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Abstract. Despite the huge success of machine learning methods in the
last decade, a crucial issue is to control the support of the data used in
inference, so that data that are too far from the training set are given
low confidence by default. The most important class that features this
ability is that of prototype-based methods which are based on clustering
or vector quantization as a representation learning model. This paper
surveys a family of popular soft clustering methods, framing them in
a unified formalism. It also discusses the peculiarities of each of them.
A large fraction of the paper is devoted to clarifying the role of model
parameters and to providing some guidelines on how to set up these
parameters.
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1 Introduction

Despite the huge success of machine learning methods in the last decade, several
issues remain unsolved. Machine learning usually focuses on black-box mod-
els which suffer from lack of explainability and, dually, from difficulty in using
prior knowledge. In the specific case of deep learning [15] an additional issue is
that theories of generalisation are apparently not applicable. In fact, adversar-
ial machine learning techniques [16] seem to prove that generalisation ability is
actually low in deep neural networks, and that bad quality outputs can easily be
produced with high confidence. This is a very serious issue when machine learning
is used in life-critical contexts like autonomous vehicle guidance or condition-
based monitoring in predictive maintenance of sensitive plants.

In view of these problems, it is imperative to control the support of the data
used in inference, so that data that are too far from the training set are given low
confidence by default. The most important class that features this ability is that
of prototype-based methods which are based on clustering or vector quantization
as a representation learning model.

In the literature, these methods have been used extensively [2,23,26,27]
although they may appear to be less popular than other approaches (in par-
ticular deep learning and support vector machines). As noted, clustering, and
specifically soft clustering, is a key component.
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In this perspective, this paper surveys a family of popular soft clustering
methods, framing them in a unified formalism. It also discusses the peculiarities
of each of them. A large fraction of the paper is devoted to clarifying the role
of model parameters and to providing some guidelines on how to set up these
parameters.

2 Soft Clustering

The clustering problem is usually stated as the task of partitioning a set of data
vectors or patterns X = {xk}, k ∈ {1, . . . , n}, xk ∈ R

d by attributing each data
point xk to a subset ωj ⊂ X, j ∈ {1, . . . , c}, defined by its centroid yj ∈ R

d. This
attribution is made based on a given distance function that is used to measure
the degree of centroid-observation closeness (in the following always assumed to
be the Euclidean distance).

Some methods also employ a relational approach by measuring observation-
observation closeness [9,13]; these are not considered here, but we cite them for
completeness.

The following definitions deal with real-valued quantities and crisp sets, and
therefore the symbols ∈ and ∪ have the usual crisp-set-theoretic meaning:

Definition 1 (Fuzzy and possibilistic partitions [4]). Given a set X =
{x1, x2, . . . , xn} of data items, a set Ω = {ω1, ω2, . . . , ωc}, and a membership
function u(x, ω), x ∈ X, with 0 ≤ u(x, ω) ≤ 1 ∀x ∈ X, ∀ω ∈ Ω, the pair (Ω, u)
is:

– A possibilistic partition if

u(x, ω) ∈ R ∀x, ∀ω and 0 <

c∑

i=1

u(x, ωi) < c ∀x (1)

– A fuzzy partition if it is a possibilistic partition with

c∑

i=1

u(x, ωi) = 1 ∀x (2)

– A crisp partition if it is a fuzzy partition with

max
i

u(x, ωi) = 1 ∀x. (3)

��
In the case of central clustering, partitions are represented by centroids.

Definition 2 (Central clustering). A central clustering is a (crisp, fuzzy,
possibilistic) partition of a metric data space Ξ whose membership functions
are monotonically dependent on the similarity of objects to a set of centroids
{y1, . . . , yc} ⊂ Ξ. ��
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Some methods not dealt with in this work, for instance those based on
medoids or landmarks, require {y1, . . . , ym} ⊂ X.

Central clustering is especially interesting as a concept representation tool
because it can be learned from a training set X and applied to the whole data
space Ξ. Many other approaches to clustering do not possess this out-of-sample
extension property and can therefore only be used to partition the given data
set.

The most widely used fuzzy clustering method is probably the Fuzzy c-
Means/Fuzzy ISODATA [6,12,29] (FCM) algorithm, which is a “fuzzy relative”
to the simple c-Means technique [5]. FCM defines the ωj as fuzzy partitions of
the data set X.

Well-known limitations of FCM include the need for fixing a fuzziness param-
eter in addition to the number of centroids, dependency on the initialisation, con-
vergence to possibly bad-quality local solutions, the consequent need for many
restarts, and a membership function profile that may not discriminate sharply
enough between close and far points.

Variations over this basic scheme try to overcome some of these limitations.
All of the following methods have membership functions that involve exponen-
tials rather than powers of distance, which are sharper (for a discussion about
this point see for instance [19]).

The Maximum Entropy (ME) approach, usually but not necessarily associ-
ated to the Deterministic Annealing optimisation procedure [24,25], does not
minimize a simple cost term, but a compound cost function which is the sum
of a distortion term Ê and an entropic term −H (see the next section for the
mathematical definitions). The optimization is done by fixing a constant value
for one of the two terms and minimizing the other; then this step is iterated
for decreasing values of the constant, until a global optimum is reached. This
alleviates the false minima problem of standard c-Means and (to a lesser extent)
of FCM.

In decision-making and classification applications, algorithms should feature
several desirable properties in addition to the basic discrimination or decision
function. For instance, it is usually required that in certain configurations a
decision is not made (pattern rejection). This situation typically occurs in the
presence of outliers. This problem is very well-known and well studied (see for
instance [7,8,11]), and is tackled in a convenient way within the framework of
soft-computing, fuzzy, and neural approaches [10,17,23].

However, the clustering problem as stated above implies that the outlier
rejection property cannot be achieved. This is because the membership values
are constrained to sum to 1. By giving up the requirement for strict partitioning,
and by resorting to a “mode seeking” algorithm, Krishnapuram and Keller pro-
posed the so-called possibilistic approach [18,19], where this constraint is relaxed
essentially to

ujl ∈ [0, 1] ∀l,∀j (4)

With this model outlier rejection can be achieved, but at the expense of a
clear cluster attribution and other computational drawbacks. The same issue of
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analysing the membership interactions on a local basis, as opposed to the global
effects induced by the probabilistic model, is considered in [14].

An additional clustering model that can be thought of as a generalization of
all those outlined above can be devised starting from the following observations.

Crisp partitions constrain membership in a very strong way: For a given
object, memberships to all clusters must be zero except one. Fuzzy partitions
relax this constraint in the sense that all membership can be non-zero, provided
that their sum is still one. This means that membership to one cluster directly
affects the membership to all other clusters. Finally, possibilistic partitions don’t
impose any constraint on memberships.

However, it is possible (and in practice it is frequent) that pairs of events
are not mutually independent, but are not completely mutually exclusive either.
Instead, events can provide partial information about other events. To model
this idea, we could require the membership to one cluster to have an influence
on the other memberships, but not so strong as to determine it directly.

This brings us to the concept of graded possibility. An example of such concept
is given by a glass and by the fuzzy concepts of “full” and “empty”. If the glass is
full or almost full, its membership to the concept “empty” should clearly be close
to zero, and similarly for the empty or almost empty case. However, if the glass
is half filled, it is much more difficult to assess the membership in the concept
“empty” with similar confidence. The profile of the membership functions in this
case should be decided according to further considerations.

These ideas form the rationale of the Graded possibilistic c Means clustering
methods, described in the following.

3 Some Popular Clustering Algorithms: A Unified View

3.1 The c-Means Family

We will now review some clustering algorithms derived from the basic c-Means:
(“hard” or “crisp”) c-Means (HCM) [5], Minimum-Entropy fuzzy clustering by
Deterministic Annealing (ME) [24], Possibilistic c-Means with an entropic cost
term (PCM-II) [19], Fuzzy c-Means (FCM) [12], Graded Possibilistic c-Means
(GPCM) [21]. All of these techniques are based on minimizing the following cost
function:

Ê =
c∑

j=1

n∑

l=1

ujldjl. (5)

(this includes also FCM, although in the usual formulation this is not evident;
see [22]). We will refer collectively to these algorithms as the c-Means (CM)
family.

Here ujl is the degree of membership of pattern xl to cluster ωj and Y =
{y1, . . . , yc}. Ê can be termed approximation error in data analysis problems,
distortion or quantization error in signal processing contexts, energy in physical
analogies, risk in decision-theoretic and statistical learning frameworks.
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Miyamoto and Mukaidono [22] show that these algorithms are obtained by
adding to the basic cost Ê in (5) either regularization terms or the maximum-
entropy term

− H =
c∑

j=1

n∑

l=1

ujl log ujl (6)

which represents the (negative) entropy of the clustering defined by Y,U .
Figure 1 shows how the effect of fuzziness parameters on the objective func-

tion corresponds to regularization.

Fig. 1. Regularizing effect of fuzziness parameters on the objective function.

In clustering problems the focus is commonly placed on the analysis of data
and clusters themselves, rather than on minimization of a global error criterion.
We are often more interested in characterizing (hopefully significant) groups of
data than in representing the details of the data with a faithful approximation.
As an example, model-based clustering approaches focus on cluster modeling
rather than performance optimization, and the cluster identification technique
called Alternating Cluster Estimation [28] does not even assume the existence of
a cost function.

Therefore we will introduce a formalism to provide an alternative, unified per-
spective on these clustering algorithms, focused on the memberships ujl rather
than on the cost function.

3.2 A Unifying Formalism

A CM clustering problem is defined by fixing the pair {J, ψ}, where:
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– J is the cost function
– ψ is the constraint on the set of cluster memberships, such that

ψ(u1l, . . . , ucl) = 0 ∀l ∈ {1, n}

All the CM algorithms considered here define either:

J = Ê (7)

or:
J = Ê − H (8)

where the cluster entropy acts as a regularizer.
Moreover, all the CM algorithms considered require that ujl ∈ [0, 1] ∀j ∈

{1, c}, ∀l ∈ {1, n} (normality condition).
Let vjl be the solution of a CM problem with constraint ψ removed (formally

this can be implemented with ψ ≡ 0). We call vjl the free membership of pattern
xl in cluster ωj .

As a consequence of these definitions, for all the CM algorithms considered
the cluster centroids Y are computed as:

yj =
∑n

l=1 ujlxl∑n
l=1 ujl

(9)

which characterizes the c-Means principle and therefore the CM family. The
memberships are computed as:

ujl =
vjl

Zl
, (10)

where Zl is the (generalized) partition function, which is computed as a function
of the conventional partition function ζl =

∑c
j=1 vlj :

Zl = f(ζl) (11)

Since the specific form of f() is given by the constraint ψ, a member of the
CM family is equivalently defined by the pair (J, f) or (J, Zl).

With the above set of definitions, the CM algorithms of interest are compactly
described as in Table 1.

All algorithms are fuzzy techniques, since they adopt the concept of “partial
membership” in a set. HCM itself can be cast without imposing the constraint
of binary memberships. The relationships among these algorithms are clear from
the table.

A method to allow for non-extreme solutions is the maximum entropy crite-
rion, which is implemented in the ME and PCM-II algorithms. They are related
by the use of the entropic term −H, implying a parameter βj . This parameter is
different for each cluster and fixed in PCM-II, while it is constant for all clusters
and varying with the algorithm progress in ME.
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Table 1. The CM family of clustering algorithms

J vjl Zl Notes

ME Ê − H e−djlβ
∑c

j=1 vjl β ∈ R, β > 0 is the inverse
temperature parameter to be
increased during the “annealing”
process

PCM-II Ê − H e−djlβj 1 βj ∈ R, βj > 0 are cluster width
parameters to be selected a
priori before optimization or
using heuristic criteria

FCM Ê 1/djl

(∑c
j=1 v

1/(m−1)
jl

)m−1

m ∈ R, m > 1 is the fuzzification
parameter

HCM Ê See note See note vjl and Zl can be written as for
FCM, but their values have to be
computed in the limit for m → 1

GPCM Ê e−djlβj

(∑c
j=1 vjl

)α

βj ∈ R, βj > 0 are cluster width
parameters to be selected a priori
before optimization or using
heuristic criteria. α ∈ [0, 1] is the
degree of probabilistic tendence

4 Membership Function Parametrization

All soft clustering methods require at least one model parameter, which in gen-
eral terms decides the degree of fuzziness of the solution.

Since Miyamoto and Mukaidono [22] showed that the power membership
function of FCM can be transformed into the exponential one of the other meth-
ods, the following discussion will only focus on the methods featuring the latter
form, i.e., ME, PCM-II, GPCM.

4.1 Possible Parametrizations in the CM Family

The original formulation of free membership in ME features one global parameter
β, interpreted as a global temperature, energy, disorder, or resolution.

vlj = exp
(−β‖xl − yj‖2

)
(12)

The Deterministic Annealing optimization procedure fixes the temperature
at each optimisation step, making it effectively a regularisation coefficient rather
than a model parameter.

In contrast, PCM-II features one parameter βj per centroid.

vlj = exp
(−βj‖xl − yj‖2

)
(13)
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In this case the parametrization can be considered that of a system with non-
constant energy, i.e., out of thermodynamic equilibrium.

It is also possible to write a free membership function with parameters that
differ for each of the vector components of the centroid, although to the best of
our knowledge no popular method from the literature features the anisotropic
parametrizations described in the following.

Using one vector parameter per centroid, with one component βji per cen-
troid j per component i of the space Ξ, we obtain the following free membership
function:

vlj = exp

(
−

d∑

i=1

(xli − yji)2βji

)
. (14)

In this case, parameters βji form a c × d matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

β11 · · · β1d

...
βji

...
βc1 · · · βcd

⎞

⎟⎟⎟⎟⎟⎟⎠
(15)

and, indicating with bj the j-th column of B, the argument of the exponential
can be written in vector-matrix notation:

vlj = exp
(−(xl − yj)T diag(bj)(xl − yj)

)
(16)

where diag(v) denotes the diagonal matrix that has vector v as its diagonal.
This case is equivalent to a non-equilibrium, anisotropic system with axis-

parallel principal directions of anisotropy.
The most general parametrization is obtained when the principal directions of

anisotropy are not necessarily the coordinate axes. In this case there is a matrix
of coefficients for each centroid, not necessarily diagonal, using a generalised
(Mahalanobis) distance [20]:

vlj = exp

(
−

d∑

i=1

d∑

k=1

(xli − yji)(xlk − yjk)Bjik

)
(17)

or

vlj = exp
(−(xl − yj)T Bj(xl − yj)

)
(18)

This case implies that the model parameters are contained in a rank-3 tensor
of shape (c, d, d). For each j, the corresponding d×d slice Bj is analogous to an
inverse covariance matrix as used in the multidimensional form of the Gaussian
density function and consequently in the expression of the Mahalanobis distance.
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In addition to these model parameters, GPCM also has an additional param-
eter α that can be used to set the balance between a possibilistic and a proba-
bilistic behaviour. In the first formulation [21], an interval-valued variable was
used. In subsequent works, see for instance [3], a simpler formulation was adopted
where α ∈ [0, 1] ⊂ R.

4.2 Roles of Parameters

According to the original statistical mechanics analogy, the parameter β in EM
can be interpreted as an inverse temperature. From the point of view of informa-
tion representation, it plays the role of a degree of fuzziness: When β increases
(i.e., temperature decreases), the memberships of data observations to clusters
become crisper. Finally, from a geometrical interpretation, β is a global reso-
lution parameter that defines the minimum distance between centroids to be
considered as distinct; below this distance, centroids collapse into each other.

The limit cases are:

– for β → 0+, we have ulj = 1/c for all l, j, i.e., each instance is equally
associated with each cluster;

Fig. 2. Effect of varying β or b on the membership of point x to cluster 1 (dotted blue)
and 2 (solid red). (Color figure online)
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Fig. 3. Effect of varying α on the membership of point x to cluster 1 (dotted blue) and
2 (solid red). (Color figure online)

– for β → +∞, we have ulj = 1 if xl ∈ ωj , and ulk = 0 for all k 
= j, k ∈ [1, c],
i.e., each instance is associated with only one cluster (hard limit).

In the case of individual βj per cluster, the size of clusters is affected indi-
vidually. However, in all cases that are not purely possibilistic, the memberships
influence each other via the partition function. This has an effect on the critical
position for an observation, the point where its maximum membership switches
from one centroid to another.

In Fig. 2 the effect of changing the temperature or resolution parameters is
illustrated in a two-centroid case. Membership to the two centroids are plotted
in different styles. The critical points are marked in black for each choice of
parameter values. On the left (graphs a, c) a single global parameter β is used,
assigning it three different values; on the right (graphs b, d) individual param-
eters for each centroid are used, resulting in a vector b = [β1, β2], and only β1
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is changed, again using three values. The top graphs (a, b) are the possibilistic
cases; the bottom graphs (c, d) are the probabilistic ones. The effect of having
different resolution factors for different centroids on the critical point is clearly
visible in graphs b and d.

The global model parameter α ∈ [0, 1] sets the nature of the clustering model,
with α = 0 corresponding to a fully possibilistic model (pure mode-seeking),
α = 1 to a probabilistic model, and intermediate values corresponding to a
partly possibilistic behaviour where the generalized partition function does not
normalize the sum of memberships to a fixed value of 1 but to a value that
depends on the values of all free memberships. An illustration of the effect of
varying α in a 2-cluster problem is presented in Fig. 3.

4.3 Factorisation of Parameters

As already noted, the single parameter β of ME is used both as a model parame-
ter, acting on the structure of the final clustering, and as an optimisation param-
eter, influencing the convergence of the optimisation itself.

It may be useful to express the two concepts in an uncoupled way to
allow both actions simultaneously. To this end, we rewrite the most general
parametrization (rank-3 tensor) as

βjik = bβjik (19)

where βjik expresses the relative magnitude of parameters with respect to each
other and b is a global scale factor that can be used for annealing. Disregarding
a change of units, all choices for this decomposition are equivalent; we can fix
the ideas by setting max{βjik} = 1 which results in max{βjik} = b, i.e., the
global scale parameter is the magnitude of the largest βjik.

In the following we discuss some possible criteria to estimate the model
parameters just discussed.

5 Setting the Model Parameters

With respect to the optimization, model parameters can be set beforehand, at
each iteration, or at the end. While setting the parameters before the beginning
only works in the presence of a good initialisation, the criteria here presented
can easily be applied during the iterations or after their end.

By necessity, all criteria ultimately depend on some user-selected parameters.
The focus of the methods that are discussed in this section is to reduce the num-
ber of these parameters to a minimum and to provide an intuitive interpretation
to make it possible for the user to assign meaningful values to these residual
degrees of freedom.

In the following we only cover the case of vector scale parameter, β =
[β1, β2, . . . , βc]. The scalar case is similar but obviously simpler, and the matrix
and tensor cases are not as common.
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5.1 Setting the Resolution Parameters Using Free Memberships v

Criteria for setting β can be obtained by analysing inter-centroid distance and
imposing a bias toward fuzzy solutions, similarly to what was done in the pos-
sibilistic approach in [18,19]. The first proposed method uses free memberships.
For each centroid yj we measure the free membership to its cluster ωj of all
other centroids:

v(yh,yj) = exp
(−‖yh − yj‖2βj

)
(20)

Note that this measure is taken using yj as a reference and is asymmetric,
i.e., v(yh,yj) 
= v(yj ,yh).

We define the minimal-overlap condition by setting a threshold t ∈ (0, 1).
Membership of centroid h to centroid j should not be larger than this threshold.
Enforcing this for the nearest centroid guarantees that this is true also for all
other centroids. To guarantee absolutely no overlap, the value should be t = 1/2.
Other values can be used if some overlap is acceptable (t > 1/2) or if narrower
boundaries are desired (t < 1/2).

The criterion is therefore:

max
h�=j

v(yh,yj) ≤ t

⇒ max
h�=j

exp
(−‖yh − yj‖2βj

) ≤ t

⇒ min
h�=j

‖yh − yj‖2βj ≥ − ln t (21)

Let h∗ = arg minh�=j ‖yh −yj‖. Note that being the nearest neighbour is not
a symmetric relation, so in general βj and βh∗ will be different.

The above inequality yields the final criterion:

⇒ βj = − ln t

‖yh∗ − yj‖2 (22)

where the numerator can be used as a global degree of freedom, for instance for
regularisation or annealing during the optimization (see Subsect. 4.3).

5.2 Setting the Resolution Parameters Using Memberships u

In this case the function to be used is the fuzzy probabilistic one:

u(yk,yj) =
exp

(−‖yh − yj‖2βj

)
∑c

k=1,k �=j exp (−‖yk − yj‖2βj)
(23)

In this case the minimal-overlap condition:

max
h�=j

u(yh,yj) ≤ t (24)
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Fig. 4. Setting the value of parameter α by assigning a desired outlier membership.
(Color figure online)

is much less simple to solve for βj . However the value of the partition function
(the denominator) can be estimated by using a very rough approximation. We
fix an integer number cNN between 1 and c. Among the centroids, we decide to
take into account the nearest cNN. The value of v(yh,yj) for the neighbours is
approximated as:

– For the cNN nearest neighbours, v(yh,yj) ≈ 1
– For the remaining 1 − cNN (farthest) neighbours, v(yh,yj) ≈ 0

So we can estimate
∑c

k=1 v(yk,yj) to be approximately equal to the number
cNN of neighbours sufficiently close to j. The criterion thus obtained is:

βj = − ln (cNNt)
‖yh∗ − yj‖2 (25)

where the numerator, a positive real number, can again be used as a global
degree of freedom.

5.3 Setting the Possibility Degree α with an Outlier Rejection
Criterion

In contrast to the resolution parameters, it is difficult to visualize the effect of
α on cluster shape in geometric terms. This is a global parameter that influ-
ences the global configuration of clusters and interacts with the other model
parameters.

A guideline for the selection of α is to set it in relation to the desired degree
of outlier rejection. An outlier is an observation that has low membership to all
clusters. We remark that outlier rejection is a crucial property to avoid meaning-
less generalisation due to extrapolation. However, complete outlier insensitivity
makes the clustering model miss potentially meaningful observations. So our
goal here is to set a desired worst-case membership u∗ sufficiently small so as to
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clearly indicate outliers, but still sufficiently large to allow some effect of outliers
in the centroid equations.

Supposing that the resolution parameters have been fixed, it is possible to
calculate vj for a point that lies on the border of the support of clusters. In Fig. 4
dotted circles are loci of constant free membership v, meaning that all points
falling on dotted lines have the same free membership to the cluster to which
the circle is referred. We want to assign the final membership u of the outlier
(red square) a given value u∗ ≤ vj by setting the value of α.

Under the simplifying hypothesis that vh = 0 ∀h 
= j, so that Z =∑c
h=1(vh)α = vα

j :

vj

vα
j

= u∗

⇒ v1−α
j = u∗

⇒ α = 1 − log u∗/ log vj (26)

5.4 Setting the Possibility Degree α as an Independent Parameter

The value of α can also be assigned independently as a degree of freedom for
regularisation or annealing. However, since it acts as an exponent, the effect of
changes is much stronger when close to 1 than close to 0. Experimentally, it can
be observed that the values between 0.9 and 1 are the most interesting, with
values below 0.75 establishing an essentially pure possibilistic behaviour.

It is therefore advisable to set the value of α by means of an auxiliary variable
that is related to it logarithmically. A suggested technique is to set a ∈ [0, 1] so
that

α = (log2(a + 1))0.2 (27)

where the exponent 0.2 is chosen such that, for a = 0.5, α ≈ 0.9. In this way
the interesting range (0.9, 1.0) is mapped onto half the range of variation of the
control variable a. See Fig. 5 for a graph illustrating this effect.

Fig. 5. Setting the value of parameter α via an auxiliary variable a.
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6 Conclusion

In this paper we have reviewed a family of central soft clustering methods. Their
relevance as feature learning methods for subsequent recognition, approximation,
and forecasting tasks has been mentioned.

A key issue of these variations over HCM is the larger number of model
parameters. Therefore, several criteria for setting these parameters have been
discussed.

Current work on this topic involves the on-line adaptation of model param-
eters to non-stationary stream learning [1,3].
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