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Abstract. Explainable Artificial Intelligence (XAI) is a relatively new
approach to AI with special emphasis to the ability of machines to
give sound motivations about their decisions and behavior. Since XAI
is human-centered, it has tight connections with Granular Computing
(GrC) in general, and Fuzzy Modeling (FM) in particular. However,
although FM has been originally conceived to provide easily understand-
able models to users, this property cannot be taken for grant but it
requires careful design choices. Furthermore, full integration of FM into
XAI requires further processing, such as Natural Language Generation
(NLG), which is a matter of current research.

1 Introduction

Explainable Artificial Intelligence (XAI) is gaining consensus among researchers
and engineers in Computer Science, as an alternative approach to current AI
methods that show great learning capabilities but are relatively ineffective in
explaining the reasons of the produced outputs in a human-intelligible way. Fuzzy
Modeling has a huge potential for the development of advanced XAI systems,
provided that some methodological requirements are fulfilled. The aim of this
tutorial is to give a short overview of XAI and the way to reach it through Fuzzy
Modeling in particular. After a brief introduction to XAI (Sect. 2), the role of
Granular Computing is highlighted as the theoretical background that motivates
the adoption of Fuzzy Modeling for XAI (Sect. 3). In particular, interpretability
in Fuzzy Modeling is a key requirement for XAI, which is outlined in the subse-
quent Sect. 4. The next step toward XAI is the generation of natural language
expressions to explain the decisions of a fuzzy (rule-based) model; NLG is briefly
described in Sect. 5. Finally, some notes of possible future developments conclude
this paper.

2 Towards Explainable Artificial Intelligence

In 2013, Eric Loomis was found driving a car that had been used in a crime.
The judge sentenced him six-year of prison, which was determined in part by his
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score on the COMPAS scale, an algorithmically determined assessment used to
predict an individual’s risk of recidivism. COMPAS is a proprietary algorithm,
and its risk assessment procedure is opaque to the public. Loomis appealed
against the sentence by objecting that the use of a predictive algorithm violated
the principle of a due process but the Wisconsin Supreme Court ruled against
Mr. Loomis because he would have gotten the same sentence based solely on the
usual factors, including his crime and his criminal history [31]1.

Loomis’ case is perhaps one of the first and most apparent examples of AI
used to determine the course of a person’s life. More and more cases accumu-
lated in recent years, in very disparate situations, including autonomous vehicles,
robot-assisted surgery, health-care, warfare, etc. AI is preponderantly entering
our life and we must ask ourselves if we want this new presence and at which
conditions.

The scientific community already recognized this new trend and began to
react accordingly. In 2017, ACM issued a Statement on Algorithmic Trans-
parency and Accountability which, by recognizing that computer algorithms have
far-reaching impacts, their use may consciously or unconsciously result in harm-
ful discrimination2. Accordingly, ACM recommends to use the same standards
as institutions where humans have traditionally made decisions and outlines a
set of principles, including the ability of explanation (a.k.a. explainability) which
encourages to produce explanations regarding both the procedures followed by
an algorithm and the specific decisions that are made.

From a political standpoint, the importance of data and their processing has
recently been recognized and regulated. The General Data Protection Regulation
(GDPR) is a EU regulation, emanated in 2016 and implemented in 2018, for the
protection of natural persons with regard to the processing of personal data and
on the free movement of such data3. GDPR is motivated, among other things by
the right to obtain an explanation of the decision reached after any assessment
provided by automatic procedures4.

Explainable Artificial Intelligence (XAI) is a new approach to AI where the
ability to explain the decisions provided by algorithms is the primary objective.
The XAI program was firstly defined by the Defense Advanced Research Projects
Agency (DARPA), with the objective of creating machine learning techniques
that produce more explainable models, while maintaining a high level of predic-
tion accuracy and «enable human users to understand, appropriately trust, and
effectively manage the emerging generation of artificially intelligent partners»5.
Figure 1 illustrates the differences between current AI (mainly based on Machine
1 The full history has been reported by The New York Times, on May 2, 2017, p. A22.

See https://nyti.ms/2qoe8FC.
2 https://www.acm.org/binaries/content/assets/public-policy/2017_joint_

statement_algorithms.pdf.
3 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679.
4 See note (71) in the preamble of GDPR. Actually, GDPR is quite timid in affirming

the right of explanation [36], thence the need of more precise regulations on the
subject in future.

5 https://www.darpa.mil/program/explainable-artificial-intelligence.
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Learning) and XAI according to DARPA: the learned function is replaced by an
explainable model and an explainable interface for helping users understanding
the results of a machine learning process.

Fig. 1. XAI according to DARPA. Source: see footnote (5)

The importance of XAI is outstanding for several reasons, including: (i) the
possibility of integrating machine and human knowledge in a simple way that is
accessible by non-technical users; (ii) the possibility of interaction between users
and machines in order to tackle complex problems; (iii) the ability of users to
validate the functionality of an intelligent machine with respect to criteria of per-
formance, ethics, safety, causality, etc.; (iv) the possibility of trusting machines
for mission-critical applications [14].

XAI is growing widespread and reaching new frontiers on both scientific
and technological sides. In this tutorial we will highlight the role of Granular
Computing in general, and Fuzzy Modeling in particular, to the development of
XAI.

3 Granular Computing

Granular Computing (GrC) is a computing paradigm where the object of pro-
cessing is the information granule, i.e. a clump of objects kept together by
some relations of indistinguishability, similarity, functionality or alike [44]. GrC
is motivated by the need to approach AI through human-centric information
processing [9], thence its central role in XAI.

GrC moves from some long-stated considerations concerning the apparent
difficulty in developing common-sense reasoning in computers, while it seems so
natural in human beings [28, Sect. 2.5]. These considerations led to the develop-
ment of highly challenging branches of Informatics, such as Brain Informatics and
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Cognitive Informatics, which aim at understanding the informational nature of
human brain and mind by using the techniques provided by Informatics [37,45].
In particular, understanding the human brain and mind from the point of view
of Informatics brought to a couple of fundamental assumptions: (i) brains and
computers embody intelligence mostly for the same reasons; (ii) there exists a
set of common principles that underlies both human intelligence and artificial
intelligence [29]. Based on these assumptions, a theory of intelligence can be
envisioned, which consists of multiple levels of explanations starting from the
neural level up to the functional and conceptual level [38]. Deep neural networks
are models of such a theory of intelligence which belong to the lowest neural
and cortical levels. On the highest functional and conceptual levels, new forms
of “human-inspired” computing models are needed; this need gave rise to GrC
[38].

GrC is an “umbrella” paradigm that is declined in many forms according to
the different branches of Artificial Intelligence. In particular, according to Zadeh,
information granules are the results of granulation which, among organization
and causation, are the three basic concepts of human cognition [44]. Specifically,
granulation is the act of decomposing a whole into meaningful parts – like the
decomposition of the image of a face into mouth, eyes, etc., or a satellite image
into terrain, rivers, lakes, and so on.

Independent on the specific formal theories that can be developed under the
paradigm of GrC, there are two common principles that are generally preserved:
the multilevel and the multiview principles [39]. According to the multilevel
principle, granulation yields a hierarchical granular structure, with levels in the
hierarchy corresponding to different degrees of abstraction; on the other hand,
each granular structure offers just a partial view of a phenomenon, therefore
different granular structures (i.e. multiple views) may be used to provide a more
complete understanding of the reality that is modeled. (A handy example is
the scientific publishing model: title-abstract-content is a multilevel granular
structure that is represented in a paper, and more papers are usually published
on a subject to highlight the methodology, the application, the implementation,
etc.).

Information granules at one level are treated as primitives for the higher level
of a granular structure. Therefore, each information granule is informally defined
as a collection of objects (i.e., information granules of the lower level) related
together by some relation that makes objects indistinguishable at the higher
level. Similarity, spatial proximity, functionality are examples of such relations.

Many concepts in the human mind are formed through an act of percep-
tion, i.e. the organization, identification and interpretation of a sensation in
order to form a mental representation [32, Chap. 4]. Since what is perceived
belongs to a continuous Reality and concepts are formed through perceptions,
it is straightforward to assume that such concepts reflect the continuity of per-
ceptions. Information granules are used to represent and process concepts as
conceived by human minds, therefore information granules should be defined
in order to preserve the continuity of perception-based concepts. Fuzzy Set
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Theory (FST) offers a suitable mathematical underpinning to define this kind of
information granules [43]. In other words, «fuzziness of information granules is a
direct consequence of fuzziness of the concepts of indistinguishability, similarity,
proximity and functionality» [40].

Very often, perception-based concepts are designated by labels forming our
Natural Language [42]. Therefore, FST can be used for Computing With Words
[41]: propositions in natural language are translated into fuzzy constraints on
the involved variables; inference is carried out through the machinery offered
by FST; the results of inference are eventually expressed in natural language.
FST is a promising approach for defining the theoretical background to represent
perception-based information granules, which are designated by linguistic terms
drawn from natural language. Thus, FST is a natural candidate for designing
models in XAI. In the next Section, we’ll look at the opportunities and challenges
deriving from the use of FST in XAI.

4 Interpretability in Fuzzy Modeling

Fuzzy Modeling (FM) is a methodology oriented toward the design of explana-
tory and predictive models using FST. FM is long-standing, with pioneering
works dated in the seventies. The original intent of FM was to develop knowledge-
based models capable of both representing highly non-linear relations between
inputs and outputs, and at the same time offering an intelligible view of such
relations through the use of a simplified natural language [22]. This was accom-
plished by “fuzzy rules”; nowadays, fuzzy rule-based models are common practice
in FM.

In the eighties FST met Machine Learning [33,34], and since then several
methods for automatically deriving fuzzy rule-based models from data arose. As
a result, such fuzzy models were mainly designed for accuracy, while the original
intent of FST to represent perception-based knowledge became of secondary
relevance. But fuzzy rule-based models that are not interpretable are akin to
black-box models, like neural networks, for which an armamentarium of powerful
learning techniques already exist and are continuously refined. Interpretability
is a property of fuzzy rule-based models which can be roughly defined as the
capability of reading and understanding the knowledge-base of a (fuzzy) model.
Interpretability is not given from grant by the mere use of FST but it requires
a methodology that is still in development.

The definition of interpretability cannot be formulated in strict mathematical
sense because it involves the human factor which is hard, if not impossible, to for-
malize. However, the basic principle underlying interpretability can be found in
Michalski’s Comprehensibility Postulate, which parallels the results of a learning
algorithm with the description that a human expert might produce by observing
the same entities [27]. Roughly speaking, the perception-based concepts acquired
by a human should be co-intensive with the information granules that are auto-
matically generated by a learning algorithm, provided that the same objects are
observed [23]. In particular, since we use symbolic terms drawn from natural
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language to communicate knowledge, then the implicit semantics that a term
conveys when used in a context should overlap with the explicit semantics a
term is given by interpreting it with a fuzzy set (see Fig. 2).

It is possible to illustrate the concept of co-intension with an explanatory
example involving two actors, Alice and Bob [24], where Alice is a scholar com-
municating some piece of information to Bob by adopting an appropriate lan-
guage that is capable to represent her own knowledge. In order be understood by
Bob, Alice chooses linguistic terms whose meanings are supposed to be shared by
Bob. (It is not necessary that Alice’s and Bob’s meanings are exactly the same,
but they should be overlapping enough in order to understand each other.) This
is possible if Alice and Bob share similar environment, language, culture, experi-
ences, etc. Therefore, co-intension can be achieved if Alice and Bob share similar
conceptualizations of the piece of reality they are talking about. This illustrative
scenario is very common among humans as it enables communication of infor-
mation and knowledge. The comprehensibility Postulate tries to extend this
principle to the communication of knowledge acquired by machines to humans.

Interpretability calls for both semantic and structural requirements, whereas
the semantic facet is related to the co-intension of information granules with
perception-based concepts, and the structural facet is needed to cope with the
limited capabilities of the human brain in processing information [7]. In order
to achieve an effective definition of interpretability, a collection of interpretabil-
ity constraints and criteria can be adopted. This collection is not standard-
ized, because different constraints can be selected according to the needs of the
designer. As a consequence, there is not a unique computational definition of
interpretability. It is common to organize interpretability constraints according
to the level of modeling. Therefore, there are interpretability constraints for
fuzzy sets, for linguistic variables, for multi-dimensional information granules,
for fuzzy rules and for entire fuzzy models [25]. Assessment of interpretability is
aimed at formalizing measures that quantify the degree of fulfillment of inter-
pretability constraints by any model component. Also in the case of assessment,
both structural and semantic measures are used and eventually aggregated to
define a global evaluation of interpretability [16]. As an alternative approach,
interview-based experiments can be used to evaluate the interpretability of a
fuzzy rule-based model in a holistic way [5].

Designing interpretable fuzzy models requires some additional steps with
respect to the usual modeling stages. In particular, the source of knowledge may
be twofold: the available data and the expert’s knowledge. The way of consider-
ing these two sources is critical for an effective model. An iterative approach is
recommended to integrate induced knowledge with expert rules in order to drive
the design toward a model that is balanced in terms of predictive and explana-
tory capabilities [6]. Also, several modeling approaches are available, which may
favor interpretability over accuracy or the converse; other approaches recognize
that interpretability and accuracy are conflicting objectives and adopt multi-
objective techniques to achieve a Pareto front of solutions [12]. Alternatively,
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Fig. 2. Interpretation of symbols with fuzzy sets. Interpretability is assured only if the
implicit semantics conveyed by each linguistic term is co-intensive with the explicit
semantics determined by its interpretation.

ad-hoc algorithms may be used to incorporating interpretability constraints
within the algorithms that induce fuzzy rules from data [13].

Most methods for modeling interpretable fuzzy systems adopt type-1 fuzzy
sets, i.e. fuzzy sets that map objects of a universe of discourse into a scalar
degree of membership. There is, however, a large corpus of literature concerning
the use of type-2 fuzzy sets in fuzzy modeling. Type-2 fuzzy sets map elements
of a universe of discourse into a type-1 fuzzy set defined on the domain of mem-
bership degrees. Type-2 fuzzy sets are justified by the assumption that «words
mean different things to different people», therefore the uncertainty, related to
the membership degree an object has to a set modeling a word, can only be rep-
resented by another level of uncertainty, thus giving rise to type-2 fuzzy sets [26].
Type-2 fuzzy sets gained attention in the last 15 years, not without complicacies
and misconceptions [20]. For example, set operations on type-2 fuzzy sets can
be defined in different ways, leading to very different theories [11]. Also, type-2
fuzzy sets may have different interpretations (e.g. in terms of intuitionistic or
bipolar information). Therefore, type-2 fuzzy sets have a potential usefulness
in modeling the meaning of words, but their manipulation and interpretation
requires a full understanding of the subject of modeling. The authors’ position
is to favor type-1 fuzzy sets to model the knowledge base of a specific agent, while
type-2 fuzzy sets are more suitable to model a kind of “social knowledge” that is
shared among different agents. This is, however, matter of future research.

There are not many software tools to support designers in developing inter-
pretable fuzzy models [1]. FisPro6 is an open-source software that facilitates

6 https://www7.inra.fr/mia/M/fispro/fispro2013_en.html.

https://www7.inra.fr/mia/M/fispro/fispro2013_en.html
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interpretability in all fuzzy modeling steps [19]. GUAJE7 (Generating Under-
standable and Accurate fuzzy models in a Java Environment) is another open-
source software with the aim of supporting the design of interpretable fuzzy
rule-based systems by means of combining several preexisting software tools [2].
It is a portable graphical tool designed in order to facilitate knowledge extrac-
tion and representation for fuzzy rule-based systems, paying special attention to
interpretability issues (see Fig. 3). GUAJE lets the user define expert variables
and rules, but also provides supervised and automatic learning capabilities. Both
types of knowledge, expert and induced, are integrated under the expert super-
vision for ensuring interpretability and consistency of the knowledge base along
the whole process. The tool is an implementation of the HILK++ methodology
for interpretable fuzzy modeling [4].

5 Fuzzy Modeling for XAI: Current Developments

Interpretability in fuzzy modeling is a requirement that leads to the development
of methods and techniques to generate fuzzy models—mostly fuzzy rule-based
systems—whose knowledge bases can be read and understood by users. In order
to develop XAI, a step forward must be done, since in this case the new require-
ment is to explain the decision provided by a system. An interpretable fuzzy
system gives the necessary information, but the explanation of a decision needs
further processing.

XAI is a flourishing research direction is Artificial Intelligence, particularly
in Machine Learning [10,18]; in Fuzzy Logic, research is gradually including the

Fig. 3. A screen-shot of GUAJE.

7 https://sourceforge.net/projects/guajefuzzy/.

https://sourceforge.net/projects/guajefuzzy/
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results in interpretability to develop explainable models based on fuzzy models
[15]. A promising methodology that drives interpretable fuzzy modeling toward
XAI is Natural Language Generation (NLG). NLG enables the generation of
text from other data sources and finds application in state-of-art systems such
as speech recognition, machine translation and conversational systems among
others [17]. A specific branch of NLG is the so-called “data-to-text” (D2T-NLG),
whereas linguistic descriptions are automatically generated from a complex of
data. A particular approach for D2T-NLG is based on Linguistic Description
of Complex Phenomena (LDCP), a method for NLG that produces a Granular
Linguistic Model of a Phenomenon (GLMP), i.e. a network of processing units
called “perception mappings”, each of them representing a computational per-
ception or an aggregation thereof [35]. A computational perception is a unit of
meaning for the phenomenon under analysis and is identified by a set of lin-
guistic expressions and their corresponding validity values given a situation (e.g.
an input sample). Perception mappings aggregate computational perceptions by
means of aggregation functions, which could be implemented in form of fuzzy
rules, and generate appropriate text by an algorithm. The output of a GLMP is
a linguistic description that explains a possibly complex situation, thanks to use
of one or more underlying interpretable fuzzy models that are distributed among
the perception mappings [3]. Figure 4 illustrates an example of GLMP used for
generating an explanation of the inference carried out by a fuzzy rule-based
classifier and the corresponding explanation for a given input sample.

A challenge in LDCP is to explain a phenomenon involving correlated data,
whereas this relation has been learned by some inductive algorithm. A typical
example is given by a Machine Learning algorithm that is used for learning a
classification function: this algorithm could be highly accurate but it may hardly
explain why a class label has been assigned to a given input. A possible approach
is to use the classification algorithm as an oracle and a collection of interpretable

Fig. 4. Example of GLMP for explaining the classification of beers (left); textual expla-
nation of a classification (right) [8].
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models (including fuzzy models) as candidates for generating an explanation.
Given an input sample, the simplest interpretable model in accordance with the
oracle is used to generate an explanation through LDCP [8].

6 Future Developments

NLG is a promising way for developing XAI systems that generate textual
descriptions concerning their inferences. Fuzzy sets seem appropriate models
of the meaning of words, therefore fuzzy modeling is a promising approach for
NLG, as exemplified by LDCP. Current works are still in the introductory stage
and shed light on new research opportunities in the field. In particular, the inter-
action with deep neural networks is a mid-term objective since it could offer the
best of two worlds: the outstanding learning abilities of deep neural networks
with the human-centrality of conceptual models like those generated by LDCP.

From the point of view of interpretability in fuzzy modeling, future develop-
ments will be focused on representational issues: flat rule-based models are quite
standard nowadays but suffer structural limits that could be overcome by more
structured representations of knowledge. There are some tentative approaches
in this sense by hierarchical fuzzy systems [30] but they are not exempt from
criticism [21]. A tighter integration of fuzzy models with explanation models like
GLMP may reconcile the need of interpretability of acquired knowledge with the
requirement of providing explanation in complex scenarios.

Interpretability itself is matter of ongoing research, in order to cope with
current challenges resulting from the higher complexity of data that is used to
acquire knowledge. The use of incremental inductive algorithms, for example, is
welcome to cope with stream data; nevertheless, these algorithms should take
into account the requirement of interpretability of both the resulting knowledge
and its historical evolution.

Finally, it must be noticed that the interpretability constraints and criteria,
used for an operational definition and assessment of interpretability, are mostly
based on common-sense principles. A more formal approach, which looks at
interpretability as a protocol for the communication of information semantics,
is a promising research direction aimed at establishing the foundations of many
methodologies that are under current development.

Acknowledgments. Supported by the Spanish “Ministerio de Economía y Competi-
tividad” through the Ramón y Cajal Program (RYC-2016-19802).
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