
Chapter 2: Number Systems
Logic circuits are used to generate and transmit 1’s and 0’s to compute and convey information. This

two-valued number system is called binary. As presented earlier, there are many advantages of using a
binary system; however, the human brain has been taught to count, label, and measure using the
decimal number system. The decimal number system contains 10 unique symbols (0 ! 9) commonly
referred to as the Arabic numerals. Each of these symbols is assigned a relative magnitude to the other
symbols. For example, 0 is less than 1, 1 is less than 2, etc. It is often conjectured that the 10-symbol
number system that we humans use is due to the availability of our 10 fingers (or digits) to visualize
counting up to 10. Regardless, our brains are trained to think of the real world in terms of a decimal
system. In order to bridge the gap between the way our brains think (decimal) and how we build our
computers (binary), we need to understand the basics of number systems. This includes the formal
definition of a positional number system and how it can be extended to accommodate any arbitrarily large
(or small) value. This also includes how to convert between different number systems that contain
different numbers of symbols. In this chapter, we cover 4 different number systems: decimal
(10 symbols), binary (2 symbols), octal (8 symbols), and hexadecimal (16 symbols). The study of
decimal and binary is obvious as they represent how our brains interpret the physical world (decimal)
and how our computers work (binary). Hexadecimal is studied because it is a useful means to represent
large sets of binary values using a manageable number of symbols. Octal is rarely used but is studied as
an example of how the formalization of the number systems can be applied to all systems regardless of
the number of symbols they contain. This chapter will also discuss how to perform basic arithmetic in the
binary number system and represent negative numbers. The goal of this chapter is to provide an
understanding of the basic principles of binary number systems.

Learning Outcomes—After completing this chapter, you will be able to:

2.1 Describe the formation and use of positional number systems.
2.2 Convert numbers between different bases.
2.3 Perform binary addition and subtraction by hand.
2.4 Use two’s complement numbers to represent negative numbers.

2.1 Positional Number Systems

A positional number system allows the expansion of the original set of symbols so that they can be
used to represent any arbitrarily large (or small) value. For example, if we use the 10 symbols in our
decimal system, we can count from 0 to 9. Using just the individual symbols, we do not have enough
symbols to count beyond 9. To overcome this, we use the same set of symbols but assign a different
value to the symbol based on its position within the number. The position of the symbol with respect to
other symbols in the number allows an individual symbol to represent greater (or lesser) values. We can
use this approach to represent numbers larger than the original set of symbols. For example, let’s say we
want to count from 0 upward by 1. We begin counting from 0, 1, 2, 3, 4, 5, 6, 7, 8, to 9. When we are out of
symbols and wish to go higher, we bring on a symbol in a different position with that position being valued
higher and then start counting over with our original symbols (e.g., . . ., 9, 10, 11,... 19, 20, 21,...). This is
repeated each time a position runs out of symbols (e.g., . . ., 99, 100, 101. . . 999, 1000, 1001,. . .).

First, let’s look at the formation of a number system. The first thing that is needed is a set of symbols.
The formal term for one of the symbols in a number system is a numeral.One or more numerals are used
to form a number. We define the number of numerals in the system using the terms radix or base. For
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example, our decimal number system is said to be base 10 or have a radix of 10 because it consists of
10 unique numerals or symbols.

Radix ¼ Base � the number of numerals in the number system

The next thing that is needed is the relative value of each numeral with respect to the other numerals
in the set. We can say 0 < 1 < 2 < 3 etc. to define the relative magnitudes of the numerals in this set. The
numerals are defined to be greater or less than their neighbors by a magnitude of 1. For example, in the
decimal number system, each of the subsequent numerals is greater than its predecessor by exactly
1. When we define this relative magnitude, we are defining that the numeral 1 is greater than the numeral
0 by a magnitude of 1; the numeral 2 is greater than the numeral 1 by a magnitude of 1, etc. At this point
we have the ability to count from 0 to 9 by 1’s. We also have the basic structure for mathematical
operations that have results that fall within the numeral set from 0 to 9 (e.g., 1 + 2¼ 3). In order to expand
the values that these numerals can represent, we need define the rules of a positional number system.

2.1.1 Generic Structure

In order to represent larger or smaller numbers than the lone numerals in a number system can
represent, we adopt a positional system. In a positional number system, the relative position of the
numeral within the overall number dictates its value. When we begin talking about the position of a
numeral, we need to define a location to which all of the numerals are positioned with respect to. We
define the radix point as the point within a number to which numerals to the left represent whole numbers
and numerals to the right represent fractional numbers. The radix point is denoted with a period (i.e., “.”).
A particular number system often renames this radix point to reflect its base. For example, in the base
10 number system (i.e., decimal), the radix point is commonly called the decimal point; however, the term
radix point can be used across all number systems as a generic term. If the radix point is not present in a
number, it is assumed to be to the right of number. Fig. 2.1 shows an example number highlighting the
radix point and the relative positions of the whole and fractional numerals.

Next, we need to define the position of each numeral with respect to the radix point. The position of
the numeral is assigned a whole number with the number to the left of the radix point having a position
value of 0. The position number increases by 1 as numerals are added to the left (2, 3, 4. . .) and
decreased by 1 as numerals are added to the right (�1, �2, �3). We will use the variable p to represent
position. The position number will be used to calculate the value of each numeral in the number based on
its relative position to the radix point. Figure 2.2 shows the example number with the position value of
each numeral highlighted.

Fig. 2.1
Definition of radix point

Fig. 2.2
Definition of position number (p) within the number
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In order to create a generalized format of a number, we assign the term digit (d) to each of the
numerals in the number. The term digit signifies that the numeral has a position. The position of the digit
within the number is denoted as a subscript. The term digit can be used as a generic term to describe a
numeral across all systems, although some number systems will use a unique term instead of digit which
indicates its base. For example, the binary system uses the term bit instead of digit; however, using the
term digit to describe a generic numeral in any system is still acceptable. Figure 2.3 shows the generic
subscript notation used to describe the position of each digit in the number.

We write a number from left to right starting with the highest position digit that is greater than 0 and
end with the lowest position digit that is greater than 0. This reduces the number of numerals that are
written; however, a number can be represented with an arbitrary number of 0’s to the left of the highest
position digit greater than 0 and an arbitrary number of 0’s to the right of the lowest position digit greater
than 0 without affecting the value of the number. For example, the number 132.654 could be written as
0132.6540 without affecting the value of the number. The 0’s to the left of the number are called leading
0’s and the 0’s to the right of the number are called trailing 0’s. The reason this is being stated is because
when a number is implemented in circuitry, the number of numerals is fixed, and each numeral must have
a value. The variable n is used to represent the number of numerals in a number. If a number is defined
with n ¼ 4, that means 4 numerals are always used. The number 0 would be represented as 0000 with
both representations having an equal value.

2.1.2 Decimal Number System (Base 10)

As mentioned earlier, the decimal number system contains ten unique numerals (0, 1, 2, 3, 4, 5, 6, 7,
8, and 9). This system is thus a base 10 or a radix 10 system. The relative magnitudes of the symbols are
0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

2.1.3 Binary Number System (Base 2)

The binary number system contains two unique numerals (0 and 1). This system is thus a base 2 or
a radix 2 system. The relative magnitudes of the symbols are 0 < 1. At first glance, this system looks very
limited in its ability to represent large numbers due to the small number of numerals. When counting up,
as soon as you count from 0 to 1, you are out of symbols and must increment the p + 1 position in order to
represent the next number (e.g., 0, 1, 10, 11, 100, 101, . . .); however, magnitudes of each position scale
quickly so that circuits with a reasonable amount of digits can represent very large numbers. The term bit
is used instead of digit in this system to describe the individual numerals and at the same time indicate
the base of the number.

Due to the need for multiple bits to represent meaningful information, there are terms dedicated to
describing the number of bits in a group. When 4 bits are grouped together, they are called a nibble.
When 8 bits are grouped together, they are called a byte. Larger groupings of bits are calledwords. The
size of the word can be stated as either an n-bit word or omitted if the size of the word is inherently
implied. For example, if you were using a 32-bit microprocessor, using the term word would be

Fig. 2.3
Digit notation
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interpreted as a 32-bit word. For example, if there was a 32-bit grouping, it would be referred to as a 32-bit
word. The leftmost bit in a binary number is called themost significant bit (MSB). The rightmost bit in a
binary number is called the least significant bit (LSB).

2.1.4 Octal Number System (Base 8)

The octal number system contains eight unique numerals (0, 1, 2, 3, 4, 5, 6, 7). This system is thus a
base 8 or a radix 8 system. The relative magnitudes of the symbols are 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7. We
use the generic term digit to describe the numerals within an octal number.

2.1.5 Hexadecimal Number System (Base 16)

The hexadecimal number system contains 16 unique numerals. This system is most often referred
to in spoken word as “hex” for short. Since we only have ten Arabic numerals in our familiar decimal
system, we need to use other symbols to represent the remaining six numerals. We use the alphabetic
characters A–F in order to expand the system to 16 numerals. The 16 numerals in the hexadecimal
system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The relative magnitudes of the symbols are
0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < A < B < C < D < E < F. We use the generic term digit to describe the
numerals within a hexadecimal number.

At this point, it becomes necessary to indicate the base of a written number. The number 10 has an
entirely different value if it is a decimal number or binary number. In order to handle this, a subscript is
typically included at the end of the number to denote its base. For example, 1010 indicates that this
number is decimal “ten.” If the number was written as 102, this number would represent binary “one zero.”
Table 2.1 lists the equivalent values in each of the four number systems just described for counts from
010 to 1510. The left side of the table does not include leading 0 s. The right side of the table contains the
same information but includes the leading zeros. The equivalencies of decimal, binary, and hexadecimal
in this table are typically committed to memory.

Table 2.1
Number system equivalency
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CONCEPT CHECK

CC2.1 The base of a number system is arbitrary and is commonly selected to match a particular
aspect of the physical system in which it is used (e.g., base 10 corresponds to our
10 fingers, base 2 corresponds to the 2 states of a switch). If a physical system
contained 3 unique modes and a base of 3 was chosen for the number system, what
is the base 3 equivalent of the decimal number 3?

A) 310 ¼ 113 B) 310 ¼ 33 C) 310 ¼ 103 D) 310 ¼ 213

2.2 Base Conversion

Now we look at converting between bases. There are distinct techniques for converting to and from
decimal. There are also techniques for converting between bases that are powers of 2 (e.g., base 2, 4,
8, 16, etc.).

2.2.1 Converting to Decimal

The value of each digit within a number is based on the individual digit value and the digit’s position.
Each position in the number contains a different weight based on its relative location to the radix point.
The weight of each position is based on the radix of the number system that is being used. The weight of
each position in decimal is defined as:

Weight ¼ Radixð Þp

This expression gives the number system the ability to represent fractional numbers since an
expression with a negative exponent (e.g., x�y) is evaluated as one over the expression with the
exponent change to positive (e.g., 1/xy). Figure 2.4 shows the generic structure of a number with its
positional weight highlighted.

In order to find the decimal value of each of the numerals in the number, its individual numeral value
is multiplied by its positional weight. In order to find the value of the entire number, each value of the
individual numeral-weight products is summed. The generalized format of this conversion is written as:

Total Decimal Value ¼
Xpmax

i¼pmin

di ∙ radixð Þi

Fig. 2.4
Weight definition
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In this expression, pmax represents the highest position number that contains a numeral greater than
0. The variable pmin represents the lowest position number that contains a numeral greater than 0. These
limits are used to simplify the hand calculations; however, these terms theoretically could be +1 to �1
with no effect on the result since the summation of every leading 0 and every trailing 0 contributes
nothing to the result.

As an example, let’s evaluate this expression for a decimal number. The result will yield the original
number but will illustrate how positional weight is used. Let’s take the number 132.65410. To find the
decimal value of this number, each numeral is multiplied by its positional weight, and then all of the
products are summed. The positional weight for the digit 1 is (radix)p or (10)2. In decimal this is called the
hundred’s position. The positional weight for the digit 3 is (10)1, referred to as the ten’s position. The
positional weight for digit 2 is (10)0, referred to as the one’s position. The positional weight for digit 6 is
(10)�1, referred to as the tenth’s position. The positional weight for digit 5 is (10)�2, referred to as the
hundredth’s position. The positional weight for digit 4 is (10)�3, referred to as the thousandth’s position.

When these weights are multiplied by their respective digits and summed, the result is the original
decimal number 132.65410. Example 2.1 shows this process step-by-step.

This process is used to convert between any other base to decimal.

2.2.1.1 Binary to Decimal

Let’s convert 101.112 to decimal. The same process is followed with the exception that the base in
the summation is changed to 2. Converting from binary to decimal can be accomplished quickly in your
head due to the fact that the bit values in the products are either 1 or 0. That means any bit that is a 0 has
no impact on the outcome and any bit that is a 1 simply yields the weight of its position. Example 2.2
shows the step-by-step process converting a binary number to decimal.

Example 2.1
Converting decimal to decimal
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2.2.1.2 Octal to Decimal

When converting from octal to decimal, the same process is followed with the exception that the
base in the weight is changed to 8. Example 2.3 shows an example of converting an octal number to
decimal.

Example 2.2
Converting binary to decimal

Example 2.3
Converting octal to decimal
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2.2.1.3 Hexadecimal to Decimal

Let’s convert 1AB.EF16 to decimal. The same process is followed with the exception that the base is
changed to 16. When performing the conversion, the decimal equivalent of the numerals A–F needs to
be used. Example 2.4 shows the step-by-step process converting a hexadecimal number to decimal.

In some cases, it is desired to specify a level of accuracy for the conversion in order to bound the
number of fractional digits in the final result. For example, if the conversion in Example 2.4 was stated as
“convert 1AB.EF16 to decimal with a fractional accuracy of 2 digits,” the final result would be 427.9310.
How rounding is handled can also be specified with the two options being with or without rounding. In the
case where the conversion is performed with rounding, additional fractional digits may need to be
computed to determine if the least significant digit of the new decimal fraction needs to be altered. For
example, let’s say the conversion in Example 2.4 is stated as “convert 1AB.EF16 to decimal with a
fractional accuracy of 4 digits with rounding.” In this case, the final result would be 427.933610. Notice
how rounding was applied to the digit in position p ¼ �3 changing it from a 5 to a 6 based on the value in
position p ¼ �4. Now let’s say the conversion in Example 2.4 is stated as “convert 1AB.EF16 to decimal
with a fractional accuracy of 4 digits without rounding.” In this case, the final result would be 427.933510.
Notice how without rounding simply drops all of the digits beyond the specified level of accuracy.

2.2.2 Converting from Decimal

The process of converting from decimal to another base consists of two separate algorithms. There
is one algorithm for converting the whole number portion of the number and another algorithm for
converting the fractional portion of the number. The process for converting the whole number portion
is to divide the decimal number by the base of the system you wish to convert to. The division will result in
a quotient and a whole number remainder. The remainder is recorded as the least significant numeral in
the converted number. The resulting quotient is then divided again by the base, which results in a new
quotient and new remainder. The remainder is recorded as the next higher order numeral in the new
number. This process is repeated until a quotient of 0 is achieved. At that point the conversion is
complete. The remainders will always be within the numeral set of the base being converted to.

Example 2.4
Converting hexadecimal to decimal

14 • Chapter 2: Number Systems



The process for converting the fractional portion is to multiply just the fractional component of the
number by the base. This will result in a product that contains a whole number and a fraction. The whole
number is recorded as themost significant digit of the new converted number. The new fractional portion
is then multiplied again by the base with the whole number portion being recorded as the next lower order
numeral. This process is repeated until the product yields a fractional component equal to zero or the
desired level of accuracy has been achieved. The level of accuracy is specified by the number of
numerals in the new converted number. For example, the conversion would be stated as “convert this
decimal number to binary with a fractional accuracy of 4 bits.” This means the final result would only have
4 bits in the fraction. In cases where the conversion does not yield exactly 4 fractional bits, there are two
approaches that can be used. The first is to have no rounding, which means the conversion simply stops
at the desired accuracy. The second is to apply rounding, which means additional bits beyond the
desired accuracy are computed in order to determine whether the least significant bit reported.

2.2.2.1 Decimal to Binary

Let’s convert 11.37510 to binary. Example 2.5 shows the step-by-step process converting a decimal
number to binary.

Example 2.5
Converting decimal to binary
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In many binary conversions to binary, the number of fractional bits that result from the conversion is
more than needed. In this case, rounding is applied to limit the fractional accuracy. The simplest rounding
approach for binary numbers is to continue the conversion for one more bit beyond the desired fractional
accuracy. If the next bit is a 0, then you leave the fractional component of the number as is. If the next bit
is a 1, you round the least significant bit of your number up. Often this rounding will result in a cascade of
roundings from the LSB to the MSB. As an example, let’s say that the conversion in Example 2.5 was
specified to have a fractional accuracy of 2 bits. If the bit in position p ¼ �3 was a 0 (which it is not, but
let’s just say it is for the sake of this example), then the number would be left as is, and the final converted
number would be 1011.012. However, if the bit in position p ¼ �3 was a 1 (as it actually is in Example
2.5), then we would need to apply rounding. We would start with the bit in position p ¼ �2. Since it is a
1, we would round that up to a 0, but we would need to apply the overflow of this rounding to the next
higher order bit in position p ¼ �1. That would then cause the value of p ¼ �1 to go from a 0 to a 1. The
final result of the conversion with rounding would be 1011.102.

2.2.2.2 Decimal to Octal

Let’s convert 10.410 to octal with an accuracy of 4 fractional digits. When converting the fractional
component of the number, the algorithm is continued until 4 digits worth of fractional numerals has been
achieved. Once the accuracy has been achieved, the conversion is finished even though a product with
a zero fractional value has not been obtained. Example 2.6 shows the step-by-step process converting a
decimal number to octal with a fractional accuracy of 4 digits.
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Rounding of octal digits uses a similar approach as when rounding decimal numbers, with the
exception that the middle of the range of the numbers lies between digits 38 and 48. This means that any
number to be rounded that is 48 or greater will be rounded up. Numbers that are 38 or less will be rounded
down, which means the fractional component of the converted number is left as in.

2.2.2.3 Decimal to Hexadecimal

Let’s convert 254.65510 to hexadecimal with an accuracy of 3 fractional digits. When doing this
conversion, all of the divisions and multiplications are done using decimal. If the results end up between
1010 and 1510, then the decimal numbers are substituted with their hex symbol equivalent (i.e., A to F).
Example 2.7 shows the step-by-step process of converting a decimal number to hex with a fractional
accuracy of 3 digits.

Example 2.6
Converting decimal to octal
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Rounding of hexadecimal digits uses a similar approach as when rounding decimal numbers, with
the exception that the middle of the range of the numbers lies between digits 716 and 816. This means that
any number to be rounded that is 816 or greater will be rounded up. Numbers that are 716 or less will be
rounded down, which means the fractional component of the converted number is left as in.

2.2.3 Converting Between 2n Bases

Converting between 2n bases (e.g., 2, 4, 8, 16, etc.) takes advantage of the direct mapping that each
of these bases has back to binary. Base 8 numbers take exactly 3 binary bits to represent all 8 symbols
(i.e., 08 ¼ 0002, 78 ¼ 1112). Base 16 numbers take exactly 4 binary bits to represent all 16 symbols (i.e.,
016 ¼ 00002, F16 ¼ 11112).

When converting from binary to any other 2n base, the whole number bits are grouped into the
appropriate-sized sets starting from the radix point and working left. If the final leftmost grouping does not
have enough symbols, it is simply padded on the left with leading 0’s. Each of these groups is then
directly substituted with their 2n base symbol. The fractional number bits are also grouped into the
appropriate-sized sets starting from the radix point, but this time working right. Again, if the final rightmost
grouping does not have enough symbols, it is simply padded on the right with trailing 0’s. Each of these
groups is then directly substituted with their 2n base symbol.

Example 2.7
Converting decimal to hexadecimal
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2.2.3.1 Binary to Octal

Example 2.8 shows the step-by-step process of converting a binary number to octal.

2.2.3.2 Binary to Hexadecimal

Example 2.9 shows the step-by-step process of converting a binary number to hexadecimal.

Example 2.8
Converting binary to octal

Example 2.9
Converting binary to hexadecimal
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2.2.3.3 Octal to Binary

When converting to binary from any 2n base, each of the symbols in the originating number are
replaced with the appropriate-sized number of bits. An octal symbol will be replaced with 3 binary bits,
while a hexadecimal symbol will be replaced with 4 binary bits. Any leading or trailing 0’s can be removed
from the converted number once complete. Example 2.10 shows the step-by-step process of converting
an octal number to binary.

2.2.3.4 Hexadecimal to Binary

Example 2.11 shows the step-by-step process of converting a hexadecimal number to binary.

2.2.3.5 Octal to Hexadecimal

When converting between 2n bases (excluding binary), the number is first converted into binary and
then converted from binary into the final 2n base using the algorithms described before. Example 2.12
shows the step-by-step process of converting an octal number to hexadecimal.

Example 2.10
Converting Octal to Binary

Example 2.11
Converting hexadecimal to binary
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2.2.3.6 Hexadecimal to Octal

Example 2.13 shows the step-by-step process of converting a hexadecimal number to octal.

Example 2.12
Converting Octal to Hexadecimal

Example 2.13
Converting Hexadecimal to Octal
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CONCEPT CHECK

CC2.2 A “googol” is the term for the decimal number 1e100. When written out manually this
number is a 1 with 100 zeros after it (e.g., 10,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0-
00,000,000,000,000,000,000). This term is more commonly associated with the search
engine company Google, which uses a different spelling but is pronounced the same.
How many bits does it take to represent a googol in binary?

A) 100 bits B) 256 bits C) 332 bits D) 333 bits

2.3 Binary Arithmetic

2.3.1 Addition (Carries)

Binary addition is a straightforward process that mirrors the approach we have learned for longhand
decimal addition. The two numbers (or terms) to be added are aligned at the radix point and addition
begins at the least significant bit. If the sum of the least significant position yields a value with two bits
(e.g., 102), then the least significant bit is recorded, and the most significant bit is carried to the next
higher position. The sum of the next higher position is then performed including the potential carry bit
from the prior addition. This process continues from the least significant position to the most significant
position. Example 2.14 shows how addition is performed on two individual bits.

When performing binary addition, the width of the inputs and output is fixed (i.e., n-bits). Carries that
exist within the n-bits are treated in the normal fashion of including them in the next higher position sum;
however, if the highest position summation produces a carry, this is a uniquely named event. This event
is called a carry out, or the sum is said to generate a carry. The reason this type of event is given special
terminology is because in real circuitry, the number of bits of the inputs and output is fixed in hardware,
and the carry out is typically handled by a separate circuit. Example 2.15 shows this process when
adding two 4-bit numbers.

Example 2.14
Single-bit binary addition
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The largest decimal sum that can result from the addition of two binary numbers is given by 2�(2n�1).
For example, two 8-bit numbers to be added could both represent their highest decimal value of (2n�1) or
25510 (i.e., 1111 11112). The sum of this number would result in 51010 or (11111 11102). Notice that the
largest sumachievable would only require one additional bit. Thismeans that a single carry bit is sufficient
to handle all possible magnitudes for binary addition.

2.3.2 Subtraction (Borrows)

Binary subtraction also mirrors longhand decimal subtraction. In subtraction, the formal terms for the
two numbers being operated on are minuend and subtrahend. The subtrahend is subtracted from the
minuend to find the difference. In longhand subtraction, the minuend is the top number, and the
subtrahend is the bottom number. For a given position if the minuend is less than the subtrahend, it
needs to borrow from the next higher order position to produce a difference that is positive. If the next
higher position does not have a value that can be borrowed from (i.e., 0), then it in turn needs to borrow
from the next higher position and so forth. Example 2.16 shows how subtraction is performed on two
individual bits.

As with binary addition, binary subtraction is accomplished on fixed widths of inputs and output (i.e.,
n-bits). The minuend and subtrahend are aligned at the radix point, and subtraction begins at the least
significant bit position. Borrows are used as necessary as the subtractions move from the least

Example 2.15
Multiple-bit binary addition

Example 2.16
Single-bit binary subtraction
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significant position to the most significant position. If the most significant position requires a borrow, this
is a uniquely named event. This event is called a borrow in or the subtraction is said to require a borrow.
Again, the reason this event is uniquely named is because in real circuitry, the number of bits of the input
and output is fixed in hardware, and the borrow in is typically handled by a separate circuit. Example 2.17
shows this process when subtracting two 4-bit numbers.

Notice that if the minuend is less than the subtrahend, then the difference will be negative. At this
point, we need a way to handle negative numbers.

CONCEPT CHECK

CC2.3 If an 8-bit computer system can only perform unsigned addition on 8-bit inputs and
produce an 8-bit sum, how is it possible for this computer to perform addition on
numbers that are larger than what can be represented with 8-bits (e.g.,
1,00010 + 1,00010 ¼ 2,00010)?

A) There are multiple 8-bit adders in a computer to handle large numbers.

B) The result is simply rounded to the nearest 8-bit number.

C) The computer returns an error and requires smaller numbers to be entered.

D) The computer keeps track of the carry out and uses it in a subsequent 8-bit
addition, which enables larger numbers to be handled.

2.4 Unsigned and Signed Numbers

All of the number systems presented in the prior sections were positive. We need to also have a
mechanism to indicate negative numbers. When looking at negative numbers, we only focus on the
mapping between decimal and binary since octal and hexadecimal are used as just another representa-
tion of a binary number. In decimal, we are able to use the negative sign in front of a number to indicate it
is negative (e.g., �3410). In binary, this notation works fine for writing numbers on paper (e.g., �10102),
but we need a mechanism that can be implemented using real circuitry. In a real digital circuit, the circuits

Example 2.17
Multiple-bit binary subtraction
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can only deal with 0’s and 1’s. There is no “- “in a digital circuit. Since we only have 0’s and 1’s in the
hardware, we use a bit to represent whether a number is positive or negative. This is referred to as the
sign bit. If a binary number is not going to have any negative values, then it is called an unsigned
number, and it can only represent positive numbers. If a binary number is going to allow negative
numbers, it is called a signed number. It is important to always keep track of the type of number we
are using as the same bit values can represent very different numbers depending on the coding
mechanism that is being used.

2.4.1 Unsigned Numbers

An unsigned number is one that does not allow negative numbers. When talking about this type of
code, the number of bits is fixed and stated up front. We use the variable n to represent the number of bits
in the number. For example, if we had an 8-bit number, we would say, “This is an 8-bit, unsigned number.”

The number of unique codes in an unsigned number is given by 2n. For example, if we had an 8-bit
number, we would have 28 or 256 unique codes (e.g., 0000 00002 to 1111 11112).

The range of an unsigned number refers to the decimal values that the binary code can represent. If
we use the notationNunsigned to represent any possible value that an n-bit, unsigned number can take on,
the range would be defined as: 0 < Nunsigned < (2n � 1).

Range of an UNSIGNED number ) 0 � Nunsigned � 2n � 1ð Þ

For example, if we had an unsigned number with n ¼ 4, it could take on a range of values from +010
(00002) to +1510 (11112). Notice that while this number has 16 unique possible codes, the highest
decimal value it can represent is 1510. This is because one of the unique codes represents 010. This is
the reason that the highest decimal value that can be represented is given by (2n�1). Example 2.18
shows this process for a 16-bit number.

Example 2.18
Finding the range of an unsigned number

2.4 Unsigned and Signed Numbers • 25



2.4.2 Signed Numbers

Signed numbers are able to represent both positive and negative numbers. The most significant bit
of these numbers is always the sign bit, which represents whether the number is positive or negative.
The sign bit is defined to be a 0 if the number is positive and 1 if the number is negative. When using
signed numbers, the number of bits is fixed so that the sign bit is always in the same position. There are a
variety of ways to encode negative numbers using a sign bit. The encoding method used exclusively in
modern computers is called two’s complement. There are two other encoding techniques called signed
magnitude and one’s complement that are rarely used but are studied to motivate the power of two’s
complement. When talking about a signed number, the number of bits and the type of encoding is always
stated. For example, we would say, “This is an 8-bit, two’s complement number.”

2.4.2.1 Signed Magnitude

Signed Magnitude is the simplest way to encode a negative number. In this approach, the most
significant bit (i.e., leftmost bit) of the binary number is considered the sign bit (0¼ positive, 1¼ negative).
The rest of the bits to the right of the sign bit represent the magnitude or absolute value of the number. As
an example of this approach, let’s look at the decimal values that a 4-bit, signed magnitude number can
take on. These are shown in Example 2.19.

There are drawbacks of signed magnitude encoding that are apparent from this example. First, the
value of 010 has two signed magnitude codes (00002 and 10002). This is an inefficient use of the
available codes and leads to complexity when building arithmetic circuitry since it must account for
two codes representing the same number.

The second drawback is that addition using the negative numbers does not directly map to how
decimal addition works. For example, in decimal if we added (�5) + (1), the result would be�4. In signed
magnitude, adding these numbers using a traditional adder would produce (�5) + (1) ¼ (�6). This is
because the traditional addition would take place on the magnitude portion of the number. A 510 is

Example 2.19
Decimal values that a 4-bit, signed magnitude code can represent
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represented with 1012. Adding 1 to this number would result in the next higher binary code 1102 or 610.
Since the sign portion is separate, the addition is performed on |5|, thus yielding 6. Once the sign bit is
included, the resulting number is �6. It is certainly possible to build an addition circuit that works on
signed magnitude numbers, but it is more complex than a traditional adder because it must perform a
different addition operation for the negative numbers versus the positive numbers. It is advantageous to
have a single adder that works across the entire set of numbers.

Due to the duplicate codes for 0, the range of decimal numbers that signedmagnitude can represent
is reduced by 1 compared to unsigned encoding. For an n-bit number, there are 2n unique binary codes
available, but only 2n�1 can be used to represent unique decimal numbers. If we use the notationNSM to
represent any possible value that an n-bit, signed magnitude number can take on, the range would be
defined as:

Range of a SIGNED MAGNITUDE number )2 2n-1 2 1
� �

� NSM � þ 2n-1 2 1
� �

Example 2.20 shows how to use this expression to find the range of decimal values that an 8-bit,
signed magnitude code can represent.

The process to determine the decimal value from a signed magnitude binary code involves treating
the sign bit separately from the rest of the code. The sign bit provides the polarity of the decimal number
(0 ¼ positive, 1 ¼ negative). The remaining bits in the code are treated as unsigned numbers and
converted to decimal using the standard conversion procedure described in the prior sections. This
conversion yields the magnitude of the decimal number. The final decimal value is found by applying the
sign. Example 2.21 shows an example of this process.

Example 2.20
Finding the range of a signed magnitude number
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2.4.2.2 One’s Complement

One’s complement is another simple way to encode negative numbers. In this approach, the
negative number is obtained by taking its positive equivalent and flipping all of the 1’s to 0’s and 0’s to
1’s. This procedure of flipping the bits is called a complement (notice the two e’s). In this way, the most
significant bit of the number is still the sign bit (0 ¼ positive, 1 ¼ negative). The rest of the bits represent
the value of the number, but in this encoding scheme, the negative number values are less intuitive. As
an example of this approach, let’s look at the decimal values that a 4-bit, one’s complement number can
take on. These are shown in Example 2.22.

Example 2.21
Finding the decimal value of a signed magnitude number

Example 2.22
Decimal values that a 4-bit, one’s complement code can represent
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Again, we notice that there are two different codes for 010 (00002 and 11112). This is a drawback of
one’s complement because it reduces the possible range of numbers that can be represented from 2n to
(2n�1) and requires arithmetic operations that take into account the gap in the number system. There are
advantages of one’s complement, however. First, the numbers are ordered such that traditional addition
works on both positive and negative numbers (excluding the double 0 gap). Taking the example of
(�5) + (1) again, in one’s complement the result yields �4, just as in a traditional decimal system. Notice
in one’s complement, �510 is represented with 10102. Adding 1 to this entire binary code would result in
the next higher binary code 10112 or � 410 from the above table. This makes addition circuitry less
complicated, but still not as simple as if the double 0 gap was eliminated. Another advantage of one’s
complement is that as the numbers are incremented beyond the largest value in the set, they roll over
and start counting at the lowest number. For example, if you increment the number 01112 (710), it goes to
the next higher binary code 10002, which is �710. The ability to have the numbers roll over is a useful
feature for computer systems.

If we use the notation N1comp to represent any possible value that an n-bit, one’s complement
number can take on, the range is defined as:

Range of a ONE’S COMPLEMENT number ) 2 2n-1 2 1
� �

� N1‘s comp � þ 2n-1 2 1
� �

Example 2.23 shows how to use this expression to find the range of decimal values that a 24-bit,
one’s complement code can represent.

The process of finding the decimal value of a one’s complement number involves first identifying
whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the
sign bit is 0), then the number is treated as an unsigned code and is converted to decimal using the
standard conversion procedure described in prior sections. If the number is negative (i.e., the sign bit is
1), then the number sign is recorded separately, and the code is complemented in order to convert it to its
positive magnitude equivalent. This new positive number is then converted to decimal using the standard
conversion procedure. As the final step, the sign is applied. Example 2.24 shows an example of this
process.

Example 2.23
Finding the range of a one’s complement number
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2.4.2.3 Two’s Complement

Two’s complement is an encoding scheme that addresses the double 0 issue in signed magnitude
and one’s complement representations. In this approach, the negative number is obtained by subtracting
its positive equivalent from 2n. This is identical to performing a complement on the positive equivalent
and then adding one. If a carry is generated, it is discarded. This procedure is called taking the two’s
complement of a number. The procedure of complementing each bit and adding one is the most common
technique to perform a two’s complement. In this way, the most significant bit of the number is still the
sign bit (0 ¼ positive, 1 ¼ negative), but all of the negative numbers are in essence shifted up so that the
double 0 gap is eliminated. Taking the two’s complement of a positive number will give its negative
counterpart and vice versa. Let’s look at the decimal values that a 4-bit, two’s complement number can
take on. These are shown in Example 2.25.

Example 2.24
Finding the decimal value of a one’s complement number
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There are many advantages of two’s complement encoding. First, there is no double 0 gap, which
means that all possible 2n unique codes that can exist in an n-bit number are used. This gives the largest
possible range of numbers that can be represented. Another advantage of two’s complement is that
addition with negative numbers works exactly the same as decimal. In our example of (�5) + (1), the
result (�4). Arithmetic circuitry can be built to mimic the way our decimal arithmetic works without the
need to consider the double 0 gap. Finally, the rollover characteristic is preserved from one’s comple-
ment. Incrementing +7 by +1 will result in �8.

If we use the notation N2comp to represent any possible value that an n-bit, two’s complement
number can take on, the range is defined as:

Range of a TWO’S COMPLEMENT number ) 2 2n-1
� �

� N2’s comp � þ 2n-1 2 1
� �

Example 2.26 shows how to use this expression to find the range of decimal values that a 32-bit,
two’s complement code can represent.

Example 2.25
Decimal values that a 4-bit, two’s complement code can represent

Example 2.26
Finding the range of a two’s complement number
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The process of finding the decimal value of a two’s complement number involves first identifying
whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the
sign bit is 0), then the number is treated as an unsigned code and is converted to decimal using the
standard conversion procedure described in prior sections. If the number is negative (i.e., the sign bit is
1), then the number sign is recorded separately, and a two’s complement is performed on the code in
order to convert it to its positive magnitude equivalent. This new positive number is then converted to
decimal using the standard conversion procedure. The final step is to apply the sign. Example 2.27
shows an example of this process.

To convert a decimal number into its two’s complement code, the range is first checked to determine
whether the number can be represented with the allocated number of bits. The next step is to convert the
decimal number into unsigned binary. The final step is to apply the sign bit. If the original decimal number
was positive, then the conversion is complete. If the original decimal number was negative, then the
two’s complement is taken on the unsigned binary code to find its negative equivalent. Example 2.28
shows this procedure when converting �9910 to its 8-bit, two’s complement code.

Example 2.27
Finding the decimal value of a two’s complement number
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2.4.2.4 Arithmetic with Two’s Complement

Two’s complement has a variety of arithmetic advantages. First, the operations of addition, subtrac-
tion, and multiplication are handled exactly the same as when using unsigned numbers. This means that
duplicate circuitry is not needed in a system that uses both number types. Second, the ability to convert a
number from positive to its negative representation by performing a two’s complement means that an
adder circuit can be used for subtraction. For example, if we wanted to perform the subtraction 1310 –

410 ¼ 910, this is the same as performing 1310 + (�410) ¼ 910. This allows us to use a single adder circuit
to perform both addition and subtraction as long as we have the ability to take the two’s complement of a
number. Creating a circuit to perform two’s complement can be simpler and faster than building a
separate subtraction circuit, so this approach can sometimes be advantageous.

There are specific rules for performing two’s complement arithmetic that must be followed to ensure
proper results. First, any carry or borrow that is generated is ignored. The second rule that must be
followed is to always check if two’s complement overflow occurred. Two’s complement overflow refers
to when the result of the operation falls outside of the range of values that can be represented by the

Example 2.28
Finding the two’s complement code of a decimal number
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number of bits being used. For example, if you are performing 8-bit, two’s complement addition, the
range of decimal values that can be represented is �12810 to +12710. Having two input terms of 12710
(0111 11112) is perfectly legal because they can be represented by the 8-bits of the two’s complement
number; however, the summation of 12710 + 12710 ¼ 25410 (111111102). This number does not fit within
the range of values that can be represented and is actually the two’s complement code for�210, which is
obviously incorrect. Two’s complement overflow occurs if any of the following occurs:

• The sum of like signs results in an answer with opposite sign

(i.e., positive + positive ¼ negative or negative + negative ¼ positive)
• The subtraction of a positive number from a negative number results in a positive number

(i.e., negative � positive ¼ positive)
• The subtraction of a negative number from a positive number results in a negative number

(i.e., positive � negative ¼ negative)

Computer systems that use two’s complement have a dedicated logic circuit that monitors for any of
these situations and lets the operator know that overflow has occurred. These circuits are straightforward
since they simply monitor the sign bits of the input and output codes. Example 2.29 shows how to use
two’s complement in order to perform subtraction using an addition operation.

Example 2.29
Two’s complement addition
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CONCEPT CHECK

CC2.4 A 4-bit, two’s complement number has 16 unique codes and can represent decimal
numbers between �810 and +710. If the number of unique codes is even, why is it that
the range of integers it can represent is not symmetrical about zero?

A) One of the positive codes is used to represent zero. This prevents the highest
positive number from reaching +810 and being symmetrical.

B) It is asymmetrical because the system allows the numbers to roll over.

C) It isn’t asymmetrical if zero is considered a positive integer. That way there are
eight positive numbers and eight negatives numbers.

D) It is asymmetrical because there are duplicate codes for 0.

Summary

v The base, or radix, of a number system refers
to the number of unique symbols within its
set. The definition of a number system
includes both the symbols used and the rela-
tive values of each symbol within the set.

v Themost common number systems are base
10 (decimal), base 2 (binary), and base
16 (hexadecimal). Base 10 is used because
it is how the human brain has been trained to
treat numbers. Base 2 is used because the
two values are easily represented using elec-
trical switches. Base 16 is a convenient way
to describe large groups of bits.

v A positional number system allows larger
(or smaller) numbers to be represented
beyond the values within the original symbol
set. This is accomplished by having each
position within a number have a different
weight.

v There are specific algorithms that are used to
convert any base to or from decimal. There
are also algorithms to convert between num-
ber systems that contain a power-of-two
symbols (e.g., binary to hexadecimal and
hexadecimal to binary).

v Binary arithmetic is performed on a fixed
width of bits (n). When an n-bit addition
results in a sum that cannot fit within n-bits,
it generates a carry out bit. In an n-bit sub-
traction, if the minuend is smaller than the
subtrahend, a borrow in can be used to com-
plete the operation.

v Binary codes can represent both unsigned
and signed numbers. For an arbitrary n-bit
binary code, it is important to know the
encoding technique and the range of values
that can be represented.

v Signed numbers use the most significant
position to represent whether the number is
negative (0 ¼ positive, 1 ¼ negative). The
width of a signed number is always fixed.

v Two’s complement is the most common
encoding technique for signed numbers. It
has an advantage that there are no duplicate
codes for zero and that the encoding
approach provides a monotonic progression
of codes from the most negative number that
can be represented to the most positive. This
allows addition and subtraction to work the
same on two’s complement numbers as it
does on unsigned numbers.

v When performing arithmetic using two’s com-
plement codes, the carry bit is ignored.

v When performing arithmetic using two’s com-
plement codes, if the result lies outside of the
range that can be represented it is called
two’s complement overflow. Two’s comple-
ment overflow can be determined by looking
at the sign bits of the input arguments and the
sign bit of the result.
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Exercise Problems

Section 2.1: Positional Number Systems
2.1.1 What is the radix of the binary number

system?

2.1.2 What is the radix of the decimal number
system?

2.1.3 What is the radix of the hexadecimal number
system?

2.1.4 What is the radix of the octal number system?

2.1.5 What is the radix of a number system with
base 3?

2.1.6 For the number 261.367, what position (p) is
the number 2 in?

2.1.7 For the number 261.367, what position (p) is
the number leftmost 6 in?

2.1.8 For the number 261.367, what position (p) is
the number 1 in?

2.1.9 For the number 261.367, what position (p) is
the number 3 in?

2.1.10 For the number 261.367, what position (p) is
the number rightmost 6 in?

2.1.11 For the number 261.367, what position (p) is
the number 7 in?

2.1.12 What is the name of the number system
containing 102?

2.1.13 What is the name of the number system
containing 1010?

2.1.14 What is the name of the number system
containing 1016?

2.1.15 What is the name of the number system
containing 108?

2.1.16 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadeci-
mal, and octal) could the number 22 be part
of? Give all that are possible.

2.1.17 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadeci-
mal, and octal) could the number 99 be part
of? Give all that are possible.

2.1.18 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadeci-
mal, and octal) could the number 1F be part
of? Give all that are possible.

2.1.19 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadeci-
mal, and octal) could the number 88 be part
of? Give all that are possible.

2.1.20 Which symbols could be used in all of the four
number systems covered in this chapter (i.e.,
binary, decimal, hexadecimal, and octal)?

2.1.21 What is the only symbol that could be used in
every number system from base 1 to base1?

Section 2.2: Base Conversions
2.2.1 If the number 101.111 has a radix of 2, what is

the weight of the position containing the left-
most 1?

2.2.2 If the number 101.111 has a radix of 2, what is
the weight of the position containing the bit 0?

2.2.3 If the number 101.111 has a radix of 2, what is
the weight of the position containing the
1 immediately to the left of the radix point?

2.2.4 If the number 101.111 has a radix of 2, what is
the weight of the position containing the
1 immediately to the right of the radix point?

2.2.5 If the number 101.111 has a radix of 2, what is
the weight of the position containing the 1 that
second to the right of the radix point?

2.2.6 If the number 101.111 has a radix of 2, what is
the weight of the position containing the right-
most 1?

2.2.7 If the number 261.367 has a radix of 10, what
is the weight of the position containing the
numeral 2?

2.2.8 If the number 261.367 has a radix of 10, what
is the weight of the position containing the
leftmost 6?

2.2.9 If the number 261.367 has a radix of 10, what
is the weight of the position containing the
numeral 1?

2.2.10 If the number 261.367 has a radix of 10, what
is the weight of the position containing the
numeral 3?

2.2.11 If the number 261.367 has a radix of 10, what
is the weight of the position containing the
rightmost 6?

2.2.12 If the number 261.367 has a radix of 10, what
is the weight of the position containing the
numeral 7?

2.2.13 If the number 261.367 has a radix of 16, what
is the weight of the position containing the
numeral 2?

2.2.14 If the number 261.367 has a radix of 16, what
is the weight of the position containing the
leftmost 6?

2.2.15 If the number 261.367 has a radix of 16, what
is the weight of the position containing the
numeral 1?

2.2.16 If the number 261.367 has a radix of 16, what
is the weight of the position containing the
numeral 3?

2.2.17 If the number 261.367 has a radix of 16, what
is the weight of the position containing the
rightmost 6?

2.2.18 If the number 261.367 has a radix of 16, what
is the weight of the position containing the
numeral 7?
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2.2.19 If the number 261.367 has a radix of 8, what is
the weight of the position containing the
numeral 2?

2.2.20 If the number 261.367 has a radix of 8, what is
the weight of the position containing the left-
most 6?

2.2.21 If the number 261.367 has a radix of 8, what is
the weight of the position containing the
numeral 1?

2.2.22 If the number 261.367 has a radix of 8, what is
the weight of the position containing the
numeral 3?

2.2.23 If the number 261.367 has a radix of 8, what is
the weight of the position containing the right-
most 6?

2.2.24 If the number 261.367 has a radix of 8, what is
the weight of the position containing the
numeral 7?

2.2.25 Convert 1111112 to decimal. Treat all numbers
as unsigned.

2.2.26 Convert 10 10012 to decimal. Treat all num-
bers as unsigned.

2.2.27 Convert 1100 11002 to decimal. Treat all num-
bers as unsigned.

2.2.28 Convert 100110012 to decimal. Treat all num-
bers as unsigned.

2.2.29 Convert 0.11112 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.30 Convert 0.11112 to decimal with a fractional
accuracy of 2 digits without rounding. Treat
all numbers as unsigned.

2.2.31 Convert 0.11112 to decimal with a fractional
accuracy of 2 digits with rounding. Treat all
numbers as unsigned.

2.2.32 Convert 11.012 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.33 Convert 11.012 to decimal with a fractional
accuracy of 1 digit without rounding. Treat all
numbers as unsigned.

2.2.34 Convert 11.012 to decimal with a fractional
accuracy of 1 digit with rounding. Treat all
numbers as unsigned.

2.2.35 Convert 1001.10012 to decimal. Provide the
full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.36 Convert 1001.10012 to decimal with a frac-
tional accuracy of 3 digits without rounding.
Treat all numbers as unsigned.

2.2.37 Convert 1001.10012 to decimal with a frac-
tional accuracy of 3 digits with rounding.
Treat all numbers as unsigned.

2.2.38 Convert 1100.11012 to decimal. Provide the
full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.39 Convert 1100.11012 to decimal with a frac-
tional accuracy of 3 digits without rounding.
Treat all numbers as unsigned.

2.2.40 Convert 1100.11012 to decimal with a frac-
tional accuracy of 3 digits with rounding.
Treat all numbers as unsigned.

2.2.41 Convert 728 to decimal. Treat all numbers as
unsigned.

2.2.42 Convert 7778 to decimal. Treat all numbers as
unsigned.

2.2.43 Convert 1238 to decimal. Treat all numbers as
unsigned.

2.2.44 Convert 76548 to decimal. Treat all numbers
as unsigned

2.2.45 Convert 0.7778 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.46 Convert 0.7778 to decimal with a fractional
accuracy of 2 digits without rounding. Treat
all numbers as unsigned.

2.2.47 Convert 0.7778 to decimal with a fractional
accuracy of 2 digits with rounding. Treat all
numbers as unsigned.

2.2.48 Convert 12.578 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.49 Convert 12.578 to decimal with a fractional
accuracy of 4 digits without rounding. Treat
all numbers as unsigned.

2.2.50 Convert 12.578 to decimal with a fractional
accuracy of 4 digits with rounding. Treat all
numbers as unsigned.

2.2.51 Convert 123.1238 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.52 Convert 123.1238 to decimal with a fractional
accuracy of 1 digit without rounding. Treat all
numbers as unsigned.

2.2.53 Convert 123.1238 to decimal with a fractional
accuracy of 1 digit with rounding. Treat all
numbers as unsigned.

2.2.54 Convert 7654.76548 to decimal. Provide the
full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.55 Convert 7654.76548 to decimal with a frac-
tional accuracy of 4 digits without rounding.
Treat all numbers as unsigned.

2.2.56 Convert 7654.76548 to decimal with a frac-
tional accuracy of 4 digits with rounding.
Treat all numbers as unsigned.

2.2.57 Convert F316 to decimal. Treat all numbers as
unsigned.

2.2.58 Convert FFF16 to decimal. Treat all numbers
as unsigned.

2.2.59 Convert FACE16 to decimal. Treat all numbers
as unsigned.
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2.2.60 Convert BEEF FEED16 to decimal. Treat all
numbers as unsigned.

2.2.61 Convert 0.FF16 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.62 Convert 0.FF16 to decimal with a fractional
accuracy of 4 digits without rounding. Treat
all numbers as unsigned.

2.2.63 Convert 0.FF16 to decimal with a fractional
accuracy of 4 digits with rounding. Treat all
numbers as unsigned.

2.2.64 Convert EE.0F16 to decimal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.65 Convert EE.0F 16 to decimal with a fractional
accuracy of 4 digits without rounding. Treat all
numbers as unsigned.

2.2.66 Convert EE.0F 16 to decimal with a fractional
accuracy of 4 digits with rounding. Treat all
numbers as unsigned.

2.2.67 Convert 15B.CEF16 to decimal. Provide the
full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.68 Convert 15B.CEF16 to decimal with a frac-
tional accuracy of 2 digits without rounding.
Treat all numbers as unsigned.

2.2.69 Convert 15B.CEF16 to decimal with a frac-
tional accuracy of 2 digits with rounding.
Treat all numbers as unsigned.

2.2.70 Convert 1ACE.E1F16 to decimal. Provide the
full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.71 Convert 1ACE.E1F16 to decimal with a frac-
tional accuracy of 4 digits without rounding.
Treat all numbers as unsigned.

2.2.72 Convert 1ACE.E1F16 to decimal with a frac-
tional accuracy of 4 digits with rounding. Treat
all numbers as unsigned.

2.2.73 Convert 6710 to binary. Treat all numbers as
unsigned.

2.2.74 Convert 10010 to binary. Treat all numbers as
unsigned.

2.2.75 Convert 99910 to binary. Treat all numbers as
unsigned.

2.2.76 Convert 111110 to binary. Treat all numbers as
unsigned.

2.2.77 Convert 0.87510 to binary. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.78 Convert 0.87510 to binary with a fractional
accuracy of 2 bits without rounding. Treat all
numbers as unsigned.

2.2.79 Convert 0.87510 to binary with a fractional
accuracy of 2 bits with rounding. Treat all
numbers as unsigned.

2.2.80 Convert 1.437510 to binary. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.81 Convert 1.437510 to binary with a fractional
accuracy of 3 bits without rounding. Treat all
numbers as unsigned.

2.2.82 Convert 1.437510 to binary with a fractional
accuracy of 3 bits with rounding. Treat all
numbers as unsigned.

2.2.83 Convert 31.6562510 to binary. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.84 Convert 31.6562510 to binary with a fractional
accuracy of 3 bits without rounding. Treat all
numbers as unsigned.

2.2.85 Convert 31.6562510 to binary with a fractional
accuracy of 3 bits with rounding. Treat all
numbers as unsigned.

2.2.86 Convert 252.98710 to binary. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.87 Convert 252.98710 to binary with a fractional
accuracy of 4 bits without rounding. Treat all
numbers as unsigned.

2.2.88 Convert 252.98710 to binary with a fractional
accuracy of 4 bits with rounding. Treat all
numbers as unsigned.

2.2.89 Convert 6710 to octal. Treat all numbers as
unsigned.

2.2.90 Convert 10110 to octal. Treat all numbers as
unsigned.

2.2.91 Convert 77710 to octal. Treat all numbers as
unsigned.

2.2.92 Convert 765410 to octal. Treat all numbers as
unsigned.

2.2.93 Convert 0.1875 10 to octal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.94 Convert 0.187510 to octal with a fractional
accuracy of 1 digit without rounding. Treat all
numbers as unsigned.

2.2.95 Convert 0.187510 to octal with a fractional
accuracy of 1 digit with rounding. Treat all
numbers as unsigned.

2.2.96 Convert 4.562510 to octal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.97 Convert 4.562510 to octal with a fractional
accuracy of 1 digit without rounding. Treat all
numbers as unsigned.

2.2.98 Convert 4.562510 to octal with a fractional
accuracy of 1 digit with rounding. Treat all
numbers as unsigned.

2.2.99 Convert 77.1562510 to octal. Provide the full
answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.100 Convert 77.1562510 to octal with a fractional
accuracy of 1 digit without rounding. Treat all
numbers as unsigned.

2.2.101 Convert 77.1562510 to octal with a fractional
accuracy of 1 digit with rounding. Treat all
numbers as unsigned.
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2.2.102 Convert 22.289062510 to octal. Provide the
full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.103 Convert 22.289062510 to octal with a frac-
tional accuracy of 2 digits without rounding.
Treat all numbers as unsigned.

2.2.104 Convert 22.289062510 to octal with a frac-
tional accuracy of 2 digits with rounding.
Treat all numbers as unsigned.

2.2.105 Convert 6710 to hexadecimal. Treat all num-
bers as unsigned.

2.2.106 Convert 10010 to hexadecimal. Treat all num-
bers as unsigned.

2.2.107 Convert 99910 to hexadecimal. Treat all num-
bers as unsigned.

2.2.108 Convert 678910 to hexadecimal. Treat all
numbers as unsigned.

2.2.109 Convert 0.10937510 to hexadecimal. Provide
the full answer without limiting its accuracy or
rounding. Treat all numbers as unsigned.

2.2.110 Convert 0.10937510 to hexadecimal with a
fractional accuracy of 1 digit without rounding.
Treat all numbers as unsigned.

2.2.111 Convert 0.10937510 to hexadecimal with a
fractional accuracy of 1 digit with rounding.
Treat all numbers as unsigned.

2.2.112 Convert 10.664062510 to hexadecimal. Pro-
vide the full answer without limiting its accu-
racy or rounding. Treat all numbers as
unsigned.

2.2.113 Convert 10.664062510 to hexadecimal with a
fractional accuracy of 1 digit without rounding.
Treat all numbers as unsigned.

2.2.114 Convert 10.664062510 to hexadecimal with a
fractional accuracy of 1 digit with rounding.
Treat all numbers as unsigned.

2.2.115 Convert 186.6679687510 to hexadecimal.
Provide the full answer without limiting its
accuracy or rounding. Treat all numbers as
unsigned.

2.2.116 Convert 186.6679687510 to hexadecimal with
a fractional accuracy of 2 digits without
rounding. Treat all numbers as unsigned.

2.2.117 Convert 186.6679687510 to hexadecimal with
a fractional accuracy of 2 digits with rounding.
Treat all numbers as unsigned.

2.2.118 Convert 57005.7456054687510 to hexadeci-
mal. Provide the full answer without limiting
its accuracy or rounding. Treat all numbers
as unsigned.

2.2.119 Convert 57005.7456054687510 to hexadeci-
mal with a fractional accuracy of 2 digits with-
out rounding. Treat all numbers as unsigned.

2.2.120 Convert 57005.7456054687510 to hexadeci-
mal with a fractional accuracy of 2 digits with
rounding. Treat all numbers as unsigned.

2.2.121 Convert 1111102 to octal. Treat all numbers as
unsigned.

2.2.122 Convert 10 1010.012 to octal. Treat all num-
bers as unsigned.

2.2.123 Convert 1010 1010.01012 to octal. Treat all
numbers as unsigned.

2.2.124 Convert 1 0000 11112 to octal. Treat all num-
bers as unsigned.

2.2.125 Convert 11 11102 to hexadecimal. Treat all
numbers as unsigned.

2.2.126 Convert 10 1010.012 to hexadecimal. Treat all
numbers as unsigned.

2.2.127 Convert 1010 1010.01012 to hexadecimal.
Treat all numbers as unsigned.

2.2.128 Convert 1 0000 1111.0112 to hexadecimal.
Treat all numbers as unsigned.

2.2.129 Convert 778 to binary. Treat all numbers as
unsigned.

2.2.130 Convert 77.78 to binary. Treat all numbers as
unsigned.

2.2.131 Convert 123.48 to binary. Treat all numbers as
unsigned.

2.2.132 Convert 261.3678 to binary. Treat all numbers
as unsigned.

2.2.133 Convert AB16 to binary. Treat all numbers as
unsigned.

2.2.134 Convert F.A16 to binary. Treat all numbers as
unsigned.

2.2.135 Convert AB.CD16 to binary. Treat all numbers
as unsigned.

2.2.136 Convert 261.36716 to binary. Treat all num-
bers as unsigned.

2.2.137 Convert 668 to hexadecimal. Treat all num-
bers as unsigned.

2.2.138 Convert 66.78 to hexadecimal. Treat all num-
bers as unsigned.

2.2.139 Convert 261.3678 to hexadecimal. Treat all
numbers as unsigned.

2.2.140 Convert 1234.56788 to hexadecimal. Treat all
numbers as unsigned.

2.2.141 Convert AB16 to octal. Treat all numbers as
unsigned.

2.2.142 Convert AB.D16 to octal. Treat all numbers as
unsigned.

2.2.143 Convert ABC.DE16 to octal. Treat all numbers
as unsigned.

2.2.144 Convert BABE.FACE16 to octal. Treat all num-
bers as unsigned.
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Section 2.3: Binary Arithmetic
2.3.1 Compute 112 + 012 by hand. Treat all numbers

as unsigned. Provide the 2-bit sum and indi-
cate whether a carry out occurred.

2.3.2 Compute 10102 + 10112 by hand. Treat all
numbers as unsigned. Provide the 4-bit sum
and indicate whether a carry out occurred.

2.3.3 Compute 1111 11112 + 0000 00012 by hand.
Treat all numbers as unsigned. Provide the
8-bit sum and indicate whether a carry out
occurred.

2.3.4 Compute 1010.10102 + 1011.10112 by hand.
Treat all numbers as unsigned. Provide the
8-bit sum and indicate whether a carry out
occurred.

2.3.5 Compute 1111 1111.10112 + 0000 0001.11002
by hand. Treat all numbers as unsigned. Pro-
vide the 12-bit sum and indicate whether a
carry out occurred.

2.3.6 Compute 102�012 by hand. Treat all numbers
as unsigned. Provide the 2-bit difference and
indicate whether a borrow in occurred.

2.3.7 Compute 10102�10112 by hand. Treat all
numbers as unsigned. Provide the 4-bit differ-
ence and indicate whether a borrow in
occurred.

2.3.8 Compute 1111 11112�0000 00012 by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.3.9 Compute 1010.10102–1011.10112 by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.3.10 Compute 1111 1111.10112�0000 0001.11002
by hand. Treat all numbers as unsigned. Pro-
vide the 12-bit difference and indicate whether
a borrow in occurred.

Section 2.4: Unsigned and Signed
Numbers
2.4.1 What range of decimal numbers can be

represented by 8-bit, two’s complement
numbers?

2.4.2 What range of decimal numbers can be
represented by 16-bit, two’s complement
numbers?

2.4.3 What range of decimal numbers can be
represented by 32-bit, two’s complement
numbers?

2.4.4 What range of decimal numbers can be
represented by 64-bit, two’s complement
numbers?

2.4.5 What is the 8-bit, two’s complement code for
+8810?

2.4.6 What is the 8-bit, two’s complement code for
�8810?

2.4.7 What is the 8-bit, two’s complement code for
�12810?

2.4.8 What is the 8-bit, two’s complement code for
�110?

2.4.9 What is the decimal value of the 4-bit, two’s
complement code 00102?

2.4.10 What is the decimal value of the 4-bit, two’s
complement code 10102?

2.4.11 What is the decimal value of the 8-bit, two’s
complement code 0111 11102?

2.4.12 What is the decimal value of the 8-bit, two’s
complement code 1111 11102?

2.4.13 Compute 11102 + 10112 by hand. Treat all
numbers as 4-bit, two’s complement codes.
Provide the 4-bit sum and indicate whether
two’s complement overflow occurred.

2.4.14 Compute 1101 11112 + 0000 00012 by hand.
Treat all numbers as 8-bit, two’s complement
codes. Provide the 8-bit sum and indicate
whether two’s complement overflow occurred.

2.4.15 Compute 1010.10102 + 1000.10112 by hand.
Treat all numbers as 8-bit, two’s complement
codes. Provide the 8-bit sum and indicate
whether two’s complement overflow occurred.

2.4.16 Compute 1110 1011.10012 + 0010
0001.11012 by hand. Treat all numbers as
12-bit, two’s complement codes. Provide the
12-bit sum and indicate whether two’s com-
plement overflow occurred.

2.4.17 Compute 410 – 510 using 4-bit two’s comple-
ment addition. You will need to first convert
each number into its 4-bit two’s complement
code and then perform binary addition (i.e.,
410 + (�510)). Provide the 4-bit result and
indicate whether two’s complement overflow
occurred. Check your work by converting the
4-bit result back to decimal.

2.4.18 Compute 710 – 710 using 4-bit two’s comple-
ment addition. You will need to first convert
each decimal number into its 4-bit two’s com-
plement code and then perform binary addi-
tion (i.e., 710 + (�710)). Provide the 4-bit result
and indicate whether two’s complement over-
flow occurred. Check your work by converting
the 4-bit result back to decimal.

2.4.19 Compute 710 + 110 using 4-bit two’s comple-
ment addition. You will need to first convert
each decimal number into its 4-bit two’s com-
plement code and then perform binary addi-
tion. Provide the 4-bit result and indicate
whether two’s complement overflow occurred.
Check your work by converting the 4-bit result
back to decimal.

2.4.20 Compute 6410 – 10010 using 8-bit two’s com-
plement addition. You will need to first convert
each number into its 8-bit two’s complement
code and then perform binary addition (i.e,
6410 + (�10010)). Provide the 8-bit result and
indicate whether two’s complement overflow
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occurred. Check your work by converting the
8-bit result back to decimal.

2.4.21 Compute (�99)10–1110 using 8-bit two’s com-
plement addition. You will need to first convert
each decimal number into its 8-bit two’s com-
plement code and then perform binary addi-
tion (i.e., (�9910) + (�1110)). Provide the 8-bit
result and indicate whether two’s complement
overflow occurred. Check your work by
converting the 8-bit result back to decimal.

2.4.22 Compute 5010 + 10010 using 8-bit two’s com-
plement addition. You will need to first convert
each decimal number into its 8-bit two’s com-
plement code and then perform binary addi-
tion. Provide the 8-bit result and indicate
whether two’s complement overflow occurred.
Check your work by converting the 8-bit result
back to decimal.
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