4 A New Gray Map and Gray Images of λ-Constacyclic
and Cyclic Codes

In this section, we will define a Gray map φ, from R to F2
6, written as φ(a + bu +

cu2 + du3 + ev) = (a + b + c + d + e, a + c + d + e, a, e, a + b + d, d).
The Gray map φ can be extended to Rn as follows:
φ : Rn → F2

6n

(z0, z1, ..., zn−1) 
→ φ(z0, z1, ..., zn−1) = (a0 + b0 + c0 + d0 + e0, ..., an−1 +
bn−1 + cn−1 + dn−1 + en−1, a0 + c0 + d0 + e0, ..., an−1 + cn−1 + dn−1 + en−1,

a0, ..., an−1, e0, ..., en−1, a0 + b0 + d0, ..., an−1 + bn−1 + dn−1, d0, ..., dn−1)

where zi=ai + biu + ciu2 + diu3 + ei vwithai , bi , ci , di , ei ∈ F2 for 0 ≤ i ≤ n − 1.

The Gray weight of element x of R is defined as the Hamming weight of the Gray
image of x (provided in Table 1).

Definition 6 Let C be a linear code over R of length n. For any codeword c =
(c0, ..., cn−1), the Gray weight of c is defined as wG(c) = ∑n−1

i=0 wG(ci ) and the
minimum Gray distance of C is defined as dG(C)= min dG(c, c

′
), where for any c

′ ∈
C, c �= c

′
and dG(c, c

′
) is the Gray distance between two codewords with dG(c, c

′
) =

wG(c − c
′
).

Proposition 4 The Gray map φ is linear and a distance-preserving map from Rn

(Gray distance) to F6n
2 (Hamming distance).

Proof For any x, y in R, where x = a1 + b1u + c1u2 + d1u3 + e1v and y = a2 +
b2u + c2u2 + d2u3 + e2v, it holds that φ(x + y) = φ((a1 + a2) + (b1 + b2)u +
(c1 + c2)u2 + (d1 + d2)u3 + (e1 + e2)v). By using the definition of φ, φ(x + y) =
(a1 + a2 + b1 + b2 + c1 + c2 + d1 + d2 + e1 + e2, a1 + a2 + c1 + c2 + d1 + d2 +
e1 + e2, a1 + a2, e1 + e2, a1 + a2 + b1 + b2 + d1 + d2, d1 + d2) = (a1 + b1 + c1 +
d1 + e1, a1 + c1 + d1 + e1, a1, e1, a1 + b1 + d1, d1) + (a2 + b2 + c2 + d2 + e2, a2
+ c2 + d2 + e2, a2, e2, a2 + b2 + d2, d2) = φ(x) + φ(y). For k ∈ F2, φ(kx) = (k
(a1 + b1 + c1 + d1 + e1), k(a1 + c1 + d1 + e1), ka1, ke1, k(a1 + b1 + d1), kd1) =
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k(a1 + b1 + c1 + d1 + e1, a1 + c1 + d1 + e1, a1, e1, a1 + b1 + d1, d1) = kφ(x). So,
φ is a linear map.

For any x, y in Rn , dG(x, y) = wG(x − y) = wH (φ(x − y)) = dH (φ(x), φ(y)).
So, φ is isometric.

Theorem 1 If C is (n, M, dG) linear code over R, then φ(C) is (6n, M, dH ) linear
code over F2, where dG = dH .

4.1 Gray Images of λ-Constacyclic Codes over the Finite
Ring R

Proposition 5 Let ν and σ be as provided above. Then, φν = πσ⊗6φ, where π is
a permutation of {0, 1, ..., 6n − 1}, defined by π = (0, n)(4n, 5n).

Proof Let z = (z0, z1, ..., zn−1) be in Rn . Let ai , bi , ci , di , ei ∈ F2 for 0 ≤ i ≤
n − 1, such that zi = ai + biu + ciu2 + diu3 + ei v. Then, ν(z) = ((1 + u2 + u3)
zn−1, z0, z1, ..., zn−2). Note that (1 + u2 + u3)zn−1 = an−1 + bn−1u + (an−1 +
cn−1)u2 + (an−1 + bn−1 + dn−1)u3 + en−1v. From definitions of the Gray map and
ν cyclic shift, we get φ(ν(z)) = (an−1 + cn−1 + dn−1 + en−1, a0 + b0 + c0 + d0 +
e0, ..., an−2 + bn−2 + cn−2 + dn−2 + en−2, an−1 + bn−1 + cn−1 + dn−1 + en−1, a0 +
c0 + d0 + e0, ..., an−2 + cn−2 + dn−2 + en−2, an−1, a0, ..., an−2, en−1, e0, ..., en−2,

dn−1, a0 + b0 + d0, ..., an−2 + bn−2 + dn−2, an−1 + bn−1 + dn−1, d0, ..., dn−2).
On theother hand, by applyingσ⊗6 toφ(z) = (a0 + b0 + c0 + d0 + e0, ..., an−1 +

bn−1 + cn−1 + dn−1 + en−1, a0 + c0 + d0 + e0, ..., an−1 + cn−1 + dn−1 + en−1, a0,
..., an−1, e0, ..., en−1, a0 + b0 + d0, ..., an−1 + bn−1 + dn−1, d0, ..., dn−1), we have

σ⊗6(φ(z)) = (an−1 + bn−1 + cn−1 + dn−1 + en−1, a0 + b0 + c0 + d0 + e0, ...,
an−2 + bn−2 + cn−2 + dn−2 + en−2, an−1 + cn−1 + dn−1 + en−1, a0 + c0 + d0 +
e0, ..., an−2 + cn−2 + dn−2 + en−2, an−1, a0, ..., an−2, en−1, e0, ..., en−2, an−1 +
bn−1 + dn−1, a0 + b0 + d0, ..., an−2 + bn−2 + dn−2, dn−1, d0, ..., dn−2).

If we apply the permutationπ toσ⊗6(φ(z)), thenwe getπ(σ⊗6(φ(z))) = (an−1 +
cn−1 + dn−1 + en−1, a0 + b0 + c0 + d0 + e0, ..., an−2 + bn−2 + cn−2 + dn−2 +
en−2, an−1 + bn−1 + cn−1 + dn−1 + en−1, a0 + c0 + d0 + e0, ..., an−2 + cn−2 +
dn−2 + en−2, an−1, a0, ..., an−2, en−1, e0, ..., en−2, dn−1, a0 + b0 + d0, ..., an−2 +
bn−2 + dn−2, an−1 + bn−1 + dn−1, d0, ..., dn−2). Hence, φ(ν(z)) = π(σ⊗6(φ(z))).

Theorem 2 The Gray image of a (1 + u2 + u3)-constacyclic code of length n over
R is permutation equivalent to a binary quasicyclic code of index 6 and length 6n.

Proof Let C be a (1 + u2 + u3)-constacyclic code over R. So, ν(C) = C . By
applying φ, φ(ν(C)) = φ(C) is held. By using Proposition 5, we obtain
π(σ⊗6(φ(C))) = φ(C). Therefore, this means that φ(C) is permutation equivalent
to a binary quasicyclic code of index 6 and length 6n.
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4.2 Gray Images of Cyclic Codes over the Finite Ring R

Proposition 6 Let μ be as provided above. If n is odd then φμ = γ ′φ, where
γ ′(z0, z1, ..., z6n−1) = (zγ (0), zγ (1), ..., zγ (6n−1)), such that γ = ξ1ξ2, which is a per-
mutationof {0, 1, ..., 6n − 1}, where ξ1 = (1, n + 1)(3, n + 3)...(n − 2, 2n − 2)and
ξ2 = (4n + 1, 5n + 1)(4n + 3, 5n + 3)...(4n + (n − 2), 5n + (n − 2)).

Proof It is obvious that this proof can be made similar to the proof of Proposition 5.

Theorem 3 If n is odd and Δ is the Gray image of a cyclic code over R, then γ ′(Δ)

is permutation equivalent to a binary quasicyclic code of index 6 and length 6n.

Proof Let Δ = φ(C) be a Gray image of a cyclic code C over R. From
Proposition 6, φ(μ(C)) = γ ′(φ(C)) = γ ′(Δ). Recall that Corollary 2 states that
μ(C) is a (1 + u2 + u3)-constacyclic code D over the ring R. So, we get φ(μ(C)) =
φ(D). According to Theorem 2, φ(D) is permutation equivalent to a binary quasi-
cyclic code of index 6 and length 6n. The expected result is satisfied.

Corollary 3 The Gray image of a cyclic code with odd length n over ring R is
permutation equivalent to a binary quasicyclic code of index 6 and length 6n.

5 Conclusion and Future Work

In this paper, a new finite ring R := F2 + uF2 + u2F2 + u3F2 + vF2 is introduced,
where u4 = 0, v2 = v, uv = vu = 0. The isomorphism between λ− constacyclic
codes and cyclic codes of odd length over the ring R is proved, where λ = (1 +
u2 + u3). A new Gray map on finite ring R is defined. It is obtained that the Gray
images of (1 + u2 + u3)-constacyclic codes and cyclic codes of odd length over the
finite ring R are permutation equivalent to binary quasicyclic codes of index 6.

The ring can be extended for conditions uk = 0 and vm = v and similar proper-
ties can be studied under these conditions. Similar results can be examined for the
remaining unit elements in the same ring. Moreover, the structure of cyclic codes
can be investigated finding optimal codes over these rings in this manner.

References

1. Amarra M.C.V., Nemenzo F.R., 2008, On (1 − u)− cyclic codes over Fpk + uFpk

2. Aydin N., Cengellenmis Y., Dertli A., 2017,On some constacyclic codes over Z4[u]/(u2 − 1) ,
their Z4 images, and new codes, Des. Codes Cryptogr., https://doi.org/10.1007/s10623-017-
0392-y.

3. Blake I.F., 1972, Codes over certain rings, Inform. Control, 20: 396–404.
4. Blake I.F., 1975, Codes over integer residue rings, Inform. Control, 29: 295–300.

https://doi.org/10.1007/s10623-017-0392-y
https://doi.org/10.1007/s10623-017-0392-y


On the (1 + u2 + u3)-Constacyclic and Cyclic Codes … 329

5. Cengellenmis Y., 2009, On (1 − um)− cyclic codes over F2 + uF2 + u2F2 + ... +
um F2, International Journal of Contemporary Math. Sci., 4: 987–992.

6. Dertli A., Cengellenmis Y., 2016, On (1 + u)− cyclic and cyclic codes over F2 + uF2 +
vF2, European J. of Pure and Applied Math., 9: 305–313.

7. Dougherty S.T., Salturk E. , Constacyclic codes over local rings of order 16, to be submitted.
8. Gao J.,2015,Linear codes and (1 + uv)− constacyclic codes over R[v]/(v2 + v), IEICETrans-

actions on Fundamentals, E98-A: 1044–1048.
9. Hammons Jr. A.R., Kumar P.V., .Calderbank A.R, Sloane N.J.A., Solé P., 1994, The Z4− lin-

earity of Kerdock, Preparata, Goethal, and related codes, IEEE Trans. Inform. Theory, 40:
301–319.

10. Kai X., Zhu S., Wang L., 2012, A family of constacyclic codes over F2 + uF2 + vF2 + uvF2, J
Sysst Sci Complex, 25: 1032–1040.

11. Karadeniz S., Yildiz B., 2011, (1 + v)− constacyclic codes over F2 + uF2 + vF2 +
uvF2, Journal of Franklin Ins., 348: 2625–2632.

12. Liao D., Tang Y., 2012, A class of constacyclic codes over R + vR and its Gray image, Int. J.
Communications, Network and System Sciences, 5: 222–227.

13. Qian J.F., Zang L.N., Zhu S.X., 2006, (1 + u)− constacyclic and cyclic codes over F2 +
uF2, Appl. Math. Lett., 19: 820–823.

14. Qian J.F., Zang L.N., Zhu S.X., 2006, Constacyclic and cyclic codes over F2 + uF2 +
u2F2, IEICE Transactions on Fundamentals of Electronics Communications and Computer
Sciences, 2011, E89-A(6): 1863–1865.

15. Zhu S., Wang L., A class of constacyclic codes over Fp + vFp and its Gray image, Discrete
Mathematics, 311: 2677–2682.



On Higher Congruences Between Cusp
Forms and Eisenstein Series. II.

Bartosz Naskręcki

Abstract We study congruences between cuspidal modular forms and Eisenstein
series at levels which are square-free integers and for equal even weights. This
generalizes our previous results from (Naskręcki, Computations withmodular forms,
Contrib. Math. Comput. Sci., vol. 6, pp. 257–277. Springer, Cham (2014) [17]) for
prime levels and provides further evidence for the sharp bounds obtained under
restrictive ramification conditions. We prove an upper bound on the exponent in the
general square-free situation and also discuss the existence of the congruences when
the coefficients belong to the rational numbers and weight equals 2.

1 Introduction

Let N be a square-free positive integer and f be a cuspidal newform of level Γ0(N )

and even weight k. We consider in this paper congruences between Fourier coef-
ficients an( f ) of the newform f and coefficients an(E) of a suitably normalized
Eisenstein series E of weight k modulo prime powers of an ideal λ lying in the
coefficient field K f of f and a positive integer r

an( f ) ≡ an(E) (mod λr ) (1)

for all n ≥ 0. In the classical setting of N prime and weight k = 2, the existence of
such congruences for E = E2 was established by Mazur in [16].

In this paper, we focus on the extension of the results and computations of [17].
We present a summary of a large volume of computations performed with MAGMA
and a construction of the algorithm that is used to find congruences of type (1). We
also present a partial classification of congruences when O f = Q. The existence of
the higher weight congruences for prime levels was discussed in [10]. Sufficient con-
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ditions for existence of congruences for composite levels in weight 2 were obtained
by Yoo in [21, 22]. The lower bounds on the congruence exponent in weight 2 was
discussed by Hsu [12] and Berger–Klosin–Kramer [2]. Congruences on the level
of Galois representations were studied recently by Billerey and Menares in [3, 4].
Lecouturier [14] computed the rank gp of the completion of the Hecke algebra acting
on cuspidal modular forms of weight 2 and level Γ0(N ) at the p-maximal Eisenstein
ideal using the knowledge of the exponent of the Eisenstein congruence.

In [15], Martin proved the existence of congruences between cuspidal and Eisen-
stein modular forms for levels which are not square-free. It would be interesting
to find more computational examples of such congruences, which seem to be very
sparsely distributed.

With the notation of Sect. 2, we present the main theorems of this paper.

Theorem 1.1 Let p1, . . . , pt be different prime factors of N a square-free integer
and let k > 2. Suppose that f ∈ Sk(N )new is a newform which is congruent to the
Eisenstein eigenform E = [p1]+ ◦ . . . ◦ [pt ]+Ek ∈ Ek(N ) modulo a power r > 0 of
a maximal ideal λ ⊂ O f . If � is the residual characteristic of λ, we obtain the bound

r ≤ ordλ(�) · v�

(
− Bk

2k

t∏
i=1

(1 − pi )

)
.

The upper bound predicted by the theorem above is discussed numerically in
Sect. 6. It turns out that, in general, it is optimal but in the case when the ideal λ is
ramified above �, the ramification degree ordλ(�) seems to be the right upper bound
in most cases.

When we turn to the eigenforms with weight 2 and rational coefficients, the
existence of the congruences between cuspidal newforms and Eisenstein series is
limited to only finitely many prime powers. In this case, we investigated modular
forms of levels with two prime factors.

Theorem 1.2 Let p,q be two different primes. Suppose that f ∈ S2(pq)new is a
newform with rational coefficients and let E be an eigenform in E2(pq). Let � be
a prime number and r > 0 an integer such that the congruence (16) holds for all
n ≥ 0. Then, one of two conditions holds:

(1) �r ∈ {2, 3, 4, 5} or
(2) �r = 7 and E = [13]−[2]+E2.

Our numerical results discussed in Sect. 7 lead to certain further speculations
about the upper bound for the congruences of type (1).

Question 1.1 Suppose that the congruence (1) holds for a prime ideal λ above a
rational prime � and an exponent r > 0. Let e denote the order ordλ(�) and suppose
that e > 1. For k = 2 and level N prime, we checked that r ≤ e for every prime � > 3
for N ≤ 13009. In a similar fashion, for any square-free integer N and a weight k
described in Table 3, the same conclusion holds except for two counterexamples
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found only in weight 2, described in Table 8. Based on those observations, we ask
the following two questions:

• Assume that e > 1, the level N is prime and weight k = 2. Is it true that for every
prime number � > 3 a congruence of type (1) satisfies the condition r ≤ e?

• Assume that e > 1, the level N is square-free and weight k ≥ 2 is even. Is it true
that for every fixed prime number � there are only finitely many congruences of
type (1) which satisfy the condition r > e?

The questions above are discussed in detail in Sect.7.

Summary of the Paper

In Sect. 2, we describe a standard basis for the Eisenstein subspace of modular forms
of square-free level that consists of the eigenforms. The material in this section is
rather classical but we did not find a convenient reference which contained all the
necessary results. In Sect. 3, we prove Theorem 3.2 using the results of Atkin–Lehner
from [1] as our main tool. In Sect. 4, we study the congruence between cuspidal
eigenforms of weight 2 and with rational coefficients and Eisenstein eigenforms. A
result of Katz [13] and the theorem of Mazur [16] allow us to conclude that there are
only finitelymany prime powers forwhich the congruences exist. A refined statement
is proved in Theorem 4.2. In Sects. 5, 6, and 7, we described an improved version
of the algorithm that finds congruences of desired shape for fixed levels and weights
(cf. [17]). We then discuss the numerical results contained in the attached tables and
formulate some of them as corollaries from the computations. A complete database
of congruences is available on request.

Notation

Let Bk denote the kth Bernoulli with B1 = − 1
2 and let σk−1(n) = ∑

m|n mk−1 denote
the divisor function for any integer k ≥ 2. Let Ek = −Bk/(2k) + ∑∞

n=1 σk−1(n)qn

denote the Eisenstein series of weight k and level 1, where q = exp(2π iτ) for τ in the

upper half-plane H . Let Γ0(N ) =
{(

a b
c d

)
∈ SL2(Z) : N | c

}
denote the Hecke

congruence subgroup of level N and Mk(N ) the space of modular forms of weight
k and level N with respect to the group Γ0(N ). Let Sk(N ), Ek(N ), and Sk(N )new

denote, respectively, the subspace of cusp forms, the subspace of Eisenstein series,
and the subspace of newforms in Mk(N ). On Mk(N ), we have the action of the
Hecke algebra TN , where Tp is the Hecke operator with index p, p � N and Up if
p | N . Let an( f ) denote the nth Fourier coefficient of f expanded at infinity.
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2 Standard Basis of Eisenstein Eigenforms

In this section, we present a convenient basis of Eisenstein eigenforms in Ek(N )

for all k ≥ 2 with respect to the Hecke algebra TN . We believe that the presented
material is not new; however, due to a lack of complete reference, we present full
proofs here. Let us denote by Ad a linear map from Mk(N ) to Mk(Nd) such that
Ad : f (τ ) 	→ f (dτ). The operator Ad is just a normalized slash operator Ad( f ) =
d1−k f |k γ , where

γ =
(
d 0
0 1

)
.

We quote now a theorem of Atkin–Lehner which will be used at several places.

Lemma 2.1 ([1, Lemma 15]) Let f be a modular form in Mk(N ). We have the
following relation between different Hecke operators acting on f

(Tq ◦Up)( f ) = (Up ◦ Tq)( f ) for p �= q, (2)

(Tq ◦ Ad)( f ) = (Ad ◦ Tq)( f ) for (q, d) = 1, (3)

(Uq ◦ Ad)( f ) = (Ad ◦Uq)( f ) for (q, d) = 1. (4)

For any k > 2, the series Ek is an eigenform inMk(1) with respect to the Hecke
algebra T1. In particular, for any Tn acting on Mk(1) for k > 2, we have

Tn(Ek) = an(Ek)Ek = σk−1(n)Ek . (5)

We also record three simple identities related to σk functions. Let n be a positive
integer and p a prime number such that p | n. For any k ≥ 2, we have

σk−1(np) + pk−1σk−1(n/p) = σk−1(p)σk−1(n), (6)

σk−1(n) − pk−1σk−1(n/p) = σk−1(np) − pk−1σk−1(n), (7)

σk−1(np) − σk−1(n) = pk−1(σk−1(n) − σk−1(n/p)). (8)

For a fixed positive integer d, we define two additional linear operators

[d]+ := T1 − dk−1Ad : Mk(N ) → Mk(Nd),

[d]− := T1 − Ad : Mk(N ) → Mk(Nd),

where T1 is the natural inclusion of Mk(N ) into Mk(Nd).

Proposition 2.2 If d, e are two positive integers and δ, ε ∈ {+,−}, then operators
[d]δ and [e]ε commute.
Proof By definition, the operators Ad and Ae commute, so the proposition follows.

�
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We compute the action ofUp and [p]± on Ek explicitly. We adopt the convention
that σk−1(r) = 0 for any r ∈ Q \ Z.

Lemma 2.3 Let k > 2 and p be a prime number. We have equalities

Up([p]+Ek) = [p]+Ek, (9)

Up([p]−Ek) = pk−1[p]−Ek . (10)

Proof Fix the integer k > 2 and a prime p. We denote by F , the form [p]+Ek , it lies
inMk(p). The nth Fourier coefficient of UpF is as follows:

an(UpF) = anp(F) = anp(Ek − pk−1ApEk) = anp(Ek) − pk−1an(Ek).

From the definition of the series Ek , we finally obtain

an(UpF) = σk−1(np) − pk−1σk−1(n).

On the other hand, the nth Fourier coefficient of F is equal to

σk−1(n) − pk−1σk−1(n/p).

An application of the identity (7) shows that UpF = F .

A similar reasoning combinedwith Eq. (8) proves the second statement of the lemma.
�

For a square-free level N , we can now express the action of the Hecke algebra on
a specific Eisenstein eigenform.

Lemma 2.4 Let k > 2. Fix a positive integer t and a nonnegative integer t ≥ r and
distinct prime numbers p1, . . . , pt . Let N be a product of those primes. The form

E = [p1]+ ◦ . . . ◦ [pr ]+ ◦ [pr+1]− ◦ . . . ◦ [pt ]−Ek ∈ Ek(Γ0(N ))

is an eigenform with respect to TN . Explicitly, the generators act as follows:

TnE = σk−1(n)E, (n, N ) = 1
Upi E = E, 1 ≤ i ≤ r
Upi E = pk−1

i E, r + 1 ≤ i ≤ t

Proof Let � be a prime number not dividing N . Equality (3) and the definitions of
[p]+ and [p]− imply that operators T� and [pi ]± commute for any i in the range
{1, . . . , t} and for any choice of the sign ±. It follows that

T�E = [p1]+ ◦ . . . ◦ [pr ]+ ◦ [pr+1]− ◦ . . . ◦ [pt ]−(Tl Ek).
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Equality (5) implies that T�E = σk−1(�)E . The operator T�s for a fixed s > 1 equals
P(T�) for a specific choice of P ∈ Z[x], so T�s E = P(σk−1(�))E . The polynomial
P is determined by the recurrence relation

T�s = T�T�s−1 − �s−1T�s−2 .

If we put n = �s−1 in Eq. (6), the equation P(σk−1(�)) = σk−1(�
s) follows, so T�s E =

σk−1(�
s)E . For a given n coprime to N , the equation TnE = σk−1(n)E follows now

from the definition of Tn and the fact that σk−1 is a multiplicative function.
Let i be a fixed number in the set {1, . . . , r}. Equation (4) implies that Upj ◦

[pi ]+ = [pi ]+ ◦Upj and Upj ◦ [pi ]− = [pi ]− ◦Upj for any j �= i . Proposition 2.2
implies that the form E can be written as

E = [p1]+ ◦ . . . ◦ [pi−1]+ ◦ [pi+1]+ ◦ . . . ◦ [pr ]+ ◦ [pr+1]− ◦ . . . ◦ [pt ]− ◦ [pi ]+Ek .

and Upi acts on E in the following way:

Upi E = [p1]+ ◦ . . . ◦ [pi−1]+ ◦ [pi+1]+ ◦ . . . ◦ [pr ]+ ◦ [pr+1]− ◦ . . . ◦ [pt ]− ◦Upi [pi ]+Ek .

Equation Upi E = E is a direct consequence of Eq. (9). For i > r , we proceed in a
similarway to showUpi E = pk−1

i E . TheHecke algebraTN is generated by operators
Tn for (n, N ) = 1 and Upi for 1 ≤ i ≤ t , so the above argument shows that E is an
eigenform with respect to TN . �

We now construct a basis of eigenforms for k > 2 and N square-free. If N =
N−N+ is a decomposition into two possibly trivial factors, we define

E (k)
N−,N+ = [q1]ε1 ◦ . . . [qt ]εt Ek (11)

where t is the number of prime factors of N and q1, . . . , qt are the prime factors of
N . For i in {1, . . . , t} we define

εi =
{+, if qi |N+,

−, if qi |N−.

For N = 1, we have only one form E (k)
1,1 = Ek . We will often drop the upper index

in E (k)
N−,N+ and write EN−,N+ , if it is clear from the context that the weight equals k.

Theorem 2.5 Let k > 2 and let N be a square-free integer. The set

B := {E (k)
N−,N+ : N = N−N+}

forms aC-basis of the vector space Ek(N ). Each element of this basis is an eigenform
with respect to the Hecke algebra TN . The cardinality of the basis is 2t where t is
the number of prime factors of N .
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Proof Forms from the set B are linearly independent because they have different
sets of eigenvalues with respect to the Hecke algebra TN , cf. Lemma 2.4. Let d(N )

denote the number of divisors of N . We can choose N− from d(N ) possible divisors
of N , the factor N+ is determined by this choice. Hence, the cardinality of B equals
d(N ) = 2t . But from [8, Theorem 3.5.1] and [8, p.103], we know that the dimension
of the space Ek(N ) equals 2t , so B is a basis of this space. �

Corollary 2.6 Let k > 2 and let N be a square-free integer with prime factors
p1, . . . , pt . Choose a form EN−,N+ ∈ Ek(N ) which is an eigenform. Let a0(EN−,N+)

denote the initial coefficient of the q-expansion of E at infinity. Then

a0(EN−,N+) = − Bk
2k

t∏
i=1

(1 − pk−1
i ), if N− = 1

a0(EN−,N+) = 0, if N− > 1

Proof Observe that for any form f and prime p, we have a0([p]− f ) = 0. The
operators [·]− and [·]+ commute, so when N− > 1, we can write EN−,N+ as [p]− f ,
where p is prime and f is a form in Ek(N/p), and hence a0(EN−,N+) = 0. Now, for
any form f and prime p, we obtain

a0([p]+ f ) = a0( f )(1 − pk−1). (12)

So if N− = 1, we obtain

a0(EN−,N+) = − Bk

2k

t∏
i=1

(1 − pk−1
i )

if we apply successively equation (12) to each factor of N . Finally, we recall that
a0(Ek) = − Bk

2k . �

In weight k = 2, the series E2 does not define a modular form inM2(1), so in order
to find the basis of eigenforms in E2(N ), we need to modify the argument above. It
is well known that for a prime p, the form [p]+E2 is a modular form in E2(p).

Lemma 2.7 Let p be a prime number. The form [p]+E2 ∈ E2(p) is an eigenform
with respect to the Hecke algebra Tp. The Fourier coefficient a1([p]+E2) is 1 and
for a prime q �= p, the qth Fourier coefficient of [p]+E2 is q + 1. The following
identities hold:

Up([p]+E2) = [p]+E2,

Tn([p]+E2) = an(E2)[p]+E2, for (n, Np) = 1.

Proof Let � �= p be a prime number. For a fixed integer n, we obtain

an(T�([p]+E2)) = σ1(n�) − pσ1(n�/p) + �σ1(n/�) − �pσ1(n/(�p)).
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On the other hand, we know that

(1 + �)an([p+]E2) = (1 + �)(σ1(n) − pσ1(n/p)).

We now apply Eq. (6) to obtain

an(T�([p]+E2)) = (1 + �)an([p+]E2).

It is easy to see that an(Up[p]+E2) = anp([p]+E2) and

anp([p]+E2) = σ1(np) − pσ1(n) = σ1(n) − pσ1(n/p) = an([p]+E2).

The third equation is a consequence of Eq. (7). Hence, the form [p]+E2 is an eigen-
form with respect to Up and any T� for � �= p, so it is an eigenform with respect to
Tp. The second equation from the statement of the lemma follows from the defini-
tion of Tn and from the multiplicativity of σ1. From the definition, we also obtain
that a1([p]+E2) = a1(E2) = σ1(1) = 1 and also aq([p]+E2) = aq(E2) = σ1(q) =
1 + q for any prime q �= p. �

Lemma 2.8 Let N > 1 be a square-free integer. Suppose f ∈ E2(N ) is an eigenform
with respect to TN such that a1( f ) = 1 and aq( f ) = 1 + q for any prime q � N. For
a fixed prime p � N, the forms [p]+ f and [p]− f ∈ M2(Np) are eigenforms with
respect to TNp. The following identities hold:

Up([p]+ f ) = [p]+ f,

Up([p]− f ) = p[p]− f,

Tn([p]+ f ) = an( f )[p]+ f, for (n, Np) = 1,

Tn([p]− f ) = an( f )[p]− f, for (n, Np) = 1.

Moreover, a1([p]± f ) = 1 and aq([p]± f ) = 1 + q for any prime q � Np.

Proof Let � be a prime not dividing Np. Formula (3) implies that

(T� ◦ [p]+) f = ([p]+ ◦ T�) f.

The form f is normalized so T� f = a�( f ) f and it follows that

T�([p]+ f ) = a�( f )[p]+ f.

In a similar way, we show that T�([p]− f ) = a�( f )[p]− f . From the multiplicativity
of σ1, definition of E2 and of Tn for (n, Np) = 1, we obtain the third and fourth
equations from the statement of this lemma.

The equality Up([p]− f ) = p · [p]− f is equivalent to

anp( f ) − an( f ) = p(an( f ) − an/p( f )). (13)
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If f is a normalized eigenform, then anp( f ) = an( f )ap( f ) for p � n. Since p � N , we
obtain ap( f ) = 1 + p and Eq. (13) holds. In the case, n = n′ pα for α > 0 Eq. (13)
is equivalent to

apα+1( f ) = (p + 1)apα ( f ) − papα−1( f ).

This clearly holds because f is an eigenform forTN andwe, therefore, have the recur-
rence relation Tpα+1 = TpTpα − pTpα−1 and ap( f ) = 1 + p. It is possible to show that
Up([p]+ f ) = [p]+ f in a similar fashion. Finally, the equalities a1([p]± f ) = 1 and
aq([p]± f ) = 1 + q follow from the assumptions made on f and from definitions of
[p]±. �
For k = 2, we can adopt the notation E (k)

N−,N+ fromEq. (11) with one small exception:
we require that N+ > 1.

Theorem 2.9 Let N > 1 be a square-free integer. The set

B := {E (2)
N−,N+ : N = N−N+, N+ > 1}

forms aC-basis of the vector space E2(N ). Each element of this basis is an eigenform
with respect to the Hecke algebra TN . The cardinality of the basis is 2t − 1 where t
is the number of prime factors of N .

Proof We virtually repeat the proof of Theorem 2.5 replacing Lemma 2.4 with
Lemma 2.8. The set B has one less element in this case and we compare it with
[8, Theorem 3.5.1] to prove that B is a basis of the E2(N ). �
Remark 2.10 Theorem 2.9 is proved in [22, Sect. 2] in another way and the proof
requires additional tools which are not necessary in our proof.

Corollary 2.11 Let N be a square-free integer with prime factors p1, . . . , pt .
Choose a form E = EN−,N+ ∈ E2(N ) which is an eigenform. Then

a0(EN−,N+) = − B2
4

t∏
i=1

(1 − pi ), if N− = 1

a0(EN−,N+) = 0, if N− > 1

Proof If N− > 1, then EN−,N+ is of the form [p]−h for some h ∈ E2(N/p) and
a prime p | N , hence a0(EN−,N+) = 0. For the case N− = 1, we simply use that
a0([p]+h) = a0(h)(1 − p). �

3 Upper Bound of Congruences

In this section, we discuss a general upper bound for the exponent of congruences
between cuspidal eigenforms and eigenforms in the Eisenstein subspace for square-
free levels N and even weights k ≥ 2. The theorems proved here generalize the
results obtained previously in [17].
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Lemma 3.1 ([1, Theorem 3]) Let N be a square-free integer and let k ≥ 2 be an
even integer. If f ∈ Sk(N )new is a newform, then for any p | N, we have

ap( f ) = −λp p
k/2−1,

where λp ∈ {±1}.
Let K be a number field and OK its ring of integers. For an element α ∈ OK and

a maximal ideal λ ⊂ OK , let ordλ(α) denote the integer that satisfies the condition

n ≤ ordλ(α) ⇐⇒ λn | αOK .

We can naturally extend ordλ to a function on K×. For a prime � ∈ Z, let v� denote the
standard �-adic valuation on Q×. For any a ∈ Q×, we have ordλ(a) = ordλ(�)v�(a)

where � is the field characteristic of OK /λ.
Let K f denote the field of coefficients of the newform f ∈ Sk(N )new and by O f

its ring of integers.
Let f, g ∈ Mk(N ) be two eigenforms and K be a field that contains the composite

of K f and Kg . We say that f and g are congruent modulo a power λr of a maximal
ideal λ ∈ OK if and only if

an( f ) ≡ an(E) (mod λr )

for all n ≥ 0, where {an( f )} and {an(g)} are Fourier coefficient of the q-expansion
at infinity of f and g, respectively.

Theorem 3.2 Let p1, . . . , pt be different prime factors of N and let k ≥ 2. Suppose
that f ∈ Sk(N )new is a newform which is congruent to the Eisenstein eigenform
E = [p1]+ ◦ . . . ◦ [pt ]+Ek ∈ Ek(N ) modulo a power r > 0 of a maximal ideal λ ⊂
O f . If � is the residual characteristic of λ, we obtain the bound

r ≤ ordλ(�) · v�

(
− Bk

2k

t∏
i=1

(1 − pi )

)
.

Proof Let p | N be a prime. From Lemma 3.1, we know that ap( f ) = −λp pk/2−1.
On the other hand, ap(E) = a1(UpE) and from Lemma 2.4, it follows that ap(E) =
1. The congruence

ap( f ) ≡ ap(E) (mod λr )

implies that −λp pk/2−1 ≡ 1 (mod λr ) and by squaring both sides, we obtain an
equation

1 − pk−2 ≡ 0 (mod λr ). (14)

Since f is a cusp form, a0(E) ≡ a0( f ) = 0 (mod λr ) holds and by Corollary 2.6,
we obtain
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− Bk

2k

t∏
i=1

(1 − pk−1
i ) ≡ 0 (mod λr ).

We observe that 1 − pk−1
i = (1 − pk−2

i ) + pk−2
i (1 − pi ). Equation (14) holds for

each pi under the assumption � � N . It follows that

− Bk

2k

t∏
i=1

(1 − pi ) ≡ 0 (mod λr ).

For k ≥ 2, we have the inequality ordλ(1 − pk−1
i ) ≥ ordλ(1 − pi ) for each i , and

hence

r ≤ ordλ

(
− Bk

2k

t∏
i=1

(1 − pi )

)
.

�

Corollary 3.3 Let p1, . . . , pt be different prime factors of N and let k ≥ 2. Suppose
f ∈ Sk(N )new is a newform which is congruent to the Eisenstein eigenform E =
[p1]ε1 ◦ . . . ◦ [pt ]εt Ek ∈ Ek(N ) modulo a power λr of a maximal ideal λ ⊂ O f . If
we assume that a0(E) = 0 and pi /∈ λ for every εi = −, then we have the following
bound for the congruence exponent:

r ≤ min{ min
i,εi=+ ordλ(1 − pk−2

i ), min
i,εi=− ordλ(1 − pki )}.

Moreover, for every i such that εi = +, we have pi /∈ λ.

Proof We apply Lemma 3.1 to the congruence api ( f ) ≡ api (E) (mod λr ). After
squaring both sides, we obtain the condition

pk−2
i ≡

{
1, for εi = +,

p2(k−1)
i , for εi = −.

(15)

The exponent r is less than or equal to ordλ(1 − pk−2
i ) when εi = +. Also, r is

at most equal to ordλ(1 − pki ) when εi = −, because pi /∈ λ by assumption. For
each i such that εi = +, it follows from the congruence (15) that 1 − pk−2

i ∈ λr . So,
1 − pk−2

i ∈ λ and then pi /∈ λ. �

4 Rational Congruences

Wehaveproved in [17, Sect. 5.8] that for a prime N and anewform f ∈ S2(Γ0(N ))new

with rational coefficients there exists a system of congruences
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an( f ) ≡ an(E) (mod �r ) (16)

for all n ≥ 0, E = [N ]+E2 and a rational prime � only for triples (�, r, N ) ∈
{(3, 1, 19), (3, 1, 37), (5, 1, 11), (2, 1, 17)} (only finitely many systems) and also
for (�, r, N ) ∈ {(2, 1, u2 + 64) : 2 � u} (conjecturally infinitely many triples).

Lemma 4.1 Let f be a newform f ∈ S2(Γ0(N ))new with rational coefficients and N
a square-free number. Supposewe have an eigenform E ∈ E2(N ) and the congruence
(16) holds for all n ≥ 0, then

(�, r) ∈ {(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (5, 1), (7, 1)}.

Proof We know that the Fourier coefficients of f at infinity are integers [8, Theorem
6.5.1] and for every prime q � N

aq( f ) ≡ 1 + q (mod �r ). (17)

There exists an elliptic curve E overQ of conductor N such that for a prime q of good
reduction for E , aq( f ) = q + 1 − |E (Fq)|, [7, Chap. II, Sect. 2.6]. By the theorem
of Katz, there exists a Q-isogenous curve E ′ such that E ′(Q) contains an �r -torsion
point. By the theorem of Mazur [16], it follows that �r ∈ {2, 3, 4, 5, 7, 8, 9}. �

Elliptic curves with conductor N a product of two primes were partially classified
in [19]. This result allows us to discard the congruences with �r ∈ {8, 9}.
Theorem 4.2 Let p,q be two different primes. Suppose that f ∈ S2(pq)new is a
newform with rational coefficients and let E be an eigenform in E2(pq). Let � be
a prime number and r > 0 an integer such that the congruence (16) holds for all
n ≥ 0. Then, one of two conditions holds

(1) �r ∈ {2, 3, 4, 5} or
(2) �r = 7 and E = [13]−[2]+E2.

Proof Let N = pq be odd. Then, a2( f ) ≡ 3 (mod �r ). From the Hasse–Weil bound,
it follows that |a2( f )| ≤ 2

√
2 < 3. Hence, �r | (3 − a2( f )) < 6 so we conclude (1).

When N = pq is even and N = 6, then the set of cusp forms is empty. So, we can
assume that p = 2 and q > 3. Then, the inequality |a3( f )| ≤ 2

√
3 < 4 and the con-

gruence a3( f ) ≡ 4 (mod �r ) holds, and hence �r | (4 − a3( f )) < 8. For �r = 7 by
[19, Theorem 3.6], it follows that N = 26.We compute that the spaceS2(26)new is of
dimension 2 and spanned by the forms f1, f2 with the following Fourier expansions:

f1 = q − q2 + q3 + q4 − 3q5 − q6 − q7 − q8 − 2q9 + 3q10 + 6q11 + . . .

f2 = q + q2 − 3q3 + q4 − q5 − 3q6 + q7 + q8 + 6q9 − q10 − 2q11 + . . .

The space E2(26) has a basis consisting of three eigenforms

[2]−[13]+E2, [13]−[2]+E2, [2]+[13]+E2.
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Table 1 an( fi ) ≡ an(EN−,N+ ) (mod 23), n ≥ 0, fi ∈ S2(Γ0(N ))new

N N− N+ Form

1 714 17 42 f9
2 1482 1 1482 f12
3 1482 19 78 f12
4 1554 1 1554 f14
5 1554 37 42 f14

Table 2 an( fi ) ≡ an(EN−,N+ ) (mod 32), n ≥ 0, fi ∈ S2(Γ0(N ))new

N N− N+ Form

1 102 17 6 f3
2 210 7 30 f5
3 690 23 30 f11
4 930 31 30 f15
5 1974 329 6 f9
6 4074 97 42 f12
7 4074 1 4074 f12
8 4290 1 4290 f29

Lemma 2.8 implies that

a2([2]−[13]+E2) = 2,

a2([13]−[2]+E2) = 1,

a2([2]+[13]+E2) = 1.

The Sturm bound is 7 by Theorem 5.1, so we only have to compare 7 initial coef-
ficients to verify the desired congruence. By a direct computation, we see that f2
is congruent to [13]−[2]+E2 modulo 7. The form f1 is not congruent to any of the
given Eisenstein eigenforms modulo 7. �

Remark 4.3 If N has more than two prime factors, we can find examples of con-
gruences where �r ∈ {8, 9}. In Tables 1 and 2, we present such examples. The index
notation fi of the modular forms is described in Sect. 6.1.

5 Algorithmic Search for Congruences

Our main goal in this section is to describe an effective algorithm that allows one to
find congruences between cuspidal eigenforms and Eisenstein series for a large class
of square-free conductors. Our approach follows [20] and an adaptation of Sturm’s
algorithm given in [6].



344 B. Naskręcki

Theorem 5.1 Let p1, . . . , pt be different prime numbers and k ≥ 2. Let N =
p1 · . . . · pt and f be a newform in Sk(N )new. We fix a natural number r and a
maximal ideal λ in O f . Let E be an eigenform in Ek(N ). If the congruence

an( f ) ≡ an(E) mod λr (18)

holds for all n ≤ k(
∏

i (pi + 1))/12, then it holds for all n ≥ 0.

Proof This is a simple adaptation of [6, Proposition 1]. �

In our algorithm, it will be sufficient to check the condition (18) for indices n that
are prime numbers below the Sturm bound B := k(

∏
i (pi + 1))/12.

Corollary 5.2 With the assumptions as in Theorem 5.1 suppose that for primes
n ≤ k(

∏
i (pi + 1))/12 the congruence (18) holds, then the congruence (18) holds

for all natural numbers n ≥ 0.

Proof This follows immediately from Theorem 5.1 since f and E are normalized
eigenforms. �

Lemma 5.3 Let N be a square-free integer which is a product of prime numbers
p1, . . . , pt and k ≥ 2 be an integer. Let {εi }i=1,...,t be a collection of symbols εi ∈
{+,−}. Let f ∈ Sk(N )new be a newform and E ∈ Ek(N ) an eigenform E = [p1]ε1 ◦
. . . ◦ [pt ]εt Ek ∈ Ek(N ). Suppose that there exists a prime ideal λ inO f and a positive
integer r for which the congruence an( f ) ≡ an(E) (mod λr ) holds for all integers
n. Let � denote the characteristic of the field O f /λ. One of the following conditions
holds:

(1) If k ≥ 2 and ε1 = . . . = εt = +, then � | − Bk
2k

∏
i (1 − pi ).

(2) If k = 2 and εi = − for some i , then � | GCD({1 − p2j : ε j = −}).
(3) If k > 2 and εi = − for some i , then � | GCD({1 − pkj : ε j = −} ∪ {1 − pk−2

j :
ε j = +}).

Proof The lemma follows from the Theorem 3.2 and Corollary 3.3. �

5.1 Algorithm

Description of the algorithm: For a fixed integer k ≥ 2, a square-free integer N , a
prime number �, and a fixed eigenform E ∈ Ek(N ), the algorithm checks for which
newforms f ∈ Sk(N ) there is a congruence between f and E modulo λr , where the
characteristic of the ideal λ is � and r > 0 is the maximal possible.

Input: An even number k ≥ 2, a square-free integer N > 1, a prime number �, and
an eigenform E ∈ Ek(N ).
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Steps of the Algorithm:

(1) Check whether a0(E) is 0. If yes, then proceed to Step 2. If no, then check if
v�(a0(E)) > 0. If yes, then go to Step 2. If no, then terminate the algorithm.

(2) Compute subsets Ci of newforms in Sk(N ) such that each two element in Ci

are Galois conjugate
(3) For each set Ci pick one representative and create a set FN ,k of those represen-

tatives for all i .
(4) Compute the Sturm bound B = (k/12)[SL2(Z) : Γ0(N )].
(5) For each form f ∈ FN ,k compute the coefficient field K f .
(6) For each f ∈ FN ,k create a set S�, f that is made of prime ideals that appear in

the factorization of �O f .
(7) For each element f ∈ FN ,k and λ ∈ S�, f compute the number

rλ = min
{
ordλ

(
aq( f ) − aq(E)

) | q ≤ B
}
.

Theminimumruns over primenumbersq. If rλ > 0, then return a triple ( f, λ, rλ).

Output: Set of triples ( f, λ, r) such that

an( f ) ≡ an(E) (mod λr )

for all n ≥ 0 and if for some s > 0, we have

an( f ) ≡ an(E) (mod λs)

for all n ≥ 0, then s ≤ r . Remark: it might happen that the list will be empty.

Validity of the Algorithm: In Step 1, we check if the congruence (18) is possible.
Step 2 amounts to a finite number of computational steps for a fixed level N and
weight k by using, for instance, modular symbols. Moreover, we can represent each
newform by a finite number of bits (e.g., by using the modular symbols representa-
tion). The number rλ in Step 6 satisfies the output condition because of Corollary 5.2.
Since N is square-free, the constant B is equal to the constant from Corollary 5.2.

6 Numerical Data

In this section, we present the computational data that was gathered while run-
ning Algorithm5.1 under the restrictions of Lemma 5.3. We performed a check that
includes weights k between 2 and 24 and square-free levels N up to 4559. More
precise bounds are presented in Table 3. Our main computational resource was the
cluster Gauss at the University of Luxembourg maintained by Prof. Gabor Wiese.
This computer has 20CPUunits of type Inter(R)Xeon(R)CPUE7-4850@2.00GHz



346 B. Naskręcki

Table 3 Weight k and corresponding maximal level N

k 2 4 6 8 10 12 14 16 18 20 22 24

N ≤ 4559 922 302 202 193 102 94 94 94 94 94 94

and approximately 200 GB of RAM memory. We used the computer algebra pack-
age MAGMA [5] and the set of instructions MONTES [11] which greatly enhances
the efficiency of computations performed on number fields with large discriminants.
However, it took about 4 weeks of the computational time under full CPU load of
the Gauss cluster (around 13440 CPU hours) to finish the calculations.

6.1 Description of Data in the Tables

Let fi be as usual a newform in Sk(N )new where k ≥ 2 and N is square-free. The
index i is associated to the particular form by the algorithm presented in [7, Chap.
IV], described in detail in MAGMA manual.1 The number d will denote the degree
of the extension K f over Q. Let λ ⊂ O fi be a prime ideal with residue characteristic
�. Let e denote the ramification degree ordλ(�) and f the degree of the residue field
extension [O fi /λ : F�]. We consider the Eisenstein eigenform EN−,N+ ∈ Ek(N )with
N = N−N+ such that

an( fi ) ≡ an(EN−,N+) (mod λr ) (19)

for all n ≥ 0. Assume that the positive integer r is maximal, i.e., there is no congru-
ence of type (19) with ideal exponent r ′ greater than r . The number m will denote
the maximum over s which satisfy simultaneous congruences

apj ( fi ) ≡ apj (EN−,N+) (mod �s), 1 ≤ j ≤ t,

a0( fi ) ≡ a0(EN−,N+) (mod �s).

Observe that m depends on the choice of N , N+, N−, fi , and λ. An upper bound for
the exponent r is the productm · e. In general, the boundm · emight be smaller than
the upper bound computed in Theorem 3.2 and Corollary 3.3. We also use specific
labels to indicate different prime ideals λ that occur in the factorization of �O fi .
These labels are described in the MONTES package documentation.2 Hence, in the
column labeled by λ, we use the notation λ j to denote a specific prime ideal with
respect to the MONTES labeling. Similarly, in the column “form”, we let fi denote
a specific newform that will appear.

1http://magma.maths.usyd.edu.au/magma/handbook/text/1545.
2http://www-ma4.upc.edu/~guardia/MontesAlgorithm.html.

http://magma.maths.usyd.edu.au/magma/handbook/text/1545
http://www-ma4.upc.edu/~guardia/MontesAlgorithm.html
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Table 4 Typical row of data

N N− N+ k � m Form λ r e f d

2651 1 2651 2 5 2 f1 λ1 2 2 1 35

Table 5 Congruences that satisfy r > 2 and m > 1, one for each pair (r, �)

N N− N+ k � m Form λ r e f d

1 2 2 1 22 2 10 f1 λ1 8 1 1 1

2 2159 127 17 2 2 7 f1 λ1 7 1 1 56

3 78 78 1 8 2 3 f1 λ1 6 2 1 2

4 34 2 17 10 2 4 f1 λ1 5 2 1 2

5 1459 1 1459 2 3 5 f1 λ1 5 1 1 71

6 94 2 47 18 2 7 f1 λ2 4 1 1 18

7 146 2 73 6 3 2 f1 λ3 4 2 1 9

8 78 2 39 22 2 3 f1 λ4 3 1 1 5

9 163 1 163 10 3 4 f1 λ1 3 1 1 62

10 443 443 1 4 5 4 f1 λ1 3 1 1 60

11 1373 1 1373 2 7 3 f1 λ1 3 1 1 60

12 2663 1 2663 2 11 3 f1 λ2 3 1 1 132

13 239 239 1 4 13 4 f1 λ1 3 1 1 37

Example 6.1 In Table 4, we describe an example of a typical row of data in our
congruence database.We read from it that a newform f1 ∈ S2(2651)new is congruent
to the Eisenstein series E1,2651 modulo a power λ2

1, where the ideal λ1 is of residue
characteristic 5 and its ramification degree e above � = 5 equals 2. Field degree
[K f1 : Q] is 35 and O f1/λ1 = F5. Theoretical upper bound for r is m · e = 4 but our
congruence appears only with the maximal exponent r = 2.

Example 6.2 In Table 5, we present for each pair (r, �) one congruence for which r
is maximal in the whole range described in Table 3. In case, there were more than
one suitable pair (r, �), we chose a specific pair and some k. Moreover, we sort the
data by descending value of r .

Example 6.3 In Table 6, we describe some examples of congruences that satisfy the
nontrivial bound r ≤ ewithm > 1.We refer to Corollary 7.2, for a precise statement
of our observation.
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Table 6 Exemplary congruences that satisfy conditions: e > 1, m > 1, � > 3

N N− N+ k � m Form λ r e f d

1 31 31 1 10 5 2 f1 λ3 1 2 1 13

2 33 11 3 12 11 2 f1 λ4 1 2 1 6

3 33 11 3 12 11 2 f1 λ4 1 2 1 5

4 35 5 7 6 5 2 f1 λ1 1 2 1 2

5 35 5 7 6 5 2 f1 λ1 1 2 1 4

6 35 35 1 8 5 2 f1 λ2 1 2 1 5

7 35 35 1 12 5 2 f1 λ3 1 2 1 4

8 35 35 1 12 5 2 f1 λ3 1 2 1 6

9 35 5 7 14 5 2 f1 λ3 1 2 1 6

10 35 5 7 14 5 2 f1 λ3 1 2 1 8

11 35 35 1 16 5 2 f1 λ3 2 3 1 7

12 35 35 1 16 5 2 f1 λ4 1 2 1 9

13 35 35 1 16 5 2 f1 λ3 2 3 1 9

14 55 5 11 12 5 2 f1 λ2 1 2 1 11

15 55 5 11 12 5 2 f1 λ2 1 2 1 8

16 79 79 1 6 7 2 f1 λ1 1 2 1 19

17 79 79 1 12 7 2 f1 λ1 1 2 1 33

18 101 101 1 4 5 2 f1 λ1 1 3 1 9

19 101 101 1 8 5 2 f1 λ2 1 3 1 26

20 101 101 1 12 5 2 f1 λ2 1 3 1 42

21 107 107 1 4 5 2 f1 λ1 1 2 1 16

22 107 107 1 8 5 2 f1 λ1 1 2 1 28

23 133 7 19 8 7 3 f1 λ3 1 3 1 16

24 133 7 19 8 7 3 f1 λ3 1 3 1 16

7 Summary of Computational Results

In this paragraph, we summarize the large-scale numerical computations that estab-
lished the existence of congruences for square-free levels N and weights k in the
range predicted by Table 3. We will say that there exists a congruence that satis-
fies a condition W = W (r, d, e, f, N−, N+, �,m), if we can find a weight k and
level N such that there exists a newform f ∈ Sk(N )new and an Eisenstein eigenform
E ∈ Ek(N ) that satisfy (19) for an ideal λ ∈ O f and a positive integer r and such that
the values of r, d, e, f, N−, N+, � and m associated with this congruence satisfy the
condition W .

Corollary 7.1 Let N be a square-free number depending on the weight as described
in Table 3. In Table 7, we present the number of different congruences of type (19) that
can be found in the presented range. In the column denoted by r ≥ 0, we count the
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Table 7 Number of congruences of type (19) for fixed values of k

k r ≥ 0 r > 0 m · e = r > 0 m · e > r > 0

2 277447 62937 38805 24132

4 64232 13922 9208 4714

6 17300 3629 2475 1154

8 10755 2149 1517 632

10 9248 1483 1106 377

12 5738 1055 787 268

14 5276 1020 756 264

16 6010 1113 817 296

18 6995 1235 922 313

20 10735 1914 1428 486

22 8853 1425 1025 400

24 10359 1555 1153 402

Table 8 Congruences that satisfy e > 1, m > 1, � > 3, and r > e

N N− N+ k � m Form λ r e f d

1 2495 499 5 2 5 3 f1 λ1 3 2 1 55

2 3998 1999 2 2 5 3 f1 λ1 3 2 1 44

number of pairs ( f, λ) returned by Algorithm5.1. In the column “r > 0”, we count
the number of congruences, in the column “m · e = r > 0”, we count the number
of congruences with maximal exponent r = m · e and the last column has a similar
meaning.

Corollary 7.2 For (N , k) from range in Table 3, there exists 96 congruences that
satisfy e > 1, m > 1, and � > 3. Except for the cases described in Table 8, we have
the bound r ≤ e.

Remark 7.3 Corollary 7.2 extends similar computations performed in [17] for prime
levels N and weight k = 2. It was verified there that for primes N ≤ 13009, the
property r ≤ e holds for all � > 3 and e > 1. It is an open question, if there are
infinitely many such congruences for all possible ranges of N and k.

Corollary 7.4 Let k = 2. For N ≤ 4559 square-free and for any d ≤ 222, we found
congruences (19) if d /∈ D, where

D = {169, 175, 178, 192, 197, 204, 207, 208, 211,
214, 215, 216, 217, 218, 219, 220, 221}.
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Table 9 Selected congruences sorted by the degree d

N N− N+ k � m Form λ r e f d

1 131 1 131 2 13 1 f1 λ1 1 1 1 10

2 311 1 311 2 5 1 f1 λ1 1 1 1 22

3 479 1 479 2 239 1 f1 λ3 1 1 1 32

4 719 1 719 2 359 1 f1 λ2 1 1 1 45

5 839 1 839 2 419 1 f1 λ1 1 1 1 51

6 1031 1 1031 2 5 1 f1 λ1 1 1 1 60

7 1399 1 1399 2 233 1 f1 λ2 1 1 1 71

8 1487 1 1487 2 743 1 f1 λ1 1 1 1 0

9 1559 1 1559 2 19 1 f1 λ2 1 1 1 90

10 1931 1 1931 2 5 1 f1 λ1 1 1 1 101

11 2111 1 2111 2 5 1 f1 λ2 1 1 1 112

12 2351 1 2351 2 5 2 f1 λ1 1 1 1 123

13 2591 1 2591 2 5 1 f1 λ2 1 1 1 136

14 2879 1 2879 2 1439 1 f1 λ1 1 1 1 148

15 2903 1 2903 2 1451 1 f1 λ2 1 1 1 150

16 2999 1 2999 2 1499 1 f1 λ1 1 1 1 161

17 3359 1 3359 2 23 1 f1 λ1 1 1 1 174

18 3659 1 3659 2 31 1 f1 λ1 1 1 1 181

19 3671 1 3671 2 5 1 f1 λ1 1 5 1 193

20 3911 1 3911 2 5 1 f1 λ1 1 2 1 202

21 4079 1 4079 2 2039 1 f1 λ2 1 1 1 212

22 4391 1 4391 2 5 1 f1 λ4 1 1 1 222

Remark 7.5 In [9] the authors study, the existence of newforms f with large degree
coefficient field K f . The computations from Corollary 7.4 and Table 9 suggest that
we can both find newforms that have large degree of K f and that are congruent to
an Eisenstein eigenform. In Figure 1, we show that the growth of d as a function of
least N is roughly a linear function. The way we present data in Table 9 is as follows:
we assume N− = 1, in the i th row we present a congruence such that d ≥ 10i for
the least possible N . All values of N that we found are prime numbers.

Corollary 7.6 For k = 2 and level N less or equal to 4559, there exist a congruence
for any level except N = 13 or 22, for which the space S2(N )new is zero.

Corollary 7.7 For k = 2 and N− > 1, there exists 54077 congruences for levels
N ≤ 4559 and 8860 congruences for N− = 1 and levels N ≤ 4559.

Remark 7.8 In [21, Theorem 4.1.2], it is assumed that either N− = 1 and the number
of prime divisors of N is odd and � | φ(N ) or the number of prime divisors of N
is even and N− is a prime number such that N− ≡ −1 (mod �). In several cases
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Fig. 1 Growth of degree d as a function of least level N for data from Table 9

Table 10 Weight k and number of congruences that satisfy f > 2

k 2 4 6 8 10 12 14 16 18 20 22 24

n.c. 993 177 20 4 0 0 0 2 4 2 0 0

Table 11 Weight k and the number of congruences such that � | N
k 2 4 6 8 10 12 14 16 18 20 22 24

n.c. 27771 4839 1366 1070 609 583 605 708 726 1323 990 1033

described in the above corollary, the assumptions of [21, Theorem 4.1.2] are satisfied.
In those cases, we obtain a congruence for the coefficients ap with p | N , which is not
assumed in [21, Theorem 4.1.2]. Moreover, some examples of the previous corollary
suggest that the assumptions of [21, Theorem 4.1.2] can be made weaker.

Corollary 7.9 Let (N , k) be a pair of integers that fit into the range of Table 3. In
Table 10, we present the number of corresponding congruences (abbreviated n.c. in
the table) with f > 2.

Corollary 7.10 For N ≤ 4559 and k = 2, there exist 30 congruences that satisfy
e = 17 and � = 2. In that range, there is no congruence such that the ramification
exponent e is larger than 17.

Corollary 7.11 Let (N , k) be the numbers from the range in Table 3. Then, in the
described ranges, there is an appropriate number of congruence (n.c.) that satisfy
the condition � | N. Values are presented in Table 11.
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Corollary 7.12 Let k = 2 and N ≤ 4559. There are congruences for all prime char-
acteristic � ≤ 2273 except for the set

{353, 389, 457, 463, 523, 541, 569, 571, 587, 599, 613, 617, 631, 643, 647, 677, 701,
733, 757, 769, 773, 787, 797, 821, 823, 827, 839, 857, 859, 863, 881, 887, 907, 929,

941, 947, 971, 977, 983, 991, 1021, 1051, 1061, 1091, 1097, 1109, 1117, 1151,

1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1231, 1237, 1249, 1259,

1277, 1279, 1283, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367,

1373, 1381, 1399, 1423, 1427, 1429, 1433, 1447, 1453, 1459, 1471, 1483, 1487,

1489, 1493, 1523, 1531, 1543, 1549, 1553, 1567, 1571, 1579, 1597, 1607, 1609,

1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709,

1721, 1723, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1823, 1831,

1847, 1861, 1867, 1871, 1873, 1877, 1879, 1907, 1913, 1933, 1949, 1951, 1979,

1987, 1993, 1997, 1999, 2011, 2017, 2027, 2029, 2053, 2081, 2083, 2087, 2089,

2099, 2111, 2113, 2131, 2137, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221,

2237, 2239, 2243, 2251, 2267, 2269}.
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Lucas Numbers Which are Products
of Two Balancing Numbers

Zafer Şiar

Abstract In this paper, we find all Lucas numbers, which are products of two
balancing numbers.

1 Introduction

Let P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are
defined as follows:

U0(P, Q) = 0,U1(P, Q) = 1, and Un+2(P, Q) = PUn+1(P, Q) + QUn(P, Q)

and

V0(P, Q) = 2, V1(P, Q) = P, and Vn+2(P, Q) = PVn+1(P, Q) + QVn(P, Q)

forn ≥ 0, respectively.Un(P, Q) andVn(P, Q) are calledn-th generalizedFibonacci
numbers and n-th generalized Lucas numbers, respectively. It is well known that

Un = Un(P, Q) = an − bn

a − b
and Vn = Vn(P, Q) = an + bn, (1)

where a = P+
√

P2+4Q
2 and b = P−

√
P2+4Q
2 are the roots of the characteristic equa-

tion x2 − Px − Q = 0. If P = Q = 1, then we have the Fibonacci and Lucas
sequences (Fn)n≥0 and (Ln)n≥0, respectively.The termsof the sequence (Un(2, 1))n≥0

give us Pell numbers denoted by Pn. If P = 6 and Q = −1, then the elements of
the sequence (Un)n≥0 turn out to be balancing numbers and n-th balancing number
is denoted by Bn. It can be seen from (1) that
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Ln = αn + βn (2)

and

Bn = λn − δn

4
√
2

(3)

for every n ≥ 0,whereα = 1+√
5

2 , β = 1−√
5

2 andλ = 3 + 2
√
2, δ = 3 − 2

√
2.Also,

it is well known that the relation between n-th Lucas number Ln and α is given by

αn−1 ≤ Ln ≤ 2αn (4)

for n ≥ 0. The inequality (4) can be proved by induction. It is clear that 5 < λ < 6,
0 < δ < 1 and λδ = 1. Therefore

Bn <
λn

4
√
2
. (5)

For more information concerning these sequences, one can consult [2, 7, 8, 11].
In [6], Farrokhi proved that if r > 2, m > 2, then there is no Fibonacci number

Fn such that Fn = Fr Fm . In [9], the authors showed that if r > 1, m > 1 there is
no Lucas number Ln such that Ln = Lr Lm . In [8], Keskin and Karaatlı have given
a similar result for Balancing numbers. Besides, in [10], the authors generalized
the results of papers in [6, 8, 9]. Here, they proved that when P > 1 and Q = ±1,
there is no generalized Fibonacci number Un such that Un = UmUr for 1 < r < m,

and there is no generalized Lucas number Vn such that Vn = VmVr for m > 1 and
r > 1.Moreover, the authors [6, 8–10] have used only divisibility properties of these
sequences and congruences in order to solve these equations. In [4], Ddamulira et
al. have found all Fibonacci numbers or Pell numbers which are products of two
numbers from the other sequences.More clearly, they showed that all positive integer
solutions (k,m, n) of the equations Fk = Pm Pn and Pk = FmFn have k = 1, 2, 5, 12
and k = 1, 2, 3, 7, respectively. Motivated by the studies of Ddamulira et al., in this
paper, we determine all solutions of the Diophantine equation

Lk = BnBm (6)

in nonnegative integers n,m, and k with n ≥ m ≥ 1.
This study can be viewed as a continuation of the previous works on this sub-

ject. We follow the approach and the method presented in [4]. Namely, we will use
Matveev’s result [12] like in [4]. This result uses Baker’s theory which is based on
lower bounds for a nonzero linear form in logarithms of algebraic numbers. In Sect. 2,
we introduce necessary lemmas and theorems. Then, in Sect. 3, we prove our main
theorem.
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2 Auxiliary Results

Recently, many authors have used Baker’s theory which is based on lower bounds
for a nonzero linear form in logarithms of algebraic numbers to solve Diophantine
equations such as Eq. (6). Since such bounds are of crucial importance in effectively
solving of Diophantine equations, we start with recalling some basic notions from
algebraic number theory.

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + ... + ad = a0

d∏

i=1

(
X − η(i)

) ∈ Z[x],

where the ai ’s are relatively prime integers with a0 > 0 and η(i)’s are conjugates of
η. Then

h(η) = 1

d

(
log a0 +

d∑

i=1

log
(
max

{|η(i)|, 1})
)

(7)

is called the logarithmic height of η. In particular, if η = a/b is a rational number
with gcd(a, b) = 1 and b > 1, then h(η) = log (max {|a|, b}) .

The following properties of logarithmic height are found in many works stated in
references:

h(η ± γ ) ≤ h(η) + h(γ ) + log 2, (8)

h(ηγ ±1) ≤ h(η) + h(γ ), (9)

h(ηs) = |s|h(η). (10)

The following theorem, deduced from Corollary 2.3 of Matveev [12], provides a
large upper bound for the subscript n in Eq. (6) (also see Theorem 9.4 in [3]).

Theorem 1 Assume that γ1, γ2, ..., γt are positive real algebraic numbers in a real
algebraic number field K of degree D, b1, b2, ..., bt are rational integers, and

Λ := γ
b1
1 ...γ

bt
t − 1

is not zero. Then

|Λ| > exp
(−1.4 · 30t+3 · t4.5 · D2(1 + log D)(1 + log B)A1A2...At

)
,

where
B ≥ max {|b1|, ..., |bt |} ,

and Ai ≥ max {Dh(γi ), | log γi |, 0.16} for all i = 1, ..., t.
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The following lemma, proved by Dujella and Pethő [5], is a variation of a lemma
of Baker and Davenport [1]. And this lemma will be used to reduce the upper bound
for the subscript n in Eq. (6). Let the function || · || denote the distance from x to the
nearest integer, that is, ||x || = min {|x − n| : n ∈ Z} for a real number x . Then, we
have

Lemma 1 Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational number γ such that q > 6M, and let A, B, μ be some real
numbers with A > 0 and B > 1. Let ε := ||μq|| − M ||γ q||. If ε > 0, then there
exists no solution to the inequality

0 < |uγ − v + μ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)

log B
.

The following theorem and lemma are given in [3, 7], respectively.

Theorem 2 The only perfect powers in the Fibonacci sequence are F0 = 0, F1 =
F2 = 1, F6 = 8, and F12 = 144. The only perfect powers in the Lucas sequence are
L1 = 1 and L3 = 4.

Lemma 2 For any integer n ≥ 3, the inequalities

λn−0.99 < Bn < λn−0.98

hold.

3 Main Theorem

Theorem 3 Let 1 ≤ m ≤ n and k ≥ 0 be integers. If Lk = BnBm, then (n,m, k) =
(1, 1, 1).

Assume that the equation BnBm = Lk holds for 1 ≤ m ≤ n. If m = n, we have
Lk = B2

n , which is possible only for k = 1 and n = 1 by Theorem 2. Therefore, we
assume that m < n. Let n ≤ 30. Here, we wrote a short program in Mathematica.
Using it, we see that k < 213. In that case, with the help of Mathematica program,
we obtain only the solution (n,m, k) = (1, 1, 1) in the range 0 < m < n ≤ 30 for
k < 213.Fromnowon, assume thatn > 30.Therefore, k ≥ 107.Using the inequality
(4) and Lemma 2, we get the inequality

αk−1 ≤ Lk = BnBm < λn+m−1.
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From this, it follows that k < (n + m − 1) c + 1, where c = log λ

logα
= 3.6631418....

Since m < n, it is clear that k < 8n.

On the other hand, rearranging the equation Lk = BnBm as

αk − λn+m−1

32
= −

(
βk + λnδm + λmδn − δn+m

32

)

and taking absolute values, we obtain

∣∣∣∣α
k − λn+m

32

∣∣∣∣ = 32 · |β|k + λnδm + λmδn + δn+m

32

= 32 · |β|k + λn−m + δn−m + δn+m

32

<
λn−m + 1

32
<

λn−m+1

32
,

where we have used the fact that λδ = 1. If we divide both sides of the above inequal-
ity by λn+m

32 , we get
∣∣32αkλ−(n+m) − 1

∣∣ <
1

λ2m−1
. (11)

Now, let us apply Theorem 1 with γ1 := 32, γ2 := α, γ3 := λ and b1 := 1, b2 :=
k, b3 := −(n + m).Note that the numbersγi for i = 1, 2, 3are positive real numbers
and elements of the field K = Q(

√
2,

√
5). It can be easily seen that the degree of

the field K is 4. So D = 4. It can be shown that the number Λ1 := 32αkλ−(n+m) − 1
is nonzero. Otherwise, if Λ1 = 0, then, we get

αkλ−(n+m) = αkδn+m = 1/32.

Here, 1/32 is not an algebraic integer in the field K = Q(
√
2,

√
5),whereas αkδn+m

is an algebraic integer. This is a contradiction. Moreover, since h(γ1) = log 32 =
3.46574..., h(γ2) = logα

2 = 0.4812...
2 , and h( γ3) = log λ

2 = 1.76275...
2 by (7), we can

take A1 := 14, A2 := 1, and A3 = 3.6. Also, since k < 8n, we can take B = 8n.

Thus, taking into account the inequality (11) and using Theorem 1, we obtain

1

λ2m−1
> |Λ1| > exp

(−1.4 · 306 · 34.5 · 42(1 + log 4)(1 + log 8n) · 14 · 3.6)

and so

(2m − 1) log λ < 1.4 · 306 · 34.5 · 42(1 + log 4)(1 + log 8n) · 14 · 3.6.

By a simple computation, it follows that

2m log λ < 2.77 · 1014(1 + log 8n). (12)
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Now, rearranging the equation Lk = BnBm as αk

Bm
− λn

4
√
2

= −
(

βk

Bm
+ δn

4
√
2

)
and tak-

ing absolute values in here, we obtain

∣∣∣∣
αk

Bm
− λn

4
√
2

∣∣∣∣ ≤ |β|k
Bm

+ δn

4
√
2

< 1,

where we have used the fact that k ≥ 107 and n > 30. Dividing both sides of the
above inequality by λn

4
√
2
, we get

∣∣∣∣∣
4
√
2αkλ−n

Bm
− 1

∣∣∣∣∣ <
4
√
2

λn
<

6

λn
. (13)

Thus, we again apply Theorem1 to the inequality (13) with γ1 := α, γ2 := λ, γ3 :=
Bm

4
√
2
and b1 := k, b2 := −n, b3 := −1. As one can see that the numbers γ1, γ2, and

γ3 are positive real numbers and elements of the field K = Q(
√
2,

√
5), so D = 4.

Similarly to the argument used to prove that Λ1 �= 0, one can verify that Λ2 =
4
√
2αkλ−n

Bm
− 1 �= 0. Also, since h(γ1) = logα

2 = 0.4812...
2 and h( γ2) = log λ

2 = 1.76275...
2

by (7), we can take A1 := 1 and A2 = 3.6. Besides, using the properties (5) and (9),
we get

h(γ3) = h
(
Bm(4

√
2)−1

)
≤ h (Bm) + h

(
4
√
2
)

≤ log Bm + log 4
√
2 ≤ m log λ.

So we can take A3 := 4m log λ. Also, since k < 8n, it follows that B = 8n. Thus,
taking into account the inequality (13) and using Theorem 1, we obtain

6

λn
> |Λ2| > exp (−C(1 + log 4)(1 + log 8n) · 3.6 · 4m log λ)

or
n log λ − log 6 < C(1 + log 4)(1 + log 8n) · 3.6 · 4m log λ, (14)

where C = 1.4 · 306 · 34.5 · 42. Inserting the inequality (12) into the last inequality,
a computer search with Mathematica gives us that n < 3.6 · 1031.

Now, let us try to reduce the upper bound on n applying Lemma 1. Let

z1 := k logα − (n + m) log λ + log 32.

Then ∣∣1 − ez1
∣∣ <

1

λ2m−1

by (11). If z1 ≥ 0, then we have the inequality z1 ≤ ez1 − 1 = |1 − ez1 | < 1
λ2m−1 .

If z1 < 0, then |1 − ez1 | = 1 − ez1 < 1
λ2m−1 < 1

2 . From this, we get e|z1| < 2, and
therefore
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0 < |z1| < e|z1| − 1 = e|z1| ∣∣1 − ez1
∣∣ <

2

λ2m−1
.

In both cases, the inequality

0 < |z1| <
2

λ2m−1

is valid. That is,

0 < |k logα − (n + m) log λ + log 32| <
2

λ2m−1
.

Dividing this inequality by log λ, we get

0 <

∣∣∣∣k
(
logα

log λ

)
− (n + m) +

(
log 32

log λ

)∣∣∣∣ < 6.62 · λ−2m . (15)

We now put

γ := logα

log λ
, μ := log 32

log λ
, A := 6.62, B := λ, and w := 2m.

If we take M := 2.88 · 1032, then we get q63 > 6M , where q63 is the denominator of
the 63th convergent of γ . In this case, a quick computation usingMathematica gives
us the inequality

ε = ||μq63|| − M ||γ q63|| ≥ 0.449403.

Hence, we can apply Lemma 1 to the inequality (15). UsingMathematica, we can say
that the inequality (15) has no solution for 2m ≥ 44.9945. So m ≤ 22. Substituting
this upper bound for m into (14), we obtain n < 7.26 · 1016.

Now, let

z2 := k logα − n log λ + log

(
4
√
2

Bm

)
.

In this case,
∣∣1 − ez2

∣∣ <
6

λn

by (13). It is clear that 6
λn < 1

4 since n > 30. If z2 > 0, then 0 < z2 < ez2 − 1 < 6
λn . If

z2 < 0, then |1 − ez2 | = 1 − ez2 < 6
λn < 1

4 .From this, we get e|z2| < 4
3 , and therefore

0 < |z2| < e|z2| − 1 = e|z2| ∣∣1 − ez2
∣∣ <

8

λn
.
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In both cases, the inequality

0 < |z2| <
8

λn

is valid. That is,

0 <

∣∣∣∣∣k logα − n log λ + log

(
4
√
2

Bm

)∣∣∣∣∣ <
8

λn
.

Dividing both sides of the above inequality by log λ, we get

0 <

∣∣∣∣∣∣
k

(
logα

log λ

)
− n +

log
(
4
√
2

Bm

)

log λ

∣∣∣∣∣∣
< 4.54 · λ−n. (16)

We now put

γ := logα

log λ
, A := 4.54, B := λ, and w := n.

If we take M := 5.81 · 1017, we get q39 > 6M , where q39 is the denominator of the
39th convergent of γ . Hence, taking

μ :=
log

(
4
√
2

Bm

)

log λ

with m ≤ 22, a quick computation using Mathematica gives us the inequality

ε = ||μq39|| − M ||γ q39|| ≥ 0.448824.

Then, let us again apply Lemma 1.With the help ofMathematica, we can say that the
inequality (16) has no solution for n ≥ 25.6475. In that case, n ≤ 25.This contradicts
our assumption that n > 30. Thus, the proof is completed.
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