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Abstract. Relationships between powerset theories and F-transforms
are investigated. Both these methods represent strong tools in fuzzy
sets theory and applications. Although both methods deal with similar
objects, both these methods use different tools and, so far, the relation-
ship between the two methods has not been investigated. The aim of
this paper is to show that there is a strong relationship between the two
methods. Namely, arbitrary lower or upper F-transform of lattice-valued
fuzzy sets can be derived from a special powerset theory and, conversely,
there exists a special class of powerset theories, such that maps defined
by these powerset theories are lower or upper F-transforms. These results
allow, among other things, to extend the range of methods and tools that
are used in both theories.

1 Introduction

In fuzzy set theory there are two important methods which are frequently used
both in theoretical research and applications. These methods are the powerset
theory and the F-transform. Both these methods were, in full details and the-
oretical backgrounds, introduced relatively recently and, in the present, both
methods represent very strong tools in the theory and applications.

The powerset structures are widely used in algebra, logic, topology and also
in computer science. The standard example of a powerset structure P (X) =
{A : A ⊆ X} and the corresponding extension of a mapping f : X → Y to the
map f→

P : P (X) → P (Y ) is widely used in almost all branches of mathematics
and their applications, including computer science. For illustrative examples of
possible applications see, e.g., the introductory part of the paper of [24]. Because
the classical set theory can be considered to be a special part of the fuzzy set
theory, introduced by [26], it is natural that powerset objects associated with
fuzzy sets were soon investigated as generalizations of classical powerset objects.
The first approach was done again by Zadeh [26], who defined [0, 1]X to be a
new powerset object Z(X) instead of P (X) and introduced the new powerset
operator f→

Z : Z(X) → Z(Y ), such that for s ∈ Z(X), y ∈ Y ,
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f→
Z (s)(y) =

∨

x,f(x)=y

s(x).

A lot of papers were published about Zadeh’s extension and its generalizations,
see, e.g., [5,10,11,14,21–24]. Zadeh’s extension was for the first time intensively
studied by Rodabaugh in [21] for lattice-valued fuzzy sets. This paper was, in
fact, the first real attempt to uniquely derive the powerset operator f→

Z from f→
P

and not only explicitly stipulate them. The works of Rodabaugh gave very serious
basis for further research of powerset objects and operators. That new approach
to the powerset theory was based on application of the theory of monads in
clone form, introduced by Manes [9]. A special example of monads in clone form
was introduced by Rodabaugh [23] as a special structure describing powerset
objects. In the papers [10] and [11] we presented some examples of powerset
theories based on fuzzy sets which are generated by monads in clone form.

Another important method which was recently introduced in the fuzzy set
theory is the F-transform. This theory was in lattice-valued form introduced
by Perfilieva [19] and elaborated in many other papers (see, e.g., [16–18,20]).
Analogically as the powerset operator f→

P : P (X) → P (Y ), F-transform is a
special transformation map F : LX → LY , that transforms L-valued fuzzy sets
defined in the set X to L-valued fuzzy sets defined in another set Y.

Fuzzy transforms represent new methods that have been successfully used in
signal and image processing [1,2,5], signal compressions [16], numerical solutions
of ordinary and partial differential equations [7,25], data analysis [3,4,18] and
many other applications.

Although both methods deal also with the same object, i.e. L-valued fuzzy
sets, in general, both these methods use different tools and, so far, the rela-
tionship between the two methods has not been investigated. The aim of this
paper is to show that, in fact, there is a very strong relationship between the two
methods. We show, that arbitrary F-transform of L-valued fuzzy sets defined by
a fuzzy partition can be derived from a special powerset theory and, conversely,
there exists a special class of powerset theories, such that maps defined by these
powerset theories are F-transforms. This result allows, among other things, to
extend the range of methods and tools that are used in both theories.

2 Preliminaries

A principal structure used in the paper is a complete residuated lattice (see
e.g. [9,15]), i.e. a structure L = (L,∧,∨,⊗,→, 0L, 1L) such that (L,∧,∨) is a
complete lattice, (L,⊗, 1L) is a commutative monoid with operation ⊗ isotone
in both arguments and → is a binary operation which is residuated with respect
to ⊗, i.e.

α ⊗ β ≤ γ iff α ≤ β → γ.

Recall that a negation of an element a in L is defined by ¬a = a → 0L.
A special example of a residuated lattice L is a MV -algebra, i.e., a structure

L = (L,⊕,⊗,¬, 0L, 1L) satisfying the following axioms:
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(i) (L,⊗, 1L) is a commutative monoid,
(ii) (L,⊕, 0L) is a commutative monoid,
(iii) ¬¬x = x, ¬0L = 1L,
(iv) x ⊕ 1L = 1L, x ⊕ 0L = x, x ⊗ 0L = 0L,
(v) x ⊕ ¬x = 1L, x ⊗ ¬x = 0L,
(vi) ¬(x ⊕ y) = ¬x ⊗ ¬y, ¬(x ⊗ y) = ¬x ⊕ ¬y,
(vii) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

for all x, y ∈ X.
If we put

x ∨ y = (x ⊕ ¬y) ⊗ y, x ∧ y = (x ⊗ ¬y) ⊕ y, x → y = ¬x ⊕ y,

then, (L,∧,∨, 0L, 1L) is a distributive lattice and (L,∧,∨,⊗,→, 0L, 1L) is a
residuated lattice. MV -algebra is called a complete algebra, if that lattice is
a complete lattice.

MV -algebras have their origin in algebraic analysis of �Lukasiewicz logic by
Chang in [6] and represent a generalization of Boolean algebras. A standard
example of a MV -algebra is the �Lukasiewicz algebra L�L = ([0, 1],⊕,⊗,¬, 0, 1),
where

x ⊗ y = 0 ∨ (x + y − 1), ¬x = 1 − x, x ⊕ y = 1 ∧ (x + y).

If L is a complete residuated lattice, a L-fuzzy set in a crisp set X is a map
f : X → L. f is a non-trivial L-fuzzy set, if f is not identical to the zero function.
The core of a L-fuzzy set f in a set X is defined by core(f) = {x ∈ X : f(x) =
1L}.

We recall some basic facts about F-transforms. An F -transform in a form
introduced by Perfilieva [20] is based on the so called fuzzy partitions on the
crisp set. Unless otherwise stated, by L we denote the complete residuated lattice
L = (L,∧,∨,⊗,→, 0L, 1L).

Definition 1. Let X be a set. A system A = {Aλ : λ ∈ Λ} of normal L-fuzzy
sets in X is a fuzzy partition of X, if {core(Aλ) : λ ∈ Λ} is a partition of X.
A pair (X,A) is called a space with a fuzzy partition. The index set of A will be
denoted by |A|.

In [12,13] we introduced the category SpaceFP of spaces with fuzzy parti-
tions. In the paper we consider the modified version of this category.

Definition 2. The category SpaceFP is defined by

1. Fuzzy partitions (X,A), as objects,
2. Morphisms (g, σ) : (X, {Aλ : λ ∈ Λ}) → (Y, {Bω : ω ∈ Ω}), such that

(a) g : X � Y and is σ : Λ � Ω are surjective mappings,
(b) ∀λ ∈ Λ, Aλ(x) = Bσ(λ)(g(x)), for each x ∈ X.

3. The composition of morphisms in SpaceFP is defined by (h, τ) ◦ (g, σ) =
(h ◦ g, τ ◦ σ).
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Objects of the category SpaceFP represent ground structures for a fuzzy
transform, firstly proposed by Perfilieva [19] and, in the case where it is applied
to L-fuzzy sets with L-valued partitions, in [20].

Definition 3. Let (X,A) be a space with a fuzzy partition A = {Aλ : λ ∈ |A|}.
1. An upper F-transform with respect to the space (X,A) is a function F ↑

X,A :
LX → L|A|, defined by

f ∈ LX , λ ∈ |A|, F ↑
X,A(f)(λ) =

∨

x∈X

(f(x) ⊗ Aλ(x)).

2. A lower F-transform with respect to the space (X,A) is a function F ↓
X,A :

LX → L|A|, defined by

f ∈ LX , λ ∈ |A|, F ↓
X,A(f)(λ) =

∧

x∈X

(Aλ(x) → f(x)).

3 Powerset Theories in the Category SpaceFP

In what follows, by CSLAT (∨) or CSLAT (∧) we denote the category of com-
plete ∨- or ∧-semilattices as objects, respectively, with ∨- or ∧-preserving maps
as morphisms. If there is no need to distinguish between ∨ and ∧, we will only
write CSLAT . The standard definition of powerset theories was presented by
Rodabaugh [23].

Definition 4. Let K be a ground category. Then T = (T,→, V, η) is called
CSLAT -powerset theory in K, if

1. T : K → CSLAT is an object-mapping,
2. for each morphism f : A → B in K, there exists f→

T : T (A) → T (B) in
CSLAT ,

3. There exists a concrete functor V : K → Set, such that η determines in Set
for each A ∈ K a mapping ηA : V (A) → T (A),

4. For each f : A → B in K, f→
T ◦ ηA = ηB ◦ V (f).

In the paper we deal with powerset theories in the category SpaceFP which
satisfy additional properties, typical for fuzzy sets structures. Two types of these
powerset theories are introduced in the following definitions.

Definition 5. A structure T = (T,→, V, η) is called a L∨-powerset theory in
the category SpaceFP, if

1. T is a CSLAT (∨)-powerset theory in the category SpaceFP,
2. For each object (X,A) ∈ SpaceFP,

(a) there exists a
∨

-preserving embedding i(X,A) : T (X,A) ↪→ L|A|,
(b) for each x ∈ V (X,A) there exists α ∈ |A|, such that core(i(X,A)

(η(X,A)(x))) = {α},
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(c) there exists an external operation  : L × T (X,A) → T (X,A), such that
i(X,A)(α  f) = α ⊗ i(X,A)(f), for each f ∈ T (X,A), α ∈ L.

If L = (L,⊕,⊗,¬, 0L, 1L) is a complete MV -algebra, we can also define the
L∧-powerset theory in the category SpaceFP.

Definition 6. A structure S = (S,→,W, μ) is called a L∧-powerset theory in
the category SpaceFP, if

1. S is a CSLAT (∧)-powerset theory in the category SpaceFP,
2. For each object (X,A) ∈ SpaceFP,

(a) there exists a
∧

-preserving embedding j(X,A) : S(X,A) ↪→ L|A|,
(b) for each x ∈ W (X,A) there exists α ∈ |A|, such that

core(j(X,A)(μ(X,A)(x))) = {α},
(c) there exists an external operation + : L × S(X,A) → S(X,A), such that

j(X,A)(α + f) = α ⊕ j(X,A)(f), for each f ∈ S(X,A), α ∈ L.

Let us consider the following examples of the L∨-and L∧-powerset theory.

Example 1. Let U = {τ(X,A) : (X,A) ∈ SpaceFP} be a system of L-valued
similarity relations defined on sets |A|, such that for arbitrary morphism (f, σ) :
(X,A) → (Y,B) in the category SpaceFP, τ(X,A)(α, β) = τ(Y,B)(σ(α), σ(β))
holds for arbitrary α, β ∈ |A|. Moreover, let the following condition holds for
arbitrary (X,A):

α, β ∈ L, τ(X,A)(α, β) = 1L ⇔ α = β.

For arbitrary morphism (f, σ) : (X,A) → (Y,B) in SpaceFP, we set

V (X,A) = |A|, V (f, σ) = σ,

T (X,A) = {g ∈ L|A| : g is extensional with respect to τ(X,A)} ↪→ L|A|,

(f, σ)→
T : T (X,A) → T (Y,B), (f, σ)→

T (g)(β) =
∨

α∈|A|
g(α) ⊗ τ(Y,B)(β, σ(α)),

η(X,A) : V (X,A) = |A| → T (X,A), η(X,A)(α)(β) = τ(X,A)(α, β).

It is clear that T (X,A) is a complete
∨

-semilattice and (f, σ)→
T (g) is also exten-

sional with respect to τ(Y,B). Then, T = (T,→, V, η) is the L∨-powerset theory
called powerset theory defined by U . In fact, we set

α ∈ L, g ∈ T (X,A), α  g = α ⊗ g.

It can be proven simply that α ⊗ g are elements of T (X,A) and the following
diagram commutes,

|A| σ
> |B|

T (X,A)

η(X,A)∨
(f,σ)→

T> T (Y,B)

η(Y,B)∨

Hence, (T,→, V, η) is a L∨-powerset theory. �
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Example 2. Let L be a complete MV -algebra. Let U = {τ(X,A) : (X,A) ∈
SpaceFP} be the same sets of similarity relation as in the Example 1.

For arbitrary morphism (f, σ) : (X,A) → (Y,B) we set

S(X,A) = T (X,A),

(f, σ)→
S : S(X,A) → S(Y,B), (f, σ)→

S (g)(β) =
∧

α∈|A|
¬τ(Y,B)(σ(α), β) ⊕ g(α),

α ∈ L, g ∈ S(X,L), α + g := α ⊕ g.

It can be proven that (f, σ)→
S is defined correctly, i.e., (f, σ)→

S (g) ∈ S(Y,B), for
arbitrary g ∈ S(X,A). In fact, for β, ω ∈ |B|, we have

τ(Y,B)(σ(α), β) ≥ τ(Y,B)(β, ω) ⊗ τ(Y,B)(σ(α), ω) ⇒
τ(Y,B)(σ(α), β) → g(α) ≤ τ(Y,B)(β, ω) ⊗ τ(Y,B)(σ(α), ω) → g(α) =

τ(Y,B)(β, ω) → (τ(Y,B)(σ(α), ω) → g(α)) ⇒
(τ(Y,B)(σ(α), β) → g(α)) ⊗ τ(Y,B)(β, ω) ≤ τ(Y,B)(σ(α), ω) → g(α) ⇒

(f, σ)→
S (g)(β) ⊗ τ(Y,B)(β, ω) ≤ (f, σ)→

S (g)(ω),

and (f, σ)→
S (g) is extensional with respect to τ(Y,B) and α⊕g ∈ S(X,A). In fact,

for arbitrary β, ω ∈ L, we have

(¬α → g(β)) ⊗ ¬α ⊗ τ(X,A)(β, ω) ≤ g(β) ⊗ τ(X,A)(β, ω) ≤ g(ω),

and it follows that

(α ⊕ g(β)) ⊗ τ(X,A)(β, ω) = (¬α → g(β)) ⊗ τ(X,A)(β, ω) ≤
¬α → (ω) = α ⊕ g(ω).

Therefore, S = (S,→, V, η) is the L∧-powerset theory, where η is the same as in
the previous Example. �

As we mentioned in the Introduction, our goal is to show that the classical
F-transform FX,A : LX → L|A| defined by the space with a fuzzy partition
(X,A) can be derived from a powerset theory and, vice versa, that each suitable
powerset theory T in the category SpaceFP, defines for arbitrary (X,A) ∈
SpaceFP the map T[X,A] : LV (X,A) → T (X,A), which can be represented by
the F-transform FV (X,A),B defined by (possible different) space with a fuzzy
partition (V (X,A),B).

Let us introduce the definition of the map defined by a L∨- or L∧-powerset
theories.

Definition 7. 1. Let T = (T,→, V, η) be a L∨-powerset theory in the category
SpaceFP. For (X,A) ∈ SpaceFP, the map defined by T is

T [X,A] : LV (X,A) → T (X,A),

f ∈ LV (X,A), T [X,A](f) :=
∨

x∈V (X,A)

η(X,A)(x)  f(x) ∈ T (X,A).
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2. Let L be a complete MV -algebra and let S = (S,→,W, μ) be a L∧-powerset
theory in the category SpaceFP. For (X,A) ∈ SpaceFP, the map defined
by S is

S[X,A] : LW (X,A) → S(X,A),

f ∈ LW (X,A), S[X,A](f) :=
∧

x∈W (X,A)

¬η(X,A)(x) + f(x) ∈ T (X,A).

In the next theorem we prove that lower and upper F-transforms are derived
from powerset theories. We show that for arbitrary space with a fuzzy partition
(X,A), the upper F-transform F ↑

X,A : LX → L|A| is identical to the map T [X,A]

defined by a L∨-powerset theory T. An analogical result we can obtain for lower
F-transform F ↓

X,A, which is identical to the map T[X,A].

Theorem 1. There exists the powerset theory T = (T,→, V, η) of the category
SpaceFP, such that

1. T is L∨-powerset theory.
2. If L is a complete MV -algebra, then T is also L∧-powerset theory,
3. For each (X,A) ∈ SpaceFP,

T [X,A] = F ↑
X,A, T[X,A] = F ↓

X,A.

Proof. Let (f, σ) : (X,A) → (Y,B) be a morphism in the category SpaceFP.

(1) We define

T : SpaceFP → CSLAT (∨), V : SpaceFP → Set,

T (X,A) = L|A|, V (X,A) = X,

(f, σ)→
T = T (f, σ) : T (X,A) → T (Y,B), V (f, σ) = f,

g ∈ T (X,A), (f, σ)→
T (g) = σ→

Z (g) ∈ T (Y,B),

where σ→
Z is the Zadeh’s extension of the map σ : |A| → |B| to the map L|A| →

L|B|. The ordering on the set T (X,A) is point-wise and it is clear that T (X,A)
is a complete

∨
-semilattice and σ→ is

∨
-preserving map.

We define the map η(X,A) : X → T (X,A) by

x ∈ X,α ∈ |A| η(X,A)(x)(α) = Aα(x),

where A = {Aα : α ∈ |A|}. We show that the following diagram commutes.

X
f

> Y

T (X,A)

η(X,A)∨
(f,σ)→

T> T (Y,B).

η(Y,B)∨
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In fact, for x ∈ X,β = σ(α) ∈ |B|, we have

(f, σ)→
T (η(X,A)(x))(β) = σ→

Z (η(X,A)(x))(β) =
∨

α,σ(α)=β

η(X,A)(x)(α) =

∨

α,σ(α)=β

Aα(x) =
∨

α,σ(α)=β

Bσ(α)(f(x)) = Bβ(f(x)) = η(Y,B)(f(x))(β).

Hence, T = (T,→, V, η) is the CSLAT (∨)-powerset theory. To prove that T
is the L∨-powerset theory, we define the external operation  by

α ∈ L, ω ∈ |A|, g ∈ L|A|, (α  g)(ω) := α ⊗ g(ω).

Moreover, we have

core(η(X,A)(x)) = {α ∈ |A| : Aα(x) = 1L} = {uA(x)},

where uA : X → |A| is the map defined by uA(x) = α ⇔ x ∈ core(Aα). Hence,
the condition (b) is also satisfied. Finally, for the map T [X,A] defined by T, for
arbitrary h ∈ LX , α ∈ |A| we have

T [X,A](h)(α) = (
∨

x∈X

η(X,A)(x)  h(x))(α) =
∨

x∈X

η(X,A)(x)(α) ⊗ h(x) =

∨

x∈X

Aα(x) ⊗ h(x) = F ↑
X,A(h)(α).

Hence, T [X,A] = F ↑
X,A.

(2) Let L be the complete MV -algebra. For arbitrary morphism (f, σ) :
(X,A) → (Y,B), the set T (X,A) = L|A| is also complete

∧
-semilattice.

Since any complete MV -algebra is completely distributive ([8]), the map
σ→

Z is
∧

-preserving map, as follows from

σ→
Z (

∧

j∈J

hj)(β) =
∨

α,σ(α)=β

(
∧

j∈J

hj(α)) =
∧

j∈J

(
∨

αj ,σ(αj)=β

hj(αj)) =
∧

j∈J

σ→
Z (hj)(β).

Hence, the object function T from the previous case is also the object function
T : SpaceFP → CSLAT (∧) and T = (T,→, V, η) can be consider to be also
the CSLAT (∧)-powerset theory in the category SpaceFP. To prove that T is
also L∧-powerset theory, we need to change only the definition of the external
operation + as follows:

g ∈ T (X,A), α ∈ L, ω ∈ |A|, (α + g)(ω) := α ⊕ g(ω).

Then, for the map T[X,A] defined by T, for arbitrary h ∈ LX , α ∈ |A| we have

T[X,A](h)(α) = (
∧

x∈X

¬η(X,A)(x) + h(x))(α) =
∧

x∈X

¬η(X,A)(x)(α) ⊕ h(x) =

∧

x∈X

¬Aα(x) ⊕ h(x) =
∧

x∈X

Aα(x) → h(x) = F ↓
X,A(h)(α).
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Hence, T[X,A] = F ↓
X,A. �

In the next theorem we deal with the converse problem: Is it true that for
arbitrary L∨-powerset theory of the category SpaceFP, the map T [X,A] defines
an F-transform? The answer is “yes” and it allows to derive new types of F-
transform maps F : LX → L|A|, where the transformed map F (g) could have
some additional properties.

Theorem 2. Let T = (T,→, V, η) be an arbitrary L∨-powerset theory in the
category SpaceFP. Then for arbitrary space with a fuzzy partition (X,A) ∈
SpaceFP there exists another space with a fuzzy partition (V (X,A),B) ∈
SpaceFP, such that the following diagram commutes

LV (X,A)

T (X,A) ⊂
i(X,A)

>

T [X,A]
< L|A|

F ↑
V (X,A),B

>

Proof. For arbitrary α ∈ |A|, x ∈ V (X,A), we set Bα(x) = i(X,A)

(η(X,A)(x))(α). Then (V (X,A),B) is a space with a fuzzy partition, where
B = {Bα : α ∈ |A|} is a fuzzy partition, as simply follows from the proper-
ties of η. Then, for α ∈ |A|, g ∈ LV (X,A), we have

i(X,A).T
[X,A](g)(α) = i(X,A)(

∨

x∈V (X,A)

η(X,A)(x)  g(x))(α) =

∨

x∈V (X,A)

i(X,A)η(X,A)(x)(α) ⊗ g(x) =
∨

x∈V (X,A)

Bα(x) ⊗ g(x) = F ↑
V (X,A),B(g)(α).

�
An analogical result we obtain for lower F-transform. The proof is similar

and will be omitted.

Theorem 3. Let L be a complete MV -algebra and let S = (S,→,W, μ) be an
arbitrary L∧-powerset theory in the category SpaceFP. Then for arbitrary space
with a fuzzy partition (X,A) ∈ SpaceFP there exists another space with a fuzzy
partition (W (X,A),B) ∈ SpaceFP, such that the following diagram commutes

LW (X,A)

S(X,A) ⊂
i(X,A)

>

S[X,A]

< L|A|

F ↓
W (X,A),B

>

To illustrate the meaning of the preceding theorems, we show upper and lower
F-transforms generated by the Theorems 2 and 3 from the L∨- and L∧-powerset
theories from the Examples 1 and 2, respectively.

Recall that for an arbitrary set X and an L-valued similarity relation δ on
the set X, a function g ∈ LX is called the extensional core of a function f ∈ LX

with respect to δ, if
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1. ∀x ∈ X, g(x) ≤ f(x),
2. g is extensional with respect to δ,
3. if h ∈ LX is extensional with respect to δ, h ≤ f , then g ≥ h.

Example 3. Let T = (T,→, V, η) be the L∨-powerset theory in the category
SpaceFP from the Example 1. Then, according to the proof of the Theorem 2,
for arbitrary (X,A) ∈ SpaceFP, the set B = {τ(X,A(α,−) : α ∈ |A|} is a fuzzy
partition on |A|, such that

T [X,A] = F ↑
|A|,B : L|A| → L|A|,

g ∈ L|A|, F ↑
|A|,B(g)(ω) =

∨

α∈|A|
g(α) ⊗ τ(X,A)(α, ω) = ĝ(ω).

It is clear that ĝ is the extensional hull of g with respect to τ(X,A). Therefore,
in that case, the upper F-transform F ↑

|A|,B represents the extensional hull trans-
formation. �

Example 4. Let L be a complete MV -algebra and let S = (S,→, V, η) be the L∧-
powerset theory in the category SpaceFP from the Example 2. Then, according
to the proof of the Theorem 3, for arbitrary (X,A) ∈ SpaceFP, the set B =
{τ(X,A(α,−) : α ∈ |A|} is a fuzzy partition on the set |A|, such that

T[X,A] = F ↓
|A|,B : L|A| → L|A|,

g ∈ L|A|, F ↓
|A|,B(g)(β) =

∧

α∈|A|
τ(X,A)(α, β) → g(α) = g(β).

It can be proven that g is the extensional core of g with respect to τ(X,A). In fact,
analogously as in the Example 2, we can prove that g is extensional with respect
to τ(X,A), g ≤ g and g is the largest extensional map with these properties.
Therefore, in that case, the lower F-transform F ↓

|A|,B represents the extensional
core transformation. �

4 Conclusions

F-transforms of lattice-valued fuzzy sets and powerset theories in fuzzy struc-
tures are frequently used tools in the fuzzy set theory and applications. Although
these theories seem to be independent from the point of view of methods used,
there exist deep relationships between these theories. We proved that arbitrary
F-transform of L-valued fuzzy sets defined by a fuzzy partition can be derived
from a special powerset theory defined on the set of all L-valued fuzzy sets
and, conversely, there exists a special class of powerset theories, such that maps
defined by these powerset theories are F-transforms. Using these relations, we
can define new types of F-transforms and we can use, for example, new methods
in the F-transform theory, including the theory of monads in special categories,
which are typical tools in the powerset theories.
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