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Abstract. In a recent paper we found an analytical formula for the con-
strained ordered weighted aggregation problem (OWA) when we need to
maximize the objective function. In this note we prove that the method
works in the case when we need to minimize the objective function.
If in the case of the maximization problem we need to rearrange the
coefficients in the constrained in nondecreasing order, for the nontriv-
ial minimization problem, it suffice to rearrange them in nonincreasing
order.
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1 Introduction

The OWA operators (ordered weighted average operators) were introduced by
Yagger in paper [8]. Since then, OWA operators were successfully used in research
fields that belong in broad sense to decision making. One interesting problem
is to optimize the OWA operator. This type of investigation started with paper
[7] and since then it became a challenging problem for researchers. The issue is
that we lack an analytical formula for the solution function. In order to avoid
repetition, we refer to our recent paper [2] where the problem is discussed in
detail. Then, we refer to the surveys [3] and [4] where the reader can find about
many optimization problems related to the OWA operators. Our interest in
this topic is to find those types of optimization problems where we can find
an analytical expression for the solution function. In paper [7] the idea was to
transform the problem into a mixed integer linear problem. As the number of
variables increases significantly an some of them are restricted to be integers, it
seems hard to find an analytical expression for the solution function in general.
The first such concrete result can be found in paper [1] in the special case when
we have a single constraint and all coefficients are equal to one. This result was
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generalized recently in paper [2] where the coefficients are arbitrary this time.
The method used in this paper to obtain the analytical expression of the solution
function in the case when we maximize the objective function can be adapted
in order to find the analytical solution function when we need to minimize the
objective function. This is what we will do in this note. A common feature in
solving all these problems is that the constrained OWA aggregation problems are
transformed into linear programs and the analytical expression of the solution
function is obtained using the dual of these linear programs. It is important
to mention that there are other works too where one uses the dual of linear
programs in order to obtain the solution of certain type of constrained OWA
aggregation problems (see papers [5,6]).

The paper is organized as follows. In Sect. 2 we recall the basic theory on the
constrained OWA aggregation problem and we also recall our result from the
recent paper [2] where we found the analytical expression of the solution function
when we have a single constraint with arbitrary coefficients and the objective
function needs to be maximized. In Sect. 3, this time we will need to minimize
the objective function. Again, we will have a single constraint with arbitrary
coefficients. If in the case of the maximization problem we need to rearrange the
coefficients in nondecreasing order, for the minimization problem it suffice to
rearrange them in nonincreasing order. This similar approach is a consequence
of an inequality (often referred as Chebyshev inequality) on finite sequences of
reals. There are some differences considering the two types of problems but the
cases when the coefficients are positive give a similar type of solution function.
It is important to note that in the case of the minimization problem it is not
indicated to transform the problem into a maximization problem by considering
the opposite of the objective function. In this case, we lose the positiveness
of the weights and the solving becomes more complicated. What is more, we
cannot use the formulae obtained in paper [2] because there the positiveness
of the weights is essential. Indeed, as we said, the solution of this problem is
obtained by using the solution of the dual of a linear program. But this solution
needs to have positive components and this does not hold if instead of positive
weights we consider they opposite values. Section 4 presents an example where
both problems, maximization and minimization, are solved according to the
expressions of the solution function. The paper ends with conclusions where the
main results are discussed and further research on the topic is addressed.

2 Optimization of OWA Operators

Suppose we have the nonnegative weights w1, ..., wn such that w1 + ... + wn = 1
and define a mapping F : Rn → [0, 1],

F (x1, ..., xn) =
n∑

i=1

wiyi,

where yi is the i-th largest element of the sample x1, ..., xn. This is called an
OWA operator associated to the weights w1, ..., wn (see [8]). Then consider a
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matrix A of type (m,n) with real entries and a vector b ∈ R
m. A constrained

OWA aggregation problem corresponding to the above data, is the problem

max F (x1, ..., xn)

subject to
Ax ≤ b, x ≥ 0.

This problem was proposed by Yagger in [7]. A difficult task is to find an exact
analytical solution to this problem. Yagger used a method based on mixed inte-
ger linear programming problem which employes the use of auxiliary integer
variables and therefore, this method is not always effective. In the special case
where we have the single constraint x1 + ...+xn = 1, the first analytical solution
for the constrained OWA aggregation problem is given in paper [1]. This result
has been generalized recently in paper [2] where the coefficients in the constraint
are arbitrary. This problem can be formulated as

max F (x1, ..., xn) (1)

subject to

α1x1 + ... + αnxn ≤ 1,
x ≥ 0

Let us recall this result in the case when we can provide a nontrivial solution
(these cases were solved in Propositions 1–2 in [2]). In what follows, Sn denotes
the set of permutations of the set {1, ..., n}.

Theorem 1. Consider problem (1). Then:

(i) if there exists i0 ∈ {1, ..., n} such that αi0 ≤ 0, then F is unbounded on the
feasible set and its supremum over the feasible set is ∞;

(ii) if αi > 0, i ∈ {1, ..., n}, then taking (any) σ ∈ Sn with the property that
ασ1 ≤ ασ2 ≤ ... ≤ ασn

, and k∗ ∈ {1, ..., n}, such that

w1 + ... + wk∗

ασ1 + ... + ασk∗
= max

{
w1 + ... + wk

ασ1 + ... + ασk

: k ∈ {1, ..., n}
}
,

then (x∗
1, ..., x

∗
n) is an optimal solution of problem (1), where

x∗
σ1

= ... = x∗
σk∗ =

1
ασ1 + ... + ασk∗

,

x∗
σk∗+1

= ... = x∗
σn

= 0.

In particular, if 0 < α1 ≤ α2 ≤ ... ≤ αn, and k∗ ∈ {1, ..., n} is such that

w1 + ... + wk∗

α1 + ... + αk∗
= max

{
w1 + ... + wk

α1 + ... + αk
: k ∈ {1, ..., n}

}
,

then (x∗
1, ..., x

∗
n) is a solution of (1), where

x∗
1 = ... = x∗

k∗ =
1

α1 + ... + αk∗
,

x∗
k∗+1 = ... = x∗

n = 0.
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3 Minimizing the Objective Function

In this section we discuss the case when we search for the minimum in the
objective function. It seems that we can apply a similar approach as in the case
when the objective function is maximized. The general form is

min F (x1, ..., xn) (2)

subject to

α1x1 + · · · + αnxn ≤ β,
x ≥ 0.

Again, we will consider one restriction but in general form. Obviously it suffices
to consider only the following three problems (any other problem is reduced to
one of them)

min F (x1, ..., xn) (3)

subject to

α1x1 + · · · + αnxn ≤ 0,
x ≥ 0

min F (x1, ..., xn) (4)

subject to

α1x1 + · · · + αnxn ≤ 1,
x ≥ 0

and
min F (x1, ..., xn) (5)

subject to

α1x1 + · · · + αnxn ≥ 1,
x ≥ 0.

The solving of the first two problems is trivial. We observe that in both cases we
have the unique solution (0, 0, ..., 0), hence the minimum is 0 for both problems.

Let us discuss now the more interesting problem (5). The first result proves
that in searching for the solution, in the case of positive weights it suffices to
consider equality in the constraint.

Proposition 1. Consider problem (5) If (x∗
1, ..., x

∗
n) is a solution of problem (5)

and wi > 0, i = 1, ..., n, then α1x
∗
1 + ... + αnx∗

n = 1.
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Proof. If the conclusion were false, then we would have α1x
∗
1 + · · · + αnx∗

n > 1.
Obviously, there exists at least one strictly greater than zero component in
(x∗

1, ..., x
∗
n). Suppose these components are x∗

k1
, ...x∗

kl
. Then, there exists ε > 0

sufficiently small such that α1y
∗
1 + · · · + αny∗

n > 1, where y∗
ki

= x∗
ki

− ε > 0,
i = 1, ..., l, and all the other components are equal to 0 . Clearly this implies
that (y∗

1 , ..., y
∗
n) is feasible to our problem. What is more, we easily notice

that F (y∗
1 , ..., y

∗
n) < F (x∗

1, ..., x
∗
n), which again, contradicts the minimality of

(x∗
1, ..., x

∗
n).

Let us now discuss on the coefficients of the first constraint. If αi ≤ 0 for
all i ∈ {1, ..., n} then we have no solution since the feasible set is empty. Next,
suppose that there exists i ∈ {1, ..., n} such that αi ≤ 0. If (x∗

1, ..., x
∗
n) is a

solution of problem (5) then it is sufficient to take x∗
i = 0 because otherwise,

if x∗
i > 0, then it is really easy to prove that (y∗

1 , ..., y
∗
n), where x∗

j = y∗
j if

i �= j and y∗
i = 0, belongs to the feasible set of problem (5) and F (x∗

1, ..., x
∗
n) ≥

F (y∗
1 , ..., y

∗
n), hence (y∗

1 , ..., y
∗
n) too, is a solution for (5). It means that if in

problem (5) we have nonpositive coefficients in the restriction of problem (5),
then we can reduce this problem to a problem where all coefficients are strictly
greater than zero (we just eliminate the nonpositive coefficients and the weights
from bottom, for example, if only α1 ≤ 0 and α2 ≤ 0, then in the new problem we
eliminate these coefficients and the weights wn−1 and wn) and a solution of the
initial problem will be obtained by completing with zeros on the positions where
the nonpositive coefficients were standing. For example, if only α1 ≤ 0 and α2 ≤
0 then, if (x∗

1, ..., x
∗
n−2) is a solution of the problem where the coefficients α1, α2

and the last two weights are eliminated, then (0, 0, x∗
1, ..., x

∗
n−2) is a solution of

the initial problem. It is important to mention that if the weights are positive
and αi ≤ 0 for some i ∈ {1, ..., n}, then it necessarily follows that x∗

i = 0. Indeed
reasoning as above, this time we would get F (x∗

1, ..., x
∗
n) > F (y∗

1 , ..., y
∗
n), and this

contradicts the minimality of (x∗
1, ..., x

∗
n).

Therefore, it will not be at all a limitation for the general case if in all that
follows we assume that in problem (5) we have αi > 0, i = 1, ..., n. We start
with the special case when α1 ≥ α2 ≥ · · · ≥ αn, and only after we shall discuss
the general case. If (x∗

1, ..., x
∗
n) is a solution of the problem then let σ ∈ Sn

be any permutation such that x∗
σ1

≥ x∗
σ2

≥ · · · ≥ x∗
σn

. It is well known that

if a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn then
n∑

i=1

aibi ≥
n∑

i=1

aibτi for

any τ ∈ Sn. This implies that
n∑

i=1

αix
∗
σi

≥
n∑

i=1

αix
∗
i and hence

n∑
i=1

αix
∗
σi

≥ 1.

It means that (x∗
σ1

, ..., x∗
σn

) is feasible and on the other hand, clearly we have
F (x∗

1, ..., x
∗
n) = F (x∗

σ1
, ..., x∗

σn
), which means that (x∗

σ1
, ..., x∗

σn
) is a solution of

problem (5) as well (in the case when the weights are positive, By Proposition

1 it also means that
n∑

i=1

αix
∗
σi

= 1). But, this implies that (x∗
σ1

, ..., x∗
σn

) is in

addition a solution of the linear programming problem
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min
n∑

i=1

wixi (6)

subject to

α1x1 + ... + αnxn ≥ 1,
x1 ≥ x2... ≥ xn ≥ 0.

Indeed, it suffices to notice that the feasible set of this problem is included in
the feasible set of problem (5) which combined with the fact that F (x∗

1, ..., x
∗
n) =

F (x∗
σ1

, ..., x∗
σn

) and (x∗
1, ..., x

∗
n) solves (5) while (x∗

σ1
, ..., x∗

σn
) is feasible to prob-

lem (6), all these imply that (x∗
σ1

, ..., x∗
σn

) is a solution of (6).
In view of the above discussion, we start by providing an analytical solution

to problem (6). The reasoning is similar to those used in papers [1] and [2] in the
cases when we have maximum instead of minimum in the objective function. It
is convenient to write the dual of problem (6), which is

max t1 (7)

subject to

α1t1 + t2 ≤ w1,

α2t1 − t2 + t3 ≤ w2,

.

.

αn−1t1 − tn−1 + tn ≤ wn−1,

αnt1 − tn ≤ wn,

t ≥ 0.

Summing up the first k inequalities from above, k = 1, n, we get

t1 ≤ w1 + ... + wk − tk+1

α1 + ... + αk
, k = 1, n − 1,

t1 ≤ w1 + ... + wn

α1 + ... + αn
.

We easily notice that t1 ≤ w1+...+wk∗
α1+...+αk∗ , where k∗ ∈ {1, ..., n} satisfies

w1 + ... + wk∗

α1 + ... + αk∗
= min

{
w1 + ... + wk

α1 + ... + αk
: k ∈ {1, ..., n}

}
.

It means that (t∗1, ..., t
∗
n) is a solution of (7), where

t∗1 =
w1 + ... + wk∗

α1 + ... + αk∗
,

t∗k+1 =
(

w1 + ... + wk

α1 + ... + αk
− t∗1

)
(α1 + ... + αk) , k = 1, n − 1.
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From the duality theorem, if there exists (x∗
1, ..., x

∗
n) in the feasible set of prob-

lem (6), such that
n∑

i=1

wix
∗
i = t∗1, then (x∗

1, ..., x
∗
n) is a solution of problem (6).

Obviously this solution exists since we can take

x∗
1 = ... = x∗

k∗ =
1

α1 + ... + αk∗
,

x∗
k∗+1 = ... = x∗

n = 0.

We are now in position to present an analytical solution for the general case
of problem (5). We will just need to rearrange the order of the coefficients and
variables in order to use the formula from above. We reiterate again the fact
that it is not a limitation to assume that the coefficients are positive.

Theorem 2. Consider problem (5). If αi > 0, i ∈ {1, ..., n}, then taking σ ∈ Sn

(it is possible to have multiple choices for σ) with the property that ασ1 ≥ ασ2 ≥
· · · ≥ ασn

, and k∗ ∈ {1, ..., n}, such that

w1 + · · · + wk∗

ασ1 + · · · + ασk∗
= min

{
w1 + · · · + wk

ασ1 + · · · + ασk

: k ∈ {1, ..., n}
}
,

then (x∗
1, ..., x

∗
n) is an optimal solution of problem (5), where

x∗
σ1

= ... = x∗
σk∗ =

1
ασ1 + ... + ασk∗

,

x∗
σk∗+1

= ... = x∗
σn

= 0.

In particular, if α1 ≥ α2 ≥ · · · ≥ αn, and k∗ ∈ {1, ..., n} is such that

w1 + · · · + wk∗

α1 + · · · + αk∗
= min

{
w1 + · · · + wk

α1 + · · · + αk
: k ∈ {1, ..., n}

}
,

then (x∗
1, ..., x

∗
n) is a solution of (5), where

x∗
1 = ... = x∗

k∗ =
1

α1 + · · · + αk∗
,

x∗
k∗+1 = ... = x∗

n = 0.

As we said in the introduction, transforming problem (5) into a maximization
problem, that is, considering max −F (x1, ..., xn) instead of min F (x1, ..., xn), will
not lead to a simpler method to find the solution because we loose the positive-
ness of the weights which is essential in finding the solution of the dual problem
that leads to the solution given in Theorem1. There is another possibility to
transform problem (5) into a maximization problem, but in this case too, we
do not get an easier method. First, let us discuss the special case when all the
coefficients in the constraint are equal to one, that is, we consider problem

min F (x1, ..., xn)
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subject to

x1 + · · · + xn ≥ 1,
x ≥ 0.

As we know, without any loss of generality we may assume that the constraint
is x1 + · · · + xn = 1. Suppose that (x∗

1, ..., x
∗
n) is a solution of the problem

from above. Denoting with (y∗
1 , ..., y

∗
n) the vector that rearranges (x∗

1, ..., x
∗
n) in

nondecreasing order, then using the substitutions z∗
i = 1 − x∗

i and y∗
i = 1 − t∗i ,

i = 1, n, we get

F (x∗
1, ..., x

∗
n)

= w1y
∗
1 + · · · + wny∗

n

= w1 (1 − t∗1) + · · · + wn (1 − t∗n)

=
n∑

i=1

wi −
n∑

i=1

wit
∗
i

and

x∗
1 + · · · + x∗

n

= n −
n∑

i=1

z∗
i .

This easily implies that (1 − x∗
1, ..., 1 − x∗

n) and any of its permutations is a
feasible solution for the problem

max F (z1, ..., zn)

subject to

z1 + · · · + zn = n − 1,
z ≥ 0,

where

F (z1, ..., zn)
= w1t1 + · · · + wntn,

wi = wn−i and ti is the i-th largest element from the sequence z1,...,zn. Obvi-
ously, this later problem is a constrained OWA aggregation problem and the solu-
tion is immediate by applying Theorem 1, (ii). Unfortunately, (1 − x∗

1, ..., 1 − x∗
n)

it is not necessarily optimal since in general, the solution can have components
strictly larger than 1. Actually, one can easily prove that if (z∗

1 , ..., z∗
n) is an

optimal solution of problem

max F (z1, ..., zn)
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subject to

z1 + · · · + zn = n − 1,
z ≥ 0,

z ≤ 1

then (1 − z∗
1 , ..., 1 − z∗

n) and any of its permutations is an optimal solution of
problem (5). Clearly, this problem in general is not of type (1). Now, considering
the case of arbitrary coefficients we will arrive to a similar construction, that is,
a more complex maximization problem having additional constraints.

Comparing Theorems 1 and 2, respectively, we can easily solve both problems
(maximum and minimum) in the case of a single constraint. For the maximum
problem we just need to rearrange the coefficients in nondecreasing order and in
the case of the minimum problem, we need to rearrange them in nonincreasing
order.

4 An Example for Both Maximization and Minimization
Problems

Example 1. Suppose that F (x1, x2, x3, x4) = 1
3y1+ 1

8y2+ 1
2y3+ 1

24y4 and consider
the constraint x1 + 4x2 + 2x3 + 3x4 = 1. Let us find the maximum point of F .
Obviously, the minimum points are exactly the same if the constraint would be
x1 + 4x2 + 2x3 + 3x4 ≤ 1. Therefore, we can apply the conclusion of Theorem
1. We need a permutation of {1, ..., 4} which would rearrange the coefficients in
nondecreasing order. Such a permutation is

σ =
(

1 2 3 4
1 3 4 2

)

and by simple inspection, we get that

max
{

w1 + ... + wk

ασ1 + ... + ασk

: k ∈ {1, ..., 4}
}

is achieved for k∗ = 1. Applying the conclusion of Theorem 1, we get that
(x∗

1, ..., x
∗
4), x∗

1 = 1, x∗
2 = x∗

3 = x∗
4 = 0, is a solution of our problem. We also

notice that the maximum value is F (x∗
1, ..., x

∗
4) = 1

3 .
Let us find now the minimum of F under the same constraint. Obviously, we

have the same solutions if the constraint would be x1 + 4x2 + 2x3 + 3x4 ≥ 1.
It means that we can apply Theorem 2 for this problem. This time we need a
permutation of {1, ..., 4} which would rearrange the coefficients in nonincreasing
order. Such a permutation is

τ =
(

1 2 3 4
2 4 3 1

)
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and by simple inspection, we get that

min
{

w1 + ... + wk

ασ1 + ... + ασk

: k ∈ {1, ..., 4}
}

is achieved for k∗ = 2. Applying the conclusion of Theorem 2, we get that
(x1, ..., x4), x1 = x3 = 0, x2 = x4 = 1

7 , is a solution of our problem. We also
notice that the minimum value is F (x1, ..., x4) = 11

168 .

5 Conclusions

In this note we completed the work in paper [2], as this time we found the ana-
lytical expression of the solution function in the case of minimization of OWA
aggregation operators with single constraint. In the future, we are interested to
extend the results in the case when we have more constraints. Although in gen-
eral it seems that the method used in this research and in paper [2] cannot be
generalized as we cannot find a single permutation to rearrange monotonically
the coefficients in all constraints, some important special cases could be inves-
tigated. In the case of two constraints we have an ongoing research and results
are promising. Another important problem would be to find the solution of the
minimum problem from the solution of a derived maximum problem. This would
ease on the computer implementation. This problem as well seems to be quite
difficult since even in the simplest case when we have a single constraint with all
coefficients equal to 1, we obtained a maximization problem that has additional
constraints.
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