
Enhancing the DISSFCM Algorithm
for Data Stream Classification

Gabriella Casalino1,2, Giovanna Castellano1,2(B), Anna Maria Fanelli1,
and Corrado Mencar1,2

1 Computer Science Department, University of Bari “Aldo Moro”, Bari, Italy
{gabriella.casalino,giovanna.castellano,annamaria.fanelli,

corrado.mencar}@uniba.it
2 INdAM Research Group GNCS, Rome, Italy

Abstract. Analyzing data streams has become a new challenge to meet
the demands of real time analytics. Conventional mining techniques are
proving inefficient to cope with challenges associated with data streams,
including resources constraints like memory and running time along with
single scan of the data. Most existing data stream classification meth-
ods require labeled samples that are more difficult and expensive to
obtain than unlabeled ones. Semi-supervised learning algorithms can
solve this problem by using unlabeled samples together with a few labeled
ones to build classification models. Recently we proposed DISSFCM,
an algorithm for data stream classification based on incremental semi-
supervised fuzzy clustering. To cope with the evolution of data, DISS-
FCM adapts dynamically the number of clusters by splitting large-scale
clusters. While splitting is effective in improving the quality of clusters,
a repeated application without counter-balance may induce many small-
scale clusters. To solve this problem, in this paper we enhance DISSFCM
by introducing a procedure that merges small-scale clusters. Preliminary
experimental results on a real-world benchmark dataset show the effec-
tiveness of the method.

Keywords: Data stream classification ·
Semi-supervised fuzzy clustering · Incremental adaptive clustering

1 Introduction

Data stream mining is a recent methodology that deals with the analysis of
large volumes of ordered sequences of data records. Data streams are a manifes-
tation of Big Data, which are characterized by the four ‘V’ dimensions, namely
Volume, Velocity, Variety and Veracity [1]. In particular, data stream mining
assumes that the volume of the sequence of data is so large that records can
be used few times (or just once) for the analysis. Data streams are produced
by sensor networks, e-mails, online transactions, network traffic, weather fore-
casting, health monitoring, social networks, etc., just to cite the most common
applications made available by current technology [2,3].
c© Springer Nature Switzerland AG 2019
R. Fullér et al. (Eds.): WILF 2018, LNAI 11291, pp. 109–122, 2019.
https://doi.org/10.1007/978-3-030-12544-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12544-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-12544-8_9

110 G. Casalino et al.

The requirement of using data records few times for extracting useful infor-
mation involves the development of special-purpose data analysis methods, which
should not require to store the whole stream of data in memory [4–6]. An app-
roach to analyze data streams exploits an incremental generation of informa-
tional patterns, which represent a synthesized view of all data records analyzed
in past and progressively evolve as new data records are available. Incremen-
tal and on-line algorithms are potentially useful to deal with continuous arrival
of data in rapid, time-varying, and potentially unbounded streams since they
continuously incorporate information into their model [7,8].

Data stream mining is applied for different tasks, such as classification, clus-
tering and frequent pattern mining. In this paper, we focus on classification of
data records in a stream, which is deeply studied in literature [4,9–14]. Differ-
ently from most works in literature, which focus on supervised methods [15,16],
we specialize into semi-supervised methods as we do not assume that all data
records are completely labeled; on the other hand, we recognize that, in many
contexts, labeled samples are difficult or expensive to obtain, meanwhile unla-
beled data are relatively easy to collect. For example it is quite easy to collect
new sensor data coming from continuous streams but it may be difficult or
even impossible to manually label all such data. Semi-supervised learning in
the context of data streams is relatively new when compared to supervised and
unsupervised learning [17–20]. Despite several semi-supervised learning methods
have been developed in the literature [21], only few of them have been applied
to classify data streams [22,23]. Moreover, there are few attempts of using fuzzy
clustering for data stream mining, despite fuzzy clustering could be particularly
useful to capture the continuous changes in the clustering structure [24–28].

Based on the idea of combining the benefits of semi-supervised learning and
fuzzy clustering, recently we developed an incremental semi-supervised clustering
method for data stream classification [29], which applies the Semi-Supervised
Fuzzy C-Means algorithm (SSFCM) [30] to data chunks. The method has been
further refined by enabling the dynamic determination of the number of clusters
through an appropriate splitting procedure, leading to the DISSFCM (Dynamic
Incremental Semi-Supervised FCM) algorithm [31]. In essence, DISSFCM applies
SSFCM to data chunks that correspond to a fixed-size collection of contiguous
data records coming from a stream. Furthermore, SSFCM is modified in order
to allow the incremental evolution of clusters; cluster quality is evaluated by
reconstruction error so that, when the quality goes below a threshold, a splitting
procedure is applied in order to divide a low-quality cluster into two higher-
quality clusters. While splitting is effective in improving the quality of clusters,
a repeated application without counter-balance may induce many small-scale
clusters that do not represent meaningful patterns.

In this paper we enhance DISSFCM by introducing a merging procedure that
merges clusters when there are too many clusters or there are clusters with too
few data records. Clusters are merged when they are sufficiently close so as to
not hamper the overall quality of the cluster structure.

Enhancing the DISSFCM Algorithm for Data Stream Classification 111

The organization of the rest of the paper is as follows. Section 2 presents our
method for data stream classification and its extension proposed in this work.
In Sect. 3 the effectiveness of the extended method is evaluated on a benchmark
dataset. The last section draws the conclusion and outlines future work.

2 Dynamic Incremental Semi-Supervised FCM

In this section we describe the complete DISSFCM (Dynamic Incremental Semi-
Supervised FCM) algorithm [31], including a merging mechanism to avoid small-
scale clusters and improve the structure of clusters.

DISSFCM assumes that data belonging to C different classes are continuously
available during time and processed as chunks. Namely, a chunk of N1 data is
available at time t1, a chunk of N2 data is available at t2 and so on1. We denote by
Xt the data chunk available at time t. No assumption is made on the dimension of
chunks that may vary from one chunk to another. One key feature of DISSFCM
is the possibility to exploit partial supervision when available. Namely, when
some pre-labeled data are available in a chunk, their labels can be used to drive
the clustering process. The presence of pre-labeled data is not mandatory but
it should be assured in the first chunk in order to initialize properly the cluster
prototypes.

The core of DISSFCM is the SSFCM (Semi-Supervised FCM) algorithm [30]
that is applied incrementally so as to enable continuous update of clusters based
on new data chunks. At each time step SSFCM granulates data in the current
chunk by producing a set of K clusters represented by K labeled prototypes
P = {p1,p2, . . . ,pK} representatives for the local data chunk they model. Each
prototype pk is a medoid, i.e. it is the datapoint closest to the center ck. Before
starting the clustering process, K labeled data are randomly chosen to initial-
ize the prototypes, so that each cluster prototype is associated to a class label
(K = C). To take into account the evolution of the data during the incremental
clustering process, the cluster prototypes discovered from the previous chunk are
used as pre-labeled prototypes for the current chunk.

To better take into account the data evolution, DISSFCM is equipped with
a splitting mechanism [31] that is applied to the current clusters in order to
divide a low-quality cluster into two higher-quality clusters. The cluster quality
is evaluated in terms of the reconstruction error [30]:

Vk =
∑

xj∈Ck

‖xj − x̂j‖2 (1)

that measures the difference between the original data xj and their “recon-
structed” counterpart x̂j that is derived using the clustering outcome (proto-
types and membership degrees) as follows:

1 Any stream can be turned into a chunked stream by simply waiting for enough data
points to arrive.

112 G. Casalino et al.

x̂j =

∑K
k=1 um

jkpk
∑K

k=1 um
jk

(2)

The splitting mechanism is activated when the reconstruction error on the
current chunk exceeds a tolerance value ε the reconstruction error computed
on the previous chunk. This means that the current number of clusters is not
enough to effectively represent the data, hence the number of clusters should be
augmented.

The cluster having the highest value of the reconstruction error, i.e. the
cluster with lowest reconstruction ability, is selected as candidate for splitting.
The splitting is performed by means of the conditional fuzzy clustering [32]
applied to the collection of data belonging to the cluster so as to create two
novel prototypes. If we denote by S∗ the set of data belonging to the cluster k∗

selected for splitting and by z1 and z2 the two novel prototypes, the conditional
clustering minimizes the following objective function:

J =
2∑

k=1

∑

j∈S∗
fm
jk‖xj − zk‖2 (3)

under the constraint fj1 + fj2 = ujk∗ where fjk is the membership degree of
xj to the new cluster k. The objective function (3) is minimized by iteratively
computing the membership values fjk and the prototypes zk according to:

fjk =
ujk∗

∑2
c=1

(‖xj−zk‖
‖xj−zc‖

)1/(m−1)
(4)

and

zk =

∑
j∈S∗ fm

jkxj∑
j∈S∗ fm

jk

, k = 1, 2; (5)

After conditional clustering, the prototype pk∗ is replaced by the two novel
prototypes z1 and z2 that inherit the class label from pk∗ . Then membership
values uik are recomputed as in SSFCM. The splitting can be repeated until
the reconstruction error drops below the previous value. A maximum pre-fixed
number Ns of splittings is allowed for each chunk.

Since a repeated application of the splitting without counter-balance may
induce many small-scale clusters that do not represent meaningful patterns, in
this work we enhance DISSFCM by introducing a merging procedure that merges
clusters when there are too many clusters or there are clusters with too few data
records in a chunk. Clusters are merged when their prototypes are close so as to
not hamper the overall quality of the cluster structure. The merging mechanism
is activated when one of the following conditions is met:

1. the number of clusters exceeds a predefined threshold θ;
2. the number of data belonging to a cluster is below a predefined threshold λ.

Enhancing the DISSFCM Algorithm for Data Stream Classification 113

In case 1. we select the nearest prototypes having the same class label as candi-
dates for merging. We denote by ps and pl the nearest prototypes among all the
current cluster prototypes sharing the same label. The new prototype p obtained
by merging ps and pt is given by the following formula:

p =
∑N

i=1(uis + uit)mxi∑N
i=1(uis + uit)m

(6)

where uis and uit are the membership values of xi to cluster s and cluster t.
In case 2. the prototype of the cluster with low number of data is merged with
the closest cluster prototype, using Eq. (6). In each case, the merging reduces
the number of clusters by one. The merging is repeated until there are no small
clusters nor too many clusters. However, a maximum pre-fixed number Nm of
merges is allowed for each chunk.

Algorithm 1. DISSFCM
Require: Data stream of chunks X1, X2, ... containing few labeled data belonging to

C classes
Require: Initial set P0 of K labeled prototypes containing at least one prototype per

class;
Ensure: P : labeled prototypes; K: number of prototypes
1: t ← 1
2: K ← |P0|
3: P ← P0

4: while ∃ nonempty chunk Xt do
5: Xt ← Xt ∪ P /* Add previous prototypes to the current chunk */
6: P, U ← SSFCM(Xt, K, P)
7: ns ← 0 /* Number of splits */

8: V
(t)
max ← reconstruction error(Xt, P, U)

9: while (V
(t)
max − V

(t−1)
max > ε) and (ns < MAXs) do

10: P, U ← split(Xt, P, U)

11: V
(t)
max ← reconstruction error(Xt, P, U)

12: ns ← ns + 1
13: end while
14: nm ← 0 /* Number of merges */
15: while (|P | > θ or ∃k :

∑Nt
j=1 ujk < λ) and (nm < MAXm) do

16: P, U ← merge(Xt, P, U)
17: nm ← nm + 1
18: end while
19: K ← |P |
20: Classify data in Xt using labeled prototypes in P
21: t ← t + 1
22: end while
23: return P

114 G. Casalino et al.

Fig. 1. Outline of DISSFCM. (Color figure online)

The overall scheme of DISSFCM enhanced with merging is shown in Fig. 1
and described in Algorithm 1. The algorithm requires the data stream as a
sequence of chunks and an initial collection of labeled prototypes such that each
class label is represented by at least one prototype. After application of SSFCM
clustering (Step 6) the resulting prototypes are labeled automatically due to the
semi-supervised nature of SSFCM. The derived prototypes are the basis for the
classification process (Step 20). Indeed, the derived labeled prototypes are used
to classify all the data in the current chunk via a matching mechanism. Namely,
each data sample is matched against all prototypes and assigned to the class
label of the best-matching prototype. The matching mechanism is based on the
standard Euclidean distance. At the end, the algorithm returns the most recent
collection of the prototypes, reflecting the data structure of the last data chunk.
Notice that the returned collection can be used as input for a new run of the
algorithm as long as new data are available from the data stream.

3 Experimental Results

Numerical experiments were conducted to evaluate the effectiveness of the pro-
posed algorithm in data stream classification. The Optical Recognition of Hand-
written Digits dataset2 has been considered. It contains 5, 620 images of hand-
written digits belonging to 10 classes (namely, 0, 1, 2, . . . , 9). We used 10% of the
samples as test set, and we partitioned the remaining 90% in a fixed number of
chunks in order to simulate a data stream. The class distribution was preserved
both in the chunks and in the test set.

2 https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+
digits.

https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits

Enhancing the DISSFCM Algorithm for Data Stream Classification 115

Table 1. Parameters of the enhanced DISSFCM algorithm.

Parameter values
MaxSplits 10
MaxMerge 2
%Labeling 75%
#Chunk 5 10 15 20

ε 25 50 100

The accuracy measure has been used to evaluate the classification results:

Acc =
|{xj |yj = aj}|

Nt

where xj is the j-th data point, yj is the true class label and aj is the predicted
class label, Nt is the number of data points. After the t-th chunk has been
processed, accuracy is computed not only on the test set, but also on the t-th
chunk and on the previous processed chunks.

The purity external clustering measure has been used to evaluate the extent
to which clusters contain a single class, after each chunk arrival. To compute
purity, each cluster Ck is assigned to the class of ak of its prototype, and then
the accuracy of this assignment is measured by counting the number of correctly
assigned data points and dividing by the cardinality of the cluster:

Pur(k) =
|{xj |xj ∈ Ck ∩ yj = ak}|

|Ck|
Then an average purity is computed on all the clusters.

We carried out some preliminary experiments by varying the parameters
of the DISSFCM algorithm. Table 1 summarizes the experimental settings. A
first evaluation was done by observing the reconstruction error. As an example,
Fig. 2 shows the trend of the reconstruction error with #Chunk = 15 and ε = 50.
Green dots correspond to the error after processing the current chunk, the blue
dots indicate the error after a split and the yellow ones the error after a merge.
Numbers on the dots indicate the number of prototypes (clusters). It can be
seen that every time the reconstruction error exceeds the previous value plus
the threshold ε, a split is activated and a new cluster is created (the number
of clusters upon the blue dot is increased by one). When a cluster with a small
number of samples occurs, a merge is activated and the number of clusters is
reduced. It can be seen that most peaks occur when a new chunk arrives. This
means that DISSFCM is still learning the correct model to fit the data and it
improves the model as soon as a new chunk arrives (i.e. more training data).
We observe that the split and merge steps help the model to fit the data. This
could be better observed from Fig. 3, where the average purity values obtained

116 G. Casalino et al.

Fig. 2. Trend of the reconstruction error Vmax with #Chunk = 15 and ε = 50. (Color
figure online)

Table 2. Number of cluster prototypes for each class at the end of the incremental
process with #Chunk = 15, ε = 50.

Tot
Class 0 1 2 3 4 5 6 7 8 9 10

#Cluster 1 1 6 1 2 2 1 1 2 1 18

on single chunks during the learning process are reported. It can be seen that
after processing the fifth chunk, the average value of purity decreases. When the
sixth chunk arrives one split and one merge are applied (Fig. 2) rising the purity
value. The same behavior could be observed after chunks 14-th and 15-th are
processed. The processing of all the chunks ends with 18 cluster prototypes that
are used to represent the 10 original classes. The number of cluster prototypes
for each class is reported in Table 2.

Table 3 reports the accuracy computed on the chunks at each step ti, during
the incremental process with #Chunk = 15 and ε = 50. Bold terms represent
accuracy values on the current chunk. We observe that the model is properly
adapted to the new arrived chunk. At each time step we also evaluated the
classification accuracy of the current model on the previously seen chunks to
verify if the model still fits the old data.

To assess the effectiveness of DISSFCM, we evaluated the classification accu-
racy of the final models for each configuration of parameters (#Chunk, ε).
Results are summarized in Table 4. Both on the test and the training sets we can
observe that the impact of the tolerance ε is higher when the number of chunks

Enhancing the DISSFCM Algorithm for Data Stream Classification 117

Table 3. Accuracy obtained on single chunks during the incremental process, with
#Chunk = 15, ε = 50.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
K 10 10 11 11 11 11 11 11 11 11 11 12 15 19 18
X1 0.84 0.88 0.87 0.85 0.83 0.84 0.84 0.84 0.84 0.84 0.83 0.85 0.86 0.85 0.88
X2 - 0.86 0.88 0.88 0.85 0.82 0.82 0.81 0.82 0.79 0.80 0.79 0.82 0.82 0.82
X3 - - 0.82 0.82 0.79 0.81 0.81 0.81 0.81 0.79 0.79 0.76 0.79 0.79 0.81
X4 - - - 0.82 0.81 0.82 0.82 0.79 0.80 0.80 0.83 0.82 0.83 0.83 0.89
X5 - - - - 0.81 0.81 0.78 0.77 0.79 0.79 0.81 0.76 0.80 0.81 0.80
X6 - - - - - 0.84 0.83 0.82 0.83 0.84 0.85 0.81 0.82 0.82 0.82
X7 - - - - - - 0.86 0.86 0.86 0.86 0.84 0.83 0.87 0.86 0.88
X8 - - - - - - - 0.85 0.85 0.85 0.86 0.83 0.86 0.83 0.88
X9 - - - - - - - - 0.87 0.86 0.87 0.85 0.89 0.86 0.89
X10 - - - - - - - - - 0.82 0.83 0.77 0.79 0.80 0.85
X11 - - - - - - - - - - 0.84 0.81 0.82 0.80 0.87
X12 - - - - - - - - - - - 0.81 0.84 0.84 0.87
X13 - - - - - - - - - - - - 0.83 0.84 0.86
X14 - - - - - - - - - - - - - 0.87 0.87
X15 - - - - - - - - - - - - - - 0.91

Fig. 3. Average purity obtained on single chunks during the incremental process, with
#Chunk = 15, ε = 50 on training and test sets. (Color figure online)

grows (i.e. the data samples in each sample decreases). Indeed the accuracy val-
ues with 5 and 10 chunks are stable when varying the values of ε. With 15 and
20 chunks the accuracy is more sensitive to the value of ε. This behavior can be
better observed in the plots of Fig. 4 that show the trend of the accuracy on the
test set during the processing of the chunks, varying the ε tolerance.

This is explained by observing that the higher the number of chunks, the
less the number of samples in each chunk; therefore the algorithm has fewer

118 G. Casalino et al.

samples to learn from. Thus the number of the samples in each chunk affects
the stability of the algorithm. With 5 and 10 chunks (high number of data) the
algorithm keeps the same behavior as new chunks arrive (Fig. 4(a) and (b)). As
the number of chunks increases (and hence the number of data in each chunk
decreases), the algorithm is more unstable and needs more time to converge to
an accurate model (Fig. 4(c) and (d)).

Table 4. Classification accuracy on the whole training set (a) and the test set (b),
varying the number of chunks and the tolerance ε.

(a) Training set

chunks
ε 5 10 15 20
25 0.84 0.85 0.88 0.93
50 0.84 0.85 0.91 0.83
100 0.84 0.85 0.85 0.85

(b) Test set

chunks
ε 5 10 15 20
25 0.86 0.84 0.85 0.89
50 0.86 0.85 0.87 0.78
100 0.86 0.84 0.81 0.79

Finally, DISSFCM enhanced with merge was compared with its previous
version [31] and with ILFM (Incremental Learning Fuzzy Measures) [33], which
is a supervised incremental method based on Choquet integrals to classify data
streams. Comparative results with #chunks = 15, ε = 50 and labeling = 75%
are plotted in Fig. 5.

It can be seen that the introduction of the merging mechanism in DISSFCM
slightly deteriorates the classification results with respect to the previous version
which only applies splits. However, it should be noted that the final classification
model provided by the novel version of DISSFCM is very simple (18 clusters)
in comparison to the final model obtained by the previous version of DISSFCM
which was based on 70 clusters.

The models obtained by DISSFCM were also compared to the model built
by ILFM. It can be seen that the classification accuracy of ILFM is slightly
better. However it should be noted that ILFM is a supervised method, thus it
requires completely labeled data, that are difficult to find in real applications.
Conversely, DISSFCM works with partially labeled data. Moreover the model
produced by ILFM is an ensemble of classifiers, hence it is far more complex
than our model. On the overall, DISSFCM achieves a good balance between
accuracy and complexity of the classification model, while taking into account
the evolution of data.

Enhancing the DISSFCM Algorithm for Data Stream Classification 119

Fig. 4. Accuracy on the test set varying ε for #Chunk equal to 5 (a), 10 (b), 15 (c)
and 20 (d). (Color figure online)

120 G. Casalino et al.

Fig. 5. Comparing the enhanced DISSFCM against its previous version (no merge),
and ILMF. (Color figure online)

4 Conclusions

In this work we have described DISSFCM, a dynamic incremental semi-
supervised version of the standard FCM clustering that is suitable for data
stream classification. DISSFCM enables the structure of clusters to change
dynamically: when the reconstruction error of data given a clustering structure
becomes inadequate, the most troublesome clusters are split into finer grained
clusters that better represent data. Moreover, when few samples are grouped in a
cluster, a merge step is activated for reducing the number of groups. Numerical
preliminary analysis has shown that the split tolerance ε influences the accu-
racy results when the chunks dimension is small. Finally, it has been observed
that the merge mechanism has a small negative impact on the accuracy of the
model, when compared with DISSFCM without merge. However, in the face of
such accuracy reduction we observe a significant simplification of the final model
(18 cluster for DISSFCM with split and merge, against 70 for DISSFCM with
split only). Similar considerations can be derived by comparing DISSFCM (with
merge) and ILMF.

Further work is devoted to analyze the influence of the chunk composition
on DISSFCM, so as to better take into account real data stream scenarios,
where the incoming chunks may have different sizes and may contain data with
inhomogeneous class distributions. Moreover further research is going on along
the direction of introducing a mechanism to detect outliers, concept drift and
the emergence of new classes.

References

1. Eaton, C., Zikopoulos, P.: Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data, 1st edn. McGraw-Hill Osborne Media, New York
(2011)

2. Casalino, G., Castiello, C., Del Buono, N., Mencar, C.: Intelligent Twitter data
analysis based on nonnegative matrix factorizations. In: Gervasi, O., et al. (eds.)
ICCSA 2017. LNCS, vol. 10404, pp. 188–202. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62392-4 14

https://doi.org/10.1007/978-3-319-62392-4_14
https://doi.org/10.1007/978-3-319-62392-4_14

Enhancing the DISSFCM Algorithm for Data Stream Classification 121

3. Casalino, G., Castiello, C., Del Buono, N., Mencar, C.: A framework for intelligent
Twitter data analysis with nonnegative matrix factorization. Int. J. Web Inf. Syst.
14(3), 334–356 (2018)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2002,
pp. 1–16. ACM, New York (2002)

5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
SIGMOD Rec. 34(2), 18–26 (2005)

6. Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman &
Hall/CRC, Boca Raton (2010)

7. Chandak, M.B.: Role of big-data in classification and novel class detection in data
streams. J. Big Data 3(1), 5 (2016)

8. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209
(2014)

9. Ferranti, A., Marcelloni, F., Segatori, A., Antonelli, M., Ducange, P.: A distributed
approach to multi-objective evolutionary generation of fuzzy rule-based classifiers
from big data. Inf. Sci. 415, 319–340 (2017)

10. Ducange, P., Pecori, R., Mezzina, P.: A glimpse on big data analytics in the frame-
work of marketing strategies. Soft Comput. 22(1), 325–342 (2018)

11. Lughofer, E., Pratama, M.: Online active learning in data stream regression using
uncertainty sampling based on evolving generalized fuzzy models. IEEE Trans.
Fuzzy Syst. 26(1), 292–309 (2018)

12. Hyde, R., Angelov, P., MacKenzie, A.R.: Fully online clustering of evolving data
streams into arbitrarily shaped clusters. Inf. Sci. 382–383, 96–114 (2017)

13. Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models.
Evol. Syst. 3(3), 135–151 (2012)

14. Olorunnimbe, M.K., Viktor, H.L., Paquet, E.: Dynamic adaptation of online ensem-
bles for drifting data streams. J. Intell. Inf. Syst. 50(2), 291–313 (2018)

15. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2000, pp. 71–80. ACM (2000)

16. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2001, pp. 97–106. ACM (2001)

17. Nguyen, H.-L., Woon, Y.-K., Ng, W.-K.: A survey on data stream clustering and
classification. Knowl. Inf. Syst. 45(3), 535–569 (2015)

18. Mousavi, M., Bakar, A.A., Vakilian, M.: Data stream clustering algorithms: a
review. Int. J. Adv. Soft Comput. Appl. 7(3), 13 (2015)

19. Toshniwal, D.: Clustering techniques for streaming data - a survey. In: 2013 3rd
IEEE International Advance Computing Conference, IACC, pp. 951–956, February
2013

20. Ghesmoune, M., Lebbah, M., Azzag, H.: Micro-batching growing neural gas for
clustering data streams using spark streaming. Proc. Comput. Sci. 53, 158–166
(2015). INNS Conference on Big Data 2015 Program, San Francisco, CA, USA,
8–10 August 2015

21. Zhu, X.: Semi-supervised learning literature survey. Technical report 1530, Com-
puter Sciences. University of Wisconsin-Madison (2005)

22. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training.
In: Bartlett, P.L., Mansour, Y. (eds.) COLT, pp. 92–100. ACM (1998)

122 G. Casalino et al.

23. Zhou, Z.-H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers.
IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

24. Beringer, J., Hüllermeier, E.: Fuzzy clustering of parallel data streams. In:
Advances in Fuzzy Clustering and Its Application, pp. 333–352 (2007)

25. Abdullatif, A., Masulli, F., Rovetta, S.: Clustering of nonstationary data streams:
a survey of fuzzy partitional methods. Wiley Interdisc. Rev.: Data Min. Knowl.
Discov. 8(4), e1258 (2018)

26. Mostafavi, S., Amiri, A.: Extending fuzzy C-means to clustering data streams. In:
20th Iranian Conference on Electrical Engineering, ICEE 2012, pp. 726–729, May
2012

27. Upadhyay, D., Jain, S., Jain, A.: A fuzzy clustering algorithm for high dimensional
streaming data. J. Inf. Eng. Appl. 3(10), 1–9 (2013)

28. Geweniger, T., Fischer, L., Kaden, M., Lange, M., Villmann, T.: Clustering by
fuzzy neural gas and evaluation of fuzzy clusters. Comput. Intell. Neurosci. 2013,
9 (2013)

29. Castellano, G., Fanelli, A.M.: Classification of data streams by incremental semi-
supervised fuzzy clustering. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF
2016. LNCS, vol. 10147, pp. 185–194. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-52962-2 16

30. Pedrycz, W.: Algorithms of fuzzy clustering with partial supervision. Pattern
Recogn. Lett. 3(1), 13–20 (1985)

31. Casalino, C., Castellano, G., Mencar, C.: Incremental adaptive semi-supervised
fuzzy clustering for data stream classification. In: Proceedings of the 2018 IEEE
Conference on Evolving and Adaptive Intelligent Systems, EAIS 2018, Rhodes,
Greece, 25–27 May 2018, pp. 1–7 (2018)

32. Li, P., Wu, X., Hu, X., Wang, H.: Learning concept-drifting data streams with
random ensemble decision trees. Neurocomputing 166(C), 68–83 (2015)

33. Xuefei, L., Huimin, F., Hongbo, S.: Incremental learning fuzzy measures with Cho-
quet integrals in fusion system. J. Chem. Pharm. Res. 6, 102–112 (2014)

https://doi.org/10.1007/978-3-319-52962-2_16
https://doi.org/10.1007/978-3-319-52962-2_16

	Enhancing the DISSFCM Algorithm for Data Stream Classification
	1 Introduction
	2 Dynamic Incremental Semi-Supervised FCM
	3 Experimental Results
	4 Conclusions
	References

