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Preface

The 12th International Workshop on Fuzzy Logic and Applications, WILF 2018, held
in Genoa, Italy during September 6–7, 2018, covered topics related to theoretical,
experimental, and applied fuzzy techniques and systems with emphasis on fuzzy
decision-making.

This event represents the pursuance of an established tradition of biannual inter-
disciplinary meetings. The previous editions of WILF have been held in Naples (1995),
Bari (1997), Genoa (1999), Milan (2001), Naples (2003), Crema (2005), Camogli
(2007), Palermo (2009), Trani (2011), Genoa (2013), and Naples (2016). Each event
has focused on distinct main thematic areas of fuzzy logic and related applications.
From this perspective, one of the main goals of the WILF workshops series is to bring
together researchers and developers from both academia and high-tech companies and
foster multidisciplinary research.

September 6, 2018, was the first anniversary of Lotfi A. Zadeh’s death. On that day,
WILF 2018 included a round table entitled “Zadeh and the Future of Fuzzy Logic”
aimed at emphasizing what tools based on fuzzy sets and fuzzy logic are available
today to address the technological challenges of today’s society of big data and which
others deserve to be further developed for this purpose.

After a rigorous peer-review process, we selected 16 high-quality manuscripts from
the submissions received from all Europe. These were accepted for presentation at the
conference and are published in this volume. In addition to regular papers, this volume
comprises also a tutorial and the short abstracts of the contributions to the round table.

The success of this workshop is to be credited to the contribution of many people, in
particular to the Program Committee members for their commitment to providing
high-quality, constructive reviews, to the keynote speakers Antonio Di Nola
(University of Salerno, Italy) and Jon Garibaldi (The University of Nottingham, UK),
to the tutorial presenters Davide Ciucci (University of Milano-Bicocca, Italy) and
Corrado Mencar (University of Bari, Italy), and to the local Organizing Committee for
the support in the organization of the workshop events.

September 2018 Robert Fullér
Silvio Giove

Francesco Masulli
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Machine Learning for an Adaptive Rule Base

Michal Jalůvka(&) and Eva Volna

Department of Informatics and Computers,
University of Ostrava, 30. Dubna 22, 70103 Ostrava, Czech Republic

{michal.jaluvka,eva.volna}@osu.cz

Abstract. This paper deals with a design of an original approach for machine
learning, which allows the rule base adaptation. This approach uses a fuzzy
inference mechanism for decision making, finite-state machine for the rule base
switching, and the teacher Supervisor for creating the most suitable rules for the
activity (skill) which is supposed to be learned. The used fuzzy inference
mechanism is the integration of LFLCore, which was developed at the Institute
for Research and Applications of Fuzzy Modeling. The proposed approach of
machine learning was tested in individual experiments, in which the system
learns to move with its joints. How the system moves with its joints is given by
patterns which are submitted before the beginning of learning. The evaluated
results with possible modifications are mentioned at the end of this paper
together with a formulated conclusion.

Keywords: Machine learning � Fuzzy inference system � Finite-state machine �
Supervisor � Pattern � Rule base

1 Machine Learning

Machine learning is a field of computer science that uses statistical techniques to give
computer systems the ability to “learn” (e.g. progressively improve performance on a
specific task) with data, without being explicitly programmed. Machine learning
objectives vary depending on the approach we use. According to [10], there are 4
approaches.

• The first approach is to model the mechanisms that form the basis of human
learning. An example may be a recognition of perceptions from the real world and
their integration into different groups (classes).

• Another way to approach machine learning is empirical. This approach aims at
discovering general principles that relate to learning algorithms characteristics and
general domain principles within which these algorithms operate.

• We can also approach machine learning in general. Here, an emphasis is placed on
formulating and proving theorems on the workability of whole classes of learning
problems and algorithms proposal to solve these problems.

• The last option to approach machine learning is application. This approach is
generally related to algorithm proposal (where we solve problem formulation,

© Springer Nature Switzerland AG 2019
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solution proposal, implementation). From the point of view of machine learning, we
focus on formulating a problem, proposal of representation of training examples (or
training knowledge), creating a training set, and generating a knowledge base using
machine learning.

2 Machine Learning Approaches to an Adaptative Rule Base

An adaptative rule base is based on finding and assessing the suitability rules. We try to
have a rule which provides better decision results (as much accuracy as possible). This
is similar to human learning of new skills. They try to find the steps or procedures to
best control their skill. Best practices will be retained in memory for use in the future.

None of the above-mentioned machine learning approaches (Table 1) addresses the
issue of machine learning to adapt the rule base. This issue is dealt with in the fol-
lowing works: An Adaptive Fuzzy Controller for Trajectory Tracking of Robot
Manipulator [7], Adaptive Fuzzy Rule-based Classification Systems [11], and Adaptive
Fuzzy Controller: Application to the control of the temperature of a dynamic room in
real time [14], whose contribution to the problem is summarised in Table 2 according
to the set criteria:

Table 1. An overview of basic machine learning methods

Algorithms Principle

Decision trees
[8]

TDIDT, ID3,
ASSISTANT,
C4.5

Tree nodes are evaluated according to the attributes
of the instance. The decision-making process starts
from the root to the nodes to the leaf. The leaves
are valued binary values (YES/NO)

Neural networks
[5]

Perceptron,
Backpropagation

Choosing the right topology and using the training
set to configure the neural network
The network consists of layers (input, hidden,
output) containing neurons

Bayesian
learning [3]

Gibbs algorithm,
Bayes classifier,
EM algorithm

Classification of hypotheses based on conditional
probabilities

Feedback
learning [15]

Q-learning From the set of actions is chosen such an action,
thanks to it agent finds himself in a new situation
and gain the highest reward represented fair value

Learning with a
set of rules [15]

Learn-one-rule
FOIL

A tree structure whose nodes contain a description
of IF-THEN rules. The goal is to select a
node/subtree with the best candidates describing
the training examples

Evolutionary
algorithms [4]

Genetic
algorithms

Search for hypotheses (possible solutions -
population) that are expressed numerically
(sequence of bits). Iteratively to generate new
hypotheses from existing hypotheses using
crossover and mutation and maintained in the
population according to the fitness function

4 M. Jalůvka and E. Volna



• The first criterion was the implementation of decision making (not classifying
objects) of the fuzzy inference system based on defined IF-THEN rules.

• The second criterion was a language description that is in the form of a natural
language text.

• The third criterion was how to adapt the rules. This criterion is not defined because
it is not known how the rules should be adapted. Either there would be a given
pattern according to which the rules would be set or the rules would be prioritised
based on their frequency of use. If a suitable solution is found, this strategy could be
taken into account.

The paper aims at proposing a machine learning approach for an adaptive rule base.
Adaptation methods for rule bases that are described in the above-mentioned publi-
cations do not meet our defined criteria.

3 Proposal of a Machine Learning Method for Adaptive Rule
Base

The proposed machine learning approach allows the adaptation of the rule base
according to the training set. The rule base adaptation is represented by changing
certain rules according to the required criteria. This change can be seen as deductive
learning. If we are to achieve a reinforcement of the right rules, supervised learning or
reinforcement learning can be used. When using the supervised machine learning
approach, it is important to have a training set (patterns). As a way to get a pattern, an
online approach was chosen, i.e. to get a pattern during adaptation from the motion of
the monitored joints.

These machine learning approaches (deductive learning, supervised learning,
online learning) form the basis of the proposed machine learning method. The system
architecture (Fig. 1), which implements the proposed machine learning approach,
consists of three parts [6]:

Table 2. Summary of machine learning approaches to address adaptation of the rule base

Classification Presence of
the fuzzy
inference
system

Language
description in the
form of natural
language

Way of adaptation

Work
[7]

No Yes No Changing the parameter
for the given component
(P, D) of a controller

Work
[11]

Yes Yes No Changing the height of
the fuzzy set, classifying
into 2 classes

Work
[14]

No Yes No Changing the support of
a fuzzy set

Machine Learning for an Adaptive Rule Base 5



• Fuzzy inference system,
• Supervisor,
• Finite-state machine.

The basis of the proposed approach is LFLCore, which is part of the LFLC
application [2], which was developed at the Institute for Research and Applications of
Fuzzy Modeling.

3.1 Linguistic Context

The linguistic context is defined in [13] as follows (1):

w ¼ vL; vS; vRh i vL; vS; vR 2 R vL \ vS \ vR ð1Þ

where vL denotes the smallest value, vR is the largest value, and vS is the usual mean
value to be considered in the given situation.

The construction and distribution of fuzzy sets depends on the linguistic context
(specifically, on evaluating linguistic expressions). According to the default parameter
settings in LFLC [2], the language “one-sided” context is defined as follows (2):

w ¼ 0; 0:4; 1h i ð2Þ

The proposed machine learning approach uses two language “one-sided” contexts
that are symmetric by parameter vL. These linguistic contexts are uniformly named as
language “two-sided” contexts, which are defined as follows (3):

w ¼ v�R; v�S; vL; vS; vRh i
v�R; v�S; vL; vS; vR 2 R
v�R\v�S\vL\vS\vR

v�Rj j ¼ vR
v�Sj j ¼ vS

ð3Þ

Fig. 1. System architecture

6 M. Jalůvka and E. Volna



The linguistic context for each input and output variable is set to (4):

w ¼ �1;�0:4; 0; 0:4; 1h i ð4Þ

3.2 Expressions of Variables

As expressions of variables are used evaluating linguistic expressions [13], which are
language expressions representing either a value on an ordered scale (usually a certain
number), or a position on it (left/right).

They include atomic expressions (Fig. 2) and fuzzy numbers, which can be com-
plemented by language operators, signatures (+, −), and joined by conjunctions (and, or).

3.3 Inference Method

Since the expressions of input/output variables are evaluating linguistic expressions,
Perception Based Logical Deduction (PBLD) is appropriate for working with these
expressions as described in [12]. This method handles the language description which
is linguistically-logically interpreted. Perception (Fig. 3) means such an evaluating
linguistic expression to which a value is assigned in the defined context. According to
the perceived perception, an appropriate rule from the linguistic description is subse-
quently activated, and the result obtained in the given rule is evaluated in the form of
evaluating linguistic expression.

The number of activated rules of the inference method corresponds to the number
of input variables. This appears to be an advantage over traditional inference methods
that process a relational interpreted language description (e.g. Mamdani fuzzy inference
[9]) which activate all the defined rules.

Fig. 2. Atomic expressions

Machine Learning for an Adaptive Rule Base 7



3.4 Defuzzification Method

According to [12], Defuzzification of Evaluative Expressions (DEE) is recommended
for the PBLD inference method. DEE is a collection of methods Last of Maxima
(LOM), Mean of Maxima (MOM), First of Maxima (FOM) transferring linguistic
expression to a corresponding real number. Generally, DEE is defined as (5):

DEE Að Þ ¼
LOM Að Þ if A is small or zero
FOM Að Þ if A is big
MOM Að Þ otherwise

8
<

:
ð5Þ

4 Finite-State Machine

The finite-state machine is based on a mathematical model of the language grammar,
the so-called Chomsky hierarchy [1]. Finite-state machine can recognise a regular
language, which is at the lowest level in the hierarchy (Type-3 grammars). The
deterministic finite-state machine FA can be defined as follows (6):

FA ¼ Q;
X

; d; q0;F
� �

ð6Þ

where:

Q is a finite, non-empty set of statesP
is the input alphabet (a finite, non-empty set of symbols)

d: Q�P ! Q is the state-transition function
q0 2 Q is an initial state
F�Q is the set of final states.

In the proposed machine learning model, states are reflected as the rule bases that
are ready to perform operations of a fuzzy inference system.

Fig. 3. Perception (adapted from [13])

8 M. Jalůvka and E. Volna



• Switching the finite-state machine to the next state is decided based on the current
state of the counter that acquires the values of the natural numbers.

• The state-transition function d is reflected as a rule base (states) switching according
to the respective value of the counter (symbol).

• The initial state q0 (initial rule base) is set by the user or supervisor.
• Stop of a run of the final machine occurs when there is no state-transition function

for a particular symbol.

5 Supervisor

The last block of the proposed system architecture with machine learning is the
supervisor. The supervisor has access to all rules from each rule base. Each rule
contained within the database has a parameter fitness. The fitness determines whether
the rule is applied when using inferential methods. Rule fitness is reinforced or sup-
pressed during adaptation depending on whether the desired system state is achieved
after the performance of the operation (inference). The higher the rule fitness, the better
candidate for further decision making the rule is. The fitness of all rules is initialised to
0.

Required states are submitted to the supervisor as patterns. Patterns (or sequence of
patterns) are loaded onto a pattern-tape from which the supervisor reads. In addition to
information on the required states, the pattern also contains information about:

• the number of a particular step,
• base rules over which the operation (inference) will be performed.

While browsing the patterns, inter-state switching occurs (such a rule base is
switched, which is included in the pattern), i.e. a finite-state machine is produced.
These inter-state switches are recorded by the supervisor as the transfer functions of the
finite-state machine for which is valid (7):

di : Qi �
X

i
! Qiþ 1 ð7Þ

where

Qi is the rule base contained in the i-th pattern, Qi is a subset of Q,P
i is the number of a particular step (counter value) contained in the i-th pattern,

Qiþ 1 is the base rule contained in the (i + 1)-th pattern.

The course of adaptation is divided into these basic phases (Fig. 4).

1. Pattern loading
Patterns are loaded onto a pattern-tape from which the Supervisor gradually
retrieves the pattern that is at the front of the queue. The pattern contains the step
number (counter state), the base rule name (on which the operation to be per-
formed), and the required state (the state to be performed).

Machine Learning for an Adaptive Rule Base 9



2. Rules selection
In the second phase, the supervisor selects such rules from the rule base that have
the given antecedent, which is formed by the required and current state. The desired
state value is obtained from the current pattern. The current state value is obtained
from the internal state of the given device (from the joint). The values of the desired
and current state are assigned to evaluating linguistic expressions to the given
context (perception).

3. Inference and Error
In the third phase, the Supervisor performs an inference over the selected rules,
which are gradually activated, when the inference is called. After each inference, an
error is calculated, e.g. how the current state after the inference differs from the
reference value describing the pattern. The error is calculated by (8):

E x; yð Þ ¼ y� xj j ð8Þ

where y is the required value, x is the current value.
As a result of this phase errors of all rules are calculated and transferred to the next
phase.

4. Rules reinforcement
Based on the calculated error, the supervisor will evaluate the rules either as
appropriate (+1), inappropriate (−1), or almost acceptable (0). the number of almost
appropriate rules MAX_k is fixed. If the supervisor identifies an almost appropriate
rule, parameter k increases. Rules reinforcement is given by (9):

Fig. 4. The course of adaptation

10 M. Jalůvka and E. Volna



f E; kð Þ ¼
1 if E ¼ 0
0 if E[ 0; k�MAX k
�1 otherwise

8
<

:
ð9Þ

5. Rules updating
In the last phase, the resulting value of the function f calculated from the previous
phase is added to the fitness of each rule. This fitness determines whether the rule is
correct when performing the given activity.

6 Experimental Outcomes

The proposed machine learning approach was tested on several examples in which we
teach the system to perform activities consisting of certain steps [6]. Each step rep-
resents the movement of an individual joint. In this experiment, the rules for the
movement of four joints are adapted. Here, the system should control the joints so that
it can take one step.

Joint Specifications:
The input value “Current state” is reflected as the internal state of one joint. The angle
of rotation of a given joint can take values from the interval �180�; 180�½ �. The angle
of the joints J1 and J3 is expressed by vectors ~n and vn

! and the angle of the joints J2
and J4 is expressed by vectors ~m and vm

�! (Fig. 5). The output variable “Action hit” is
reflected as a change in the state of one joint having values from the interval
�360�; 360�½ �: As required by the fuzzy inference system, these intervals are converted
according to a defined context. The input variable “Requested state” reflects the state
obtained from a given pattern whose value belongs to the given language context.

If the top joint (J1 and J3) is in action, the bottom joint (J2 and J4) retains the angle
between vectors ~m and vm

�! (Fig. 5).
The structure of the presented pattern is shown in Table 3, where the “desired state”

is the measured value corresponding to the angle between the vectors~n (or ~m) and~v. In
this case, the Finite-state machine switches the rules of the individual joints according
to the defined pattern stored in Table 3.

The structure of rule base is as follows:

• Input/Output Variables:
– Context: w ¼ �1;�0; 4; 0; 0; 4; 1h i
– Expressions: (±ro ze, ±vv sm, ±vv me, ±vv bi), where ‘ro ze’ is roughly zero,

‘vv sm’ is very very roughly small, ‘vv me’ is very very roughly medium, ‘vv
bi’ is very very roughly big.

• Linguistic description
– Current status & Desired state - > Action hit.

• Rules:
– Number of rules: 512.
– Rule specification: Inconsistent deactivated rules.

Machine Learning for an Adaptive Rule Base 11



• Inference method:
– Perception-Based Logical Deduction.

• Defuzzification method:
– Defuzzification of Evaluative Expressions.

Left leg

+

J1 J1 J3 J3
+

Right leg

y y y

X z

J2 J2 J4 J4

Fig. 5. Joints of left and right legs

Table 3. Sequence for movement of both legs

Step Rule base
regarding the
joint

Required
state

Step Bule-base
regarding the
joint

Required
state

1 J1 0 15 J2 −0.02
2 J3 0 16 J4 −0.02
3 J2 0 17 J1 0.138
4 J4 0 18 J3 −0.1
5 J1 0 19 J2 −0.072
6 J3 0.094 20 J4 −0.094
7 J2 0 21 J1 0.1
8 J4 −0.36 22 J3 −0.02
9 J1 −0.072 23 J2 −0.072
10 J3 0.21 24 J4 −0.27
11 J2 0.027 25 J1 0
12 J4 −0.205 26 J3 0
13 J1 −0.1 27 J2 0
14 J3 0.127 28 J4 0

12 M. Jalůvka and E. Volna



Adaptation of the rule base is done in 21 iterations. This number is determined by
setting the initial states for the upper joints J1 and J3 (Fig. 5). The initial value of the
lower joints J2 and J4 is always set to 0°. The number of steps in one iteration of
adaptive learning is set to 28. This sequence of patterns includes seven movements for
each joint. A continuous change of state in one iteration is shown in Fig. 6. The initial
value of the left hip is set to 180° and the initial state of the other joints is set to value 0°.

6.1 Evaluation of Experiments

During the adaptation in each experiment, we managed to adapt the individual rule base
and select the most appropriate rules for the given activity. These rule bases can be
uploaded to an expert system or LFLC [2] (compatibility is preserved). However, it
must be noted that each iteration occurs for setting different initial values and reinforces
rules that have the same antecedent and different consequence. As a result, these rules
are evaluated in such a way that one of them has a positive fitness value and others
have negative fitness values.

Fig. 6. (a) Continuous change in the motion of the left hip (J1). (b) Continuous change in the
motion of the left knee (J2). (c) Continuous change in the motion of the right hip (J3).
(d) Continuous change in the motion of the right knee (J4). (Color figure online)

Machine Learning for an Adaptive Rule Base 13



The adaptive system was tested. Figure 7 shows a continuous change in the
movement of one joint - left hip (J1). The initial joint condition was set to −180°. The
aim of the experiment was to make the condition of the joint condition comparable with
the condition of the joint that was detected during the process of adaptation.

The red curve showing the current state of the joint at each step approaches, after
adaptation, the blue curve showing the state that has to occur in a given step. In some
steps, you can see it stay on a place, even if it is to move a bit. It is because when using
the defined evaluating linguistic expressions, the adaptation of the system does not
register small movements and evaluates the best solution to stay in a place (Fig. 6,
steps 1−7).

The benefits of this approach to adaptation of the rule bases are the following:

• The user does not intervene to the rule bases during adaptation, because the
supervisor solves everything in the proposed system.

• The boundaries of the language context are fixed, the transformation of the lan-
guage context to the desired interval and vice versa can be done in the fuzzy
inference system interface.

• Simple adaptations when changing the desired allowable value interval for a given
joint.

• Simple adaptations when changing patterns of the training set.

Fig. 7. Continuous change in the movement of one joint.
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7 Conclusions

The aim of the paper was to design a machine learning approach to adapt rule bases.
Machine learning’s own approach includes the initial setting of the rule bases, the inter-
state switching proposal, and the proposal of the method of their adaptation. Each rule
base, under which the fuzzy inference system determines, has a defined limited number of
evaluating linguistic expressions, type of a fuzzification and defuzzification method, and
a randomly generated set of inconsistent of rules. For the inter-state switching, a simple
mechanism of the finite-state machine was proposed to allow the rule bases to be swit-
ched. Thanks to the finite-state machine, the system avoided using only one rule base that
would be defined bymultiple input/output variables.We have also proposed how to adapt
the rule bases, e.g. what the most appropriate rules should contain according to the
pattern. This proposed approach to machine learning adapting the rule bases was tested.
The subject of the experimental study was the joint movement according to the presented
patterns. The course of these experiments was recorded and subsequently evaluated.

The proposed system will be further developed because we have identified the
following shortcomings in the adaptive learning, which will be gradually eliminated.

• The system does not react to small movements (the best option is to remain in a
place). This is evident from Fig. 6.

• Redundancy of rule bases. If an antecedent has more consequences, the proposed
system prefers such consequence, which fitness is the greatest.

• Evaluation of the best rule is calculated based on the difference between the desired
and the current state, see Eqs. (8) and (9).

• It does not cover all combinations of rules, but the proposed rule base is sufficient
for this experimental study.

This proposed approach of machine learning can be used in systems such as a
humanoid robot. This robot can learn a few activities consisting of simple activities.
These activities include, for example, the movement of a robot’s joint. Knowledge of
“joint movement” could expand the knowledge of moving one leg or both legs. If the
system knows to control its legs, it could learn to walk, run, squat, jump. In doing so,
these rules to adapt to learning new activities/skills would be used. After deploying the
system into operation, it can perform a newly learnt activity. It can be stated that the
more activities the system can do, the larger the area of the linguistic description in the
rule base it will cover.
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Abstract. We propose a procedure devoted to the induction of a shad-
owed set through the post-processing of a fuzzy set, which in turn is
learned from labeled data. More precisely, the fuzzy set is inferred using
a modified support vector clustering algorithm, enriched in order to opti-
mize the fuzziness grade. Finally, the fuzzy set is transformed into a shad-
owed set through application of an optimal alpha-cut. The procedure is
tested on synthetic and real-world datasets.

Keywords: Shadowed sets · Fuzzy set induction · Machine learning ·
Support vector clustering

1 Introduction

In the last decades fuzzy sets have been proved to be a powerful means for
knowledge representation, reasoning and decision making in uncertain contexts.
However, as their usage becomes widespread, the trade-off between the detailed
nature of the fuzzy membership function and its symbolic interpretation is
getting undisguised. A possible way to address uncertainity trying to manage
this trade-off is to identify three regions of the universe of discourse, namely
a belongingness region, an exclusion region and a “grey” region where genuine
uncertainity holds. A lot of work has been done in this direction in different
research areas (rough sets [22], fuzzy sets [4,8,23], three-valued logic [3], type-
2 fuzzy logic [21], see [15,24] for a survey). We will focus on the construct of
shadowed sets introduced by Pedrycz [18,19], and used in different learning con-
texts [5,9,10,13,25,26]. Given a shadowed set A, the domain of discourse is
split into three regions, called the core, the exclusion and the shadowed region,
where membership value to A is 1, 0 and unknown, respectively. The shad-
owed set is induced by a fuzzy set because its shadowed regions’ position and
width are determined by the constraint of preserving the amount of fuzziness
of the originating fuzzy set. More precisely, the induced shadowed set is com-
pletely determined by an α-cut, namely a value 0 ≤ α ≤ 1/2 used to cut the
codomain [0,1] of the fuzzy membership function into the zones [0, α], (α, 1−α),
[1 − α, 1] where full belongingness, uncertainity and full exclusion are, respec-
tively, assigned. This gives rise to a membership function SA : X �→ {0, [0, 1], 1},

c© Springer Nature Switzerland AG 2019
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where X is the universe of discourse and 1, [0, 1], 0 are associated to the three
mentioned zones.

The search for the α-cut is an optimization problem; moreover, the particular
definition of fuzziness of a fuzzy set obviously affects the resulting procedure.
In [20] analytical formulas are provided to calculate the optimal α-cut using the
gradual grade of fuzziness, and a comparison with other fuzziness measures is
discussed.

We describe a data-driven procedure for the induction of shadowed sets based
on the post-processing of a fuzzy set learned from labeled data. The procedure
exploits a support vector clustering [1] algorithm in which the inference is done
starting from a set of objects in X, labeled with their membership degrees to
A. As a next step, a sphere S in a space H is found so that the images of
objects through a function Φ : X �→ H are positioned w.r.t. S in function of the
membership degrees. More precisely, in case of unitary membership the image
of an object will belong to S, otherwise it will fall farther from the border of S
as its membership to A decreases from 1 to 0 [16]. This learning algorithm is
further enriched with the optimization of the fuzziness grade of A.

The paper is organized as follows: Sect. 2 is devoted to the derivation of
the fuzziness degree of a piecewise linear membership function and its optimal
α-cut, Sect. 3 is devoted to (a) the description of the modified support vector
clustering optimization problem for learning a membership function and (b) to
its enrichment with a term accounting for fuzziness degree minimization of the
inferred shadowed set. In Sect. 4 we discuss experimental results on a synthetic
and two real-world benchmarks. Some concluding remarks end the paper.

2 Gradual Grade of Fuzziness of a Fuzzy Set

The fuzziness grade of a fuzzy set measures the vagueness of the set itself.
Such concept captures the amount of entropy inherently contained in a fuzzy
set: indeed crisp sets have a null fuzziness grade, while on the other hand the
maximal grade is attained by a fuzzy set with membership function constantly
equal to 1/2. As a rule of thumb, the sharper the boundaries of a fuzzy set,
the smaller the related fuzziness. Among the proposed measures quantifying the
fuzziness grade of a fuzzy set (see for instance [12,14]), we consider the one
introduced in [11] quantifying the fuzziness grade of a continuous, measurable
fuzzy set A whose membership function is μA as

ϕ(A) =
∫
X

(1 − |2μA(x) − 1|)dx.

The notion of fuzziness grade is linked to the search of an optimal α-cut trans-
forming a fuzzy set into a shadowed set [20]. Namely, denoted by ω1, ω2 and
ω3 the definite exclusion, the definite belongingness and the uncertainty regions
mentioned in the Introduction and restricting to them the fuzziness degree com-
putation, the optimal α is such that

ϕ(ω1) + ϕ(ω2) = ϕ(ω3) (1)
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holds. In this way, the overall fuzziness of A is equally balanced between the
shadowed (ω3) and unshadowed (ω1 ∪ ω2) regions.

In the rest of this paper we will focus on the family of piecewise linear func-
tions whose general member has the following form

fR2,M (x) =

⎧⎪⎨
⎪⎩

1 if x ≤ R2,

1 − x−R2

M−R2 if R2 < x ≤ M,

0 otherwise,

where R2 > 0 and M > R2 denote the boundaries of the crisp regions of the
fuzzy set (see Fig. 1(a))1. It is easy to show that the fuzziness degree of a fuzzy
set A whose membership function has the form μA(x) = fR2,M (x) is

ϕ(A) =
M − R2

2
(2)

while, for fixed α

ϕ(ω1) = α2
(
M − R2

)
,

ϕ(ω2) = α2
(
M − R2

)
,

ϕ(ω3) = 2(1 − α2)
(
M − R2

)
,

thus the optimal cut condition (1) reads α2 = 1 − α2, which corresponds to
α =

√
2/2.

Fig. 1. Graph of (a) a membership function μA to a fuzzy set in the considered family,
and (b) the membership function SA to a shadowed set obtained from (a) after an
optimal α-cut. Blue curve: graph of μA; green segments: crisp values of SA; gray area:
uncertainty zone of SA. (Color figure online)

1 The choice of R2 and M as names for these symbols is linked to a special role they
will play in Sect. 3.
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3 Shadowed Set Induction

The proposed procedure learns a shadowed set in two phases: the first one infers
a fuzzy set starting from a set of labeled objects, while the second phase performs
on this set the α-cut described in the previous section.

Focusing on the first phase, consider a universe of discourse X, fix n ∈ IN
and denote by {x1, . . . , xn} ∈ Xn a sample of objects. Given also a set of labels
{μ1, . . . , μn} ∈ [0, 1]n whose values are the membership degrees of objects to
an unknown fuzzy set A, the membership function μA can be learned using
the approach proposed in [16] optimizing the square radius R2 of a sphere S
belonging to a space H and centered in a. Namely, the images of objects through
a function Φ : X �→ H are such that Φ(xi) ∈ S when μi = 1, and Φ(xi) tends to
fall farther from the border of S as μi decreases from 1 to 0. This amounts to
modifying the support vector clustering algorithm proposed in [1] as follows:

min R2 + C
n∑

i=1

(ξi + τi) (3)

μi||Φ(xi) − a||2 ≤ μiR
2 + ξi ∀i = 1, . . . , n, (4)

(1 − μi)||Φ(xi) − a||2 ≥ (1 − μi)R2 − τi ∀i = 1, . . . , n, (5)
ξi ≥ 0, τi ≥ 0 ∀i = 1, . . . , n. (6)

In this formulation C > 0 measures the relative importance of the two compo-
nents in the objective function, while ξi and τi are slack variables relaxing the
constraints dealing with the positioning of points inside and outside S, respec-
tively. Once S has been learned, the membership function μA is obtained by
mapping its argument x to 1 if Φ(x) ∈ S, and to a value belonging to [0, 1)
otherwise. This value is computed applying a suitable function f to the squared
distance

r2(x) = ||Φ(x) − a||2. (7)

We will choose f within the family described in Sect. 2, dropping subscripts for
sake of conciseness. According to (2), the problem (3–6) can be easily modified
in order to take into account also the minimization of the fuzziness degree of the
inferred set as follows:

min R2 + C
n∑

i=1

(ξi + τi) + D(M − R2) (8)

μi||Φ(xi) − a||2 ≤ μiR
2 + ξi ∀i = 1, . . . , n, (9)

(1 − μi)||Φ(xi) − a||2 ≥ (1 − μi)R2 − τi ∀i = 1, . . . , n, (10)
||Φ(xi) − a||2 ≤ Mψ ∀i = 1, . . . , n, (11)

ξi ≥ 0, τi ≥ 0 ∀i = 1, . . . , n. (12)

In this new formulation, D > 0 is a new hyperparameter jointly ruling with
C the relative importance of the components in (8), namely devoted to the
optimization of radius, slack variables, and fuzziness degree. Analogously, M is
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introduced as a new variable, bounded in (11) to be higher than the distance
between a and any of the images Φ(xi). Jointly considering this constraint and
the objective function (8) amounts to requiring M to equal the maximum of
such distances. Actually, an additional hyperparameter ψ in (11) allows to fine
tune this requirement: ψ > 1 promotes higher values for M , and vice versa.

Letting E = (1 − D (1 − 1/ψ)) and denoting with k the kernel associated to
Φ (that is, k(xi, xj) = Φ(xi) · Φ(xj)), the Wolfe dual of (8–12) corresponds to
the maximization of

n∑
i=1

(εi + βi)k(xi, xi) − E−1
n∑

i,j=1

(εi + βi)(εj + βj)k(xi, xj) (13)

subject to the constraints

n∑
i=1

εi = 1 − D, (14)

n∑
i=1

βi = D/ψ, (15)

−(1 − μi)C ≤ εi ≤ μiC ∀i = 1, . . . , n, (16)
βi ≥ 0 ∀i = 1, . . . , n. (17)

It is easy to see that βi is the generic Lagrangian multiplier associated to (11),
while

εi = μiγi − (1 − μi)γ̂i, (18)

being γi and γ̂i the multipliers for (9) and (10). In order to be solvable, the dual
problem requires D 
= ψ/(ψ − 1), otherwise the objective function would not be
computable.

In the experiments described later on, we will consider two kinds of kernel:
the linear kernel defined by k(xi, xj) = xi ·xj , and the family of Gaussian kernels
defined by

k(xi, xj) = exp
(−||xi − xj ||2/σ2

)
, (19)

where σ > 0 is an additional hyperparameter to be considered. This use of the
so-called kernel trick allows to consider a universe of discourse whose members
are not necessarily numbers or numerical vectors. For instance, [17] uses a similar
technique in order to solve the problem of detecting a set of reliable axioms in
the context of semantic Web.

Dealing with the KKT conditions [7] is a bit tricky, because these are
expressed in terms of γi, γ̂i, βi, and the remaining Lagrange multipliers. For
sake of conciseness, we just list the salient relations linking primal and dual
variables when we consider the optimal solution:

0 < γi < C → R2 = r2(xi), (20)
0 < γ̂i < C → R2 = r2(xi), (21)

βi > 0 → M = ψ−1r2(xi), (22)
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Table 1. Relations between the dual variables γi, γ̂i, and βi.

γ̂i = 0 0 < γ̂i < C γ̂i = C

γi = 0 εi = 0 −C(1 − μi) < εi < 0 εi = −C(1 − μi)

0 < γi < C 0 < εi < Cμi −(1 − μi)C < εi < μiC −C(1 − μi) < εi < C(2μi − 1)

γi = C εi = C C(2μi − 1) < εi < Cμi εi = C(2μi − 1)

where r2(x) = ||Φ(x) − a||2 can be obtained as

r2(x) = k(x, x) − 2E−1
n∑

i=1

(εi + βi)k(x, xi)

+ E−2
n∑

i,j=1

(εi + βi)(εj + βj)k(xi, xj).

The problem here is that (8–12) explicitly depend only on εi and βi, thus only
(22) is directly exploitable. By analyzing all combinations between the critical
values of γi and γ̂i and computing the corresponding values for εi (see Table 1),
it is easy to check that

0 < εi < Cμi → 0 < γi < C, (23)
−C(1 − μi) < εi < 0 → 0 < γ̂i < C. (24)

Jointly considering (20–24) it is therefore possible to link the optimal values of
dual and primal variables:

0 < εi < Cμi → R2 = r2(xi), (25)
−C(1 − μi) < εi < 0 → R2 = r2(xi), (26)

βi > 0 → M = ψ−1r2(xi). (27)

Once R2 and M have been found, a shadowed set can be obtained from the
corresponding fuzzy set through application of the optimal α-cut described in
Sect. 2.

4 Experiments

As a first set of experiments, we tested the sensitivity of the overall learning pro-
cedure to hyperparameters2. Focusing on C, we considered a synthetic dataset
composed by seven points whose crisp membership3 has been fixed according
2 Code and data to replicate experiments are available at https://github.com/

dariomalchiodi/WILF2018.
3 It is worth highlighting that the learning algorithm of Sect. 3 can in principle be run

on objects labeled using more generic membership grades (that is, values belonging
to [0, 1]). However, as such a rich information is normally not available in public
datasets, all reported experiments rely on crisp membership labels.

https://github.com/dariomalchiodi/WILF2018
https://github.com/dariomalchiodi/WILF2018


Data-Driven Induction of Shadowed Sets Based on Grade of Fuzziness 23

(a) C = 0.3 (b) C = 6

Fig. 2. Effect of changes of C on the membership functions learned using a linear kernel
and setting D = 0.3 and ψ = 1. The fuzzy and shadowed membership functions were
plotted using the same notation of Fig. 1. For each sample point, a bullet on the X-axis
is drawn using black and white color when μi = 1 and μi = 0.

to an interval, thus suggesting a unimodal membership both to a fuzzy and a
shadowed set. Using a linear kernel and fixing D = 0.3 and ψ = 1, Fig. 2 shows
that rising C has the effect of sharpening the boundaries of the fuzzy set. In
other words, as C grows the membership increases from 0 to 1 (and decreases
from 1 to 0) in a more linear fashion.

Figures 3 and 4 describe analogous experiments focusing on the role of D and
ψ which we can summarize as follows:

– D is directly related to the amount of uncertainty of the inferred shadowed
set (the higher its value, the lower the fuzziness degree of the set);

– ψ primarily influences the localization of the inferred set, although it also
affects the optimal value of M , thus it has an impact on the uncertainty
described in the previous point, too.

Finally, the kernel choice obviously affects the general form of μA, and thus
also SA. For instance, Fig. 5 shows the effect of decreasing the parameter of a
Gaussian kernel when learning SA on the same dataset of Figs. 2 and 3. The aug-
mented plasticity in the considered class of functions allows the procedure to find
bimodal memberships concentrating around the positive points as σ decreases.

Switching to a non-synthetic dataset, Fig. 6 shows the result of the proposed
technique for a sample from the veterinary domain, in which each observation is
the measurement of the level of kidney function (namely, the rate of glomerular
filtration, measured in mL/min/Kg), in a set of 37 dogs, each one labeled either
as “ill” or “healthy”. In this case the procedure relied on a Gaussian kernel with
parameter σ = 0.3, fixing C = 0.5, D = 0.45 and ψ = 1.

As the described learning algorithm can handle objects of arbitrary dimen-
sion, we also considered the Iris dataset [6], gathering the observations of 150
iris plants, expressed as a 4-dimensional vector (sepal length, sepal width, petal
length, petal width), with length and width measured in centimeters. Each obser-
vation belongs to exactly one of the classes Setosa, Virginica, and Versicolor
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(a) D = 0.1 (b) D = 2

Fig. 3. Effect of changes in the parameter D on the learned unimodal membership
function to a shadowed set, letting C = 10, ψ = 1 and using a linear kernel. Same
notation as in Fig. 2.

(a) ψ = 0.3 (b) ψ = 0.4

(c) ψ = 0.6 (d) ψ = 1

Fig. 4. Effect of changes in the parameter ψ on the membership function to a shadowed
set learned with a linear kernel and setting C = 1 and D = 4. Same notation as in
Fig. 2.

(where the first one is linearly separable from the remaining two, and the lat-
ter are linked by a more complex relationship). For sake of visualization, we
extracted the first two principal components from the observations and per-
formed the shadowed set inference for all the available classes, each time label-
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(a) σ = 5 (b) σ = 3

Fig. 5. Effect of changes in the parameter σ of the used Gaussian kernel on the bimodal
membership function to a shadowed set learned when C = 30, ψ = 1 and D = 0.8.
Same notation as in Fig. 2.

Fig. 6. Membership function for the fuzzy and shadowed sets capturing the concept of
“ill dog” expressed by a real-world dataset. Same notation as in Fig. 2.

ing with μi = 1 the observations referring to the target class and with μi = 0
the remaining observations. Figure 7 shows the obtained results when the whole
dataset is considered, using a Gaussian kernel (the related value for σ, as well as
those of the remaining hyperparameters have been chosen after an exploratory
procedure). In the figure, bullets are superimposed to a visualization of the mem-
bersip functions where a dark gray and white background respectively refer to
positive and negative values, while a light gray background shows the uncertain
areas.

In order to get quantitative results, we performed a more accurate experiment
in which the following holdout scheme was iterated one hundred times.

– We randomly shuffled data and subsequently performed a stratified sampling
in order to get a training and a test set gathering respectively 80% and 20% of
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(a) SSetosa (b) SVirginica (c) SVersicolor

Fig. 7. Inferred shadowed sets for the Iris dataset. Bullets show the two principal
components of each data item, colored in blue, red, and green respectively for the
Setosa, Virginica, and Versicolor classes. Dark gray, light gray and white background
correspond to the positive, uncertain, and negative values for the membership function.
(Color figure online)

Table 2. Results of one hundred holdout iterations of a joint shadowed set learning
procedure on the Iris dataset. Each row shows average, median, and standard deviation
of test error, in function of the number of principal components (# PC) extracted from
the original sample.

# PC Average error Median error Error std

2 0.07 0.07 0.04

3 0.03 0.03 0.02

4 0 0 0

the available items. Stratification ensured training and test sets to be balanced
(in the sense that the three classes are equally represented).

– We applied the inference procedure to the training set, obtaining three mem-
bership functions to shadowed sets, each linked to a specific Iris class.

– We assessed the joint performance of these three shadowed sets by assigning
each object to the class maximizing the membership function value (using
the obvious order 0 < [0, 1] < 1) and comparing the result with the target
label4.

The experiments were repeated extracting two, three, and four principal com-
ponents from the dataset. Table 2 summarizes the obtained results: the pro-

4 Ties were resolved in favor of the correct class, when possible.
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posed approach definitely learns the Iris dataset, outperforming similar tech-
niques based on the sole induction of fuzzy sets [2,16].

5 Conclusions

Reducing the complexity of structures described in terms of fuzzy sets has the
desirable effect of allowing an easier interpretation of models induced from data.
With this aim, we propose a learning algorithm for shadowed sets, which are sets
endowed with a three-valued membership function defining full membership, full
exclusion and genuine uncertainty w.r.t. candidate points. This algoritm identi-
fies the shadowed set according to an optimal α-cut performed on a fuzzy set, in
turn inferred from data using a modified support vector clustering approach also
optimizing the fuzziness degree. A preliminary set of experiments on synthetic
data allowed us to gain better insights on the role of hyperparameters; we also
tested the procedure on real-world datasets, getting improvements with respect
to a previous approach solely based on fuzzy sets. Besides a deeper experimen-
tation phase, we plan to extend the technique considering different families of
membership functions, as well as the jointly learning of several shadowed sets.
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Abstract. In real-world applications, the data gathering process is nec-
essarily bounded by costs in terms of money, time or resources that need
to be spent in order to sample a sufficient amount of good quality data.
From this point of view Feature Selection (FS) is essential to reduce
the total sampling cost while trying to keep the information content of
sampled data unaltered, and Rough Sets (RS) offer a natural represen-
tation of FS in terms of the so-called reducts. In this paper a modified
version of the Quick Reduct (QR) algorithm is proposed, where the cri-
terium to add features to the reduct accounts also for the costs of the
features. Exploiting granular computing and the indiscernibility princi-
ple, the Test-Cost-Sensitive Quick Reduct (TCSQR) here proposed effi-
ciently derives a close-to-optimal subset of informative and inexpensive
features. Promising experimental results have been obtained on three
different cost scenarios.

Keywords: Rough set theory · Cost sensitive learning · Granulation ·
Feature selection · Dimensionality reduction

1 Introduction

There are two assumptions that justify the crude accuracy as a measure of per-
formance for a classifier: the balanced distribution of samples among classes and
the equal misclassification cost. In most real cases, both are violated from a mod-
erate to a severe degree. Class imbalance can be tackled at the algorithmic level,
at the data level or in other hybrid ways [10]; similarly, cost-aware classification
can be tackled at the algorithmic level, at the data level or in other hybrid ways
[9]. Not surprisingly, both problems are often correlated (imbalance is due to
high sampling costs or vice-versa), and the combination of both imbalanced and
cost-aware classification techniques has been experimented [19].

When the minimization of costs becomes the main target, because gathering
samples is excessively expensive, risky or time-consuming, costs for each feature
must be included in the evaluation of performance of a classifier, and it may
well happen that the best classifier is not the one with the highest accuracy.
The typical examples are related to medical diagnosis and to security threats: in
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the first case a medical exam (feature) can be very expensive and at the same
time not particularly helpful in improving the percentage of correct diagnosis
in combination with other exams; in the second case a single break in security
can be very dangerous and expensive to remedy, even if the large part of normal
activities is correctly classified (minority class has the highest cost). While in
the first case it is of utmost importance to find the optimal subset of features, in
the second case it is of utmost importance the correct classification of minority
instances.

Assuming each measured sample x ∈ �d as a vector of dimension d, due
to redundancy, correlation or causation it normally happens that the minimum
number of features required to fully represent the data without any information
loss is d

′
< d. In the scientific literature many feature selection [3] and feature

extraction [4] algorithms have been proposed to reduce the actual dimensionality
to its minimum—the so-called intrinsic dimensionality of the dataset—with the
desirable effect of reducing the computational burden while at the same time
increasing the generalization capabilities of the classifiers [20]. Compared to fea-
ture extraction, feature selection keeps unchanged the original semantics, values
and sampling spaces of the selected features, only eliminating the redundant
ones: in general it aims to find the most predictive subset of the original features
for the subsequent classification.

With a rising trend in last years [22,23], granular computing (and in partic-
ular Rough Set theory [15]) has been extensively exploited for feature selection
or extraction [5,17] in the Machine Learning community. Granular computing is
based on the idea of an information granule—a subset of indistinguishable sam-
ples according to an equivalence relation—allowing the partition of the universe
of discourse into granules representing a coarse approximation grid for all the
embedded concepts. Rough Set theory on the other side can be seen as a family
of methodologies that exploit granules [16] to simplify the tackled problem, using
only the available data.

In this paper, granular computing has been exploited for a cost-sensitive
feature selection method that is an adaptation of Quick Reduct including feature
costs. The paper is organized as follows: in Sect. 2 an outline of Rough Set
theory and a short overview of related work is presented; in Sect. 3 the proposed
approach is described in detail; in Sect. 4 the experimental comparison of the
proposed approach with competitors is presented; in Sect. 5 the main conclusions
are drawn and future work is sketched.

2 Background

Dimensionality reduction techniques help to reduce the redundancy at the same
time increasing the generalization capabilities of a classifier; it becomes essen-
tial in the analysis of high dimensional datasets, to cope with the well known
“curse of dimensionality” (as dimension increases, the space to be explored grows
exponentially and so should the amount of data points needed to keep the same
sampling ratio) [1]. Most notably, many problems in Machine Learning involve
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high-dimensional inputs and hence a lot of effort has been put on dimensionality
reduction techniques (see for example [2]). While Feature extraction techniques
tend to destroy the underlying semantic of the features or do require a priori
knowledge about the data, feature selection techniques keep the semantic of the
feature (and its measured values) unchanged. In the context of feature selec-
tion, Rough Set theory can be used to discover data dependencies that help to
reduce the number of attributes using only information granules contained into
the dataset [15].

2.1 Reduct and Rough Sets

Let I = (U,A) be an information system, where U is the finite universe of
discourse and A is the finite set of attributes, with values in Va, such that
a : U → Va, ∀a ∈ A. Any P ⊆ A can be seen as an equivalence relation IND(P )
defined as follows:

IND(P ) = {(x, y) ∈ U × U |∀a ∈ P, a(x) = a(y)} (1)

that is the set of objects belonging to U that are not discernible by attributes
in P . The equivalence relation IND(C) partitions U in equivalence classes [x]C ,
denoted by U/IND(C). In the context of Rough Sets, equivalence classes, also
known as information granules, are employed to approximate any subset X ⊆ U
by the so called lower and upper approximations of X, defined, respectively, as
follows:

CX = {x|[x]C ⊆ X} (2)

CX = {x|[x]C
⋂

X �= ∅} (3)

Let C and D be equivalence relations over U , then the positive region—that
is the union of the lower approximations of each equivalence class defined by
X ∈ U/D—is defined as follows:

POSC(D) =
⋃

X∈U/D

CX (4)

from which it is possible to derive the Rough Set degree of dependency, γC(D) ∈
[0, 1], of a set of attributes D on a set of attributes C:

γC(D) =
|POSC(D)|

|U | (5)

Let D ⊆ A be the set of decision features and C ⊆ A the set of conditional
attributes, a reduct R ⊆ C is the set of minimal cardinality of the conditional
attribute set C such that

γR(D) = γC(D) (6)
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2.2 Feature Selection with Rough Sets

Feature selection algorithms based on Rough Set theory mostly exploit the def-
inition of reduct to find a reduced set of attributes that preserves the degree of
dependency of the full set of attributes, i.e. no attribute can be removed from the
subset without lowering the dependency degree. As long as the reduced set pro-
vides identical predictive capability as the original (unreduced) set, many reducts
can be derived for a given dataset, being obviously the ones with minimal car-
dinality the most interesting [7]: a optimal reduct is defined as the minimal set
of attributes R ⊆ C such that IND(R) = IND(C). The reduction of attributes
can be achieved through the comparison of equivalence relations generated by
each subset of attributes with an iterative process that can be subtractive, addi-
tive or hybrid [24].

The Quick Reduct (QR from now on) algorithm in particular [24], shown in
Algorithm 1, derives the reduct concatenating iteratively the attributes with the
greatest increase in the Rough Set dependency degree, until the maximum pos-
sible dependency degree for the considered dataset γC(D) has been reached. It
is a greedy algorithm and it is not guaranteed to find a global minimum, because
the dependency structure changes with the addition of each single attribute and,
unless exploring all possible combinations, it is impossible to predict which sub-
set will be the optimal reduct. QR however derives a subset sufficiently close to
optimal in a reasonable time, resulting in general a good compromise to reduce
the dataset dimensionality.

Algorithm 1. QuickReduct
1: procedure Quickreduct(C,D)
2: C ← the set of all conditional features
3: D ← the set of decision features
4: R ← ∅
5: repeat
6: T ← R
7: for f ∈ (C − R) do
8: if γR∪{f}(D) > γT (D) then
9: T ← R

⋃{f}
10: R ← T
11: until γR(D) == γC(D)
12: return R

2.3 Related Work

In general, assuming that the data gathering process does not have time or cost
constraints is misleading, as most of the times the amount of available data is
strictly related to the allocated data gathering budged, and it is therefore critical
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to select the best set of features that fulfills the budget constraint. When reason-
ing in terms of information granules and Rough Sets, the problem of selecting
the cheapest reduct [18] has been called the minimal test cost reduct (MTR from
now on) [11]. A number of algorithms have been proposed to this purpose (for
example [6,11,12,14]), all trying to keep enough information for classification at
the same time reducing costs. When the allocated data gathering budget is not
sufficient to keep all necessary information, or when it is a strict requirement, the
problem has been reformulated as the feature selection with test cost constraint
(FSTC from now on) problem [13], where the upper bound of the allocated bud-
get acts as a constraint in the feature selection process and an optimal sub-reduct
can be derived. When the budget is not less than the budged required for the
optimal reduct, FSTC reduces to MTR.

In [11] the test cost problem is formulated as selecting the set of attributes
that satisfies a minimal cost criterium and a classification accuracy constraint.
Inadequacy of plain reducts (a subset of attributes that are jointly sufficient and
individually necessary for preserving a particular property of the given informa-
tion table) from from rough sets theory [15] is highlighted, as attribute reduction
to improve classification is inherently different from attribute reduction to mini-
mize costs: total test cost is independent from the performance of the subsequent
classifier. Assuming costs independent from each other, a selection criterium
based on information gain and a weight function for test costs are proposed,
where a non-positive exponent λ acts as parameter to tune the influence of the
tests. Adjusting λ is different from setting a significance weight to each attribute
in the reduction process, and with respect to [21] it is less bound to the specific
application domain. Three probability distributions for simulated costs, three
performance metrics and four UCI datasets test the proposed algorithm and its
associated metrics. While in some case producing a non-optimal reduct, in most
cases a minimal test cost reduct is obtained.

In [12] a backtracking approach to the FSTC problem has been proposed for
small and medium-sized datasets. Being exponential in the number of features,
backtracking is severely limited by the dataset size, so an heuristic based on
information gain and the addition-deletion approach [24] has also been proposed,
with polynomial time complexity. The proposed heuristic is based on an user-
defined weight λ that induces preferences for low-cost features, similarly to [11].
To choose λ testing different values is suggested to generate different feature
subsets, of which the best one is finally selected. Even if in this way the choice
of λ is no more delegated to the user, the number of tested values for λ acts as
a multiplier for computational complexity.

3 Test-Cost-Sensitive Quick Reduct

Like QR, the Test-Cost-Sensitive Quick Reduct algorithm (TCSQR from now
on), shown in Algorithm 2, performs reduct construction by addition, starting
with an empty set and adding iteratively the attributes representing the local
optimal choice (greedy choice); like QR, the stopping criterium is reached at
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the maximum possible dependency degree for the dataset γC(D), i.e. when no
other attribute could improve the dependency degree. Differently from QR, the
criterium to add features to the reduct accounts also for the cost of the fea-
tures; differently from QR, a deletion step is introduced in order to remove the
redundant most costly attributes.

The optimality criterium in this case is the maximization of the weighted
sum of Rough Set dependency degree and (1 − tcR), where tcR is the total cost
(normalized between 0 and 1) of the features included in the reduct and the two
terms are weighted through a parameter α:

αγR(D) + (1 − α)(1 − tcR) (7)

TCSQR considers dependency degree, but, at the same time, evaluates the cost
of each feature to be added: attributes resulting in the greatest increase in the
weighted sum of Rough Set dependency degree and at the same time in the
greatest decrease of the total costs are added iteratively to the reduct. The
choice of parameter α will be discussed in in Sect. 4.

Furthermore TCSQR sorts attributes in order of decreasing costs and tries
to remove the most expensive ones keeping the dependency degree unchanged,
in order to obtain an equivalent reduct with minor total cost.

Also TCSQR is a greedy algorithm and hence it is not guaranteed to find a
global minimum, because the dependency structure changes with the addition
or deletion of single attributes and, unless exploring all possible combinations,
it is impossible to predict which subset will be the optimal reduct according to
cost and dependency degrees. TCSQR however derives a close-to-optimal subset
in a reasonable time. How critical this aspect is will be discussed in Sect. 4.

4 Experimental Results

4.1 Data

Experiments have been performed on the Zoo dataset from the UCI Repository
for Machine Learning [8]. The dataset has been chosen to ease comparisons with
the related literature: it has 16 attributes and 101 instances divided in 7 classes,
with 33 reducts [11].

4.2 Cost Generation

Most datasets from the UCI library [8] have no intrinsic test costs. Follow-
ing [11,12] three different schemata have been adopted to simulate test costs,
following a discrete uniform, discrete bounded normal, and discrete bounded
Pareto distribution respectively. Test costs are integers ranging from M to N ,
and are generated independently. These distributions and their respective gen-
eration process are briefly discussed hereafter.

For each distribution ten test costs have been generated. Tables 1 and 2 show
the test costs generated and corresponding reducts, respectively.
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Algorithm 2. TCSQuickReduct
1: procedure TCSQuickreduct(C,D,q(),α)
2: C ← the set of all conditional features
3: D ← the set of decision features
4: q() ← cost function of decision features
5: R ← ∅
6: repeat
7: T ← R
8: maxT ← 0
9: for f ∈ (C − R) do

10: val = α ∗ γR∪{f}(D) + (1 − α) ∗ (1 − sum(q(R ∪ {f})))
11: if val > maxT then
12: T ← R

⋃{f}
13: maxT ← val
14: R ← T
15: until γR(D) == γC(D)
16: MR ← sort attributes in R according to test costs in descending order
17: repeat
18: MR ← MR − {f}
19: if γR−{f}(D) == γC(D) then
20: R ← R − {f}
21: until MR �= ∅
22: return R

Uniform. Being “uniform” means that all values have equal probability of being
drawn. Let cu denote a test cost under the discrete uniform distribution and u
be a uniform distributed random variable in [0, 1], then

cu = M + 	(N − M + 1)u
 (8)

is distributed as a discrete bounded uniform distribution in [M,N ].

Gaussian. A Gaussian (or normal) distribution is the infamous and ubiqui-
tous bell-shaped probability distribution towards which the sum of all other
distributions tends under mild conditions due to the central limit theorem. It is
symmetric and unimodal, it is continuous, and it is described by the following
probability density function:

f(g) =
1√

2πσ2
e− (g−μ)2

2σ2 (9)

where the the mean and variance, μ and σ2, are the only parameters.
Let cg denote a test cost under the discrete normal distribution and g be

standard normal distributed (μ = 0 and σ = 1), then

cg =

⎧
⎪⎨

⎪⎩

M g < M

N g > N

	N+M+1
2 + βy
 M < g < N

(10)
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is distributed as a discrete bounded normal distribution in [M,N ] with an
approximate mean of (M + N)/2 (β = 8 in the experiments).

Pareto. The Pareto distribution is a popular model for unequal exploitation of
resources. If u is uniformly distributed in [0, 1], then

cp =
⌊(

−
(

u(N + 1)δ − uMδ − (N + 1)δ

Mδ(N + 1)δ

))−1/δ⌋
(11)

is distributed as a discrete bounded Pareto-distribution in [M,N ], where δ deter-
mines the shape of the distribution (δ = 2 in the experiments).

Table 1. Test costs for dataset Zoo.

ID Distribution a b c d e f g h i j k l m n o p

1 Uniform 9 42 97 77 10 63 70 84 42 97 62 65 69 55 86 53

2 35 28 58 18 50 18 53 56 31 9 10 46 28 6 43 1

3 98 72 73 4 4 63 28 58 25 48 68 53 26 82 37 26

4 46 52 59 91 54 52 48 74 17 62 43 77 74 55 49 28

5 59 19 85 11 75 12 63 30 93 16 98 58 20 93 99 52

6 13 34 33 35 77 51 85 10 27 6 19 4 40 53 86 16

7 52 87 21 28 6 2 51 38 91 71 90 99 45 42 24 57

8 42 60 22 33 87 96 65 48 32 22 86 38 3 58 17 96

9 96 75 71 25 21 35 87 29 98 44 40 84 22 17 5 28

10 83 9 12 5 99 7 72 5 23 91 85 70 44 80 55 35

11 Normal 44 64 53 57 47 50 55 45 44 59 53 44 33 43 58 51

12 54 68 53 38 49 51 65 56 67 54 45 56 49 49 51 45

13 48 57 62 55 51 41 63 70 70 30 39 48 44 35 54 40

14 46 48 54 42 66 47 44 57 62 39 59 45 40 51 51 53

15 58 53 55 58 53 50 44 50 53 52 54 47 41 55 51 47

16 62 50 53 63 54 53 70 51 50 57 51 54 54 63 36 60

17 49 52 36 44 52 49 39 62 47 51 69 47 39 42 47 53

18 62 61 45 47 54 57 52 59 41 47 57 65 37 37 35 51

19 53 55 44 61 50 54 57 42 40 40 56 43 57 46 55 46

20 65 45 46 39 38 53 46 54 54 51 40 39 54 59 47 54

21 Pareto 1 2 84 4 42 1 1 1 1 1 30 2 1 1 19 3

22 13 1 1 1 1 3 1 10 54 19 4 1 1 1 3 2

23 33 14 2 6 1 11 8 1 1 2 3 1 3 1 1 62

24 10 11 3 1 5 62 4 1 1 11 1 1 2 1 13 1

25 2 5 1 3 1 6 1 3 1 1 4 2 1 37 1 1

26 1 1 2 1 37 12 1 2 19 2 12 8 2 1 1 13

27 3 21 1 1 1 1 3 2 30 7 27 84 2 2 1 4

28 5 4 2 6 2 1 33 62 1 1 1 11 23 3 8 1

29 4 1 18 1 9 1 5 1 37 1 71 4 1 37 84 3

30 21 3 8 5 6 1 1 2 2 47 1 1 12 2 1 6
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4.3 Comparison Metrics

In order to evaluate the performance of test-cost-sensitive algorithms, in [11]
three metrics are proposed: Finding Optimal Factor (FOF from now on), Maxi-
mal Exceeding Factor (MEF from now on), and Average Exceeding Factor (AEF
from now on).

FOF. Let the number of experiments be K and the number of successful searches
of an optimal reduct be k. The FOF metric is defined as follows:

FOF =
k

K
(12)

This metric is both qualitative and quantitative, because it only counts optimal
solutions and it is based on a number of searches. In the experiments, different
test cost settings have been generated, obtaining many values for the FOF and
allowing the computation of simple statistics on it.

FEF. For a dataset with a particular test cost setting, let R′ be an optimal
reduct. The Exceeding Factor (EF) of a reduct R is:

EF (R) =
c∗(R) − c∗(R′)

c∗(R′)
(13)

EF provides a quantitative metric to evaluate the performance of a reduct. It
indicates how far from optimality a reduct is: if R is an optimal reduct, then the
exceeding factor is 0.

MEF. To measure the general performance of an algorithm, statistics are
needed. Let the number of experiments be K. In the ith experiment (1 ≤ i ≤ K),
the reduct computed by the algorithm is denoted Ri. The maximal exceeding
factor (MEF) is defined as

MEF = max
1≤i≤K

EF (Ri) (14)

This shows the worst case of the algorithm given some data sets. Although it
relates to the performance of one particular reduct, it should be viewed as a
statistical rather than an individual metric.

AEF. The average exceeding factor (AEF) is defined as

AEF =
∑K

i=1 ef(Ri)
K

(15)
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Table 2. Optimal reducts with associated test cost, reduct and exceeding factor of
TCSQR.

ID Optimal reduct Minimal test cost Constructed reduct Exceeding factor

1 {d,f,i,l,m} 316 {a,d,f,i,l,m} 0.028

2 {d,f,j,k,m,n,p} 90 {d,f,j,k,m,n,p} 0.0

3 {d,f,i,l,m} 171 {d,e,f,i,l,m} 0.023

4 {c,f,i,m,p} 230 {c,f,i,m,p} 0.0

5 {d,f,h,l,m} 131 {d,f,h,l,m} 0.0

6 {a,f,h,j,l,m} 124 {a,f,h,j,l,m} 0.0

7 {c,d,f,h,m} 134 {c,d,f,h,m} 0.0

8 {c,d,f,i,m} 186 {c,d,f,i,m} 0.0

9 {d,f,h,k,m,p} 179 {d,f,h,k,m,o,p} 0.027

10 {c,d,f,h,m} 73 {c,d,f,h,m} 0.0

11 {d,f,i,l,m} 228 {d,f,i,l,m} 0.0

12 {c,d,f,h,m} 247 {d,f,h,l,m} 0.012

13 {a,f,j,l,m,n} 246 {d,f,h,l,m} 0.048

14 {d,f,h,l,m} 231 {d,f,h,l,m} 0.0

15 {c,f,h,m,p} 243 {d,f,h,l,m} 0.012

16 {c,f,h,j,m} 268 {d,f,i,l,m} 0.022

17 {c,d,f,i,m} 215 {d,f,i,l,m} 0.051

18 {c,d,f,i,m} 227 {d,f,i,l,m} 0.088

19 {c,f,h,j,m} 237 {d,f,i,l,m} 0.075

20 {d,f,h,l,m} 239 {d,f,h,l,m} 0.0

21 {a,f,i,j,l,m} 7 {a,f,j,l,m,n} 0.0

22 {d,f,h,l,m} 16 {d,f,h,l,m,n} 0.062

23 {c,f,h,l,m,n} 19 {c,f,h,l,m,n,o} 0.052

24 {d,f,h,l,m} 67 {d,f,i,l,m,p} 0.014

25 {c,f,i,m,p} 10 {c,f,i,m,p} 0.0

26 {c,d,f,h,m} 19 {c,d,f,j,m,n,o} 0.10

27 {c,d,f,h,m} 7 {c,d,f,h,m,o} 0.14

28 {c,f,i,m,p} 28 {c,f,i,m,p} 0.0

29 {d,f,h,l,m} 8 {d,f,h,l,m} 0.0

30 {d,f,h,l,m} 21 {d,f,i,l,m,o} 0.047

4.4 Results

Table 2 shows the optimal reduct for each test cost configuration with its associ-
ated total test cost and the reducts obtained with the proposed algorithm with
the corresponding exceeding factor.

Results showed in Tables 2 and 3 are obtained with the following values of α
for the uniform, normal and Pareto distributions respectively: 0.15, 0.7 and 0.05.
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Table 3. Comparison between [11] and TCSQuickreduct considering: FOF, MEF and
AEF.

Distribution FOF MEF AEF

[11] TCSQuickreduct [11] TCSQuickreduct [11] TCSQuickreduct

Uniform 0.9 0.7 0.025 0.028 0.0025 0.0081

Normal 0.8 0.3 0.189 0.088 0.0364 0.0312

Pareto 0.9 0.4 0.053 0.143 0.0053 0.0433

It can be noted that, although the proposed method is not able to always find
the optimal reduct, the performance in terms of exceeding factor, both maximal
and average, are comparable with published literature [11]. More in detail, with
uniform test costs MEF and AEF are very close; with normal test costs TCSQR
performs slightly better, while with test costs based on Pareto distribution the
algorithm proposed in [11] performs better than TCSQR.

Table 4 shows comparison of the proposed approach with [11] in the case of
the optimal choice of the α parameter. The test has been performed on the same
data as the previous test. Also in this case it can be noted how TCSQR tends
to find super-reducts, nevertheless the MEF is lower with all costs distributions
while the AEF is slightly higher due the further selected features.

Table 4. Comparison between optimal choice of parameter in [11] and TCSQuickreduct
considering: FOF, MEF and AEF.

Distribution FOF MEF AEF

[11] TCSQuickreduct [11] TCSQuickreduct [11] TCSQuickreduct

Uniform 0.7 0.7 0.391 0.028 0.0164 0.0081

Normal 0.7 0.3 0.127 0.088 0.0107 0.0312

Pareto 0.9 0.4 0.167 0.143 0.0011 0.0433

TCSQR has been also compared, on Zoo, with the three approaches proposed
in [12], where only the uniform distribution and FOF metric have been tested.
The FOF for the three strategies are: 0.18, 0.52 and 0.7. Even in this case, the
performance of the proposed approach are comparable and in two cases out of
three better than competitors.

For what concerns the choice of parameter α, Fig. 1 show the performance
in terms of FOF (Fig. 1(a)), MEF (Fig. 1(b)) and AEF (Fig. 1(c)) while varying
parameter α. It can be noted that, overall, better performance are obtained with
values in the range (0.3, 0.4).
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Fig. 1. (a) FOF (b) MEF and (c) AEF metrics with varying α. Uniform: red line;
Normal: green line; Pareto: blue line. (Color figure online)
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5 Conclusion

A new algorithm for solving the test-cost-sensitive reduct problem has been
presented. The proposed approach is a modified version of the quick reduct
algorithm in which test costs are combined with the rough degree of dependency
in the objective function and a deletion step is added at the end. The resulting
algorithm shares the same limitation as the original Quick Reduct, i.e. it can
produce a super reduct and hence it is no guaranteed to find the optimal solution.
Nevertheless, its performance are promising, in some cases outperforming state-
of-the art competitors. Further tests and data with real costs are required to
confirm its generalization capabilities.
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Abstract. The problem of possibilistic-probabilistic linear program-
ming with constraints on possibility and probability is investigated.
For the case of normally distributed random parameters of the model
and under the most general assumptions concerning the properties of
probability distributions, its equivalent determinate analogue is con-
structed which is the quadratic programming model.
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1 Introduction

The problem of optimization under conditions of hybrid uncertainty of the
possibilistic-probabilistic type is currently being actively developed. Its meth-
ods are used in the construction and study of generalized models of portfolio
analysis, in economic and mathematical planning and other fields.

When indirect methods for solving such problems are developed that are
based on the construction of equivalent determinate analogs, two-level proce-
dures are used to remove the uncertainty of the probabilistic and fuzzy types.
These methods are based on the principles of the expected possibility [1–8] and
the implementation of constraints on the possibility and probability.

In this paper we investigate the problem of possibilistic-probabilistic lin-
ear programming with constraints on possibility and probability. In the class of
quasi-concave upper semicontinuous probability distributions with finite support
that characterize fuzzy parameters of the model and for normally distributed
random parameters, an equivalent determinate analogue of the model is con-
structed. The properties of the constructed equivalent model are investigated.
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2 Necessary Concepts and Notations

We introduce a number of definitions and concepts from the possibility theory
following [9–11]. Let (Γ , P(Γ ), τ) and (Ω, B, P) be possibility and probability
spaces, where Ω is a sample space with ω ∈ Ω, Γ – a pattern space with elements
γ ∈ Γ , B – σ-algebra of events, P(Γ ) is the discrete topology on Γ , τ ∈ {π, ν},
π and ν – measures of possibility and necessity, respectively, and P – probability
measure, E1 – number line.

Definition 1. Fuzzy random variable Y (ω, γ) is a real function Y : Ω×Γ → E1

σ-measurable for each fixed γ, where

μY (ω, t) = π{γ ∈ Γ : Y (ω, γ) = t}
is called its distribution function.

It follows from Definition 1 that the distribution function of a fuzzy random
variable depends on a random parameter, that is, it is a random function.

Definition 2. Let Y (ω, γ) be a fuzzy random variable. Its expected value E[Y ]
is a fuzzy variable with possibility distribution function

μE[Y ] (t) = π{γ ∈ Γ : E [Y (ω, γ)] = t},

where E is the expectation operator

E [Y (ω, γ)] =
∫

Ω

Y (ω, γ) P (dω).

In this case, the distribution function of the expected value of a fuzzy random
variable is no longer dependent on a random parameter and is therefore deter-
ministic.

We use triangular norms and conorms (t-norms and t-conorms) as an instru-
ment for aggregation of fuzzy information that extends min and max operations,
laid in actions on fuzzy sets and fuzzy variables [12,13].

In particular, in this work we consider two extremal t-norms: TM (x, y) =
min(x, y) and

TW (x, y) =
{

min{x, y}, if max {x, y} = 1,
0, otherwise.

TM is called the strongest t-norm and TW – the weakest t-norm, since for
any arbitrary t-norm T and ∀x, y ∈ [0, 1], the inequality holds:

TW (x, y) ≤ T (x, y) ≤ TM (x, y).

One of the main properties of t-norms is their ability to control uncertainty
(“fuzziness”) growth, which is obvious, for example, when performing arithmetic
operations on fuzzy numbers: when adding two fuzzy numbers of LR-type using
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the strongest t-norm TM corresponding coefficients of fuzziness are summed,
therefore uncertainty is growing. With the help of t-norms other than TM we
can have slower growth of fuzziness. The extreme cases of triangular norms
which are considered in the work give us boundaries for control of fuzziness in
our minimum risk portfolio model.

Following [14], we introduce the notion of mutual t-relatedness of fuzzy vari-
ables. It is used as an instrument for constructing joint possibility distribution
functions.

Definition 3. Fuzzy sets A1, . . . , An ∈ P (Γ ) are called mutually T -related, if
for any index set {i1, . . . , ik} ⊂ {1, . . . , n} , k = 1, . . . , n, we have

π (Ai1 ∩ . . . ∩ Aik) = T (π (Ai1) , . . . , π (Aik)) ,

where

T (π (Ai1) , ..., π (Aik)) = T (T (...T (T (π (Ai1) , π (Ai2)) , π (Ai3)) , ...) , π (Aik)) .

We can transfer the notion of mutual T-relatedness of fuzzy sets on fuzzy vari-
ables.

Definition 4. Fuzzy variables Z1(γ), . . . , Zn(γ) are called mutually T -related,
if for any index set {i1, . . . , ik} ⊂ {1, . . . , n} , k = 1, . . . , n, we have

μZi1 ,...,Zik
(ti1 , . . . , tik) = π {γ ∈ Γ : Zi1 (γ) = ti1 , . . . , Zik (γ) = tik} =

π
{
Z−1

i1
{ti1} ∩ . . . ∩ Z−1

ik
{tik}}

= T
{
π

(
Z−1

i1
{ti1})

, . . . , π
(
Z−1

ik
{tik})}

, tij ∈ E1.

We use shift-scale representation [11] for fuzzy random variables:

R (ω, γ) = a (ω) + σ (ω) Z(γ).

Further in this work we assume that in this representation fuzzy variables Z(γ)
are mutually TM -related (min-related), and a (ω), σ(ω) are random offset and
scale factors.

3 Construction of a Possibilistic-Probabilistic
Programming Model with Constraints on Possibility
and Probability

In [15] possibilistic-probabilistic optimization problems that use the principle of
the expected possibility which allows to remove the stochastic uncertainty under
the hybrid uncertainty of the possibilistic-probabilistic type are investigated.
In this paper, we use probability constraints to remove it. This approach was
previously applied for portfolio analysis problems in [5,6].

Consider a model of possibilistic-probabilistic programming of the following
form:

k → min,

τ{P{f0(x, ω, γ) ≤ k} ≥ p0} ≥ α0, (1)
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{
τ{P{fi(x, ω, γ) ≤ 0} ≥ pi} ≥ αi, i = 1, . . . , m,
x ∈ X.

(2)

In this model fi(x, ω, γ), i = 0, . . . ,m are possibilistic-probabilistic functions
that have the meaning of mappings

fi(·, ·, ·) : X × Ω × Γ → E1,

X ⊂ En
+ = {x ∈ En : x ≥ 0}, τ ∈ {π, ν}, pi, αi, i = 0, . . . , n

are given levels of probability and possibility, pi, αi ∈ (0, 1], k—additional scalar
variable.

Let us consider concrete representations of functions fi(x, ω, γ)—linear
possibilistic-probabilistic functions. In this case

fi(x, ω, γ) =
n∑

j=1

Aij(ω, γ)xj − Bi(ω, γ) (3)

with i = 0, . . . ,m and B0(ω, γ) ≡ 0.
We assume that Aij(ω, γ) and Bi(ω, γ) have a shift-scale representation:

Aij(ω, γ) = aij(ω) + σij(ω)Yij(γ), Bi(ω, γ) = bi(ω) + σi(ω)Yi(γ),

and

aij(ω) ∈ Np(a0
ij , d

a
ij), σij(ω) ∈ Np(σ0

ij , d
σ
ij),

bi(ω) ∈ Np(b0i , d
b
i ), σi(ω) ∈ Np(σ0

i , dσ
i ),

Np—is a class of normal probability distributions.
Let the interaction of fuzzy parameters of the model is described by the

strongest t-norm TM , ti = (ti1 , ti2 , . . . , tin , ti),

fi(x, ω, ti) =
n∑

j=1

(aij(ω) + σij(ω)tij)xj − (bi(ω) + σi(ω)ti).

It is clear that for fixed x and ti, i = 1, . . . ,m the function fi(x, ω, ti) is a normal
random variable. Then [11] with possibility

μ(ti) = min{ min
1≤j≤n

{μYij
(tij)}, μYi

(ti)}

its mathematical expectation is defined by formula

mi(x, ti) = E{fi(x, ω, ti)} =
n∑

j=1

(a0
ij + d0ijtij)xj − (b0i + σ0

i ti).

For what follows we also need the variance of the function fi(x, ω, ti). In
accordance with the classical approach, it can be defined as follows:

di(x, ti) = E{(fi(x, ω, ti) − mi(x, ti))2}.
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We will specify the formula. We have after appropriate substitutions

di(x, ti) = E{(
n∑

j=1

(aij(ω) + σij(ω)tij − (a0
ij + d0ijtij))xj−

(bi(ω) − b0i + (σi(ω) − σ0
i )ti)2} = E{

n∑
j=1

n∑
k=1

(aij(ω) + σij(ω)tij

−(a0
ij + d0ij)tij)(aik(ω) + σik(ω)tik − (a0

ik + d0ik)tik)xjxk − 2
n∑

j=1

(aij(ω)

+σij(ω)tij − (a0
ij + d0ij)tij)(bi(ω) − b0i + (σ(ω) − σ0

i )ti)xj

+(bi(ω) − b0i − (σi(ω) − σ0
i )ti)2+}

=
n∑

j=1

n∑
k=1

E{((aij(ω) − a0
ij) + (σij(ω) − σ0

ij)tij)·

((aik(ω) − a0
ik) + (σik(ω) − σ0

ik)tik)xjxk}

−2
n∑

j=1

E{((aij(ω) − a0
ij) + (σij(ω) − σ0

ij)tij)((bi(ω) − b0i ) + (σi(ω) − σ0
i )ti)xj}

+E{((bi(ω) − b0i ) + (σi(ω) − σ0
i )ti)2}.

We introduce the notation for the covariance coefficients of the random vari-
ables participating in the shift-scale representation of fuzzy random variables:

Caijaik
= cov(aij , aik); Cσijσik

= cov(σij , σik);

Caijσik
= cov(aij , σik); Cσijaik

= cov(σij , aik);

Cbiσi
= cov(bi, σi); Caijbi = cov(aij , bi);

Caijσi
= cov(aij , σi); Cσijbi = cov(σij , bi);

Cσijσi
= cov(σij , σi).

Suppose further that

Cijk = Caijaik
+ Caijσik

tik + Cσijaik
tij + Cσijσik

tijtik.

Using these notations, we have

di(x, ti) =
n∑

j=1

n∑
k=1

Cijkxjxk − 2
n∑

j=1

(Caijbi + Caijσi
ti + Cσijbitij

+Cσijσi
tijti)xj + dbi + dσi

t2i + 2Cσibiti, (4)

where dbi , dσi
—variances of random variables bi(ω) and σi(ω).
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In the case when the random variables are uncorrelated, the resulting formula
(4) takes the form

di(x, ti) =
n∑

j=1

(Caijaij
+ Cσijσij

t2ij)x
2
j + dbi + dσi

t2i . (5)

Function di(x, ti) possesses the following properties due to the covariance
matrix C

i = {Cijk}n
j,k=1:

– di(x, ti)—convex function with respect to x for fixed ti;
– for any vectors x and ti the function di(x, ti) is nonnegative;
– function di(x, ti) is convex with respect to ti for fixed x.

4 Equivalent Crisp Analog

We now turn to the construction of an equivalent crisp analogue of problem (1)–
(2). In order to do this we need to construct an equivalent deterministic system
of constraints for (2). After that the model of criterion (1) can be reduced to an
equivalent deterministic one in a similar way.

It is clear that for a fixed vector ti

f(x, ω, ti) ∈ Np(mi(x, ti),
√

di(x, ti)).

Then, in accordance with the classical results of stochastic programming [16] we
have

P{fi(x, ω, ti) ≤ 0} = P{fi(x, ω, ti) − mi(x, ti) + mi(x, ti)√
di(x, ti)

≤ 0}

= P{fi(x, ω, ti) − mi(x, ti)√
di(x, ti)

+
mi(x, ti)√

di(x, ti)
≤ 0}

= 1 − Fi(
mi(x, ti)√

di(x, ti)
) ≥ pi,

where Fi—is standard normal distribution function.
The last inequality is equivalent to the inequality

mi(x, ti)√
di(x, ti)

≥ βi,

in which βi is a solution of equation

Fi(t) = 1 − pi.

As a result, we obtain the inequality

mi(x, ti) − βi

√
di(x, ti) ≤ 0 (6)
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which is equivalent to the i-th constraint of (2) with the possibility of μ(ti).
After the specification (6) takes the form

n∑
j=1

(a0
ij + d0ijtij)xj − βi

√
di(x, ti) ≤ b0i + σ0

i ti. (7)

If pi > 0.5, then βi < 0 and the function on the left-hand side of (7) is convex
and monotonic with respect to fuzzy parameters.

After substituting the corresponding fuzzy values Aij and Bi into the inequal-
ity (7) instead of the parameters tij , ti, ti and demanding the fulfillment of the
resulting possibilistic inequality with the possibility of αi we obtain an equiv-
alent restriction for the i-th constraint of the system (2) which contains only
fuzzy parameters. We have

π
{ n∑

j=1

(a0
ij + d0ijAij(γ))xj

−βi

√
di(x, (Ai1(γ), . . . , Ain(γ), Bi(γ))) ≤ b0i + σ0

i Bi(γ)
}

≥ αi, (8)

where

di(x, (Ai1(γ), . . . , Ain(γ), Bi(γ)))

=
n∑

j=1

n∑
k=1

C̃ijk(Aij(γ), Aik(γ))xjxk

−2
n∑

j=1

(Caijbi + Caijσi
Bi(γ) + CσijbiAij(γ)

+Cσijσi
Aij(γ)Bi(γ))xj + dbi + dσi

B2
i (γ) + 2CσibiBi(γ),

C̃ijk(Aij(γ), Aik(γ)) = Caijaik
+ Caijσik

Aik(γ) + Cσijaik
Aij(γ)

+Cσijσik
Aij(γ)Aik(γ).

Now we are ready to formulate and prove the following theorem.

Theorem 1. Let in the constraint model (2) τ = π, pi > 0.5 (i = 1, . . . ,m),
fuzzy variables Yij(γ), Yi(γ) have shift-scale representation and are TM -related,
characterized by quasi-concave, semicontinuous distributions with finite supports,
and the shift and scale coefficients are normally distributed random variables with
the corresponding parameters. Then the constraint system (2) is equivalent to the
determinate constraint model

{∑n
j=1(a

0
ij + d0ijA

−
ij)xj − βi

√
di(x,A

{±}
i1 , . . . , A

{±}
in , B

{±}
i ) ≤ b0i + σ0

i B+
i ,

x ∈ X, i = 1, . . . ,m,
(9)
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where A
{±}
ij , B

{±}
i are right and left borders of αi-level sets of fuzzy quantities

Aij(γ), Bi(γ),

di(x,A
{±}
i1 , . . . , A

{±}
in , B

{±}
i ) =

n∑
j=1

n∑
k=1

Cijk(A{±}
ij , A

{±}
ik )xjxk

+2
n∑

j=1

(−Caijbi − Caijσi
B−

i − CσijbiA
−
ij − Cσijσi

(BiAij)−)xj

+dbi + dσi
(B2

i )− + 2Cσibi(Bi)−,

Cijk(A{±}
ij , A

{±}
ik ) = Caijaik

+ Caijσik
A−

ik + Cσijaik
A−

ij + Cσijσik
(AijAik)−.

Proof. The possibilistic function on the left-hand side of the inequality under the
sign of the probability measure in (8) is a monotonic function of fuzzy parame-
ters. Hence, on the basis of [17,18], the i-th restriction of system (8) is equivalent
to the i-th constraint of system (9).

Remark 1. The boundaries of α-level sets of fuzzy variables and their products
are found using the results from [11,19–21]. For example:

(BiAij)− = min{B−
i A−

ij , B−
i A+

ij , B+
i A−

ij , B+
i A+

ij}.

Remark 2. The boundary (B2
i )− can be calculated for a number of parametrized

distributions of LR-type [11].

The following theorem can be proved by a similar scheme.

Theorem 2. Let in the criterion model (1) τ = π, p0 > 0.5, fuzzy variables Y0j

(j = 1, . . . , n) have shift-scale representation and are TM -related, characterized
by quasi-concave, semicontinuous distributions with finite supports, and the shift
and scale coefficients are normally distributed random variables.

Then the equivalent for the criterion model (1) is the following model:

n∑
j=1

(a0
0j + d00jA

−
0j) − β0

√√√√ n∑
j=1

n∑
k=1

C0jk(A{±}
0j , A

{±}
0k )xjxk → min

x∈X
.

The objective function in the latter problem is convex, and in the case when
p0 < 0.5, the problem goes to the class of nonconvex multiextremal problems.
However, the requirement p0 > 0.5 is consistent with the requirements of prac-
tical problems.

The following theorem is also important for applications.

Theorem 3. Let in the model (1)–(2) τ = π, pi = 0.5, i = 0, . . . ,m, fuzzy vari-
ables Yij (i = 0, . . . ,m, j = 1, . . . , n) have shift-scale representation and are TM -
related, characterized by quasi-concave, semicontinuous distributions with finite
supports, and the shift and scale coefficients are normally distributed random
variables.
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Then the equivalent deterministic analogue for the model (1)–(2) is the fol-
lowing model:

n∑
j=1

(a0
0j + d00jA

−
0j) → min, (10)

⎧⎪⎨
⎪⎩

n∑
j=1

(a0
ij + d0ijA

−
ij)xj ≤ b0i + σ0

i B+
i ,

x ∈ X, i = 1, . . . ,m.

(11)

Proof. If probabilities pi = 0.5, i = 0, . . . , m, then βi = 0 and the quadratic
components in the goal function of the problem and in the constraints system
vanish. This concludes the proof.

Remark 3. In the case τ = ν the equivalent problem for the model (1)–(2) takes
the form:

n∑
j=1

(a0
0j + d00jA

−
0j) → min, (12)

⎧⎪⎨
⎪⎩

n∑
j=1

(a0
ij + d0ijA

+
ij)xj ≤ b0i + σ0

i B−
i ,

x ∈ X, i = 1, . . . ,m,

(13)

where A+
ij and B−

i are borders of α-level sets for levels 1 − αi.

Now we will establish connection between the model (1)–(2) and the model
in which the principle of the expected possibility is used in order to remove the
uncertainty of the probabilistic type:

k → min,

τ{E[f0(x, ω, γ)] ≤ k} ≥ α0, (14)
{

τ{E[fi(x, ω, γ)] ≤ 0} ≥ αi, i = 1, . . . ,m,
x ∈ X.

(15)

This connection is characterized by Theorem 4.

Theorem 4. Let in the model (14)–(15) τ = π, pi = 0.5, i = 0, . . . ,m, fuzzy
variables Yij (i = 0, . . . ,m, j = 1, . . . , n) have shift-scale representation and are
TM -related, characterized by quasi-concave, semicontinuous distributions with
finite supports, and the shift and scale coefficients are normally distributed ran-
dom variables.

Then the equivalent for the model (14)–(15) has the form (10)–(11).

Proof. Really,

E[fi(x, ω, γ)] =
n∑

j=1

E[Aij(ω, γ)]xj − E[Bi(ω, γ)].
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Taking into account the shift-scale representation of fuzzy random variables Aij

and Bi we have:

E[fi(x, ω, γ)] =
n∑

j=1

(a0
ij + σ0

ijYij(γ))xj − (b0i + σ0
i Yi(γ)).

Then the model (14)–(15) takes the form:

k → min,

τ

⎧⎨
⎩

n∑
j=1

(a0
0j + σ0

0jY0j(γ))xj ≤ k

⎫⎬
⎭ ≥ α0, (16)

⎧⎪⎪⎨
⎪⎪⎩

τ

⎧⎨
⎩

n∑
j=1

(a0
ij + σ0

ijYij(γ))xj ≤ b0i + σ0
i Yi(γ)

⎫⎬
⎭ ≥ αi, i = 1, . . . , m,

x ∈ X.

(17)

Earlier we made the assumption that the distribution functions of possi-
blistic components in the shift-scale representation of fuzzy random variables
are characterized by quasi-concave upper semicontinuous distributions and their
interaction is described by the strongest t-norm. Thus we are in the conditions of
applicability of the corresponding theorem from [23], on which the proof of the
statement presented here can be based. In the case τ = π the model (10)–(11)
is equivalent to (16)–(17).

Remark 4. For τ = ν the model (14)–(15) has (12)–(13) as an equivalent.

5 Conclusion

The problem of possibilistic-probabilistic linear programming with constraints
on possibility and probability is investigated. For the case of normally distributed
random parameters of the model and under the most general assumptions con-
cerning the properties of probability distributions, its equivalent determinate
analogue is constructed which is the quadratic programming model. Its proper-
ties (convexity-concavity), as in classical stochastic programming [16], essentially
depend on the levels of probability that are given in the initial model. For the
case of necessity measure (τ = ν) in an equivalent model (we can prove this by
using [18]) the right boundaries of (1 − αi)-level sets will be used in left-hand
side of inequality (9), and left boundaries will be used in right-hand side of the
inequality.

It is clear that for the probability values pi = 0 moments of the second order
(variance) are excluded and the model (1)–(2) is transformed into the problem
of possibility-necessity linear programming.

In terms of prospective studies it seems appropriate to generalize the obtained
results to other probability distributions and to the case of the weakest t-norm
describing the interaction of fuzzy parameters [22].
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Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017.
AISC, vol. 643, pp. 551–563. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-66827-7 51

9. Nahmias, S.: Fuzzy variables in a random environment. In: Gupta, M.M., Ragade,
R.K., Yager, R.R. (eds.) Advances in Fuzzy Sets Theory and Applications, pp.
165–180. NHCP, Amsterdam (1979)

10. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114,
409–422 (1986)

11. Yazenin, A.V.: Basic concepts of possibility theory: a mathematical apparatus
for decision-making under hybrid uncertainty conditions. Fizmatlit Publ., Moscow
(2016). (in Russian)

12. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. CRC Press, Boca
Raton (1997)

13. Mesiar, R.: Triangular-norm-based addition of fuzzy intervals. Fuzzy Sets Syst. 91,
231–237 (1997)

14. Hong, D.H.: Parameter estimations of mutually T-related fuzzy variables. Fuzzy
Sets Syst. 123, 63–71 (2001)

15. Yazenin, A.V.: Possibilistic-probabilistic models and methods of portfolio optimiza-
tion. In: Batyrshin, I., Kacprzyk, J., et al. (eds.) Perception-based Data Mining and
Decision Making in Economics and Finance. SCI, vol. 36, pp. 241–259. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-36247-0 9

16. Ermolyev, Y.M.: Methods of stochastic programming. Nauka Publ., Moscow
(1976). (in Russian)

17. Alefeld, G., Herzberger, J.: Introduction to Interval Computation. Academic Press,
Cambridge (2012)

18. Yazenin, A., Wagenknecht, M.: Possibilistic optimization. Brandenburgische Tech-
nische Universitat, Cottbus (1996)

19. Fuller, R., Keresztfalvi, T.: On generalization of Nguyen’s theorem. Fuzzy Sets
Syst. 41(3), 371–374 (1991). https://doi.org/10.1016/0165-0114(91)90139-H

https://doi.org/10.1007/978-3-642-16895-6
https://doi.org/10.1007/978-3-642-16895-6
https://doi.org/10.7868/S0002338817040096
https://doi.org/10.7868/S0002338817040096
https://doi.org/10.1007/978-3-319-66827-7_51
https://doi.org/10.1007/978-3-319-66827-7_51
https://doi.org/10.1007/978-3-540-36247-0_9
https://doi.org/10.1016/0165-0114(91)90139-H


54 A. Yazenin and I. Soldatenko

20. Fuller, R., Keresztfalvi, T.: t-Norm-based addition of fuzzy intervals. Fuzzy Sets
Syst. 51(2), 155–159 (1992). https://doi.org/10.1016/0165-0114(92)90188-A
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Abstract. Relationships between powerset theories and F-transforms
are investigated. Both these methods represent strong tools in fuzzy
sets theory and applications. Although both methods deal with similar
objects, both these methods use different tools and, so far, the relation-
ship between the two methods has not been investigated. The aim of
this paper is to show that there is a strong relationship between the two
methods. Namely, arbitrary lower or upper F-transform of lattice-valued
fuzzy sets can be derived from a special powerset theory and, conversely,
there exists a special class of powerset theories, such that maps defined
by these powerset theories are lower or upper F-transforms. These results
allow, among other things, to extend the range of methods and tools that
are used in both theories.

1 Introduction

In fuzzy set theory there are two important methods which are frequently used
both in theoretical research and applications. These methods are the powerset
theory and the F-transform. Both these methods were, in full details and the-
oretical backgrounds, introduced relatively recently and, in the present, both
methods represent very strong tools in the theory and applications.

The powerset structures are widely used in algebra, logic, topology and also
in computer science. The standard example of a powerset structure P (X) =
{A : A ⊆ X} and the corresponding extension of a mapping f : X → Y to the
map f→

P : P (X) → P (Y ) is widely used in almost all branches of mathematics
and their applications, including computer science. For illustrative examples of
possible applications see, e.g., the introductory part of the paper of [24]. Because
the classical set theory can be considered to be a special part of the fuzzy set
theory, introduced by [26], it is natural that powerset objects associated with
fuzzy sets were soon investigated as generalizations of classical powerset objects.
The first approach was done again by Zadeh [26], who defined [0, 1]X to be a
new powerset object Z(X) instead of P (X) and introduced the new powerset
operator f→

Z : Z(X) → Z(Y ), such that for s ∈ Z(X), y ∈ Y ,

This research was partially supported by the project 18-06915S provided by the Grant
Agency of the Czech Republic.
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f→
Z (s)(y) =

∨

x,f(x)=y

s(x).

A lot of papers were published about Zadeh’s extension and its generalizations,
see, e.g., [5,10,11,14,21–24]. Zadeh’s extension was for the first time intensively
studied by Rodabaugh in [21] for lattice-valued fuzzy sets. This paper was, in
fact, the first real attempt to uniquely derive the powerset operator f→

Z from f→
P

and not only explicitly stipulate them. The works of Rodabaugh gave very serious
basis for further research of powerset objects and operators. That new approach
to the powerset theory was based on application of the theory of monads in
clone form, introduced by Manes [9]. A special example of monads in clone form
was introduced by Rodabaugh [23] as a special structure describing powerset
objects. In the papers [10] and [11] we presented some examples of powerset
theories based on fuzzy sets which are generated by monads in clone form.

Another important method which was recently introduced in the fuzzy set
theory is the F-transform. This theory was in lattice-valued form introduced
by Perfilieva [19] and elaborated in many other papers (see, e.g., [16–18,20]).
Analogically as the powerset operator f→

P : P (X) → P (Y ), F-transform is a
special transformation map F : LX → LY , that transforms L-valued fuzzy sets
defined in the set X to L-valued fuzzy sets defined in another set Y.

Fuzzy transforms represent new methods that have been successfully used in
signal and image processing [1,2,5], signal compressions [16], numerical solutions
of ordinary and partial differential equations [7,25], data analysis [3,4,18] and
many other applications.

Although both methods deal also with the same object, i.e. L-valued fuzzy
sets, in general, both these methods use different tools and, so far, the rela-
tionship between the two methods has not been investigated. The aim of this
paper is to show that, in fact, there is a very strong relationship between the two
methods. We show, that arbitrary F-transform of L-valued fuzzy sets defined by
a fuzzy partition can be derived from a special powerset theory and, conversely,
there exists a special class of powerset theories, such that maps defined by these
powerset theories are F-transforms. This result allows, among other things, to
extend the range of methods and tools that are used in both theories.

2 Preliminaries

A principal structure used in the paper is a complete residuated lattice (see
e.g. [9,15]), i.e. a structure L = (L,∧,∨,⊗,→, 0L, 1L) such that (L,∧,∨) is a
complete lattice, (L,⊗, 1L) is a commutative monoid with operation ⊗ isotone
in both arguments and → is a binary operation which is residuated with respect
to ⊗, i.e.

α ⊗ β ≤ γ iff α ≤ β → γ.

Recall that a negation of an element a in L is defined by ¬a = a → 0L.
A special example of a residuated lattice L is a MV -algebra, i.e., a structure

L = (L,⊕,⊗,¬, 0L, 1L) satisfying the following axioms:
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(i) (L,⊗, 1L) is a commutative monoid,
(ii) (L,⊕, 0L) is a commutative monoid,
(iii) ¬¬x = x, ¬0L = 1L,
(iv) x ⊕ 1L = 1L, x ⊕ 0L = x, x ⊗ 0L = 0L,
(v) x ⊕ ¬x = 1L, x ⊗ ¬x = 0L,
(vi) ¬(x ⊕ y) = ¬x ⊗ ¬y, ¬(x ⊗ y) = ¬x ⊕ ¬y,
(vii) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

for all x, y ∈ X.
If we put

x ∨ y = (x ⊕ ¬y) ⊗ y, x ∧ y = (x ⊗ ¬y) ⊕ y, x → y = ¬x ⊕ y,

then, (L,∧,∨, 0L, 1L) is a distributive lattice and (L,∧,∨,⊗,→, 0L, 1L) is a
residuated lattice. MV -algebra is called a complete algebra, if that lattice is
a complete lattice.

MV -algebras have their origin in algebraic analysis of �Lukasiewicz logic by
Chang in [6] and represent a generalization of Boolean algebras. A standard
example of a MV -algebra is the �Lukasiewicz algebra L�L = ([0, 1],⊕,⊗,¬, 0, 1),
where

x ⊗ y = 0 ∨ (x + y − 1), ¬x = 1 − x, x ⊕ y = 1 ∧ (x + y).

If L is a complete residuated lattice, a L-fuzzy set in a crisp set X is a map
f : X → L. f is a non-trivial L-fuzzy set, if f is not identical to the zero function.
The core of a L-fuzzy set f in a set X is defined by core(f) = {x ∈ X : f(x) =
1L}.

We recall some basic facts about F-transforms. An F -transform in a form
introduced by Perfilieva [20] is based on the so called fuzzy partitions on the
crisp set. Unless otherwise stated, by L we denote the complete residuated lattice
L = (L,∧,∨,⊗,→, 0L, 1L).

Definition 1. Let X be a set. A system A = {Aλ : λ ∈ Λ} of normal L-fuzzy
sets in X is a fuzzy partition of X, if {core(Aλ) : λ ∈ Λ} is a partition of X.
A pair (X,A) is called a space with a fuzzy partition. The index set of A will be
denoted by |A|.

In [12,13] we introduced the category SpaceFP of spaces with fuzzy parti-
tions. In the paper we consider the modified version of this category.

Definition 2. The category SpaceFP is defined by

1. Fuzzy partitions (X,A), as objects,
2. Morphisms (g, σ) : (X, {Aλ : λ ∈ Λ}) → (Y, {Bω : ω ∈ Ω}), such that

(a) g : X � Y and is σ : Λ � Ω are surjective mappings,
(b) ∀λ ∈ Λ, Aλ(x) = Bσ(λ)(g(x)), for each x ∈ X.

3. The composition of morphisms in SpaceFP is defined by (h, τ) ◦ (g, σ) =
(h ◦ g, τ ◦ σ).
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Objects of the category SpaceFP represent ground structures for a fuzzy
transform, firstly proposed by Perfilieva [19] and, in the case where it is applied
to L-fuzzy sets with L-valued partitions, in [20].

Definition 3. Let (X,A) be a space with a fuzzy partition A = {Aλ : λ ∈ |A|}.
1. An upper F-transform with respect to the space (X,A) is a function F ↑

X,A :
LX → L|A|, defined by

f ∈ LX , λ ∈ |A|, F ↑
X,A(f)(λ) =

∨

x∈X

(f(x) ⊗ Aλ(x)).

2. A lower F-transform with respect to the space (X,A) is a function F ↓
X,A :

LX → L|A|, defined by

f ∈ LX , λ ∈ |A|, F ↓
X,A(f)(λ) =

∧

x∈X

(Aλ(x) → f(x)).

3 Powerset Theories in the Category SpaceFP

In what follows, by CSLAT (∨) or CSLAT (∧) we denote the category of com-
plete ∨- or ∧-semilattices as objects, respectively, with ∨- or ∧-preserving maps
as morphisms. If there is no need to distinguish between ∨ and ∧, we will only
write CSLAT . The standard definition of powerset theories was presented by
Rodabaugh [23].

Definition 4. Let K be a ground category. Then T = (T,→, V, η) is called
CSLAT -powerset theory in K, if

1. T : K → CSLAT is an object-mapping,
2. for each morphism f : A → B in K, there exists f→

T : T (A) → T (B) in
CSLAT ,

3. There exists a concrete functor V : K → Set, such that η determines in Set
for each A ∈ K a mapping ηA : V (A) → T (A),

4. For each f : A → B in K, f→
T ◦ ηA = ηB ◦ V (f).

In the paper we deal with powerset theories in the category SpaceFP which
satisfy additional properties, typical for fuzzy sets structures. Two types of these
powerset theories are introduced in the following definitions.

Definition 5. A structure T = (T,→, V, η) is called a L∨-powerset theory in
the category SpaceFP, if

1. T is a CSLAT (∨)-powerset theory in the category SpaceFP,
2. For each object (X,A) ∈ SpaceFP,

(a) there exists a
∨

-preserving embedding i(X,A) : T (X,A) ↪→ L|A|,
(b) for each x ∈ V (X,A) there exists α ∈ |A|, such that core(i(X,A)

(η(X,A)(x))) = {α},
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(c) there exists an external operation  : L × T (X,A) → T (X,A), such that
i(X,A)(α  f) = α ⊗ i(X,A)(f), for each f ∈ T (X,A), α ∈ L.

If L = (L,⊕,⊗,¬, 0L, 1L) is a complete MV -algebra, we can also define the
L∧-powerset theory in the category SpaceFP.

Definition 6. A structure S = (S,→,W, μ) is called a L∧-powerset theory in
the category SpaceFP, if

1. S is a CSLAT (∧)-powerset theory in the category SpaceFP,
2. For each object (X,A) ∈ SpaceFP,

(a) there exists a
∧

-preserving embedding j(X,A) : S(X,A) ↪→ L|A|,
(b) for each x ∈ W (X,A) there exists α ∈ |A|, such that

core(j(X,A)(μ(X,A)(x))) = {α},
(c) there exists an external operation + : L × S(X,A) → S(X,A), such that

j(X,A)(α + f) = α ⊕ j(X,A)(f), for each f ∈ S(X,A), α ∈ L.

Let us consider the following examples of the L∨-and L∧-powerset theory.

Example 1. Let U = {τ(X,A) : (X,A) ∈ SpaceFP} be a system of L-valued
similarity relations defined on sets |A|, such that for arbitrary morphism (f, σ) :
(X,A) → (Y,B) in the category SpaceFP, τ(X,A)(α, β) = τ(Y,B)(σ(α), σ(β))
holds for arbitrary α, β ∈ |A|. Moreover, let the following condition holds for
arbitrary (X,A):

α, β ∈ L, τ(X,A)(α, β) = 1L ⇔ α = β.

For arbitrary morphism (f, σ) : (X,A) → (Y,B) in SpaceFP, we set

V (X,A) = |A|, V (f, σ) = σ,

T (X,A) = {g ∈ L|A| : g is extensional with respect to τ(X,A)} ↪→ L|A|,

(f, σ)→
T : T (X,A) → T (Y,B), (f, σ)→

T (g)(β) =
∨

α∈|A|
g(α) ⊗ τ(Y,B)(β, σ(α)),

η(X,A) : V (X,A) = |A| → T (X,A), η(X,A)(α)(β) = τ(X,A)(α, β).

It is clear that T (X,A) is a complete
∨

-semilattice and (f, σ)→
T (g) is also exten-

sional with respect to τ(Y,B). Then, T = (T,→, V, η) is the L∨-powerset theory
called powerset theory defined by U . In fact, we set

α ∈ L, g ∈ T (X,A), α  g = α ⊗ g.

It can be proven simply that α ⊗ g are elements of T (X,A) and the following
diagram commutes,

|A| σ
> |B|

T (X,A)

η(X,A)∨
(f,σ)→

T> T (Y,B)

η(Y,B)∨

Hence, (T,→, V, η) is a L∨-powerset theory. �
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Example 2. Let L be a complete MV -algebra. Let U = {τ(X,A) : (X,A) ∈
SpaceFP} be the same sets of similarity relation as in the Example 1.

For arbitrary morphism (f, σ) : (X,A) → (Y,B) we set

S(X,A) = T (X,A),

(f, σ)→
S : S(X,A) → S(Y,B), (f, σ)→

S (g)(β) =
∧

α∈|A|
¬τ(Y,B)(σ(α), β) ⊕ g(α),

α ∈ L, g ∈ S(X,L), α + g := α ⊕ g.

It can be proven that (f, σ)→
S is defined correctly, i.e., (f, σ)→

S (g) ∈ S(Y,B), for
arbitrary g ∈ S(X,A). In fact, for β, ω ∈ |B|, we have

τ(Y,B)(σ(α), β) ≥ τ(Y,B)(β, ω) ⊗ τ(Y,B)(σ(α), ω) ⇒
τ(Y,B)(σ(α), β) → g(α) ≤ τ(Y,B)(β, ω) ⊗ τ(Y,B)(σ(α), ω) → g(α) =

τ(Y,B)(β, ω) → (τ(Y,B)(σ(α), ω) → g(α)) ⇒
(τ(Y,B)(σ(α), β) → g(α)) ⊗ τ(Y,B)(β, ω) ≤ τ(Y,B)(σ(α), ω) → g(α) ⇒

(f, σ)→
S (g)(β) ⊗ τ(Y,B)(β, ω) ≤ (f, σ)→

S (g)(ω),

and (f, σ)→
S (g) is extensional with respect to τ(Y,B) and α⊕g ∈ S(X,A). In fact,

for arbitrary β, ω ∈ L, we have

(¬α → g(β)) ⊗ ¬α ⊗ τ(X,A)(β, ω) ≤ g(β) ⊗ τ(X,A)(β, ω) ≤ g(ω),

and it follows that

(α ⊕ g(β)) ⊗ τ(X,A)(β, ω) = (¬α → g(β)) ⊗ τ(X,A)(β, ω) ≤
¬α → (ω) = α ⊕ g(ω).

Therefore, S = (S,→, V, η) is the L∧-powerset theory, where η is the same as in
the previous Example. �

As we mentioned in the Introduction, our goal is to show that the classical
F-transform FX,A : LX → L|A| defined by the space with a fuzzy partition
(X,A) can be derived from a powerset theory and, vice versa, that each suitable
powerset theory T in the category SpaceFP, defines for arbitrary (X,A) ∈
SpaceFP the map T[X,A] : LV (X,A) → T (X,A), which can be represented by
the F-transform FV (X,A),B defined by (possible different) space with a fuzzy
partition (V (X,A),B).

Let us introduce the definition of the map defined by a L∨- or L∧-powerset
theories.

Definition 7. 1. Let T = (T,→, V, η) be a L∨-powerset theory in the category
SpaceFP. For (X,A) ∈ SpaceFP, the map defined by T is

T [X,A] : LV (X,A) → T (X,A),

f ∈ LV (X,A), T [X,A](f) :=
∨

x∈V (X,A)

η(X,A)(x)  f(x) ∈ T (X,A).
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2. Let L be a complete MV -algebra and let S = (S,→,W, μ) be a L∧-powerset
theory in the category SpaceFP. For (X,A) ∈ SpaceFP, the map defined
by S is

S[X,A] : LW (X,A) → S(X,A),

f ∈ LW (X,A), S[X,A](f) :=
∧

x∈W (X,A)

¬η(X,A)(x) + f(x) ∈ T (X,A).

In the next theorem we prove that lower and upper F-transforms are derived
from powerset theories. We show that for arbitrary space with a fuzzy partition
(X,A), the upper F-transform F ↑

X,A : LX → L|A| is identical to the map T [X,A]

defined by a L∨-powerset theory T. An analogical result we can obtain for lower
F-transform F ↓

X,A, which is identical to the map T[X,A].

Theorem 1. There exists the powerset theory T = (T,→, V, η) of the category
SpaceFP, such that

1. T is L∨-powerset theory.
2. If L is a complete MV -algebra, then T is also L∧-powerset theory,
3. For each (X,A) ∈ SpaceFP,

T [X,A] = F ↑
X,A, T[X,A] = F ↓

X,A.

Proof. Let (f, σ) : (X,A) → (Y,B) be a morphism in the category SpaceFP.

(1) We define

T : SpaceFP → CSLAT (∨), V : SpaceFP → Set,

T (X,A) = L|A|, V (X,A) = X,

(f, σ)→
T = T (f, σ) : T (X,A) → T (Y,B), V (f, σ) = f,

g ∈ T (X,A), (f, σ)→
T (g) = σ→

Z (g) ∈ T (Y,B),

where σ→
Z is the Zadeh’s extension of the map σ : |A| → |B| to the map L|A| →

L|B|. The ordering on the set T (X,A) is point-wise and it is clear that T (X,A)
is a complete

∨
-semilattice and σ→ is

∨
-preserving map.

We define the map η(X,A) : X → T (X,A) by

x ∈ X,α ∈ |A| η(X,A)(x)(α) = Aα(x),

where A = {Aα : α ∈ |A|}. We show that the following diagram commutes.

X
f

> Y

T (X,A)

η(X,A)∨
(f,σ)→

T> T (Y,B).

η(Y,B)∨
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In fact, for x ∈ X,β = σ(α) ∈ |B|, we have

(f, σ)→
T (η(X,A)(x))(β) = σ→

Z (η(X,A)(x))(β) =
∨

α,σ(α)=β

η(X,A)(x)(α) =

∨

α,σ(α)=β

Aα(x) =
∨

α,σ(α)=β

Bσ(α)(f(x)) = Bβ(f(x)) = η(Y,B)(f(x))(β).

Hence, T = (T,→, V, η) is the CSLAT (∨)-powerset theory. To prove that T
is the L∨-powerset theory, we define the external operation  by

α ∈ L, ω ∈ |A|, g ∈ L|A|, (α  g)(ω) := α ⊗ g(ω).

Moreover, we have

core(η(X,A)(x)) = {α ∈ |A| : Aα(x) = 1L} = {uA(x)},

where uA : X → |A| is the map defined by uA(x) = α ⇔ x ∈ core(Aα). Hence,
the condition (b) is also satisfied. Finally, for the map T [X,A] defined by T, for
arbitrary h ∈ LX , α ∈ |A| we have

T [X,A](h)(α) = (
∨

x∈X

η(X,A)(x)  h(x))(α) =
∨

x∈X

η(X,A)(x)(α) ⊗ h(x) =

∨

x∈X

Aα(x) ⊗ h(x) = F ↑
X,A(h)(α).

Hence, T [X,A] = F ↑
X,A.

(2) Let L be the complete MV -algebra. For arbitrary morphism (f, σ) :
(X,A) → (Y,B), the set T (X,A) = L|A| is also complete

∧
-semilattice.

Since any complete MV -algebra is completely distributive ([8]), the map
σ→

Z is
∧

-preserving map, as follows from

σ→
Z (

∧

j∈J

hj)(β) =
∨

α,σ(α)=β

(
∧

j∈J

hj(α)) =
∧

j∈J

(
∨

αj ,σ(αj)=β

hj(αj)) =
∧

j∈J

σ→
Z (hj)(β).

Hence, the object function T from the previous case is also the object function
T : SpaceFP → CSLAT (∧) and T = (T,→, V, η) can be consider to be also
the CSLAT (∧)-powerset theory in the category SpaceFP. To prove that T is
also L∧-powerset theory, we need to change only the definition of the external
operation + as follows:

g ∈ T (X,A), α ∈ L, ω ∈ |A|, (α + g)(ω) := α ⊕ g(ω).

Then, for the map T[X,A] defined by T, for arbitrary h ∈ LX , α ∈ |A| we have

T[X,A](h)(α) = (
∧

x∈X

¬η(X,A)(x) + h(x))(α) =
∧

x∈X

¬η(X,A)(x)(α) ⊕ h(x) =

∧

x∈X

¬Aα(x) ⊕ h(x) =
∧

x∈X

Aα(x) → h(x) = F ↓
X,A(h)(α).
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Hence, T[X,A] = F ↓
X,A. �

In the next theorem we deal with the converse problem: Is it true that for
arbitrary L∨-powerset theory of the category SpaceFP, the map T [X,A] defines
an F-transform? The answer is “yes” and it allows to derive new types of F-
transform maps F : LX → L|A|, where the transformed map F (g) could have
some additional properties.

Theorem 2. Let T = (T,→, V, η) be an arbitrary L∨-powerset theory in the
category SpaceFP. Then for arbitrary space with a fuzzy partition (X,A) ∈
SpaceFP there exists another space with a fuzzy partition (V (X,A),B) ∈
SpaceFP, such that the following diagram commutes

LV (X,A)

T (X,A) ⊂
i(X,A)

>

T [X,A]
< L|A|

F ↑
V (X,A),B

>

Proof. For arbitrary α ∈ |A|, x ∈ V (X,A), we set Bα(x) = i(X,A)

(η(X,A)(x))(α). Then (V (X,A),B) is a space with a fuzzy partition, where
B = {Bα : α ∈ |A|} is a fuzzy partition, as simply follows from the proper-
ties of η. Then, for α ∈ |A|, g ∈ LV (X,A), we have

i(X,A).T
[X,A](g)(α) = i(X,A)(

∨

x∈V (X,A)

η(X,A)(x)  g(x))(α) =

∨

x∈V (X,A)

i(X,A)η(X,A)(x)(α) ⊗ g(x) =
∨

x∈V (X,A)

Bα(x) ⊗ g(x) = F ↑
V (X,A),B(g)(α).

�
An analogical result we obtain for lower F-transform. The proof is similar

and will be omitted.

Theorem 3. Let L be a complete MV -algebra and let S = (S,→,W, μ) be an
arbitrary L∧-powerset theory in the category SpaceFP. Then for arbitrary space
with a fuzzy partition (X,A) ∈ SpaceFP there exists another space with a fuzzy
partition (W (X,A),B) ∈ SpaceFP, such that the following diagram commutes

LW (X,A)

S(X,A) ⊂
i(X,A)

>

S[X,A]

< L|A|

F ↓
W (X,A),B

>

To illustrate the meaning of the preceding theorems, we show upper and lower
F-transforms generated by the Theorems 2 and 3 from the L∨- and L∧-powerset
theories from the Examples 1 and 2, respectively.

Recall that for an arbitrary set X and an L-valued similarity relation δ on
the set X, a function g ∈ LX is called the extensional core of a function f ∈ LX

with respect to δ, if
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1. ∀x ∈ X, g(x) ≤ f(x),
2. g is extensional with respect to δ,
3. if h ∈ LX is extensional with respect to δ, h ≤ f , then g ≥ h.

Example 3. Let T = (T,→, V, η) be the L∨-powerset theory in the category
SpaceFP from the Example 1. Then, according to the proof of the Theorem 2,
for arbitrary (X,A) ∈ SpaceFP, the set B = {τ(X,A(α,−) : α ∈ |A|} is a fuzzy
partition on |A|, such that

T [X,A] = F ↑
|A|,B : L|A| → L|A|,

g ∈ L|A|, F ↑
|A|,B(g)(ω) =

∨

α∈|A|
g(α) ⊗ τ(X,A)(α, ω) = ĝ(ω).

It is clear that ĝ is the extensional hull of g with respect to τ(X,A). Therefore,
in that case, the upper F-transform F ↑

|A|,B represents the extensional hull trans-
formation. �

Example 4. Let L be a complete MV -algebra and let S = (S,→, V, η) be the L∧-
powerset theory in the category SpaceFP from the Example 2. Then, according
to the proof of the Theorem 3, for arbitrary (X,A) ∈ SpaceFP, the set B =
{τ(X,A(α,−) : α ∈ |A|} is a fuzzy partition on the set |A|, such that

T[X,A] = F ↓
|A|,B : L|A| → L|A|,

g ∈ L|A|, F ↓
|A|,B(g)(β) =

∧

α∈|A|
τ(X,A)(α, β) → g(α) = g(β).

It can be proven that g is the extensional core of g with respect to τ(X,A). In fact,
analogously as in the Example 2, we can prove that g is extensional with respect
to τ(X,A), g ≤ g and g is the largest extensional map with these properties.
Therefore, in that case, the lower F-transform F ↓

|A|,B represents the extensional
core transformation. �

4 Conclusions

F-transforms of lattice-valued fuzzy sets and powerset theories in fuzzy struc-
tures are frequently used tools in the fuzzy set theory and applications. Although
these theories seem to be independent from the point of view of methods used,
there exist deep relationships between these theories. We proved that arbitrary
F-transform of L-valued fuzzy sets defined by a fuzzy partition can be derived
from a special powerset theory defined on the set of all L-valued fuzzy sets
and, conversely, there exists a special class of powerset theories, such that maps
defined by these powerset theories are F-transforms. Using these relations, we
can define new types of F-transforms and we can use, for example, new methods
in the F-transform theory, including the theory of monads in special categories,
which are typical tools in the powerset theories.
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Abstract. Despite the huge success of machine learning methods in the
last decade, a crucial issue is to control the support of the data used in
inference, so that data that are too far from the training set are given
low confidence by default. The most important class that features this
ability is that of prototype-based methods which are based on clustering
or vector quantization as a representation learning model. This paper
surveys a family of popular soft clustering methods, framing them in
a unified formalism. It also discusses the peculiarities of each of them.
A large fraction of the paper is devoted to clarifying the role of model
parameters and to providing some guidelines on how to set up these
parameters.

Keywords: Fuzzy clustering · Possibilistic clustering ·
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1 Introduction

Despite the huge success of machine learning methods in the last decade, several
issues remain unsolved. Machine learning usually focuses on black-box mod-
els which suffer from lack of explainability and, dually, from difficulty in using
prior knowledge. In the specific case of deep learning [15] an additional issue is
that theories of generalisation are apparently not applicable. In fact, adversar-
ial machine learning techniques [16] seem to prove that generalisation ability is
actually low in deep neural networks, and that bad quality outputs can easily be
produced with high confidence. This is a very serious issue when machine learning
is used in life-critical contexts like autonomous vehicle guidance or condition-
based monitoring in predictive maintenance of sensitive plants.

In view of these problems, it is imperative to control the support of the data
used in inference, so that data that are too far from the training set are given low
confidence by default. The most important class that features this ability is that
of prototype-based methods which are based on clustering or vector quantization
as a representation learning model.

In the literature, these methods have been used extensively [2,23,26,27]
although they may appear to be less popular than other approaches (in par-
ticular deep learning and support vector machines). As noted, clustering, and
specifically soft clustering, is a key component.
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In this perspective, this paper surveys a family of popular soft clustering
methods, framing them in a unified formalism. It also discusses the peculiarities
of each of them. A large fraction of the paper is devoted to clarifying the role
of model parameters and to providing some guidelines on how to set up these
parameters.

2 Soft Clustering

The clustering problem is usually stated as the task of partitioning a set of data
vectors or patterns X = {xk}, k ∈ {1, . . . , n}, xk ∈ R

d by attributing each data
point xk to a subset ωj ⊂ X, j ∈ {1, . . . , c}, defined by its centroid yj ∈ R

d. This
attribution is made based on a given distance function that is used to measure
the degree of centroid-observation closeness (in the following always assumed to
be the Euclidean distance).

Some methods also employ a relational approach by measuring observation-
observation closeness [9,13]; these are not considered here, but we cite them for
completeness.

The following definitions deal with real-valued quantities and crisp sets, and
therefore the symbols ∈ and ∪ have the usual crisp-set-theoretic meaning:

Definition 1 (Fuzzy and possibilistic partitions [4]). Given a set X =
{x1, x2, . . . , xn} of data items, a set Ω = {ω1, ω2, . . . , ωc}, and a membership
function u(x, ω), x ∈ X, with 0 ≤ u(x, ω) ≤ 1 ∀x ∈ X, ∀ω ∈ Ω, the pair (Ω, u)
is:

– A possibilistic partition if

u(x, ω) ∈ R ∀x, ∀ω and 0 <

c∑

i=1

u(x, ωi) < c ∀x (1)

– A fuzzy partition if it is a possibilistic partition with

c∑

i=1

u(x, ωi) = 1 ∀x (2)

– A crisp partition if it is a fuzzy partition with

max
i

u(x, ωi) = 1 ∀x. (3)

��
In the case of central clustering, partitions are represented by centroids.

Definition 2 (Central clustering). A central clustering is a (crisp, fuzzy,
possibilistic) partition of a metric data space Ξ whose membership functions
are monotonically dependent on the similarity of objects to a set of centroids
{y1, . . . , yc} ⊂ Ξ. ��
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Some methods not dealt with in this work, for instance those based on
medoids or landmarks, require {y1, . . . , ym} ⊂ X.

Central clustering is especially interesting as a concept representation tool
because it can be learned from a training set X and applied to the whole data
space Ξ. Many other approaches to clustering do not possess this out-of-sample
extension property and can therefore only be used to partition the given data
set.

The most widely used fuzzy clustering method is probably the Fuzzy c-
Means/Fuzzy ISODATA [6,12,29] (FCM) algorithm, which is a “fuzzy relative”
to the simple c-Means technique [5]. FCM defines the ωj as fuzzy partitions of
the data set X.

Well-known limitations of FCM include the need for fixing a fuzziness param-
eter in addition to the number of centroids, dependency on the initialisation, con-
vergence to possibly bad-quality local solutions, the consequent need for many
restarts, and a membership function profile that may not discriminate sharply
enough between close and far points.

Variations over this basic scheme try to overcome some of these limitations.
All of the following methods have membership functions that involve exponen-
tials rather than powers of distance, which are sharper (for a discussion about
this point see for instance [19]).

The Maximum Entropy (ME) approach, usually but not necessarily associ-
ated to the Deterministic Annealing optimisation procedure [24,25], does not
minimize a simple cost term, but a compound cost function which is the sum
of a distortion term Ê and an entropic term −H (see the next section for the
mathematical definitions). The optimization is done by fixing a constant value
for one of the two terms and minimizing the other; then this step is iterated
for decreasing values of the constant, until a global optimum is reached. This
alleviates the false minima problem of standard c-Means and (to a lesser extent)
of FCM.

In decision-making and classification applications, algorithms should feature
several desirable properties in addition to the basic discrimination or decision
function. For instance, it is usually required that in certain configurations a
decision is not made (pattern rejection). This situation typically occurs in the
presence of outliers. This problem is very well-known and well studied (see for
instance [7,8,11]), and is tackled in a convenient way within the framework of
soft-computing, fuzzy, and neural approaches [10,17,23].

However, the clustering problem as stated above implies that the outlier
rejection property cannot be achieved. This is because the membership values
are constrained to sum to 1. By giving up the requirement for strict partitioning,
and by resorting to a “mode seeking” algorithm, Krishnapuram and Keller pro-
posed the so-called possibilistic approach [18,19], where this constraint is relaxed
essentially to

ujl ∈ [0, 1] ∀l,∀j (4)

With this model outlier rejection can be achieved, but at the expense of a
clear cluster attribution and other computational drawbacks. The same issue of
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analysing the membership interactions on a local basis, as opposed to the global
effects induced by the probabilistic model, is considered in [14].

An additional clustering model that can be thought of as a generalization of
all those outlined above can be devised starting from the following observations.

Crisp partitions constrain membership in a very strong way: For a given
object, memberships to all clusters must be zero except one. Fuzzy partitions
relax this constraint in the sense that all membership can be non-zero, provided
that their sum is still one. This means that membership to one cluster directly
affects the membership to all other clusters. Finally, possibilistic partitions don’t
impose any constraint on memberships.

However, it is possible (and in practice it is frequent) that pairs of events
are not mutually independent, but are not completely mutually exclusive either.
Instead, events can provide partial information about other events. To model
this idea, we could require the membership to one cluster to have an influence
on the other memberships, but not so strong as to determine it directly.

This brings us to the concept of graded possibility. An example of such concept
is given by a glass and by the fuzzy concepts of “full” and “empty”. If the glass is
full or almost full, its membership to the concept “empty” should clearly be close
to zero, and similarly for the empty or almost empty case. However, if the glass
is half filled, it is much more difficult to assess the membership in the concept
“empty” with similar confidence. The profile of the membership functions in this
case should be decided according to further considerations.

These ideas form the rationale of the Graded possibilistic c Means clustering
methods, described in the following.

3 Some Popular Clustering Algorithms: A Unified View

3.1 The c-Means Family

We will now review some clustering algorithms derived from the basic c-Means:
(“hard” or “crisp”) c-Means (HCM) [5], Minimum-Entropy fuzzy clustering by
Deterministic Annealing (ME) [24], Possibilistic c-Means with an entropic cost
term (PCM-II) [19], Fuzzy c-Means (FCM) [12], Graded Possibilistic c-Means
(GPCM) [21]. All of these techniques are based on minimizing the following cost
function:

Ê =
c∑

j=1

n∑

l=1

ujldjl. (5)

(this includes also FCM, although in the usual formulation this is not evident;
see [22]). We will refer collectively to these algorithms as the c-Means (CM)
family.

Here ujl is the degree of membership of pattern xl to cluster ωj and Y =
{y1, . . . , yc}. Ê can be termed approximation error in data analysis problems,
distortion or quantization error in signal processing contexts, energy in physical
analogies, risk in decision-theoretic and statistical learning frameworks.
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Miyamoto and Mukaidono [22] show that these algorithms are obtained by
adding to the basic cost Ê in (5) either regularization terms or the maximum-
entropy term

− H =
c∑

j=1

n∑

l=1

ujl log ujl (6)

which represents the (negative) entropy of the clustering defined by Y,U .
Figure 1 shows how the effect of fuzziness parameters on the objective func-

tion corresponds to regularization.

Fig. 1. Regularizing effect of fuzziness parameters on the objective function.

In clustering problems the focus is commonly placed on the analysis of data
and clusters themselves, rather than on minimization of a global error criterion.
We are often more interested in characterizing (hopefully significant) groups of
data than in representing the details of the data with a faithful approximation.
As an example, model-based clustering approaches focus on cluster modeling
rather than performance optimization, and the cluster identification technique
called Alternating Cluster Estimation [28] does not even assume the existence of
a cost function.

Therefore we will introduce a formalism to provide an alternative, unified per-
spective on these clustering algorithms, focused on the memberships ujl rather
than on the cost function.

3.2 A Unifying Formalism

A CM clustering problem is defined by fixing the pair {J, ψ}, where:
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– J is the cost function
– ψ is the constraint on the set of cluster memberships, such that

ψ(u1l, . . . , ucl) = 0 ∀l ∈ {1, n}

All the CM algorithms considered here define either:

J = Ê (7)

or:
J = Ê − H (8)

where the cluster entropy acts as a regularizer.
Moreover, all the CM algorithms considered require that ujl ∈ [0, 1] ∀j ∈

{1, c}, ∀l ∈ {1, n} (normality condition).
Let vjl be the solution of a CM problem with constraint ψ removed (formally

this can be implemented with ψ ≡ 0). We call vjl the free membership of pattern
xl in cluster ωj .

As a consequence of these definitions, for all the CM algorithms considered
the cluster centroids Y are computed as:

yj =
∑n

l=1 ujlxl∑n
l=1 ujl

(9)

which characterizes the c-Means principle and therefore the CM family. The
memberships are computed as:

ujl =
vjl

Zl
, (10)

where Zl is the (generalized) partition function, which is computed as a function
of the conventional partition function ζl =

∑c
j=1 vlj :

Zl = f(ζl) (11)

Since the specific form of f() is given by the constraint ψ, a member of the
CM family is equivalently defined by the pair (J, f) or (J, Zl).

With the above set of definitions, the CM algorithms of interest are compactly
described as in Table 1.

All algorithms are fuzzy techniques, since they adopt the concept of “partial
membership” in a set. HCM itself can be cast without imposing the constraint
of binary memberships. The relationships among these algorithms are clear from
the table.

A method to allow for non-extreme solutions is the maximum entropy crite-
rion, which is implemented in the ME and PCM-II algorithms. They are related
by the use of the entropic term −H, implying a parameter βj . This parameter is
different for each cluster and fixed in PCM-II, while it is constant for all clusters
and varying with the algorithm progress in ME.
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Table 1. The CM family of clustering algorithms

J vjl Zl Notes

ME Ê − H e−djlβ
∑c

j=1 vjl β ∈ R, β > 0 is the inverse
temperature parameter to be
increased during the “annealing”
process

PCM-II Ê − H e−djlβj 1 βj ∈ R, βj > 0 are cluster width
parameters to be selected a
priori before optimization or
using heuristic criteria

FCM Ê 1/djl

(∑c
j=1 v

1/(m−1)
jl

)m−1

m ∈ R, m > 1 is the fuzzification
parameter

HCM Ê See note See note vjl and Zl can be written as for
FCM, but their values have to be
computed in the limit for m → 1

GPCM Ê e−djlβj

(∑c
j=1 vjl

)α

βj ∈ R, βj > 0 are cluster width
parameters to be selected a priori
before optimization or using
heuristic criteria. α ∈ [0, 1] is the
degree of probabilistic tendence

4 Membership Function Parametrization

All soft clustering methods require at least one model parameter, which in gen-
eral terms decides the degree of fuzziness of the solution.

Since Miyamoto and Mukaidono [22] showed that the power membership
function of FCM can be transformed into the exponential one of the other meth-
ods, the following discussion will only focus on the methods featuring the latter
form, i.e., ME, PCM-II, GPCM.

4.1 Possible Parametrizations in the CM Family

The original formulation of free membership in ME features one global parameter
β, interpreted as a global temperature, energy, disorder, or resolution.

vlj = exp
(−β‖xl − yj‖2

)
(12)

The Deterministic Annealing optimization procedure fixes the temperature
at each optimisation step, making it effectively a regularisation coefficient rather
than a model parameter.

In contrast, PCM-II features one parameter βj per centroid.

vlj = exp
(−βj‖xl − yj‖2

)
(13)
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In this case the parametrization can be considered that of a system with non-
constant energy, i.e., out of thermodynamic equilibrium.

It is also possible to write a free membership function with parameters that
differ for each of the vector components of the centroid, although to the best of
our knowledge no popular method from the literature features the anisotropic
parametrizations described in the following.

Using one vector parameter per centroid, with one component βji per cen-
troid j per component i of the space Ξ, we obtain the following free membership
function:

vlj = exp

(
−

d∑

i=1

(xli − yji)2βji

)
. (14)

In this case, parameters βji form a c × d matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

β11 · · · β1d

...
βji

...
βc1 · · · βcd

⎞

⎟⎟⎟⎟⎟⎟⎠
(15)

and, indicating with bj the j-th column of B, the argument of the exponential
can be written in vector-matrix notation:

vlj = exp
(−(xl − yj)T diag(bj)(xl − yj)

)
(16)

where diag(v) denotes the diagonal matrix that has vector v as its diagonal.
This case is equivalent to a non-equilibrium, anisotropic system with axis-

parallel principal directions of anisotropy.
The most general parametrization is obtained when the principal directions of

anisotropy are not necessarily the coordinate axes. In this case there is a matrix
of coefficients for each centroid, not necessarily diagonal, using a generalised
(Mahalanobis) distance [20]:

vlj = exp

(
−

d∑

i=1

d∑

k=1

(xli − yji)(xlk − yjk)Bjik

)
(17)

or

vlj = exp
(−(xl − yj)T Bj(xl − yj)

)
(18)

This case implies that the model parameters are contained in a rank-3 tensor
of shape (c, d, d). For each j, the corresponding d×d slice Bj is analogous to an
inverse covariance matrix as used in the multidimensional form of the Gaussian
density function and consequently in the expression of the Mahalanobis distance.
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In addition to these model parameters, GPCM also has an additional param-
eter α that can be used to set the balance between a possibilistic and a proba-
bilistic behaviour. In the first formulation [21], an interval-valued variable was
used. In subsequent works, see for instance [3], a simpler formulation was adopted
where α ∈ [0, 1] ⊂ R.

4.2 Roles of Parameters

According to the original statistical mechanics analogy, the parameter β in EM
can be interpreted as an inverse temperature. From the point of view of informa-
tion representation, it plays the role of a degree of fuzziness: When β increases
(i.e., temperature decreases), the memberships of data observations to clusters
become crisper. Finally, from a geometrical interpretation, β is a global reso-
lution parameter that defines the minimum distance between centroids to be
considered as distinct; below this distance, centroids collapse into each other.

The limit cases are:

– for β → 0+, we have ulj = 1/c for all l, j, i.e., each instance is equally
associated with each cluster;

Fig. 2. Effect of varying β or b on the membership of point x to cluster 1 (dotted blue)
and 2 (solid red). (Color figure online)
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Fig. 3. Effect of varying α on the membership of point x to cluster 1 (dotted blue) and
2 (solid red). (Color figure online)

– for β → +∞, we have ulj = 1 if xl ∈ ωj , and ulk = 0 for all k = j, k ∈ [1, c],
i.e., each instance is associated with only one cluster (hard limit).

In the case of individual βj per cluster, the size of clusters is affected indi-
vidually. However, in all cases that are not purely possibilistic, the memberships
influence each other via the partition function. This has an effect on the critical
position for an observation, the point where its maximum membership switches
from one centroid to another.

In Fig. 2 the effect of changing the temperature or resolution parameters is
illustrated in a two-centroid case. Membership to the two centroids are plotted
in different styles. The critical points are marked in black for each choice of
parameter values. On the left (graphs a, c) a single global parameter β is used,
assigning it three different values; on the right (graphs b, d) individual param-
eters for each centroid are used, resulting in a vector b = [β1, β2], and only β1
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is changed, again using three values. The top graphs (a, b) are the possibilistic
cases; the bottom graphs (c, d) are the probabilistic ones. The effect of having
different resolution factors for different centroids on the critical point is clearly
visible in graphs b and d.

The global model parameter α ∈ [0, 1] sets the nature of the clustering model,
with α = 0 corresponding to a fully possibilistic model (pure mode-seeking),
α = 1 to a probabilistic model, and intermediate values corresponding to a
partly possibilistic behaviour where the generalized partition function does not
normalize the sum of memberships to a fixed value of 1 but to a value that
depends on the values of all free memberships. An illustration of the effect of
varying α in a 2-cluster problem is presented in Fig. 3.

4.3 Factorisation of Parameters

As already noted, the single parameter β of ME is used both as a model parame-
ter, acting on the structure of the final clustering, and as an optimisation param-
eter, influencing the convergence of the optimisation itself.

It may be useful to express the two concepts in an uncoupled way to
allow both actions simultaneously. To this end, we rewrite the most general
parametrization (rank-3 tensor) as

βjik = bβjik (19)

where βjik expresses the relative magnitude of parameters with respect to each
other and b is a global scale factor that can be used for annealing. Disregarding
a change of units, all choices for this decomposition are equivalent; we can fix
the ideas by setting max{βjik} = 1 which results in max{βjik} = b, i.e., the
global scale parameter is the magnitude of the largest βjik.

In the following we discuss some possible criteria to estimate the model
parameters just discussed.

5 Setting the Model Parameters

With respect to the optimization, model parameters can be set beforehand, at
each iteration, or at the end. While setting the parameters before the beginning
only works in the presence of a good initialisation, the criteria here presented
can easily be applied during the iterations or after their end.

By necessity, all criteria ultimately depend on some user-selected parameters.
The focus of the methods that are discussed in this section is to reduce the num-
ber of these parameters to a minimum and to provide an intuitive interpretation
to make it possible for the user to assign meaningful values to these residual
degrees of freedom.

In the following we only cover the case of vector scale parameter, β =
[β1, β2, . . . , βc]. The scalar case is similar but obviously simpler, and the matrix
and tensor cases are not as common.
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5.1 Setting the Resolution Parameters Using Free Memberships v

Criteria for setting β can be obtained by analysing inter-centroid distance and
imposing a bias toward fuzzy solutions, similarly to what was done in the pos-
sibilistic approach in [18,19]. The first proposed method uses free memberships.
For each centroid yj we measure the free membership to its cluster ωj of all
other centroids:

v(yh,yj) = exp
(−‖yh − yj‖2βj

)
(20)

Note that this measure is taken using yj as a reference and is asymmetric,
i.e., v(yh,yj) = v(yj ,yh).

We define the minimal-overlap condition by setting a threshold t ∈ (0, 1).
Membership of centroid h to centroid j should not be larger than this threshold.
Enforcing this for the nearest centroid guarantees that this is true also for all
other centroids. To guarantee absolutely no overlap, the value should be t = 1/2.
Other values can be used if some overlap is acceptable (t > 1/2) or if narrower
boundaries are desired (t < 1/2).

The criterion is therefore:

max
h�=j

v(yh,yj) ≤ t

⇒ max
h�=j

exp
(−‖yh − yj‖2βj

) ≤ t

⇒ min
h�=j

‖yh − yj‖2βj ≥ − ln t (21)

Let h∗ = arg minh�=j ‖yh −yj‖. Note that being the nearest neighbour is not
a symmetric relation, so in general βj and βh∗ will be different.

The above inequality yields the final criterion:

⇒ βj = − ln t

‖yh∗ − yj‖2 (22)

where the numerator can be used as a global degree of freedom, for instance for
regularisation or annealing during the optimization (see Subsect. 4.3).

5.2 Setting the Resolution Parameters Using Memberships u

In this case the function to be used is the fuzzy probabilistic one:

u(yk,yj) =
exp

(−‖yh − yj‖2βj

)
∑c

k=1,k �=j exp (−‖yk − yj‖2βj)
(23)

In this case the minimal-overlap condition:

max
h�=j

u(yh,yj) ≤ t (24)
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Fig. 4. Setting the value of parameter α by assigning a desired outlier membership.
(Color figure online)

is much less simple to solve for βj . However the value of the partition function
(the denominator) can be estimated by using a very rough approximation. We
fix an integer number cNN between 1 and c. Among the centroids, we decide to
take into account the nearest cNN. The value of v(yh,yj) for the neighbours is
approximated as:

– For the cNN nearest neighbours, v(yh,yj) ≈ 1
– For the remaining 1 − cNN (farthest) neighbours, v(yh,yj) ≈ 0

So we can estimate
∑c

k=1 v(yk,yj) to be approximately equal to the number
cNN of neighbours sufficiently close to j. The criterion thus obtained is:

βj = − ln (cNNt)
‖yh∗ − yj‖2 (25)

where the numerator, a positive real number, can again be used as a global
degree of freedom.

5.3 Setting the Possibility Degree α with an Outlier Rejection
Criterion

In contrast to the resolution parameters, it is difficult to visualize the effect of
α on cluster shape in geometric terms. This is a global parameter that influ-
ences the global configuration of clusters and interacts with the other model
parameters.

A guideline for the selection of α is to set it in relation to the desired degree
of outlier rejection. An outlier is an observation that has low membership to all
clusters. We remark that outlier rejection is a crucial property to avoid meaning-
less generalisation due to extrapolation. However, complete outlier insensitivity
makes the clustering model miss potentially meaningful observations. So our
goal here is to set a desired worst-case membership u∗ sufficiently small so as to
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clearly indicate outliers, but still sufficiently large to allow some effect of outliers
in the centroid equations.

Supposing that the resolution parameters have been fixed, it is possible to
calculate vj for a point that lies on the border of the support of clusters. In Fig. 4
dotted circles are loci of constant free membership v, meaning that all points
falling on dotted lines have the same free membership to the cluster to which
the circle is referred. We want to assign the final membership u of the outlier
(red square) a given value u∗ ≤ vj by setting the value of α.

Under the simplifying hypothesis that vh = 0 ∀h = j, so that Z =∑c
h=1(vh)α = vα

j :

vj

vα
j

= u∗

⇒ v1−α
j = u∗

⇒ α = 1 − log u∗/ log vj (26)

5.4 Setting the Possibility Degree α as an Independent Parameter

The value of α can also be assigned independently as a degree of freedom for
regularisation or annealing. However, since it acts as an exponent, the effect of
changes is much stronger when close to 1 than close to 0. Experimentally, it can
be observed that the values between 0.9 and 1 are the most interesting, with
values below 0.75 establishing an essentially pure possibilistic behaviour.

It is therefore advisable to set the value of α by means of an auxiliary variable
that is related to it logarithmically. A suggested technique is to set a ∈ [0, 1] so
that

α = (log2(a + 1))0.2 (27)

where the exponent 0.2 is chosen such that, for a = 0.5, α ≈ 0.9. In this way
the interesting range (0.9, 1.0) is mapped onto half the range of variation of the
control variable a. See Fig. 5 for a graph illustrating this effect.

Fig. 5. Setting the value of parameter α via an auxiliary variable a.
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6 Conclusion

In this paper we have reviewed a family of central soft clustering methods. Their
relevance as feature learning methods for subsequent recognition, approximation,
and forecasting tasks has been mentioned.

A key issue of these variations over HCM is the larger number of model
parameters. Therefore, several criteria for setting these parameters have been
discussed.

Current work on this topic involves the on-line adaptation of model param-
eters to non-stationary stream learning [1,3].
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Abstract. This paper presents a fuzzy logic framework for dental caries and
erosion risk assessment. Two interdependent modules are implemented within a
cloud architecture. The first module is a fuzzy expert system designed for
physicians and expert users, able to provide an active support in formulating risk
judgements. The second module is oriented to generic users for oral health
promotion. Conceptual ingredients of the fuzzy logic framework are principally
defined by eliciting knowledge from a group of experts. The generation of rules
involves both structured interviews and data driven learning procedures based
on the use of neuro-fuzzy techniques.
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1 Introduction

Dental disorders such as dental caries and erosion have become recognised as a major
cause of public health concern, profoundly affecting quality of life worldwide [1, 2].
These diseases have begun to receive more attention and several decision support
systems have been proposed during the last three decades to help dentists for inves-
tigation, diagnosis and treatment of them [3–5]. Despite the sizable achievement
obtained, the information in the field is not yet well assessed and is mostly fragmented
in several sources that deal separately with the diverse conditions affecting the risk of
both dental caries and erosion.

Proceeding from these considerations we developed an interdisciplinary study
conducted with the aim of implementing a complete framework for the automated
assessment of dental caries and erosion risks.

Even if these diseases have begun to receive more attention, the information in the
field is not yet well assessed and is mostly fragmented in several sources that deal
separately with the diverse conditions affecting the risk of both dental caries and
erosion [6, 7].
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Proceeding from these considerations we developed an interdisciplinary study
conducted with the aim of implementing a framework for the automated assessment of
dental caries and erosion risks. The objective of the overall framework is to facilitates
the following main issues [8–10]:

• active support and transparency: rules, modelling multifactorial evaluations, are
coded by the system in an explicit form and can be retrieved to explain the inferred
risk judgements; the system can be used in educational context or at the same time
in clinical activity;

• information sharing and formalisation: risk evaluation procedures are formalized
allowing a reference point against which to collect agreement and disagreement
among physicians and creating the premise for a systematic coherent framework;

• public awareness enhancement and oral health promotion: a wide range of users
interacts friendly with the system that make accessible and understandable the
multifactorial conditions that influence dental caries and erosion.

The conceptual model underlying the design of the overall framework is drawn
from Fuzzy Logic (FL) [11, 12]. FL techniques have had an enormous impact on
computer-assisted medical diagnosis in which uncertainty plays a key role and we
experienced the advantages in several previous works [10, 13]. Uncertainty originates
within the process of assigning a risk value based on complex and vague signs and
factors. Under these critical conditions, risk assessment has to be properly modelled as
a matter of degrees in order to completely represent the expert decisional attitudes and
preserve the natural “qualitative” way of their reasoning originating from complexity
and interdependency of factors not always completely exploited [14].

The remainder of this paper is organized as follows. Section 2 illustrates the overall
architecture of the proposed framework. Section 3 describes the FL expert system
devoted to the assessment of the risk of caries and erosion. The knowledge acquisition
strategies based on a combined use of structured interviews and neural learning pro-
cedures are detailed. Section 4 illustrates the user oriented module for oral health
promotion and the relationships with the expert system. Section 5 illustrates program
runs and interfaces of the implemented s/w packages. Finally, Sect. 6 concludes the
paper.

2 The Architecture of the FL Framework

The proposed framework is implemented within a cloud architecture (see Fig. 1) to
ensure portability, scalability and to efficiently manage session data for further analysis.
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The overall framework includes a fuzzy expert system, named FES, designed for
physicians and expert users, able to provide an active support in formulating risk
judgements basing on a coherent, complete set of factors. A second module, named
Tooth-Good, is oriented to generic users that provide in input information about
beverages, food habits and oral hygiene and receive judgements about the level of risk.
These judgements are produced by mapping the user provided information into the
factors of risk modelled within the expert system and activating corresponding rules.
The core of the implemented application uses web roles, worker roles, and storage.
Three types of users may have access to the application: application owner, public and
medical expert users. The application uses SQL Database allowing expert users to
dump results of their sessions into a relational database and then to analyse the results
in detail. It addresses common multi-tenant challenges such as partitioning, extensi-
bility, provisioning, testability, and customization. An authentication mechanism is
provided by the application with a subscriber’s own security infrastructure by using a
federated identity with multiple partner model [15].

3 Expert System for Oral Disease Risk Assessment

The evaluation of the risk of caries and erosion involves a large number of input factors
and complex interactions between them. To manage this complexity and preserve the
natural way in which experts formulate their judgements, we designed the expert
system with a two-stage hierarchical structure. In the first stage five subsystems
compute partial risks for both caries and erosion, basing on different groups of factors.

Fig. 1. Architecture of the FL risk assessment framework
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They are conceived as independent systems; the risk assessment framework can be
applied for them separately. Subsequently partial risks inferred by the five expert sub-
systems are combined in a second reasoning stage to compute global risks. The
architecture of the overall FES is shown in Fig. 2.

The design process involved the definition of the FL ingredients of the above
mentioned sub-systems. Three conceptual steps are involved [11, 12]:

1. Linguistic labelling of risk factors and risk classes concerned
2. Diagnostic rules definition
3. Inference formalisation to deduce risk judgements.

Conceptual ingredients involved in 1. and 2. are principally defined by eliciting
knowledge from a group of experts. The generation of rules involves both structured
interviews and data driven learning procedures based on the use of neuro-fuzzy
techniques.

3.1 Linguistic Labelling of Risk Factors and Risk Classes

The risk assessment is based on the combined evaluation of 31 factors modelled within
the FL framework as linguistic variables. Table 1 lists the set of factors of risk con-
sidered, subdivided in groups.

Fig. 2. Structure of the FL expert system
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The linguistic description of each factor is given in terms of fuzzy declarative
proposition of the form X is A [11]. X is the linguistic variable denoting a given factor.
A is a term belonging to a given term set and represents a fuzzy set in the corresponding
universe of discourse U with membership function lA : U ! 0; 1½ �.

In our context, the experts constitute the principal source from which knowledge
may be acquired. Membership functions of fuzzy sets associated with terms in
declarative propositions are defined by adopting two elicitation techniques [14, 16, 17].
Initially we assume that values of membership of fuzzy sets corresponding to a given
term, such as low, medium and high, should be related to the difficulty in attributing
this term to numerical values of the universe of discourse. Scaled responses are
acquired by a group of experts expressing the degree of certainty with which a given
term may be associated with numerical values in the corresponding universe of dis-
course. In more detail, crisp values (C) in the universe of discourse of a given term
(T) are sampled and corresponding grades are generated asking expert if C values are
compatible with T. Experts give a YES/NO answer together with a score (S) in the
interval (0, 5) expressing the level of certainty in providing the Boolean answer. These
answers are processed to compute grades (G) in the initial rough distribution as
follows:

Table 1. Factors of risk considered in caries and erosion risk assessment subdivided in groups

Mineralization Relation oral cavity
food

Effects of
food

Food
composition

Oral hygiene

pH
Calcium
Phosphate

Consistency
Adhesiveness
Intake Frequency
Intake Mode Meal
Frequency Mode
Meal Period

Buffer
capacity
Bacterio-
static

Vitamin A
Vitamin B1
Vitamin B2
Vitamin B9
Vitamin B12
Vitamin C
Vitamin D
Vitamin E
Probiotics
Magnesium
Sugar and
sweeten
Arginine
Anthocyanins
Polyphenols
Omega 3

Toothbrush
Brushing
Duration
Brushing
Frequency
Use of interdent.
Aids
Fluorine

if (answer is YES)
G= 0.5 + (S) / 10

Else
G = 0.5-(S) / 10
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A rough distribution is obtained from the collected data by averaging G values. The
second technique is based on the assumption that experts can refer the distribution of
possibility associated with a given term to a standard piecewise function. We adopt bell
functions having the following form [11, 12]:

f x; a; b; cð Þ ¼ 1

1þ x�c
a

�
�

�
�2b

ð1Þ

Predefined bell functions are visualized to the experts that provide directly
parameters for their specification. The resulting bell functions are compared with the
rough distributions and, if case, refined to obtain a best fitting. To exemplify the
elicitation methods, Fig. 3 shows the rough distributions obtained for the terms Low,

Fig. 3. Rough distributions obtained for the terms Low, Medium and High of the factor
Adhesiveness

Fig. 4. Final membership functions of terms Low, Medium and High of the factor Adhesiveness
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Medium and High of the factor Adhesiveness belonging to the group Relationship
Between Oral Cavity and Food and Fig. 4 shows the corresponding membership
functions obtained by using the Matlab Function Editor (MathWorks®) and by filling
the derived parameters in predefined bell functions.

Both risk of erosion and risk of caries are modelled as linguistic variables having
terms Low, Medium and High and modelled as fuzzy sets with bell membership
functions.

3.2 Rules Generation and Inference

For each group of factors a subset of rules is generated expressing the relationship
between multifactorial evaluations and class of risks. The outcomes of each subsets of
rules is provided in input to a final reasoning stage to compute final risk judgements
(see Fig. 2). The hierarchical structure of the rules, aggregating multisource informa-
tion of each group of risk factors separately at the first level, and fusing partial results in
a final risk judgments at the second level, reduces the complexity in the knowledge
acquisition phase allowing experts to focus on limited chunks of knowledge and
derived risk assessment rules. In the proposed framework risk assessment consists in
the deduction of a conclusion regarding a specific case. When specific measurements
values are set for each factor, the fuzzy logic inference mechanism interprets the set of
fuzzy production rules and deduce the risk judgements. The well-known inference
mechanism provided by Mamdami is adopted in our framework [18].

An initial set of rules has been generated basing on a direct interview with experts.
These rules have been subsequently refined basing on the results obtained by a machine
learning strategy. Results inferred by each subset of rules directly elicited from experts
have been compared with results generated by a neuro-fuzzy learning procedure based
on ANFIS model configured to support Sugeno type 0 order [19]. Five networks
corresponding to the five risk groups and one network for final risk computation, have
been trained with supervised sets of examples provided by experts for each group of
risk factors and for the second level of risk assessment respectively. Examples are
supervised case-specific crisp patterns. We collected from the experts a total of 369
supervised examples. A cross-validation procedure has been developed subdividing
supervised examples in the proportion of 2/3 and 1/3 for training and test respectively.
The accuracy obtained by the neuro fuzzy strategy was equal to 82%.

Attention was focused on test cases that generate disparity between the results
obtained by using the initial set of rules and the neuro-fuzzy system. Experts were
invited to re-examine and modify the formulation of rules involved in the light of the
comparison of results. The refined rules have been validated using a new supervised set
of 184 examples. The accuracy obtained was comparable with the accuracy of the
neuro-fuzzy procedure and equal to 80%. Figure 5 shows a subset of rules using the
linguistic variable “Adhesiveness”, generated for the group “Relationship Between
Oral Cavity and Food”, and rules with multifactorial evaluations, generated for the
“Mineralisation” group.
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4 User-Oriented Risk Assessment for Oral Health Promotion

Users interact with Tooth-Good module to know the level of risk associated with the
consumption of drinks. They select a drink from a list including drinks with and
without sugar, water and alcoholic drinks, and choose their dietetic profile.

These elements are translated into a set of crisp values associated with factors
modelled within the expert system, as in the example illustrated below:

1. Selected Drink: Wine
Factors:
pH:3, Sugar and sweeteners:2, Bacteriostatic:0, Buffer capacity:0, Intake
Frequency:4;

2. Dietetic profile:
Fruit (also juices) and Vegetables: 0/1 daily dose
Dairy Products (milk and yogurt): 0 daily dose
Cheeses: 0 weekly dose
Meat, Fish, Eggs: 3 weekly doses
Carbohydrates and Cereals: 5 daily doses
Cold Cuts, Candy, Root Vegetables: 6 weekly doses

Factors:
a:0, b2:1, b9:0, b12:0, c:0, d:0, e:0, Probiotics:0, Arginine: 0, Anthocyanins: 0,
Polyphenols:0, omega3:0, b1:0, Magnesium: 0, Calcium:0, Phosphate:1, Consis-
tency:3, Adhesiveness:90, Intake Mode:1, Meal Frequency Mode:1, Meal Period:0;

3. Hygiene: No
Factors:
Toothbrush:0, Brushing Duration:0, Brushing Frequency:0, Use of interdental
aids:0, Fluorine:1.

Fig. 5. Subset of rules using the linguistic variable “Adhesiveness”, generated for the group
“Relationship Between Oral Cavity and Food”, and rules with multifactorial evaluations,
generated for the “Mineralisation” group
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The expert system receives the crisp input values and fires the activated rules. The
computed risk judgements are presented finally to the users. For the example illustrated
the result is High Risk for both caries and erosion diseases.

5 Graphical User Interfaces (GUI’s) and Sample Runs
of the Implemented Framework

The above illustrated FL framework was implemented within a cloud architecture as
illustrated in Sect. 2. The software design started with the collection and analysis of
requirements in which the expert-user and generic-user models and operation condi-
tions are outlined. The FES procedures are implemented in MATLAB (MathWorks®).
Figure 6 shows the interface of FES documenting the initial phase of the session.
Commands to run separately sub-expert systems corresponding to the five group of
risks and the final set of rules are included.

Options made available by FES for specifying input values related to factors of Oral
Hygiene group are illustrated in Fig. 7.

Fig. 6. Interface of FES documenting the initial phase of the session
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The inferred level of risk is visualized; the interface specifies the deduced linguistic
term associated to caries and erosion variable, the corresponding grade of matching and
the fired rules. Figure 8 illustrates inputs and outputs of the subsystem computing final
risks. Figure 9 shows a Tooth-Good system interface allowing users to specify their
dietetic profile and verify the level of risk associated with the assumption of a selected
drink.

Fig. 8. FES interface for final risk assessment

Fig. 7. FES interface for oral hygiene subsystem.
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6 Conclusions

The aim of the present work was to design a Fuzzy Logic framework for dental caries
and erosion risk assessment. The solutions adopted are implemented within a cloud
architecture and are oriented both to medical expert and generic users in an attempt to
satisfy both standardisation and prevention requirements.

Fuzzy reasoning and Neuro-fuzzy tools confirm their validity in modelling medical
knowledge and decisional attitudes. Cloud architecture exploits the universal connec-
tivity and scalability. Future plans include an extension of the proposed solutions
implemented in the Tooth-Good application to allow more flexibility in defining user
profiles and the design of an automated refinement strategy aimed to improve usability
and accuracy on the base of data collected by the user sessions.

Fig. 9. Tooth-Good system interface
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Abstract. In medical problems both the information and the reason-
ing used by clinicians for drawing conclusions about patients’ health are
inherently uncertain and vague. Fuzzy logic is a powerful tool for rep-
resenting and handling this uncertainty, leading to fuzzy systems that
can support decisions in medical diagnosis. In this work we propose a
fuzzy rule-based system to support the expert in decision making for
cardiovascular diseases that are of particular interest due to their obvi-
ous medical diagnostic importance. Preliminary experimental results on
both healthy and ill people show the effectiveness of the fuzzy system in
simulating the decision of the expert.

Keywords: Intelligent Data Analisys (IDA) ·
Decision Support System (DSS) · Fuzzy logic · Cardiovascular disease

1 Introduction

Medical Informatics is a recent multidisciplinary field dealing with the use of the
information technology for the healthcare industry.

The amount of patient health data is increasing exponentially. The vol-
ume of healthcare data in 2013 has been estimated at 153 Exabytes and it will
reach 2314 Exabytes by 20201. Traditional manual data analysis techniques have
became unsuitable to extract useful information from this big amount of data,
thus automatic mechanisms are necessary [1,2]. However, expert knowledge can-
not be completely replaced by machines. Intelligent data analysis (IDA) aims at
combining human expertise and computational models for advanced data analy-
sis [3–5], in order to narrow the gap between data gathering and their comprehen-
sion [6]. In the medical field, more than in others, this interaction is mandatory:

1 https://www.cio.com/article/2860072/healthcare/how-cios-can-prepare-for-
healthcare-data-tsunami.html.
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on the one hand the experts need automatic tools to transform raw and complex
data into easily interpretable information, on the other hand algorithm outputs
alone are not sufficient for medical diagnosis, since expert knowledge is needed
to understand them. Several IDA methods have been applied for supporting
decision making in medicine [6–9].

The representation of medical knowledge and the decision making in the pres-
ence of uncertainty and imprecision are of fundamental importance to derive a
suitable model for medical decision making. Indeed, in medical problems, both
patient information and the reasoning used by clinicians for drawing conclusions
about patients’ health, are inherently uncertain and vague [10]. Among the dif-
ferent IDA methods, fuzzy logic is the most suitable mean for representing and
handling this uncertainty. In particular, fuzzy logic proved to be a powerful tool
for decision support systems (DSSs), such as medical rule-based systems [11].
Several medical Decision Support Systems (DSSs) have been developed using
fuzzy rule-based systems [10–20]. These fuzzy systems use linguistic terms to
represent the patients’ symptoms, and a fuzzy inference mechanism to derive a
suggestion. The domain knowledge is embedded into the knowledge base in form
of fuzzy rules.

In this paper we propose a fuzzy rule-based system to support the medical
expert in decision making for cardiovascular risk assessment. Starting from the
patients’ vital signs such as heart rate (HR), breath rate (BR), peripheral oxygen
saturation (SpO2) and lips color, we designed a fuzzy rule-based system that can
suggest a level of cardiovascular risk. The fuzzy rules are defined according to
the expert knowledge with the help of the FISDeT tool [21].

The rest of the paper is organized as follows. In Sect. 2 the vital signs related
to cardiovascular diseases are introduced. The fuzzy rule-based decision support
system is described in Sect. 3. Section 4 reports preliminary results of experi-
ments aimed to prove the accuracy of the fuzzy system in simulating the expert
reasoning. In Sect. 5 we draw conclusions and outline future works.

2 Vital Signs of Cardiovascular Disease

Heart rate (HR), breath rate (BR), and peripheral oxygen saturation (SpO2)
are parameters typically considered by physicians to formulate a diagnosis of
cardiovascular disease. All of them are descriptive enough of the human health
condition providing also the additional benefit of being easily detectable.

HR is defined as the speed of the heartbeat, i.e., the number of heart con-
tractions per minute (BPM). Such a value is varying according to a number of
conditions affecting the human organism, ranging from the physical exercise to
the stress, the illness, and the drug consumption. Even age, sex, and physical
fitness provoke change in the HR values. However, the average HR of a resting
male adult falls in the range of 60 to 90 BPM.

BR is defined as the speed of the breath sequence, i.e., the number of breaths
occurring per minute. The common factors influencing the BR evaluation are age
and physical exercise. However, the average BR of a resting male adult falls in
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the range of 12 to 18 breaths per minute. A modified value of BR (which can
be a reduced rate, bradypnea, or an augmented rate, tachypnea) is commonly
associated to various illness conditions.

SpO2 is evaluated as the percentage of oxygen-saturated hemoglobin with
respect to the total hemoglobin (unsaturated and saturated) present in the blood.
SpO2 values are considered normal when falling in the range of 95 to 100%.
Values below 90% indicate pathological conditions (hypoxemia), inducing organ
impairment when falling below 80%.

Different methods can be adopted to measure the vital signs previously
described. Among them, photoplethysmography (PPG) is commonly employed
in several medical settings and is implemented in simple devices that are com-
mercially available at the present days. By means of photoplethysmograph tech-
niques it is possible to perform optical measurements to detect volumetric change
of organs and to assess skin perfusion [22]. PPG is easy to use, noninvasive and is
founded on the idea that plethysmoograph signals, acquired through the enlight-
enment of the skin, provide information concerning changes in blood flow, thus
contributing to design a picture of the cardiovascular state [23]. Some PPG sys-
tems are applied directly on specific anatomical parts (which can be fingers,
forearms, etc.). Some other systems are contactless, thus constituting a kind of
remote-PPG (rPGG) systems which typically rely on facial examination. The
simple employment of computer webcams proved to be effective in detecting the
vital signs of interest for subsequent analysis [24–28].

The human face provides also several clues about the health condition. Some
kinds of pathologies can be identified through the analysis of some face features.
In particular, a specific element useful to assess human wellness is the color of
lips. Normal people show a pinkish nuance in their lips, while altered states
or illness may provoke a modification of this color. Pale lips are a symptom of
different problems, ranging from vitamin deficiency to anemia. Lips appearing
purplish or bluish can refer to cardiovascular or respiratory disorders which may
require a punctual medical consulting. Automatic analysis of the lips color can
be suitably performed by means of image processing techniques applied to a
specific ROI (region of interest) extracted from the image of the patient’s face.

In the following section we discuss how the described vital signs have been
involved in the design of a fuzzy inference system capable to provide a risk level
of cardiovascular disease.

3 The Fuzzy Rule-Based Decision Support System

The aim of this work is to set up a fuzzy rule-based system which can support
the diagnosis of cardiovascular diseases by assessing a risk level for each patient
according to her measured vital signs.

To design the rule base of the fuzzy inference system (FIS) we exploited
FISDeT (Fuzzy Inference System Development Tool) [21], a software conceived
to facilitate the creation and the management of fuzzy rule-based systems. Key-
points of FISDeT are the adoption of the FCL standard for the description of a
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(a) Heart Rate variable

(b) Respiration Rate variable

(c) Blood oxygen variable

(d) Color lips variable

Fig. 1. Fuzzy sets partitioning the domain of the linguistic variables related to the
vital signs.

FIS, the freely availability through the open-source development methodology,
and a general-purpose approach which allows both the creation of a knowledge
base and the inference of results from the analysis of input data. Developed in
Python, FISDeT is endowed with a GUI supporting the user through all the
steps required to define a FIS. FISDeT has been successfully applied to create
FIS for classification problems [29].

The input-output configuration we considered to design the FIS draws a rela-
tionship between the four vital signs (HR, BR, SpO2, lips color) and a risk level
referred to cardiovascular diseases. The parameters involved in the FIS design
have been investigated with the support coming from a physician. Specifically,
the fuzzy variables and their fuzzy sets have been arranged as follows.
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HR This parameter is associated with the linguistic input variable
Heart rate, whose domain is the numerical range [10–180]. Such
a linguistic variable may assume the values corresponding to three
linguistic terms: Bradycardia, Normal, and Tachycardia. Triangular
fuzzy sets are associated to the linguistic terms, partitioning the
domain of the Heart rate variable as follows (triangle vertices are
reported in parenthesis as coordinates):

–Bradycardia: (30, 0) (35, 1) (52, 0);
–Normal : (48, 0) (75, 1) (100, 0);
–Tachycardia: (95, 0) (110, 1) (180, 0).

Figure 1(a) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Heart rate variable.

BR This parameter is associated to the linguistic input variable
Respiration rate, whose domain is the numerical range [0–80].
Such a linguistic variable may assume the values corresponding to
three linguistic terms: Bradypnea, Normal, and Tachypnea. Trian-
gular fuzzy sets are associated to the linguistic terms, partitioning
the domain of the Respiration rate variable as follows:

–Bradypnea: (0, 0) (6, 1) (8, 0);
–Normal : (7, 0) (15, 1) (23, 0);
–Tachypnea: (20, 0) (35, 1) (80, 0).

Figure 1(b) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Respiration rate variable.

SpO2 This parameter is associated to the linguistic input variable
Blood oxygen, whose domain is the numerical range [75–100]. Such
a linguistic variable may assume the values corresponding to three
linguistic terms: Critical, Low, and Normal. Triangular fuzzy sets
are associated to the linguistic terms, partitioning the domain of
the Blood oxygen variable as follows:

–Critical : (75, 0) (83, 1) (90, 0);
–Low : (87, 0) (93, 1) (95, 0);
–Normal : (94, 0) (97, 1) (100, 0).

Figure 1(c) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Blood oxygen variable.

Lips color This parameter is associated to the linguistic input variable
Color lips, whose domain is identified in the numerical range [0–
14]. Such a domain derives from the identification of 15 hues in the
color scale which can be properly labeled through linguistic expres-
sions. They are altogether reported in Fig. 2, where the hues are
grouped into three reference categories, corresponding to the lin-
guistic terms related to the Color lips variable. Triangular fuzzy
sets are associated with the linguistic terms, partitioning the domain
of the Color lips variable as follows:

–Regular : (0, 0) (3, 1) (6, 0);
–Altered : (5, 0) (7.5, 1) (10, 0);
–Purplish: (8, 0) (12, 1) (16, 0).
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(a) Regular lips color (b) Altered lips color (c) Purplish lips color

Fig. 2. The set of 15 hues describing the domain of the Color lips variable. They are
grouped into three categories: Regular, Altered, and Purplish.

Figure 1(d) shows the FISDeT GUI illustrating the fuzzy sets
involved in the definition of the Color lips variable.

Risk level This parameter is associated to a linguistic output variable named
Risk level that assumes the values of four linguistic terms to
be intended as class labels: Risk low, Risk medium, Risk high, and
Risk very high.

As concerning the structural organization of the FIS designed by FISDeT, we
adopted the common choices regarding the t-norm and the t-conorm operators.
The inference of the fuzzy system is carried on through the employment of the
min and the max functions, determining the rule activation strength and the
aggregation of rules respectively.

Once the input-output configuration has been properly set up, we defined
the knowledge base to be embedded in the FIS. We considered all the possible
combinations of input values, so that a number of 81 rules has been compiled.
The rules have been crafted following some general guidelines collected during
an interview with the physician. Such guidelines can be sketched as follows:

– when all the vital signs exhibit standard values, the risk level is low;
– when one vital sign exhibits a nonstandard value, the risk is medium;
– when two vital signs exhibit some nonstandard values, the risk is high;
– when three vital signs exhibit some nonstandard values, the risk is very high.

Following such guidelines, we compiled the fuzzy rule base of the decision-
support FIS. The derived fuzzy rules embed the expert knowledge in a very
interpretable linguistic form. This can be appreciated by the illustrative excerpt
shown in Table 1.

4 Experimental Results

To test the effectiveness of the fuzzy inference system, we performed an evalua-
tion based on real data coming from the examination of 116 persons. The vital
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Table 1. Excerpt of the fuzzy rule base

Premise (IF) Consequent (THEN)

Heart rate is Normal and
Respiration rate is Normal and
Blood oxygen is Normal and
Color lips is Regular

Risk level is Risk low

Heart rate is Normal and
Respiration rate is Bradypnea and
Blood oxygen is Normal and
Color lips is Regular

Risk level is Risk medium

Heart rate is Normal and
Respiration rate is Tachypnea and
Blood oxygen is Critical and
Color lips is Regular

Risk level is Risk high

Heart rate is Tachycardia and
Respiration rate is Tachypnea and
Blood oxygen is Critical and
Color lips is Regular

Risk level is Risk very high

Heart rate is Tachycardia and
Respiration rate is Tachypnea and
Blood oxygen is Low and Color lips

is Purplish

Risk level is Risk very high

signs related to the HR, BR, and SpO2 parameters have been obtained through
the collection of PPG signals. To acquire the information concerning the lips
color, we processed the face image of each person so as to identify the ROI
related to the lips. Subsequently the ROI was processed to derive the dominant
color information. To do this, the K-means clustering algorithm was applied to
perform a quantization of the color into K = 3 levels (see Fig. 3). Finally, the K
colors were averaged to derive a unique dominant color.

Once collected the data related to vital signs, we asked the physician to
associate a risk level to each sample. Table 2 reports an illustrative excerpt from
the dataset. Then, we applied the FIS to each sample in order to compare the
inferred result with the human decision. In practice, we intended the physician’s
hints as the actual classes to be considered against the risk levels provided by
the fuzzy system. The results of comparison were examined at different levels.

Fig. 3. Example of lips color quantization using K-means.
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Table 2. Some samples from the dataset.

Subject HR BR SpO2 Lips color Risk level

S1 73 10.7 98.9 12 Risk low

S2 98.3 9.4 98.4 12 Risk medium

S3 136.6 9 94 12 Risk very high

S4 79.1 10.8 93.6 1 Risk medium

S5 88.4 21.2 98 1 Risk low

S6 70.8 31.4 92 1 Risk high

As a first note, we observe that the overall value of classification accuracy
is 68.97%. However, accuracy alone may be a misleading index, especially when
it is considered during the analysis of unbalanced datasets (which is the case at
hand, since the individuals who underwent the screening were mostly healthy
persons). Therefore, we performed a further analysis evaluating the accuracy
related to each of the four output classes, together with additional measures that
are commonly considered in classification tasks. In particular, while analyzing a
single class c, we consider true positive (tp), true negative (tn), false positive
(fp), and false negative (fn) classification results, and we take into account the
following measures:

Accuracy: ratio of correct discriminations w.r.t. class c

acc =
tp + tn

tp + fp + fn + tn

Positive Predictive Value: ratio of correctly classified samples w.r.t. those
identified as pertaining to class c

ppv =
tp

tp + fp

Negative Predictive Value: ratio of correctly classified samples w.r.t. those
identified as not pertaining to class c

npv =
tn

tn + fn

True Positive Rate: ratio of samples correctly classified as belonging to class
c w.r.t. those actually belonging to class c

tpr =
tp

tp + fn

True Negative Rate: ratio of samples correctly classified as not belonging to
class c w.r.t. those actually not belonging to class c

tnr =
tn

fp + tn
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Table 3. Evaluation measures derived for each output class.

acc tnr tpr ppv npv

Risk low 0.83 1 0.77 1 0.6

Risk medium 0.75 0.76 0.57 0.13 0.96

Risk high 0.91 0.94 0.50 0.4 0.96

Risk very high 0.88 0.96 0.40 0.6 0.91

Table 3 reports the values of these measures evaluated for each class. It can
be observed how the tnr and npv values are generally greater than those of
tpr and ppv. This means that the knowledge embedded into the FIS is more
effective in determining the non-membership to each class than the sensitivity
to each specific risk level. This could be related to the fact that an unbalanced
dataset is tackled by a set of rules crafted while keeping in mind a more general
setting.

Table 4. Confusion matrix.

Fuzzy decision system

Risk low Risk medium Risk high Risk very high

Expert

Risk low 66 17 2 1

Risk medium 0 4 2 1

Risk high 0 2 4 2

Risk very high 0 7 2 6

The obtained results can be further analyzed by considering the information
conveyed by the overall confusion matrix depicted in Table 4. Such an overview
allows to better focus a specific feature of the classification problem at hand: the
involved classes are ranked in a range going from a low to a very high risk level.
In this sense, a misclassification involving classes that are distant in this rank
is more troublesome than others involving one class next to another. From the
analysis of Table 4 we can argue that only 66 out of 86 low risk samples have been
correctly identified. However, almost every misclassified low risk sample has been
associated with the most similar class (Risk medium). The same argument goes
with the misclassification of medium risk samples (only one case has been shifted
toward a very high risk) and high risk samples (misclassified samples are related
to adjacent classes). On the other hand, management of the Risk very high class
is somewhat troublesome since 7 out of 15 cases have been incorrectly related to
a medium risk level.

As a conclusive remark, we point out that the misclassifications produced by
the fuzzy system in most cases represent an overestimation of the risk level. In
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medical contexts this can be read as a problem with reduced harm, the opposite
occurrence being regarded as the cause of much more serious consequences.

5 Conclusions

In this work we have presented a fuzzy rule-based system for decision support in
the medical realm of cardiovascular diseases. Preliminary experimental results
on both healthy and ill people show the effectiveness of the fuzzy system in
simulating the decision of the expert. The fuzzy rules developed so far rely only
on four main vital signs of a person, namely heart rate, breath rate, blood oxygen
saturation and lips color. The choice of these parameters lies in the simplicity of
their measurement together with the reliability of their associated information.
For these reasons they represent the ideal parameters to be involved in a wearable
device or in a domotic system endowed with the inferring capabilities provided by
our fuzzy system. As a further improvement, we intend to enrich the knowledge
base of the fuzzy decision support system by including other information about
the patient, such as demographic features (age and sex) and information coming
from the patient’s history and the family history.

Acknowledgement. The authors are thankful to Dr. Ilaria Engaddi from “Istituti
Milanesi Martinitt e Stelline e Pio Albergo Trivulzio” (Milan, Italy) for providing her
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Abstract. Analyzing data streams has become a new challenge to meet
the demands of real time analytics. Conventional mining techniques are
proving inefficient to cope with challenges associated with data streams,
including resources constraints like memory and running time along with
single scan of the data. Most existing data stream classification meth-
ods require labeled samples that are more difficult and expensive to
obtain than unlabeled ones. Semi-supervised learning algorithms can
solve this problem by using unlabeled samples together with a few labeled
ones to build classification models. Recently we proposed DISSFCM,
an algorithm for data stream classification based on incremental semi-
supervised fuzzy clustering. To cope with the evolution of data, DISS-
FCM adapts dynamically the number of clusters by splitting large-scale
clusters. While splitting is effective in improving the quality of clusters,
a repeated application without counter-balance may induce many small-
scale clusters. To solve this problem, in this paper we enhance DISSFCM
by introducing a procedure that merges small-scale clusters. Preliminary
experimental results on a real-world benchmark dataset show the effec-
tiveness of the method.

Keywords: Data stream classification ·
Semi-supervised fuzzy clustering · Incremental adaptive clustering

1 Introduction

Data stream mining is a recent methodology that deals with the analysis of
large volumes of ordered sequences of data records. Data streams are a manifes-
tation of Big Data, which are characterized by the four ‘V’ dimensions, namely
Volume, Velocity, Variety and Veracity [1]. In particular, data stream mining
assumes that the volume of the sequence of data is so large that records can
be used few times (or just once) for the analysis. Data streams are produced
by sensor networks, e-mails, online transactions, network traffic, weather fore-
casting, health monitoring, social networks, etc., just to cite the most common
applications made available by current technology [2,3].
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The requirement of using data records few times for extracting useful infor-
mation involves the development of special-purpose data analysis methods, which
should not require to store the whole stream of data in memory [4–6]. An app-
roach to analyze data streams exploits an incremental generation of informa-
tional patterns, which represent a synthesized view of all data records analyzed
in past and progressively evolve as new data records are available. Incremen-
tal and on-line algorithms are potentially useful to deal with continuous arrival
of data in rapid, time-varying, and potentially unbounded streams since they
continuously incorporate information into their model [7,8].

Data stream mining is applied for different tasks, such as classification, clus-
tering and frequent pattern mining. In this paper, we focus on classification of
data records in a stream, which is deeply studied in literature [4,9–14]. Differ-
ently from most works in literature, which focus on supervised methods [15,16],
we specialize into semi-supervised methods as we do not assume that all data
records are completely labeled; on the other hand, we recognize that, in many
contexts, labeled samples are difficult or expensive to obtain, meanwhile unla-
beled data are relatively easy to collect. For example it is quite easy to collect
new sensor data coming from continuous streams but it may be difficult or
even impossible to manually label all such data. Semi-supervised learning in
the context of data streams is relatively new when compared to supervised and
unsupervised learning [17–20]. Despite several semi-supervised learning methods
have been developed in the literature [21], only few of them have been applied
to classify data streams [22,23]. Moreover, there are few attempts of using fuzzy
clustering for data stream mining, despite fuzzy clustering could be particularly
useful to capture the continuous changes in the clustering structure [24–28].

Based on the idea of combining the benefits of semi-supervised learning and
fuzzy clustering, recently we developed an incremental semi-supervised clustering
method for data stream classification [29], which applies the Semi-Supervised
Fuzzy C-Means algorithm (SSFCM) [30] to data chunks. The method has been
further refined by enabling the dynamic determination of the number of clusters
through an appropriate splitting procedure, leading to the DISSFCM (Dynamic
Incremental Semi-Supervised FCM) algorithm [31]. In essence, DISSFCM applies
SSFCM to data chunks that correspond to a fixed-size collection of contiguous
data records coming from a stream. Furthermore, SSFCM is modified in order
to allow the incremental evolution of clusters; cluster quality is evaluated by
reconstruction error so that, when the quality goes below a threshold, a splitting
procedure is applied in order to divide a low-quality cluster into two higher-
quality clusters. While splitting is effective in improving the quality of clusters,
a repeated application without counter-balance may induce many small-scale
clusters that do not represent meaningful patterns.

In this paper we enhance DISSFCM by introducing a merging procedure that
merges clusters when there are too many clusters or there are clusters with too
few data records. Clusters are merged when they are sufficiently close so as to
not hamper the overall quality of the cluster structure.
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The organization of the rest of the paper is as follows. Section 2 presents our
method for data stream classification and its extension proposed in this work.
In Sect. 3 the effectiveness of the extended method is evaluated on a benchmark
dataset. The last section draws the conclusion and outlines future work.

2 Dynamic Incremental Semi-Supervised FCM

In this section we describe the complete DISSFCM (Dynamic Incremental Semi-
Supervised FCM) algorithm [31], including a merging mechanism to avoid small-
scale clusters and improve the structure of clusters.

DISSFCM assumes that data belonging to C different classes are continuously
available during time and processed as chunks. Namely, a chunk of N1 data is
available at time t1, a chunk of N2 data is available at t2 and so on1. We denote by
Xt the data chunk available at time t. No assumption is made on the dimension of
chunks that may vary from one chunk to another. One key feature of DISSFCM
is the possibility to exploit partial supervision when available. Namely, when
some pre-labeled data are available in a chunk, their labels can be used to drive
the clustering process. The presence of pre-labeled data is not mandatory but
it should be assured in the first chunk in order to initialize properly the cluster
prototypes.

The core of DISSFCM is the SSFCM (Semi-Supervised FCM) algorithm [30]
that is applied incrementally so as to enable continuous update of clusters based
on new data chunks. At each time step SSFCM granulates data in the current
chunk by producing a set of K clusters represented by K labeled prototypes
P = {p1,p2, . . . ,pK} representatives for the local data chunk they model. Each
prototype pk is a medoid, i.e. it is the datapoint closest to the center ck. Before
starting the clustering process, K labeled data are randomly chosen to initial-
ize the prototypes, so that each cluster prototype is associated to a class label
(K = C). To take into account the evolution of the data during the incremental
clustering process, the cluster prototypes discovered from the previous chunk are
used as pre-labeled prototypes for the current chunk.

To better take into account the data evolution, DISSFCM is equipped with
a splitting mechanism [31] that is applied to the current clusters in order to
divide a low-quality cluster into two higher-quality clusters. The cluster quality
is evaluated in terms of the reconstruction error [30]:

Vk =
∑

xj∈Ck

‖xj − x̂j‖2 (1)

that measures the difference between the original data xj and their “recon-
structed” counterpart x̂j that is derived using the clustering outcome (proto-
types and membership degrees) as follows:

1 Any stream can be turned into a chunked stream by simply waiting for enough data
points to arrive.
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x̂j =

∑K
k=1 um

jkpk
∑K

k=1 um
jk

(2)

The splitting mechanism is activated when the reconstruction error on the
current chunk exceeds a tolerance value ε the reconstruction error computed
on the previous chunk. This means that the current number of clusters is not
enough to effectively represent the data, hence the number of clusters should be
augmented.

The cluster having the highest value of the reconstruction error, i.e. the
cluster with lowest reconstruction ability, is selected as candidate for splitting.
The splitting is performed by means of the conditional fuzzy clustering [32]
applied to the collection of data belonging to the cluster so as to create two
novel prototypes. If we denote by S∗ the set of data belonging to the cluster k∗

selected for splitting and by z1 and z2 the two novel prototypes, the conditional
clustering minimizes the following objective function:

J =
2∑

k=1

∑

j∈S∗
fm
jk‖xj − zk‖2 (3)

under the constraint fj1 + fj2 = ujk∗ where fjk is the membership degree of
xj to the new cluster k. The objective function (3) is minimized by iteratively
computing the membership values fjk and the prototypes zk according to:

fjk =
ujk∗

∑2
c=1

(‖xj−zk‖
‖xj−zc‖

)1/(m−1)
(4)

and

zk =

∑
j∈S∗ fm

jkxj∑
j∈S∗ fm

jk

, k = 1, 2; (5)

After conditional clustering, the prototype pk∗ is replaced by the two novel
prototypes z1 and z2 that inherit the class label from pk∗ . Then membership
values uik are recomputed as in SSFCM. The splitting can be repeated until
the reconstruction error drops below the previous value. A maximum pre-fixed
number Ns of splittings is allowed for each chunk.

Since a repeated application of the splitting without counter-balance may
induce many small-scale clusters that do not represent meaningful patterns, in
this work we enhance DISSFCM by introducing a merging procedure that merges
clusters when there are too many clusters or there are clusters with too few data
records in a chunk. Clusters are merged when their prototypes are close so as to
not hamper the overall quality of the cluster structure. The merging mechanism
is activated when one of the following conditions is met:

1. the number of clusters exceeds a predefined threshold θ;
2. the number of data belonging to a cluster is below a predefined threshold λ.
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In case 1. we select the nearest prototypes having the same class label as candi-
dates for merging. We denote by ps and pl the nearest prototypes among all the
current cluster prototypes sharing the same label. The new prototype p obtained
by merging ps and pt is given by the following formula:

p =
∑N

i=1(uis + uit)mxi∑N
i=1(uis + uit)m

(6)

where uis and uit are the membership values of xi to cluster s and cluster t.
In case 2. the prototype of the cluster with low number of data is merged with
the closest cluster prototype, using Eq. (6). In each case, the merging reduces
the number of clusters by one. The merging is repeated until there are no small
clusters nor too many clusters. However, a maximum pre-fixed number Nm of
merges is allowed for each chunk.

Algorithm 1. DISSFCM
Require: Data stream of chunks X1, X2, ... containing few labeled data belonging to

C classes
Require: Initial set P0 of K labeled prototypes containing at least one prototype per

class;
Ensure: P : labeled prototypes; K: number of prototypes
1: t ← 1
2: K ← |P0|
3: P ← P0

4: while ∃ nonempty chunk Xt do
5: Xt ← Xt ∪ P /* Add previous prototypes to the current chunk */
6: P, U ← SSFCM(Xt, K, P )
7: ns ← 0 /* Number of splits */

8: V
(t)
max ← reconstruction error(Xt, P, U)

9: while (V
(t)
max − V

(t−1)
max > ε) and (ns < MAXs) do

10: P, U ← split(Xt, P, U)

11: V
(t)
max ← reconstruction error(Xt, P, U)

12: ns ← ns + 1
13: end while
14: nm ← 0 /* Number of merges */
15: while (|P | > θ or ∃k :

∑Nt
j=1 ujk < λ) and (nm < MAXm) do

16: P, U ← merge(Xt, P, U)
17: nm ← nm + 1
18: end while
19: K ← |P |
20: Classify data in Xt using labeled prototypes in P
21: t ← t + 1
22: end while
23: return P
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Fig. 1. Outline of DISSFCM. (Color figure online)

The overall scheme of DISSFCM enhanced with merging is shown in Fig. 1
and described in Algorithm 1. The algorithm requires the data stream as a
sequence of chunks and an initial collection of labeled prototypes such that each
class label is represented by at least one prototype. After application of SSFCM
clustering (Step 6) the resulting prototypes are labeled automatically due to the
semi-supervised nature of SSFCM. The derived prototypes are the basis for the
classification process (Step 20). Indeed, the derived labeled prototypes are used
to classify all the data in the current chunk via a matching mechanism. Namely,
each data sample is matched against all prototypes and assigned to the class
label of the best-matching prototype. The matching mechanism is based on the
standard Euclidean distance. At the end, the algorithm returns the most recent
collection of the prototypes, reflecting the data structure of the last data chunk.
Notice that the returned collection can be used as input for a new run of the
algorithm as long as new data are available from the data stream.

3 Experimental Results

Numerical experiments were conducted to evaluate the effectiveness of the pro-
posed algorithm in data stream classification. The Optical Recognition of Hand-
written Digits dataset2 has been considered. It contains 5, 620 images of hand-
written digits belonging to 10 classes (namely, 0, 1, 2, . . . , 9). We used 10% of the
samples as test set, and we partitioned the remaining 90% in a fixed number of
chunks in order to simulate a data stream. The class distribution was preserved
both in the chunks and in the test set.

2 https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+
digits.

https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
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Table 1. Parameters of the enhanced DISSFCM algorithm.

Parameter values
MaxSplits 10
MaxMerge 2
%Labeling 75%
#Chunk 5 10 15 20

ε 25 50 100

The accuracy measure has been used to evaluate the classification results:

Acc =
|{xj |yj = aj}|

Nt

where xj is the j-th data point, yj is the true class label and aj is the predicted
class label, Nt is the number of data points. After the t-th chunk has been
processed, accuracy is computed not only on the test set, but also on the t-th
chunk and on the previous processed chunks.

The purity external clustering measure has been used to evaluate the extent
to which clusters contain a single class, after each chunk arrival. To compute
purity, each cluster Ck is assigned to the class of ak of its prototype, and then
the accuracy of this assignment is measured by counting the number of correctly
assigned data points and dividing by the cardinality of the cluster:

Pur(k) =
|{xj |xj ∈ Ck ∩ yj = ak}|

|Ck|
Then an average purity is computed on all the clusters.

We carried out some preliminary experiments by varying the parameters
of the DISSFCM algorithm. Table 1 summarizes the experimental settings. A
first evaluation was done by observing the reconstruction error. As an example,
Fig. 2 shows the trend of the reconstruction error with #Chunk = 15 and ε = 50.
Green dots correspond to the error after processing the current chunk, the blue
dots indicate the error after a split and the yellow ones the error after a merge.
Numbers on the dots indicate the number of prototypes (clusters). It can be
seen that every time the reconstruction error exceeds the previous value plus
the threshold ε, a split is activated and a new cluster is created (the number
of clusters upon the blue dot is increased by one). When a cluster with a small
number of samples occurs, a merge is activated and the number of clusters is
reduced. It can be seen that most peaks occur when a new chunk arrives. This
means that DISSFCM is still learning the correct model to fit the data and it
improves the model as soon as a new chunk arrives (i.e. more training data).
We observe that the split and merge steps help the model to fit the data. This
could be better observed from Fig. 3, where the average purity values obtained
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Fig. 2. Trend of the reconstruction error Vmax with #Chunk = 15 and ε = 50. (Color
figure online)

Table 2. Number of cluster prototypes for each class at the end of the incremental
process with #Chunk = 15, ε = 50.

Tot
Class 0 1 2 3 4 5 6 7 8 9 10

#Cluster 1 1 6 1 2 2 1 1 2 1 18

on single chunks during the learning process are reported. It can be seen that
after processing the fifth chunk, the average value of purity decreases. When the
sixth chunk arrives one split and one merge are applied (Fig. 2) rising the purity
value. The same behavior could be observed after chunks 14-th and 15-th are
processed. The processing of all the chunks ends with 18 cluster prototypes that
are used to represent the 10 original classes. The number of cluster prototypes
for each class is reported in Table 2.

Table 3 reports the accuracy computed on the chunks at each step ti, during
the incremental process with #Chunk = 15 and ε = 50. Bold terms represent
accuracy values on the current chunk. We observe that the model is properly
adapted to the new arrived chunk. At each time step we also evaluated the
classification accuracy of the current model on the previously seen chunks to
verify if the model still fits the old data.

To assess the effectiveness of DISSFCM, we evaluated the classification accu-
racy of the final models for each configuration of parameters (#Chunk, ε).
Results are summarized in Table 4. Both on the test and the training sets we can
observe that the impact of the tolerance ε is higher when the number of chunks
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Table 3. Accuracy obtained on single chunks during the incremental process, with
#Chunk = 15, ε = 50.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
K 10 10 11 11 11 11 11 11 11 11 11 12 15 19 18
X1 0.84 0.88 0.87 0.85 0.83 0.84 0.84 0.84 0.84 0.84 0.83 0.85 0.86 0.85 0.88
X2 - 0.86 0.88 0.88 0.85 0.82 0.82 0.81 0.82 0.79 0.80 0.79 0.82 0.82 0.82
X3 - - 0.82 0.82 0.79 0.81 0.81 0.81 0.81 0.79 0.79 0.76 0.79 0.79 0.81
X4 - - - 0.82 0.81 0.82 0.82 0.79 0.80 0.80 0.83 0.82 0.83 0.83 0.89
X5 - - - - 0.81 0.81 0.78 0.77 0.79 0.79 0.81 0.76 0.80 0.81 0.80
X6 - - - - - 0.84 0.83 0.82 0.83 0.84 0.85 0.81 0.82 0.82 0.82
X7 - - - - - - 0.86 0.86 0.86 0.86 0.84 0.83 0.87 0.86 0.88
X8 - - - - - - - 0.85 0.85 0.85 0.86 0.83 0.86 0.83 0.88
X9 - - - - - - - - 0.87 0.86 0.87 0.85 0.89 0.86 0.89
X10 - - - - - - - - - 0.82 0.83 0.77 0.79 0.80 0.85
X11 - - - - - - - - - - 0.84 0.81 0.82 0.80 0.87
X12 - - - - - - - - - - - 0.81 0.84 0.84 0.87
X13 - - - - - - - - - - - - 0.83 0.84 0.86
X14 - - - - - - - - - - - - - 0.87 0.87
X15 - - - - - - - - - - - - - - 0.91

Fig. 3. Average purity obtained on single chunks during the incremental process, with
#Chunk = 15, ε = 50 on training and test sets. (Color figure online)

grows (i.e. the data samples in each sample decreases). Indeed the accuracy val-
ues with 5 and 10 chunks are stable when varying the values of ε. With 15 and
20 chunks the accuracy is more sensitive to the value of ε. This behavior can be
better observed in the plots of Fig. 4 that show the trend of the accuracy on the
test set during the processing of the chunks, varying the ε tolerance.

This is explained by observing that the higher the number of chunks, the
less the number of samples in each chunk; therefore the algorithm has fewer
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samples to learn from. Thus the number of the samples in each chunk affects
the stability of the algorithm. With 5 and 10 chunks (high number of data) the
algorithm keeps the same behavior as new chunks arrive (Fig. 4(a) and (b)). As
the number of chunks increases (and hence the number of data in each chunk
decreases), the algorithm is more unstable and needs more time to converge to
an accurate model (Fig. 4(c) and (d)).

Table 4. Classification accuracy on the whole training set (a) and the test set (b),
varying the number of chunks and the tolerance ε.

(a) Training set

# chunks
ε 5 10 15 20
25 0.84 0.85 0.88 0.93
50 0.84 0.85 0.91 0.83
100 0.84 0.85 0.85 0.85

(b) Test set

# chunks
ε 5 10 15 20
25 0.86 0.84 0.85 0.89
50 0.86 0.85 0.87 0.78
100 0.86 0.84 0.81 0.79

Finally, DISSFCM enhanced with merge was compared with its previous
version [31] and with ILFM (Incremental Learning Fuzzy Measures) [33], which
is a supervised incremental method based on Choquet integrals to classify data
streams. Comparative results with #chunks = 15, ε = 50 and labeling = 75%
are plotted in Fig. 5.

It can be seen that the introduction of the merging mechanism in DISSFCM
slightly deteriorates the classification results with respect to the previous version
which only applies splits. However, it should be noted that the final classification
model provided by the novel version of DISSFCM is very simple (18 clusters)
in comparison to the final model obtained by the previous version of DISSFCM
which was based on 70 clusters.

The models obtained by DISSFCM were also compared to the model built
by ILFM. It can be seen that the classification accuracy of ILFM is slightly
better. However it should be noted that ILFM is a supervised method, thus it
requires completely labeled data, that are difficult to find in real applications.
Conversely, DISSFCM works with partially labeled data. Moreover the model
produced by ILFM is an ensemble of classifiers, hence it is far more complex
than our model. On the overall, DISSFCM achieves a good balance between
accuracy and complexity of the classification model, while taking into account
the evolution of data.
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Fig. 4. Accuracy on the test set varying ε for #Chunk equal to 5 (a), 10 (b), 15 (c)
and 20 (d). (Color figure online)
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Fig. 5. Comparing the enhanced DISSFCM against its previous version (no merge),
and ILMF. (Color figure online)

4 Conclusions

In this work we have described DISSFCM, a dynamic incremental semi-
supervised version of the standard FCM clustering that is suitable for data
stream classification. DISSFCM enables the structure of clusters to change
dynamically: when the reconstruction error of data given a clustering structure
becomes inadequate, the most troublesome clusters are split into finer grained
clusters that better represent data. Moreover, when few samples are grouped in a
cluster, a merge step is activated for reducing the number of groups. Numerical
preliminary analysis has shown that the split tolerance ε influences the accu-
racy results when the chunks dimension is small. Finally, it has been observed
that the merge mechanism has a small negative impact on the accuracy of the
model, when compared with DISSFCM without merge. However, in the face of
such accuracy reduction we observe a significant simplification of the final model
(18 cluster for DISSFCM with split and merge, against 70 for DISSFCM with
split only). Similar considerations can be derived by comparing DISSFCM (with
merge) and ILMF.

Further work is devoted to analyze the influence of the chunk composition
on DISSFCM, so as to better take into account real data stream scenarios,
where the incoming chunks may have different sizes and may contain data with
inhomogeneous class distributions. Moreover further research is going on along
the direction of introducing a mechanism to detect outliers, concept drift and
the emergence of new classes.
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Abstract. This work focuses on models selection in a multi-model air
quality ensemble system. The models are operational long-range trans-
port and dispersion models used for the real-time simulation of pollutant
dispersion or the accidental release of radioactive nuclides in the atmo-
sphere. In this context, a methodology based on temporal hierarchical
agglomeration is introduced. It uses fuzzy similarity relations combined
by a transitive consensus matrix. The methodology is adopted for indi-
viduating a subset of models that best characterize the predicted atmo-
spheric pollutants from the ETEX-1 experiment and discard redundant
information.

Keywords: Fuzzy similarity · Hierarchical agglomeration ·
Ensemble models · Air pollutant dispersion

1 Introduction

The real-time simulation of pollutant dispersion or the accidental release of
radioactive substances in the atmosphere is a challenging aspect of many national
services and agencies. In particular, releases of harmful radionuclides (e.g.
Fukushima, Chernobyl) could be simulated and monitored [1,10,13,20]. In this
work we consider atmospheric compounds from the ENSEMBLE system [6–8].
ENSEMBLE is a web-based system aiming at assisting the analysis of multi-
model data provided by many national meteorological services and environmen-
tal protection agencies worldwide. It is worth noting that in the case of multi-
model ensemble for atmospheric dispersions, models are certainly more or less
dependent from several intrinsic mechanisms (e.g., they often share features, ini-
tial/boundary data, numerical methods, parameterizations and emissions). For
this reason, results obtained by ensemble analysis may lead to erroneous inter-
pretations and in a multimodel approach the effective number of models may
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be lower than the total number, since models could be linearly (or nonlinearly)
dependent on each other.

To solve this problem, a number of techniques has been proposed in lit-
erature. In [15,17,18] the authors present a statistical analysis (i.e., Bayesian
Model Averaging) for combining predictive distributions from different sources
of a multi-model ensemble, and in [16] some basic properties of multi-model
ensemble systems are investigated. Moreover, cluster-based approaches have also
been proposed [2–4]. In this paper, we introduce a methodology that improves
the forecasting by considering observations that may become available during
the course of the event. The methodology is based on fuzzy similarity relations
that allow to combine multiple hierarchical agglomerations, each for a different
forecasting leading time. From the overall temporal agglomeration obtained by a
consensus matrix it is possible to select a subset of models and discard redundant
information.

The remainder of the paper is organized as follows. In Sect. 2 the proposed
methodology is detailed. In particular, some fundamental concepts on t-norms
and fuzzy similarity relations (Sect. 2.2) are given and the agglomerative based
approach is described in Sect. 2.3. Finally, in Sect. 3 some experimental results,
obtained by applying this methodology on an ensemble of prediction models, are
described. Conclusions and future remarks are given in Sect. 4.

2 Fuzzy Similarity and Agglomerative Clustering

In general, when one deals with clustering tasks, fuzzy logic permits to obtain soft
clustering, instead of hard (crisp or non-fuzzy) clustering of data. Hierarchical
clustering is a methodology for cluster analysis which seeks to build a hierarchy
of clusters and it can be agglomerative or divisive. In this work we consider an
agglomerative clustering approach. One of the main aspects of this methodology
is the use of a measure of dissimilarity between sets of observations, by using
an appropriate metric. On the other hand, a dendrogram is a tree diagram used
to illustrate the results produced by hierarchical clustering. In the following,
we show that a dendrogram can be associated with a fuzzy equivalence relation
based on �Lukasiewicz valued fuzzy similarities. Successively, a consensus matrix,
that is the representative information of all dendrograms, is obtained by com-
bining multiple temporal hierarchical agglomerations of dispersion models. The
main steps of the proposed approach are

1. Membership functions characterization;
2. Fuzzy Similarity Matrix calculation (or dendrogram) for all the models at a

fixed time;
3. Consensus matrix construction for temporal hierarchical agglomerations.

2.1 Membership Functions

The effective of fuzzy logic is the transformation of linguistic variables in fuzzy
sets. Fuzzification is the process of changing a real scalar value into a fuzzy value
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and it is achieved by using different types of membership functions. The mem-
bership function represents the degree of truth to which a given input belongs to
a fuzzy set. In the proposed approach, fuzzy sets are described by the following
membership functions [21]

µ(xi) =
xi − min(xi)

max(xi) − min(xi)
, (1)

where xi = [xi
1, x

i
2, . . . , x

i
L] is the i-th observation vector of the L considered

models.

2.2 Fuzzy Similarity

We observe that fuzzy sets can be combined via the conjunction and disjunction
operations and continuous triangle norms or co-norms are adopted, respectively.
A triangular norm (t-norm for short), is a binary operation t on the unit interval
[0, 1]. In particular, it is a function t : [0, 1]2 → [0, 1], such that it satisfies the
following four axioms for all x, y, z ∈ [0, 1] [11]

t(x, y) = t(y, x) (commutativity)

t(x, t(y, z)) = t(t(x, y), z) (associativity)

t(x, y) ≤ t(x, z) whenever y ≤ z (monotonicity)

t(x, 1) = x (boundary condition)

(2)

In practical situations the following four basic t-norms are considered

tM(x, y) = min(x, y) (minimum)

tP(x, y) = x · y (product)
tL(x, y) = max(x + y − 1, 0) (�Lukasiewicz t-norm)

tD(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if (x, y) ∈ [0, 1]2

min(x, y) otherwise (drastic product)

(3)

However, in these years, several parametric and non-parametric t-norms have
been introduced [11] and generalized versions have also been studied [5]. In the
following, we focus on the properties of the �Lukasiewicz t-norm (tL). One main
operator adopted in fuzzy-based systems (e.g., fuzzy inference systems) is the
residuum →t

x →t y =
∨

{z|t(z, x) ≤ y} (4)

where
∨

is the union operator and, for the left-continuous basic t-norm tL, is
given by

x →L y = min(1 − x + y, 1) (�Lukasiewicz implication) (5)
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Moreover, we also note that letting p be a fixed natural number in a general-
ized �Lukasiewicz structure, we obtain

tL(x, y) = p
√

max(xp + yp − 1, 0)

x →L y = min( p
√

1 − xp + yp, 1)
(6)

Another fundamental operation on a residuated lattice is the bi-residuum that
will be used for our construction of the fuzzy similarities. It is defined as

x ↔t y = (x →t y) ∧ (y →t x), (7)

where ∧ is the meet. In the case of the left-continuous basic t-norm tL, we obtain
the following bi-residuum

x ↔L y = 1 − max(x, y) + min(x, y) (8)

On the other hand, a binary fuzzy relation R is defined on U × V as a fuzzy set
on U × V (R ⊆ U × V ). A similarity matrix is a fuzzy relation S ⊆ U × U such
that, for each u, v, w ∈ U , the following properties are satisfied

S〈u, u〉 = 1 (everthing is similar to itself)

S〈u, v〉 = S〈v, u〉 (symmetric)

t(S〈u, v〉, S〈v, w〉) ≤ S〈u,w〉 (weakly transitive)

(9)

It is essential to observe that from fuzzy sets with membership functions µ :
X → [0, 1], a fuzzy similarity matrix S can be generated as

S〈a, b〉 = µ(a) ↔t µ(b) (10)

for all a, b ∈ X.
Moreover, to build the fuzzy similarity matrix a main result is considered

[19,21]

Proposition 1. Consider n �Lukasiewicz valued fuzzy similarities Si, i =
1, . . . , n on a set X. Then

S〈x, y〉 =
1
n

n∑

i=1

Si〈x, y〉 (11)

is a �Lukasiewicz valued fuzzy similarity on X.

In this work, we consider for Eq. 11

Si〈x, y〉 = x ↔L y. (12)

Now, let tL be the �Lukasiewicz product, it is worth noting that S is a fuzzy
equivalence relation on X with respect to tL iif 1 − S is a pseudo-metric on X.
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Algorithm 1. Min-transitive closure
1: Input R the input relation
2: Output RT the output transitive relation
3: Elaborate

1. Calculate R∗ = R ∪ (R ◦ R)
2. if R∗ �= R replace R with R∗ and go to step 1
else RT = R∗ and the algorithm terminates.

2.3 Dendrogram and Consensus Matrix

We also have to observe that if a similarity relation is min-transitive (t = min
in (9)) then it is a fuzzy-equivalence relation that can be graphically described
by a dendrogram [12]. In other words, transitivity implies the existence of the
dendrogram.

The min-transitive closure RT of R can be obtained as follows [14]

RT =
n−1⋃

i=1

Ri (13)

where Ri+1 is defined as
Ri+1 = Ri ◦ R, (14)

and n is the dimension of a relation matrix.
Considering two fuzzy relations R and S, we observe that the composition

R ◦ S is a fuzzy relation defined by

R ◦ S〈x, y〉 = Supz∈X{R〈x, z〉 � S〈z, y〉} (15)

∀x, y ∈ X, where � stands for a t-norm (e.g., min operator) [14]. Then we
can conclude that the min-transitive closure RT of a matrix R can be easily
computed and the overall process is described in Algorithm1.

We also observe that to accomplish an agglomerative clustering a dissimilarity
relation is needed. Here we considered the following result [14].

Lemma 1. Letting R be a similarity relation with the elements R〈x, y〉 ∈ [0, 1]
and letting D be a dissimilarity relation, which is obtained from R by

D(x, y) = 1 − R〈x, y〉 (16)

then D is ultrametric iif R is min-transitive.

In other words, we have a one-to-one correspondence between min-transitive sim-
ilarity matrices and dendrogram and between ultrametric dissimilarity matrices
and dendrograms.

Finally, after the dendrograms have been obtained at each time, a consensus
matrix, that is the representative information of all temporal dendrograms, is
obtained by combining the transitive closures by using Eq. 15 (i.e., max-min)
[14]. The overall approach is described in Algorithm 2.
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Algorithm 2. Combination of dendrograms
1: Input S(i), 1 ≤ i ≤ L L input similarity matrices (dendrograms)
2: Output S the resulted similarity matrix (dendrogram)

1. Aggregate the similarity matrices to a final similarity matrix S =
Aggregate(S(1), S(2), . . . , S(L))
a. Let S∗ be the identity matrix
b. For each S(i) calculate e S∗ = S∗ ∪ (S∗ ◦ S(i))
c. If S∗ is not changed S = S∗ and goto step 3 else goto step 1.b

3: Create the final dendrogram from S

3 Experimental Results

This Section aims to illustrate some results obtained by the proposed approach.
In particular, we consider the multi-model ensemble simulated distributions of
the ETEX-1 experiment [9]. The ETEX-1 experiment concerned the release of
pseudo-radioactive material on 23 October 1994 at 16:00 UTC from Monter-
fil, southeast of Rennes (France). Briefly, a steady westerly flow of unstable air
masses was present over central Europe. Such conditions persisted for the 90 h
that followed the release with frequent precipitation events over the advection
area and a slow movement toward the North Sea region. Just for an example,
in Fig. 1 we show the integrated concentration after 78 h from release. In the
experiment, the main objective of the several independent groups worldwide (25
members) was to forecast the observations with different atmospheric disper-
sion models. Moreover, each simulation was based on weather fields generated
by (most of the time) different Global Circulation Models (GCM) and all the
simulations relate to the same release conditions. For further information on the
involved groups and the adopted models the reader can refer to [8] and [9].

Now we apply the proposed approach to analyze data of the ETEX-1 exper-
iment. The preliminary step is the fuzzification. In particular, Eq. 1 is applied
on the concentrations estimated by models at each time level. Successively, for
each concentration at different times a dendrogram (similarity matrix) is pro-
duced (Eq. 11 with �Lukasiwicz norm and p = 1). Finally, the consensus matrix
that described the representative dendrogram is estimated by using the approach
described in Algorithm 2. In Fig. 2 a particular of the representative dendrogram
obtained after 78 h is visualized. We observe that different clusters of similar
models are obtained.

To highlight the clustering outcomes, in Fig. 3, we show some representative
distributions of the clustered models. For example, as confirmed by dendrogram,
the distributions of the models 22 and 24 are very close. See Figs. 3a and b for
a comparison. Instead, the model 21 has a very diffusive distribution, as high-
lighted by the dendrogram. This distribution is visualized in Fig. 3c. At this
point, we can identify models that have similar behavior by analyzing the dif-
ferent clusters. In order to identify the group of models that more appropriately
describe observations, we compare the distributions of the models by using a
Kullback Leibler divergence.
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Fig. 1. ETEX-1 temporal integrated observations after 78 h.
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Fig. 2. Representative dendrogram obtained by consensus matrix: x-axis are related
to the models and those on the y-axis are related to the model data similarities.

The Kullback Leibler (KL) divergence between two discrete n-dimensional
probability density functions p = [pi . . . pn] and q = [q, . . . qn] is defined as

KL(p||q) =
n∑

i=1

pi log
(
pi
qi

)

. (17)
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Fig. 3. Model distributions: (a) model 22; (b) model 24; model 21.
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Fig. 4. KL divergence varying the clustering number.

This is known as the relative entropy. It satisfies the Gibbs’ inequality

KL(p||q) ≥ 0 (18)

where equality holds only if p ≡ q. In general KL(p||q) �= KL(q||p). In our
experiments we use the symmetric version [2] that can be defined as

KL =
KL(p||q) + KL(q||p)

2
. (19)

First of all, we compute the KL divergence between each model and the median
value of the overall cluster. Successively, for each cluster, the model with the
minimum KL is selected. The median model of these considered models is com-
pared with the real observations by KL. In Fig. 4 we show the KL obtained by
varying the number of clusters.

We observe that varying the number of clusters this procedure permits to
select the models that have the best approximation of the real observation (see
[17] and [4] for more details). After our analysis, we conclude that the best
approximation is obtained by using 6 clusters. Moreover, we stress that a lower
KL does not necessarily correspond to the use of a large number of models. This
suggest an approach for systematic reduction of ensemble data complexity and
the use of the consensus matrix permits to obtain a more robust and realistic
temporal analysis.
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4 Conclusions

In this work we focused on models comparison in a multi-model air quality
ensemble system. A methodology based on temporal hierarchical agglomeration
is introduced for real-time simulation of pollutant dispersion or the accidental
release of radioactive nuclides in the atmosphere. The proposed methodology
is able to combine multiple temporal hierarchical agglomerations of dispersion
models and it is based on fuzzy similarity relations combined by a transitive
consensus matrix. The methodology is adopted for individuating models that
characterize the predicted atmospheric pollutants from the ETEX-1 experiment.
The results show that this methodology is able to discard redundant temporal
information, reducing the data complexity. In the next future, further experi-
mentations will be devoted to real pollutant dispersions (e.g., Fukushima) and
different similarity relations also using ordinal sums.
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Parthenope (Sostegno alla ricerca individuale per il triennio 2016–2018 project).
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Abstract. In this paper a framework aimed at representing the soft
skills profile of a job seeker by means of a 2-tuple fuzzy linguistic app-
roach and a Neuro fuzzy controller is presented.

The framework can be used in many contexts, in this work it is
employed for designing a recommender system of candidates for recruit-
ing agencies. The recommender system’s Neuro fuzzy controller simulates
the decision of a Human Resource (HR) manager in evaluating the soft
skills profile of a candidate and proposes only the best profiles w.r.t. a
set of preferences. The framework has been developed in the context of
the Find Your Doctor (FYD) start up and applied to the PhD recruiting
task, but it is easily applicable to any recruiting activity.

Keywords: 2-tuple fuzzy linguistic approach ·
Neuro-fuzzy controller · User profile

1 Introduction

In the last few years, several European countries have provided many support
programs to help the transition of PhD graduates outside the academic research,
but other states, especially in the Mediterranean area, are still far less accus-
tomed to exploit this professional background. In Italy, in particular, the major-
ity of job-placement agencies hardly even handle PhD profiles and Doctors are
alone in the task of gaining visibility towards Human Resources (HR) offices and
employers, who have little idea on how PhDs’ experiences and curriculum vitae
may be employed and enhanced in companies.

In fact, the majority of job-matching portals available online used by large
companies HR offices and recruitment agencies are systems where PhDs are
mostly in disadvantage compared to people with previous experience in busi-
ness. In this context, most job-matching portals are usually based on searching
keywords in a candidates CV, but the taxonomy used in job advertisings (also
called job vacancies) is set on the vocabulary of the employers and usually does
not match the words that a PhD would use to describe his/her experience. Many
candidates and HR managers report that PhDs often score well in job-interviews,
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but are mostly cut out from the selection at an earlier stage, due to low-level
keywords filtering.

As a consequence, the need to define a system able to support a HR team
in the recruitment activity of PhDs candidates is compelling. The idea has
been born in the context of the Find Your Doctor (FYD) startup, which aims
at becoming an important instrument dedicated to PhDs who are undergoing
the transition outside Academia, with the mission of outlining the value of the
research background as an asset for the development of companies and society
as a whole. Within FYD a novel job-matching semi-automatic tool called SOON
“Skills Out Of Narrative” is developed; it is based on a narrative approach for
the soft skills: starting with a questionnaire of open questions, a semi-structured
interview leads the candidate to reason on a given number of macro-skills usu-
ally considered important by employers, such as communication, relation, rigor,
ability to face uncertainty and more. The focus is on the so-called soft skills
[1], since the words used to express comparable content may vary more across
contexts than for technical expertise. The questionnaire is designed to promote
the candidate to first describe the meaning that he/she attributes to a given
skill and only then to self-evaluate with respect to it, possibly grounding this
evaluation in an actual experience. By the analysis of the text is then possible
to infer a-posteriori a taxonomy that covers the possible meanings attributed to
a certain skill by the respondent as described in [3].

Aim of this paper is to present an approach aimed at building a decision-
support, pre-filtering tool able to guide the choices of a HR manager of a company
in the PhD’s profiles evaluations. In particular the representation of the soft skills
of a PhD’ profile is carried out by applying the fuzzy linguistic model presented
by Porcel and Herrera-Viedma in [18]. Then, the obtained profile representation
is used to design a novel recommendation system for PhD employment in the
context of the FYD activity. The designed recommender system is able to peri-
odically select and highlight in a pool of new profiles, those that better fulfill a
set of preferences the HR Manager stated beforehand. The approach proposed
in this paper has been studied in the PhD recruiting use case, but it can be eas-
ily extended for any kind of recruitment activity just by changing the reference
skills taxonomy.

The novelty of this work is based on the way in which the profiles used by
the recommender system are obtained, through the implementation of a Neuro
fuzzy controller. Such a controller is indeed capable of learning the soft skills
and of calculating a set of inference rules that are shown to be very similar to
those that an HR human expert should otherwise calculate each time for each
selected profile and for each individual skill. The claim of this work is emphasized
by the definition of a trained model, whose behavior will be fully personalized
since computed on a training dataset of pairs (profile, set of soft skills) that
represents the decision behavior of a certain HR Manager rather than another.
The remaining of the paper is organized as follow. After a brief summary of the
related works already presented in the literature in Sect. 2, and a brief overview
of the fuzzy linguistic model in Sect. 3, the soft skills profiles are defined in
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Sect. 4. The overall architecture of the implemented approach is then reported
in Sect. 5, while Sect. 6 describes the Neuro Fuzzy controller. Some preliminary
experiments are presented and discussed, together with the obtained results, in
Sect. 7, while Sect. 8 concludes with some final remarks.

2 Related Work

Several literature’s studies, commissioned by the European Union, show that
a good percentage of PhDs, who graduate across Europe, are not going to find
long-term occupation in the Academia, but will eventually migrate towards both
private and public companies and organizations [5]. In this area the skills iden-
tification is becoming one of the most important aspects for the HR team that
have to spend the most part of the time in the profile analyses. Some works
implement, for this reason, approaches based on machine learning and fuzzy
systems to handle, for example the employability [12], that, together with skills,
takes into account personal attributes for the teaching strategies development.
Other works are based on cloud profile matching systems [6], while others again
examine human resource (HR) practitioners subjective evaluations of job appli-
cants as a function of specific traits, together with the assessment methods used
to measure those traits [22].

On a different perspective, the automatic extraction of meaningful infor-
mation from unstructured texts has been mainly devoted to support the e-
recruitment process [14], e.g., to help human resource departments to identify
the most suitable candidate for an open position from a set of applicants or to
help a job seeker in identifying the most suitable open positions. For example,
the work described in [20] proposes a system which aims to analyze candidate
profiles for jobs, by extracting information from unstructured resumes through
the use of probabilistic information extraction techniques as Conditional Ran-
dom Fields [13]. Differently, in [23] the authors define Structured Relevance
Models (SRM) and describe their use to identify job descriptions and resumes
vocabulary, while in [10] a job recommender system is developed to dynamically
update the job applicant profiles by analyzing their historical information and
behaviors. Finally, the work described in [17] illustrates the use of supervised
and unsupervised classifiers to match candidates to job vacancies suggesting a
ranked list of vacancies to job seekers.

In a previous paper [3], a methodology based on machine learning aimed
at extracting the soft skills of a PhD from a textual, self-written, description
of her competencies was described: in that work, the soft skills were classified
with respect to a proprietary taxonomy that includes around 60 different soft
skills gathered into 6 skills areas. In this paper, the fuzzy representation of the
PhD’ soft skills profile based on the 2-tuple FML presented in Sect. 3 has been
adopted. This proposal allows the HR operators to deal with the vagueness and
uncertainty that are common when they assess the soft skills of a candidate dur-
ing an interview, allowing a very flexible representation. Moreover, this proposal
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facilitates the creation of an enhanced PhD’s profile by suggesting skills recog-
nized by the ML classifier to be included into the evaluation performed by the
HR operator.

3 A Brief Overview on the 2-Tuple Fuzzy Linguistic
Approach

The Fuzzy Linguistic Model (FML) is based on the concept of linguistic variable
[24], which has been successfully applied in many contexts as, for instance, Infor-
mation Retrieval (IR) [9] and decision making [7]. The 2-tuple Fuzzy Linguistic
Model [8] is built on FML with the aim to create a continuous representation
model of information. This work considers the 2-tuple FLM [8], in order to create
a continuous representation model of information.

Let S = {s0, ..., sn} be the set of linguistic terms with odd cardinality where
sn/2 represents an indifference value, the other terms are symmetrically dis-
tributed around it. Each label is assumed to be represented by means of a trian-
gular membership function, and all terms are distributed on an ordered scale. In
this context, if a linguistic aggregation operator [7] computes a value α ∈ [0, n],
and α /∈ {0, ..., n}, then an approximate function is used to represent the result
in S. In this framework α is represented by means of 2-tuples (si, βi), si ∈ S and
βi ∈ [−0.5, 0.5), where si is the linguistic label of the information, and βi is a
numerical value expressing the translation of the original result α to the closest
index label i, within the linguistic term set S. This 2-tuple representation model
defines a set of transformation functions between numeric values and 2-tuples:
Δ(α) = (si, βi) and Δ−1(si, βi) = α ∈ [0, n]. The model also includes a negation
operator, and a comparison of 2-tuple and aggregation operators [8]. Another
important parameter is the “granularity of uncertainty”, i.e, the cardinality of
the set S of linguistic terms. This granularity can be different concept by con-
cept, therefore the full approach also proposes a linguistic hierarchy based model
to deal with it.

4 Dealing with the PhD’ Soft Skills Profiles by Using the
2-Tuple Fuzzy Linguistic Approach

At the core of its activity, this system provides companies with PhDs’ profiles
that include both structured information, as for instance names, date of grad-
uation, and non-structured or partially structured information, as curriculum
vitae, textual descriptions of their competencies, reports of talks with the HR
team.

4.1 Creating the PhDs Profiles

There are several techniques that can be applied to create the PhD profile, at
present the vector based representation developed by the Information Retrieval
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researchers is investigated for the documents representation. In the vector based
model a document D is represented as an m-dimensional vector, where each
dimension corresponds to a distinct term and m is the total number of terms
used in the collection of documents.

From this basis, in this approach a profile RP is composed by two vec-
tors, RP = (H,S) where H is the vector representing the hard skills of the
PhD, while S represents her soft skills. The hard skills vector H is written as
(w1, ..., wm), where wi is the weight of skill hi that indicates its importance,
while m is the number of skills defined in the European Skills/Competences,
Qualifications and Occupations (ESCO) taxonomy1. The soft skills vector S is
written as (x1, ..., xn), where xj is the weight of skill sj and n is the number of
skills defined in the soft skills FYD taxonomy described in [2]. If the profile RP
does not contain a skill sj or hi then the corresponding weight is zero. The vector
H is extracted from the PhD cv text, while the vector S is created extracting
the skills information from the pills questionnaire. After a preprocessing phase in
which the raw text is divided into sentences, each sentence is analyzed to extract
the skills. At the moment two different solutions are developed and tested for
this task: the first proposal is based on machine learning techniques and it has
been presented in [3]. The second solution is based on Language Models and is
an on-going research. At the end of this phase the PhD’s profile RP is stored
in the Profile DB and sent to the Evaluation Module for the recommendation
phase.

PhD Soft Skills Representation. As already described, a PhD Profile RP
is represented as a couple of skills vectors (H, S). H represents the PhD’s hard
skills while S is a vector of soft skills. In this paper the focus is on the soft skills
vector. Every item of the vector is a linguistic 2-tuple value representing the
degree the PhD possesses that soft skill. Note that a positional notation is used:
S = (s1, s2, .., sk), where sj ∈ S, with j = {1, ..., 60}, describes the linguistic
degree assigned to the j − th skill of the PhD. In order to allow a high flexibility
we adopt a representation with 11 labels (L11) to assess each skill (sj).

– L11 = {L0 = Null = N, l1 = V eryV eryLow = V V L, l2 = V eryLow = V L,
l3 = Low = L, l4 = AlmostMedium = AM, l5 = Medium = M, l6 =
MoreThanMedium = MM, l7 = AlmostHigh = AH, l8 = High = H,
l9 = V eryHigh = V H, l10 = Full = F}.

PhD Profile Computation. The vector of soft skills S is computed by taking
into account two contributions. The first contribution to S is a vector HR of
60 skills, which represents the assessment the HR operator performs during an
interview with the candidate. To allow a flexible assessment, but avoiding at
the same time an excessive overhead for the HR operator, this vector adopts a
representation with 5 labels (L5) plus the NC value (NC = not classified) to
describe each skill. Note that during an interview the HR operators explicitly
assess only a few skills (usually 6 or 7), all other skills are set to NC by default.

1 http://ec.europa.eu/social/main.jsp?catId=1326&langId=en.

http://ec.europa.eu/social/main.jsp?catId=1326&langId=en
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– L5 = {l0 = V eryLow = V L, l1 = Low = L, l2 = Medium = M, l3 = High =
H, l4 = Full = F}.

The second contribution to S is the vector ML of 60 skills that represents the
automatic assessment of the candidate performed by the machine learning based
classifier, presented in [3]. The ML classifier analyses the textual self description
each PhD is required to provide when she enrolls to the database.

Each skill sj of the PhD profile RP is computed in this way: (1) if HR(sj =
NC) and ML(sj = value) then RP(sj = value); (2) otherwise the output value
is computed by a fuzzy controller employing a Sugeno approach [21] with a
center of area defuzzification. The set of rules describing the controller behavior
has been manually evaluated on a set of 580 profiles with the contribution of
the HR team in order to simulate the decision process of the HR operator. One
of the core activity was to compare the set of rules automatically computed on
a training dataset given by a HR manager with the rules manually created for
a Mamdani [15] controller by the same person. Aim of this comparison is to
show that the training of a Sugeno controller produces a set of rules so similar
to those manually created by the HR manager to be considered an “automatic
substitute” of the HR manager herself.

4.2 Recommending the Best PhD Profile for a Given Company

In this phase the HR manager receives, twice a week, a notification contain-
ing the best PhDs profiles w.r.t. the vision of the company represented as a
vector of soft skills preferences (the Soft-Skills Manager Interests HRMI). The
Evaluation module in Fig. 1 computes the distance between HRMI and the soft
skills component of the profiles RPs (S). At present the distance between S and
HRMI is simply computed by using the cosine similarity as follows:

sim(HRMI, SSRP ) =
HRMI ∗ S

‖HRMI‖‖S‖ (1)

The Profiles are ranked w.r.t. this soft skills similarity value, while at this stage
the hard skills vector allows the HR manager to automatically filter out profiles
not in line with her actual interests on technical competencies.

5 Profiles Recommendation to Support the HR Manager
Activity

In this section, the architecture of a personalized decision support tool able to
recommend the best PhDs’ profiles to a given HR manager is presented. As
shown in Fig. 1, the HR manager receives, twice a week, a report containing the
best profiles analized by the tool w.r.t. the company vision in terms of employed
soft skills, in figure the Interesting R.Profiles. As previously described, the PhD
registering to the job agency portal is asked to provide two textual descriptions of
her competencies: a curriculum vitae (CV) and the questionnaire called “pills”.
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The technical competencies (or hard skills) of the PhD are extracted from the
CV and saved in a vector as presented in [4]. However, no further discussion
is given to those skills: the focus of this paper is indeed on the reasoning that
computes the soft skills vector and on the selection of the PhDs profiles that
better fulfill a set of preferences given by a HR manager. This set of preferences
is manually assessed by the HR manager by using the HR Manager interface.
The output produced is a vector, the Soft-Skills Manager Interests, containing
a preference value for all the 60 skills in the FYD taxonomy [2].

Fig. 1. The architecture of the recommender tool SOON.

Besides the hard skills, the Text Preprocessing & Skills ML Extraction module
is in charge to extract a soft skills vector (in figure is the Soft-Skills ML Vector)
from the textual content of the “pills”. In most organization, recruiting agencies
in particular, the HR manager does not meet personally all candidates but she
is helped by a team of collaborators (in figure HR Operators), who are in charge
to interview the PhDs. In this approach the HR Operator, during the interview,
compiles a report regarding his evaluation of the soft skills of the candidate
via a simple interface (in figure HR Interface) that guides the compilation of
the Soft-Skills HR Vector. Please note that even if a complete evaluation of the
candidate would require an assessment of each of the 60 soft skills available in the
FYD taxonomy, this is not necessary here, and the operator is required to give
an explicit assessment only to the few skills (usually 6/7) he really saw during
the interview. The others skills in the Soft-Skills HR Vector are automatically
set to NC (not classified). The two soft skills vectors are used by the Neuro
Fuzzy Inference Module to compute the final soft skill vector that composes the
PhD Profile RP. At this point, all profiles are saved in the Profiles DB, while
the Evaluation Module compares the PhD Profiles w.r.t. the Soft-Skills Manager
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Interests vector, and the most interesting profiles emerged in this comparison
are then proposed to the HR Manager.

6 The Neuro-Fuzzy Approach

As previously reported, the approach implements a Neuro-fuzzy system aimed
at supporting the evaluation of PhDs candidates by the HR manager. Given a
certain dataset, the Neuro-fuzzy controller “learns” the rules that, from a certain
input, produce a given output simulating the decision pattern the HR manager
used when creating the dataset. In other words, the Neuro-fuzzy controller learns
the reasoning used by the manager when evaluating profiles: in particular, the
approach automates the definition of all the inference rules referring to a certain
set of soft-skills inputs that otherwise have to be manually defined each time by
the HR operator, and checked by the HR manager.

Generally speaking, Neuro-Fuzzy computing is a well defined methodology
that integrates neural and fuzzy metrics. As also reported in the literature [25],
one of the most important aspects regards the capability to incorporate the
generic advantages of artificial neural networks, like massive parallelism, robust-
ness, and learning in data-rich environments into a fuzzy system, where the
modeling of imprecise and qualitative knowledge as well as the transmission of
uncertainty is possible through the use of fuzzy logic.

The Adaptive Neuro Fuzzy Inference System (ANFIS) provides a system-
atic and directed approach for model building and gives the best possible design
settings. Inspired by the idea of basing the fuzzy inference procedure on a feed-
forward network structure, Jang proposed a fuzzy neural network model [11],
employed to model nonlinear functions and identify nonlinear components on-
line in a complex control system. In fact, such a system is able to bring the
learning capabilities of neural networks for the fuzzy inference system definition.

In this work the defined Neural Network is responsible of the soft skills learn-
ing. The implemented Sugeno Fuzzy Inference System calculates a set of infer-
ence rules and selects the most performing skill. The final soft skill vector S that
composes the overall PhD Profile RP is then produced as output.

6.1 The Neural Network Architecture

In order to incorporate the capability of learning from input/output data sets
into a fuzzy inference system, a corresponding adaptive neural network is gen-
erated. An adaptive network is a multilayer neural network consisting of nodes
and directional links through which nodes are connected.

As shown in Figure layer 1 is the input layer, layer 2 describes the membership
functions of each fuzzy input. Layer 3 is the inference layer and normalization is
performed in layer 4. Layer 5 gives the output and layer 6 is the defuzzification
layer. The layers consist of fixed and adaptive nodes. Each adaptive node per-
forms a particular function (the node function) on incoming signals, as explained
in [25].
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Fig. 2. Backpropagation neural network architecture

The learning module tunes the membership functions of a Sugeno-type fuzzy
inference system by using the training input output data. In particular, it may
consist of either BackPropagation (BP) [19], based on gradient descent optimiza-
tion algorithm, or hybrid learning algorithm, based on the combination of Least
Square Error (LSE) and gradient used into the BP [16] (Fig. 2).

The learning rule specifies how the parameters of adaptive nodes should be
changed to minimize a prescribed error measure [11]. The change in values of the
parameters results in change in shape of membership functions associated with
fuzzy inference system. After a learning phase, the controller is able to generate
the appropriate actions for the desired task.

The set of produced inference rules are shown to be very similar to those
that an HR human expert should otherwise calculate each time for each selected
profile and for each individual skill. We can claim the Neuro-fuzzy controller
learns the reasoning used by the manager when evaluating profiles, therefore we
can create a “personalized automatic manager” for any Company, just having
the Company old candidates profiles dataset to train the controller.

7 A Preliminary Set of Experiments and Discussion

A first set of experiments has been carried out in order to test and validate the
defined architecture. The details of the dataset and the parameter’s setting are
reported in the following.

The input variables of the designed Sugeno ANFIS correspond, respectively,
to the skill evaluation vector ML produced by the machine learning based
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classifier previously implemented [3] (mlinput) and to the human resource expert
evaluation vector HR (hrinput). As previously reported, the output corresponds
to the skill value produced by the Neuro-Fuzzy evaluation that will contribute
to define the resource profile soft skills vector.

The inputs are preprocessed and defined in a range from −0.5 to 0.5 (not
included) values. The 75% of the dataset is used for the Neural Network train-
ing, while the remaining 25% is used for checking to validate the model. More
precisely 435 PhDs define the training set and 145 define the test set.

Then, after a first initial tuning, as explained in Sect. 4 the inputs adopt “tri-
angular” membership functions, with, respectively, 11 and 5 nodes for “machine
learning based classifier vector” ML and “human resource expert evaluation
vector” HR input variables.

The membership functions are aggregated by using a “T-Norm Product”
operator to construct the Fuzzy IF −THEN rules with a fuzzy antecedent part
and “linear” consequent. The total number of rules is equal to 55, corresponding
to the vector product of the nodes defined at level 2 of the neural network.
All the rules detailed into Layer3 are calculated by the Sugeno Fuzzy Inference
System.

The Neuro Fuzzy controller has been trained for 150 epochs, by using the
most simple and widely used for neural network training, BackPropagation algo-
rithm, particularly suitable for the learning of supervised multi layer neural net-
works [19]. After the training phase, the overall Neuro Fuzzy performances have
been evaluated by testing the ANFIS model.

This Neuro Fuzzy approach has been validated by comparing the results
obtained by applying the Neuro Fuzzy “trained” rules with the results obtained
by applying a Fuzzy Mamdani controller where the rules are defined by an HR
expert team. The surfaces in Fig. 3a and b show the results obtained. In par-
ticular, Fig. 3a shows the results coming from the Fuzzy Mamdani controller
according to the rules manually defined by the HR manager on the test dataset,
while Fig. 3b shows the results coming from the Neuro Fuzzy controller simply
trained on the same dataset, with the rules defined by the ANFIS evaluation.

The surface values are displayed on a color scale from −0.5 (blue color) to 0.5
(not included) (green color) showing that the Neuro Fuzzy approach associates
more importance to the HR evaluation with respect to the machine learning
based one. The machine learning based evaluation is aimed at integrating and
supporting the HR evaluation but it never overcomes it. Note that, according
to the figure, when hrinput is high, skilloutput is high even with low mlinput
values, while with low hrinput values skilloutput is still low even if mlinput
values are high.

Even if the results are very similar (and this shows that the Neuro fuzzy con-
troller “simulates” the HR expert reasoning), the graphic representation of the
surfaces highlights how the Neuro Fuzzy approach presents a more harmonious
surface, in which maximum and minimum values are reached with more pre-
cision (represented by the greater intensity of colors displayed by the surface).
The results obtained from the two surfaces allow to say that the Neuro Fuzzy
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(a) Mamdani Surface (b) Neuro-Fuzzy Surface

Fig. 3. Mamdani and Neuro fuzzy surface’s comparison (Color figure online)

approach can be put in place of Mamdani, whenever an HR human expert is
not available, thus representing a good automation of his way of reasoning when
assessing profiles.

(a) Mamdani Rules (b) Sugeno Rules

Fig. 4. Comparative example between Mamdani and Sugeno rules.

As also shown by the triangular rules, in Fig. 4a and b it is possible to see
how the Sugeno model follows the trend of the human expert supported by the
evaluation of the machine learning approach. Such a trend assumes, however,
an attitude that takes into account both the assessments made by the human
expert and those obtained from the machine learning.

Anyway, as reported in Table 1, the evaluations carried out on the skills
leaving the Neuro Fuzzy system show a cautious and prudent attitude, especially
in cases that report opposite assessments between the human expert and the
machine learning approach.
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Table 1. Example of the skill values obtained from the rules application.

ML input HR input Output skill value

Mamdani Sugeno

0.0028 0.45 0.2500 0.2620

0.0028 −0.45 −0.1960 −0.1920

0.0028 0.0028 0.0042 −0.0007

0.45 0.45 0.3870 0.4230

0.45 −0.45 7.17e−4 1.84e−05

0.45 0.0028 0.1100 0.1000

−0.45 0.45 0.2240 0.2620

−0.45 −0.45 −0.3240 −0.3460

−0.45 0.0028 −0.1930 −0.230

8 Conclusions

In this paper a framework to represent the soft skills profile of a PhD by means
of a 2-tuple fuzzy linguistic approach is presented. The framework can be used
in many contexts: in this work it has been applied for designing a recommender
system of candidates for recruiting purposes. The recommender system is defined
through the implementation of a Neuro fuzzy controller that aims to simulate
the decision of a HR team in evaluating the soft skills profile of a candidate.
Among all the profiles assessed by the HR team with the support of the ML
soft skills classifier, the system proposes to the HR manager only the profiles
evaluated as the best w.r.t. a set of preferences representing the Company vision
in terms of employees soft skills. The approach is capable of calculating a set of
inference rules that are shown to be very similar to those that an HR human
expert should otherwise calculate each time for each selected profile and for each
individual skill.

Since the outcome of the framework is a vector representation of a profile, any
matching function derived from the vector space model can be easily applied. The
overall model behavior will be fully personalized since computed on a training
dataset of pairs (profile, set of soft skills) that represents the decisional behav-
ior of a certain HR Manager rather than another. Future work will investigate
the application of the implemented Neuro Fuzzy recommender system in other
contexts, like those regarding the human resources or recruitment areas of big
companies, thus collecting more datasets to better test the hypothesis of creating
a good “HR manager bot”.
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Abstract. In this paper we introduce new disjunction and conjunction
(named SMART) for merging, without any exogenous components, any
number of fuzzy memberships. The present proposals are n-ary opera-
tors, based on a specific adaptation of Marzullo’s algorithm, that depart
from the usual fuzzy mean on the base of the agreement/disagreement
among the different memberships. These different operators are suitable
to be applied in any model where the same quantity (usually a param-
eter) can be measured (estimated) through different fuzzy memberships
stemming by different sources of information. In our previous contribu-
tions we have considered the special case of two fuzzy memberships that
were elicited for the volatility parameter in an hybrid fuzzy-stochastic
model for option pricing. Here we adopt the same example to have an
application at hand and to compare our new proposed operators with
the ordinary fuzzy mean; nevertheless, the operators can be applied to
merge any n memberships which are candidates to represent the same
fuzzy number.

Keywords: Smart average operators · Fuzzy mean · Merging ·
Fuzzy option pricing

1 Introduction and Motivation

The need to define a suitable merging operator arises in our contribution [1];
in the quoted paper we introduced a methodology for membership elicitation
on the hidden volatility of a risky asset through both the historical volatility
estimator σ̂ and the estimator ν = VIX/100, based on VIX [19]. Our elicitation
proposal was based on the Coletti and Scozzafava [3] interpretation of member-
ship functions as coherent conditional probability assessments, integrated with
observed data, expert evaluations and simulation results. The peculiarity of our
procedure was to deal with alternative sources of information, though leaving as
an open problem the search for proper fusion operators to merge the different
memberships stemmed by the different sources.

The choice of a fusion operator, given the variety of information items, is
not unique and heavily context-dependent. Authors in [14] affirm that there are
c© Springer Nature Switzerland AG 2019
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more than 90 different fuzzy operators proposed in the literature for fuzzy set
operations and there is a wide family of aggregation functions with predictable
and tailored properties (e.g. those analyzed in [9,10]) related to different areas
and disciplines.

Classes of aggregation functions include triangular norms and conorms, cop-
ulas, means and averages, and those based on nonadditive integrals [8].

But the main point is that the role of fuzzy sets in merging information can
be understood in two ways: either as a tool for extending estimation techniques
to fuzzy data (this is done applying the extension principle to classical estima-
tors, and methods of fuzzy arithmetics - see [5] for a survey); or as a tool for
combining possibility distributions that represent imprecise pieces of informa-
tion (then fuzzy set-theoretic operations are instrumental for this purpose - see
[7] for a survey).

In view of this dichotomy, a bridge between the “estimation” and the “fusion”
is represented by fuzzy arithmetic mean (named simply “fuzzy mean” in the
sequel). In fact it is a basic operation for estimation and also a fuzzy set-theoretic
connective. Anyhow it is well known that fuzzy mean, even more than the crisp
one, suffers from the drawback of being insensitive with respect the agreement
or disagreement among original values (we can have the same mean between
two very close values ad well as between two very distant). Hence, fuzzy mean
remains as a reference operator from which we want to move away.

A first attempt to solve such problem has been the proposal of constrained
merging in [6, Sect. 6.6.2]. We borrow from it the motivation of including a
“smart” component in the averaging process to address conflicts in the data to
be fused. Since the constrained merging was based on an original Yager’s “intel-
ligent” component [20], we have named our operators as “SMART”. SMART
is in fact both a synonym of “intelligent” and a, commonly used, acronym for
“Specific, Measurable, Achievable, Realistic and Time-related”, most of which
are also goals of our approach. The main difference with respect Yager’s proposal
is that we do not make use of any exogenous “combinability function” that was
instead used in [20].

Note that we do not look to t-norms and t-conorms, as e.g. done in [3], because
the different memberships we want to merge are not different “claims” (estima-
tions) given by the same “subject” (estimator) over an unknown parameter, but
are the same “claim” (estimation) obtained by different “subjects” (estimators).
Hence we need to “average” the memberships we have at hand; to this aim we
resort to something similar to the fuzzy mean, but with different behaviors if
the estimators give alternative (“disjunctive”) or concomitant (“conjunctive”)
information.

In [2] we have given a first formulation of merging operators characterized
by two distinct deformations with respect to the usual fuzzy mean, anyhow such
proposal suffered from being tailored just for merging two fuzzy numbers, with
two ad hoc binary deformations. Here, we consistently overcome such drawbacks
with a new proposal so that we can fuse any n fuzzy numbers with a disjunctive
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and with a conjunctive mean operators. In fact, in the new operators we avoid
any extra, and hence arbitrary, component.

For the sake of clarity, we set up our framework by giving in Sect. 2 the
preliminary concepts at the base of our proposal; in Sect. 3 we give details for
our n-ary operators for disjunction and conjunction; while in Sect. 4 we furnish
some preliminary result about their entailment on the pricing for options based
on the S&P500 Market Index. Section 5 gives some concluding remarks.

2 Preliminaries

Membership functions μ : R → [0, 1] of the fuzzy set of possible values of a
random variable X are usually viewed as imprecise values.

From a practical point of view, we will profit from membership characteriza-
tion through α-cuts, that for a generic j-th membership result as

μjα = {x ∈ R : μ(x) ≥ α} , α ∈ [0, 1]. (1)

In particular, since we will deal with fuzzy numbers, i.e. memberships with
nested, compact and close α-cuts, they reduce to closed intervals characterized
by a left and a right extreme:

μjα = [μjα
l , μjα

r ]. (2)

Our operators work on these extremes, α-cut by α-cut, hence, in line with [11],
“horizontally” with respect the membership function definition. Figure 1 shows
such quantities for two memberships, together with other specific quantities that
will be involved in our averaging operators as described below.

Fig. 1. α-cuts of two memberships μ1 and μ2 and their characteristic values for their
SMART averages

The agreement/disagreement among n different α-cuts can be expressed by
exploiting the q-relaxed intersection computation applied in [12] and based on
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the Marzullo’s algorithm [15]. This choice avoids any external, hence arbitrary,
imposition.

Marzullo’s algorithm efficiently computes the shortest interval shared by the
maximum number of intervals. But the original Marzullo’s algorithm just returns
the optimal, i.e. shortest, interval which is consistent with the maximum number
of inputs. For example, among μ1α = [8, 9], μ2α = [8, 12] and μ3α = [10, 12]
it will produce [8, 9] as the shortest intersection between two of the original
intervals.

We actually want to control for intersections among all subsets of the n α
cuts; to this aim we can modify the algorithm by taking trace of the different
numbers of intersecting intervals, so that the results are now specific weights
πj

f representing the overlap lengths among f α-cuts, f = 1, . . . , n, inside the
j-th α-cut, j = 1, . . . , n (the detailed procedure will appear in a forthcoming
publication). Just to give an idea, with the three α-cuts mentioned before we
would obtain:

π1
1 = 0 π2

1 = 10 − 9 = 1 π3
1 = 0 (3)

π1
2 = (9 − 8) = 1 π2

2 = (9 − 8) + (12 − 10) = 3 π3
2 = (12 − 10) = 2 (4)

π1
3 = 0 π2

3 = 0 π3
3 = 0. (5)

Others πj
f , with f, j = 1, . . . , 3, stemming from α-cuts of three membership func-

tions are depicted in Fig. 2, where we also visually anticipate the aforementioned
deformation of our disjunction towards the canonical operator, i.e. the max, with
respect the fuzzy arithmetic mean.

α

8

Fig. 2. SMART disjunction (dashed line) among 3 fuzzy numbers (solid lines) com-
pared to the fuzzy arithmetic mean (dashed-dotted line). The zoom shows the relaxed
intersections computed through adapted Marzullo’s algorithm.

In few words, we can say that each πj
f measures the part of the j-th α-cut

involved into the intersection among f α-cuts. It comes straightforwardly that
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the sum of the various weights associated to a specific α-cut gives its length:
n

∑

f=1

πj
f = δj = μjα

r − μjα
l . (6)

3 The General SMART Disjunction and Conjunction

As already outlined, the SMART fuzzy disjunction � and conjunction � oper-
ators, that we are going to define, are specific modifications of fuzzy arith-
metic mean. They are based on full/partial overlap among the α-cuts [μjα

l , μjα
r ],

j = 1, 2, . . . , n, of the fuzzy memberships to be merged.
Since the same procedure is applied for each level α, we omit the superscript

α whenever not strictly necessary.
Arithmetic, crisp as well as fuzzy, mean is characterized by a convex combi-

nation of the α-cuts’ extremes with uniform coefficients 1
n . Our operators realize

in its modifications by tuning such coefficients inducing a specific aimed behavior
of the merging: deforming the mean towards the canonical maximum for the dis-
junction and towards the canonical minimum for the conjunction. In the former
case, since the α-cuts of the maximum are simply the intervals with the more
external extremes, our operator gives more weight to the outer bounds and less
weight to the inner ones. On the contrary, convex combination for the latter give
more weight to the inner bounds with respect the outer ones. Let us propose in
what follows a possible choice of proper weights to achieve such behaviors.

As already anticipated in the previous section, the new coefficients will be
based on the weights πj

f obtained by the adapted Marzullo’s algorithm to empha-
size the partial agreement or disagreement among the different memberships.

3.1 SMART Disjunction

For the disjunctive operator the extremes of the α-cuts

[(μ1 � . . . � μn)α
l , (μ1 � . . . � μn)α

r ] (7)

are computed as convex combinations of the original ones with coefficients

1
n

(1 + εj) j = 1, . . . , n − 1. (8)

with

εj =

{ ∑n
f=1

1
f πj

f

Δ if Δ �= 0
0 otherwise

, j = 1, . . . , n − 1, (9)

and Δ = max{μiαr }n
i=1 − min{μiαl }n

i=1. Equations (8, 9) display the weighted
contributions of the n − 1 more relevant extremes, i.e. the first n − 1 outer ones.
The n-th coefficient, associated to the inner extreme, is simply given by

1
n

(1 −
n−1
∑

j=1

εj). (10)
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Note that the division by Δ in (9) makes the contribution of each j-th α-cut
relative with respect to the length of the α-cut of the maximum. Moreover,
whenever the original memberships have at least two distinct cores (i.e. distinct
values with maximum membership 1) the various εj tend to zero whenever α
tends to one so that the upper side of the merged membership converge to the
core of the fuzzy arithmetic mean.

Let us also stress that, since each weight πj
f is shared exactly by f α-cuts,

the fractions 1
f let

∑n−1
j=1

∑n
f=1

1
f πj

f ≤ Δ so that 0 ≤ ∑n−1
j=1 εj ≤ 1 and hence

coefficients (8, 10) are well defined to be used for a convex combination of α-cuts’
extremes.

The result of such operator has been already shown in Fig. 2 where the defor-
mation with respect the usual fuzzy mean is evident. In fact, for each α-cut,
except for the core associated to α = 1, we obtain wider intervals with extremes
stretched toward those of the canonical disjunction, i.e. the max operator. It
is clear from Fig. 2 that taking into account the strength of the disagreements
among the different α-cuts leads to a wider membership, and hence a more vague
estimation, with respect to the fuzzy mean.

3.2 SMART Conjunction

The construction of the conjunctive operator � follows the same basic rule, but
needs a more articulated formulation.

First of all, we need to take as a reference value the level h of not empty
intersection among all the n α-cuts of the original fuzzy numbers (as visualized
in Fig. 1 for the case n = 2). In fact, the extremes of the α-cuts of the merging
operator

[(μ1 � . . . � μn)α
l , (μ1 � . . . � μn)α

r ], (11)

are computed differently whether α is below or above such level h. In the for-
mer case the extremes are again obtained as direct convex combinations of the
original ones with coefficients

1
n

(1 + γj) j = 1, . . . , n − 1, (12)

where now the quantities

γj =

∑n
f=1

1
n+1− f πj

f
∑n

k=1

∑n
f=1

1
n+1− f πk

f

, (13)

reflect the weighted normalized contribution of the n−1 more relevant extremes,
here the first n − 1 inner ones.

Whenever all the n α-cuts coincide the γj can be consistently set to zero.
Note that coefficients 1

n+1− f let each part in the numerator of the γj to be
proportional to the number of overlaps (representing the agreement).
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Again, the n-th coefficient, i.e. that associated to the outer extreme, is simply
given by

1
n

(1 −
n−1
∑

j=1

γj). (14)

Since the denominator in (13) is simply a normalizing constant, it comes to the
fore that

∑n−1
j=1 γj ≤ 1 so that (12, 14) define a proper convex combinations.

For the other cases, that is when α is above the level h, the definition is more
subtle since many subgroups of intersections involving two or more memberships
can be identified. In fact, assume we have k subgroups of indexes Jl ⊂ {1, . . . , n},
each with cardinality nl, l = 1, . . . , k. Note that, in general, subgroups share some
elements, hence we have

∑k
l=1 nl ≥ n. The logic underlying our approach is to

compute first the conjunctive operator � within each subgroup Jl, l = 1, . . . , k,
obtaining k intermediate α-levels, and secondly to merge them by applying the
disjunctive operator � above defined.

In formulas, for each j ∈ Jl, we compute

γj =

∑nl

f=1
1

nl +1− f πj
f

∑

k∈Jl

∑n
f=1

1
n+1− f πk

f

(15)

and we make the convex combination of the extremes of the α-cuts in Jl with
coefficients

1
nl

⎛

⎝(1 + γ1) . . . , (1 + γnl−1), (1 −
nl−1
∑

j=1

γj)

⎞

⎠ (16)

where the order is from the inner to the outer. Once we obtain these k conjunc-
tions of subgroups, characterized by the extremes

μil and μir , i = 1, . . . , k, (17)

we compute the new relaxed intersection coefficients πl
f , l, f = 1, . . . , k, and

consequently obtain new weights

εi =

∑k
f=1

1
f πi

f

Δ
, with Δ = max{μir}k

i=1 − min{μil}k
i=1, (18)

that can be plugged in new coefficients for the convex combination to take into
account the cardinality of each contribution:

1
∑k

i=1 ni

(

n1(1 + ε1), . . . , nk−1(1 + εk−1), (nk −
k−1
∑

l=1

nlεl)

)

. (19)

Note that in this case the order is from the outer to the inner.
These steps must be iterated for increasing values of α for which the partial

intersections may change, and this happens whenever one of indexes πj
f vanish.
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It remains the problem that the merged α-cuts obtained through this two-
steps aggregation procedure must be “glued” to those of the levels below.

This can be obtained by a proper translation and deformation of the
extremes. Due to the necessary discretization of the α levels to be actually
considered (see [1]), we can formulate the transformation by referring to two
consecutive values α1 and α2 so that the transformed new α2-cut will have
extremes computed recursively by:

μ̂α2
l = μ̂α1

l + 
α1 |μα2
l − μα1

l | (20)
μ̂α2

r = μ̂α1
r − 
α1 |μα2

r − μα1
r | (21)

with


α1 =
μ̂α1

r − μ̂α1
l

μα1
r − μα1

l

(22)

and where the “overlined” extremes are those obtained by the inter/intra sub-
group merging and the “hatted” ones are those obtained by the “gluing” trans-
formation at the specified levels.

Result of such procedure can be seen in Fig. 3 where it is possible to appre-
ciate the aforementioned deformation of our conjunction towards the canonical
operator, i.e. the min, with respect the fuzzy arithmetic mean; the convex combi-
nations vary for each level α according to changes of partial overlaps. Note that
in the picture this last aspect is emphasized by the rough discretization adopted
for the α levels; for a finer mesh, as the one used in the empirical application,
the “gluing” process produces smoother memberships.

Fig. 3. SMART conjunction (dashed line) among 3 fuzzy numbers (solid lines) com-
pared to the fuzzy arithmetic mean (dashed-dotted line).

It is clear from Fig. 3 that taking into account the strength of the agreements
among the different α-cuts leads to a narrower membership, and hence a less
vague estimation, with respect to the fuzzy mean.
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4 A Practical Application of the SMART Operators to
Option Pricing

As an illustrative example we apply the generalized SMART operators described
in previous sections in the option pricing framework of CRR [4]. In particular, we
describe the dynamics of the risky asset by a binomial tree with N = 6 periods.
The crucial point is to obtain a fuzzy number for the volatility parameter σ; as
also well described in [17], we can infer about the volatility through different
estimators. Since we aim at eliciting the volatility parameter of the S&P500
index, we build the membership elicitation for σ on both the historical volatility
estimator σ̂ and the estimator ν = VIX/100 (based on the VIX Index that
represents the one-month ahead integrated volatility implied by option prices
on the S&P500 index). The elicitation procedure we adopt here follows the
idea we developed in [1]; however aggregations of different memberships are now
performed with our new generalized SMART operators.

We can summarize the main steps in the following items (for further details
refer to the cited paper):

1. The available time series are considered in order to elicit a pseudo-
membership for each estimator;

2. on the test date the most probable scenarios are selected according to the
current value of the estimator and depending on the pseudo-memberships
obtained in step 1;

3. a probability-possibility transformations is applied to the simulating dis-
tributions (Uniform, LogNormal, Gamma) corresponding to the selected
scenario(s);

3a. whenever there are more than one membership associated to a simulating
model, they are merged via our disjunction operator;

4. the memberships, stemming from the different simulation models, are merged
into a single membership through our disjunction.

5. steps 1–4 are performed for both σ̂ and ν leading to two different fuzzy
numbers;

6. the memberships associated to the two different estimators are merged via
our conjunction to obtain a single fuzzy number for the volatility σ.

Once we have obtained a single aggregated membership function for σ we
can pass to compute fuzzy prices for options traded on the test date.

Market bid-ask prices for the quoted options can be compared to the cor-
responding fuzzy option prices, obtained either via our approach or via fuzzy
mean. Comparisons of the two can be based on the computation of a proper
similarity index (see, e.g., [18]).

In the following we can briefly describe the main crucial points of the previous
items (a detailed analysis is demanded to a forthcoming publication).

For the elicitation step n.1 the S&P500 daily returns from January 1960 to
September 2016 and daily observations of the VIX index from January 1990 to
September 2016 are considered respectively for σ̂ and ν̂. Based on the values of
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the two estimators on the test date the current scenario is selected; on October
5, 2016 all simulating models agree on the “low volatility” scenario for both
estimators.

After obtaining the three memberships associated to the simulating distribu-
tions (Uniform, LogNormal, Gamma) corresponding to the “low volatility” sce-
nario, we can merge them with the � operator; this is done for both estimators.
Finally the two outcomes are fused via the �, obtaining the fuzzy representation
σ̃ = μσ̂obs

� μνobs
for the volatility parameter σ, which is shown in Fig. 4.

Fig. 4. The merging results: disjunction of the fuzzy numbers stemming from different
models for σ̂ (dashed lines on the left) and for ν (solid lines on the right) and their
final conjunction (dashed-dotted lines on the center), by applying our � and � (black)
or the fuzzy mean (gray).

Once we have such fuzzy number for σ̃, it is possible to price options by a
straightforward extension of standard CRR model in [4] to a fuzzy multi-period
binomial model. Our explicit numerical evaluation of each α-cut of the fuzzy
number for σ̃ allows us to take advantage of others contributions available in
literature for each step of the pricing procedure. In particular:

– from σ̃ to the fuzzy “UP” and“DOWN” jump factors (Zadeh’s extension
principle [21])

[uα, uα] = [eσα
√

Δt, eσα
√

Δt] [dα, d
α
] = [e−σα

√
Δt, e−σα

√
Δt] ; (23)

– from ũ and d̃ to the fuzzy risk neutral probabilities (Muzzioli and Torricelli
[16])

[pα
u
, pα

u ] =

[

erΔt − d
α

uα − d
α ,

erΔt − dα

uα − dα

]

[pα
d
, pα

d ] =
[

uα − erΔt

uα − dα ,
uα − erΔt

uα − d
α

]

;

(24)
– from p̃u and p̃d to option price (e.g. call) (Li and Han [13])

[Cα
0 , C

α

0 ] = e−rNΔt

[

N
∑

i=0

(pα
u
)i(pα

d
)N−iCα

N,i,

N
∑

i=0

(pα
u)i(pα

d )N−iC
α

N,i

]

(25)
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with

[Cα
N,i, C

α

N,i] =
[

max(S0(uα)i(dα)N−i− K, 0),max(S0(uα)i(d
α
)N−i− K, 0)

]

.

(26)

The overall performance can be evaluated by measuring a proper fuzzy similarity
of our option prices with respect to the market bid-ask spread, considered as a
“crisp interval”, for quoted options on a test date. This is done for options quoted
on October 5, 2016 by using he similarity index proposed in [18]. A comparison
with an analogous procedure where the fuzzy arithmetic mean is applied in place
of our disjunction and conjunction operators has been made.

In Fig. 5 we plot the fuzzy price obtained by applying either our SMART
merging operators (solid) or the fuzzy mean (dashed) for two examples of options
traded on October, 5, 2016; the bid-ask interval is also included in the picture.
In both examples our procedure gives narrower memberships and in the plot on
the right the core value is closer to the mid-point of the bid-ask. The similarity
values are also better for our merging operators rather than for the fuzzy mean
option prices; in particular for the above examples the similarity values are 39%
and 28% of our merging operators against 27% and 20% obtained through the
fuzzy mean.

Fig. 5. Market bid-ask (crisp interval), “smart” fuzzy prices (solid), “arithmetic mean”
fuzzy prices (dashed) for two examples of CALL options traded on October 5, 2016
with expiration in one month and strike price K = 2040 (left panel) and K = 2210
(right panel). The S&P500 value is S0 = 2159.7.

5 Conclusion

In this paper we propose SMART fuzzy operators to aggregate sources of infor-
mation and models in order to elicit a unique fuzzy number for some parameter.
The operators can be applied to merge any number of fuzzy numbers in a dis-
junctive or conjunctive way. Such behaviors are obtained through slight modi-
fications of the fuzzy mean that is usually adopted to merge fuzzy estimations
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of the same quantity obtained in different ways. The definition of the proposed
operators is based on an adapted Marzullo’s algorithm to properly measure the
weight assigned to overlapping intervals in each of the α-cuts of the member-
ships to be merged. The whole methodology is illustrated within the problem
of estimating stock volatility in financial markets to obtain fuzzy option prices,
computed with the CRR model. Preliminary results are promising since the pro-
posed merging procedure produces fuzzy option prices which are closer to bid-ask
prices with respect to the ones obtained by applying the classical fuzzy mean,
whenever closeness is measured by fuzzy similarity as defined in [18]. A full and
systematic analysis is demanded to a forthcoming contribution, as well as the
adoption of different similarities indexes more apt to compare crisp interval (the
market bid-ask spread) with fuzzy numbers (the fuzzy option prices).

References
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Abstract. The aim of this paper is to investigate the potential of fuzzy
regression methods for computing a measure of skewness for the market.
A quadratic version of the Ishibuchi and Nii hybrid fuzzy regression method is
used to estimate the third order moment. The obtained fuzzy estimates are
compared with the one provided by standard market practice. The proposed
approach allows us to cope with the limited availability of data and to use all the
information that is present in the market.
In the Italian market, the results suggest that the fuzzy-regression based

skewness measure is closer to the subsequently realized measure of skewness
than the one provided by the standard methodology. In particular, the upper
bound of the Ishibuchi and Nii method provides the best forecast. The results are
important for investors and policy makers who can rely on fuzzy regression
methods to get a more reliable forecast of skewness.

Keywords: Fuzzy regression � Skewness � Forecasting � Italian market

1 Introduction

Moments of a distribution are of paramount importance in finance for portfolio allo-
cation, risk management, trading strategies. Volatility of financial assets has attracted
the interest of researchers and practitioners for decades. Only later, researchers have
moved their interest towards higher-order moments of the distribution. The increasing
importance of higher-order moments is supported by the introduction of the
CBOE SKEW index for the S&P500 stock market, which measures the third order
moment of the S&P500 risk-neutral distribution [6]. In the CBOE SKEW index,
skewness is obtained from option prices by means of the Bakshi et al. formula [1] and
reflects the investors’ expectation of the realized third moment in the next thirty days.

The Bakshi et al. formula [1] is based on the strong assumption that a continuum of
option prices with strike price ranging from zero to infinity is available. As in the
market only a limited number of option prices is traded, it is standard market practice to
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generate the missing ones by means of an interpolation-extrapolation procedure of the
quoted option prices. Moreover, standard statistical techniques are not able to deal with
conflicting information. Therefore, when two options yield different implied volatility,
standard market practice retains only out-of-the-money1 ones and averages the two at-
the-money implied volatilities, producing both a considerable loss of information and
an element of arbitrariness in the estimation.

A few authors explore the potential of fuzzy techniques to estimate volatility from a
limited and conflicting number of option prices (for a literature review see e.g. [15]).
References [4, 8] explore fuzzy volatility in the Black-Scholes model [3]. Reference [5]
extends previous contributions on the elicitation of the fuzzy volatility membership
function in option pricing models by exploiting the Cox-Ross-Rubinstein framework
for option pricing developed in [19].

In a model-free setting, [16, 17] combine the Bakshi et al. formula [1] with
quadratic fuzzy regression methods (introduced in [18]) to obtain more informative
volatility measures. Their methodology presents several advantages. First, it embeds in
the estimation of the implied volatility smile function all the information coming from
both call and put prices and avoids the a priori choice of discarding some option prices
as in standard market practice. Second, the use of fuzzy regression methods ensures the
convexity of the volatility smile, and, as a consequence, the absence of arbitrage
opportunities. Third, empirical results suggest that the volatility estimates obtained
through fuzzy regression methods perform better in forecasting future realized
volatility than the volatility measures obtained using the standard procedure.

Given the increasing importance of measuring skewness of the return distribution
for both investors and policy makers, and the unsolved problems in the implementation
with market data of the Bakshi et al. formula [1], this paper represents the first attempt
of computing a skewness index in a fuzzy setting. We complement the existing liter-
ature by investigating the potential of fuzzy regression methods to compute a fuzzy
measure of skewness for the Italian market. The use of fuzzy regression methods is
particularly suitable for this type of data (see [14]). Specifically, fuzzy regression
methods allow us to cope with the limited availability of data, given that for the Italian
market only a little number of pairs of strike prices and implied volatilities are available
to be interpolated. Moreover, it allows us to embed the conflicting information coming
from both call and put prices. In fact, for at-the-money strike prices, we have both a call
and a put option with different implied volatilities, and standard regression techniques
are not able to cope with interval values for the inputs.

An empirical analysis performed in the Italian market (see [18]) concludes that the
best estimation method for the volatility smile function is the Ishibuchi and Nii
regression method [10], with the preferred h-cut at h = 0.8. Therefore, we adopt the
quadratic extension of the Ishibuchi and Nii fuzzy regression method to estimate the
skewness of the Italian market. In order to assess whether the proposed fuzzy
regression method outperform the standard market practice in estimating skewness, we
adopt a two-step methodology. First, we evaluate the proposed skewness measure with

1 An option is said to be at-the-money, in-the-money, or out-of-the-money if it generates a zero,
positive, or negative payoff, respectively, if exercised immediately.
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respect to its forecasting power on future realized skewness using the mean squared
error (MSE) indicator, which provides robust results in the presence of noise in the
proxy of skewness. Second, we perform the Model Confidence Set test (see [9]) on the
MSE loss function to find the best forecast for future realized skewness. Third, we
adopt a defuzzification procedure in order to condense all the information content of
fuzzy skewness estimates (which provides investors with an interval of possible values
and a most possible value within the interval) in a unique value.

The results of this paper suggest that the skewness indices obtained using fuzzy
regression methods are closer to the subsequently realized measure of skewness than
the one provided by the standard methodology. This result is in line with previous
findings in [16, 17] for volatility, indicating that the use of fuzzy regression methods in
computing skewness of the option implied distribution enhances its predictive power
on future realized skewness. In particular, the best estimate of subsequently realized
skewness is the one that combines the Bakshi et al. formula [1] with the upper bound of
the Ishibuchi and Nii fuzzy regression method [10].

The paper proceeds as follows. In Sect. 2, we discuss the financial problem. In
Sect. 3, we describe the procedure adopted to embed all the information coming from
both call and put prices in the estimation of skewness. In Sect. 4, we present the results
of the empirical application on the Italian market. In Sect. 5 we present the defuzzi-
fication procedure. In Sect. 6 we evaluate the goodness of the measures by assessing
their forecasting power on future realized skewness. The last section concludes.

2 Skewness Obtained from Option Prices: From the Smile
Function to Skewness Estimation

The standard market formula used to extract volatility and higher order moments from
a cross-section of option prices is the model-free formula proposed in [1]. This formula
is called model-free since it does not rely on any option pricing model, being consistent
with many asset price dynamics. According to [1] model-free skewness can be obtained
from the following equations:

Skewness t; sð Þ � ersW t; sð Þ � 3ersl t; sð ÞV t; sð Þþ 2l t; sð Þ3

ersV t; sð Þ � l t; sð Þ2
h i3=2

ð1Þ

where l t; sð Þ, V t; sð Þ and W t; sð Þ are based on the first, second and third moments of
the distribution, respectively, and are obtained from call and put prices as follows:

l t; sð Þ � Eq ln S tþ sð Þ=S tð Þ½ � ¼ ers � 1� ers

2
V t; sð Þ � ers

6
W t; sð Þ � ers

24
X t; sð Þ ð2Þ

V t; sð Þ ¼ Z
1

S tð Þ

2 1� ln K=S tð Þ½ �ð Þ
K2 C t; s;Kð ÞdKþ Z

S tð Þ

0

2 1þ ln S tð Þ=K½ �ð Þ
K2 P t; s;Kð ÞdK ð3Þ
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W t; sð Þ ¼ Z
1

S tð Þ

6 ln K=S tð Þ½ � � 3ln K=S tð Þ½ �2
K2 C t; s;Kð ÞdK � Z

S tð Þ

0

6 ln S tð Þ=K½ � þ 3ln S tð Þ=K½ �2
K2 P t; s;Kð ÞdK ð4Þ

X t; sð Þ ¼ Z
1

S tð Þ

12 ln K=S tð Þ½ �2�4ln K=S tð Þ½ �3
K2 C t; s;Kð ÞdK þ Z

S tð Þ

0

12 ln S tð Þ=K½ �2þ 4ln S tð Þ=K½ �3
K2 P t; s;Kð ÞdK

ð5Þ

C t; s;Kð Þ and P t; s;Kð Þ are the prices of a call and a put option at time t with
maturity s and strike K, respectively, and S(t) is the underlying asset price at time t.

In order to compute the integrals in Eqs. (2)–(5), a continuum of option prices with
strike price ranging from zero to infinity is required. However, this hypothesis is not
fulfilled in the reality of financial markets. In particular, for European peripheral
countries, such as the Italian one, only a small number of strike prices is available
(around 15 per day) and the strike prices are spaced by a fixed range of basis points
(e.g. for the Italian market, 250–500 basis points depending on the maturity). As a
consequence, truncation and discretization errors may occur if a finite range of strike
prices and a discrete summation are used to approximate the integrals in Eqs. (2)–(5).

A commonly used solution is the one proposed in [11], who suggest to mitigate
both truncation and discretization errors by exploiting an interpolation-extrapolation
method. Given that standard statistical techniques are not able to cope with conflicting
information, standard market practice uses only a subset of available option prices (it
retains only at-the-money and out-of-the-money option prices, therefore put options for
strikes below and call options for strikes above the current asset price). Moreover, it
averages the two at-the-money implied volatilities (when the strike price equals the
current asset price) in a single estimate. It is obvious that this technique produces both a
considerable loss of information and introduces an element of arbitrariness in volatility
and skewness estimation.

3 The Smile Function Obtained Through Fuzzy Regression
Methods

In this section we present the approach adopted in order to include all the available
information in the market in the smile estimation procedure to obtain more informative
skewness estimates. This methodology represent an appealing solution to deal with a
framework characterized by conflicting information that needs to be aggregated (e.g.
interval values for the inputs).

Following [16–18], we propose to exploit fuzzy regression methods in order to
incorporate all the uncertainty embedded in the data in the smile estimation procedure,
without losing the information in the original data. Starting from the initial grid of
strike prices (xp) and implied volatilities (yp), we compute the minimum and the
maximum volatility for each strike price xp, p = 1,…,n as:
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rminðxpÞ ¼ minðrCðxpÞ; rPðxpÞÞ ð6Þ
rmaxðxpÞ ¼ maxðrCðxpÞ; rPðxpÞÞ ð7Þ

where rCðxpÞ and rPðxpÞ are the volatility of the call and the volatility of the put option
associated to the strike price xp. In this way, for a given strike price xp, we have a range
of possible values for volatility yp given by yp ¼ ½rminðxpÞ; rmaxðxpÞ�. In order to
include all the observations in the smile estimation, we resort to fuzzy regression
methods, which are capable to deal with interval values for the inputs. Given that the
relationship among strike prices and implied volatilities takes the form of a smile, the
so-called volatility smile, we adopt a quadratic fuzzy regression model, in order to
achieve the best fit to the data.

The quadratic fuzzy regression model takes the following form:

rðxÞ ¼ A0 þA1xþA2x
2 ð8Þ

where rðxÞ is the fuzzy output (i.e., the implied volatility associated to each strike
price), x is a non-fuzzy input vector of strike prices and Ai, i = 0,..,2, are the fuzzy
coefficients of the second order polynomial. Since we deal with strictly positive vari-
ables, the lower bound (rLðxÞÞ, the upper bound ðrUðxÞÞ, and the central value ðrCðxÞÞ
of the fuzzy regression model can be rewritten as:

rLðxÞ ¼ aL0 þ aL1xþ aL2x
2

rUðxÞ ¼ aU0 þ aU1 xþ aU2 x
2

rCðxÞ ¼ aC0 þ aC1 xþ aC2 x
2

Relying on a previous empirical analysis performed on the Italian market, we adopt
the quadratic extension of Ishibuchi and Nii fuzzy regression method proposed in [18]
to estimate the volatility smile function. This approach is based a two-step method-
ology. In the first step, the coefficients aC0 ; a

C
1 ; a

C
2 of the central regression rCðxÞ ¼

aC0 þ aC1 xþ aC2 x
2 are derived using the ordinary least squares:

min z ¼
Xm

p¼1

yp � ðaC0 þ aC1 xp þ aC2 x
2
pÞ

h i2
ð9Þ

where yp ¼ ðrminðxpÞþ rmaxðxpÞÞ=2 is the average of the two implied volatilities which
is adopted here to facilitate the use of the least squares estimation for the calculation of
the central equation.

In the second step, the lower rLðxÞ and the upper rUðxÞ bounds are derived by
means of the following optimization problem:
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min z ¼
Xm

p¼1

rUðxpÞ � rLðxpÞ ð10Þ

where

rUðxÞ ¼ aU0 þ aU1 xþ aU2 x
2

rLðxÞ ¼ aL0 þ aL1xþ aL2x
2;

subject to:

h rCðxpÞþ ð1� hÞrLðxpÞ� yp ¼ rminðxpÞ ; p ¼ 1; . . .; m

h rCðxpÞþ ð1� hÞrUðxpÞ� yp ¼ rmaxðxpÞ ; p ¼ 1; . . .; m

aLi � aCi � aUi ; i ¼ 0; 1; 2

where aC is pre-determined in the first step.
The fuzzy regression output is used to generate call and put prices to plug into

Eqs. (2)–(5). In order to have a benchmark for the proposed fuzzy-regression-based
measures of skewness, we also compute a skewness measure by applying the standard
cubic spline methodology. Moreover, given the importance of having a constant 30-day
measure for skewness (most of the risk measures for financial markets are calculated
for a reference time horizon equal to 30 days), a linear interpolation procedure is
adopted:

Skewness30 ¼ w Skewnessnear þ 1� wð ÞSkewnessnext ð11Þ

with w ¼ ðTnext � 30Þ=ðTnext � TnearÞ, and Tnear (Tnext) the time to expiration of the
near (next) term options, Skewnessnear (resp. Skewnessnext) is the estimate which refers
to the near (resp. next) term options. In general, a first option series with a maturity of
less than 30 days (near) and a second series with time to maturity greater than 30 days
(next) are used.

4 Fuzzy Skewness for the Italian Market

In this section, we present the results for the skewness measures of the Italian market
based either on the standard interpolation-extrapolation methodology or the fuzzy
regression method. The data set consists of daily closing prices on FTSE MIB-index
options (MIBO), recorded from 1 January 2010 to 28November 2014. The data set for the
MIBO is kindly provided by Borsa Italiana S.p.A, while the time series of the FTSEMIB
index, the dividend yield and the Euribor rates are obtained from Datastream. Several
filters to the option data set are used in order to eliminate arbitrage opportunities and other
irregularities in the prices (for a detailed discussion see e.g. [12, 13]).
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We perform the procedures described in Sects. 2 and 3 on the option prices that
meet the filter constraints and we obtain 1233 daily observations for each of the 10
estimates of skewness (we choose to use the upper and lower bounds of the h-cuts, with
h = 0, 0.25, 0.5, 0.75, 1 and the standard method). We also compute the subsequently
realized measure of skewness (obtained from historical series) using daily FTSE MIB
log-returns and a rolling window of 30 calendar days. In this way the physical measure
refers to the same time period covered by the measures computed using option prices,
which represent the investors’ expectation (under the risk-neutral measure) of the
former. In Table 1 we report the average value of realized skewness (first column) and
the estimates of skewness computed from option prices (columns 2–7). Specifically, the
estimate obtained using the standard procedure is reported in column 2. On the other
hand, the upper bound and the lower bound for each h-cut, is reported in columns 3–7.

Several observations are noteworthy. First, it is straightforward to note that all the
skewness measures obtained from option prices are on average lower than zero,
pointing to a negative risk-neutral skewness (i.e. the risk-neutral distribution is skewed
to the left). On the other hand, the subsequently realized distribution is almost sym-
metrical, the measure of skewness estimated from the historical series of the underlying
asset being equal to −0.012 on average. Second, the skewness estimate obtained by
setting h equal to one is lower than the one obtained using the standard interpolation-
extrapolation methodology. Third, the skewness estimate that is the closest to the
subsequently realized measure of skewness is the one provided by the upper bound of
the Ishibuchi and Nii (h = 0) fuzzy regression method.

5 The Defuzzification Procedure

In Sect. 3 we presented the advantages of skewness estimates obtained using fuzzy
regression method. In particular, the proposed skewness measures allow to extrapolate
further information with respect to the standard methodology since they provide not
only a most possible value for skewness, but also an interval of possible values around
the most possible one.

However, investors may prefer to condense all the information content of the
skewness estimates obtained using the fuzzy regression method into a unique value
(crisp output). This objective can be achieved by exploiting a defuzzification proce-
dure. An appealing solution in order to synthesize all the information embedded in the
skewness estimates is the one proposed in [19], who suggest that that the best
defuzzifier is the scalar that is “closest” to the triangular fuzzy number:

x ¼ aL þ 2aC þ aU

4
ð12Þ

where aL, aC and aU are the lower, the central and the upper bound of the triangular
fuzzy number.
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The defuzzification procedure is used to convert, for each strike price, the different
fuzzy regression results in the defuzzified volatility level. The obtained values for
volatility are subsequently converted in terms of call prices and used as input in
Eqs. (2)–(5) in order to obtain a unique skewness estimate.

The result for the defuzzified skewness estimate obtained with the Ishibuchi and Nii
method is reported in Table 1 (last column). We can see that the defuzzified skewness
estimate (−0.368) is close to the central estimate of the Ishibuchi and Nii fuzzy
regression method (h = 1). This suggests that the skewness estimate obtained using the
Ishibuchi and Nii fuzzy regression method do not show a pronounced asymmetry.

6 The Assessment of the Best Skewness Forecast

We are interested in evaluating whether fuzzy regression methods to estimate skewness
enhance the predictive power on future realized skewness. Given the large number of
forecasts (11) for skewness proposed in Table 1, we resort to the model confidence set
procedure (MCS) to identify the best model, or a smaller set of best models (see [9]). In
order to evaluate the forecasting performance of the proposed models, in line with
Patton (2011), we adopt the Mean Squared Error (MSE) error indicator, which provides
robust results in the presence of noise in the proxy of skewness:

MSE ¼ 1
m

Xm

k¼1

forecastk � realizedkð Þ2 ð13Þ

where forecastk and realizedk are the forecasted and realized measures of moments,
respectively, and forecastk is proxied by the different skewness measures obtained
using option prices. The average value of the MSE loss functions are reported in
Table 2. We can see that the best forecast for future realized skewness is the one
provided by the upper bound of the Ishibuchi and Nii (h = 0) fuzzy regression method.

Table 1. Average value of the estimated skewness measures.

RSkew Std. Meth. Ishibuchi and Nii def

h = 1 h = 0.75 h = 0.50 h = 0.25 h = 0

−0.012 −0.387 −0.368 −0.359 −0.352 −0.345 −0.334 −0.368
−0.383 −0.397 −0.413 −0.434

We report in the first and second column the average value for daily realized
skewness (RSkew) and the skewness estimate obtained using the standard
interpolation-extrapolation method (Std. Meth.), respectively. In columns 3–7 we
report the average value for daily skewness measures obtained combining the
Bakshi et al. skewness formula (Eq. 1) with the Ishibuchi and Nii fuzzy
regression method [10]. The results are reported for different values of h. For
each value of h we report the upper bound (first row) and the lower bound
(second row) estimate of skewness. Finally in the last column we report the
average value for the skewness estimate obtained using the defuzzification
procedure.
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Moreover, also the most possible value provided by the Ishibuchi and Nii (h = 1) fuzzy
regression method yields a lower error than that of the standard methodology. We also
evaluate the forecasting performance of the proposed defuzzified skewness measure on
future realized skewness by computing the Mean Squared Error (MSE) error indicator
(Eq. (13)). The result, reported in Table 2 (last column), indicates that the unique value
of skewness obtained using the defuzzification procedure obtains a slightly worse
performance with respect to the central estimate of skewness (h = 1). However, the
defuzzified skewness estimate is still better than the standard methodology in fore-
casting future realized skewness (MSE is equal to 0.165 and 0.188 for the defuzzified
and the standard method, respectively) and the improvement is significant from a
statistical point of view (this result is supported by a t-test, where errors are corrected
by Newey West, t-stat = −3.47, p-value = 0.00).

Therefore, investors who prefer to have all the information content of the skewness
estimates condensed into a unique value could refer to the estimate obtained by means
of the defuzzification procedure to have a more reliable forecast of future realized
skewness.

The MSE reported in Table 2 are the inputs of the Model Confidence Set test,
which is performed using the MCS package for R developed by [2]. The test allows to
assess whether the difference in the forecasting power between the proposed models are
significant from a statistical point of view (the statistic tij is used also in the well-known
test for comparing two forecasts, see [7, 23]. The confidence level (1 − a) adopted in
the test is equal to 0.95, the number of bootstrapped samples used to construct the
statistic test is 1000 (B = 1000). The results for the Model Confidence Set test are
reported in Table 3.

Table 2. Forecasting skewness: MSE error indicator.

Std. Met. Ishibuchi and Nii def

h = 1 h = 0.75 h = 0.50 h = 0.25 h = 0

MSE 0.188 0.161 0.153 0.148 0.143 0.138 0.165
0.174 0.189 0.209 0.238

The table reports the results of the skewness forecasting exercise
performed using the mean squared error (MSE) indicator defined as

follows: MSE ¼ 1
m

Pm

k¼1
forecastk � realizedkð Þ2

where forecastk and realizedk are the values of option based forecast of
skewness and realized skewness, respectively. For a definition of the
skewness measures, see Table 1, (upper bounds in the first row and
lower bunds in the second row).
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According to the Model Confidence Set test result reported in Table 3, the upper
bound of the Ishibuchi and Nii fuzzy regression method (h = 0) is the best forecast for
future realized skewness. All the other forecasts, included the one based on the standard
procedure, are eliminated.

Given the relevance of correctly measuring skewness to assess the riskiness of asset
return distribution, this result is very important for investors and regulators, who can
rely on fuzzy regression methods in order to get a more reliable forecast for skewness.

7 Conclusions

In this paper we have proposed a method for estimating skewness from option prices by
means of fuzzy regression methods. This approach offers several advantages. First, it is
possible to incorporate conflicting information coming from both call and put prices,
without having to make the a priori choice of discarding some option prices as in
standard market practice. Second, fuzzy regression methods are particularly suited
when a limited number of option prices is available. Last, fuzzy regression methods
yield a more reliable estimate in the form of interval of possible values, containing the
most possible one.

We offer an empirical application of the proposed method in the Italian market,
during the 2010–2014 time-period. The measures of skewness are computed on a daily
basis (closing values of option price are used) using five different level of h-cut: 0, 0.25,
0.50, 0.75, 1. The proposed skewness measures obtained through fuzzy regression are
compared with the measure of skewness provided by the standard procedure, which are
used as a benchmark. We also adopt a defuzzification procedure in order to condense
all the information content of the fuzzy skewness estimate in a unique value.

We get several results. First, the skewness estimates obtained using the fuzzy
regression method allow to extrapolate further information with respect to the standard
least square regression, since the coefficients of the fuzzy regression model provide not

Table 3. Forecasting skewness: Model Confidence Set.

Superior Set Model created: (10 models are eliminated),
indicator used: MSE

Rank Tmax,M p-value TR,M p-value Loss

I&N f U (0) 1 −6.896 0.000 −6.896 0.000 0.137

The table reports the Model Confidence Set for the skewness
estimates obtained using either the standard methodology and the
proposed fuzzy regression method. The input for the Model
Confidence Set reported is represented by the MSE loss functions
reported in Table 2. Tmax;M ¼ max

i2M
ti,TR;M ¼ max

i;j2M
tij
�
�

�
� are the test

statistics proposed in [9]; p-values for the tests are reported
sideways in the p-value column, the corresponding rank is
reported in the Rank column. The lower the value of T, the higher
the rank. In the last column, we report the average loss of the
model.
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only a most possible value for the coefficient, but also an interval of possible values
around the most possible one. Second, the mean squared error (MSE) indicator sug-
gests that the measures of skewness obtained through a fuzzy regression method are
closer to the subsequently realized measures than the one obtained using the standard
methodology. Third, the Model Confidence Set indicates that the improvement in the
forecasting performance attained using fuzzy regression is significant also from a
statistical point of view. Similar results are obtained for volatility estimates through
fuzzy regression in [16, 17]. Specifically, the best forecast of subsequently realized
skewness is the upper bound of the Ishibuchi and Nii fuzzy regression method (h = 0).

Since correctly measuring skewness is of paramount importance in finance in order
to correctly assess the riskiness of asset return distribution, this result is very important
for investors and regulators, who can rely on fuzzy regression methods to get a more
reliable forecast of skewness. Future research should evaluate if the use of other fuzzy
regression methods (such as Savic and Pedricz [21] and Tanaka et al. [22]) may
improve the forecasting power of the fuzzy skewness estimates.
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Abstract. We deal the problem of aggregation of individual judgments
for a global evaluation of a candidate or a product. In our theoretically
oriented approach, aggregation operators are compared with each other
based on their mathematical properties. We show that any monotone
and strategy-proof operators is characterized by a particular collection
of decision makers.

Keywords: Aggregation operators · Axioms · Non-manipulable ·
Sugeno integral

1 Introduction

We study the problem of aggregating grades that are expressed in a common
language consisting of a bounded totally order set of grades and we extend some
results in [2,3] and [13].

As an example we consider the evaluation of scientific research by peers or
experts review, a problem that is often encountered in practice. In this case we
look for a global evaluation of a candidate or of a research product given a set
of individual judgments. We are interested in aggregation rules satisfying the
requirement that no one can even better off by lying about his or her preference
and we call these rules non-manipulable or strategy-proof .

Judges may attempt to manipulate the outcome by misrepresenting their
grades and they are likely to do that if the aggregation rule allows for individual
manipulation.

We characterize strategy-proof aggregation rules in our framework by con-
sidering Sugeno integral which could be considered when qualitative or ordinal
information is used. This is due to the ordinal nature of its definition, which uses
only lattice operations.

The structure of the paper is as follows. In Sect. 2, we focus on the prob-
lem of a global evaluation given individual evaluations, the notion of strategy
proof functional is introduced and we present a characterization of strategy proof
aggregation functionals. Section 3 finally provides an axiomatic characterization
of anonymous grading functionals.
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2 Aggregation of Ordinal Assessments by Grading
Functionals

We introduce and characterize axiomatically a family of aggregation operators
that use a set of evaluations and we assume the existence of a common totally
ordered value scale for all experts. The common scale could be the zero-one
interval of the reals but also an integer-valued scale. Consider the case in which
the value of a product is assessed by a set of experts or the case in which
a recruitment committee has to decide among a number of applications for a
faculty position. In our model we do not assume that all judges should be counted
equally. We propose an axiomatic analysis of such a model and we suppose that
the evaluation scale is an ordinal structure not necessarily finite as in others
cited papers.

Let N = {1, . . . , n} the sets of experts and let X be a linearly ordered set
with a least and a greatest element, denoted by 0 and 1, respectively. As usual
we denote by � the total order and by < the asymmetric part of �. Clearly,
every linearly ordered set is a distributive lattice and then the cartesian product
XN constitutes a complete, distributive and bounded lattice by defining the
lattice operations componentwise. We use 0 and 1 to denote the least element
and greatest element, respectively, of XN . We denote the elements of X by
lower capital letters x, y, . . . and the elements of XN by bold face letters x,y, . . .
Moreover for each c ∈ X, we denote by c the constant c map in XN .

We say that a functional F : XN → X on a linearly ordered set X is a
grading functional if it is monotone with respect to componentwise order and it
is unanimous i.e such that

F (c) = c, for every constant map c ∈ XN .

These aggregation functionals are considered also in [13] and play a central role
in the majority judgment theory proposed by Balinski and Laraki in [2] and [3].
Balinski and Laraki developed a new concept for aggregating preferences in
Voting Theory which is based on the ratings of the candidates. It is important
to note that they assume a strong form of monotonicity (see [13]). They consider
also the non-manipulability of preferences as in the following definition.

We say that a grading functional is non manipulable if for any x,y ∈ XN

and any i ∈ N are satisfied the following properties:

xi > F (x) and xj = yj for every j �= i implies that F (x) � F (y) (1)

xi < F (x) and xj = yj for every j �= i implies that F (x) � F (y). (2)

Conditions 1 and 2 exclude that an expert i can manipulate the final score F (x)
of an element with score x. If the grading functional is non manipulable it is a
dominant strategy for an expert to honestly assign to a scientific product the
grade that he believes is the correct one and there is no incentive to misreport
the evaluations.
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For x = (x1, . . . , xn) ∈ XN and y ∈ X we write as in [13]

x/i y = (x1, . . . , xi−1, y, xi+1, . . . , xn)

and then Conditions 1 and 2 can be expressed as

if xi > F (x) then for every y ∈ X, F (x) � F (x/i y),

if xi < F (x) then for every y ∈ X, F (x) � F (x/i y).

The following result characterizes non manipulable grading functionals in terms
of generalized committee grading functionals.

We are going to consider discrete Sugeno integrals. The Sugeno integral has
been widely studied in aggregation theory and has many applications in different
fields such as decision theory, economics and finance, data fusion etc (see [8] for
a general background).

Sugeno integrals can be defined on a linearly ordered domain X in terms of
fuzzy measures (see also [6] and [7]). If we call P the set of all subsets of N
a X-fuzzy measure on N is a nondecreasing mappings m : P → X, such that
m(∅) = 0.

Then a functional F : XN → X is a Sugeno integral if and only if there exists
a X-fuzzy measure on N such that

F (x) = Sm(x) :=
∨

A⊆N

(
m(A) ∧

∧

i∈A

xi

)
.

In our framework if A is an element of P, m(A) can be viewed as a measure for
the importance of A.

A collection of sets C ⊆ 2N is said to be a generalized committee in N if
A ∈ C and A ⊂ B implies that B ∈ C (see [11] for a similar definition).

A generalized committee grading functional is a functional F : XN → X on
linearly ordered set X such that for every x ∈ X there exists a generalized
committee Cx such that if x � y then Cx ⊆ Cy and

F (x) =
∨

{x ∈ X : xi � x for every i ∈ C and C ∈ Cx}.

A generalized committee grading functional is a step-based evaluation as there
is an increasing set of steps that are the elements in X. The final grade is
determined by the best step that an element x achieves. If there is a set of
judges C ∈ Cx (of importance x) such that xi � x then the best step is x. Note
that the well known h-index introduced by Hirsch in [9] (see also [1] ) is defined
in the same way.

Proposition 1. A functional F : XN → X on linearly ordered set X is a non
manipulable grading functional if and only it is generalized committee grading
functional.
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Proof. We first prove that a functional F : XN → X on linearly ordered set X
is a non manipulable grading functional if and only if there exists a X-fuzzy
measure on N such that F (x) = Sm(x).

Since a Sugeno integral is a monotone and homogeneous aggregation func-
tional (see [6] for example) F is a grading functional. Then it is easy to prove
that it is a non manipulable aggregation functional.

Conversely we consider a non manipulable grading functional F : XN → X.
If this functional is an idempotent, strongly idempotent functional and has a
componentwise convex range by Theorem 2 in [5] is a discrete Sugeno integral
with respect to a X-fuzzy measure m on N .

The functional F is idempotent since F (c) = c, for every constant map c ∈
XN . A functional F : XN → X is strongly idempotent if for every x ∈ XN

and every i ∈ N we have that F (x/i F (x)) = F (x). Now, if xi > F (x) we can
prove that F (x) � F (x/i F (x)) by monotonicity of the functional F . Now, for
the sake of a contradiction, we assume that F (x) > F (x/i F (x)). By Property 1
we have that F (x/i F (x)) � F (x/i xi) = F (x) and so we can conclude that
F (x/i F (x)) = F (x). Hence by Property 2 we can prove that F (x/i F (x)) =
F (x) also when xi < F (x) and so we have proved that F is strongly idempotent.

The functional F has a a componentwise convex range if when F (x/i y1) <
z < F (x/i y2) for x ∈ XN , y1, y2 ∈ X and i ∈ N there exists y3 ∈ X such
that z = F (x/i y3). If y1 > F (x/i y1) by non-manipulability of F we have that
F (x/i y2) � F (x/i y1) then we can conclude that y1 � F (x/i y1). We can also
prove that y2 � F (x/i y2) since F is a non manipulable grading functional.

If F (x/i z) < z being z � y2 by Property 1 we have F (x/i y2) = F (x/i z)
thus we can prove that F (x/i z) � z. Moreover we get that F (x/i z) � z hence
F (x/i z) = z and so we prove that for the grading functional F is a Sugeno
integral with respect to a X-fuzzy measure m defined on N .

Now we can prove that a functional F : XN → X on linearly ordered set X
is a non manipulable grading functional if and only it is a generalized committee
grading functional since a functional is such that F (x) = Sm(x) for a fuzzy
measure X-fuzzy measure m on N if and only if it is a generalized committee
grading functional. We can prove this statement by considering the generalized
committee Cx = {C ⊆ N : m(C) � x}.

If we denote by (·) a permutation on N so that x(1) � x(2) � · · · � x(n) for
x = (x1, . . . , xn) ∈ XN by the proof of Proposition 1 a non manipulable grading
function F : XN → X. can be written in the following form:

F (x) = Sm(x) =
∨

i∈N

(
m({(i), . . . , (n)}) ∧ x(i)

)

with respect to a X-fuzzy measure m defined on N .
It is important to note that we consider the grade x(i) and also the weight

of the set of experts that give a grade greater or equal to x(i).
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A linearly ordered set X is a lattice and so we can define in X the ternary
median function by

Med (x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1)
= (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1).

By Theorem 2 in [5] we can prove the following corollary of Proposition 1 that
present a median representation of a grading functional as in [13].

Proposition 2. A functional F : XN → X on linearly ordered set X is a non
manipulable grading functional if and only for every x ∈ XN and every i ∈ N ,

F (x) = Med (x/i 0, xi,x/i 1).

3 Anonymous Grading Functionals

A grading functional F : XN → X on linearly ordered set X is said to be anony-
mous if

F (x1, . . . , xn) = (xπ(1), . . . , xπ(n))

for any x ∈ XN and any permutation π on N . If the aggregation rule is anony-
mous the name of the experts does not matter.

It can be easily proved that a grading functional is anonymous if and only
it is a generalized committee grading functional with respect to a generalized
committee such that for every x ∈ X there exists a natural number kx and the
elements of Cx are all the subsets of N of cardinality kx. In this case the final
grade of an element x is x If there is a set of judges C ∈ Cx of cardinality kx

such that xi � x.
Now we define a class of anonymous grading functional where the impor-

tance of a grade is not associated with a specific argument but with the place
that a grade occupies in the ordered sequence of grades. We refer to the class
of weighted maximum introduced studied in [7] in the more general case of dis-
tributive lattice.

A functional F : XN → X is called a positional grading functional if

F (x) =
∨

i∈N

(ωi ∧ x(i))

where ω1, . . . , ωn are elements of X and

1 = ω1 � . . . � ωn.

It is easy to prove that a positional grading functional is increasing, unanimous
and anonymous functional but we can also prove the following result.

Proposition 3. A functional F : XN → X on linearly ordered set X is a non
manipulable anonymous grading functional if and only it is a positional grading
functional.
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Proof. The result follows directly by Theorem 27 in [7] where we consider a
lattice that is a linearly ordered set. In fact a positional grading functional can
be represented as a Sugeno integral with respect to a symmetric measure and
thus is a non manipulable functional. Conversely a Sugeno integral that is a
symmetric functions is an ordered weighted maximum.

Also in this case we have a median-based representation. In fact if we consider
an element x ∈ X2n−1 and we define Med n−1(x) = x(n) by Corollary 28 (ii)
of [7] we can prove the following result.

Proposition 4. A functional F : XN → X on linearly ordered set X is a non
manipulable anonymous grading functional if and only it there exist a1, . . . , an−1

elements of X where a1 � . . . ,�, an−1 such that

F (x) = Med n−1(x1, . . . , xn, a1, . . . , an−1).

We consider the strong monotonicity property as in [13] and we characterize
strongly monotone and non manipulable grading functionals. We say that a
grading functional F : XN → X on a linearly ordered set X is strongly monotone
if x,y ∈ XN and xi < yi for every i ∈ N then F (x) < F (y). We say that a
grading functional F : XN → X is an order functional if there exists i ∈ N such
that F (x) = x(i).

Proposition 5. A functional F : XN → X on linearly ordered set X is a non
manipulable anonymous and strongly monotone grading functional if and only it
is an order functional.

Proof. If F : XN → X on linearly ordered set X is a non manipulable anony-
mous and strongly monotone grading functional then it is a positional grading
functional and so F (x) =

∨
i∈N (ωi ∧ x(i)) where ω1, . . . , ωn are elements of X

and 1 = ω1 � . . . � ωn. We can prove that ωi is 0 or 1 for every i ∈ N . In
fact if as an example ω1 = 1, 0 < ω2 = ω < 1 and ωi = 0 for every i > 2 we
can consider the two elements x = (0, ω, ω, . . . , ω) and y = (ω, 1, 1, . . . , 1) and
F (x) = ω = F (y) that is a impossible since F is strongly monotone.

4 Conclusions

We have studied evaluation structures with different characteristics but in any
case we have considered a complete order between scores. Preferences or evalu-
ations are not always representable via complete order and sometimes is more
natural to consider the presence of incomparable objects. We intend to extend
our approach to explicitly consider this case in a future extension.
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Abstract. In a recent paper we found an analytical formula for the con-
strained ordered weighted aggregation problem (OWA) when we need to
maximize the objective function. In this note we prove that the method
works in the case when we need to minimize the objective function.
If in the case of the maximization problem we need to rearrange the
coefficients in the constrained in nondecreasing order, for the nontriv-
ial minimization problem, it suffice to rearrange them in nonincreasing
order.

Keywords: OWA operators · Constrained optimization ·
Constrained OWA aggregation

1 Introduction

The OWA operators (ordered weighted average operators) were introduced by
Yagger in paper [8]. Since then, OWA operators were successfully used in research
fields that belong in broad sense to decision making. One interesting problem
is to optimize the OWA operator. This type of investigation started with paper
[7] and since then it became a challenging problem for researchers. The issue is
that we lack an analytical formula for the solution function. In order to avoid
repetition, we refer to our recent paper [2] where the problem is discussed in
detail. Then, we refer to the surveys [3] and [4] where the reader can find about
many optimization problems related to the OWA operators. Our interest in
this topic is to find those types of optimization problems where we can find
an analytical expression for the solution function. In paper [7] the idea was to
transform the problem into a mixed integer linear problem. As the number of
variables increases significantly an some of them are restricted to be integers, it
seems hard to find an analytical expression for the solution function in general.
The first such concrete result can be found in paper [1] in the special case when
we have a single constraint and all coefficients are equal to one. This result was
c© Springer Nature Switzerland AG 2019
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generalized recently in paper [2] where the coefficients are arbitrary this time.
The method used in this paper to obtain the analytical expression of the solution
function in the case when we maximize the objective function can be adapted
in order to find the analytical solution function when we need to minimize the
objective function. This is what we will do in this note. A common feature in
solving all these problems is that the constrained OWA aggregation problems are
transformed into linear programs and the analytical expression of the solution
function is obtained using the dual of these linear programs. It is important
to mention that there are other works too where one uses the dual of linear
programs in order to obtain the solution of certain type of constrained OWA
aggregation problems (see papers [5,6]).

The paper is organized as follows. In Sect. 2 we recall the basic theory on the
constrained OWA aggregation problem and we also recall our result from the
recent paper [2] where we found the analytical expression of the solution function
when we have a single constraint with arbitrary coefficients and the objective
function needs to be maximized. In Sect. 3, this time we will need to minimize
the objective function. Again, we will have a single constraint with arbitrary
coefficients. If in the case of the maximization problem we need to rearrange the
coefficients in nondecreasing order, for the minimization problem it suffice to
rearrange them in nonincreasing order. This similar approach is a consequence
of an inequality (often referred as Chebyshev inequality) on finite sequences of
reals. There are some differences considering the two types of problems but the
cases when the coefficients are positive give a similar type of solution function.
It is important to note that in the case of the minimization problem it is not
indicated to transform the problem into a maximization problem by considering
the opposite of the objective function. In this case, we lose the positiveness
of the weights and the solving becomes more complicated. What is more, we
cannot use the formulae obtained in paper [2] because there the positiveness
of the weights is essential. Indeed, as we said, the solution of this problem is
obtained by using the solution of the dual of a linear program. But this solution
needs to have positive components and this does not hold if instead of positive
weights we consider they opposite values. Section 4 presents an example where
both problems, maximization and minimization, are solved according to the
expressions of the solution function. The paper ends with conclusions where the
main results are discussed and further research on the topic is addressed.

2 Optimization of OWA Operators

Suppose we have the nonnegative weights w1, ..., wn such that w1 + ... + wn = 1
and define a mapping F : Rn → [0, 1],

F (x1, ..., xn) =
n∑

i=1

wiyi,

where yi is the i-th largest element of the sample x1, ..., xn. This is called an
OWA operator associated to the weights w1, ..., wn (see [8]). Then consider a
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matrix A of type (m,n) with real entries and a vector b ∈ R
m. A constrained

OWA aggregation problem corresponding to the above data, is the problem

max F (x1, ..., xn)

subject to
Ax ≤ b, x ≥ 0.

This problem was proposed by Yagger in [7]. A difficult task is to find an exact
analytical solution to this problem. Yagger used a method based on mixed inte-
ger linear programming problem which employes the use of auxiliary integer
variables and therefore, this method is not always effective. In the special case
where we have the single constraint x1 + ...+xn = 1, the first analytical solution
for the constrained OWA aggregation problem is given in paper [1]. This result
has been generalized recently in paper [2] where the coefficients in the constraint
are arbitrary. This problem can be formulated as

max F (x1, ..., xn) (1)

subject to

α1x1 + ... + αnxn ≤ 1,
x ≥ 0

Let us recall this result in the case when we can provide a nontrivial solution
(these cases were solved in Propositions 1–2 in [2]). In what follows, Sn denotes
the set of permutations of the set {1, ..., n}.

Theorem 1. Consider problem (1). Then:

(i) if there exists i0 ∈ {1, ..., n} such that αi0 ≤ 0, then F is unbounded on the
feasible set and its supremum over the feasible set is ∞;

(ii) if αi > 0, i ∈ {1, ..., n}, then taking (any) σ ∈ Sn with the property that
ασ1 ≤ ασ2 ≤ ... ≤ ασn

, and k∗ ∈ {1, ..., n}, such that

w1 + ... + wk∗

ασ1 + ... + ασk∗
= max

{
w1 + ... + wk

ασ1 + ... + ασk

: k ∈ {1, ..., n}
}
,

then (x∗
1, ..., x

∗
n) is an optimal solution of problem (1), where

x∗
σ1

= ... = x∗
σk∗ =

1
ασ1 + ... + ασk∗

,

x∗
σk∗+1

= ... = x∗
σn

= 0.

In particular, if 0 < α1 ≤ α2 ≤ ... ≤ αn, and k∗ ∈ {1, ..., n} is such that

w1 + ... + wk∗

α1 + ... + αk∗
= max

{
w1 + ... + wk

α1 + ... + αk
: k ∈ {1, ..., n}

}
,

then (x∗
1, ..., x

∗
n) is a solution of (1), where

x∗
1 = ... = x∗

k∗ =
1

α1 + ... + αk∗
,

x∗
k∗+1 = ... = x∗

n = 0.
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3 Minimizing the Objective Function

In this section we discuss the case when we search for the minimum in the
objective function. It seems that we can apply a similar approach as in the case
when the objective function is maximized. The general form is

min F (x1, ..., xn) (2)

subject to

α1x1 + · · · + αnxn ≤ β,
x ≥ 0.

Again, we will consider one restriction but in general form. Obviously it suffices
to consider only the following three problems (any other problem is reduced to
one of them)

min F (x1, ..., xn) (3)

subject to

α1x1 + · · · + αnxn ≤ 0,
x ≥ 0

min F (x1, ..., xn) (4)

subject to

α1x1 + · · · + αnxn ≤ 1,
x ≥ 0

and
min F (x1, ..., xn) (5)

subject to

α1x1 + · · · + αnxn ≥ 1,
x ≥ 0.

The solving of the first two problems is trivial. We observe that in both cases we
have the unique solution (0, 0, ..., 0), hence the minimum is 0 for both problems.

Let us discuss now the more interesting problem (5). The first result proves
that in searching for the solution, in the case of positive weights it suffices to
consider equality in the constraint.

Proposition 1. Consider problem (5) If (x∗
1, ..., x

∗
n) is a solution of problem (5)

and wi > 0, i = 1, ..., n, then α1x
∗
1 + ... + αnx∗

n = 1.
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Proof. If the conclusion were false, then we would have α1x
∗
1 + · · · + αnx∗

n > 1.
Obviously, there exists at least one strictly greater than zero component in
(x∗

1, ..., x
∗
n). Suppose these components are x∗

k1
, ...x∗

kl
. Then, there exists ε > 0

sufficiently small such that α1y
∗
1 + · · · + αny∗

n > 1, where y∗
ki

= x∗
ki

− ε > 0,
i = 1, ..., l, and all the other components are equal to 0 . Clearly this implies
that (y∗

1 , ..., y
∗
n) is feasible to our problem. What is more, we easily notice

that F (y∗
1 , ..., y

∗
n) < F (x∗

1, ..., x
∗
n), which again, contradicts the minimality of

(x∗
1, ..., x

∗
n).

Let us now discuss on the coefficients of the first constraint. If αi ≤ 0 for
all i ∈ {1, ..., n} then we have no solution since the feasible set is empty. Next,
suppose that there exists i ∈ {1, ..., n} such that αi ≤ 0. If (x∗

1, ..., x
∗
n) is a

solution of problem (5) then it is sufficient to take x∗
i = 0 because otherwise,

if x∗
i > 0, then it is really easy to prove that (y∗

1 , ..., y
∗
n), where x∗

j = y∗
j if

i �= j and y∗
i = 0, belongs to the feasible set of problem (5) and F (x∗

1, ..., x
∗
n) ≥

F (y∗
1 , ..., y

∗
n), hence (y∗

1 , ..., y
∗
n) too, is a solution for (5). It means that if in

problem (5) we have nonpositive coefficients in the restriction of problem (5),
then we can reduce this problem to a problem where all coefficients are strictly
greater than zero (we just eliminate the nonpositive coefficients and the weights
from bottom, for example, if only α1 ≤ 0 and α2 ≤ 0, then in the new problem we
eliminate these coefficients and the weights wn−1 and wn) and a solution of the
initial problem will be obtained by completing with zeros on the positions where
the nonpositive coefficients were standing. For example, if only α1 ≤ 0 and α2 ≤
0 then, if (x∗

1, ..., x
∗
n−2) is a solution of the problem where the coefficients α1, α2

and the last two weights are eliminated, then (0, 0, x∗
1, ..., x

∗
n−2) is a solution of

the initial problem. It is important to mention that if the weights are positive
and αi ≤ 0 for some i ∈ {1, ..., n}, then it necessarily follows that x∗

i = 0. Indeed
reasoning as above, this time we would get F (x∗

1, ..., x
∗
n) > F (y∗

1 , ..., y
∗
n), and this

contradicts the minimality of (x∗
1, ..., x

∗
n).

Therefore, it will not be at all a limitation for the general case if in all that
follows we assume that in problem (5) we have αi > 0, i = 1, ..., n. We start
with the special case when α1 ≥ α2 ≥ · · · ≥ αn, and only after we shall discuss
the general case. If (x∗

1, ..., x
∗
n) is a solution of the problem then let σ ∈ Sn

be any permutation such that x∗
σ1

≥ x∗
σ2

≥ · · · ≥ x∗
σn

. It is well known that

if a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn then
n∑

i=1

aibi ≥
n∑

i=1

aibτi for

any τ ∈ Sn. This implies that
n∑

i=1

αix
∗
σi

≥
n∑

i=1

αix
∗
i and hence

n∑
i=1

αix
∗
σi

≥ 1.

It means that (x∗
σ1

, ..., x∗
σn

) is feasible and on the other hand, clearly we have
F (x∗

1, ..., x
∗
n) = F (x∗

σ1
, ..., x∗

σn
), which means that (x∗

σ1
, ..., x∗

σn
) is a solution of

problem (5) as well (in the case when the weights are positive, By Proposition

1 it also means that
n∑

i=1

αix
∗
σi

= 1). But, this implies that (x∗
σ1

, ..., x∗
σn

) is in

addition a solution of the linear programming problem
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min
n∑

i=1

wixi (6)

subject to

α1x1 + ... + αnxn ≥ 1,
x1 ≥ x2... ≥ xn ≥ 0.

Indeed, it suffices to notice that the feasible set of this problem is included in
the feasible set of problem (5) which combined with the fact that F (x∗

1, ..., x
∗
n) =

F (x∗
σ1

, ..., x∗
σn

) and (x∗
1, ..., x

∗
n) solves (5) while (x∗

σ1
, ..., x∗

σn
) is feasible to prob-

lem (6), all these imply that (x∗
σ1

, ..., x∗
σn

) is a solution of (6).
In view of the above discussion, we start by providing an analytical solution

to problem (6). The reasoning is similar to those used in papers [1] and [2] in the
cases when we have maximum instead of minimum in the objective function. It
is convenient to write the dual of problem (6), which is

max t1 (7)

subject to

α1t1 + t2 ≤ w1,

α2t1 − t2 + t3 ≤ w2,

.

.

αn−1t1 − tn−1 + tn ≤ wn−1,

αnt1 − tn ≤ wn,

t ≥ 0.

Summing up the first k inequalities from above, k = 1, n, we get

t1 ≤ w1 + ... + wk − tk+1

α1 + ... + αk
, k = 1, n − 1,

t1 ≤ w1 + ... + wn

α1 + ... + αn
.

We easily notice that t1 ≤ w1+...+wk∗
α1+...+αk∗ , where k∗ ∈ {1, ..., n} satisfies

w1 + ... + wk∗

α1 + ... + αk∗
= min

{
w1 + ... + wk

α1 + ... + αk
: k ∈ {1, ..., n}

}
.

It means that (t∗1, ..., t
∗
n) is a solution of (7), where

t∗1 =
w1 + ... + wk∗

α1 + ... + αk∗
,

t∗k+1 =
(

w1 + ... + wk

α1 + ... + αk
− t∗1

)
(α1 + ... + αk) , k = 1, n − 1.
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From the duality theorem, if there exists (x∗
1, ..., x

∗
n) in the feasible set of prob-

lem (6), such that
n∑

i=1

wix
∗
i = t∗1, then (x∗

1, ..., x
∗
n) is a solution of problem (6).

Obviously this solution exists since we can take

x∗
1 = ... = x∗

k∗ =
1

α1 + ... + αk∗
,

x∗
k∗+1 = ... = x∗

n = 0.

We are now in position to present an analytical solution for the general case
of problem (5). We will just need to rearrange the order of the coefficients and
variables in order to use the formula from above. We reiterate again the fact
that it is not a limitation to assume that the coefficients are positive.

Theorem 2. Consider problem (5). If αi > 0, i ∈ {1, ..., n}, then taking σ ∈ Sn

(it is possible to have multiple choices for σ) with the property that ασ1 ≥ ασ2 ≥
· · · ≥ ασn

, and k∗ ∈ {1, ..., n}, such that

w1 + · · · + wk∗

ασ1 + · · · + ασk∗
= min

{
w1 + · · · + wk

ασ1 + · · · + ασk

: k ∈ {1, ..., n}
}
,

then (x∗
1, ..., x

∗
n) is an optimal solution of problem (5), where

x∗
σ1

= ... = x∗
σk∗ =

1
ασ1 + ... + ασk∗

,

x∗
σk∗+1

= ... = x∗
σn

= 0.

In particular, if α1 ≥ α2 ≥ · · · ≥ αn, and k∗ ∈ {1, ..., n} is such that

w1 + · · · + wk∗

α1 + · · · + αk∗
= min

{
w1 + · · · + wk

α1 + · · · + αk
: k ∈ {1, ..., n}

}
,

then (x∗
1, ..., x

∗
n) is a solution of (5), where

x∗
1 = ... = x∗

k∗ =
1

α1 + · · · + αk∗
,

x∗
k∗+1 = ... = x∗

n = 0.

As we said in the introduction, transforming problem (5) into a maximization
problem, that is, considering max −F (x1, ..., xn) instead of min F (x1, ..., xn), will
not lead to a simpler method to find the solution because we loose the positive-
ness of the weights which is essential in finding the solution of the dual problem
that leads to the solution given in Theorem1. There is another possibility to
transform problem (5) into a maximization problem, but in this case too, we
do not get an easier method. First, let us discuss the special case when all the
coefficients in the constraint are equal to one, that is, we consider problem

min F (x1, ..., xn)
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subject to

x1 + · · · + xn ≥ 1,
x ≥ 0.

As we know, without any loss of generality we may assume that the constraint
is x1 + · · · + xn = 1. Suppose that (x∗

1, ..., x
∗
n) is a solution of the problem

from above. Denoting with (y∗
1 , ..., y

∗
n) the vector that rearranges (x∗

1, ..., x
∗
n) in

nondecreasing order, then using the substitutions z∗
i = 1 − x∗

i and y∗
i = 1 − t∗i ,

i = 1, n, we get

F (x∗
1, ..., x

∗
n)

= w1y
∗
1 + · · · + wny∗

n

= w1 (1 − t∗1) + · · · + wn (1 − t∗n)

=
n∑

i=1

wi −
n∑

i=1

wit
∗
i

and

x∗
1 + · · · + x∗

n

= n −
n∑

i=1

z∗
i .

This easily implies that (1 − x∗
1, ..., 1 − x∗

n) and any of its permutations is a
feasible solution for the problem

max F (z1, ..., zn)

subject to

z1 + · · · + zn = n − 1,
z ≥ 0,

where

F (z1, ..., zn)
= w1t1 + · · · + wntn,

wi = wn−i and ti is the i-th largest element from the sequence z1,...,zn. Obvi-
ously, this later problem is a constrained OWA aggregation problem and the solu-
tion is immediate by applying Theorem 1, (ii). Unfortunately, (1 − x∗

1, ..., 1 − x∗
n)

it is not necessarily optimal since in general, the solution can have components
strictly larger than 1. Actually, one can easily prove that if (z∗

1 , ..., z∗
n) is an

optimal solution of problem

max F (z1, ..., zn)
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subject to

z1 + · · · + zn = n − 1,
z ≥ 0,

z ≤ 1

then (1 − z∗
1 , ..., 1 − z∗

n) and any of its permutations is an optimal solution of
problem (5). Clearly, this problem in general is not of type (1). Now, considering
the case of arbitrary coefficients we will arrive to a similar construction, that is,
a more complex maximization problem having additional constraints.

Comparing Theorems 1 and 2, respectively, we can easily solve both problems
(maximum and minimum) in the case of a single constraint. For the maximum
problem we just need to rearrange the coefficients in nondecreasing order and in
the case of the minimum problem, we need to rearrange them in nonincreasing
order.

4 An Example for Both Maximization and Minimization
Problems

Example 1. Suppose that F (x1, x2, x3, x4) = 1
3y1+ 1

8y2+ 1
2y3+ 1

24y4 and consider
the constraint x1 + 4x2 + 2x3 + 3x4 = 1. Let us find the maximum point of F .
Obviously, the minimum points are exactly the same if the constraint would be
x1 + 4x2 + 2x3 + 3x4 ≤ 1. Therefore, we can apply the conclusion of Theorem
1. We need a permutation of {1, ..., 4} which would rearrange the coefficients in
nondecreasing order. Such a permutation is

σ =
(

1 2 3 4
1 3 4 2

)

and by simple inspection, we get that

max
{

w1 + ... + wk

ασ1 + ... + ασk

: k ∈ {1, ..., 4}
}

is achieved for k∗ = 1. Applying the conclusion of Theorem 1, we get that
(x∗

1, ..., x
∗
4), x∗

1 = 1, x∗
2 = x∗

3 = x∗
4 = 0, is a solution of our problem. We also

notice that the maximum value is F (x∗
1, ..., x

∗
4) = 1

3 .
Let us find now the minimum of F under the same constraint. Obviously, we

have the same solutions if the constraint would be x1 + 4x2 + 2x3 + 3x4 ≥ 1.
It means that we can apply Theorem 2 for this problem. This time we need a
permutation of {1, ..., 4} which would rearrange the coefficients in nonincreasing
order. Such a permutation is

τ =
(

1 2 3 4
2 4 3 1

)
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and by simple inspection, we get that

min
{

w1 + ... + wk

ασ1 + ... + ασk

: k ∈ {1, ..., 4}
}

is achieved for k∗ = 2. Applying the conclusion of Theorem 2, we get that
(x1, ..., x4), x1 = x3 = 0, x2 = x4 = 1

7 , is a solution of our problem. We also
notice that the minimum value is F (x1, ..., x4) = 11

168 .

5 Conclusions

In this note we completed the work in paper [2], as this time we found the ana-
lytical expression of the solution function in the case of minimization of OWA
aggregation operators with single constraint. In the future, we are interested to
extend the results in the case when we have more constraints. Although in gen-
eral it seems that the method used in this research and in paper [2] cannot be
generalized as we cannot find a single permutation to rearrange monotonically
the coefficients in all constraints, some important special cases could be inves-
tigated. In the case of two constraints we have an ongoing research and results
are promising. Another important problem would be to find the solution of the
minimum problem from the solution of a derived maximum problem. This would
ease on the computer implementation. This problem as well seems to be quite
difficult since even in the simplest case when we have a single constraint with all
coefficients equal to 1, we obtained a maximization problem that has additional
constraints.
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Abstract. In this paper we deal with the problem of evaluating an
interval-valued fuzzy set, that is a fuzzy quantity delimited by two (lower
and upper) membership functions. The problem of associating this type
of set with a real number has been dealt with in different ways. Karnik
and Mendel proposed an algorithm for computing the mean of centroids
of membership functions that lie within the area delimited by the lower
and upper memberships. Nie and Tan choose a simpler way by calcu-
lating the centroid of the average of the lower and upper membership
functions. In both cases, the value obtained is useful not only in ranking
problems but also as a value of defuzzification if the set is the final out-
put of a fuzzy inference system. Since in this last case the obtained set
is usually not normal and not convex, the centroid seems to be the only
useful defuzzifier. Our purpose is to show that other methods based on
alpha-cuts, usually applied in convex type-1 case, can also provide useful
answers.

Keywords: Fuzzy sets · Fuzzy quantities · Interval-valued fuzzy sets ·
Evaluation · Decision making

1 Introduction

Type-1 fuzzy sets (T1 FSs) generalize the concept of a classical set allowing its
membership function to assume not only the two values zero and one, as in the
ordinary sets theory, but all the values between zero and one. This approach
lets to face real problems in which, due to the uncertainty that is inherent in
information, it is difficult to decide if something belongs or not to a specific
class. Either in theoretical framework or in industrial applications and decision
making problems, T1 fuzzy inference systems (T1 FISs) have obtained a lot of
success. The uncertainty, we find at this step, concerns not only on fuzzy rules
but even on inputs-outputs fuzzification. Sometimes, T1 FSs use does not seem
the best. We refer to cases in which the fuzzification of inputs derives from
choices made by experts. In these cases it is often difficult to reach an agreement
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on membership fuctions that describe the individual linguistic attributes of the
inputs-outputs. These problems carried out the research in the interval-valued
fuzzy sets (IVFSs) and interval-valued fuzzy logic systems (IVFLS) [1–6]. IVFSs
are particular cases of interval type-2 fuzzy sets (IT2 FSs), which in turn are
special cases of type-2 fuzzy sets (T2 FSs) [7–11]. Professor Zadeh introduced
the concept of T2 FS [12], but only later this notion has obtained a new life
by the work of professor J. Mendel and his group of research. In several book
they presented a complete description of Type-2 fuzzy systems [13,14]. An IT2
fuzzy set is a collection of infinite T1 fuzzy sets that define a two-dimensional
domain that is called footprint of uncertainty (FOU). The FOU is completely
described by its two bounding functions: a lower membership function (LMF)and
an upper membership function (UMF). The addition of this new dimension of
fuzziness has produced a lot of benefits in dealing with uncertainty, but has
generated some problems either in theory or in calculation [15–19]. One of this
problem is the defuzzification step of an IT2 fuzzy logic system. The set we
have to evaluate, is not connected with a unique membership function, but is
a two dimensional set in which are embedded infinite membership functions.
The new procedure that faces this problem is called Type Reduction step and
one of the most used method is Karnik and Mendel (KM) iterative algorithm
introduced for the general case of T2 FSs [20]. In [21] this method is translated
for IT2 FLS. It converts the output, which is a IT2 fuzzy set, into a finite
set of T1 fuzzy sets embedded in the output FOU zone. Then it evaluates the
centroid of all these fuzzy sets. These data lie in an interval and the defuzzified
value of IT2 fuzzy sets is its middle point. This procedure use centroid of a
fuzzy set as evaluation method. Following the same line, Nie and Tan (NT) [22]
have proposed a more simple and useful method for reducing the KM algorithm
computational cost. Their proposal of defuzzified value is the centroid of the
average of LMF and UMF, that describe the FOU zone of IT2 fuzzy set. Mendel
and Liu [23] either show a comparison between the two methods and propose
an NT implementation to the continuous case. The literature is therefore all
directed to the use of centroid as the unique method of defuzzification. The
motivation is clearly linked to the structure of the Fuzzy Sets that are obtained
in the defuzzification step. These sets may be non-normal and/or non-convex
and while the literature is full of defuzzification methods for fuzzy numbers [24–
33] it is very poor for generic fuzzy sets [34–39]. As in the past we have been
interested in this problem for T1FSs and we have shown how also methods that
seem closely related to the convexity of the fuzzy set, such as those related to
the α-cuts can produce interesting results, we have decided to face the type 2
case. In the case of IT2 fuzzy sets the techniques we propose have been defined
having in mind that the attribution of a real value to a fuzzy set could be
inserted in different fields of research as decision theory in which the final choice
of the decision maker may need an “area” of freedom. To give space to this
area, the methodology proposes a parametric formulation. We have followed
this idea guided by the words: “We note that parametrized classes of methods
for ordering fuzzy numbers are particularly useful, in that they allow us to train
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amethodology to satisfy the user. Parametrized classes are often suggested by
a process in which we try to unify and connect already existing approaches”
[39]. We underline that our choice produces two different results: the first is to
unify the two procedures, one that works on x-axis (centroid) and the other on
y-axis (α-cuts); the second is connected with the freedom that the parametric
vision offers to the decision maker. We start with an α-cut definition proposed
by Hamrawi [40,41]. He presents one different definition of α-cut for IT2 FSs
respect to the previous ones, taking the α-cuts of its LMF and UMF at the same
level. This definition is coherent withusual definition of T1FS α-cut when the
UMF collapses over LMF. Then we consider the family of all α-cuts of IVT2FS
and we find the nearest interval to this family with respect to a suitable distance.
The midpoint of the solution is the evaluation we propose and its spread is what
we call “level of uncertainty”. The two results depend on two different types
of parameters: the first acts horizontally as an α-cut weight, that is for every
alpha fixed it takes into account of all the intervals that form the single α-cut; the
second acts vertically as an α-level weight. As a consequence, the parametric view
leaves the decision maker to choice the weights in a different manner depending
on the context and his opinions. For a particular choice of these parameters
we reacquire the NT formula (centroid) in the continuous version. The new
formulation of NT method gives more information than the original one since it
shows the two families of parameters involved. In this case, as we will show, either
the horizontal or the vertical weight depends only on the length of α-cuts. This is
an important information for the decision maker as this type of choice produces
a particular meaning of his point of view. The freedom and the transparency
that the method offers may give more awareness for decision making.

2 Preliminaries and Notation

A type-1 fuzzy set (T1 FS) A of the universe of discourse X is defined by a
membership function μA : X → [0, 1] which assigns to each element of X a grade
of membership to the set A. The height of A is hA = height A = supx∈X μA(x).
The support and the core of A are the crisp sets supp(A) = {x ∈ X;μA(x) >
0} and core(A) = {x ∈ X;μA(x) = 1}. A fuzzy set A is normal if its core
is nonempty. The intersection (resp. union) of two fuzzy sets A and B is the
fuzzy set A ∩ B (resp. A ∪ B) defined by μA∩B(x) = min{μA(x), μB(x)} (resp.
μA∪B(x) = max{μA(x), μB(x)}). The α-cut of a T1 FS A, with 0 ≤ α ≤ 1,
is defined as the crisp set Aα = {x ∈ X;μA(x) ≥ α} if 0 < α ≤ 1 and as the
closure of the support if α = 0. We say that A ⊆ B if μA(x) ≤ μB(x) for each
x ∈ X. Note that A ⊆ B ⇐⇒ Aα ⊆ Bα ∀α. A fuzzy set is called convex if
each α-cut is a closed interval Aα = [aL(α), aR(α)], where aL(α) = inf Aα and
aR(α) = supAα.

Definition 1. [35,42] Let N be a positive integer and let a1, a2, . . . , a4N be real
numbers with a1 < a2 ≤ a3 < a4 ≤ a5 < a6 ≤ a7 < a8 ≤ a9 < · · · < a4N−2 ≤
a4N−1 < a4N . We call type-1 fuzzy quantity (T1 FQ)

A = (a1, a2, . . . , a4N ; h1, h2, . . . , hN , h1,2, h2,3, . . . , hN−1,N ) (1)
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where 0 < hj ≤ 1 for j = 1, . . . , N and 0 ≤ hj,j+1 < min{hj , hj+1} for j =
1, . . . , N − 1, the type-1 fuzzy set defined by a continuous membership function
μ : R → [0, 1], with μ(x) = 0 for x ≤ a1 or x ≥ a4N , such that

(i) for j = 1, 2, . . . , N : μ is strictly increasing in [a4j−3, a4j−2], with μ(a4j−3) =
hj−1,j and μ(a4j−2) = hj; μ is constant in [a4j−2, a4j−1], with μ ≡ hj; μ is
strictly decreasing in [a4j−1, a4j ], with μ(a4j−1) = hj and μ(a4j) = hj,j+1;

(ii) for j = 1, 2, . . . , N − 1: μ is constant in [a4j , a4j+1], with μ ≡ hj,j+1;

where h0,1 = hN,N+1 = 0. Thus the height of A is hA = maxj=1,...,N hj.

We observe that in the case N = 1 the T1 FQ defined in (1) is fuzzy convex,
that is every α-cut Aα is a closed interval. If N ≥ 2 the T1 FQ defined in (1) is
a non-convex fuzzy set with N humps and height hA = maxj=1,...,N hj .

Figure 1 shows an example of piecewise linear T1 FQ with N = 2.

a1 2 3 4a aaa aa5 6 7

h
1

h

1,2
h

2

1

a8

A

Fig. 1. Piecewise linear T1 FQ (N = 2)

If A is a T1 FQ with height hA then for each α ∈ [0, hA] there exist an integer
nA

α , with 1 ≤ nA
α ≤ N , and Aα

1 , . . . , Aα
nA

α
disjoint closed intervals such that

Aα =
nA

α⋃

i=1

Aα
i =

nα⋃

i=1

[aL
i (α), aR

i (α)], (2)

where we have denoted Aα
i = [aL

i (α), aR
i (α)], with Aα

i < Aα
i+1 (that is aR

i (α) <
aL

i+1(α)). Thus nA
α is the number of intervals producing the α-cut Aα.

From decomposition theorem [43] for T1 FSs and using previous result, we
get the representation

A =
⋃

α∈[0,hA]

α Aα =
⋃

α∈[0,hA]

α

nA
α⋃

i=1

Aα
i =

⋃

α∈[0,hA]

nA
α⋃

i=1

α Aα
i . (3)

Definition 2. [21] A T2 FS Ã in the universe of discourse X is characterized
by a type-2 membership function μÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.
Ã = {((x, u), μÃ(x, u)); x ∈ X, u ∈ Jx ⊆ [0, 1]} in which 0 ≤ μÃ(x, u) ≤ 1.
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If all μÃ(x, u) = 1 then Ã is called an IT2 FS. An IT2 FS Ã can be
considered as a special case of a T2 FS. Jx is called the primary member-
ship of x. The footprint of uncertainty (FOU) of an IT2 FS Ã is defined by
FOU(Ã) = {(x, u); x ∈ X, u ∈ Jx}. The FOU is a complete description of an
IT2 FS. The lower membership function (LMF) μL

Ã
and the upper membership

function (UMF) μU
Ã

of an IT2 FS Ã are defined as the two type-1 membership
functions that bound the FOU. An IT2 FS Ã is also denoted by Ã = (AL, AU )
where AL and AU are the T1 FSs with membership functions μAL = μL

Ã
and

μAU = μU
Ã

, respectively. For the sake of notation simplicity, in the following an
IT2 FS Ã = (AL, AU ) will be denoted by Ã = (B,C). Thus, the LMF of Ã is the
membership function μB of the T1 FS B and the UMF of Ã is the membership
function μC of the T1 FS C. The intersection and the union of two IT2 FSs
Ã1 = (B1, C1) and Ã2 = (B2, C2) are defined, respectively, by the IT2 FSs

Ã1 ∩ Ã2 = (B1 ∩ B2, C1 ∩ C2), Ã1 ∪ Ã2 = (B1 ∪ B2, C1 ∪ C2). (4)

Let us denote by L([0, 1]) the set of all closed subintervals of [0, 1], that is
L([0, 1]) = {[a, b]; a, b ∈ [0, 1], a ≤ b}.

Definition 3. [4,7,12] An interval-valued fuzzy set (IVFS) Ã on the universe
of discourse X is a mapping Ã : X → L([0, 1]) such that the membership degree
of x ∈ X is given by Ã(x) = [AL(x), AU (x)] ∈ L([0, 1]), where AL : X → [0, 1]
and AR : X → [0, 1] are mappings defining the lower and the upper bound of the
membership interval Ã(x), respectively.

We may look at IVFSs as special cases of IT2 FSs, when Jx is a closed interval
of real numbers [7]. Indeed, in this case, Jx = [μL

Ã
(x), μU

Ã
(x)] = [AL(x), AU (x)] =

Ã(x) for all x ∈ X. In the following an IVFS Ã = (AL, AU ) will be denoted by
Ã = (B,C).

3 Evaluation of Interval-Valued Fuzzy Quantities

We now introduce the concept of interval-valued fuzzy quantitity and present an
α-cuts decomposition result.

Definition 4. We call interval-valued fuzzy quantitity (IVFQ) an IVFS Ã =
(B,C), with B ⊆ C, such that B and C are T1 FQs. An example of IVFQ is
shown in Fig. 2(a).

Several papers deal with the definition of T2 FS α-cuts [11,40,44–46]. In this
study we follow definition given in [41] that preserves the α-cuts representation
for a T1 FS obtained by a IT2 FS in which UMF is collapsed to LMF.

Definition 5. [40,41] The α-cut at level α of an IVFQ Ã = (B,C) is the
IVFS Ãα defined by the α-cuts of the LMF and the UMF at the same level
(see Fig. 2(b)), that is Ãα = (Bα, Cα).
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Fig. 2. IVFQ Ã = (B, C) (a) and IVFQ Ã = (B, C) with its α-cuts (b)

If we let αÃα be the IVFS given by αÃα = α(Bα, Cα) = (αBα, αCα), the
following decomposition holds

Ã =
⋃

α

αÃα. (5)

Indeed
⋃

α αÃα =
⋃

α α(Bα, Cα) =
⋃

α(αBα, αCα) = (
⋃

α αBα,
⋃

α αCα) =
(B,C) = Ã where the third equality follows from (4) and the fourth equality
from decomposition theorem for T1 FSs.

Let us consider an IVFQ Ã = (B,C). From decomposition (5), all the infor-
mation contained in Ã is described by its α-cuts. Furthermore, observing that,
from (2), the α-cuts of T1 FQs B and C can be decomposed as Bα =

⋃nB
α

i=1 Bα
i ,

and Cα =
⋃nC

α
j=1 Cα

j , from (5) we obtain Ã =
⋃

α α
(⋃nB

α
i=1 Bα

i ,
⋃nC

α
j=1 Cα

j

)
. Such

decomposition enables us to identify the IVFQ Ã with the family Ã of all the
closed intervals Bα

i , Cα
j , that is Ã = {Bα

1 , . . . , Bα
nB

α
, Cα

1 , . . . , Cα
nC

α
; 0 ≤ α ≤ h}

where h = max{hB , hC} = hC . For convenience, by defining

Aα
i =

{
Bα

i i = 1, . . . , nB
α

Cα
i−nB

α
i = nB

α + 1, . . . , ñα
α ∈ [0, h] (6)

where
ñα = nB

α + nC
α , (7)

we can represent Ã as the family of all the closed intervals Aα
i , that is

Ã = {Aα
i ; i = 1 . . . , ñα, 0 ≤ α ≤ h}. (8)

We observe that each interval I = [a, b] can represented as a point in R
2 by

the pair (mid, spr) where mid(I) = (a + b)/2 and spr(I) = (b − a)/2 are,
respectively, the middle point and the spread of the interval. In this way the
IVFQ Ã can be viwed as a R

2 cloud (cluster) of points corresponding to all
the α-cuts of the IVFQ. Our idea is to evaluate the IVFQ Ã by the centre
C of the cloud, that can be found by solving a minimum distance problem.
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This point C is an interval and we propose the midpoint of this interval as
IVFQ Ã evaluation and its spread as its grade of uncertainty. We employ the
distance between two closed intervals I1, I2 (see [47]) defined by dθ(I1, I2) =√

(mid(I1) − mid(I2))2 + θ(spr(I1) − spr(I2))2. The parameter θ ∈]0, 1] indi-
cates the relative importance of the spreads against the mids [31]. In this paper
we consider the parameter θ as a function of α having in mind that the rel-
ative importance of the spreads against the mids may depend on the level of
uncertainty.

Let Ã be an IVFQ and Ã be the family of closed intervals defined in (8).
Let us consider a 3-tuple (p, f, θ) such that, for each level α, the weights p(α) =
(pi(α))i=1,...,ñα

satisfy the properties

pi(α) ≥ 0
ñα∑

i=1

pi(α) = 1, (9)

the weight function f : [0, 1] → [0,+∞[ fulfil the condition
∫ h

0

f(α) dα = 1 (10)

and θ : [0, 1] →]0, 1] is a function.
We are looking for the nearest interval to Ã with respect to (p, f, θ), that is

the interval K∗(Ã) = K∗(Ã; p, f, θ) which minimizes the weighted mean of the
squared distances

D(2)(K; Ã) =
∫ h

0

ñα∑

i=1

d2θ(α)(K,Aα
i ) pi(α) f(α) dα

=
∫ h

0

ñα∑

i=1

[
(mid(K) − mid(Aα

i ))2 + θ(α) (spr(K) − spr(Aα
i ))2

]
pi(α) f(α)dα

(11)
among all the intervals K. Note that the function θ : [0, 1] →]0, 1] indicates the
relative importance of the spreads against the mids. The weights we have intro-
duced work in a different manner: p(α) = (pi(α))i=1,...,ñα

gives the possibility
to evaluate in a different way the several intervals that produce the α-cut, the
weighting function f offers the possibility to give different importance to each
α-level.

Theorem 1. The interval K∗(Ã) = K∗(Ã; p, f, θ) which minimizes (11) with
respect to (p, f, θ) is given by

mid(K∗(Ã)) =
∫ h

0

ñα∑

i=1

mid(Aα
i ) pi(α) f(α) dα

spr(K∗(Ã)) =

∫ h

0

∑ñα

i=1 spr(Aα
i ) pi(α) f(α) θ(α) dα

∫ h

0
f(α) θ(α) dα

.

(12)
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Proof. By denoting mk = mid(K) and sK = spr(K), we have to minimize
the function g(mK , sK) =

∫ h

0

∑ñα

i=1

[
(mK − mid(Aα

i ))2 + θ(α) (sK − spr(Aα
i ))2

]

pi(α) f(α)dα with respect to mK and sK , where sK ≥ 0. We get

∂g

∂mK
(mK , sK) = 2

∫ h

0

ñα∑

i=1

(mK − mid(Aα
i )) pi(α) f(α)dα

∂g

∂sK
(mK , sK) = 2

∫ h

0

θ(α)
ñα∑

i=1

(sK − spr(Aα
i )) pi(α) f(α)dα.

By solving ∂g
∂mK

(mK , sK) = ∂g
∂sK

(mK , sK) = 0, taking into account that p and
f satisfy conditions (9) and (10), we easily obtain that the solution (m∗

K , s∗
K) is

given by (12). Moreover, by calculation, ∂2g
∂m2

K
(mK , sK) = 2

∫ h

0
f(α)dα = 2,

∂2g
∂s2

K
(mK , sK) = 2

∫ h

0
f(α)θ(α)dα, ∂2g

∂sK∂mK
(mK , sK) = ∂2g

∂mK∂sK
(mK , sK) =

0, det

⎡

⎣
∂2g

∂m2
K

(mK , sK) ∂2g
∂sK∂mK

(mK , sK)
∂2g

∂mK∂sK
(mK , sK) ∂2g

∂s2
K

(mK , sK)

⎤

⎦ = 4
∫ h

0
f(α) θ(α) dα > 0 and

∂2g
∂m2

K
(mK , sK) > 0. Then (m∗

K , s∗
K) minimizes g(mK , sK). ��

Remark 1. We observe that mid(K∗(Ã)) doesn’t depend on θ. Furthermore,
when the function θ is constant, that is θ(α) = θ for any α, with θ ∈]0, 1], we
get from (12) and (10)

spr(K∗(Ã)) =
∫ h

0

ñα∑

i=1

spr(Aα
i ) pi(α) f(α) dα (13)

and thus even spr(K∗(Ã)) doesn’t depend on θ.

Definition 6. We call evaluation of the IVFQ Ã = (B,C) with respect to
(p, f, θ) the real number V (Ã) = V (Ã; p, f) defined by V (Ã) = mid(K∗(Ã)),
that is, from (12),

V (Ã) =
∫ h

0

ñα∑

i=1

mid(Aα
i ) pi(α) f(α) dα. (14)

As previously observed, this evaluation doesn’t depend on θ.

At this point we have reached our aim: for every IVFQ Ã we may asso-
ciate two values, one is its evaluation V (Ã) and the second is the spread of its
uncertainty interval spr(K∗(Ã)).
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4 Application

We observe that the evaluation (14) with respect to (p, f) of an IVFQ Ã with
α-cuts Ãα can be expressed, in a more general way, by

V (Ã) =
∫ h

0

V alp(Ãα) f(α) dα

where V alp(Ãα) =
∑ñα

i=1 mid(Aα
i ) pi(α) is the evaluation of α-cut Ãα with

respect to (vector) weights p.
For instance, we may consider the parametric family of weighting functions

f(α) =
(n + 1)αn

hn+1
n ≥ 0 (15)

By varying parameter n we obtain different evaluations of Ã. This choice is
motivated by the desire to make decision maker able of assigning different weights
to different α-levels by tuning parameter n. Using (15) the evaluation (14) is

V (Ã) =
n + 1
hn+1

∫ h

0

V alp(Ãα)αn dα.

Furthermore, if in (14) we use for each level α the constant weights

pi(α) =
1

ñα
i = 1, . . . , ñα, (16)

we obtain the evaluation

V1(Ã) =
n + 1
hn+1

∫ h

0

(
1

ñα

ñα∑

i=1

mid(Aα
i )

)
αn dα. (17)

Observe that in this case V alp(Ãα) is the simple average of interval midpoints.

Fig. 3. IVFQ Ã = (B, C)
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4.1 A Numerical Example

Let us consider the IVFQ Ã = (B,C), shown in Fig. 3, adopted from [23,44].
The T1 FQs B and C have membership

μB(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − 1)/6 1 ≤ x ≤ 4
(7 − x)/6 4 ≤ x ≤ 5
(8 − x)/9 5 ≤ x ≤ 8
0 otherwise

μC(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x − 1)/2 1 ≤ x ≤ 3
(7 − x)/4 3 ≤ x ≤ 43/9
(x − 2)/5 43/9 ≤ x ≤ 6
(16 − 2x)/5 6 ≤ x ≤ 8
0 otherwise.

We now compute the α-cuts of B and C. For the T1 FQ B we have nB
α = 1 and

α-cuts

Bα =
{

[1 + 6α, 8 − 9α] 0 ≤ α ≤ 1/3
[1 + 6α, 7 − 6α] 1/3 < α ≤ 1/2.

For the T1 FQ C we have

nC
α =

⎧
⎨

⎩

1 0 < α ≤ 5/9
2 5/9 < α ≤ 4/5
1 4/5 < α ≤ 1

and α-cuts given by

Cα =

⎧
⎨

⎩

[1 + 2α, 8 − 5
2α] 0 < α ≤ 5/9

[1 + 2α, 7 − 4α] ∪ [2 + 5α, 8 − 5
2α] 5/9 < α ≤ 4/5

[1 + 2α, 7 − 4α] 4/5 < α ≤ 1.

Then for the IVFQ Ã = (B,C) we have (noting that h = max{hB , hC} = 1)

ñα = nB
α + nC

α =

⎧
⎪⎪⎨

⎪⎪⎩

2 0 ≤ α ≤ 1/2
1 1/2 < α ≤ 5/9
2 5/9 < α ≤ 4/5
1 4/5 < α ≤ 1

and, from (6),

Aα
1 =

⎧
⎪⎪⎨

⎪⎪⎩

[1 + 6α, 8 − 9α] 0 ≤ α ≤ 1/3
[1 + 6α, 7 − 6α] 1/3 < α ≤ 1/2

[1 + 2α, 8 − 5
2
α] 1/2 < α ≤ 5/9

[1 + 2α, 7 − 4α] 5/9 < α ≤ 1

Aα
2 =

{
[1 + 2α, 8 − 5

2
α] 0 ≤ α ≤ 1/2

[2 + 5α, 8 − 5
2
α] 5/9 < α ≤ 4/5.

Thus from (14) we have V (Ã) =
∫ 1

0
mid(Aα

1 ) p1(α) f(α) dα +
∫ 1/2

0
mid(Aα

2 )

p2(α) f(α) dα +
∫ 4/5

5/9
mid(Aα

2 ) p2(α) f(α) dα.

In Fig. 4 we have plotted the evaluation V1(Ã) defined in (17) as a function
of parameter n.
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Fig. 4. Evaluation V1(Ã) as function of parameter n

5 Comparison with Nie-Tan Method

In [22] Nie and Tan (NT) proposed to evaluate an IT2 FS by the center of
gravity (COG) of the average of the LMF and the UMF. They presented a
discrete version of this formula and underlined that important advantages of the
proposed scheme are its low computational cost and that it is expressed in a
closed form so it may be possible to analyse IT2 FLSs theoretically.

We show that the NT method, in its continuous formulation [23], may be
obtained by the evaluation we propose choosing particular values of the param-
eters involved. It is interesting to see that we obtain either the NT evaluation
or the interval of uncertainty in which it lies. The continuous form of the NT

method is given as VNT (Ã) =
∫ +∞

−∞ x μ̄(x) dx
∫ +∞

−∞ μ̄(x) dx
where μ̄(x) = (μB(x) + μC(x))/2 is

the average of the LMF and the UMF of Ã = (B,C). Equivalently,

VNT (Ã) =

∫ +∞
−∞ x μB(x) dx +

∫ +∞
−∞ x μC(x) dx

∫ +∞
−∞ μB(x) dx +

∫ +∞
−∞ μC(x) dx

. (18)

Our aim is to show that our evaluation (14) contains, as a particular case,
the NT one (18). In order to achieve this, we recall a previous result [35, Propo-
sition 9.3] for T1 FQs.

Lemma 1. Let A be a T1 FQ as defined in (1) with membership function μA,
height hA and α-cuts given by (2). Then for t ≥ 0 we have

∫ +∞
−∞ xt μA(x) dx =

1
t+1

∫ hA

0

∑nA
α

i=1

(
aR

i (α)t+1 − aL
i (α)t+1

)
dα. In particular, for t = 0

∫ +∞

−∞
μA(x) dx =

∫ hA

0

nA
α∑

i=1

|Aα
i | dα =

∫ hA

0

|Aα| dα (19)

and, for t = 1

∫ +∞

−∞
x μA(x) dx =

∫ hA

0

nA
α∑

i=1

mid(Aα
i ) |Aα

i | dα, (20)
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where |Aα
i | = aR

i (α)−aL
i (α) is the length of interval Aα

i and |Aα| is the Lebesgue
measure of Aα.

Proposition 1. Let Ã = (B,C) be an IVFQ. Let Aα
i be the closed intervals

defined in (6). If we choose

pi(α) =
|Aα

i |
∑ñα

j=1 |Aα
j | , f(α) =

∑ñα

j=1 |Aα
j |

∫ h

0

∑ñα

j=1 |Aα
j | dα

(21)

then we obtain V (Ã) = VNT (Ã).

Proof. Substituting the weights (p, f) given in (21) in the expression of V (Ã) (14)

we obtain V (Ã) =
∫ h

0

∑ñα

i=1 mid(Aα
i ) pi(α) f(α) dα =

∫ h
0

∑ñα
i=1 mid(Aα

i ) |Aα
i | dα

∫ h
0

∑ñα
i=1 |Aα

i | dα
.

Thus from (6) and (7) we get

V (Ã) =

∫ hB

0

∑nB
α

i=1 mid(Bα
i )|Bα

i | dα +
∫ hC

0

∑nC
α

j=1 mid(Cα
j )|Cα

j | dα
∫ hB

0

∑nB
α

i=1 |Bα
i | dα +

∫ hC

0

∑nC
α

j=1 |Cα
j | dα

=

∫ +∞
−∞ x μB(x) dx +

∫ +∞
−∞ x μC(x) dx

∫ +∞
−∞ μB(x) dx +

∫ +∞
−∞ μC(x) dx

= VNT (Ã)

where in the second equality we have applied (19) and (20) to the T1 FQs B
and C and the last equality follows from (18). ��

We have shown that the NT method is a particular case of our proposal for
suitable values of the parameters. Now we try to analyse how the two procedures
work, finding differences and similarities.

We observe that NT formula is the centroid abscissa of the average of the
two membership functions μB and μC that surround the FOU zone. It starts
working with a vertical dimension by a function x �→ Jx = [μB(x), μC(x)] that
assigns to every x ∈ X the interval Jx = [μB(x), μC(x)]. The second step is the
evaluation of Jx as its middle point, that is v(Jx) = (μB(x) + μC(x))/2. Third
step is a horizontal aggregation by VNT (Ã) =

∫
X

x v(Jx) dx∫
X

v(Jx) dx
, that is the centroid

abscissa of this new function.
Our proposal starts with a horizontal step by a function α �→ Ãα = (Bα, Cα)

where Ãα is the α-cut of the IVFQ Ã. It is identified by the couple of sets Bα and
Cα which are the α-cuts of T1 FQs B and C. The evaluation we propose for Ãα

is a convex combination of the two evaluations of Bα and Cα, that is v(Ãα) =
v(Bα) qB(α) + v(Cα) qC(α) with qB , qC ≥ 0, qB + qC = 1. As Bα and Cα are

union of intervals, we may write them Bα =
⋃nB

α
i=1 Bα

i and Cα =
⋃nC

α
j=1 Cα

j , their
evaluation is defined as a weighted average of the midpoints of every subinterval,
that is v(Bα) =

∑nB
α

i=1 mid(Bα
i )p′

i(α) and v(Cα) =
∑nC

α
j=1 mid(Cα

j )p′′
j (α), with

∑nB
α

i=1 p′
i(α) =

∑nC
α

j=1 p′′
j (α) = 1. Therefore, the evaluation v(Ãα) can be written

as
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v(Ãα) =
nB

α∑

i=1

mid(Bα
i )p′

i(α) qB(α)+
nC

α∑

j=1

mid(Cα
j )p′′

j (α) qC(α) =
ñα∑

i=1

mid(Aα
i ) pi(α)

where the intervals Aα
i are defined in (6) and the weights

pi(α) =

{
p′

i(α) qB(α) i = 1, . . . , nB
α

p′′
i−nB

α
(α) qC(α) i = nB

α + 1, . . . , ñα

are such that
∑ñα

i=1 pi(α) = 1. The evaluation (14) is then obtained by means of a
vertical aggregation, using a weighting function f , as V (Ã) =

∫ h

0
v(Ãα) f(α) dα.

The differences and similarities between the two methods are now more evi-
dent. Either the NT method or our are given in a closed form leaving the possi-
bility to have more theoretical information. The NT one works starting with the
vertical dimension and then with the horizontal one. The aggregation chosen is
the simple average. Our method works on the two axis too. Indeed at horizontal
level the weights pi depend on the α-level and are different respectively for T1
FSs B and C that surround the FOU zone leaving to the decision maker the
possibility to attribute different importance to Bα and Cα and even to their
subintervals. For example, taking into account that weights may depend on Ã,
the decision maker may give more importance to the intervals with relatively
large length or, in a pessimistic (optimistic) perspective, he may put more (less)
weight on Bα = {x; inf Jx ≥ α} rather than Cα = {x; supJx ≥ α}. In the
vertical level a new weight function appears. Its presence may assign different
importance to different values of α. We conclude that our approach allows the
decision maker to select an evaluation method according to his own criteria.

5.1 Modified Nie-Tan Evaluation

We now consider a modified version of Nie-Tan method by introducing a pes-
simistic/optimistic parameter λ ∈ [0, 1]. We define

vλ(Jx) = (1 − λ)μB(x) + λμC(x)

and

V λ
NT (Ã) =

∫
X

x vλ(Jx) dx∫
X

vλ(Jx) dx
.

Here λ = 0 reflects a pessimistic point of view of decision maker and λ = 1 an
optimistic perspective. This evaluation can be expressed as

V λ
NT (Ã) =

(1 − λ)
∫ +∞

−∞ x μB(x) dx + λ
∫ +∞

−∞ x μC(x) dx

(1 − λ)
∫ +∞

−∞ μB(x) dx + λ
∫ +∞

−∞ μC(x) dx
.

In the next result we show that our evaluation (14) contains, as a special
case, the evaluation V λ

NT .
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Proposition 2. Let Ã = (B,C) be an IVFQ. Let Aα
i be the closed intervals

defined in (6). If we choose

pi(α) =

⎧
⎪⎪⎨

⎪⎪⎩

(1−λ)|Aα
i |

(1−λ)
∑nB

α
j=1 |Aα

j |+λ
∑ñα

j=nB
α +1

|Aα
j |

i = 1, . . . , nB
α

λ|Aα
i |

(1−λ)
∑nB

α
j=1 |Aα

j |+λ
∑ñα

j=nB
α +1

|Aα
j |

i = nB
α + 1, . . . , ñα

and

f(α) =
(1 − λ)

∑nB
α

j=1 |Aα
j | + λ

∑ñα

j=nB
α +1 |Aα

j |
(1 − λ)

∫ h

0

∑nB
α

j=1 |Aα
j | dα + λ

∫ h

0

∑ñα

j=nB
α +1 |Aα

j | dα

then we obtain V (Ã) = V λ
NT (Ã).

6 A Numerical Example

Let us consider the IVFQ Ã = (B,C), shown in Fig. 3. We will perform the
evaluation of Ã using four pairs of parameters. The fourth choice corresponds to
NT method.

From (14) we have V (Ã) =
∫ 1

0
mid(Aα

1 ) p1(α) f(α) dα +
∫ 1/2

0
mid(Aα

2 ) p2(α)

f(α) dα+
∫ 4/5

5/9
mid(Aα

2 ) p2(α) f(α) dα. Similarly, assuming θ constant, the spread

of interval K∗(Ã) given in (13) can be expressed as spr(K∗(Ã)) =
∫ 1

0
spr(Aα

1 )

p1(α) f(α) dα+
∫ 1/2

0
spr(Aα

2 ) p2(α) f(α) dα+
∫ 4/5

5/9
spr(Aα

2 ) p2(α) f(α) dα. We now

compute the evaluation of Ã and the spread of interval K∗(Ã) for different
proposals.

(I) If we choose the weights

pi(α) =
1

ñα
, f(α) =

ñα∫ h

0
ñα dα

(22)

we get V (Ã) = 4.25 and spr(K∗(Ã)) = 1.63. This evaluation is obtained,
for the horizontal step, by a simple average of the of the midpoints of its
intervals which produce Bα and Cα. The vertical aggregation is obtained as
a weighted average of α-cuts values, where the weights are connected with
the number of intervals producing every α-cut, as we can see substituting
weights (22) in (14)

V (Ã) =
1

∫ h

0
ñα dα

∫ h

0

(
1

ñα

ñα∑

i=1

mid(Aα
i )

)
ñα dα.

(II) If we choose the weights

pi(α) =
|Aα

i |
∑ñα

i=1 |Aα
i | , f(α) =

1
h

(23)
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we get V (Ã) = 4.03 and spr(K∗(Ã)) = 1.70. This evaluation is obtained,
for the horizontal step, by a weighted average of the midpoints of α-cut
intervals, where the weights are connected with the interval lengths. The
vertical aggregation is obtained as the arithmetic mean of α-cuts evalua-
tions viewed in the horizontal step

V (Ã) =
1
h

∫ h

0

∑ñα

i=1 mid(Aα
i )|Aα

i |
∑ñα

i=1 |Aα
i | dα.

(III) If we choose the weights

pi(α) =
|Aα

i |
∑ñα

i=1 |Aα
i | , f(α) =

ñα∫ h

0
ñα dα

(24)

we obtain V (Ã) = 4.13 and spr(K∗(Ã)) = 1.84. This evaluation is
obtained, for the horizontal step, by a weighted average of the midpoints of
α-cut intervals, where the weights are connected with the interval spreads.
The vertical aggregation is obtained as a weighted average of α-cuts eval-
uations, where the weights are connected with the number of intervals
producing every α-cut

V (Ã) =
1

∫ h

0
ñα dα

∫ h

0

(∑ñα

i=1 mid(Aα
i )|Aα

i |
∑ñα

i=1 |Aα
i |

)
ñα dα.

(IV) If we choose the weights (p, f) given by (21)

pi(α) =
|Aα

i |
∑ñα

j=1 |Aα
j | , f(α) =

∑ñα

j=1 |Aα
j |

∫ h

0

∑ñα

j=1 |Aα
j | dα

,

we obtain V (Ã) = 4.32 = VNT (Ã) and spr(K∗(Ã)) = 2.43. This eval-
uation is obtained, for the horizontal step, by a weighted average of the
midpoints of α-cut intervals, where the weights are connected with the
interval lengths. The vertical aggregation is obtained as a weighted aver-
age of α-cuts evaluations, where the weights are connected with the sum
of the lengths of every interval producing the α-cut Ãα

V (Ã) =
1

∫ h

0

∑ñα

i=1 |Aα
i | dα

∫ h

0

(
1

∑ñα

j=1 |Aα
j |

ñα∑

i=1

mid(Aα
i ) |Aα

i |
)

ñα∑

j=1

|Aα
j | dα.

It is interesting to note that NT method viewed in this new perspective,
offers more information than in the centroid version. Indeed, even in this
case, the richness of the parameters, we have found, shows that the decision
maker may enter in the evaluation selecting the parameters involved, while
in the centroid version this richness it is impossible to look.
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Remark 2. If Ã is a T1 FQ, that is B = C, then we recover the uncertainty
interval and the evaluation for a T1 FQ given in [35]. We recall that this type-
1 evaluation includes, for suitable choices of parameters, other evaluations. In
particular using the parameters proposed in (I) we obtain the method proposed
by Fortemps and Roubens [37,42], using the parameters proposed in (II) we
obtain the method proposed by Yager and Filev [38,39], at the same way using
the parameters proposed in (III) we obtain what we have proposed in [42] and
using the (IV)-th parameters we obtain the Center of Gravity (COG).

7 A Different Proposal

In Eq. (17) we have defined the evaluation V1(Ã) using the parametric weighting
function f introduced in (15) and the weights p given by (16).

Motivated by previous results, we now propose an alternative evaluation to
V1(Ã) using in (14) the weights p given in (21) and (24). We define

V2(Ã) =
n + 1
hn+1

∫ h

0

(∑ñα

i=1 mid(Aα
i )|Aα

i |
∑ñα

i=1 |Aα
i |

)
αn dα. (25)

We observe that for n = 0 the evaluation V2(Ã) agrees with the evaluation V (Ã)
obtained using (23).

In Fig. 5 we have plotted the evaluations V1(Ã) and V2(Ã) as functions of
parameter n.

0 0.5 1 1.5 2 2.5 3
n
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3.6

3.8
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V1(Ã)

V2(Ã)

Fig. 5. Evaluations V1 and V2 as functions of parameter n

8 Conclusion

In this paper we present a parametric way to evaluate a particular type of IVFS,
called interval-valued fuzzy quantity (IVFQ), in which LMF and UMF are con-
tinuous and, in general, non-convex and/or non-normal. This set is the typical
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output of IVFLS. This formula seems useful as it offers either an interval that
gives information about uncertainty or an evaluation of an IVFQ. The contri-
bution of this work can be highlighted by two aspects. The first relates to the
possibility of using other defuzzification methods than centroid. The second is
related to the parametrization of the proposal. The presence of these two types
of parameters shows that both in cases of fuzzy control system and in cases of
decision theory as in the case of optimization of fuzzy-value functions, different
results can be obtained depending on the problem and the decision-maker. This
form of freedom that acts both horizontally and vertically provides a wealth that
the centroid can not offer. But remember that the centroid is a special case and
in this new perspective you can see what it means to use the centroid. There is
another interesting factor that is the result of our further line of investigation.
Referring to what has been said in Sects. 4 and 7, the idea of using a power
weighting function f in the evaluation recalls, in the case of fuzzy numbers, the
evaluation proposed in [27] in which it was noted that for powers greater (less)
than one this is equivalent to apply a “concentration” (“dilation”) operator to
the considered fuzzy number.
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Abstract. Explainable Artificial Intelligence (XAI) is a relatively new
approach to AI with special emphasis to the ability of machines to
give sound motivations about their decisions and behavior. Since XAI
is human-centered, it has tight connections with Granular Computing
(GrC) in general, and Fuzzy Modeling (FM) in particular. However,
although FM has been originally conceived to provide easily understand-
able models to users, this property cannot be taken for grant but it
requires careful design choices. Furthermore, full integration of FM into
XAI requires further processing, such as Natural Language Generation
(NLG), which is a matter of current research.

1 Introduction

Explainable Artificial Intelligence (XAI) is gaining consensus among researchers
and engineers in Computer Science, as an alternative approach to current AI
methods that show great learning capabilities but are relatively ineffective in
explaining the reasons of the produced outputs in a human-intelligible way. Fuzzy
Modeling has a huge potential for the development of advanced XAI systems,
provided that some methodological requirements are fulfilled. The aim of this
tutorial is to give a short overview of XAI and the way to reach it through Fuzzy
Modeling in particular. After a brief introduction to XAI (Sect. 2), the role of
Granular Computing is highlighted as the theoretical background that motivates
the adoption of Fuzzy Modeling for XAI (Sect. 3). In particular, interpretability
in Fuzzy Modeling is a key requirement for XAI, which is outlined in the subse-
quent Sect. 4. The next step toward XAI is the generation of natural language
expressions to explain the decisions of a fuzzy (rule-based) model; NLG is briefly
described in Sect. 5. Finally, some notes of possible future developments conclude
this paper.

2 Towards Explainable Artificial Intelligence

In 2013, Eric Loomis was found driving a car that had been used in a crime.
The judge sentenced him six-year of prison, which was determined in part by his
c© Springer Nature Switzerland AG 2019
R. Fullér et al. (Eds.): WILF 2018, LNAI 11291, pp. 215–227, 2019.
https://doi.org/10.1007/978-3-030-12544-8_17
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score on the COMPAS scale, an algorithmically determined assessment used to
predict an individual’s risk of recidivism. COMPAS is a proprietary algorithm,
and its risk assessment procedure is opaque to the public. Loomis appealed
against the sentence by objecting that the use of a predictive algorithm violated
the principle of a due process but the Wisconsin Supreme Court ruled against
Mr. Loomis because he would have gotten the same sentence based solely on the
usual factors, including his crime and his criminal history [31]1.

Loomis’ case is perhaps one of the first and most apparent examples of AI
used to determine the course of a person’s life. More and more cases accumu-
lated in recent years, in very disparate situations, including autonomous vehicles,
robot-assisted surgery, health-care, warfare, etc. AI is preponderantly entering
our life and we must ask ourselves if we want this new presence and at which
conditions.

The scientific community already recognized this new trend and began to
react accordingly. In 2017, ACM issued a Statement on Algorithmic Trans-
parency and Accountability which, by recognizing that computer algorithms have
far-reaching impacts, their use may consciously or unconsciously result in harm-
ful discrimination2. Accordingly, ACM recommends to use the same standards
as institutions where humans have traditionally made decisions and outlines a
set of principles, including the ability of explanation (a.k.a. explainability) which
encourages to produce explanations regarding both the procedures followed by
an algorithm and the specific decisions that are made.

From a political standpoint, the importance of data and their processing has
recently been recognized and regulated. The General Data Protection Regulation
(GDPR) is a EU regulation, emanated in 2016 and implemented in 2018, for the
protection of natural persons with regard to the processing of personal data and
on the free movement of such data3. GDPR is motivated, among other things by
the right to obtain an explanation of the decision reached after any assessment
provided by automatic procedures4.

Explainable Artificial Intelligence (XAI) is a new approach to AI where the
ability to explain the decisions provided by algorithms is the primary objective.
The XAI program was firstly defined by the Defense Advanced Research Projects
Agency (DARPA), with the objective of creating machine learning techniques
that produce more explainable models, while maintaining a high level of predic-
tion accuracy and «enable human users to understand, appropriately trust, and
effectively manage the emerging generation of artificially intelligent partners»5.
Figure 1 illustrates the differences between current AI (mainly based on Machine
1 The full history has been reported by The New York Times, on May 2, 2017, p. A22.

See https://nyti.ms/2qoe8FC.
2 https://www.acm.org/binaries/content/assets/public-policy/2017_joint_

statement_algorithms.pdf.
3 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679.
4 See note (71) in the preamble of GDPR. Actually, GDPR is quite timid in affirming

the right of explanation [36], thence the need of more precise regulations on the
subject in future.

5 https://www.darpa.mil/program/explainable-artificial-intelligence.

https://nyti.ms/2qoe8FC
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
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Learning) and XAI according to DARPA: the learned function is replaced by an
explainable model and an explainable interface for helping users understanding
the results of a machine learning process.

Fig. 1. XAI according to DARPA. Source: see footnote (5)

The importance of XAI is outstanding for several reasons, including: (i) the
possibility of integrating machine and human knowledge in a simple way that is
accessible by non-technical users; (ii) the possibility of interaction between users
and machines in order to tackle complex problems; (iii) the ability of users to
validate the functionality of an intelligent machine with respect to criteria of per-
formance, ethics, safety, causality, etc.; (iv) the possibility of trusting machines
for mission-critical applications [14].

XAI is growing widespread and reaching new frontiers on both scientific
and technological sides. In this tutorial we will highlight the role of Granular
Computing in general, and Fuzzy Modeling in particular, to the development of
XAI.

3 Granular Computing

Granular Computing (GrC) is a computing paradigm where the object of pro-
cessing is the information granule, i.e. a clump of objects kept together by
some relations of indistinguishability, similarity, functionality or alike [44]. GrC
is motivated by the need to approach AI through human-centric information
processing [9], thence its central role in XAI.

GrC moves from some long-stated considerations concerning the apparent
difficulty in developing common-sense reasoning in computers, while it seems so
natural in human beings [28, Sect. 2.5]. These considerations led to the develop-
ment of highly challenging branches of Informatics, such as Brain Informatics and
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Cognitive Informatics, which aim at understanding the informational nature of
human brain and mind by using the techniques provided by Informatics [37,45].
In particular, understanding the human brain and mind from the point of view
of Informatics brought to a couple of fundamental assumptions: (i) brains and
computers embody intelligence mostly for the same reasons; (ii) there exists a
set of common principles that underlies both human intelligence and artificial
intelligence [29]. Based on these assumptions, a theory of intelligence can be
envisioned, which consists of multiple levels of explanations starting from the
neural level up to the functional and conceptual level [38]. Deep neural networks
are models of such a theory of intelligence which belong to the lowest neural
and cortical levels. On the highest functional and conceptual levels, new forms
of “human-inspired” computing models are needed; this need gave rise to GrC
[38].

GrC is an “umbrella” paradigm that is declined in many forms according to
the different branches of Artificial Intelligence. In particular, according to Zadeh,
information granules are the results of granulation which, among organization
and causation, are the three basic concepts of human cognition [44]. Specifically,
granulation is the act of decomposing a whole into meaningful parts – like the
decomposition of the image of a face into mouth, eyes, etc., or a satellite image
into terrain, rivers, lakes, and so on.

Independent on the specific formal theories that can be developed under the
paradigm of GrC, there are two common principles that are generally preserved:
the multilevel and the multiview principles [39]. According to the multilevel
principle, granulation yields a hierarchical granular structure, with levels in the
hierarchy corresponding to different degrees of abstraction; on the other hand,
each granular structure offers just a partial view of a phenomenon, therefore
different granular structures (i.e. multiple views) may be used to provide a more
complete understanding of the reality that is modeled. (A handy example is
the scientific publishing model: title-abstract-content is a multilevel granular
structure that is represented in a paper, and more papers are usually published
on a subject to highlight the methodology, the application, the implementation,
etc.).

Information granules at one level are treated as primitives for the higher level
of a granular structure. Therefore, each information granule is informally defined
as a collection of objects (i.e., information granules of the lower level) related
together by some relation that makes objects indistinguishable at the higher
level. Similarity, spatial proximity, functionality are examples of such relations.

Many concepts in the human mind are formed through an act of percep-
tion, i.e. the organization, identification and interpretation of a sensation in
order to form a mental representation [32, Chap. 4]. Since what is perceived
belongs to a continuous Reality and concepts are formed through perceptions,
it is straightforward to assume that such concepts reflect the continuity of per-
ceptions. Information granules are used to represent and process concepts as
conceived by human minds, therefore information granules should be defined
in order to preserve the continuity of perception-based concepts. Fuzzy Set
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Theory (FST) offers a suitable mathematical underpinning to define this kind of
information granules [43]. In other words, «fuzziness of information granules is a
direct consequence of fuzziness of the concepts of indistinguishability, similarity,
proximity and functionality» [40].

Very often, perception-based concepts are designated by labels forming our
Natural Language [42]. Therefore, FST can be used for Computing With Words
[41]: propositions in natural language are translated into fuzzy constraints on
the involved variables; inference is carried out through the machinery offered
by FST; the results of inference are eventually expressed in natural language.
FST is a promising approach for defining the theoretical background to represent
perception-based information granules, which are designated by linguistic terms
drawn from natural language. Thus, FST is a natural candidate for designing
models in XAI. In the next Section, we’ll look at the opportunities and challenges
deriving from the use of FST in XAI.

4 Interpretability in Fuzzy Modeling

Fuzzy Modeling (FM) is a methodology oriented toward the design of explana-
tory and predictive models using FST. FM is long-standing, with pioneering
works dated in the seventies. The original intent of FM was to develop knowledge-
based models capable of both representing highly non-linear relations between
inputs and outputs, and at the same time offering an intelligible view of such
relations through the use of a simplified natural language [22]. This was accom-
plished by “fuzzy rules”; nowadays, fuzzy rule-based models are common practice
in FM.

In the eighties FST met Machine Learning [33,34], and since then several
methods for automatically deriving fuzzy rule-based models from data arose. As
a result, such fuzzy models were mainly designed for accuracy, while the original
intent of FST to represent perception-based knowledge became of secondary
relevance. But fuzzy rule-based models that are not interpretable are akin to
black-box models, like neural networks, for which an armamentarium of powerful
learning techniques already exist and are continuously refined. Interpretability
is a property of fuzzy rule-based models which can be roughly defined as the
capability of reading and understanding the knowledge-base of a (fuzzy) model.
Interpretability is not given from grant by the mere use of FST but it requires
a methodology that is still in development.

The definition of interpretability cannot be formulated in strict mathematical
sense because it involves the human factor which is hard, if not impossible, to for-
malize. However, the basic principle underlying interpretability can be found in
Michalski’s Comprehensibility Postulate, which parallels the results of a learning
algorithm with the description that a human expert might produce by observing
the same entities [27]. Roughly speaking, the perception-based concepts acquired
by a human should be co-intensive with the information granules that are auto-
matically generated by a learning algorithm, provided that the same objects are
observed [23]. In particular, since we use symbolic terms drawn from natural
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language to communicate knowledge, then the implicit semantics that a term
conveys when used in a context should overlap with the explicit semantics a
term is given by interpreting it with a fuzzy set (see Fig. 2).

It is possible to illustrate the concept of co-intension with an explanatory
example involving two actors, Alice and Bob [24], where Alice is a scholar com-
municating some piece of information to Bob by adopting an appropriate lan-
guage that is capable to represent her own knowledge. In order be understood by
Bob, Alice chooses linguistic terms whose meanings are supposed to be shared by
Bob. (It is not necessary that Alice’s and Bob’s meanings are exactly the same,
but they should be overlapping enough in order to understand each other.) This
is possible if Alice and Bob share similar environment, language, culture, experi-
ences, etc. Therefore, co-intension can be achieved if Alice and Bob share similar
conceptualizations of the piece of reality they are talking about. This illustrative
scenario is very common among humans as it enables communication of infor-
mation and knowledge. The comprehensibility Postulate tries to extend this
principle to the communication of knowledge acquired by machines to humans.

Interpretability calls for both semantic and structural requirements, whereas
the semantic facet is related to the co-intension of information granules with
perception-based concepts, and the structural facet is needed to cope with the
limited capabilities of the human brain in processing information [7]. In order
to achieve an effective definition of interpretability, a collection of interpretabil-
ity constraints and criteria can be adopted. This collection is not standard-
ized, because different constraints can be selected according to the needs of the
designer. As a consequence, there is not a unique computational definition of
interpretability. It is common to organize interpretability constraints according
to the level of modeling. Therefore, there are interpretability constraints for
fuzzy sets, for linguistic variables, for multi-dimensional information granules,
for fuzzy rules and for entire fuzzy models [25]. Assessment of interpretability is
aimed at formalizing measures that quantify the degree of fulfillment of inter-
pretability constraints by any model component. Also in the case of assessment,
both structural and semantic measures are used and eventually aggregated to
define a global evaluation of interpretability [16]. As an alternative approach,
interview-based experiments can be used to evaluate the interpretability of a
fuzzy rule-based model in a holistic way [5].

Designing interpretable fuzzy models requires some additional steps with
respect to the usual modeling stages. In particular, the source of knowledge may
be twofold: the available data and the expert’s knowledge. The way of consider-
ing these two sources is critical for an effective model. An iterative approach is
recommended to integrate induced knowledge with expert rules in order to drive
the design toward a model that is balanced in terms of predictive and explana-
tory capabilities [6]. Also, several modeling approaches are available, which may
favor interpretability over accuracy or the converse; other approaches recognize
that interpretability and accuracy are conflicting objectives and adopt multi-
objective techniques to achieve a Pareto front of solutions [12]. Alternatively,
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Fig. 2. Interpretation of symbols with fuzzy sets. Interpretability is assured only if the
implicit semantics conveyed by each linguistic term is co-intensive with the explicit
semantics determined by its interpretation.

ad-hoc algorithms may be used to incorporating interpretability constraints
within the algorithms that induce fuzzy rules from data [13].

Most methods for modeling interpretable fuzzy systems adopt type-1 fuzzy
sets, i.e. fuzzy sets that map objects of a universe of discourse into a scalar
degree of membership. There is, however, a large corpus of literature concerning
the use of type-2 fuzzy sets in fuzzy modeling. Type-2 fuzzy sets map elements
of a universe of discourse into a type-1 fuzzy set defined on the domain of mem-
bership degrees. Type-2 fuzzy sets are justified by the assumption that «words
mean different things to different people», therefore the uncertainty, related to
the membership degree an object has to a set modeling a word, can only be rep-
resented by another level of uncertainty, thus giving rise to type-2 fuzzy sets [26].
Type-2 fuzzy sets gained attention in the last 15 years, not without complicacies
and misconceptions [20]. For example, set operations on type-2 fuzzy sets can
be defined in different ways, leading to very different theories [11]. Also, type-2
fuzzy sets may have different interpretations (e.g. in terms of intuitionistic or
bipolar information). Therefore, type-2 fuzzy sets have a potential usefulness
in modeling the meaning of words, but their manipulation and interpretation
requires a full understanding of the subject of modeling. The authors’ position
is to favor type-1 fuzzy sets to model the knowledge base of a specific agent, while
type-2 fuzzy sets are more suitable to model a kind of “social knowledge” that is
shared among different agents. This is, however, matter of future research.

There are not many software tools to support designers in developing inter-
pretable fuzzy models [1]. FisPro6 is an open-source software that facilitates

6 https://www7.inra.fr/mia/M/fispro/fispro2013_en.html.

https://www7.inra.fr/mia/M/fispro/fispro2013_en.html
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interpretability in all fuzzy modeling steps [19]. GUAJE7 (Generating Under-
standable and Accurate fuzzy models in a Java Environment) is another open-
source software with the aim of supporting the design of interpretable fuzzy
rule-based systems by means of combining several preexisting software tools [2].
It is a portable graphical tool designed in order to facilitate knowledge extrac-
tion and representation for fuzzy rule-based systems, paying special attention to
interpretability issues (see Fig. 3). GUAJE lets the user define expert variables
and rules, but also provides supervised and automatic learning capabilities. Both
types of knowledge, expert and induced, are integrated under the expert super-
vision for ensuring interpretability and consistency of the knowledge base along
the whole process. The tool is an implementation of the HILK++ methodology
for interpretable fuzzy modeling [4].

5 Fuzzy Modeling for XAI: Current Developments

Interpretability in fuzzy modeling is a requirement that leads to the development
of methods and techniques to generate fuzzy models—mostly fuzzy rule-based
systems—whose knowledge bases can be read and understood by users. In order
to develop XAI, a step forward must be done, since in this case the new require-
ment is to explain the decision provided by a system. An interpretable fuzzy
system gives the necessary information, but the explanation of a decision needs
further processing.

XAI is a flourishing research direction is Artificial Intelligence, particularly
in Machine Learning [10,18]; in Fuzzy Logic, research is gradually including the

Fig. 3. A screen-shot of GUAJE.

7 https://sourceforge.net/projects/guajefuzzy/.

https://sourceforge.net/projects/guajefuzzy/
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results in interpretability to develop explainable models based on fuzzy models
[15]. A promising methodology that drives interpretable fuzzy modeling toward
XAI is Natural Language Generation (NLG). NLG enables the generation of
text from other data sources and finds application in state-of-art systems such
as speech recognition, machine translation and conversational systems among
others [17]. A specific branch of NLG is the so-called “data-to-text” (D2T-NLG),
whereas linguistic descriptions are automatically generated from a complex of
data. A particular approach for D2T-NLG is based on Linguistic Description
of Complex Phenomena (LDCP), a method for NLG that produces a Granular
Linguistic Model of a Phenomenon (GLMP), i.e. a network of processing units
called “perception mappings”, each of them representing a computational per-
ception or an aggregation thereof [35]. A computational perception is a unit of
meaning for the phenomenon under analysis and is identified by a set of lin-
guistic expressions and their corresponding validity values given a situation (e.g.
an input sample). Perception mappings aggregate computational perceptions by
means of aggregation functions, which could be implemented in form of fuzzy
rules, and generate appropriate text by an algorithm. The output of a GLMP is
a linguistic description that explains a possibly complex situation, thanks to use
of one or more underlying interpretable fuzzy models that are distributed among
the perception mappings [3]. Figure 4 illustrates an example of GLMP used for
generating an explanation of the inference carried out by a fuzzy rule-based
classifier and the corresponding explanation for a given input sample.

A challenge in LDCP is to explain a phenomenon involving correlated data,
whereas this relation has been learned by some inductive algorithm. A typical
example is given by a Machine Learning algorithm that is used for learning a
classification function: this algorithm could be highly accurate but it may hardly
explain why a class label has been assigned to a given input. A possible approach
is to use the classification algorithm as an oracle and a collection of interpretable

Fig. 4. Example of GLMP for explaining the classification of beers (left); textual expla-
nation of a classification (right) [8].
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models (including fuzzy models) as candidates for generating an explanation.
Given an input sample, the simplest interpretable model in accordance with the
oracle is used to generate an explanation through LDCP [8].

6 Future Developments

NLG is a promising way for developing XAI systems that generate textual
descriptions concerning their inferences. Fuzzy sets seem appropriate models
of the meaning of words, therefore fuzzy modeling is a promising approach for
NLG, as exemplified by LDCP. Current works are still in the introductory stage
and shed light on new research opportunities in the field. In particular, the inter-
action with deep neural networks is a mid-term objective since it could offer the
best of two worlds: the outstanding learning abilities of deep neural networks
with the human-centrality of conceptual models like those generated by LDCP.

From the point of view of interpretability in fuzzy modeling, future develop-
ments will be focused on representational issues: flat rule-based models are quite
standard nowadays but suffer structural limits that could be overcome by more
structured representations of knowledge. There are some tentative approaches
in this sense by hierarchical fuzzy systems [30] but they are not exempt from
criticism [21]. A tighter integration of fuzzy models with explanation models like
GLMP may reconcile the need of interpretability of acquired knowledge with the
requirement of providing explanation in complex scenarios.

Interpretability itself is matter of ongoing research, in order to cope with
current challenges resulting from the higher complexity of data that is used to
acquire knowledge. The use of incremental inductive algorithms, for example, is
welcome to cope with stream data; nevertheless, these algorithms should take
into account the requirement of interpretability of both the resulting knowledge
and its historical evolution.

Finally, it must be noticed that the interpretability constraints and criteria,
used for an operational definition and assessment of interpretability, are mostly
based on common-sense principles. A more formal approach, which looks at
interpretability as a protocol for the communication of information semantics,
is a promising research direction aimed at establishing the foundations of many
methodologies that are under current development.

Acknowledgments. Supported by the Spanish “Ministerio de Economía y Competi-
tividad” through the Ramón y Cajal Program (RYC-2016-19802).
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Abstract. Lotfi Zadeh, in discussing the future directions the discipline
should have taken, has insisted in highlighting what he called ‘the Fuzzy
Logic Gambit’ , whose basic idea is that, when dealing with the solution
of a problem through the use of Fuzzy Logic, two different type of pre-
cisions exist: “precision in value”, which is connected to the ability of
measuring reality, and “precision in meaning”, which is what we want to
attain when dealing with the real world.

While the final goal of Fuzzy Logic is to provide some degree of pre-
cision to what is less precise in nature, he has brilliantly suggested that
this can be obtained by bartering between precision in value and preci-
sion in meaning.

The thesis we present (and argue in favor of) here is that this idea can
be seen as a sort of paradigm of many proposals that Zadeh advanced
along many decades of research, and that this simple observation lurks in
many of the realizations that Fuzzy Logic has developed after becoming
mainstream
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Why “Fuzzy Logic Gambit” Can Be Seen as a Paradigm of Lotfi’s
Proposals
Trying to contribute to the main question of the round table in a heretical way
we shall not focus on specific aspects but on some (creative) internal tensions
existing in the development of Fuzzy Logic. We think, in fact, that great progress
can be obtained if big problems are faced in a direct way. In the last years of his
prolific career, Zadeh, in discussing the future directions the discipline should
have taken, has insisted in highlighting what he called ‘the Fuzzy Logic Gambit’
[1]. The fundamental idea behind the gambit is that, when dealing with solution
of a problem through the use of Fuzzy Logic, two different type of precisions
exist: precision in value, which is connected to the ability of measuring reality,
and precision in meaning, which is what we want to attain when dealing with
the real world. It is true that Fuzzy Logic aims at giving some degree of precision
to what is less precise in nature, but according to Zadeh this can be obtained
by bartering between precision in value and precision in meaning. Fuzzy Logic
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sacrifices precision in value, a strategy that reduces computational costs and
enhances tractability, and enhances precision in meaning, which has a cost but
is desirable in order to obtain a solution that makes sense in the real world. The
Fuzzy Logic Gambit is exactly the idea of starting earlier with imprecisiation,
or what Bělohlávek et al. call ‘a purposeful employment of imprecision’ [2], to
get to precisiation at a later stage.

One thesis we want to present and argue in favor here is that this idea can be
seen as a sort of paradigm of many proposals that Zadeh advanced along many,
many decades of research, and that this simple observation lurks in many of the
realizations that Fuzzy Logic has assumed after becoming mainstream.

The aim of this kind of analysis residing in the hope of focusing a more or
less meaningful pattern in his epistemological attitude. In fact, this could be
extracted also starting from other crucial observations done by him such as the
distinction between Fuzzy Logic in a restricted and general sense (or narrow
and wide) [3,4] or his project of “Computing with words” [5] seen as “a sys-
tem of computation in which the objects of computation are words, phrases,
propositions, questions, commands and other types of semantic entities drawn
from natural language” as he writes in the Preface to [6]. Another meaningful
point is his reference also to ‘perceptions’. Something indicating a very brave atti-
tude, since perceptions, traditionally, belong to the realm of ‘secondary’ qualities
which are usually assumed as not directly approachable by the use of scientific
methodologies.

We think that a part of Lotfi Zadeh’s scientific attitudes has been the one
of presenting a number of huge challenges which were impossible to answer and
solve within the usual methodologies of science – and for which he himself was
also unable to provide convincing reasons to the contrary – counting on the
fact that the ‘fuzzy’ scientific community would provide ‘reasonable’ answers,
although such answers would inevitably ‘normalize’ and downplay the impor-
tance of his original proposals. His typical reaction would be both a subtle
restatement of the original idea – in most cases with a reinforcement of the
heretical content – and, more often than not, the acceptance of what the com-
munity was busy dealing with at the moment (see e.g. [7–10]). The overall result
has been, on one side, a progressive (and useful) enlargement of the fuzzy domain
as a whole; the other side of the coin was paid at the price of both a method-
ological fragmentation of what has been done and the complementarity of the
results obtained by traditional scientific standards and the reference to ‘vision-
ary’ ideas. One could say that such a tension is present in every discipline.
However, we think that the modality along which this happens in the realm of
fuzziness is incomparably stronger.

The Fuzzy Logic Gambit, in our view, represents a good starting point for
this kind of reflections since it presents itself as a methodological guide free
from other direct implications on the ‘scientific production’ that the other two
topics, mentioned above, are usually burdened with. The idea of sacrificing pre-
cision with values but requiring more of it when meanings are involved resonates
perfectly well in the world of big data and in the society of information.
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The “epistemology” of the Fuzzy Logic Gambit and Some Questions
of Big Data
As a very brief and summary indication of the road that can be followed along
the line indicated above let us now briefly present a few remarks having just to
do with “big data”. We refer to the well known and quarrelsome debate on the
autonomy of data with respect to the necessity of the construction of a theory.

Big Data proponents have recently posited the “End of Science” as we know
it. Not recently indeed, as the first formulation of such an idea dates back to the
early nineteens, well before the technology allowed the analysis of petabytes of
data. The usual steps of outlining a theory and then try to find proof inside the
data will be outdated. We will have (and already have) so much data and means
of analysis that we don’t need theories anymore. We will just limit ourselves to
“let the data speaks for themselves”, extracting useful correlations just by the
sheer force of Big Data analysis. Small creeps in this façade start showing: a
number of authors (see, e.g., [11,12]) point to the correlation/causation problem
in findings obtained from big data, sometimes to a humorous extent (see [13]).
Not every use of big data suffers from such drawbacks, and in [11] a number of
positive results culled from linguistics are presented. But anecdotic evidence is
not enough: the pipe dream of post-theory science, fuelled by the money invested
in cloud computing, risks crashing against limits that are of a theoretical nature,
and imposed by computation theory: the more data you have, the more the corre-
lation that can be found by automatic data analysis are due to random properties
of the data itself, and not on real causation effects. Some of such limits are high-
lighted in the paper by Calude and Longo [12], and based on ergodic theory and
Ramsey theorem. There is another central and crucial question that is becoming
more and more important. The one of responsibility with respect to a wide use
of new technologies. For a long time, humans entertained the utopian idea that
the combination of availability of a huge quantity of data produced from sensors
and humans, as well as the democratisation of such data, in the shape of pub-
lication, accessibility for anyone of analysis software that works in an easy and
intuitive way, its sharing and discussion through social networks, would have
ushered us in a new era of factualness, scientificity and truthfulness. A num-
ber of recent developments (e.g. the Facebook/Cambridge Analytica affair, the
alleged meddling by Russian hackers/government agents in the USA presiden-
tial elections) have turned the dream into a nightmare: decentralising news and
mining the authoritativeness of reliable – if sometimes incoherent – sources are
among the causes of the rise of fake news, and among others of a more socio-
logical nature, of populisms in many European (and non-European) countries.
It has been postulated [14] that the democratization of data is just apparent:
that the control over what is measured, analyzed and discussed is concentrated
in few, powerful hands. This brings along new and potentially dangerous conse-
quences. Public opinion can be more easily manipulated, and most decisions are
now in the ‘hands of algorithms’ – whatever this means. The authors maintain
that the strength of new technologies and, specifically, their ability in collect-
ing, preserving and analyzing Big Data provides an important advantage for
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addressing electoral consensus. This happens with the active collaboration of
the users (which, in fact, as of today is practically anyone), seemingly willing
to offer information that will be used to trick them in exchange for free services
and the illusion of inclusion. Other, less glamorous examples (e.g. OpenPolis)
are a hint that knowledge is not bad by itself, and that its real power can be
harnessed for the good as well as the bad.

All the envisaged dangers are concretely possible. However, just to afford the
problems from a correct viewpoint, we must remember that similar situations
have occurred in the past. A suitable comparison can help us in forging correct
instruments for today’s questions. In particular, we must reflect on the following
facts: (a) the possible dangers – today - are certainly “quantitatively” different
from similar ones feared or occurred in the past. Are they also “qualitatively”
different? (b) This last point should be carefully analyzed in order to understand,
first, how this difference can be afforded (granted that this would be possible)
and, secondly, understand whether the qualitative difference pops up only from
phenomena of the type exemplified, e.g., in [15] (transformation of quantity in a
qualitative difference) or it is related to original, independent reasons (causes).

We could say that the inspiration behind Fuzzy Logic Gambit would suggest
that solutions based on the purely correlations emerging from the analysis of Big
Data are to be taken seriously as a first step, to be compared with experimental
findings. This check could be useful in providing suggestions for the subsequent
construction of a theory. This example as such does not specifically involve fuzzy
sets. The questions could be more interesting in case we strongly use fuzzy
techniques in the modelling of data.

References

1. Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178, 2751–2779 (2008)
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The fundamental shift in dealing with uncertainties [12] and computerised reasoning
was made by the late Professor Lotfi Aliasker Zadeh (1921–2017) in 1965 in his
seminal paper [1]. For the last over five decades the Fuzzy Sets theory has matured and
was applied to a long list of applications spanning from engineering, social sciences,
biology to transport, mathematics and many more. One of the developments in which
Prof. L. A. Zadeh had a strong personal input is the Fuzzy rule-based (FRB) systems.
Perhaps the main specific features characteristic for the fuzzy sets caused a remarkable
rethinking of some postulates and established concepts can be narrowed down to the
following two;

(a) The partial degree of membership, satisfaction, association;
(b) The duality (and, more generally, the multi-multiplicity) of association.

Throughout the years of these last five decades many problems were solved in a
new way thanks to the flexibility the fuzzy sets theory offers. The role of fuzzy sets in
making AI (artificial intelligence) more interpretable and explainable is undeniable.
Fuzzy sets offered the opportunity to formulate and solve more realistic optimisation,
decision support and control problems. They are hard to be replaced in areas such as
customer preferences modelling, etc.

However, one particular area of applications attracted my attention, in particular in
mid-1980s when I started my research career under the supervision of Dr. Filev,
FIEEE, FNAE [2], namely the issue of the design of FRB systems and the closely
related to them artificial neural network systems which confluence into so called neuro-
fuzzy systems around that time. Another significant milestone was reached somewhat
later when Hornik [3] (1990 for neural networks) and Wu and Mendel [4] (1992 for the
FRB systems), respectively theoretically proved the property of the respective systems
and models to be universal approximators.

The issue of the design of fuzzy sets was traditionally related to the definition of the
membership function as its descriptor [5]. This postulate was not questioned so far
although in late 1980s and 1990s in addition to the traditional subjective way of
designing fuzzy sets (Fig. 1) the so-called data driven design method started to be
popular and was developed as well (Fig. 2).

The subjective approach has its own very strong rationale in the two way
process of:
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(i) extracting expert knowledge and representing it in a mathematical form through
the membership functions, and

(ii) the ability to represent and extract form data human intelligible and understand-
able, transparent linguistic information in the form of IF …THEN rules.

In addition, since mid-1970s (Mamdani [7] or Zadeh-Mamdani [5]) and since mid-
1980s (Takagi-Sugeno [8]) FRB systems started to be developed and are now widely
applied. Although, there are other types of fuzzy systems (relational [9], etc.) one
particular type of FRB systems which we introduced recently with one of the pioneers
of fuzzy sets theory, Professor Yager [10] called AnYa offers a great potential,
specifically to address the issue of design of the fuzzy sets. While, both Mamdani-
Zadeh and Takagi-Sugeno type of FRB share the exact same antecedent part (the IF)
and only (although significantly) differ by the consequent (THEN) part, theYa type
FRB has a quite different antecedent (IF) part. The main issue in the design of the fuzzy
sets and systems is the very fundamental one – the membership function by which they
are defined in first place. It is practically very difficult and controversial to define
membership functions both form experts and from data. This is also related to the more
general issue of assumptions made and handcrafting which machine learning (including
statistical methods) are facing and is now hotly researched.

Recently, we proposed a new approach [11], which leads to a new form of fuzzy
sets and systems – empirical fuzzy sets and FRB systems (eFS and eFRB, respec-
tively). eFS and eFRB allow preserving the subjective specifics that fuzzy sets and
systems are strong with. At the same time, eFS and eFRB can benefit from the vast
amount of data that may be available. For example, eFS and eFRB still allow extracting
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functions type

Parametrization

Design Fuzzy 
Sets Subjectively

Fig. 1. Subjective design of fuzzy sets.
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Parameterized 
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Fig. 2. Data-driven design of fuzzy sets.
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expert knowledge by questionnaires or other forms, but will make this much more easy
for the expert and not ambiguous (the experts is not asked to define membership values
or parameters, but only (optionally) the labels/names of the linguistic terms, classes (if
any). For example, if we chose a car, we can simply say which one we like (or possibly
how much), but we do not need to specify why or define per feature (price, max speed,
etc.) (Fig. 3).

Moreover, with these new type of eFS and eFRB one can tackle heterogeneous data
and combine categorical (e.g. gender, occupation, number of doors) with continuous
variables like price, max speed, size, etc.

However, eFS and eFRB can also be designed in a data-driven manner, see Fig. 4.

More details are provided in [6] and [11].
On the basis of eFS and eFRB one can build empirically fuzzy classifiers (eF

Classifiers), predictors (eF Predictors), controllers (eF Controllers), recommender
systems, etc. Moreover, these can be evolving, not just fixed structure. This will allow
studying the dynamic changes in human preferences as well as to build more efficient
recommender systems where the only necessary input form the users is the preference
(“likes” or “retweets” or “clicks”).
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Extended Abstract

Alas, it is always dangerous to
prophesy, particularly, as the
Danish proverb says, about the
future.

Proceedings of the Meeting of the
Royal Statistical Society [1]

The quoted text is an interesting instance of a fuzzy object: it is currently
known in slightly diversified forms, each rather different from the quoted one,
which corresponds to the first known appearance in English of this adage1.
Indeed, most of the times we are used to reading or hearing variations of the
sentence “it is difficult to make predictions, particularly about the future”. The
fuzziness here also extends to the source of the aphorism, which over the years
has been attributed, among others, to Mark Twain, Niels Bohr, and even Nos-
tradamus. This induces a fortiori further uncertainty of about half a century
on the time of introduction of this saying. Actually, the first written evidence
of what we could call an academic proverb is found in the autobiography of
a Danish politician (published in 1948, by the way, in Danish). Summing up,
what we have here is a rather definite concept (a humorous, yet effective warn-
ing about the assertion of forecasts) exhibiting several forms of imprecision: in
its statement, in its authorship and in its temporal origin. Having this warn-
ing in mind, the challenging idea of shaping the future of fuzzy logic and fuzzy

1 According to https://quoteinvestigator.com/2013/10/20/no-predict/, where the
subject of tracing the various incarnations of this quote is covered in depth.

c© Springer Nature Switzerland AG 2019
R. Fullér et al. (Eds.): WILF 2018, LNAI 11291, pp. 240–243, 2019.
https://doi.org/10.1007/978-3-030-12544-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12544-8_20&domain=pdf
http://orcid.org/0000-0002-7574-697X
https://quoteinvestigator.com/2013/10/20/no-predict/
https://doi.org/10.1007/978-3-030-12544-8_20


Thoughts About Appealing Directions Along the Path Traced by Zadeh 241

sets fields one year after Lotfi Zadeh passed away looks like a venturesome and
hazardous task. On the one hand, almost any scholar investigating the broad
umbrella of soft computing knows the papers originating the rich veins of fuzzy
sets and fuzzy logic [22,26]; however, the fact of having extended the basic brick
of mathematical architecture (namely, the concept of set, along with the imme-
diate application bringing to the definition of fuzzy numbers [8]) allowed Zadeh
to publish more than forty years ago quite a number of seminal papers con-
cerning the “fuzzification” of several key fields in mathematics and informatics.
The following list shows some interesting example of such fields2, without any
pretence of exhaustiveness:

– the notion of fuzzy languages [12], introduced as fuzzy sets defined over the
universe of strings induced by a finite alphabet;

– the extension of probability theory characterized by expressing the probabil-
ities of events in terms of the above mentioned fuzzy numbers, giving thus
rise to fuzzy probabilities [25];

– the concept of fuzzy random variable, which over the years has been stud-
ied under various interpretations, intended for instance as random variables
whose specifications are fuzzy random numbers [11], or identified with random
fuzzy sets [17];

– the field of fuzzy control [24], which has been widely applied in the industrial
domains, also in its neurofuzzy variant [16] devoted to the integration of neural
and fuzzy technologies;

– the reformulation of algorithms to the fuzzy domain [18,23], for instance
through the use of rules based on fuzzy conditional statements.

Since they have been introduced, some of these promising research lines have
had less fortune than the widely known ones: for instance, the papers authored
by Zadeh and focusing on fuzzy probabilities and on fuzzy random variables
have been cited, respectively, two and one order of magnitude fewer times than
its paper originating the rich vein of fuzzy sets. Thus for sure there are relatively
unexplored fields of the fuzzy universe which are worth studying and whose inves-
tigation could even bring to serendipitous research results. This could also help
to strengthen the mathematical foundations of fuzzy systems and to establish a
tighter connection with other techniques such as deep learning, which recently
experienced a tremendous expansion also in terms of industrial applications.
Within this thread, big data and security emerge as two critical issues, as briefly
explained below.

Big data. The amount of data to be processed in modern applications is more
and more characterized by inputs not even fitting the hard disk of a computer.
The only option in such cases consists in considering distributed storage systems
(see [6,19] for two of the mainly used technologies). Moreover, in several inter-
esting situations data is organized in streams requiring each item to be either
2 It is also worth mentioning the contribution of Zadeh in the rise of other specific
frameworks dealing with uncertainty, such as those of possibility theory [9] and
granular computing [3–5].
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processed on the fly, or forgotten forever. Although some efforts to adapt main-
stream fuzzy procedures to such a massive scale already exist in the literature
(see for instance [14] for an extension of the fuzzy C-means algorithm exploit-
ing the map-reduce distributed computational framework [7]), a lot of work still
needs to be done; this process will inevitably bring to new views of the fuzzy
world when the available techniques are inherently difficult to scale up with the
dimension of processed data (such as when standard optimization techniques are
involved, as in [15]). Moreover, several approaches and algorithms born expressly
to deal with big data problems might represent interesting grounds for fuzzy
techniques as well (just to state an example, [13] and [20] deal with a fuzzy dec-
lination of the collaborative filtering procedure at the basis of several modern
recommendation systems).

Security. The transition from research domain to industrial and real-world appli-
cations brings up the need of ensuring robustness of the proposed methods
against unauthorized access. Again, other soft computing realms might inspire
new categories of malicious attacks, as well as suggest defensive techniques. An
example is constituted by the attacks expressly designed in order to fool deep
neural networks on the basis of adversarial examples [10,21]. Analogously, the
maturity of fuzzy systems for the business market requires the design and devel-
opment of specific digital rights management techniques against the unautho-
rized use of illegal copies of a sold fuzzy artifact; here, once again, the neural
networks world might suggest interesting candidate solutions, for instance refer-
ring to watermarking techniques [2]. More generally, the security field is highly
unexplored as far as fuzzy techniques are concerned.

Summing up, Lotfi Zadeh has unveiled a world which for sure is far from
being fully explored and understood. Instead, his work laid the foundations for
a thorough management of uncertainty in several fields of mathematics and
informatics yet to be completed in its theoretical form.

Moreover, it is worth pointing out that one of the key factors which led to
the success of the vast umbrella of fuzzy technologies is related to their early
implementation in industrial and electronic devices. In order to keep the pace
up in this domain, a big challenge is envisaged in terms of applications, with
specific reference to big data and stream processing, as well as of providing a
secured access to artifacts based on fuzzy technologies.
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Extended Abstract

The European Commission has identified Artificial Intelligence (AI) as the “most
strategic technology of the 21st century” [7]. AI is already part of our everyday
life through many successful applications into real-world usage and according to
Accenture [16] the economic impact of the automation of knowledge work, robots
and self-driving vehicles could reach between 6.5 and 12 €trillion annually by
2025. People are used to buzzwords like smart watch, smart phone, smart home,
smart car, smart city, etc. In practice, we are surrounded by smart gadgets, i.e.,
devices connected to Internet and endowed with some level of autonomy and
intelligence thanks to AI systems. The cohabitation of humans and smart gad-
gets makes society demand the development of a new generation of explainable
AI systems, i.e., AI systems ready to explain naturally (as humans do) their
automatic decisions.

Thus, the research field on explainable AI is flourishing and attracting more
and more attention not only regarding technical but also ethical and legal
issues [8]. The ACM Code of Ethics [1] highlighted explanation as a basic prin-
ciple in the search for “Algorithmic Transparency and Accountability”. In addi-
tion, Floridi et al. defined the concept of “explicability” in reference to both
“intelligibility” and “explainability” and hence captured the need for trans-
parency and for accountability in an ethical framework for AI [10]. Moreover,
the new European General Data Protection Regulation (GDPR) [14] refers to
the “right to explanation”, i.e., GDPR states that European citizens have the
right to ask for explanations of decisions affecting them, no matter who (or what
AI system) makes such decision.

The term eXplainable Artificial Intelligence (XAI) was coined by the USA
Defense Advanced Research Projects Agency (DARPA) [11]. Assuming that
c© Springer Nature Switzerland AG 2019
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“even though current AI systems offer many benefits in many applications, their
effectiveness is limited by a lack of explanation ability when interacting with
humans” DARPA launched to the research community (including both academy
and industry) the challenge of designing new self-explanatory AI systems from
2017 to 2021.

In Europe, there is not any initiative similar to the DARPA challenge on XAI
yet. However, the European Commission has already pointed out the convenience
of launching a pilot in XAI [7]. In June 2018, the Confederation of Laboratories
for Artificial Intelligence Research in Europe (CLAIRE1), a novel initiative to
create a network of excellence in AI with the most well-recognized universities
and R+D centres, emphasized in its European vision for AI the need to search
for transparent, explainable, fair and socially compatible intelligent systems.
Moreover, The AI4EU2 H2020 Project is funded by call ICT-26 2018 (grant
825619) with the aim of: (1) to mobilize the entire European AI community
to make AI promises real for the European Society and Economy; and (2) to
create a leading collaborative AI European platform to nurture economic growth.
Explainable Human-centered AI is highlighted as one of the five key research
areas to consider and it is present in 5 out of the 8 experimental pilots to be
developed.

In the rest of this manuscript we briefly review a selection of outstanding
Zadeh’s contributions which are likely to have direct impact in the research field
of XAI. The paradigm of Computing with Words (CWW) is especially relevant
because humans are used to explanations in natural language (NL).

From Prof. Zadeh’s seminal ideas on fuzzy sets and systems [21], many key
concepts such as linguistic variables and linguistic rules have turned up in the
field of Fuzzy Logic (FL). Accordingly, FL has many successful applications [19].
In addition, as it is described in [4], about 30% of publications in XAI come from
authors well recognized in the field of FL. This is mainly due to the commitment
of the fuzzy community to produce interpretable fuzzy systems [3]. Actually,
interpretability is deeply rooted in the fundamentals of FL. However, it is worthy
to note that interpretability is not guaranteed only because of applying FL. In
practice, producing interpretable fuzzy systems is a matter of careful design [17].

In XAI, interpretability is a key issue but understandability and comprehen-
sibility which are not so deeply considered by the FL community also play a
prominent role. Nowadays, a new generation of intelligent systems is expected
to provide users with natural explanations. Those explanations should be easy
to understand no matter the user background. Since, humans think and compute
naturally with words, explanations in NL are likely to be considered as natural
explanations. Prof. Zadeh was the first to talk about CWW [22] as an extension
of fuzzy sets and systems. Later, Prof. Kacprzyk gave some hints about how
to implement CWW [12]. Moreover, he highlighted the need to connect CWW
with the paradigm of NL Generation (NLG) [9]. It is worth noting that NLG is
a well-known area within the Computational Linguistics and AI research fields.

1 https://claire-ai.org/.
2 http://ai4eu.org/.

https://claire-ai.org/
http://ai4eu.org/
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The connection between FL and NLG has been further researched by other
authors [2,15].

In addition, Prof. Zadeh was pioneer to introduce a new generation of more
natural intelligent systems, ready to compute with perceptions and make approx-
imate reasoning as humans naturally do. Thus, the Computational Theory of
Perceptions (CTP) [20,23] was first introduced by Zadeh and later applied by
Trivino and Sugeno to automatically generate linguistic descriptions of com-
plex phenomena [18]. The CTP has been successfully applied for example to
explain the energy consumption at home [5] or to automatically generate lin-
guistic descriptions associated to the USA census data [6].

In addition, Prof. Zadeh also coined the concept of cointension [24]. The
semantic-cointension approach [13] is already applied to assess interpretability
of fuzzy systems. Likewise, it can be considered when evaluating the understand-
ability of explanations in XAI. In short, two different concepts referring almost
to the same entities are taken as cointensive. Accordingly, an explanation in NL
is deemed as comprehensible only when the explicit semantics embedded in it is
cointensive with the implicit semantics inferred by the user when reading and
processing the given explanation.

To sum up, Prof. Zadeh made many highly valuable contributions to the FL
field and beyond. Many of these contributions were pioneer ideas and/or chal-
lenging proposals with a lot of potential to be fully developed later by other
researchers. Nowadays, XAI is a prominent and fruitful research field where
many of Zaden’s contributions can become crucial if they are carefully consid-
ered and thoroughly developed. For example, two major open challenges for
XAI are: (1) how to build conversational agents able to provide humans with
semantic grounding, persuasive and trustworthy interactive explanations; and
(2) how to measure the effectiveness and naturalness of automatically generated
explanations. CWW as well as fuzzy measures and Z-numbers [25] introduced
by Zadeh are likely to contribute to successfully address both challenges and
achieve valuable results.
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Abstract. When looking at the future of Fuzzy Logic (FL), it is immedi-
ate to think at applications where FL could be used to compute with per-
ceptions, possibly expressed in natural language, thus enabling Explain-
able Artificial Intelligence (XAI). Scholars in FL have been working on
Interpretability, an important part of XAI, for decades. Yet, the research
community in FL seems isolated from other Artificial Intelligence (AI)
communities. There is a gap between FL and AI that due to the relative
youth of FL when compared with the foundational theories underlying
AI. If we want FL growing its branches in XAI as well as in other fields,
we need to develop, both in Research and Education, more robust roots
supporting all the theories, the methodologies and the technologies that
are going to be developed now and in future.
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Extended Abstract

We are all happy with the infosphere.1 We live, strive, fight, love and die for
information. And we want more. Technology, our complacent servant, gives us
more and more opportunities to replace our physical lives with an informational
counterpart, so much that someone started to worry that, in a not so far future,
we may well be Technology’s servants. But this is the time of enthusiasm and
we want information technology every-where, every-time. That is why we are
witnessing a bloom of applied science, and applied research. This has a cultural
impact too. Computer Science is more and more oriented towards finding new
applications and teaching students how to create new artifacts that work well
and eventually make profits. So, when looking at the future of FL, the first
thing that comes into mind is: what are the applications where FL could be more
successful? Zadeh was indefatigable in telling us that machine intelligence can be
improved by enabling perception-based computing, and FL is the scientific way
to compute with perceptions [14]; therefore outstanding applications are those
1 Infosphere denotes denote the whole informational environment constituted by all
informational entities, their properties, interactions, processes and mutual relations.
See Floridi [5] but also https://en.wikipedia.org/wiki/Infosphere.
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dealing with perception-based information and knowledge, possibly expressed in
natural language.

Explainable Artificial Intelligence (XAI) is an evolution of AI methodologies
focusing on the development of agents capable of both (i) generating decisions
that a human could understand in a given context, and (ii) explicitly explaining
decisions [9]. What is an explanation, what are its function and structure are
questions posed in Philosophy, Psychology and Cognitive Science. Interestingly,
these are the very same fields where the concept of perception has been for-
mulated and studied. Many concepts in the human mind are formed through
an act of perception, i.e. the organization, identification and interpretation of
a sensation in order to form a mental representation [11, Ch. 4]. Since what is
perceived belongs to a continuous Reality and concepts are formed through per-
ceptions, it is straightforward to assume that such concepts reflect the continuity
of perceptions. Therefore, as FL gives a computational account to perception
representation and processing, it is arguable that XAI is a field where FL could
flourish, especially in the days after the binge of deep learning, when we will
eventually realize that black boxes might be fragile [10] or even dangerous [8]. I
am pretty sure that XAI will be the right mean for collaborative intelligence [4],
with machine helping and not replacing humans to tackle more and more com-
plex problems. This would dramatically reduce the risks of fear and opposition
to the advancement of AI technologies, which are more and more often seen as
competing with humans and menacing well-being. But to achieve collaboration,
humans and machines should be able to communicate at the same level: this
might be accomplished if machines embody perception-based knowledge as FL
promises to provide.

XAI is a relatively new field where a number of research efforts are converging.
If we look back in the history of FL, we see that in the last twenty years a
great deal of research was around the keyword “interpretability” and, with due
distinctions, interpretability of fuzzy systems may be considered part of the
XAI program. In fact, research on interpretability moved from the definition of
a number of structural constraints aimed at keeping knowledge representation
as simple as possible, towards the recognition of a more complex phenomenon
embracing both structural and semantical aspects [2]. However, a recent research
of ours showed that, within XAI at least, the research community in FL is isolated
from other Artificial Intelligence (AI) communities [1]; as a consequence, wheels
are often re-discovered and a common language is not matured.

There is a gap between FL and AI. Some scholars between the two worlds
already recognized this problem and tried to find the reasons of this separation
[7]. FL appears as a growing tree but its roots are still not as robust as in other
AI branches. In fact, AI is based on theoretical foundations that have hundreds
or thousands of years, while FL challenges some well-established dogmas on the
basis of a visionary viewpoint that may not be easily accepted. This is not a
problem in principle but in practice. If we want FL growing its branches in XAI
as well as in other fields, we need robust roots supporting all the theories, the
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methodologies and the technologies that are going to be developed now and in
future.

We have infinite degrees of freedom in developing models based on FL. This
makes modeling very difficult because it may be extremely hard to give a clear
rationale behind all the design choices in a FL model: shape of membership
functions, type of set operators, type of inference mechanism, defuzzification, etc.
Sometimes, all such degrees of freedom are translated into parameterized models
that are subject of numerical or evolutionary optimization; but the results are
completely opaque and incomprehensible to the final users; as a consequence,
with such an approach, the vision of FL to support XAI gets lost. Sometimes it
is even hard to see a clear distinction between fuzzy set and membership function
(and we find a fuzzy set exactly defined as its membership function, although
denoted by two different symbols). In short, we see amazing applications without
sound foundations. We should not content ourselves with such a partial result,
because a beautiful tree with big branches but undersized roots is destined to
fall.

This is why the future of fuzzy logic must look at its roots, other than at
its branches. Sometimes, the need of a new Mathematics is invoked to develop
the foundations of FL; but I do not subscribe to this point of view. Mathemat-
ics, as we know it, is a suitable language for a plethora of scientific theories,
from Boolean algebra to Quantum Mechanics: there is no need to invent a new
one for FL. Instead, within Mathematics, we need to formalize the irrefutable
ideas behind FL2 and, within Informatics, to undoubtedly show that they have
the real world as a model. To this end, the recent works of some FL scholars
(see, e.g. Trillas [12])—which separate the concept of fuzzy set as a collection
of loosely ordered objects, and the concept of membership function as a (pos-
sibly approximate) measure of gradualness—are very promising and deserve to
be further investigated in future. Also, the seminal works of Dubois and Prade
on Possibility Theory and—more in general—on systematizing the semantics of
fuzzy sets [3], the theoretical breakthroughs given by Mathematical Fuzzy Logic
[6], etc. constitute the roots of FL in the soil of Science, which deserve both
development in Research and settlement in Education.

Education in FL should give a strong emphasis on the theoretical foundations
of FL, including some basics on Mathematical Fuzzy Logic, Possibility Theory,
lattice theory, L-fuzzy sets and everything else that allows students to understand
the roots of FL so as to develop applications with a stronger awareness of what
they are doing. Current education programs may be too much oriented towards
an engineering approach aimed at quickly enabling students to be productive; a
step back so as to plunge deeper on theory is however important to preserve the
scientific culture from oblivion. (An interesting endeavor is given by Trillas and
Eciolaza [13].)

2 Of course, FL in the wide sense is implicitly intended; Mathematical Fuzzy Logic
is a well formalized discipline, but sometimes distant from the concepts and ideas
of FL in the wide sense. Bridging the gap between narrow and wide FL is another
interesting way to look at the future of FL.
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Zadeh’s genius moved thousands of people to question the rigid structure
of theories onto which many classical AI methodologies are founded. Thanks to
him, we found the key ingredient for human-centric information processing. Now
time is come to make this wonderful vision a hard-rock science.
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Extended Abstract

From a general perspective, the most impressive results [1,6] in Machine Learning
have been recently obtained via black-box models, being Deep Neural Networks
(DNNs) the major player in the game. Nowadays, the same wonder that Eugene
Wigner expressed for the unreasonable effectiveness of mathematics in describing
physical world in the sixties of last century [7], should and is to a certain degree
permeating computer scientists concerning the ability that computers show of
solving complex tasks, often better than expert humans [3].

The reasons for the success of DNNs are mostly technological, and due firstly
to the unprecedented computational power, parallel processing ability and low
energy consumption that characterize contemporary computing devices and sec-
ondly to the ubiquitous abundance of low-cost sensors that generate every day an
unimaginable amount of data. Exploiting computational power to build implicit
models when data are abundant and a priori knowledge is scarce is the realm
of Machine Learning, and nowadays computing devices can handle DNNs with
millions of parameters, thousands of input variables and terabytes of training
data. By consequence, we are witnessing scientists diving into DNNs from every
field of human knowledge, ultimately only confirming the flexibility of power-
ful computers in solving every sort of task, given enough training data. Machine
Learning in form of DNNs is becoming a popular shortcut and is slowly replacing
the fight for transparent models, even when data are not abundant and a priori
knowledge is indeed available. What will likely happen in a few years is that pre-
trained DNNs will be made available for download or straight use in the cloud by
major software companies (as already happens with the IBM watson API1), giv-
ing a powerful prêt-à-porter solution engine within reach of every programmer,
disregarding altogether the proper formalization of the tackled problem.

On the one hand, despite their achievements in terms of crude accuracy,
DNNs are not a panacea: apart curse of dimensionality, they suffer from domain
specificity, catastrophic forgetting, overfitting, and are easily fooled with high
1 https://www.ibm.com/watson/developer-resources/.
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confidence [5]. While efforts are being made in the scientific literature to over-
come each of these problems (for example with biologically inspired neuron
consolidation mechanisms [4], dropout, transfer learning, selective learning and
robust optimization), the lack of a general principle that justifies their effec-
tiveness and the lack of a structured theory for the choice of architecture and
parameters of DNNs are problems that will grab the efforts of the scientific lit-
erature for many years to come. We are still far from Human Level Machine
Intelligence (HLMI) [9], and even if in many specific tasks (most notably trans-
lation) computers now approach or outperform human experts, it is likely that
the expectations on the ability of state of the art DNNs to subsume human
intelligence are overly optimistic.

On the other hand, such a pervasive and disruptive technological advance-
ment generated many concerns from people and domain experts facing with
classification results and decisions made by machine learning algorithms whose
rationale is not explainable and that may well be discriminatory, unethical,
unacceptable or plainly wrong with respect to the general plot where they are
applied—see [8] for what looks like a contemporary resurgence of physiognomy. If
the lack of a justification principle for DNNs may be seen as a technical question,
the opaqueness of models strongly limits the trust and the spread of Machine
Learning, giving rise to the so-called Explainable Artificial Intelligence (XAI)
movement [2], that is a necessary step forward to apply confidently autonomous
decision systems in sensitive applications as health, military or financial domains.

Once the orgy of successful applications will come to an end and it will be
given as granted, raising no wonder, that DNNs reach a close to perfect accuracy
in most tasks, what will really become deep is the schism among unexplainable
but effective computer based solutions in reach of everyone and less than perfect,
explainable transparent models requiring experts, scientific background, efforts,
time, funds and conscious choices to be conceived, developed and deployed. If the
industry may well be satisfied with the former, academia should defend the pro-
found value of the latter, as its purpose is to pursue, to defend and to advance
human knowledge in its highest form. Many scientists have been seduced by
the DNNs power and usability, and academia is increasingly interwoven with
industry in this contemporary rush where the craved gold is the accuracy, but
their long term purpose diverges: pre-trained models that give a 100% accu-
racy straight out-of-the-box will lead to countless applications where the need
for comprehension and skillful modeling will be simply skipped, and ultimately
industry will have a marginal interest in funding what will be considered purely
theoretical speculation.

Fuzzy Logic (FL) and more in general Granular Computing (GC) allow
to build more expressive human-centric models that can process natural lan-
guage words and include various facets of imprecision, uncertainty, ambiguity
and incompleteness into more intelligible, controllable and customizable mod-
els operating on information granules; these reasons make them ideal candidate
tools to hijack DNNs towards transparent and justifiable deductions. Humans
are able to perform deductive and inductive reasoning in the framework of logic
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exploiting common sense a priori knowledge and handling noise, outliers, partial
truth, imprecision, ambiguity, uncertainty and missing values, ultimately produc-
ing a decision that is evaluable by other humans; machines mostly learn through
curve fitting on the base of myriads of examples, with a learning process that
mimics at the lowest level what happens in the human brain, but that remains
largely obscure and non reproducible for a human being. Fuzziness, roughness
and other soft computing theories can and should be injected in all levels of the
analysis: in modeling imprecise input or output data, labels, granules, costs, a
priori knowledge, conclusions. In any of these levels there is an accuracy versus
interpretability trade-off, similar to what happens with sets of fuzzy rules, and
open issues abound: how to model input data and a priori knowledge, how to
keep the interpretability while training, how to obtain intelligible conclusions,
how to choose the right granularity for the task at hand, how to model concepts
and information granules with words.

Most likely, Deep Neuro-Granular Systems (DNGS) that integrate multi-
ple soft computing theories and Natural Language Processing is what will help
the scientists to build at least partially justifiable decision systems or semi-
transparent autonomous systems, both computationally lighter and more pow-
erful in their generalization ability with respect to the current state of the art;
most likely these systems will be based on modules corresponding to words, fuzzy
quantifiers and self-learnt ontologies. DNGS is the next step forward towards an
XAI that exploits the DNNs power remaining interpretable. The paradigm shift
evoked by Zadeh [9] is still far ahead.
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Extended Abstract

We are currently experiencing the Big Data Era [20]: large volume of information
is generated by different sources and may have different formats (variety) [5].
Such data are often produced at very high speed and need to be elaborated
in almost real time (velocity). However, these data represent a very important
source of added-values in several contexts, such as in marketing strategies [11],
industrial applications [29] and Internet of Things [2].

When dealing with big data, due to their volume, diversity and complexity,
new techniques, algorithms and analyses are required to extract the hidden and
valuable knowledge. Indeed, classical data mining and machine learning algo-
rithms, that in the last decades have been successfully adopted for extracting
knowledge and value from data [19], cannot directly applied to the big data.
In this context, the state-of-the art paradigms for data storage and elaboration
are not suitable. With aim of designing and experimenting data mining and
machine learning algorithms for big data, researchers moved to new distributed
frameworks, such as Apache Hadoop and Apache Spark. Recent contributions
in the field big data mining exploit the MapReduce paradigm [9] for imple-
menting distributed versions of clustering algorithms [21,23] and classification
algorithms [6,24]. Highlights on the recent advances, challenges and objectives
in designing, developing and using data mining and machine learning algorithms
for big data can be found in [31].

As regards Fuzzy Models (FMs), recently, several works in the specialized
literature have focused on the design, the implementation and the experimen-
tation of classifiers for big data [12,14,17,22,25–28]. As stated in [15], FMs are
particularly suitable for handling the variety and veracity of Big Data. This is
mainly due to their good capability of coping with vague, imprecise and uncertain
concepts. Moreover, the use of overlapped fuzzy labels ensures a good coverage
of the problem space. This issue is especially relevant when dealing with very
large datasets that may be dived into a number of heterogeneous chunks, such
as in the MapReduce programming paradigm. Indeed, the different chunks may
influence in a different way the parameters learning process of the classification
model.
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The Chi-FRBCS-BigData algorithm, discussed in [26], represents the first
attempt of extending fuzzy rule-based classifiers (FRBCs) to the distributed
framework. It is designed and developed according to the MapReduce program-
ming model and is based on the well-known Chi et al. algorithm, which was intro-
duced in [8] for generating fuzzy classification rules. The Chi-FRBCS-BigData
algorithm have been also experimented in [22] and [16], considering imbalanced
classification datasets and analyzing the effects of different granularities of the
fuzzy partitions, respectively. Last year, an optimized version of the distributed
Chi et al. algorithm has been introduced in [12]. The optimization regards both
the scheme for generating the rules and the architecture of the distributed execu-
tion scheme. Two completely different fuzzy models for classifying big datasets
have been recently proposed in [27] and in [28]: the two models are based on
Fuzzy Associative Classifiers and on Fuzzy Decision Trees, respectively. More-
over, some Evolutionary-based methods for learning FMs for Big Data have been
also proposed [14,25].

The aforementioned approaches regards the design and development of FMs
in a distributed computing architecture, especially focusing in generating accu-
rate models. Although the classifiers obtained are very accurate, the complexity
of the models, in terms of number of rules or number of parameters of the fuzzy
trees, is very high. The greater the complexity, the lower the interpretability [18].
However, the interpretability is a very important feature that characterize FMs,
and it assume a special importance also in the contest of Big Data [15,30].
In order to generate FRBCs characterized by different trade-off between accu-
racy and complexity, a novel distributed Multi-objective Evolutionary Learning
scheme has been proposed in [17]. The algorithm, denoted as DPAES-RCS is
a distributed implementation, under the Apache Spark environment, of PAES-
RCS [4]. PAES-RCS learns the RB through a rule and condition selection strat-
egy. Moreover, also the parameters of the fuzzy sets are learnt concurrently with
the RB. The accuracy and the complexity of the classifiers are concurrently opti-
mized: the evaluation of the accuracy is calculated in a distributed fashion, in
order to deal with big datasets. Very compact and accurate classification models
can be obtained adopting DPAES-RCS. It is worth noticing that DPAES-RCS,
represents, to the best of our knowledge, the first contribution in the field of
Multi-objective Evolutionary Fuzzy Systems [10,13] for Big Data.

Even though a set of algorithms and tools are available for extracting useful
knowledge from big data by means of FMs, we envision that the future directions
in this context will regards: (i) enhancing the interpretability of the rules and of
the fuzzy partitions, both at semantic and complexity levels [3], (ii) handling data
streams [7] moving towards the more general granular computing framework [1];
and (iii) reducing the computation efforts for generating compact and accurate
solutions. The three aforementioned challenges must be conducted in parallel
as much as possible. Indeed, interpretable models, able to extract knowledge in
almost real-time from huge amount of streaming and heterogeneous data, will
be the actual added values for future research activities on FMs for big data
mining.



Fuzzy Models for Big Data Mining 259

References

1. Ahmad, S.S.S., Pedrycz, W.: The development of granular rule-based systems: a
study in structural model compression. Granular Comput. 2(1), 1–12 (2017)

2. Al-Ali, A., Zualkernan, I.A., Rashid, M., Gupta, R., Alikarar, M.: A smart home
energy management system using iot and big data analytics approach. IEEE Trans.
Consum. Electron. 63(4), 426–434 (2017)

3. Alonso, J.M., Castiello, C., Mencar, C.: Interpretability of fuzzy systems: cur-
rent research trends and prospects. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer
Handbook of Computational Intelligence, pp. 219–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-43505-2 14

4. Antonelli, M., Ducange, P., Marcelloni, F.: A fast and efficient multi-objective
evolutionary learning scheme for fuzzy rule-based classifiers. Inf. Sci. 283, 36–54
(2014)

5. Anuradha, J., et al.: A brief introduction on big data 5Vs characteristics and
hadoop technology. Procedia Comput. Sci. 48, 319–324 (2015)

6. Bechini, A., Marcelloni, F., Segatori, A.: A MapReduce solution for associative
classification of big data. Inf. Sci. 332, 33–55 (2016)

7. Casalino, G., Castellano, G., Mencar, C.: Incremental adaptive semi-supervised
fuzzy clustering for data stream classification. In: 2018 IEEE Conference on Evolv-
ing and Adaptive Intelligent Systems (EAIS) (2018)

8. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: with Applications to Image Pro-
cessing and Pattern Recognition. Advances in Fuzzy Systems - Applications and
Theory, vol. 10. World Scientific, Singapore (1996)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

10. Ducange, P., Marcelloni, F.: Multi-objective evolutionary fuzzy systems. In: Fanelli,
A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp.
83–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23713-3 11

11. Ducange, P., Pecori, R., Mezzina, P.: A glimpse on big data analytics in the frame-
work of marketing strategies. Soft Comput. 22(1), 325–342 (2018)

12. Elkano, M., Galar, M., Sanz, J., Bustince, H.: CHI-BD: a fuzzy rule-based classi-
fication system for big data classification problems. Fuzzy Sets Syst. 348, 75–101
(2018)
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Extended Abstract

In recent decades we have witnessed a growing investment by all economic sec-
tors in the acquisition of volumes of data characterized not only by ever larger
cardinality, but also by increasing number of characteristics for each observed
instance [1], and this led to the coining of the term Big-Data. It is estimated that
the amount of data that will be produced in 2018 globally will amount to about
twenty zettabytes, where a zettabyte, also referred to as ZB, corresponds a num-
ber of bytes difficult to imagine consisting of equal to a 1 followed from 21 zeros.
Most of the data that is produced is stored in clouds or in data servers and only
a small fraction of the information contained in it can be exploited using con-
ventional processing techniques, as classical statistical methods are simply not
designed to cope with the explosive growth of dimensionality of the observation
vector.

Furthermore, the implicit informational content of Big-Data could be an asset
of enormous value for companies, but to extract the more valuable content from
them it is necessary to employ the most advanced Artificial Intelligence data-
driven techniques, and in particular the methods of Computational Intelligence
and of Machine Learning. Analysts point to Artificial Intelligence as a major
technological challenge that can open new scenarios for companies and which
could double the growth rate of developed economies by 2035 and increase labor
productivity in increments until at 40%.

Lofti Zadeh departed on 6 September 2017, leaving us an arsenal of method-
ologies partly proposed by him directly and partly proposed by the community
of researchers in Fuzzy Logic on his inspiration1. These tools allow us to face the
technological challenges of today’s world of Big Data that mainly concern the
extraction of information, knowledge and value from the ever-increasing masses
of data that our society accumulates every day.
1 For a selection of the most representative papers of Zadeh, see, e.g., [2–10].
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Building on this heritage, additional Fuzzy Logic-based tools, specifically
focused to the modern challenges described above need to be developed. These
contributions will have to operate on two separate dimensions: data and contents.

The data dimension regards data as an asset by themselves, while the con-
tents dimension is concerned with the data as a means to carry information and
knowledge, and consequently with its meaning and its use.

Along the data dimension, we will point out three areas relevant to Big Data
analytics where new Fuzzy Logic-based tools may be developed.

The first area is the assessment of Data Quality that is a vital precondi-
tion for inductive learning [11]. As stated by Robinson [12], there are five com-
ponents that ensure data quality: completeness, consistency, accuracy, validity,
and timeliness. New unsupervised fuzzy and possibilistic clustering algorithms
and clustering comparison techniques can be key-elements for evaluating data
quality [13].

Another field where we see the need of the development of new tools is Data
Stream Modeling. Data streams are becoming a major paradigm in the realm of
data science, as they arise from seamlessly observed phenomena in an increasing
number of fields [15]. They always depend on time, although to different degrees.
They may represent actual time series, with a strong dependency on time, or
quasi-stationary phenomena whose variability can be appreciated only in the
long term. Moreover, the size of any collection of Big Data makes single-pass
methods a necessity, turning these data effectively into a special case of stream-
ing data. Unsupervised analysis in the form of data clustering using fuzzy and
possibilistic techniques provides a useful toolbox to mine data streams [17,18,20].

The last area we highlight, where new Fuzzy Logic-based tools are feasible
and extremely useful, is the one of the Explainable Learning Machines [21–24].
Two paradigms that are found in the toolbox of fuzzy modelling are centroid-
based soft clustering and fuzzy rule-based systems. These two paradigms have
been proved to be related [26,27] and feature two crucial properties: controlled
rule support, that can be used to obtain non-statistical generalization guarantees,
and the ability to easily incorporate prior knowledge, that can be exploited in a
dual way for rule extraction to implement explainability.

Coming to the content dimension, there are several new issues that are raised
by the pervasive use of data in all fields of everyday life and by its intersection
with ethical and legal aspects. It becomes therefore increasingly important to
understand these effects at the social level and to take responsibility for them,
especially when they deal with human-related data. It is indeed well recog-
nized that “technology solutions must play an important role in enabling our
society to reap ever-greater benefits from big data, while keeping it safe from
the risks” [19].

The main research question is: Is it possible to define a data processing
workflow that can guarantee by design, as far as possible, that specific properties
of the data related to sensitive information are preserved along the whole data
processing chain (responsible data processing)?
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The development of technological solutions satisfying non-discriminating
requirements is currently one of the main challenges in data processing [28]
and some preliminary proposals have already been provided for specific data
processing tasks, namely ranking and set selection.

More generally, there are properties that can be measured and should be
constrained to achieve specific goals. Among others, some important ones are
diversity, fairness, and serendipity [16,25]. With respect to these, a desirable
behaviour of data analytic processes is compositionality, i.e., the properties that
are present in the original data should not be reduced when applying successive
steps of data processing.

One particular step that is commonly found in many data-analytic work-
flows, where Fuzzy Logic-based approaches are particularly promising, is data
clustering. This process can be used to enable exploration of query results, to
provide automatic taxonomies, or as a first summarization step for further pro-
cessing and interpretation. This task can operate on stored data, or on data
streams, typically with different goals, but a common tool that enables this
kind of analysis is the fuzzy clustering approach termed possibilistic clustering.
The Graded Possibilistic C-Means (GPCM) method [14] intrinsically possesses
a tunable outlier rejection property that has already been exploited for outlier
analysis [17,18].

A possible approach is studying the decomposition of clustering models into
a main component and marginal components, by exploiting the dual modeling
capability of possibilistic clustering to distinguish between a typical component
and atypical ones. This will allow to measure, monitor, and control the degree
of satisfaction of the required constraints.

For stream clustering, compositionality of the required properties can only
be strictly enforced in stationary regimes, not in the transient. To track non-
stationary conditions, the statistics of the marginal components of the model
could be used to monitor and control the process compositionality.
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Extended Abstract
Traditional statistical analysis is oriented towards finding linear relationships between
the variables under investigation, often accompanied by strict assumptions about the
problem and data distributions. Moreover, traditional analysis endorses data reduction
as much as possible before modeling, and, as a result, part of the original information is
lost. On the other hand, machine learning does not impose rigid pre-assumptions about
the problem and data distributions since the underlying ratio is to “learn from data”,
without the need for data reduction or a priori knowledge before the learning. For these
reasons machine learning has experienced a rapid dissemination in a large number of
sectors including healthcare, finance, transportation, retail and social media services
industry. Machine learning is the core technology of the new age of AI applications.
Machine learning methods offer tremendous benefits, but are limited by their
opaqueness, non-intuitiveness and difficulty to understand.

In finance in particular, machine learning methods have played a crucial role in
improving the forecasting ability of financial models and trading systems, due to their
ability to process a large amount of data and the peculiarity of capturing also non-linear
relationships between variables. In recent years, the availability of sample data at very
high frequencies (intraday or tick by tick) resulted in a fertile domain for their appli-
cation, especially in the coding of indicators and patterns of technical analysis. Deep
learning systems are the most advanced form of machine learning. They can match
humans in recognizing images or driving a car, but why they come up with the
solutions remains difficult to tell exactly. Businesses would have used machine learning
more widely if they could understand how machines come up with their recommen-
dations on trading, fraud detection, insurance and banking.

A challenge for AI in finance is the need to analyze and aggregate a large amount of
information obtained from different sources. In the financial literature, the use of
artificial intelligence (AI) and machine learning techniques is often limited to the
coding of technical analysis indicators (such as moving averages or the flag pattern) for
trading strategy purposes. As pointed out in [8], most of the contributions investigating
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machine learning methods in financial markets propose trading strategies that rely
mainly on technical analysis and focus on a single stock market or market index.

In recent years, the financial literature has started to focus on the application of soft
computing techniques to exploit the availability of sampled data at very high fre-
quencies (intraday or tick by tick) to codify indicators for technical analysis (see [1]
and among others [2, 9, 11, 13, 16, 21]). The main objectives include the forecasting of
stock prices, direction of the market, and buy or sell signals. The techniques range from
hybrid neuro-fuzzy systems [3], ANFIS (Adaptive Network-based Fuzzy Inference
System) controller, recurrent neural networks [4]. A TSK type fuzzy rules is adopted
also in [12], where the parameters of the rules were tuned by an ANFIS and the number
of these rules was identified by means of fuzzy c-mean clustering. Different soft
computing techniques are combined in [15], where a genetic fuzzy systems is inte-
grated with self-organizing map neural networks.

On the other hand, there exist a few contributions in literature that aim to aggregate
different information in a unique index. In particular, [20] propose an index of financial
development, following a standard three-step approach, based on reducing multidi-
mensional data into one summary index (the procedure generally follows the OECD
Handbook on Constructing Composite Indicators (OECD, 2008)). The first step
involves the normalization of input variables. In the second step, the aggregation of
normalized variable is performed by constructing a limited number of sub-indices that
represent a particular dimension. Finally, in the last step, the sub-indices are aggregated
in the final index. Examples of application of the proposed methodology are the IMF
Financial Stress Index [6, 7] and other financial inclusion indexes [1, 5].

At present the European Union lacks instruments for monitoring the financial risk
of each Member State and of the European financial market as a whole. Only a small
number of States have adopted a volatility index and none of the countries has
developed a more advanced tail-risk index. A further factor to consider is that an
aggregate European volatility index has not yet been developed.

The main obstacle to the construction of risk indices is the limited availability of
option-based data for European peripheral countries. The European markets are in need
of new techniques accounting for uncertainty in data and data processing going beyond
the narrow focus of the existing indices, which treat financial markets as compart-
mentalized [14] and overlook important risk assessment determinants. On the other
hand, investors and regulators need comprehensive risk measures able to aggregate and
synthesize different types of information in a single indicator.

Another challenge is represented by the increasing dominance of computerized
trading, which may cause more volatility during market downturns. The rising fre-
quency of ‘flash crashes’ across many major markets, the increasing incidents of
volatility such as the VIX spike on Feb. 5, 2018, the 10-year Treasury bond on Oct. 15,
2014, and the British pound on Oct. 6, 2016, are an important early warning sign that
machines have to be closely supervised and understood. New measures and tools to
control the volatility of financial markets [17–19] should be developed.

The semantic properties of linguistic fuzzy sets, their good coverage even in the
case of lack of data, their management of the uncertainty, especially in Big Data [10],
make them a very interesting tool for nowadays applications, especially when the
practitioner need to understand why a given decision has been made.
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Extended Abstract

In the last years, the term Financial Technology (FinTech) has been adopted by
literature to describe a wide range of services, aided by several financial tech-
nologies, for enterprises or organizations, which mainly address the improvement
of the service quality by using Information Technology (IT) applications.

A continuous growth of the investment has seen the development of FinTech
technologies in multiple areas, such as mobile networks [12], big data [18], trust
management [1], mobile embedded systems [10], cloud computing [11], image
processing [8], and data analytic techniques [13]. FinTech has become important
due to several important factors, which include technical development, busi-
ness innovation expectations (market), cost-saving requirements, and customer
demands. A handful of financial technology (fintech) trends are expected to
strengthen significantly in 2018 as envisioned in [16].

In particular, the growth of Artificial Intelligence (AI) looks to be instru-
mental for three specific reasons: hugely increased opportunities for improved
customer centricity, ability to ease the regularity reporting burden through AI
enabled ‘RegTech’, and massively improved cyber-security and data protection.

When it comes to AI, an important consultancy agency - DataArt, defines
it as an “industry game changer”, but one that at the same time “will not
come without problems as the current industry wide skills gap turns into a war
for talent.” Already we are seeing problems in one of the biggest users of AI,
cyber-security, which is looking to the blockchains in search of a solution.

In this context several finance domains require an effective modeling of vague
and imprecise information. Stock markets, for instance, which has been inves-
tigated by various researchers, are a rather complicated environment. Most
researchers only concerned the technical indexes (quantitative factors), instead
of qualitative factors, e.g., the political effects. However, the latter play a critical
role in the stock market environment. Thus, it is important to study innovative
models which can measure the qualitative effect on them. Other important stud-
ies are aimed at building and evaluating human skill based fuzzy expert systems
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for decision making support in a stock trading process. The focus here, in which
fuzzy systems may play a major role, is concentrated on envisioning a computer
software capable to reproduce the knowledge from the skilled stock trader. Other
important fuzzy systems applications would provide effective solutions in secu-
rity issues as user recognition by mean of biometric techniques, like for example
those presented in [6], in online banking, or customer satisfaction analysis in
finance services supplying.

In this contribution our intention is to raise the attention of the scientific
community on the needs that the FinTech domain proposes. Today, the pre-
vailing theme in the financial world revolves around blockchains, but even in
the contractual domain there is a dimension of uncertainty and flexibility that
requires the analysis of appropriate solutions. The subject of this contribution
will also be discussed at the 5th IEEE Int. Conf. on Data Science and Advanced
Analytics (DSAA) Special Session on Opportunities and Risks for Data Science
in Organizations: Banking, Finance, and Policy that will be held in Turin on
October 1–4th, 2018.

1 Fuzzy Systems in FinTech

Over the years since the birth of the Fuzzy Sets Theory, Fuzzy systems have
found wide use in expert systems, machinery, home appliances and robotics.
Financial applications have also recently been discovered, taking advantage of
fuzzy systems’ ability to model vague and imprecise models. Fuzzy systems have
been used with various technical indicators in previous studies. Zhou and Dong
[19] model the cognitive uncertainty incorporated in technical analysis by using
a fuzzy-logic approach. Their algorithm has been able to offer superior precision
in detecting and interpreting technical patterns over visual pattern analysis done
by experts. Lin et al. [14] make use of a fuzzy system with KD technical index to
predict stock indices. KD index is a stochastic oscillator, which consists of two
lines namely K and D, where D is smoothed version of the K line. Their research
shows that the returns generated with the fuzzy systems are significantly larger
than linear regression models, neural networks and other investment strategies.
The results combining technical analysis and fuzzy logic were very promising.

Since different artificial intelligence methods have different strengths and
limitations, hybrid systems have also been studied to obtain synergetic combi-
nations of methods. Azzini et al. present in their work [5] a comparison between
Nature-Inspired and Machine Learning approaches for detecting trend reversals
in financial time series, while Abraham and Nath [2] provide an overview of
different hybrid models and architectures. In particular, combinations of fuzzy
systems with neural networks and/or genetic algorithms appear to be popular
in real-world implementations. A neuro-fuzzy system to predict financial time
series is described in [17]. The prediction of stock and option prices of the S&P
and Dow Jones indices have been examined, which resulted in profitable trading
strategies. The results from the paper show the potential of neuro-fuzzy mod-
eling for finance and management. Neuro-fuzzy models have also been used to
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predict other time series such as the Greek manufacturing and Korea stock price
indexes. They have also been applied for portfolio evaluation, while in a more
recent work [4] Azzini et al. predict turning points in financial markets with
Fuzzy-Evolutionary and Neuro-Evolutionary modeling. Hybrid combinations of
fuzzy and probabilistic systems have also been proposed. For example, van den
Berg et al. analyse a financial market by using a probabilistic fuzzy model [7],
in which linguistic uncertainty is combined with probabilistic uncertainty.

The problem of finding desirable fuzzy rules is a very important process in the
development of fuzzy systems. In practice, acquiring the rules from experts only
is quite a difficult task. Alcala et al. [3] give an overview of different approaches
of learning and tuning of a fuzzy system. Mohammadian and Kingham [15]
develop a hierarchical fuzzy logic system by using genetic algorithm to predict
the interest rates in Australia. Using a genetic algorithm as a training method
for learning the fuzzy rules, the number of rules could be significantly reduced,
resulting in more efficient systems. The results show that the system is able to
give accurate prediction of the interest rates.

Finally, the approach presented in [9] describes a fuzzy system to predict
market price movements for investing in portfolio of European, American and
Japanese bonds and currency. The system has been developed with participation
of traders and experts from a financial institution, whose knowledge forms a
constraint on the design of the structure of the fuzzy system. The system takes
a number of technical analysis indexes as input, which have been specified by
traders. The system generates a buy or sell signal, but it can also be combined
with portfolio allocation mechanisms for automated trading.

2 Conclusion

In this contribution we start a discussion on the potentiality of Fuzzy Set The-
ory, Fuzzy Logic and related techniques to boost IT applications in Finance,
exploiting their ability to model the vague and imprecise information that may
affect many finance domains. This topic will be also discussed at the DSAA 2018
Special Session on Opportunities and Risks for Data Science in Organizations:
Banking, Finance, and Policy that will be held in Turin on October 1–4th, 2018.
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