®

Check for
updates

Chapter 5: VHDL (Part 1)

Based on the material presented in Chap. 4, there are a few observations about logic design that are
apparent. First, the size of logic circuitry can scale quickly to the point where it is difficult to design by
hand. Second, the process of moving from a high-level description of how a circuit works (e.g., a truth
table) to a form that is ready to be implemented with real circuitry (e.g., a minimized logic diagram) is
straightforward and well-defined. Both of these observations motivate the use of computer-aided design
(CAD) tools to accomplish logic design. This chapter introduces hardware description languages (HDLs)
as a means to describe digital circuitry using a text-based language. HDLs provide a means to describe
large digital systems without the need for schematics, which can become impractical in very large
designs. HDLs have evolved to support logic simulation at different levels of abstraction. This provides
designers the ability to begin designing and verifying functionality of large systems at a high level of
abstraction and postpone the details of the circuit implementation until later in the design cycle. This
enables a top-down design approach that is scalable across different logic families. HDLs have also
evolved to support automated synthesis, which allows the CAD tools to take a functional description of a
system (e.g., a truth table) and automatically create the gate-level circuitry to be implemented in real
hardware. This allows designers to focus their attention on designing the behavior of a system and not
spend as much time performing the formal logic synthesis steps that were presented in Chap. 4. The
intent of this chapter is to introduce HDLs and their use in the modern digital design flow. This chapter will
cover the basics of designing combinational logic in an HDL and also hierarchical design. The more
advanced concepts of HDLs such as sequential logic design, high-level abstraction, and adding func-
tionality to an HDL through additional libraries and packages are covered later so that the reader can get
started quickly using HDLs to gain experience with the languages and design flow.

There are two dominant hardware description languages in use today. They are VHDL and Verilog.
VHDL stands for very high-speed integrated circuit hardware description language. Verilog is not an
acronym but rather a trade name. The use of these two HDLs is split nearly equally within the digital
design industry. Once one language is learned, it is simple to learn the other language, so the choice of
the HDL to learn first is somewhat arbitrary. In this text we will use VHDL to learn the concepts of an HDL.
VHDL is stricter in its syntax and typecasting than Verilog, so it is a good platform for beginners as it
provides more of a scaffold for the description of circuits. This helps avoid some of the common pitfalls
that beginners typically encounter. The goal of this chapter is to provide an understanding of the basic
principles of hardware description languages.

Learning Outcomes—After completing this chapter, you will be able to:

5.1 Describe the role of hardware description languages in modern digital design.

5.2 Describe the fundamentals of design abstraction in modern digital design.

5.3 Describe the modern digital design flow based on hardware description languages.

54 Describe the fundamental constructs of VHDL.

5.5 Design a VHDL model for a combinational logic circuit using concurrent modeling

techniques (signal assignments and logical operators, conditional signal assignments,
and selected signal assignments).
5.6 Design a VHDL model for a combinational logic circuit using a structural design approach.
5.7 Describe the role of a VHDL test bench.

© Springer Nature Switzerland AG 2019 155
B. J. LaMeres, Introduction to Logic Circuits & Logic Design with VHDL,
https://doi.org/10.1007/978-3-030-12489-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12489-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-12489-2_4
https://doi.org/10.1007/978-3-030-12489-2_4
https://doi.org/10.1007/978-3-030-12489-2_5

156 ¢ Chapter 5: VHDL (Part 1)

5.1 History of Hardware Description Languages

The invention of the integrated circuit is most commonly credited to two individuals who filed patents
on different variations of the same basic concept within 6 months of each other in 1959. Jack Kilby filed
the first patent on the integrated circuit in February of 1959 titled “Miniaturized Electronic Circuits” while
working for Texas Instruments. Robert Noyce was the second to file a patent on the integrated circuit in
July of 1959 titled “Semiconductor Device and Lead Structure” while at a company he cofounded called
Fairchild Semiconductor. Kilby went on to win the Nobel Prize in Physics in 2000 for his invention, while
Noyce went on to cofound Intel Corporation in 1968 with Gordon Moore. In 1971, Intel introduced the first
single-chip microprocessor using integrated circuit technology, the Intel 4004. This microprocessor IC
contained 2300 transistors. This series of inventions launched the semiconductor industry, which was
the driving force behind the growth of Silicon Valley and led to 50 years of unprecedented advancement
in technology that has impacted every aspect of the modern world.

Gordon Moore, cofounder of Intel, predicted in 1965 that the number of transistors on an integrated
circuit would double every 2 years. This prediction, now known as Moore’s Law, has held true since the
invention of the integrated circuit. As the number of transistors on an integrated circuit grew, so did the
size of the design and the functionality that could be implemented. Once the first microprocessor was
invented in 1971, the capability of CAD tools increased rapidly enabling larger designs to be accom-
plished. These larger designs, including newer microprocessors, enabled the CAD tools to become even
more sophisticated and, in turn, yield even larger designs. The rapid expansion of electronic systems
based on digital integrated circuits required that different manufacturers needed to produce designs that
were compatible with each other. The adoption of logic family standards helped manufacturers ensure
their parts would be compatible with other manufacturers at the physical layer (e.g., voltage and current);
however, one challenge that was encountered by the industry was a way to document the complex
behavior of larger systems. The use of schematics to document large digital designs became too
cumbersome and difficult to understand by anyone besides the designer. Word descriptions of the
behavior were easier to understand, but even this form of documentation became too voluminous to
be effective for the size of designs that were emerging.

In 1983, the US Department of Defense (DoD) sponsored a program to create a means to document
the behavior of digital systems that could be used across all of its suppliers. This program was motivated
by a lack of adequate documentation for the functionality of application-specific integrated circuits
(ASICs) that were being supplied to the DoD. This lack of documentation was becoming a critical
issue as ASICs would come to the end of their life cycle and need to be replaced. With the lack of a
standardized documentation approach, suppliers had difficulty reproducing equivalent parts to those that
had become obsolete. The DoD contracted three companies (Texas Instruments, IBM, and Intermetrics)
to develop a standardized documentation tool that provided detailed information about both the interface
(i.e., inputs and outputs) and the behavior of digital systems. The new tool was to be implemented in a
format similar to a programming language. Due to the nature of this type of language-based tool, it was a
natural extension of the original project scope to include the ability to simulate the behavior of a digital
system. The simulation capability was desired to span multiple levels of abstraction to provide maximum
flexibility. In 1985, the first version of this tool, called VHDL, was released. In order to gain widespread
adoption and ensure consistency of use across the industry, VHDL was turned over to the Institute of
Electrical and Electronic Engineers (IEEE) for standardization. IEEE is a professional association that
defines a broad range of open technology standards. In 1987, IEEE released the first industry standard
version of VHDL. The release was titled IEEE 1076—1987. Feedback from the initial version resulted in a
major revision of the standard in 1993 titled IEEE 1076—1993. While many minor revisions have been
made to the 1993 release, the 1076-1993 standard contains the vast majority of VHDL functionality in
use today. The most recent VHDL standard is IEEE 1076-2008.

5.1 History of Hardware Description Languages ¢ 157

Also, in 1983, the Verilog HDL was developed by Automated Integrated Design Systems as a logic
simulation language. The development of Verilog took place completely independent from the VHDL
project. Automated Integrated Design Systems (renamed Gateway Design Automation in 1985) was
acquired by CAD tool vendor Cadence Design Systems in 1990. In response to the rapid adoption of the
open VHDL standard, Cadence made the Verilog HDL open to the public in order to stay competitive.
IEEE once again developed the open standard for this HDL and in 1995 released the Verilog standard
titted IEEE 1364.

The development of CAD tools to accomplish automated logic synthesis can be dated back to the
1970s when IBM began developing a series of practical synthesis engines that were used in the design
of their mainframe computers; however, the main advancement in logic synthesis came with the founding
of a company called Synopsis in 1986. Synopsis was the first company to focus on logic synthesis
directly from HDLs. This was a major contribution because designers were already using HDLs to
describe and simulate their digital systems, and now logic synthesis became integrated in the same
design flow. Due to the complexity of synthesizing highly abstract functional descriptions, only lower
levels of abstraction that were thoroughly elaborated were initially able to be synthesized. As CAD tool
capability evolved, synthesis of higher levels of abstraction became possible, but even today not all
functionality that can be described in an HDL can be synthesized.

The history of HDLs, their standardization, and the creation of the associated logic synthesis tools is
key to understanding the use and limitations of HDLs. HDLs were originally designed for documentation
and behavioral simulation. Logic synthesis tools were developed independently and modified later to
work with HDLs. This history provides some background into the most common pitfalls that beginning
digital designers encounter, that being that most any type of behavior can be described and simulated in
an HDL, but only a subset of well-described functionality can be synthesized. Beginning digital designers
are often plagued by issues related to designs that simulate perfectly but that will not synthesize
correctly. In this book, an effort is made to introduce VHDL at a level that provides a reasonable amount
of abstraction while preserving the ability to be synthesized. Figure 5.1 shows a timeline of some of the
major technology milestones that have occurred in the past 150 years in the field of digital logic and
HDLs.

158 +« Chapter 5: VHDL (Part 1)

CAD Tools

Technology

Theory

Major Milestones in the Advancement of Digital Logic and HDLs

1995: IEEE releases first open Verilog standard “IEEE 1364" @
1987: IEEE releases first open VHDL standard “IEEE 1076-1987" @
1986: Synopsis Co. founded and targets logic synthesis from HDLs '@
1983: Verilog HDL Development begins '@

1983: DoD funds VHDL Project '@

1978: IBM creates logic synthesis algorithm to design mainframes ‘@

2012: Intel releases the 10-core Xeon Westmere EX
microprocessor containing 2.5 billion transistors

1971: The first single-chip microprocessor is)
released (Intel 4004) containing 2300 transistors

1968: RCA releases the first CMOS Logic °
Family (CD400) based on MOSFET transistors

1964: Texas Instruments releases the first TTL ®
Logic Family (7400) based on bipolar transistors

1959: Jack Kilby and Robert Noyce file patents for ®
the integrated circuit within six months of each other

1947: William Shockley, et. al., file a patent for °
the first transistor while working for Bell Labs

1954: Maurice Karnaugh creates the K-map
as a graphical way to minimize logic circuits
o 1930: Claude Shannon applies Boolean Algebra to
the design of electrical switching circuits

pes 1859: Augustus DeMorgan adds two
powerful “Laws” to Boole's framework

P 1854: George Boole creates a
two-valued algebraic.: framework

| 1 |
1850 1900 1950 2000

Fig. 5.1

Major milestones in the advancement of digital logic and HDLs

CC5.1

Why does VHDL support modeling techniques that aren’t synthesizable?
A) Since synthesis wasn’t within the original scope of the VHDL project, there
wasn'’t sufficient time to make everything synthesizable.
B) At the time VHDL was created, synthesis was deemed too difficult to
implement.
C) To allow VHDL to be used as a generic programming language.

D) VHDL needs to support all steps in the modern digital design flow, some of
which are unsynthesizable such as test pattern generation and timing

verification.

5.2 HDL Abstraction +« 159

5.2 HDL Abstraction

HDLs were originally defined to be able to model behavior at multiple levels of abstraction.
Abstraction is an important concept in engineering design because it allows us to specify how systems
will operate without getting consumed prematurely with implementation details. Also, by removing the
details of the lower-level implementation, simulations can be conducted in reasonable amounts of time to
model the higher-level functionality. If a full computer system was simulated using detailed models for
every MOSFET, it would take an impracticable amount of time to complete. Figure 5.2 shows a graphical
depiction of the different layers of abstraction in digital system design.

Levels of Design Abstraction
System @ @-
RAM
‘ Algorithm cpy [+ ROM
110
;_{_E
c v S0) -
{2 Register y A o
o Transfer v G >
= v 4 @
7 ~
o
< 3
Gate -
Circuit -{
3
Material = -

Fig. 5.2
Levels of design abstraction

The highest level of abstraction is the system level. At this level, behavior of a system is described
by stating a set of broad specifications. An example of a design at this level is a specification such as “the
computer system will perform 10 tera floating-point operations per second (10 TFLOPS) on double
precision data and consume no more than 100 watts of power.” Notice that these specifications do not
dictate the lower-level details such as the type of logic family or the type of computer architecture to use.
One level down from the system level is the algorithmic level. At this level, the specifications begin to be
broken down into sub-systems, each with an associated behavior that will accomplish a part of the
primary task. At this level, the example computer specifications might be broken down into sub-systems
such as a central processing unit (CPU) to perform the computation and random access memory (RAM)

160 <+ Chapter 5: VHDL (Part 1)

to hold the inputs and outputs of the computation. One level down from the algorithmic level is the
register transfer level (RTL). At this level, the details of how data is moved between and within
sub-systems are described in addition to how the data is manipulated based on system inputs. One
level down from the RTL level is the gate level. At this level, the design is described using basic gates and
registers (or storage elements). The gate level is essentially a schematic (either graphically or text-
based) that contains the components and connections that will implement the functionality from the
above levels of abstraction. One level down from the gate level is the circuit level. The circuit level
describes the operation of the basic gates and registers using transistors, wires, and other electrical
components such as resistors and capacitors. Finally, the lowest level of design abstraction is the
material level. This level describes how different materials are combined and shaped in order to
implement the transistors, devices, and wires from the circuit level.

HDLs are designed to model behavior at all of these levels with the exception of the material level.
While there is some capability to model circuit-level behavior such as MOSFETs as ideal switches and
pull-up/pull-down resistors, HDLs are not typically used at the circuit level. Another graphical depiction of
design abstraction is known as Gajski and Kuhn’s Y-chart. A Y-chart depicts abstraction across three
different design domains: behavioral, structural, and physical. Each of these design domains contains
levels of abstraction (i.e., system, algorithm, RTL, gate, and circuit). An example Y-chart is shown in
Fig. 5.3.

Y-Chart of Design Abstraction
Design Levels

“System Level"

. “Algorithmic Level”
Behavioral Structural

Domain Domain
“Register Transfer Level”

Specification €
Algorithms &
Register Transfer

Boolean Algebra ¥4
Differential Equations, KVL, KCL &4

~/ CPU, Memory

~ Processor, Sub- System
~’ State Machines, ALUs

= Gates

~ Transistor

“Gate Level"

“Circuit Level”

~ Laying out geometries for device fabrication
+ Laying out gate-level cells

s Laying out macro-level blocks

' Module Floorplanning

' Chip/Board Floorplanning

Physical Domain

Fig. 5.3
Y-chart of design abstraction

5.2 HDL Abstraction =+ 161

A Y-chart also depicts how the abstraction levels of different design domains are related to each
other. A top-down design flow can be visualized in a Y-chart by spiraling inward in a clockwise direction.
Moving from the behavioral domain to the structural domain is the process of synthesis. Whenever
synthesis is performed, the resulting system should be compared with the prior behavioral description.
This checking is called verification. The process of creating the physical circuitry corresponding to the
structural description is called implementation. The spiral continues down through the levels of abstrac-
tion until the design is implemented at a level that the geometries representing circuit elements
(transistors, wires, etc.) are ready to be fabricated in silicon. Figure 5.4 shows the top-down design
process depicted as an inward spiral on the Y-chart.

Y-Chart lllustrating Top-Down Design Approach
Synthesis

Verification
Behavioral

> Structural
Domain

Domain

Specification _ CPU, Memory
Algorithms

Down One Level

Implementation

Chip/Board Floorplanning

Physical
Domain

Fig. 5.4
Y-chart illustrating top-down design approach

The Y-chart represents a formal approach for large digital systems. For large systems that are
designed by teams of engineers, it is critical that a formal, top-down design process is followed to
eliminate potentially costly design errors as the implementation is carried out at lower levels of
abstraction.

162 <+ Chapter 5: VHDL (Part 1)

CC5.2 Why is abstraction an essential part of engineering design?
A) Without abstraction all schematics would be drawn at the transistor-level.
B) Abstraction allows computer programs to aid in the design process.

C) Abstraction allows the details of the implementation to be hidden while the
higher-level systems are designed. Without abstraction, the details of the
implementation would overwhelm the designer.

D) Abstraction allows analog circuit designers to include digital blocks in their
systems.

5.3 The Modern Digital Design Flow

When performing a smaller design or the design of fully contained sub-systems, the process can be
broken down into individual steps. These steps are shown in Fig. 5.5. This process is given generically and
applies to both classical and modern digital design. The distinction between classical and modern is that
modern digital design uses HDLs and automated CAD tools for simulation, synthesis, place and route, and
verification.

Digital Design Flow

Steps Description of Tasks at Each Step
s ficati - State the desired behavior of the design using broad, high-
pecifications level specifications.
- - Describe the high-level architecture of the design (e.g.,
Functional v an (.9

: block diagrams for inputs/outputs, sub-systems) and generic
Design behavior (truth tables, state diagrams and/or algorithms).

* - Create the gate-level connection (schematic or netlist) of
Synthesis the design using logic synthesis processes (e.g., K-maps or
automated CAD tools).

- Select the logic technology that will achieve the

Technology specifications (e.g., 74HC family, 32nm CMOS ASIC).
Mapping Manipulate the gate-level netlist/schematic into a form that is
suitable for this technology (e.g., DeMorgan's NAND/NOR).
Y
Place and - Arrange the components to minimize the area needed (on a
Route board or chip) and wire all connections to minimize
interconnect length and crossings.
‘ - Once a technology is chosen and the routing is complete,
Verification the gate and wiring delays can be used to estimate whether
the final design meets the timing and power consumption
* requirements of the original specifications.
Fabrication - Once the design is verified it can be implemented.

(ASIC, programmable device, board-level, discrete parts)

Fig. 5.5
Generic digital design flow

5.3 The Modern Digital Design Flow + 163

This generic design process flow can be used across classical and modern digital design, although
modern digital design allows additional verification at each step using automated CAD tools. Figure 5.6
shows how this flow is used in the classical design approach of a combinational logic circuit.

Classical Digital Design Flow

o - Design a “Prime Number Detector” that takes in values from 049
Specifications | to 74. The circuit should be able to indicate a prime number with
a delay less than 200ns.

A B C|PN_
y 0 0 0fo
; MsB) A— 0 0 110
Functl.onal B—] Logic |—PN g : ?1_::5
Design (Ls8) C— T o ol o
10 1]1 «5
11 0]0
11 11 7
AB
y ¢ 00 01 11 10
o[o]@)]oJo 'é:
Synthesis [eWam — PN
L 3 g
F=A"B + A-C
- It is decided that a 74HC logic A ‘
Technology family will be the most cost- B—
Mapping effective technology for this design. PN
To minimize the number of parts,

the logic will be implemented with C

only NAND-gates.

| A v
Place and - The circuit to be EEE

implemented is placed in a
Route floor plan and an estimate of

Y - Based on the layout, tostwostp + tukeslp = losiny = 15008
o the wire delays are 111 l
Verification found. The delays of A
the gates are taken B—
from the data sheet. PN
C

Y

Fabrication - The verified circuit is
implemented in hardware.

Fig. 5.6
Classical digital design flow

164 -

Chapter 5: VHDL (Part 1)

The modern design flow based on HDLs includes the ability to simulate functionality at each step of
the process. Functional simulations can be performed on the initial behavioral description of the system.
At each step of the design process, the functionality is described in more detail, ultimately moving toward
the fabrication step. At each level, the detailed information can be included in the simulation to verify that
the functionality is still correct and that the design is still meeting the original specifications. Figure 5.7

shows the modern digital design flow with the inclusion of simulation capability at each step.

Modern Digital Design Flow

Specifications

Incorrect

Yy

Functional - =
X —| Simulation

Design
Correct
Incorrect

\

Synthesis

—=| Simulation
Correct |

vy v

Technology
Mapping

—| Simulation
Correct I

y v

Place and : :
—| Simulation
Route
Correct

L]
Verification

v
Fabrication

- The initial design is in the form of an HDL
behavioral description. This design is
simulated to verify its proper functionality.

- After synthesis, the design is described at
the gate-level. A logic simulation is used to
verify that the functionality of the gate-level
logic matches the functionality of the pre-
synthesis behavioral description.

- After technology mapping, an estimate of
the gate delays can be used in the
simulation to make sure the timing
requirements of the design are met.

- After place and route, an estimate of the
wiring delays can be included in the
simulation to make sure the timing
requirements of the design are met.

- The final design is analyzed to see if it
meets the original design specifications.

- Fabrication is typically in the form of an
ASIC or a programmable device.

Fig. 5.7

Modern digital design flow

5.4 VHDL Constructs =+ 165

CC5.3 Why did digital designs move from schematic-entry to text-based HDLs?

A) HDL models could be much larger by describing functionality in text similar to
traditional programming language.

B) Schematics required sophisticated graphics hardware to display correctly.
C) Schematics symbols became too small as designs became larger.

D) Text was easier to understand by a broader range of engineers.

5.4 VHDL Constructs

Now we begin looking at the details of VHDL. A VHDL design describes a single system in a single
file. The file has the suffix *.vhd. Within the file, there are two parts that describe the system: the entity
and the architecture. The entity describes the interface to the system (i.e., the inputs and outputs), and
the architecture describes the behavior. The functionality of VHDL (e.g., operators, signal types,
functions, etc.) is defined in the package. Packages are grouped within a library. IEEE defines the
base set of functionality for VHDL in the standard package. This package is contained within a library
called IEEE. The library and package inclusion is stated at the beginning of a VHDL file before the entity
and architecture. Additional functionality can be added to VHDL by including other packages, but all
packages are based on the core functionality defined in the standard package. As a result, it is not
necessary to explicitly state that a design is using the IEEE standard package because it is inherent in
the use of VHDL. All functionality described in this chapter is for the IEEE standard package, while other
common packages are covered in Chap. 8. Figure 5.8 shows a graphical depiction of a VHDL file.

The Anatomy of a VHDL File Example.vhd

Package
(IEEE standard package is inherent,
additional packages are optional)

Entity

(description of inputs/outputs of the system)

Architecture
(description of the behavior of the system)

Fig. 5.8
The anatomy of a VHDL file

VHDL is not case sensitive. Also, each VHDL assignment, definition, or declaration is terminated
with a semicolon (;). As such, line wraps are allowed and do not signify the end of an assignment,
definition, or declaration. Line wraps can be used to make the VHDL more readable. Comments in VHDL
are preceded with two dashes (i.e., --) and continue until the end of the line. All user-defined names in
VHDL must start with an alphabetic letter, not a number. User-defined names are not allowed to be the

https://doi.org/10.1007/978-3-030-12489-2_8

166 <+ Chapter 5: VHDL (Part 1)

same as any VHDL keyword. This chapter contains many definitions of syntax in VHDL. The following
notations will be used throughout the chapter when introducing new constructs.

bold = VHDL keyword, use as is
italics = User-defined name
<> = A required characteristic such as a data type, input/output, etc.

5.4.1 Data Types

In VHDL, every signal, constant, variable, and function must be assigned a data type. The IEEE
standard package provides a variety of pre-defined data types. Some data types are synthesizable,
while others are only for modeling abstract behavior. The following are the most commonly used data
types in the VHDL standard package.

5.4.1.1 Enumerated Types

An enumerated type is one in which the exact values that the type can take on are defined.

Type Values that the type can take on

bit {0, 1}

boolean {false, true}

character {*any of the 256 ASCII characters defined in ISO 8859-1"}

The type bit is synthesizable, while Boolean and character are not. The individual scalar values are

[P

indicated by putting them inside single quotes (e.g., ‘0’, ‘@’, ‘true’).

5.4.1.2 Range Types

A range type is one that can take on any value within a range.

Type Values that the type can take on
integer Whole numbers between -2,147,483,648 to +2,147,483,647
real Fractional numbers between -1.7e3 to +1.7¢%8

The integer type is a 32-bit, signed, two’s complement number and is synthesizable. If the full range
of integer values is not desired, this type can be bounded by including range <min> to <max>. The real
type is a 32-bit, floating-point value and is not directly synthesizable unless an additional package is
included that defines the floating-point format. The values of these types are indicated by simply using
the number without quotes (e.g., 33, 3.14).

5.4.1.3 Physical Types

A physical type is one that contains both a value and units. In VHDL, time is the primary supported
physical type.

5.4 VHDL Constructs =+ 167

Type Values that the type can take on
time Whole numbers between -2,147,483,648 to +2,147,483,647
(unit relationships) fs femtosecond, 10~ %), base unit
ps = 1000 fs picosecond, 10~ "?)
ns = 1000 ps nanosecond, 10~°)
us = 1000 ns microsecond, 10~°)

sec = 1000 ms second)
min = 60 sec minute)

(

(

(

(

ms = 1000 us (millisecond, 10~3%)
(

(

hr = 60 min (hour)

The base unit for time is fs, meaning that if no units are provided, the value is assumed to be in
femtoseconds. The value of time is held as a 32-bit, signed number and is not synthesizable.

5.4.1.4 Vector Types

A vector type is one that consists of a linear array of scalar types.

Type Construction
bit_vector A linear array of type bit
string A linear array of type character

The size of a vector type is defined by including the maximum index, the keyword downto, and the
minimum index. For example, if a signal called BUS_A was given the type bit_vector(7 downto 0), it would
create a vector of 8 scalars, each of type bit. The leftmost scalar would have an index of 7 and the
rightmost scalar would have an index of 0. Each of the individual scalars within the vector can be
accessed by providing the index number in parentheses. For example, BUS_A(0) would access the
scalar in the rightmost position. The indices do not always need to have a minimum value of 0, but this is
the most common indexing approach in logic design. The type bit_vector is synthesizable, while string is
not. The values of these types are indicated by enclosing them inside double quotes (e.g., “0011”, “abcd”).

5.4.1.5 User-Defined Enumerated Types

A user-defined enumerated type is one in which the name of the type is specified by the user in
addition to all of the possible values that the type can assume. The creation of a user-defined
enumerated type is shown below.

type name is (valuel, value2, ...);
Example:
type traffic_light is (red, yellow, green) ;

In this example, a new type is created called traffic_light. If we declared a new signal called Sig1 and
assigned it the type traffic_light, the signal could only take on values of red, yellow, and green. User-
defined enumerated types are synthesizable in specific applications.

5.4.1.6 Array Type

An array contains multiple elements of the same type. Elements within an array can be scalar or
vectors. In order to use an array, a new type must be declared that defines the configuration of the array.
Once the new type is created, signals may be declared of that type. The range of the array must be
defined in the array-type declaration. The range is specified with integers (min and max) and either the
keywords downto or to. The creation of an array type is shown below.

168 <+ Chapter 5: VHDL (Part 1)

type name is array (<range>) of <element_type>;
Example:

type block_8x16 is array (0 to 7) bit_vector (15 downto 0) ;
signal my_array : block_8x16;
In this example, the new array type is declared with eight elements. The beginning index of the array
is 0 and the ending index is 7. Each element in the array is a 16-bit vector of type bit_vector.

5.4.1.7 Subtypes

A subtype is a constrained version, or subset of another type. Subtypes are user-defined, although a
few commonly used subtypes are pre-defined in the standard package. The following is the syntax for
declaring a subtype and two examples of commonly used subtypes (NATURAL and POSITIVE) that are
defined in the standard package.

subtype name is <type> range <min> to <max>;
Example:

subtype NATURAL is integer range 0 to 255;
subtype POSITIVE is integer range 1 to 256;

5.4.2 Libraries and Packages

As mentioned earlier, the IEEE standard package is implied when using VHDL; however, we can
use it as an example of how to include packages in VHDL. The keyword library is used to signify that
packages are going to be added to the VHDL design from the specified library. The name of the library
follows this keyword. To include a specific package from the library, a new line is used with the keyword
use followed by the package details. The package syntax has three fields separated with a period. The
first field is the library name. The second field is the package name. The third field is the specific
functionality of the package to be included. If all functionality of a package is to be used, then the
keyword all is used in the third field. Examples of how to include some of the commonly used pack