
Chapter 6: MSI Logic
This chapter introduces a group of combinational logic building blocks that are commonly used in

digital design. As we move into systems that are larger than individual gates, there are naming
conventions that are used to describe the size of the logic. Table 6.1 gives these naming conventions.
In this chapter we will look at medium-scale integrated circuit (MSI) logic. Each of these building blocks
can be implemented using the combinational logic design steps covered in Chaps. 4 and 5. The goal of
this chapter is to provide an understanding of the basic principles of MSI logic.

Learning Outcomes—After completing this chapter, you will be able to:

6.1 Design a decoder circuit using both the classical digital design approach and the modern
HDL-based approach.

6.2 Design an encoder circuit using both the classical digital design approach and the modern
HDL-based approach.

6.3 Design a multiplexer circuit using both the classical digital design approach and the
modern HDL-based approach.

6.4 Design a demultiplexer circuit using both the classical digital design approach and the
modern HDL-based approach.

6.1 Decoders

A decoder is a circuit that takes in a binary code and has outputs that are asserted for specific values
of that code. The code can be of any type or size (e.g., unsigned, two’s complement, etc.). Each output
will assert for only specific input codes. Since combinational logic circuits only produce a single output,
this means that within a decoder, there will be a separate combinational logic circuit for each output.

6.1.1 Example: One-Hot Decoder

A one-hot decoder is a circuit that has n inputs and 2n outputs. Each output will assert for one and
only one input code. Since there are 2n outputs, there will always be one and only one output asserted at
any given time. Example 6.1 shows the process of designing a 2-to-4 one-hot decoder by hand (i.e.,
using the classical digital design approach).

Table 6.1
Naming convention for the size of digital systems

Springer Nature Switzerland AG 2019
B. J. LaMeres, Introduction to Logic Circuits & Logic Design with VHDL,
https://doi.org/10.1007/978-3-030-12489-2_6

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12489-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-12489-2_4
https://doi.org/10.1007/978-3-030-12489-2_5
https://doi.org/10.1007/978-3-030-12489-2_6

As decoders get larger, it is necessary to use hardware description languages to model their
behavior. Example 6.2 shows how to model a 3-to-8 one-hot decoder in VHDL with concurrent signal
assignments and logic operators.

Example 6.1
2-to-4 one-hot decoder – logic synthesis by hand

192 • Chapter 6: MSI Logic

This description can be further simplified by using vector notation for the ports and describing the
functionality using either conditional or select signal assignment. Example 6.3 shows how to model the
3-to-8 one-hot decoder in VHDL with conditional and select signal assignments.

Example 6.2
3-to-8 one-hot decoder – VHDL modeling using logical operators

6.1 Decoders • 193

6.1.2 Example: 7-Segment Display Decoder

A 7-segment display decoder is a circuit used to drive character displays that are commonly found in
applications such as digital clocks and household appliances. A character display is made up of seven
individual LEDs, typically labeled a–g. The input to the decoder is the binary equivalent of the decimal or
hex character that is to be displayed. The output of the decoder is the arrangement of LEDs that will form

Example 6.3
3-to-8 one-hot decoder – VHDL modeling using conditional and select signal assignments

194 • Chapter 6: MSI Logic

the character. Decoders with two inputs can drive characters “0” to “3.” Decoders with three inputs can
drive characters “0” to “7.” Decoders with four inputs can drive characters “0” to “F” with the case of the
hex characters being “A, b, c or C, d, E, and F.”

Let’s look at an example of how to design a 3-input, 7-segment decoder by hand. The first step in the
process is to create the truth table for the outputs that will drive the LEDs in the display. We’ll call these
outputs Fa, Fb, . . ., Fg. Example 6.4 shows how to construct the truth table for the 7-segment display
decoder. In this table, a logic 1 corresponds to the LED being ON.

If we wish to design this decoder by hand, we need to create seven separate combinational logic
circuits. Each of the outputs (Fa – Fg) can be put into a 3-input K-map to find the minimized logic
expression. Example 6.5 shows the design of the decoder from the truth table in Example 6.4 by hand.

Example 6.4
7-segment display decoder – truth table

6.1 Decoders • 195

This same functionality can be modeled in VHDL using concurrent signal assignments with logical
operators. Example 6.6 shows how to model the 7-segment decoder in VHDL using concurrent signal
assignments with logic operators.

Example 6.5
7-segment display decoder – logic synthesis by hand

196 • Chapter 6: MSI Logic

Again, a more compact description of the decoder can be accomplished if the ports are described as
vectors and a conditional or select signal assignment is used. Example 6.7 shows how to model the
7-segment decoder in VHDL using conditional and selected signal assignments.

Example 6.6
7-segment display decoder – modeling using logical operators

6.1 Decoders • 197

CONCEPT CHECK

CC6.1 In a decoder, a logic expression is created for each output. Once all of the output logic
expressions are found, how can the decoder logic be further minimized?

A) By using K-maps to find the output logic expressions.

B) By buffering the inputs so that they can drive a large number of other gates.

C) By identifying any logic terms that are used in multiple locations (inversions,
product terms, and sum terms) and sharing the interim results among multiple
circuits in the decoder.

D) By ignoring fan-out.

Example 6.7
7-segment display decoder – modeling using conditional and selected signal assignments

198 • Chapter 6: MSI Logic

6.2 Encoders

An encoder works in the opposite manner as a decoder. An assertion on a specific input port
corresponds to a unique code on the output port.

6.2.1 Example: One-Hot Binary Encoder

A one-hot binary encoder has n outputs and 2n inputs. The output will be an n-bit, binary code which
corresponds to an assertion on one and only one of the inputs. Example 6.8 shows the process of
designing a 4-to-2 binary encoder by hand (i.e., using the classical digital design approach).

In VHDL this can be implemented using logical operators, conditional signal assignments, or
selected signal assignments. In the conditional and selected signal assignments, if an output is not
listed for each and every input possibility, then an output must be specified to cover any remaining inputs
conditions. In the conditional signal assignment, the covering value is specified after the final else
statement. In the selected signal assignment, the covering value is specified using the when others
clause. Example 6.9 shows how to model the encoder in VHDL using each of the abovementioned
modeling techniques.

Example 6.8
4-to-2 binary encoder – logic synthesis by hand

6.2 Encoders • 199

Example 6.9
4-to-2 binary encoder – VHDL modeling

200 • Chapter 6: MSI Logic

CONCEPT CHECK

CC6.2 If it is desired to have the outputs of an encoder produce 0’s for all input codes not
defined in the truth table, can “don’t cares” be used when deriving the minimized logic
expressions? Why?

A) No. Don’t cares aren’t used in encoders.

B) Yes. Don’t cares can always be used in K-maps.

C) Yes. All that needs to be done is to treat each X as a 0 when forming the most
minimal prime implicant.

D) No. Each cell in the K-map corresponding to an undefined input code needs to
contain a 0 so don’t cares are not applicable.

6.3 Multiplexers

A multiplexer is a circuit that passes one of its multiple inputs to a single output based on a select
input. This can be thought of as a digital switch. The multiplexer has n select lines, 2n inputs, and one
output. Example 6.10 shows the process of designing a 2-to-1 multiplexer by hand (i.e., using the
classical digital design approach).

Example 6.10
2-to-1 multiplexer – logic synthesis by hand

6.3 Multiplexers • 201

Again, in VHDL a multiplexer can be implemented using different behavioral models. Let’s look at
the modeling of a 4-to-1 multiplexer in VHDL using logical operators, conditional signal assignments, and
selected signal assignments. This multiplexer requires two select lines to address each of the four input
lines. Each of the product terms in the multiplexer logic expression must include both select lines. The
polarity of the select lines is chosen so that when an input is selected, its product term will allow the input
to pass to the OR gate. In the VHDL implementation of the multiplexer using conditional and selected
signal assignments, since every possible value of Sel is listed, it is not necessary to use a final else or
when others clause. Example 6.11 shows the VHDL modeling of a 4-to-1 multiplexer.

Example 6.11
4-to-1 multiplexer – VHDL modeling

202 • Chapter 6: MSI Logic

CONCEPT CHECK

CC6.3 How are the product terms in a multiplexer based on the identity theorem?

A) Only the select product term will pass its input to the final sum term. Since all of
the unselected product terms output 0, the input will be passed through the
sum term because anything OR’d with a 0 is itself.

B) The select lines are complemented such that they activate only one OR gate.

C) The select line inputs will produce 1’s on the inputs of the selected product
term. This allows the input signal to pass through the selected AND gate
because anything AND’d with a 1 is itself.

D) The select line inputs will produce 0’s on the inputs of the selected sum term.
This allows the input signal to pass through the selected OR gate because
anything OR’d with a 0 is itself.

6.4 Demultiplexers

A demultiplexer works in a complementary fashion to a multiplexer. A demultiplexer has one input
that is routed to one of its multiple outputs. The output that is active is dictated by a select input. A demux
has n select lines that chooses to route the input to one of its 2n outputs. When an output is not selected,
it outputs a logic 0. Example 6.12 shows the process of designing a 1-to-2 demultiplexer by hand (i.e.,
using the classical digital design approach).

Example 6.12
1-to-2 demultiplexer – logic synthesis by hand

6.4 Demultiplexers • 203

Again, in VHDL a demultiplexer can be implemented using different behavioral models. Example
6.13 shows the modeling of a 1-to-4 demultiplexer in VHDL using logical operators, conditional signal
assignments, and selected signal assignments. This demultiplexer requires two select lines in order to
choose between the four outputs.

Example 6.13
1-to-4 demultiplexer – VHDL modeling

204 • Chapter 6: MSI Logic

CONCEPT CHECK

CC6.4 How many select lines are needed in a 1-to-64 demultiplexer?

A) 1 B) 4 C) 6 D) 64

Summary

v The term medium-scale integrated circuit
(MSI) logic refers to a set of basic combina-
tional logic circuits that implement simple,
commonly used functions such as decoders,
encoders, multiplexers, and demultiplexers.
MSI logic can also include operations such
as comparators and simple arithmetic
circuits.

v While an MSI logic circuit may have multiple
outputs, each output requires its own unique
logic expression that is based on the system
inputs.

v A decoder is a system that has a greater
number of outputs than inputs. The behavior
of each output is based on each unique
input code.

v An encoder is a system that has a greater
number of inputs than outputs. A com-
pressed output code is produced based on
which input(s) lines are asserted.

v A multiplexer is a system that has one output
and multiple inputs. At any given time, one
and only one input is routed to the output
based on the value on a set of select lines.
For n select lines, a multiplexer can support 2
n inputs.

v A demultiplexer is a system that has one
input and multiple outputs. The input is
routed to one of the outputs depending on
the value on a set of select lines. For n select
lines, a demultiplexer can support 2n outputs.

v HDLs are particularly useful for describing
MSI logic due to their abstract modeling
capability. Through the use of Boolean
conditions and vector assignments, the
behavior of MSI logic can be modeled in a
compact and intuitive manner.

Summary • 205

Exercise Problems

Section 6.1: Decoders
6.1.1 Design a 4-to-16 one-hot decoder by hand.

The block diagram and truth table for the
decoder are given in Fig. 6.1. Give the
minimized logic expressions for each output
(i.e., F0, F1, . . ., F15) and the full logic diagram
for the system.

Fig. 6.1
4-to-16 one-hot decoder functionality

6.1.2 Design a VHDL model for a 4-to-16 one-hot
decoder using concurrent signal assignments
and logical operators. Use the entity definition
given in Fig. 6.2.

Fig. 6.2
4-to-16 one-hot decoder entity

6.1.3 Design a VHDL model for a 4-to-16 one-hot
decoder using conditional signal assignments.
Use the entity definition given in Fig. 6.2.

6.1.4 Design a VHDL model for a 4-to-16 one-hot
decoder using selected signal assignments.
Use the entity definition given in Fig. 6.2.

6.1.5 Design a 4-input, 7-segment hex character
decoder by hand. The system has four inputs
called A, B, C, and D. The system has seven
outputs called Fa, Fb, Fc, Fd, Fe, Ff, and Fg.
These outputs drive the individual LEDs within
the display. A logic 1 on an output corresponds
to the LED being ON. The display will show the
hex characters 0–9, A, b, c, d, E, and F
corresponding to the 4-bit input code on A. A
template for creating the truth tables for this
system is provided in Fig. 6.3. Provide the
minimized logic expressions for each of the
seven outputs and the overall logic diagram
for the decoder.

206 • Chapter 6: MSI Logic

Fig. 6.3
7-segment display decoder truth table

Exercise Problems • 207

6.1.6 Design a VHDL model for a 4-input, 7-segment
hex character decoder using conditional signal
assignments. Use the entity definition given in
Fig. 6.4 for your design. The system has a 4-bit
input vector called A and a 7-bit output vector
called F. The individual scalars within the out-
put vector (i.e., F(6 downto 0)) correspond to
the character display segments a, b, c, d, e, f,
and g, respectively. A logic 1 on an output
corresponds to the LED being ON. The display
will show the hex characters 0–9, A, b, c, d, E,
and F corresponding to the 4-bit input code on
A. A template for creating the truth table is
provided in. The signals in this table corre-
spond to the entity in this problem as follows:
A ¼ A(3), B ¼ A(2), C ¼ A(1), D ¼ A(0), Fa ¼ F
(6), Fb ¼ F(5), Fc ¼ F(4), Fd ¼ F(3), Fe ¼ F(2),
Ff ¼ F(1), and Fg ¼ F(0).

Fig. 6.4
7-segment display decoder entity

6.1.7 Design a VHDL model for a 4-input, 7-segment
hex character decoder using selected signal
assignments. Use the entity definition given in
Fig. 6.4 for your design. The system has a 4-bit
input vector called A and a 7-bit output vector
called F. The individual scalars within the out-
put vector (i.e., F(6 downto 0)) correspond to
the character display segments a, b, c, d, e, f,
and g, respectively. A logic 1 on an output
corresponds to the LED being ON. The display
will show the hex characters 0–9, A, b, c, d, E,
and F corresponding to the 4-bit input code on
A. A template for creating the truth table for this
system is provided in. The signals in this table
correspond to the entity in this problem as
follows: A ¼ A(3), B ¼ A(2), C ¼ A(1), D ¼ A
(0), Fa ¼ F(6), Fb ¼ F(5), Fc ¼ F(4), Fd ¼ F(3),
Fe ¼ F(2), Ff ¼ F(1), and Fg ¼ F(0).

Section 6.2: Encoders
6.2.1 Design an 8-to-3 binary encoder by hand. The

block diagram and truth table for the encoder
are given in Fig. 6.5. Give the logic expressions
for each output and the full logic diagram for
the system.

Fig. 6.5
8-to-3 one-hot encoder functionality

6.2.2 Design a VHDL model for an 8-to-3 binary
encoder using concurrent signal assignments
and logical operators. Use the entity definition
given in Fig. 6.6 for your design.

Fig. 6.6
8-to-3 one-hot encoder entity

6.2.3 Design a VHDL model for an 8-to-3 binary
encoder using conditional signal assignments.
Use the entity definition given in Fig. 6.6 for
your design.

6.2.4 Design a VHDL model for an 8-to-3 binary
encoder using selected signal assignments.
Use the entity definition given in Fig. 6.6 for
your design.

208 • Chapter 6: MSI Logic

Section 6.3: Multiplexers
6.3.1 Design an 8-to-1 multiplexer by hand. The

block diagram and truth table for the multi-
plexer are given in Fig. 6.7. Give the minimized
logic expressions for the output and the full
logic diagram for the system.

Fig. 6.7
8-to1 multiplexer functionality

6.3.2 Design a VHDL model for an 8-to-1 multiplexer
using concurrent signal assignments and logi-
cal operators. Use the entity definition given in
Fig. 6.8 for your design.

Fig. 6.8
8-to1 multiplexer entity

6.3.3 Design a VHDL model for an 8-to-1 multiplexer
using conditional signal assignments. Use the
entity definition given in Fig. 6.8 for your
design.

6.3.4 Design a VHDL model for an 8-to-1 multiplexer
using selected signal assignments. Use the
entity definition given in Fig. 6.8 for your
design.

Section 6.4: Demultiplexers
6.4.1 Design a 1-to-8 demultiplexer by hand. The

block diagram and truth table for the demulti-
plexer are given in Fig. 6.9. Give the minimized
logic expressions for each output and the full

logic diagram for the system.

Fig. 6.9
1-to-8 demultiplexer functionality

6.4.2 Design a VHDL model for a 1-to-8 demulti-
plexer using concurrent signal assignments
and logical operators. Use the entity definition
given in Fig. 6.10 for your design.

Fig. 6.10
1-to-8 demultiplexer entity

6.4.3 Design a VHDL model for a 1-to-8 demulti-
plexer using conditional signal assignments.
Use the entity definition given in Fig. 6.10 for
your design.

6.4.4 Design a VHDL model for a 1-to-8 demulti-
plexer using selected signal assignments.
Use the entity definition given in Fig. 6.10 for
your design.

Exercise Problems • 209

	6: MSI Logic
	6.1 Decoders
	6.1.1 Example: One-Hot Decoder
	6.1.2 Example: 7-Segment Display Decoder
	Concept Check

	6.2 Encoders
	6.2.1 Example: One-Hot Binary Encoder
	Concept Check

	6.3 Multiplexers
	Concept Check

	6.4 Demultiplexers
	Concept Check

