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Abstract. In medical problems both the information and the reason-
ing used by clinicians for drawing conclusions about patients’ health are
inherently uncertain and vague. Fuzzy logic is a powerful tool for rep-
resenting and handling this uncertainty, leading to fuzzy systems that
can support decisions in medical diagnosis. In this work we propose a
fuzzy rule-based system to support the expert in decision making for
cardiovascular diseases that are of particular interest due to their obvi-
ous medical diagnostic importance. Preliminary experimental results on
both healthy and ill people show the effectiveness of the fuzzy system in
simulating the decision of the expert.
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1 Introduction

Medical Informatics is a recent multidisciplinary field dealing with the use of the
information technology for the healthcare industry.

The amount of patient health data is increasing exponentially. The vol-
ume of healthcare data in 2013 has been estimated at 153 Exabytes and it will
reach 2314 Exabytes by 20201. Traditional manual data analysis techniques have
became unsuitable to extract useful information from this big amount of data,
thus automatic mechanisms are necessary [1,2]. However, expert knowledge can-
not be completely replaced by machines. Intelligent data analysis (IDA) aims at
combining human expertise and computational models for advanced data analy-
sis [3–5], in order to narrow the gap between data gathering and their comprehen-
sion [6]. In the medical field, more than in others, this interaction is mandatory:

1 https://www.cio.com/article/2860072/healthcare/how-cios-can-prepare-for-
healthcare-data-tsunami.html.
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on the one hand the experts need automatic tools to transform raw and complex
data into easily interpretable information, on the other hand algorithm outputs
alone are not sufficient for medical diagnosis, since expert knowledge is needed
to understand them. Several IDA methods have been applied for supporting
decision making in medicine [6–9].

The representation of medical knowledge and the decision making in the pres-
ence of uncertainty and imprecision are of fundamental importance to derive a
suitable model for medical decision making. Indeed, in medical problems, both
patient information and the reasoning used by clinicians for drawing conclusions
about patients’ health, are inherently uncertain and vague [10]. Among the dif-
ferent IDA methods, fuzzy logic is the most suitable mean for representing and
handling this uncertainty. In particular, fuzzy logic proved to be a powerful tool
for decision support systems (DSSs), such as medical rule-based systems [11].
Several medical Decision Support Systems (DSSs) have been developed using
fuzzy rule-based systems [10–20]. These fuzzy systems use linguistic terms to
represent the patients’ symptoms, and a fuzzy inference mechanism to derive a
suggestion. The domain knowledge is embedded into the knowledge base in form
of fuzzy rules.

In this paper we propose a fuzzy rule-based system to support the medical
expert in decision making for cardiovascular risk assessment. Starting from the
patients’ vital signs such as heart rate (HR), breath rate (BR), peripheral oxygen
saturation (SpO2) and lips color, we designed a fuzzy rule-based system that can
suggest a level of cardiovascular risk. The fuzzy rules are defined according to
the expert knowledge with the help of the FISDeT tool [21].

The rest of the paper is organized as follows. In Sect. 2 the vital signs related
to cardiovascular diseases are introduced. The fuzzy rule-based decision support
system is described in Sect. 3. Section 4 reports preliminary results of experi-
ments aimed to prove the accuracy of the fuzzy system in simulating the expert
reasoning. In Sect. 5 we draw conclusions and outline future works.

2 Vital Signs of Cardiovascular Disease

Heart rate (HR), breath rate (BR), and peripheral oxygen saturation (SpO2)
are parameters typically considered by physicians to formulate a diagnosis of
cardiovascular disease. All of them are descriptive enough of the human health
condition providing also the additional benefit of being easily detectable.

HR is defined as the speed of the heartbeat, i.e., the number of heart con-
tractions per minute (BPM). Such a value is varying according to a number of
conditions affecting the human organism, ranging from the physical exercise to
the stress, the illness, and the drug consumption. Even age, sex, and physical
fitness provoke change in the HR values. However, the average HR of a resting
male adult falls in the range of 60 to 90 BPM.

BR is defined as the speed of the breath sequence, i.e., the number of breaths
occurring per minute. The common factors influencing the BR evaluation are age
and physical exercise. However, the average BR of a resting male adult falls in
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the range of 12 to 18 breaths per minute. A modified value of BR (which can
be a reduced rate, bradypnea, or an augmented rate, tachypnea) is commonly
associated to various illness conditions.

SpO2 is evaluated as the percentage of oxygen-saturated hemoglobin with
respect to the total hemoglobin (unsaturated and saturated) present in the blood.
SpO2 values are considered normal when falling in the range of 95 to 100%.
Values below 90% indicate pathological conditions (hypoxemia), inducing organ
impairment when falling below 80%.

Different methods can be adopted to measure the vital signs previously
described. Among them, photoplethysmography (PPG) is commonly employed
in several medical settings and is implemented in simple devices that are com-
mercially available at the present days. By means of photoplethysmograph tech-
niques it is possible to perform optical measurements to detect volumetric change
of organs and to assess skin perfusion [22]. PPG is easy to use, noninvasive and is
founded on the idea that plethysmoograph signals, acquired through the enlight-
enment of the skin, provide information concerning changes in blood flow, thus
contributing to design a picture of the cardiovascular state [23]. Some PPG sys-
tems are applied directly on specific anatomical parts (which can be fingers,
forearms, etc.). Some other systems are contactless, thus constituting a kind of
remote-PPG (rPGG) systems which typically rely on facial examination. The
simple employment of computer webcams proved to be effective in detecting the
vital signs of interest for subsequent analysis [24–28].

The human face provides also several clues about the health condition. Some
kinds of pathologies can be identified through the analysis of some face features.
In particular, a specific element useful to assess human wellness is the color of
lips. Normal people show a pinkish nuance in their lips, while altered states
or illness may provoke a modification of this color. Pale lips are a symptom of
different problems, ranging from vitamin deficiency to anemia. Lips appearing
purplish or bluish can refer to cardiovascular or respiratory disorders which may
require a punctual medical consulting. Automatic analysis of the lips color can
be suitably performed by means of image processing techniques applied to a
specific ROI (region of interest) extracted from the image of the patient’s face.

In the following section we discuss how the described vital signs have been
involved in the design of a fuzzy inference system capable to provide a risk level
of cardiovascular disease.

3 The Fuzzy Rule-Based Decision Support System

The aim of this work is to set up a fuzzy rule-based system which can support
the diagnosis of cardiovascular diseases by assessing a risk level for each patient
according to her measured vital signs.

To design the rule base of the fuzzy inference system (FIS) we exploited
FISDeT (Fuzzy Inference System Development Tool) [21], a software conceived
to facilitate the creation and the management of fuzzy rule-based systems. Key-
points of FISDeT are the adoption of the FCL standard for the description of a
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(a) Heart Rate variable

(b) Respiration Rate variable

(c) Blood oxygen variable

(d) Color lips variable

Fig. 1. Fuzzy sets partitioning the domain of the linguistic variables related to the
vital signs.

FIS, the freely availability through the open-source development methodology,
and a general-purpose approach which allows both the creation of a knowledge
base and the inference of results from the analysis of input data. Developed in
Python, FISDeT is endowed with a GUI supporting the user through all the
steps required to define a FIS. FISDeT has been successfully applied to create
FIS for classification problems [29].

The input-output configuration we considered to design the FIS draws a rela-
tionship between the four vital signs (HR, BR, SpO2, lips color) and a risk level
referred to cardiovascular diseases. The parameters involved in the FIS design
have been investigated with the support coming from a physician. Specifically,
the fuzzy variables and their fuzzy sets have been arranged as follows.
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HR This parameter is associated with the linguistic input variable
Heart rate, whose domain is the numerical range [10–180]. Such
a linguistic variable may assume the values corresponding to three
linguistic terms: Bradycardia, Normal, and Tachycardia. Triangular
fuzzy sets are associated to the linguistic terms, partitioning the
domain of the Heart rate variable as follows (triangle vertices are
reported in parenthesis as coordinates):

–Bradycardia: (30, 0) (35, 1) (52, 0);
–Normal : (48, 0) (75, 1) (100, 0);
–Tachycardia: (95, 0) (110, 1) (180, 0).

Figure 1(a) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Heart rate variable.

BR This parameter is associated to the linguistic input variable
Respiration rate, whose domain is the numerical range [0–80].
Such a linguistic variable may assume the values corresponding to
three linguistic terms: Bradypnea, Normal, and Tachypnea. Trian-
gular fuzzy sets are associated to the linguistic terms, partitioning
the domain of the Respiration rate variable as follows:

–Bradypnea: (0, 0) (6, 1) (8, 0);
–Normal : (7, 0) (15, 1) (23, 0);
–Tachypnea: (20, 0) (35, 1) (80, 0).

Figure 1(b) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Respiration rate variable.

SpO2 This parameter is associated to the linguistic input variable
Blood oxygen, whose domain is the numerical range [75–100]. Such
a linguistic variable may assume the values corresponding to three
linguistic terms: Critical, Low, and Normal. Triangular fuzzy sets
are associated to the linguistic terms, partitioning the domain of
the Blood oxygen variable as follows:

–Critical : (75, 0) (83, 1) (90, 0);
–Low : (87, 0) (93, 1) (95, 0);
–Normal : (94, 0) (97, 1) (100, 0).

Figure 1(c) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Blood oxygen variable.

Lips color This parameter is associated to the linguistic input variable
Color lips, whose domain is identified in the numerical range [0–
14]. Such a domain derives from the identification of 15 hues in the
color scale which can be properly labeled through linguistic expres-
sions. They are altogether reported in Fig. 2, where the hues are
grouped into three reference categories, corresponding to the lin-
guistic terms related to the Color lips variable. Triangular fuzzy
sets are associated with the linguistic terms, partitioning the domain
of the Color lips variable as follows:

–Regular : (0, 0) (3, 1) (6, 0);
–Altered : (5, 0) (7.5, 1) (10, 0);
–Purplish: (8, 0) (12, 1) (16, 0).
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(a) Regular lips color (b) Altered lips color (c) Purplish lips color

Fig. 2. The set of 15 hues describing the domain of the Color lips variable. They are
grouped into three categories: Regular, Altered, and Purplish.

Figure 1(d) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Color lips variable.

Risk level This parameter is associated to a linguistic output variable named
Risk level that assumes the values of four linguistic terms to
be intended as class labels: Risk low, Risk medium, Risk high, and
Risk very high.

As concerning the structural organization of the FIS designed by FISDeT, we
adopted the common choices regarding the t-norm and the t-conorm operators.
The inference of the fuzzy system is carried on through the employment of the
min and the max functions, determining the rule activation strength and the
aggregation of rules respectively.

Once the input-output configuration has been properly set up, we defined
the knowledge base to be embedded in the FIS. We considered all the possible
combinations of input values, so that a number of 81 rules has been compiled.
The rules have been crafted following some general guidelines collected during
an interview with the physician. Such guidelines can be sketched as follows:

– when all the vital signs exhibit standard values, the risk level is low;
– when one vital sign exhibits a nonstandard value, the risk is medium;
– when two vital signs exhibit some nonstandard values, the risk is high;
– when three vital signs exhibit some nonstandard values, the risk is very high.

Following such guidelines, we compiled the fuzzy rule base of the decision-
support FIS. The derived fuzzy rules embed the expert knowledge in a very
interpretable linguistic form. This can be appreciated by the illustrative excerpt
shown in Table 1.

4 Experimental Results

To test the effectiveness of the fuzzy inference system, we performed an evalua-
tion based on real data coming from the examination of 116 persons. The vital
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Table 1. Excerpt of the fuzzy rule base

Premise (IF) Consequent (THEN)

Heart rate is Normal and
Respiration rate is Normal and
Blood oxygen is Normal and
Color lips is Regular

Risk level is Risk low

Heart rate is Normal and
Respiration rate is Bradypnea and
Blood oxygen is Normal and
Color lips is Regular

Risk level is Risk medium

Heart rate is Normal and
Respiration rate is Tachypnea and
Blood oxygen is Critical and
Color lips is Regular

Risk level is Risk high

Heart rate is Tachycardia and
Respiration rate is Tachypnea and
Blood oxygen is Critical and
Color lips is Regular

Risk level is Risk very high

Heart rate is Tachycardia and
Respiration rate is Tachypnea and
Blood oxygen is Low and Color lips

is Purplish

Risk level is Risk very high

signs related to the HR, BR, and SpO2 parameters have been obtained through
the collection of PPG signals. To acquire the information concerning the lips
color, we processed the face image of each person so as to identify the ROI
related to the lips. Subsequently the ROI was processed to derive the dominant
color information. To do this, the K-means clustering algorithm was applied to
perform a quantization of the color into K = 3 levels (see Fig. 3). Finally, the K
colors were averaged to derive a unique dominant color.

Once collected the data related to vital signs, we asked the physician to
associate a risk level to each sample. Table 2 reports an illustrative excerpt from
the dataset. Then, we applied the FIS to each sample in order to compare the
inferred result with the human decision. In practice, we intended the physician’s
hints as the actual classes to be considered against the risk levels provided by
the fuzzy system. The results of comparison were examined at different levels.

Fig. 3. Example of lips color quantization using K-means.
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Table 2. Some samples from the dataset.

Subject HR BR SpO2 Lips color Risk level

S1 73 10.7 98.9 12 Risk low

S2 98.3 9.4 98.4 12 Risk medium

S3 136.6 9 94 12 Risk very high

S4 79.1 10.8 93.6 1 Risk medium

S5 88.4 21.2 98 1 Risk low

S6 70.8 31.4 92 1 Risk high

As a first note, we observe that the overall value of classification accuracy
is 68.97%. However, accuracy alone may be a misleading index, especially when
it is considered during the analysis of unbalanced datasets (which is the case at
hand, since the individuals who underwent the screening were mostly healthy
persons). Therefore, we performed a further analysis evaluating the accuracy
related to each of the four output classes, together with additional measures that
are commonly considered in classification tasks. In particular, while analyzing a
single class c, we consider true positive (tp), true negative (tn), false positive
(fp), and false negative (fn) classification results, and we take into account the
following measures:

Accuracy: ratio of correct discriminations w.r.t. class c

acc =
tp + tn

tp + fp + fn + tn

Positive Predictive Value: ratio of correctly classified samples w.r.t. those
identified as pertaining to class c

ppv =
tp

tp + fp

Negative Predictive Value: ratio of correctly classified samples w.r.t. those
identified as not pertaining to class c

npv =
tn

tn + fn

True Positive Rate: ratio of samples correctly classified as belonging to class
c w.r.t. those actually belonging to class c

tpr =
tp

tp + fn

True Negative Rate: ratio of samples correctly classified as not belonging to
class c w.r.t. those actually not belonging to class c

tnr =
tn

fp + tn
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Table 3. Evaluation measures derived for each output class.

acc tnr tpr ppv npv

Risk low 0.83 1 0.77 1 0.6

Risk medium 0.75 0.76 0.57 0.13 0.96

Risk high 0.91 0.94 0.50 0.4 0.96

Risk very high 0.88 0.96 0.40 0.6 0.91

Table 3 reports the values of these measures evaluated for each class. It can
be observed how the tnr and npv values are generally greater than those of
tpr and ppv. This means that the knowledge embedded into the FIS is more
effective in determining the non-membership to each class than the sensitivity
to each specific risk level. This could be related to the fact that an unbalanced
dataset is tackled by a set of rules crafted while keeping in mind a more general
setting.

Table 4. Confusion matrix.

Fuzzy decision system

Risk low Risk medium Risk high Risk very high

Expert

Risk low 66 17 2 1

Risk medium 0 4 2 1

Risk high 0 2 4 2

Risk very high 0 7 2 6

The obtained results can be further analyzed by considering the information
conveyed by the overall confusion matrix depicted in Table 4. Such an overview
allows to better focus a specific feature of the classification problem at hand: the
involved classes are ranked in a range going from a low to a very high risk level.
In this sense, a misclassification involving classes that are distant in this rank
is more troublesome than others involving one class next to another. From the
analysis of Table 4 we can argue that only 66 out of 86 low risk samples have been
correctly identified. However, almost every misclassified low risk sample has been
associated with the most similar class (Risk medium). The same argument goes
with the misclassification of medium risk samples (only one case has been shifted
toward a very high risk) and high risk samples (misclassified samples are related
to adjacent classes). On the other hand, management of the Risk very high class
is somewhat troublesome since 7 out of 15 cases have been incorrectly related to
a medium risk level.

As a conclusive remark, we point out that the misclassifications produced by
the fuzzy system in most cases represent an overestimation of the risk level. In
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medical contexts this can be read as a problem with reduced harm, the opposite
occurrence being regarded as the cause of much more serious consequences.

5 Conclusions

In this work we have presented a fuzzy rule-based system for decision support in
the medical realm of cardiovascular diseases. Preliminary experimental results
on both healthy and ill people show the effectiveness of the fuzzy system in
simulating the decision of the expert. The fuzzy rules developed so far rely only
on four main vital signs of a person, namely heart rate, breath rate, blood oxygen
saturation and lips color. The choice of these parameters lies in the simplicity of
their measurement together with the reliability of their associated information.
For these reasons they represent the ideal parameters to be involved in a wearable
device or in a domotic system endowed with the inferring capabilities provided by
our fuzzy system. As a further improvement, we intend to enrich the knowledge
base of the fuzzy decision support system by including other information about
the patient, such as demographic features (age and sex) and information coming
from the patient’s history and the family history.

Acknowledgement. The authors are thankful to Dr. Ilaria Engaddi from “Istituti
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