
Chapter 5: VHDL (Part 1)
Based on the material presented in Chap. 4, there are a few observations about logic design that are

apparent. First, the size of logic circuitry can scale quickly to the point where it is difficult to design by
hand. Second, the process of moving from a high-level description of how a circuit works (e.g., a truth
table) to a form that is ready to be implemented with real circuitry (e.g., a minimized logic diagram) is
straightforward and well-defined. Both of these observations motivate the use of computer-aided design
(CAD) tools to accomplish logic design. This chapter introduces hardware description languages (HDLs)
as a means to describe digital circuitry using a text-based language. HDLs provide a means to describe
large digital systems without the need for schematics, which can become impractical in very large
designs. HDLs have evolved to support logic simulation at different levels of abstraction. This provides
designers the ability to begin designing and verifying functionality of large systems at a high level of
abstraction and postpone the details of the circuit implementation until later in the design cycle. This
enables a top-down design approach that is scalable across different logic families. HDLs have also
evolved to support automated synthesis, which allows the CAD tools to take a functional description of a
system (e.g., a truth table) and automatically create the gate-level circuitry to be implemented in real
hardware. This allows designers to focus their attention on designing the behavior of a system and not
spend as much time performing the formal logic synthesis steps that were presented in Chap. 4. The
intent of this chapter is to introduce HDLs and their use in the modern digital design flow. This chapter will
cover the basics of designing combinational logic in an HDL and also hierarchical design. The more
advanced concepts of HDLs such as sequential logic design, high-level abstraction, and adding func-
tionality to an HDL through additional libraries and packages are covered later so that the reader can get
started quickly using HDLs to gain experience with the languages and design flow.

There are two dominant hardware description languages in use today. They are VHDL and Verilog.
VHDL stands for very high-speed integrated circuit hardware description language. Verilog is not an
acronym but rather a trade name. The use of these two HDLs is split nearly equally within the digital
design industry. Once one language is learned, it is simple to learn the other language, so the choice of
the HDL to learn first is somewhat arbitrary. In this text we will use VHDL to learn the concepts of an HDL.
VHDL is stricter in its syntax and typecasting than Verilog, so it is a good platform for beginners as it
provides more of a scaffold for the description of circuits. This helps avoid some of the common pitfalls
that beginners typically encounter. The goal of this chapter is to provide an understanding of the basic
principles of hardware description languages.

Learning Outcomes—After completing this chapter, you will be able to:

5.1 Describe the role of hardware description languages in modern digital design.
5.2 Describe the fundamentals of design abstraction in modern digital design.
5.3 Describe the modern digital design flow based on hardware description languages.
5.4 Describe the fundamental constructs of VHDL.
5.5 Design a VHDL model for a combinational logic circuit using concurrent modeling

techniques (signal assignments and logical operators, conditional signal assignments,
and selected signal assignments).

5.6 Design a VHDL model for a combinational logic circuit using a structural design approach.
5.7 Describe the role of a VHDL test bench.

Springer Nature Switzerland AG 2019
B. J. LaMeres, Introduction to Logic Circuits & Logic Design with VHDL,
https://doi.org/10.1007/978-3-030-12489-2_5

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12489-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-12489-2_4
https://doi.org/10.1007/978-3-030-12489-2_4
https://doi.org/10.1007/978-3-030-12489-2_5

5.1 History of Hardware Description Languages

The invention of the integrated circuit is most commonly credited to two individuals who filed patents
on different variations of the same basic concept within 6 months of each other in 1959. Jack Kilby filed
the first patent on the integrated circuit in February of 1959 titled “Miniaturized Electronic Circuits” while
working for Texas Instruments. Robert Noyce was the second to file a patent on the integrated circuit in
July of 1959 titled “Semiconductor Device and Lead Structure” while at a company he cofounded called
Fairchild Semiconductor. Kilby went on to win the Nobel Prize in Physics in 2000 for his invention, while
Noyce went on to cofound Intel Corporation in 1968 with Gordon Moore. In 1971, Intel introduced the first
single-chip microprocessor using integrated circuit technology, the Intel 4004. This microprocessor IC
contained 2300 transistors. This series of inventions launched the semiconductor industry, which was
the driving force behind the growth of Silicon Valley and led to 50 years of unprecedented advancement
in technology that has impacted every aspect of the modern world.

Gordon Moore, cofounder of Intel, predicted in 1965 that the number of transistors on an integrated
circuit would double every 2 years. This prediction, now known as Moore’s Law, has held true since the
invention of the integrated circuit. As the number of transistors on an integrated circuit grew, so did the
size of the design and the functionality that could be implemented. Once the first microprocessor was
invented in 1971, the capability of CAD tools increased rapidly enabling larger designs to be accom-
plished. These larger designs, including newer microprocessors, enabled the CAD tools to become even
more sophisticated and, in turn, yield even larger designs. The rapid expansion of electronic systems
based on digital integrated circuits required that different manufacturers needed to produce designs that
were compatible with each other. The adoption of logic family standards helped manufacturers ensure
their parts would be compatible with other manufacturers at the physical layer (e.g., voltage and current);
however, one challenge that was encountered by the industry was a way to document the complex
behavior of larger systems. The use of schematics to document large digital designs became too
cumbersome and difficult to understand by anyone besides the designer. Word descriptions of the
behavior were easier to understand, but even this form of documentation became too voluminous to
be effective for the size of designs that were emerging.

In 1983, the US Department of Defense (DoD) sponsored a program to create a means to document
the behavior of digital systems that could be used across all of its suppliers. This program was motivated
by a lack of adequate documentation for the functionality of application-specific integrated circuits
(ASICs) that were being supplied to the DoD. This lack of documentation was becoming a critical
issue as ASICs would come to the end of their life cycle and need to be replaced. With the lack of a
standardized documentation approach, suppliers had difficulty reproducing equivalent parts to those that
had become obsolete. The DoD contracted three companies (Texas Instruments, IBM, and Intermetrics)
to develop a standardized documentation tool that provided detailed information about both the interface
(i.e., inputs and outputs) and the behavior of digital systems. The new tool was to be implemented in a
format similar to a programming language. Due to the nature of this type of language-based tool, it was a
natural extension of the original project scope to include the ability to simulate the behavior of a digital
system. The simulation capability was desired to span multiple levels of abstraction to provide maximum
flexibility. In 1985, the first version of this tool, called VHDL, was released. In order to gain widespread
adoption and ensure consistency of use across the industry, VHDL was turned over to the Institute of
Electrical and Electronic Engineers (IEEE) for standardization. IEEE is a professional association that
defines a broad range of open technology standards. In 1987, IEEE released the first industry standard
version of VHDL. The release was titled IEEE 1076–1987. Feedback from the initial version resulted in a
major revision of the standard in 1993 titled IEEE 1076–1993. While many minor revisions have been
made to the 1993 release, the 1076–1993 standard contains the vast majority of VHDL functionality in
use today. The most recent VHDL standard is IEEE 1076–2008.

156 • Chapter 5: VHDL (Part 1)

Also, in 1983, the Verilog HDL was developed by Automated Integrated Design Systems as a logic
simulation language. The development of Verilog took place completely independent from the VHDL
project. Automated Integrated Design Systems (renamed Gateway Design Automation in 1985) was
acquired by CAD tool vendor Cadence Design Systems in 1990. In response to the rapid adoption of the
open VHDL standard, Cadence made the Verilog HDL open to the public in order to stay competitive.
IEEE once again developed the open standard for this HDL and in 1995 released the Verilog standard
titled IEEE 1364.

The development of CAD tools to accomplish automated logic synthesis can be dated back to the
1970s when IBM began developing a series of practical synthesis engines that were used in the design
of their mainframe computers; however, the main advancement in logic synthesis came with the founding
of a company called Synopsis in 1986. Synopsis was the first company to focus on logic synthesis
directly from HDLs. This was a major contribution because designers were already using HDLs to
describe and simulate their digital systems, and now logic synthesis became integrated in the same
design flow. Due to the complexity of synthesizing highly abstract functional descriptions, only lower
levels of abstraction that were thoroughly elaborated were initially able to be synthesized. As CAD tool
capability evolved, synthesis of higher levels of abstraction became possible, but even today not all
functionality that can be described in an HDL can be synthesized.

The history of HDLs, their standardization, and the creation of the associated logic synthesis tools is
key to understanding the use and limitations of HDLs. HDLs were originally designed for documentation
and behavioral simulation. Logic synthesis tools were developed independently and modified later to
work with HDLs. This history provides some background into the most common pitfalls that beginning
digital designers encounter, that being that most any type of behavior can be described and simulated in
an HDL, but only a subset of well-described functionality can be synthesized. Beginning digital designers
are often plagued by issues related to designs that simulate perfectly but that will not synthesize
correctly. In this book, an effort is made to introduce VHDL at a level that provides a reasonable amount
of abstraction while preserving the ability to be synthesized. Figure 5.1 shows a timeline of some of the
major technology milestones that have occurred in the past 150 years in the field of digital logic and
HDLs.

5.1 History of Hardware Description Languages • 157

CONCEPT CHECK

CC5.1 Why does VHDL support modeling techniques that aren’t synthesizable?

A) Since synthesis wasn’t within the original scope of the VHDL project, there
wasn’t sufficient time to make everything synthesizable.

B) At the time VHDL was created, synthesis was deemed too difficult to
implement.

C) To allow VHDL to be used as a generic programming language.

D) VHDL needs to support all steps in the modern digital design flow, some of
which are unsynthesizable such as test pattern generation and timing
verification.

Fig. 5.1
Major milestones in the advancement of digital logic and HDLs

158 • Chapter 5: VHDL (Part 1)

5.2 HDL Abstraction

HDLs were originally defined to be able to model behavior at multiple levels of abstraction.
Abstraction is an important concept in engineering design because it allows us to specify how systems
will operate without getting consumed prematurely with implementation details. Also, by removing the
details of the lower-level implementation, simulations can be conducted in reasonable amounts of time to
model the higher-level functionality. If a full computer system was simulated using detailed models for
every MOSFET, it would take an impracticable amount of time to complete. Figure 5.2 shows a graphical
depiction of the different layers of abstraction in digital system design.

The highest level of abstraction is the system level. At this level, behavior of a system is described
by stating a set of broad specifications. An example of a design at this level is a specification such as “the
computer system will perform 10 tera floating-point operations per second (10 TFLOPS) on double
precision data and consume no more than 100 watts of power.” Notice that these specifications do not
dictate the lower-level details such as the type of logic family or the type of computer architecture to use.
One level down from the system level is the algorithmic level. At this level, the specifications begin to be
broken down into sub-systems, each with an associated behavior that will accomplish a part of the
primary task. At this level, the example computer specifications might be broken down into sub-systems
such as a central processing unit (CPU) to perform the computation and random access memory (RAM)

Fig. 5.2
Levels of design abstraction

5.2 HDL Abstraction • 159

to hold the inputs and outputs of the computation. One level down from the algorithmic level is the
register transfer level (RTL). At this level, the details of how data is moved between and within
sub-systems are described in addition to how the data is manipulated based on system inputs. One
level down from the RTL level is the gate level. At this level, the design is described using basic gates and
registers (or storage elements). The gate level is essentially a schematic (either graphically or text-
based) that contains the components and connections that will implement the functionality from the
above levels of abstraction. One level down from the gate level is the circuit level. The circuit level
describes the operation of the basic gates and registers using transistors, wires, and other electrical
components such as resistors and capacitors. Finally, the lowest level of design abstraction is the
material level. This level describes how different materials are combined and shaped in order to
implement the transistors, devices, and wires from the circuit level.

HDLs are designed to model behavior at all of these levels with the exception of the material level.
While there is some capability to model circuit-level behavior such as MOSFETs as ideal switches and
pull-up/pull-down resistors, HDLs are not typically used at the circuit level. Another graphical depiction of
design abstraction is known as Gajski and Kuhn’s Y-chart. A Y-chart depicts abstraction across three
different design domains: behavioral, structural, and physical. Each of these design domains contains
levels of abstraction (i.e., system, algorithm, RTL, gate, and circuit). An example Y-chart is shown in
Fig. 5.3.

Fig. 5.3
Y-chart of design abstraction

160 • Chapter 5: VHDL (Part 1)

A Y-chart also depicts how the abstraction levels of different design domains are related to each
other. A top-down design flow can be visualized in a Y-chart by spiraling inward in a clockwise direction.
Moving from the behavioral domain to the structural domain is the process of synthesis. Whenever
synthesis is performed, the resulting system should be compared with the prior behavioral description.
This checking is called verification. The process of creating the physical circuitry corresponding to the
structural description is called implementation. The spiral continues down through the levels of abstrac-
tion until the design is implemented at a level that the geometries representing circuit elements
(transistors, wires, etc.) are ready to be fabricated in silicon. Figure 5.4 shows the top-down design
process depicted as an inward spiral on the Y-chart.

The Y-chart represents a formal approach for large digital systems. For large systems that are
designed by teams of engineers, it is critical that a formal, top-down design process is followed to
eliminate potentially costly design errors as the implementation is carried out at lower levels of
abstraction.

Fig. 5.4
Y-chart illustrating top-down design approach

5.2 HDL Abstraction • 161

CONCEPT CHECK

CC5.2 Why is abstraction an essential part of engineering design?

A) Without abstraction all schematics would be drawn at the transistor-level.

B) Abstraction allows computer programs to aid in the design process.

C) Abstraction allows the details of the implementation to be hidden while the
higher-level systems are designed. Without abstraction, the details of the
implementation would overwhelm the designer.

D) Abstraction allows analog circuit designers to include digital blocks in their
systems.

5.3 The Modern Digital Design Flow

When performing a smaller design or the design of fully contained sub-systems, the process can be
broken down into individual steps. These steps are shown in Fig. 5.5. This process is given generically and
applies to both classical and modern digital design. The distinction between classical and modern is that
modern digital design uses HDLs and automated CAD tools for simulation, synthesis, place and route, and
verification.

Fig. 5.5
Generic digital design flow

162 • Chapter 5: VHDL (Part 1)

This generic design process flow can be used across classical and modern digital design, although
modern digital design allows additional verification at each step using automated CAD tools. Figure 5.6
shows how this flow is used in the classical design approach of a combinational logic circuit.

Fig. 5.6
Classical digital design flow

5.3 The Modern Digital Design Flow • 163

The modern design flow based on HDLs includes the ability to simulate functionality at each step of
the process. Functional simulations can be performed on the initial behavioral description of the system.
At each step of the design process, the functionality is described in more detail, ultimately moving toward
the fabrication step. At each level, the detailed information can be included in the simulation to verify that
the functionality is still correct and that the design is still meeting the original specifications. Figure 5.7
shows the modern digital design flow with the inclusion of simulation capability at each step.

Fig. 5.7
Modern digital design flow

164 • Chapter 5: VHDL (Part 1)

CONCEPT CHECK

CC5.3 Why did digital designs move from schematic-entry to text-based HDLs?

A) HDL models could be much larger by describing functionality in text similar to
traditional programming language.

B) Schematics required sophisticated graphics hardware to display correctly.

C) Schematics symbols became too small as designs became larger.

D) Text was easier to understand by a broader range of engineers.

5.4 VHDL Constructs

Now we begin looking at the details of VHDL. AVHDL design describes a single system in a single
file. The file has the suffix *.vhd. Within the file, there are two parts that describe the system: the entity
and the architecture. The entity describes the interface to the system (i.e., the inputs and outputs), and
the architecture describes the behavior. The functionality of VHDL (e.g., operators, signal types,
functions, etc.) is defined in the package. Packages are grouped within a library. IEEE defines the
base set of functionality for VHDL in the standard package. This package is contained within a library
called IEEE. The library and package inclusion is stated at the beginning of a VHDL file before the entity
and architecture. Additional functionality can be added to VHDL by including other packages, but all
packages are based on the core functionality defined in the standard package. As a result, it is not
necessary to explicitly state that a design is using the IEEE standard package because it is inherent in
the use of VHDL. All functionality described in this chapter is for the IEEE standard package, while other
common packages are covered in Chap. 8. Figure 5.8 shows a graphical depiction of a VHDL file.

VHDL is not case sensitive. Also, each VHDL assignment, definition, or declaration is terminated
with a semicolon (;). As such, line wraps are allowed and do not signify the end of an assignment,
definition, or declaration. Line wraps can be used to make the VHDL more readable. Comments in VHDL
are preceded with two dashes (i.e., --) and continue until the end of the line. All user-defined names in
VHDL must start with an alphabetic letter, not a number. User-defined names are not allowed to be the

Fig. 5.8
The anatomy of a VHDL file

5.4 VHDL Constructs • 165

https://doi.org/10.1007/978-3-030-12489-2_8

same as any VHDL keyword. This chapter contains many definitions of syntax in VHDL. The following
notations will be used throughout the chapter when introducing new constructs.

bold ¼ VHDL keyword, use as is
italics ¼ User-defined name
<> ¼ A required characteristic such as a data type, input/output, etc.

5.4.1 Data Types

In VHDL, every signal, constant, variable, and function must be assigned a data type. The IEEE
standard package provides a variety of pre-defined data types. Some data types are synthesizable,
while others are only for modeling abstract behavior. The following are the most commonly used data
types in the VHDL standard package.

5.4.1.1 Enumerated Types

An enumerated type is one in which the exact values that the type can take on are defined.

Type Values that the type can take on

bit {0, 1}

boolean {false, true}

character {“any of the 256 ASCII characters defined in ISO 8859-1”}

The type bit is synthesizable, while Boolean and character are not. The individual scalar values are
indicated by putting them inside single quotes (e.g., ‘0’, ‘a’, ‘true’).

5.4.1.2 Range Types

A range type is one that can take on any value within a range.

Type Values that the type can take on

integer Whole numbers between -2,147,483,648 to +2,147,483,647

real Fractional numbers between -1.7e38 to +1.7e38

The integer type is a 32-bit, signed, two’s complement number and is synthesizable. If the full range
of integer values is not desired, this type can be bounded by including range <min> to <max>. The real
type is a 32-bit, floating-point value and is not directly synthesizable unless an additional package is
included that defines the floating-point format. The values of these types are indicated by simply using
the number without quotes (e.g., 33, 3.14).

5.4.1.3 Physical Types

A physical type is one that contains both a value and units. In VHDL, time is the primary supported
physical type.

166 • Chapter 5: VHDL (Part 1)

Type Values that the type can take on

time Whole numbers between -2,147,483,648 to +2,147,483,647

(unit relationships) fs (femtosecond, 10�15), base unit

ps ¼ 1000 fs (picosecond, 10�12)

ns ¼ 1000 ps (nanosecond, 10�9)

us ¼ 1000 ns (microsecond, 10�6)

ms ¼ 1000 us (millisecond, 10�3)

sec ¼ 1000 ms (second)

min ¼ 60 sec (minute)

hr ¼ 60 min (hour)

The base unit for time is fs, meaning that if no units are provided, the value is assumed to be in
femtoseconds. The value of time is held as a 32-bit, signed number and is not synthesizable.

5.4.1.4 Vector Types

A vector type is one that consists of a linear array of scalar types.

Type Construction

bit_vector A linear array of type bit

string A linear array of type character

The size of a vector type is defined by including the maximum index, the keyword downto, and the
minimum index. For example, if a signal calledBUS_Awas given the type bit_vector(7 downto 0), it would
create a vector of 8 scalars, each of type bit. The leftmost scalar would have an index of 7 and the
rightmost scalar would have an index of 0. Each of the individual scalars within the vector can be
accessed by providing the index number in parentheses. For example, BUS_A(0) would access the
scalar in the rightmost position. The indices do not always need to have a minimum value of 0, but this is
the most common indexing approach in logic design. The type bit_vector is synthesizable, while string is
not. The values of these types are indicated by enclosing them inside double quotes (e.g., “0011”, “abcd”).

5.4.1.5 User-Defined Enumerated Types

A user-defined enumerated type is one in which the name of the type is specified by the user in
addition to all of the possible values that the type can assume. The creation of a user-defined
enumerated type is shown below.

type name is (value1, value2, . . .);

Example:

type traffic_light is (red, yellow, green);

In this example, a new type is created called traffic_light. If we declared a new signal called Sig1 and
assigned it the type traffic_light, the signal could only take on values of red, yellow, and green. User-
defined enumerated types are synthesizable in specific applications.

5.4.1.6 Array Type

An array contains multiple elements of the same type. Elements within an array can be scalar or
vectors. In order to use an array, a new type must be declared that defines the configuration of the array.
Once the new type is created, signals may be declared of that type. The range of the array must be
defined in the array-type declaration. The range is specified with integers (min and max) and either the
keywords downto or to. The creation of an array type is shown below.

5.4 VHDL Constructs • 167

type name is array (<range>) of <element_type>;

Example:

type block_8x16 is array (0 to 7) bit_vector(15 downto 0);
signal my_array : block_8x16;

In this example, the new array type is declared with eight elements. The beginning index of the array
is 0 and the ending index is 7. Each element in the array is a 16-bit vector of type bit_vector.

5.4.1.7 Subtypes

A subtype is a constrained version, or subset of another type. Subtypes are user-defined, although a
few commonly used subtypes are pre-defined in the standard package. The following is the syntax for
declaring a subtype and two examples of commonly used subtypes (NATURAL and POSITIVE) that are
defined in the standard package.

subtype name is <type> range <min> to <max>;

Example:

subtype NATURAL is integer range 0 to 255;
subtype POSITIVE is integer range 1 to 256;

5.4.2 Libraries and Packages

As mentioned earlier, the IEEE standard package is implied when using VHDL; however, we can
use it as an example of how to include packages in VHDL. The keyword library is used to signify that
packages are going to be added to the VHDL design from the specified library. The name of the library
follows this keyword. To include a specific package from the library, a new line is used with the keyword
use followed by the package details. The package syntax has three fields separated with a period. The
first field is the library name. The second field is the package name. The third field is the specific
functionality of the package to be included. If all functionality of a package is to be used, then the
keyword all is used in the third field. Examples of how to include some of the commonly used packages
from the IEEE library are shown below.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_textio.all;

5.4.3 The Entity

The entity in VHDL describes the inputs and outputs of the system. These are called ports. Each
port needs to have its name, mode, and type specified. The name is user-defined. The mode describes
the direction data, is transferred through the port, and can take on values of in, out, inout, and buffer.
The type is one of the legal data types described above. Port names with the same mode and type can
be listed on the same line separated by commas. The definition of an entity is given below.

entity entity_name is
port (port_name : <mode> <type>;

port_name : <mode> <type>);
end entity;

Example 5.1 shows multiple approaches for defining an entity.

168 • Chapter 5: VHDL (Part 1)

5.4.4 The Architecture

The architecture in VHDL describes the behavior of a system. There are numerous techniques to
describe behavior in VHDL that span multiple levels of abstraction. The architecture is where the majority
of the design work is conducted. The form of a generic architecture is given below.

architecture architecture_name of <entity associated with> is

-- user-defined enumerated type declarations (optional)
-- signal declarations (optional)
-- constant declarations (optional)
-- component declarations (optional)

begin

-- behavioral description of the system goes here

end architecture;

5.4.4.1 Signal Declarations

A signal that is used for internal connections within a system is declared in the architecture. Each
signal must be declared with a type. The signal can only be used to make connections of like types. A
signal is declared with the keyword signal followed by a user-defined name, colon, and the type. Signals
of like type can be declared on the same line separated with a comma. All of the legal data types
described above can be used for signals. Signals represent wires within the system, so they do not have
a direction or mode. Signals cannot have the same name as a port in the system in which they reside.
The syntax for a signal declaration is as follows:

signal name : <type>;

Example:

signal node1 : bit;
signal a1, b1 : integer;
signal Bus3 : bit_vector (15 downto 0);
signal C_int : integer range 0 to 255;

Example 5.1
Defining VHDL entities

5.4 VHDL Constructs • 169

VHDL supports a hierarchical design approach. Signal names can be the same within a sub-system
as those at a higher level without conflict. Figure 5.9 shows an example of legal signal naming in a
hierarchical design.

5.4.4.2 Constant Declarations

A constant is useful for representing a quantity that will be used multiple times in the architecture.
The syntax for declaring a constant is as follows:

constant constant_name : <type> :¼ <value>;

Example:

constant BUS_WIDTH : integer :¼ 32;

Once declared, the constant name can now be used throughout the architecture. The following
example illustrates how we can use a constant to define the size of a vector. Notice that since we defined
the constant to be the actual width of the vector (i.e., 32-bits), we need to subtract one from its value
when defining the indices (i.e., 31 downto 0).

Example:

signal BUS_A : bit_vector (BUS_WIDTH-1 downto 0);

5.4.4.3 Component Declarations

A component is the term used for a VHDL sub-system that is instantiated within a higher-level
system. If a component is going to be used within a system, it must be declared in the architecture before
the begin statement. The syntax for a component declaration is as follows.

component component_name
port (port_name : <mode> <type>;

port_name : <mode> <type>);
end component;

The port definitions of the component must match the port definitions of the sub-system’s entity
exactly. As such, these lines are typically copied directly from the lower-level systems VHDL entity

Fig. 5.9
VHDL signals and systems

170 • Chapter 5: VHDL (Part 1)

description. Once declared, a component can be instantiated after the begin statement in the architec-
ture as many times as needed.

CONCEPT CHECK

CC5.4(a) Why don’t we need to explicitly include the STANDARD package when creating a
VHDL design?

A) It defines the base functionality of VHDL so its use is implied.

B) The simulator will automatically add it to the .vhd file upon compile.

C) It isn’t recognized by synthesizers so it shouldn’t be included.

D) It is a historical artifact that that isn’t used anymore.

CC5.4(b) What is the difference between types Boolean {TRUE, FALSE} and bit {0, 1}?

A) They are the same.

B) Boolean is used for decision making constructs (when, else) while bit is
used to model real digital signals.

C) Logical operators work with type Boolean but not for type bit.

D) Only type bit is synthesizable.

5.5 Modeling Concurrent Functionality in VHDL

It is important to remember that VHDL is a hardware description language, not a programming
language. In a programming language, the lines of code are executed sequentially as they appear in the
source file. In VHDL, the lines of code represent the behavior of real hardware. As a result, all signal
assignments are by default executed concurrently unless specifically noted otherwise. All operations in
VHDL must be on like types, and the result must be assigned to the same type as the operation inputs.

5.5.1 VHDL Operators

There are a variety of pre-defined operators in the IEEE standard package. It is important to note
that operators are defined to work on specific data types and that not all operators are synthesizable.

5.5.1.1 Assignment Operator

VHDL uses <¼ for all signal assignments and: ¼ for all variable and initialization assignments.
These assignment operators work on all data types. The target of the assignment goes on the left of
these operators, and the input arguments go on the right.

Example:

F1 <¼ A; -- F1 and A must be the same size and type
F2 <¼ ‘0’; -- F2 is type bit in this example
F3 <¼ “0000”; -- F3 is type bit_vector(3 downto 0) in this example
F4 <¼ “hello”; -- F4 is type string in this example
F5 <¼ 3.14; -- F5 is type real in this example
F6 <¼ x”1A”; -- F6 is type bit_vector(7 downto 0), x”1A” is in HEX

5.5 Modeling Concurrent Functionality in VHDL • 171

5.5.1.2 Logical Operators

VHDL contains the following logical operators:

Operator Operation

not Logical negation

and Logical AND

nand Logical NAND

or Logical OR

nor Logical NOR

xor Logical Exclusive-OR

xnor Logical Exclusive-NOR

These operators work on types bit, bit_vector, and Boolean. For operations on the type bit_vector,
the input vectors must be the same size and will take place in a bit-wise fashion. For example, if two 8-bit
buses called BusA and BusB were AND’d together, BusA(0) would be individually AND’d with BusB(0),
BusA(1) would be individually AND’d with BusB(1), etc. The NOT operator is a unary operation (i.e., it
operates on a single input), and the keyword is put before the signal being operated on. All other
operators have two or more inputs and are placed in between the input names.

Example:

F1 <¼ not A;
F2 <¼ B and C;

The order of precedence in VHDL is different from in Boolean algebra. The NOToperator is a higher
priority than all other operators. All other logical operators have the same priority and have no inherent
precedence. This means that in VHDL, the AND operator will not precede the OR operation as it does in
Boolean algebra. Parentheses are used to explicitly describe precedence. If operators are used that
have the same priority and parentheses are not provided, then the operations will take place on the
signals listed first moving left to right in the signal assignment. The following are examples on how to use
these operators.

Example:

F3 <¼ not D nand E; -- D will be complemented first, the result
-- will then be NAND’d with E, then the
-- result will be assigned to F3

F4 <¼ not (F or G); -- the parentheses take precedence so
-- F will be OR’d with G first, then

-- complemented, and then assigned to F4.

F5 <¼ H nor I nor J; -- logic operations can have any number of
-- inputs.

F6 <¼ K xor L xnor M; -- XOR and XNOR have the same priority so with
-- no parentheses given, the logic operations
-- will take place on the signals from
-- left to right. K will be XOR’d with L first,
-- then the result will be XNOR’d with M.

172 • Chapter 5: VHDL (Part 1)

5.5.1.3 Numerical Operators

VHDL contains the following numerical operators:

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

mod Modulus

rem Remainder

abs Absolute value

** Exponential

These operators work on types integer and real. Note that the default VHDL standard does not
support numerical operators on types bit and bit_vector.

5.5.1.4 Relational Operators

VHDL contains the following relational operators. These operators compare two inputs of the same
type and returns the type Boolean (i.e., true or false).

Operator Returns true if the comparison is:

¼ Equal

/¼ Not equal

< Less than

<¼ Less than or equal

> Greater than

>¼ Greater than or equal

5.5.1.5 Shift Operators

VHDL contains the following shift operators. These operators work on vector types bit_vector and
string.

Operator Operation

sll Shift left logical

srl Shift right logical

sla Shift left arithmetic

sra Shift right arithmetic

rol Rotate left

ror Rotate right

The syntax for using a shift operation is to provide the name of the vector followed by the desired
shift operator, followed by an integer indicating how many shift operations to perform. The target of the
assignment must be the same type and size as the input.

Example:

A <¼ B srl 3; -- A is assigned the result of a logical shift
-- right 3 times on B.

5.5 Modeling Concurrent Functionality in VHDL • 173

5.5.1.6 Concatenation Operator

In VHDL the& is used to concatenate multiple signals. The target of this operation must be the same
size of the sum of the sizes of the input arguments.

Example:

Bus1 <¼ “11” & “00”; -- Bus1 must be 4-bits and will be assigned
-- the value “1100”

Bus2 <¼ BusA & BusB; -- If BusA and BusB are 4-bits, then Bus2
-- must be 8-bits.

Bus3 <¼ ‘0’ & BusA; -- This attaches a leading ‘0’ to BusA. Bus3
-- must be 5-bits

5.5.2 Concurrent Signal Assignments

Concurrent signal assignments are accomplished by simply using the <¼ operator after the begin
statement in the architecture. Each individual assignment will be executed concurrently and synthesized
as separate logic circuits. Consider the following example.

Example:

X <¼ A;
Y <¼ B;
Z <¼ C;

When simulated, these three lines of VHDL will make three separate signal assignments at the
exact same time. This is different from a programming language that will first assign A to X, then B to Y,
and finally C to Z. In VHDL this functionality is identical to three separate wires. This description will be
directly synthesized into three separate wires.

Below is another example of how concurrent signal assignments in VHDL differ from a sequentially
executed programming language.

Example:

A <¼ B;
B <¼ C;

In a VHDL simulation, the signal assignments of C to B and B to A will take place at the same time;
however, during synthesis, the signal B will be eliminated from the design since this functionality
describes two wires in series. Automated synthesis tools will eliminate this unnecessary signal name.
This is not the same functionality that would result if this example was implemented as a sequentially
executed computer program. A computer program would execute the assignment of B to A first and then
assign the value of C to B second. In this way, B represents a storage element that is passed to A before
it is updated with C.

5.5.3 Concurrent Signal Assignments with Logical Operators

Each of the logical operators described in Sect. 5.5.1.2 can be used in conjunction with concurrent
signal assignments to create individual combinational logic circuits. Example 5.2 shows how to design a
VHDL model of a combinational logic circuit using this approach.

174 • Chapter 5: VHDL (Part 1)

5.5.4 Conditional Signal Assignments

Logical operators are good for describing the behavior of small circuits; however, in the prior
example, we still needed to create the canonical sum of products logic expression by hand before
describing the functionality in VHDL. The true power of an HDL is when the behavior of the system can
be described fully without requiring any hand design. A conditional signal assignment allows us to
describe a concurrent signal assignment using Boolean conditions that effect the values of the result.
In a conditional signal assignment, the keyword when is used to describe the signal assignment for a
particular Boolean condition. The keyword else is used to describe the signal assignments for any other
conditions. Multiple Boolean conditions can be used to fully describe the output of the circuit under all
input conditions. Logical operators can also be used in the Boolean conditions to create more sophisti-
cated conditions. The Boolean conditions can be encompassed within parentheses for readability. The
syntax for a conditional signal assignment is shown below.

Example 5.2
Modeling logic using concurrent signal assignments and logical operators

5.5 Modeling Concurrent Functionality in VHDL • 175

signal_name <¼ expression_1 when condition_1 else
expression_2 when condition_2 else

:
expression_n;

Example:

F1 <¼ ‘0’ when A¼‘0’ else ‘1’;
F2 <¼ ‘1’ when (A¼’0’ and B¼’1’) else ‘0’;
F3 <¼ A when (C ¼ D) else B;

An important consideration of conditional signal assignments is that they are still executed concur-
rently. Each assignment represents a separate, combinational logic circuit. In the above example, F1,
F2, and F3 will be implemented as three separate circuits. Example 5.3 shows how to design a VHDL
model of a combinational logic circuit using conditional signal assignments. Note that this example uses
the same truth table as in Example 5.2 to illustrate a comparison between approaches.

Example 5.3
Modeling logic using conditional signal assignments

176 • Chapter 5: VHDL (Part 1)

5.5.5 Selected Signal Assignments

A selected signal assignment provides another technique to implement concurrent signal
assignments. In this approach, the signal assignment is based on a specific value on the input signal.
The keyword with is used to begin the selected signal assignment. It is then followed by the name of the
input that will be used to dictate the value of the output. Only a single variable name can be listed as the
input. This means that if the assignment is going to be based on multiple variables, they must first be
concatenated into a single vector name before starting the selected signal assignment. After the input is
listed, the keyword select signifies the beginning of the signal assignments. An assignment is made to a
signal based on a list of possible input values that follow the keyword when. Multiple values of the input
codes can be used and are separated by commas. The keyword others is used to cover any input values
that are not explicitly stated. The syntax for a selected signal assignment is as follows:

with input_name select
signal_name <¼ expression_1 when condition_1,

expression_2 when condition_2,
:

expression_n when others;

Example:

with A select
F1 <¼ ‘1’ when ‘0’, -- F1 will be assigned ‘1’ when A¼’0’

‘0’ when ‘1’; -- F1 will be assigned ‘0’ when A¼’1’

AB <¼ A&B; -- concatenate A and B so that they can be used as a vector
with AB select

F2 <¼ ‘0’ when “00”, -- F2 will be assigned ‘0’ when AB¼”00”
‘1’ when “01”,
‘1’ when “10”,
‘0’ when “11”;

with AB select
F3 <¼ ‘1’ when “01”,

‘1’ when “10”,
‘0’ when others;

One feature of selected signal assignments that makes its form even more compact is that multiple
input codes that correspond to the same output assignment can be listed on the same line pipe (|)-
delimited. The example for F3 can be equivalently described as:

with AB select
F3 <¼ ‘1’ when “01” | “10”,

‘0’ when others;

Example 5.4 shows how to design a VHDL model of a combinational logic circuit using selected
signal assignments. Note that this example again uses the same truth table as in Example 5.2 and
Example 5.3 to illustrate a comparison between approaches.

5.5 Modeling Concurrent Functionality in VHDL • 177

5.5.6 Delayed Signal Assignments

VHDL provides the ability to delay a concurrent signal assignment in order to more accurately model
the behavior of real gates. The keyword after is used to delay an assignment by a certain amount of time.
The magnitude of the delay is provided as type time. The syntax for delaying an assignment is as follows:

signal_name <¼ <expression> after <time>;

Example 5.4
Modeling logic using selected signal assignments

178 • Chapter 5: VHDL (Part 1)

Example:

A <¼ B after 3us;
C <¼ D and E after 10ns;

If an input pulse is shorter in duration than the amount of the delay, the input pulse is ignored. This is
called the inertial delay model. Example 5.5 shows how to design a VHDL model with a delayed signal
assignment using the inertial delay model.

Ignoring brief input pulses on the input accurately models the behavior of on-chip gates. When the
input pulse is faster than the delay of the gate, the output of the gate does not have time to respond. As a
result, there will not be a logic change on the output. If it is desired to have all pulses on the inputs show
up on the outputs when modeling the behavior of other types of digital logic, the keyword transport is
used in conjunction with the after statement. This is called the transport delay model.

signal_name <¼ transport <expression> after <time>;

Example 5.6 shows how to perform a delayed signal assignment using the transport delay model.

Example 5.5
Modeling logic using delayed signal assignments (inertial delay model)

5.5 Modeling Concurrent Functionality in VHDL • 179

CONCEPT CHECK

CC5.5(a) Why is concurrency such an important concept in HDLs?

A) Concurrency is a feature of HDLs that can’t be modeled using schematics.

B) Concurrency allows automated synthesis to be performed.

C) Concurrency allows logic simulators to display useful system information.

D) Concurrency is necessary to model real systems that operate in parallel.

CC5.5(b) Why does modeling combinational logic in its canonical form with concurrent signal
assignments with logical operators defeat the purpose of the modern digital design
flow?

A) It requires the designer to first create the circuit using the classical digital
design approach and then enter it into the HDL in a form that is essentially a
text-based netlist. This doesn’t take advantage of the abstraction
capabilities and automated synthesis in the modern flow.

B) It cannot be synthesized because the order of precedence of the logical
operators in VHDL doesn’t match the precedence defined in Boolean
algebra.

C) The circuit is in its simplest form so there is no work for the synthesizer
to do.

D) It doesn’t allow an else clause to cover the outputs for any remaining input
codes not explicitly listed.

Example 5.6
Modeling logic using delayed signal assignments (transport delay model)

180 • Chapter 5: VHDL (Part 1)

5.6 Structural Design Using Components

Structural design in VHDL refers to including lower-level sub-systems within a higher-level system in
order to produce the desired functionality. A purely structural VHDL design would not contain any
behavioral modeling in the architecture such as signal assignments, but instead just contain the
instantiation and interconnections of other sub-systems. A sub-system is called a component in
VHDL. For any component that is going to be used in an architecture, it must be declared before the
begin statement. Refer to Sect. 5.4.4.3 for the syntax of declaring a component. A specific component
only needs to be declared once. After the begin statement, it can be used as many times as necessary.
Each component is executed concurrently.

5.6.1 Component Instantiation

The term instantiation refers to the use or inclusion of the component in the VHDL system. When a
component is instantiated, it needs to be given a unique identifying name. This is called the instance
name. To instantiate a component, the instance name is given first, followed by a colon and then the
component name. The last part of instantiating a component is connecting signals to its ports. The way in
which signals are connected to the ports of the component is called the port map. The syntax for
instantiating a component is as follows:

instance_name : <component name>
port map (<port connections>);

There are two techniques to connect signals to the ports of the component, explicit port mapping
and positional port mapping.

5.6.1.1 Explicit Port Mapping

In explicit port mapping, the name of each port of the component is given, followed by the connection
indicator ¼>, followed by the signal it is connected to. The port connections can be listed in any order
since the details of the connection (i.e., port name to signal name) are explicit. Each connection name is
separated by a comma. The syntax for explicit port mapping is as follows:

instance_name : <component name>
port map (port1 ¼> signal1, port2 ¼> signal2, ...);

Example 5.7 shows how to design a VHDL model of a combinational logic circuit using structural
VHDL and explicit port mapping. Note that this example again uses the same truth table as in Examples
5.2, 5.3, and 5.4 to illustrate a comparison between approaches.

5.6 Structural Design Using Components • 181

5.6.1.2 Positional Port Mapping

In positional port mapping, the names of the ports of the component are not explicitly listed. Instead,
the signals are listed in the same order that the ports of the component were defined. Each signal name
is separated by a comma. This approach requires less text to describe but can also lead to
misconnections due to mismatches in the order of the signals being connected. The syntax for positional
port mapping is as follows:

instance_name : <component name>
port map (signal1, signal2, ...);

Example 5.7
Modeling logic using structural VHDL (explicit port mapping)

182 • Chapter 5: VHDL (Part 1)

Example 5.8 shows how to create the same structural VHDL model as in Example 5.7, but using
positional port mapping instead.

CONCEPT CHECK

CC5.6 Does the use of components model concurrent functionality? Why?

A) No. Since the lower level behavior of the component being instantiated may
contain non-concurrent behavior, it is not known what functionality will be
modeled.

B) Yes. The components are treated like independent sub-systems whose
behavior runs in parallel just as if separate parts were placed in a design.

5.7 Overview of Simulation Test Benches

One of the essential components of the modern digital design flow is verifying functionality through
simulation. This simulation takes place at many levels of abstraction. For a system to be tested, there
needs to be a mechanism to generate input patterns to drive the system and then observe the outputs to
verify correct operation. The mechanism to do this in VHDL is called a test bench. A test bench is a file in
VHDL that has no inputs or outputs. The test bench declares the system to be tested as a component
and then instantiates it. The test bench generates the input conditions and drives them into the input

Example 5.8
Modeling logic using structural VHDL (positional port mapping)

5.7 Overview of Simulation Test Benches • 183

ports of the system being tested. VHDL contains numerous methods to generate stimulus patterns.
Since a test bench will not be synthesized, very abstract behavioral modeling can be used to generate
the inputs. The output of the system can be viewed as a waveform in a simulation tool. VHDL also has the
ability to check the outputs against the expected results and notify the user if differences occur.
Figure 5.10 gives an overview of how test benches are used in VHDL. The techniques to generate the
stimulus patterns are covered in Chap. 8.

Fig. 5.10
Overview of VHDL test benches

184 • Chapter 5: VHDL (Part 1)

https://doi.org/10.1007/978-3-030-12489-2_8

CONCEPT CHECK

CC5.7 How can the output of a DUT be verified when it is connected to a signal that does not go
anywhere?

A) It can’t. The output must be routed to an output port on the test bench.

B) The values of any dangling signal are automatically written to a text file.

C) It is viewed in the logic simulator as either a waveform or text listing.

D) It can’t. A signal that does not go anywhere will cause an error when the VHDL
file is compiled.

Summary

v The modern digital design flow relies on
computer-aided engineering (CAE) and
computer-aided design (CAD) tools to man-
age the size and complexity of today’s digital
designs.

v Hardware description languages (HDLs)
allow the functionality of digital systems to
be entered using text. VHDL and Verilog are
the two most common HDLs in use today.

v VHDL was originally created to document the
behavior of large digital systems and support
functional simulations.

v The ability to automatically synthesize a logic
circuit from a VHDL behavioral description
became possible approximately 10 years
after the original definition of VHDL. As
such, only a subset of the behavioral
modeling techniques in VHDL can be auto-
matically synthesized.

v HDLs can model digital systems at different
levels of design abstraction. These include
the system, algorithmic, RTL, gate, and cir-
cuit levels. Designing at a higher level of
abstraction allows more complex systems to
be modeled without worrying about the
details of the implementation.

v In a VHDL source file, there are three main
sections. These are the package, the entity,
and the architecture. Including a package
allows additional functionality to be included
in VHDL. The entity is where the inputs and
outputs of the system are declared. The
architecture is where the behavior of the sys-
tem is described.

v A port is an input or output to a system that is
declared in the entity. A signal is an internal
connection within the system that is declared
in the architecture. A signal is not visible
outside of the system.

v A component is how a VHDL system uses
another sub-system. A component is first
declared, which defines the name and entity
of the sub-system to be used. The compo-
nent can then be instantiated one or more
times. The ports of the component can be
connected using either explicit or positional
port mapping.

v Concurrency is the term that describes
operations being performed in parallel. This
allows real-world system behavior to be
modeled.

v VHDL contains three direct techniques to
model concurrent logic behavior. These are
concurrent signal assignments with logical
operators, conditional signal assignments,
and selected signal assignments.

v VHDL components are also treated as con-
current sub-systems.

v Delay can be modeled in VHDL using either
the initial or transport model.

v A simulation test bench is a VHDL file that
drives stimulus into a device under test
(DUT). Test benches do not have inputs or
outputs and are not synthesizable.

Summary • 185

Exercise Problems

Section 5.1: History of HDLs
5.1.1 What was the original purpose of VHDL?

5.1.2 Can all of the functionality that can be
described in VHDL be simulated?

5.1.3 Can all of the functionality that can be
described in VHDL be synthesized?

Section 5.2: HDL Abstraction
5.2.1 Give the level of design abstraction that the

following statement relates to: if there is ever
an error in the system, it should return to the
reset state.

5.2.2 Give the level of design abstraction that the
following statement relates to: once the design
is implemented in a sum of products form,
DeMorgan’s Theorem will be used to convert
it to a NAND-gate only implementation.

5.2.3 Give the level of design abstraction that the
following statement relates to: the design will
be broken down into two sub-systems, one that
will handle data collection and the other that
will control data flow.

5.2.4 Give the level of design abstraction that the
following statement relates to: the interconnect
on the IC should be changed from aluminum to
copper to achieve the performance needed in
this design.

5.2.5 Give the level of design abstraction that the
following statement relates to: the MOSFETs
need to be able to drive at least eight other
loads in this design.

5.2.6 Give the level of design abstraction that the
following statement relates to: this system will
contain 1 host computer and support up to
1000 client computers.

5.2.7 Give the design domain that the following activ-
ity relates to: drawing the physical layout of the
CPU will require 6 months of engineering time.

5.2.8 Give the design domain that the following activ-
ity relates to: the CPU will be connected to four
banks of memory.

5.2.9 Give the design domain that the following activ-
ity relates to: the fan-in specifications for this
logic family require excessive logic circuitry to
be used.

5.2.10 Give the design domain that the following activ-
ity relates to: the performance specifications
for this system require 1 TFLOP at < 5 W.

Section 5.3: The Modern Digital Design
Flow
5.3.1 Which step in the modern digital design flow

does the following statement relate to: a CAD

tool will convert the behavioral model into a
gate-level description of functionality.

5.3.2 Which step in the modern digital design flow
does the following statement relate to: after
realistic gate and wiring delays are determined,
one last simulation should be performed to
make sure the design meets the original timing
requirements.

5.3.3 Which step in the modern digital design flow
does the following statement relate to: if the
memory is distributed around the perimeter of
the CPU, the wiring density will be minimized.

5.3.4 Which step in the modern digital design flow
does the following statement relate to: the
design meets all requirements so now I’m
building the hardware that will be shipped.

5.3.5 Which step in the modern digital design flow
does the following statement relate to: the sys-
tem will be broken down into three
sub-systems with the following behaviors.

5.3.6 Which step in the modern digital design flow
does the following statement relate to: this sys-
tem needs to have 10 Gbytes of memory.

5.3.7 Which step in the modern digital design flow
does the following statement relate to: to meet
the power requirements, the gates will be
implemented in the 74HC logic family.

Section 5.4: VHDL Constructs
5.4.1 In which construct of VHDL are the inputs and

outputs of the system defined?

5.4.2 In which construct of VHDL is the behavior of
the system described?

5.4.3 Which construct is used to add additional func-
tionality such as data types to VHDL?

5.4.4 What are all the possible values that the type
bit can take on in VHDL?

5.4.5 What are all the possible values that the type
Boolean can take on in VHDL?

5.4.6 What is the range of decimal numbers that can
be represented using the type integer in
VHDL?

5.4.7 What is the width of the vector defined using
the type bit_vector(63 downto 0)?

5.4.8 What is the syntax for indexing the most signif-
icant bit in the type bit_vector(31 downto 0)?
Assume the vector is named example.

5.4.9 What is the syntax for indexing the least signif-
icant bit in the type bit_vector(31 downto 0)?
Assume the vector is named example.

5.4.10 What is the difference between an enumerated
type and a range type?

5.4.11 What scalar type does a bit_vector consist of?

186 • Chapter 5: VHDL (Part 1)

5.4.12 What scalar type does a string consist of?

Section 5.5: Modeling Concurrent
Functionality in VHDL
5.5.1 Design a VHDLmodel to implement the behav-

ior described by the 3-input minterm list shown
in Fig. 5.11. Use concurrent signal
assignments and logical operators. Declare
your entity to match the block diagram
provided. Use the type bit for your ports.

Fig. 5.11
System E functionality

5.5.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 5.11. Use conditional signal
assignments. Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

5.5.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input minterm list shown
in Fig. 5.11. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.4 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 5.12. Use concurrent signal
assignments and logical operators. Declare
your entity to match the block diagram
provided. Use the type bit for your ports.

Fig. 5.12
System F functionality

5.5.5 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 5.12. Use conditional signal
assignments. Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

5.5.6 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 5.12. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.7 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 5.13. Use concurrent signal assignments
and logical operators. Declare your entity to

match the block diagram provided. Use the
type bit for your ports.

Fig. 5.13
System G functionality

5.5.8 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 5.13. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.9 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 5.13. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.10 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 5.14. Use concurrent signal
assignments and logical operators. Declare
your entity to match the block diagram
provided. Use the type bit for your ports.

Fig. 5.14
System I functionality

5.5.11 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 5.14. Use conditional signal
assignments. Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

5.5.12 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 5.14. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.13 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 5.15. Use concurrent signal
assignments and logical operators. Declare
your entity to match the block diagram
provided. Use the type bit for your ports.

Exercise Problems • 187

Fig. 5.15
System J functionality

5.5.14 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 5.15. Use conditional signal
assignments. Declare your entity to match the
block diagram provided. Use the type bit for
your ports.

5.5.15 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 5.15. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.16 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 5.16. Use concurrent signal assignments
and logical operators. Declare your entity to
match the block diagram provided. Use the
type bit for your ports.

Fig. 5.16
System K functionality

5.5.17 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 5.16. Use conditional signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

5.5.18 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 5.16. Use selected signal assignments.
Declare your entity to match the block diagram
provided. Use the type bit for your ports.

Section 5.6 Structural Design in VHDL
5.6.1 Design a VHDLmodel to implement the behav-

ior described by the 3-input minterm list shown
in Fig. 5.11. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

5.6.2 Design a VHDLmodel to implement the behav-
ior described by the 3-input maxterm list shown
in Fig. 5.12. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

5.6.3 Design a VHDLmodel to implement the behav-
ior described by the 3-input truth table shown in
Fig. 5.13. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

5.6.4 Design a VHDLmodel to implement the behav-
ior described by the 4-input minterm list shown
in Fig. 5.14. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with concur-
rent signal assignments and logical operators
(e.g., F <¼ not A). Declare your entity to match
the block diagram provided. Use the type bit for
your ports.

5.6.5 Design a VHDLmodel to implement the behav-
ior described by the 4-input maxterm list shown
in Fig. 5.15. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with

188 • Chapter 5: VHDL (Part 1)

concurrent signal assignments and logical
operators (e.g., F < ¼ not A). Declare your
entity to match the block diagram provided.
Use the type bit for your ports.

5.6.6 Design a VHDLmodel to implement the behav-
ior described by the 4-input truth table shown in
Fig. 5.16. Use a structural design approach
and basic gates. You will need to create what-
ever basic gates are needed for your design
(e.g., INV1, AND2, OR4, etc.) and then instan-
tiate them in your upper-level architecture to
create the desired functionality. The lower-
level gates can be implemented with

concurrent signal assignments and logical
operators (e.g., F < ¼ not A). Declare your
entity to match the block diagram provided.
Use the type bit for your ports.

Section 5.7: Overview of Simulation Test
Benches
5.7.1 What is the purpose of a test bench?

5.7.2 Does a test bench have input and output ports?

5.7.3 Can a test bench be simulated?

5.7.4 Can a test bench be synthesized?

Exercise Problems • 189

	5: VHDL (Part 1)
	5.1 History of Hardware Description Languages
	Concept Check

	5.2 HDL Abstraction
	Concept Check

	5.3 The Modern Digital Design Flow
	Concept Check

	5.4 VHDL Constructs
	5.4.1 Data Types
	5.4.1.1 Enumerated Types
	5.4.1.2 Range Types
	5.4.1.3 Physical Types
	5.4.1.4 Vector Types
	5.4.1.5 User-Defined Enumerated Types
	5.4.1.6 Array Type
	5.4.1.7 Subtypes

	5.4.2 Libraries and Packages
	5.4.3 The Entity
	5.4.4 The Architecture
	5.4.4.1 Signal Declarations
	5.4.4.2 Constant Declarations
	5.4.4.3 Component Declarations
	Concept Check

	5.5 Modeling Concurrent Functionality in VHDL
	5.5.1 VHDL Operators
	5.5.1.1 Assignment Operator
	5.5.1.2 Logical Operators
	5.5.1.3 Numerical Operators
	5.5.1.4 Relational Operators
	5.5.1.5 Shift Operators
	5.5.1.6 Concatenation Operator

	5.5.2 Concurrent Signal Assignments
	5.5.3 Concurrent Signal Assignments with Logical Operators
	5.5.4 Conditional Signal Assignments
	5.5.5 Selected Signal Assignments
	5.5.6 Delayed Signal Assignments
	Concept Check

	5.6 Structural Design Using Components
	5.6.1 Component Instantiation
	5.6.1.1 Explicit Port Mapping
	5.6.1.2 Positional Port Mapping
	Concept Check

	5.7 Overview of Simulation Test Benches
	Concept Check

