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Abstract. This work focuses on models selection in a multi-model air
quality ensemble system. The models are operational long-range trans-
port and dispersion models used for the real-time simulation of pollutant
dispersion or the accidental release of radioactive nuclides in the atmo-
sphere. In this context, a methodology based on temporal hierarchical
agglomeration is introduced. It uses fuzzy similarity relations combined
by a transitive consensus matrix. The methodology is adopted for indi-
viduating a subset of models that best characterize the predicted atmo-
spheric pollutants from the ETEX-1 experiment and discard redundant
information.
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1 Introduction

The real-time simulation of pollutant dispersion or the accidental release of
radioactive substances in the atmosphere is a challenging aspect of many national
services and agencies. In particular, releases of harmful radionuclides (e.g.
Fukushima, Chernobyl) could be simulated and monitored [1,10,13,20]. In this
work we consider atmospheric compounds from the ENSEMBLE system [6–8].
ENSEMBLE is a web-based system aiming at assisting the analysis of multi-
model data provided by many national meteorological services and environmen-
tal protection agencies worldwide. It is worth noting that in the case of multi-
model ensemble for atmospheric dispersions, models are certainly more or less
dependent from several intrinsic mechanisms (e.g., they often share features, ini-
tial/boundary data, numerical methods, parameterizations and emissions). For
this reason, results obtained by ensemble analysis may lead to erroneous inter-
pretations and in a multimodel approach the effective number of models may
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be lower than the total number, since models could be linearly (or nonlinearly)
dependent on each other.

To solve this problem, a number of techniques has been proposed in lit-
erature. In [15,17,18] the authors present a statistical analysis (i.e., Bayesian
Model Averaging) for combining predictive distributions from different sources
of a multi-model ensemble, and in [16] some basic properties of multi-model
ensemble systems are investigated. Moreover, cluster-based approaches have also
been proposed [2–4]. In this paper, we introduce a methodology that improves
the forecasting by considering observations that may become available during
the course of the event. The methodology is based on fuzzy similarity relations
that allow to combine multiple hierarchical agglomerations, each for a different
forecasting leading time. From the overall temporal agglomeration obtained by a
consensus matrix it is possible to select a subset of models and discard redundant
information.

The remainder of the paper is organized as follows. In Sect. 2 the proposed
methodology is detailed. In particular, some fundamental concepts on t-norms
and fuzzy similarity relations (Sect. 2.2) are given and the agglomerative based
approach is described in Sect. 2.3. Finally, in Sect. 3 some experimental results,
obtained by applying this methodology on an ensemble of prediction models, are
described. Conclusions and future remarks are given in Sect. 4.

2 Fuzzy Similarity and Agglomerative Clustering

In general, when one deals with clustering tasks, fuzzy logic permits to obtain soft
clustering, instead of hard (crisp or non-fuzzy) clustering of data. Hierarchical
clustering is a methodology for cluster analysis which seeks to build a hierarchy
of clusters and it can be agglomerative or divisive. In this work we consider an
agglomerative clustering approach. One of the main aspects of this methodology
is the use of a measure of dissimilarity between sets of observations, by using
an appropriate metric. On the other hand, a dendrogram is a tree diagram used
to illustrate the results produced by hierarchical clustering. In the following,
we show that a dendrogram can be associated with a fuzzy equivalence relation
based on �Lukasiewicz valued fuzzy similarities. Successively, a consensus matrix,
that is the representative information of all dendrograms, is obtained by com-
bining multiple temporal hierarchical agglomerations of dispersion models. The
main steps of the proposed approach are

1. Membership functions characterization;
2. Fuzzy Similarity Matrix calculation (or dendrogram) for all the models at a

fixed time;
3. Consensus matrix construction for temporal hierarchical agglomerations.

2.1 Membership Functions

The effective of fuzzy logic is the transformation of linguistic variables in fuzzy
sets. Fuzzification is the process of changing a real scalar value into a fuzzy value
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and it is achieved by using different types of membership functions. The mem-
bership function represents the degree of truth to which a given input belongs to
a fuzzy set. In the proposed approach, fuzzy sets are described by the following
membership functions [21]

µ(xi) =
xi − min(xi)

max(xi) − min(xi)
, (1)

where xi = [xi
1, x

i
2, . . . , x

i
L] is the i-th observation vector of the L considered

models.

2.2 Fuzzy Similarity

We observe that fuzzy sets can be combined via the conjunction and disjunction
operations and continuous triangle norms or co-norms are adopted, respectively.
A triangular norm (t-norm for short), is a binary operation t on the unit interval
[0, 1]. In particular, it is a function t : [0, 1]2 → [0, 1], such that it satisfies the
following four axioms for all x, y, z ∈ [0, 1] [11]

t(x, y) = t(y, x) (commutativity)

t(x, t(y, z)) = t(t(x, y), z) (associativity)

t(x, y) ≤ t(x, z) whenever y ≤ z (monotonicity)

t(x, 1) = x (boundary condition)

(2)

In practical situations the following four basic t-norms are considered

tM(x, y) = min(x, y) (minimum)

tP(x, y) = x · y (product)
tL(x, y) = max(x + y − 1, 0) (�Lukasiewicz t-norm)

tD(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if (x, y) ∈ [0, 1]2

min(x, y) otherwise (drastic product)

(3)

However, in these years, several parametric and non-parametric t-norms have
been introduced [11] and generalized versions have also been studied [5]. In the
following, we focus on the properties of the �Lukasiewicz t-norm (tL). One main
operator adopted in fuzzy-based systems (e.g., fuzzy inference systems) is the
residuum →t

x →t y =
∨

{z|t(z, x) ≤ y} (4)

where
∨

is the union operator and, for the left-continuous basic t-norm tL, is
given by

x →L y = min(1 − x + y, 1) (�Lukasiewicz implication) (5)
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Moreover, we also note that letting p be a fixed natural number in a general-
ized �Lukasiewicz structure, we obtain

tL(x, y) = p
√

max(xp + yp − 1, 0)

x →L y = min( p
√

1 − xp + yp, 1)
(6)

Another fundamental operation on a residuated lattice is the bi-residuum that
will be used for our construction of the fuzzy similarities. It is defined as

x ↔t y = (x →t y) ∧ (y →t x), (7)

where ∧ is the meet. In the case of the left-continuous basic t-norm tL, we obtain
the following bi-residuum

x ↔L y = 1 − max(x, y) + min(x, y) (8)

On the other hand, a binary fuzzy relation R is defined on U × V as a fuzzy set
on U × V (R ⊆ U × V ). A similarity matrix is a fuzzy relation S ⊆ U × U such
that, for each u, v, w ∈ U , the following properties are satisfied

S〈u, u〉 = 1 (everthing is similar to itself)

S〈u, v〉 = S〈v, u〉 (symmetric)

t(S〈u, v〉, S〈v, w〉) ≤ S〈u,w〉 (weakly transitive)

(9)

It is essential to observe that from fuzzy sets with membership functions µ :
X → [0, 1], a fuzzy similarity matrix S can be generated as

S〈a, b〉 = µ(a) ↔t µ(b) (10)

for all a, b ∈ X.
Moreover, to build the fuzzy similarity matrix a main result is considered

[19,21]

Proposition 1. Consider n �Lukasiewicz valued fuzzy similarities Si, i =
1, . . . , n on a set X. Then

S〈x, y〉 =
1
n

n∑

i=1

Si〈x, y〉 (11)

is a �Lukasiewicz valued fuzzy similarity on X.

In this work, we consider for Eq. 11

Si〈x, y〉 = x ↔L y. (12)

Now, let tL be the �Lukasiewicz product, it is worth noting that S is a fuzzy
equivalence relation on X with respect to tL iif 1 − S is a pseudo-metric on X.
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Algorithm 1. Min-transitive closure
1: Input R the input relation
2: Output RT the output transitive relation
3: Elaborate

1. Calculate R∗ = R ∪ (R ◦ R)
2. if R∗ �= R replace R with R∗ and go to step 1
else RT = R∗ and the algorithm terminates.

2.3 Dendrogram and Consensus Matrix

We also have to observe that if a similarity relation is min-transitive (t = min
in (9)) then it is a fuzzy-equivalence relation that can be graphically described
by a dendrogram [12]. In other words, transitivity implies the existence of the
dendrogram.

The min-transitive closure RT of R can be obtained as follows [14]

RT =
n−1⋃

i=1

Ri (13)

where Ri+1 is defined as
Ri+1 = Ri ◦ R, (14)

and n is the dimension of a relation matrix.
Considering two fuzzy relations R and S, we observe that the composition

R ◦ S is a fuzzy relation defined by

R ◦ S〈x, y〉 = Supz∈X{R〈x, z〉 � S〈z, y〉} (15)

∀x, y ∈ X, where � stands for a t-norm (e.g., min operator) [14]. Then we
can conclude that the min-transitive closure RT of a matrix R can be easily
computed and the overall process is described in Algorithm1.

We also observe that to accomplish an agglomerative clustering a dissimilarity
relation is needed. Here we considered the following result [14].

Lemma 1. Letting R be a similarity relation with the elements R〈x, y〉 ∈ [0, 1]
and letting D be a dissimilarity relation, which is obtained from R by

D(x, y) = 1 − R〈x, y〉 (16)

then D is ultrametric iif R is min-transitive.

In other words, we have a one-to-one correspondence between min-transitive sim-
ilarity matrices and dendrogram and between ultrametric dissimilarity matrices
and dendrograms.

Finally, after the dendrograms have been obtained at each time, a consensus
matrix, that is the representative information of all temporal dendrograms, is
obtained by combining the transitive closures by using Eq. 15 (i.e., max-min)
[14]. The overall approach is described in Algorithm 2.
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Algorithm 2. Combination of dendrograms
1: Input S(i), 1 ≤ i ≤ L L input similarity matrices (dendrograms)
2: Output S the resulted similarity matrix (dendrogram)

1. Aggregate the similarity matrices to a final similarity matrix S =
Aggregate(S(1), S(2), . . . , S(L))
a. Let S∗ be the identity matrix
b. For each S(i) calculate e S∗ = S∗ ∪ (S∗ ◦ S(i))
c. If S∗ is not changed S = S∗ and goto step 3 else goto step 1.b

3: Create the final dendrogram from S

3 Experimental Results

This Section aims to illustrate some results obtained by the proposed approach.
In particular, we consider the multi-model ensemble simulated distributions of
the ETEX-1 experiment [9]. The ETEX-1 experiment concerned the release of
pseudo-radioactive material on 23 October 1994 at 16:00 UTC from Monter-
fil, southeast of Rennes (France). Briefly, a steady westerly flow of unstable air
masses was present over central Europe. Such conditions persisted for the 90 h
that followed the release with frequent precipitation events over the advection
area and a slow movement toward the North Sea region. Just for an example,
in Fig. 1 we show the integrated concentration after 78 h from release. In the
experiment, the main objective of the several independent groups worldwide (25
members) was to forecast the observations with different atmospheric disper-
sion models. Moreover, each simulation was based on weather fields generated
by (most of the time) different Global Circulation Models (GCM) and all the
simulations relate to the same release conditions. For further information on the
involved groups and the adopted models the reader can refer to [8] and [9].

Now we apply the proposed approach to analyze data of the ETEX-1 exper-
iment. The preliminary step is the fuzzification. In particular, Eq. 1 is applied
on the concentrations estimated by models at each time level. Successively, for
each concentration at different times a dendrogram (similarity matrix) is pro-
duced (Eq. 11 with �Lukasiwicz norm and p = 1). Finally, the consensus matrix
that described the representative dendrogram is estimated by using the approach
described in Algorithm 2. In Fig. 2 a particular of the representative dendrogram
obtained after 78 h is visualized. We observe that different clusters of similar
models are obtained.

To highlight the clustering outcomes, in Fig. 3, we show some representative
distributions of the clustered models. For example, as confirmed by dendrogram,
the distributions of the models 22 and 24 are very close. See Figs. 3a and b for
a comparison. Instead, the model 21 has a very diffusive distribution, as high-
lighted by the dendrogram. This distribution is visualized in Fig. 3c. At this
point, we can identify models that have similar behavior by analyzing the dif-
ferent clusters. In order to identify the group of models that more appropriately
describe observations, we compare the distributions of the models by using a
Kullback Leibler divergence.
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Fig. 1. ETEX-1 temporal integrated observations after 78 h.
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Fig. 2. Representative dendrogram obtained by consensus matrix: x-axis are related
to the models and those on the y-axis are related to the model data similarities.

The Kullback Leibler (KL) divergence between two discrete n-dimensional
probability density functions p = [pi . . . pn] and q = [q, . . . qn] is defined as

KL(p||q) =
n∑

i=1

pi log
(
pi
qi

)

. (17)
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Fig. 3. Model distributions: (a) model 22; (b) model 24; model 21.
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Fig. 4. KL divergence varying the clustering number.

This is known as the relative entropy. It satisfies the Gibbs’ inequality

KL(p||q) ≥ 0 (18)

where equality holds only if p ≡ q. In general KL(p||q) �= KL(q||p). In our
experiments we use the symmetric version [2] that can be defined as

KL =
KL(p||q) + KL(q||p)

2
. (19)

First of all, we compute the KL divergence between each model and the median
value of the overall cluster. Successively, for each cluster, the model with the
minimum KL is selected. The median model of these considered models is com-
pared with the real observations by KL. In Fig. 4 we show the KL obtained by
varying the number of clusters.

We observe that varying the number of clusters this procedure permits to
select the models that have the best approximation of the real observation (see
[17] and [4] for more details). After our analysis, we conclude that the best
approximation is obtained by using 6 clusters. Moreover, we stress that a lower
KL does not necessarily correspond to the use of a large number of models. This
suggest an approach for systematic reduction of ensemble data complexity and
the use of the consensus matrix permits to obtain a more robust and realistic
temporal analysis.
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4 Conclusions

In this work we focused on models comparison in a multi-model air quality
ensemble system. A methodology based on temporal hierarchical agglomeration
is introduced for real-time simulation of pollutant dispersion or the accidental
release of radioactive nuclides in the atmosphere. The proposed methodology
is able to combine multiple temporal hierarchical agglomerations of dispersion
models and it is based on fuzzy similarity relations combined by a transitive
consensus matrix. The methodology is adopted for individuating models that
characterize the predicted atmospheric pollutants from the ETEX-1 experiment.
The results show that this methodology is able to discard redundant temporal
information, reducing the data complexity. In the next future, further experi-
mentations will be devoted to real pollutant dispersions (e.g., Fukushima) and
different similarity relations also using ordinal sums.
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