
Chapter 10: Memory
This chapter introduces the basic concepts, terminology, and roles of memory in digital systems.

The material presented here will not delve into the details of the device physics or low-level theory of
operation. Instead, the intent of this chapter is to give a general overview of memory technology and its
use in computer systems in addition to how to model memory in VHDL. The goal of this chapter is to give
an understanding of the basic principles of semiconductor-based memory systems.

Learning Outcomes—After completing this chapter, you will be able to:

10.1 Describe the basic architecture and terminology for semiconductor-based memory
systems.

10.2 Describe the basic architecture of non-volatile memory systems.
10.3 Describe the basic architecture of volatile memory systems.
10.4 Design a VHDL behavioral model of a memory system.

10.1 Memory Architecture and Terminology

The termmemory is used to describe a system with the ability to store digital information. The term
semiconductor memory refers to systems that are implemented using integrated circuit technology.
These types of systems store the digital information using transistors, fuses, and/or capacitors on a
single semiconductor substrate. Memory can also be implemented using technology other than
semiconductors. Disk drives store information by altering the polarity of magnetic fields on a circular
substrate. The two magnetic polarities (north and south) are used to represent different logic values (i.e.,
0 or 1). Optical disks use lasers to burn pits into reflective substrates. The binary information is
represented by light either being reflected (no pit) or not reflected (pit present). Semiconductor memory
does not have any moving parts, so it is called solid-state memory and can hold more information per unit
area than disk memory. Regardless of the technology used to store the binary data, all memory has
common attributes and terminology that are discussed in this chapter.

10.1.1 Memory Map Model

The information stored in memory is called the data. When information is placed into memory, it is
called a write. When information is retrieved from memory, it is called a read. In order to access data in
memory, an address is used. While data can be accessed as individual bits, in order to reduce the
number of address locations needed, data is typically grouped into N-bit words. If a memory system has
N ¼ 8, this means that 8 bits of data are stored at each address. The number of address locations is
described using the variable M. The overall size of the memory is typically stated by saying “MxN.” For
example, if we had a 16�8 memory system, that means that there are 16 address locations, each
capable of storing a byte of data. This memory would have a capacity of 16�8 ¼ 128 bits. Since the
address is implemented as a binary code, the number of lines in the address bus (n) will dictate the
number of address locations that the memory system will have (M ¼ 2n). Figure 10.1 shows a graphical
depiction of how data resides in memory. This type of graphic is called a memory map model.

Springer Nature Switzerland AG 2019
B. J. LaMeres, Introduction to Logic Circuits & Logic Design with VHDL,
https://doi.org/10.1007/978-3-030-12489-2_10

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12489-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-12489-2_10

10.1.2 Volatile Versus Non-volatile Memory

Memory is classified into two categories depending on whether it can store information when power
is removed or not. The term non-volatile is used to describe memory that holds information when the
power is removed, while the term volatile is used to describe memory that loses its information when
power is removed. Historically, volatile memory is able to run at faster speeds compared to non-volatile
memory, so it is used as the primary storage mechanism while a digital system is running. Non-volatile
memory is necessary in order to hold critical operation information for a digital system such as start-up
instructions, operations systems, and applications.

10.1.3 Read-Only Versus Read/Write Memory

Memory can also be classified into two categories with respect to how data is accessed. Read-only
memory (ROM) is a device that cannot be written to during normal operation. This type of memory is
useful for holding critical system information or programs that should not be altered while the system is
running. Read/write memory refers to memory that can be read and written to during normal operation
and is used to hold temporary data and variables.

10.1.4 Random Access Versus Sequential Access

Random access memory (RAM) describes memory in which any location in the system can be
accessed at any time. The opposite of this is sequential access memory, in which not all address
locations are immediately available. An example of a sequential access memory system is a tape drive.
In order to access the desired address in this system, the tape spool must be spun until the address is in
a position that can be observed. Most semiconductor memory in modern systems is random access. The
terms RAM and ROM have been adopted, somewhat inaccurately, to also describe groups of memory
with particular behavior. While the term ROM technically describes a system that cannot be written to, it
has taken on the additional association of being the term to describe non-volatile memory. While the term
RAM technically describes how data is accessed, it has taken on the additional association of being the
term to describe volatile memory. When describing modern memory systems, the terms RAM and ROM
are used most commonly to describe the characteristics of the memory being used; however, modern
memory systems can be both read/write and non-volatile, and the majority of memory is random access.

Fig. 10.1
Memory map model

362 • Chapter 10: Memory

CONCEPT CHECK

CC10.1 An 8-bit wide memory has 8 address lines. What is its capacity in bits?

A) 64 B) 256 C) 1024 D) 2048

10.2 Non-volatile Memory Technology

10.2.1 ROM Architecture

This section describes some of the most common non-volatile memory technologies used to store
digital information. An address decoder is used to access individual data words within the memory
system. The address decoder asserts one and only one word line (WL) for each unique binary address
that is present on its input. This operation is identical to a binary-to-one-hot decoder. For an n-bit
address, the decoder can access 2n, or M words in memory. The word lines historically run horizontally
across the memory array; thus, they are often called row lines, and the word line decoder is often called
the row decoder.Bit lines (BL) run perpendicular to the word lines in order to provide individual bit storage
access at the intersection of the bit and word lines. These lines typically run vertically through the
memory array; thus, they are often called column lines. The output of the memory system (i.e., Data_Out)
is obtained by providing an address and then reading the word from buffered versions of the bit lines.
When a system provides individual bit access to a row or access to multiple data words sharing a row
line, a column decoder is used to route the appropriate bit line(s) to the data out port.

In a traditional ROM array, each bit line contains a pull-up network to VCC. This provides the ability to
store a logic 1 at all locations within the array. If a logic 0 is desired at a particular location, an NMOS pull-
down transistor is inserted. The gate of the NMOS is connected to the appropriate word line, and the
drain of the NMOS is connected to the bit line. When reading, the word line is asserted and turns on the
NMOS transistor. This pulls the bit line to GND and produces a logic 0 on the output. When the NMOS
transistor is excluded, the bit line remains at a logic 1 due to the pull-up network. Figure 10.2 shows the
basic architecture of a ROM.

10.2 Non-volatile Memory Technology • 363

Fig. 10.2
Basic architecture of read-only memory (ROM)

364 • Chapter 10: Memory

Figure 10.3 shows the operation of a ROM when information is being read.

Memory can be designed to be either asynchronous or synchronous. Asynchronous memory
updates its data outputs immediately upon receiving an address. Synchronous memory only updates
its data outputs on the rising edge of a clock. The term latency is used to describe the delay between
when a signal is sent to the memory (either the address in an asynchronous system or the clock in a
synchronous system) and when the data is available. Figure 10.4 shows a comparison of the timing
diagrams between asynchronous and synchronous ROM systems during a read cycle.

Fig. 10.3
ROM operation during a read

10.2 Non-volatile Memory Technology • 365

10.2.2 Mask Read-Only Memory (MROM)

A mask read-only memory (MROM) is a non-volatile device that is programmed during fabrication.
The termmask refers to a transparent plate that contains patterns to create the features of the devices on
an integrated circuit using a process called photolithography. An MROM is fabricated with all of the
features necessary for the memory device with the exception of the final connections between the NMOS
transistors and the word and bit lines. This allows the majority of the device to be created prior to knowing
what the final information to be stored is. Once the desired information to be stored is provided by the
customer, the fabrication process is completed by adding connections between certain NMOS
transistors and the word/bit lines in order to create logic 0’s. Figure 10.5 shows an overview of the
MROM programming process.

Fig. 10.4
Asynchronous vs. synchronous ROM operation during a read cycle

366 • Chapter 10: Memory

10.2.3 Programmable Read-Only Memory (PROM)

A programmable read-only memory (PROM) is created in a similar manner as an MROM except that
the programming is accomplished post-fabrication through the use of fuses or anti-fuses. A fuse is an
electrical connection that is normally conductive. When a certain amount of current is passed through the
fuse, it will melt, or blow, and create an open circuit. The amount of current necessary to open the fuse is
much larger than the current the fuse would conduct during normal operation. An anti-fuse operates in
the opposite manner as a fuse. An anti-fuse is normally an open circuit. When a certain amount of current
is forced into the anti-fuse, the insulating material breaks down and creates a conduction path. This turns
the anti-fuse from an open circuit into a wire. Again, the amount of current necessary to close the anti-
fuse is much larger than the current the anti-fuse would experience during normal operation. A PROM
uses fuses or anti-fuses in order to connect/disconnect the NMOS transistors in the ROM array to the
word/bit lines. A PROM programmer is used to burn the fuses or anti-fuses. A PROM can only be
programmed once in this manner; thus, it is a read-only memory and non-volatile. A PROM has the
advantage that programming can take place quickly as opposed to an MROM that must be programmed
through device fabrication. Figure 10.6 shows an example PROM device based on fuses.

Fig. 10.5
MROM overview

10.2 Non-volatile Memory Technology • 367

10.2.4 Erasable Programmable Read-Only Memory (EPROM)

As an improvement to the one-time programming characteristic of PROMs, an electrically program-
mable ROM with the ability to be erased with ultraviolet (UV) light was created. The erasable program-
mable read-only memory (EPROM) is based on a floating-gate transistor. In a floating-gate transistor,
an additional metal-oxide structure is added to the gate of an NMOS. This has the effect of increasing the
threshold voltage. The geometry of the second metal oxide is designed such that the threshold voltage is
high enough that normal CMOS logic levels are not able to turn the transistor on (i.e., VT1 � VCC). This
threshold can be changed by applying a large electric field across the two metal structures in the gate.
This causes charge to tunnel into the secondary oxide, ultimately changing it into a conductor. This
phenomenon is called Fowler-Nordheim tunneling. The new threshold voltage is low enough that normal
CMOS logic levels are not able to turn the transistors off (i.e., VT2 � GND). This process is how the
device is programmed. This process is accomplished using a dedicated programmer; thus, the EPROM
must be removed from its system to program. Figure 10.7 shows an overview of a floating-gate transistor
and how it is programmed.

Fig. 10.6
PROM overview

368 • Chapter 10: Memory

In order to change the floating-gate transistor back into its normal state, the device is exposed to a
strong ultraviolet light source. When the UV light strikes the trapped charge in the secondary oxide, it
transfers enough energy to the charge particles that they can move back into the metal plates in the gate.
This, in effect, erases the device and restores it back to a state with a high threshold voltage. EPROMs
contain a transparent window on the top of their package that allows the UV light to strike the devices.
The EPROMmust be removed from its system to perform the erase procedure. When the UV light erase
procedure is performed, every device in the memory array is erased. EPROMs are a significant
improvement over PROMs because they can be programmed multiple times; however, the programming
and erase procedures are manually intensive and require an external programmer and external eraser.
Figure 10.8 shows the erase procedure for a floating-gate transistor using UV light.

Fig. 10.7
Floating-gate transistor – programming

10.2 Non-volatile Memory Technology • 369

An EPROM array is created in the exact same manner as in a PROM array with the exception that
additional programming circuitry is placed on the IC and a transparent window is included on the
package to facilitate erasing. An EPROM is non-volatile and read-only since the programming procedure
takes place outside of its destination system.

10.2.5 Electrically Erasable Programmable Read-Only Memory (EEPROM)

In order to address the inconvenient programming and erasing procedures associated with
EPROMs, the electrically erasable programmable ROM (EEPROM) was created. In this type of circuit,
the floating-gate transistor is erased by applying a large electric field across the secondary oxide. This
electric field provides the energy to move the trapped charge from the secondary oxide back into the
metal plates of the gate. The advantage of this approach is that the circuitry to provide the large electric
field can be generated using circuitry on the same substrate as the memory array, thus eliminating the
need for an external UV light eraser. In addition, since the circuitry exists to generate large on-chip
voltages, the device can also be programmed without the need for an external programmer. This allows
an EEPROM to be programmed and erased while it resides in its target environment. Figure 10.9 shows
the procedure for erasing a floating-gate transistor using an electric field.

Fig. 10.9
Floating-gate transistor – erasing with electricity

Fig. 10.8
Floating-gate transistor – erasing with UV light

370 • Chapter 10: Memory

Early EEPROMs were very slow and had a limited number of program/erase cycles; thus, they were
classified into the category of non-volatile, read-only memory. Modern floating-gate transistors are now
capable of access times on scale with other volatile memory systems; thus, they have evolved into one of
the few non-volatile, read/write memory technologies used in computer systems today.

10.2.6 FLASH Memory

One of the early drawbacks of EEPROM was that the circuitry that provided the capability to
program and erase individual bits also added to the size of each individual storage element. FLASH
EEPROM was a technology that attempted to improve the density of floating-gate memory by program-
ming and erasing in large groups of data, known as blocks. This allowed the individual storage cells to
shrink and provided higher-density memory parts. This new architecture was called NAND FLASH and
provided faster write and erase times coupled with higher-density storage elements. The limitation of
NAND FLASH was that reading and writing could only be accomplished in a block-by-block basis. This
characteristic precluded the use of NAND FLASH for run-time variables and data storage but was well
suited for streaming applications such as audio/video and program loading. As NAND FLASH technol-
ogy advanced, the block size began to shrink, and the software adapted to accommodate the block-by-
block data access. This expanded the applications that NAND FLASH could be deployed in. Today,
NAND FLASH memory is used in nearly all portable devices (e.g., smartphones, tablets), and its use in
solid-state hard drives is on pace to replace hard disk drives and optical disks as the primary non-volatile
storage medium in modern computers.

In order to provide individual word access, NOR FLASH was introduced. In NOR FLASH, circuitry is
added to provide individual access to data words. This architecture provided faster read times than
NAND FLASH, but the additional circuitry causes the write and erase times to be slower and the
individual storage cell size to be larger. Due to NAND FLASH having faster write times and higher
density, it is seeing broader-scale adoption compared to NOR FLASH despite only being able to access
information in blocks. NOR FLASH is considered random access memory, while NAND FLASH is
typically not; however, as the block size of NAND FLASH is continually reduced, its use for variable
storage is becoming more attractive. All FLASH memory is non-volatile and read/write.

CONCEPT CHECK

CC10.2 Which of the following is suitable for implementation in a read-only memory?

A) Variables that a computer program needs to continuously update.

B) Information captured by a digital camera.

C) A computer program on a spacecraft.

D) Incoming digitized sound from a microphone.

10.3 Volatile Memory Technology

This section describes some common volatile memory technologies used to store digital
information.

10.3 Volatile Memory Technology • 371

10.3.1 Static Random Access Memory (SRAM)

Static random access memory (SRAM) is a semiconductor technology that stores information using
a cross-coupled inverter feedback loop. Figure 10.10 shows the schematic for the basic SRAM storage
cell. In this configuration, two access transistors (M1 and M2) are used to read and write from the storage
cell. The cell has two complementary ports called Bit Line (BL) and Bit Line’ (BLn). Due to the inverting
functionality of the feedback loop, these two ports will always be the complement of each other. This
behavior is advantageous because the two lines can be compared to each other to determine the data
value. This allows the voltage levels used in the cell to be lowered while still being able to detect the
stored data value. Word lines are used to control the access transistors. This storage element takes six
CMOS transistors to implement and is often called a 6Tconfiguration. The advantage of this memory cell
is that it has very fast performance compared to other sub-systems because of its underlying technology
being simple CMOS transistors. SRAM cells are commonly implemented on the same IC substrate as
the rest of the system, thus allowing a fully integrated system to be realized. SRAM cells are used for
cache memory in computer systems.

To build an SRAMmemory system, cells are arranged in an array pattern. Figure 10.11 shows a 4�4
SRAM array topology. In this configuration, word lines are shared horizontally across the array in order to
provide addressing capability. An address decoder is used to convert the binary-encoded address into
the appropriate word line assertions. N storage cells are attached to the word line to provide the desired
data word width. Bit lines are shared vertically across the array in order to provide data access (either
read or write). A data line controller handles whether data is read from or written to the cells based on an
external write enable (WE) signal. When WE is asserted (WE¼ 1), data will be written to the cells. When
WE is de-asserted (WE ¼ 0), data will be read from the cells. The data line controller also handles
determining the correct logic value read from the cells by comparing BL to BLn. As more cells are added
to the bit lines, the signal magnitude being driven by the storage cells diminishes due to the additional
loading of the other cells. This is where having complementary data signals (BL and BLn) is advanta-
geous because this effectively doubles the magnitude of the storage cell outputs. The comparison of BL
to BLn is handled using a differential amplifier that produces a full logic level output even when the
incoming signals are very small.

Fig. 10.10
SRAM Storage Element (6T)

372 • Chapter 10: Memory

SRAM is volatile memory because when the power is removed, the cross-coupled inverters are not
able to drive the feedback loop and the data is lost. SRAM is also read/write memory because the
storage cells can be easily read from or written to during normal operation.

Let’s look at the operation of the SRAM array when writing the 4-bit word “0111” to address “01.”
Figure 10.12 shows a graphical depiction of this operation. In this write cycle, the row address decoder
observes the address input “01” and asserts WL1. Asserting this word line enables all of the access
transistors (i.e., M1 and M2 in Fig. 10.10) of the storage cells in this row. The line drivers are designed to
have a stronger drive strength than the inverters in the storage cells so that they can override their values
during a write. The information “0111” is present on the Data_In bus, and the write enable control line is
asserted (WE ¼ 1) to indicate a write. The data line controller passes the information to be stored to the
line drivers, which in turn converts each input into complementary signals and drives the bit lines. This
overrides the information in each storage cell connected to WL1. The address decoder then de-asserts
WL1 and the information is stored.

Fig. 10.11
4�4 SRAM array topology

10.3 Volatile Memory Technology • 373

Now let’s look at the operation of the SRAM array when reading a 4-bit word from address “10.” Let’s
assume that this row was storing the value “1010.” Figure 10.13 shows a graphical depiction of this
operation. In this read cycle, the row address decoder asserts WL2, which allows the SRAM cells to drive
their respective bit lines. Note that each cell drives a complementary version of its stored value. The input
control line is de-asserted (WE ¼ 0), which indicates that the sense amplifiers will read the BL and BLn
lines in order to determine the full logic value stored in each cell. This logic value is then routed to the
Data_Out port of the array. In an SRAM array, reading from the cell does not impact the contents of the
cell. Once the read is complete, WL2 is de-asserted and the read cycle is complete.

Fig. 10.12
SRAM operation during a write cycle – storing “0111” to address “01”

374 • Chapter 10: Memory

10.3.2 Dynamic Random Access Memory (DRAM)

Dynamic random access memory (DRAM) is a semiconductor technology that stores information
using a capacitor. A capacitor is a fundamental electrical device that stores charge. Figure 10.14 shows
the schematic for the basic DRAM storage cell. The capacitor is accessed through a transistor (M1).
Since this storage element takes one transistor and one capacitor, it is often referred to as a 1T1C
configuration. Just as in SRAM memory, word lines are used to access the storage elements. The term
digit line is used to describe the vertical connection to the storage cells. DRAM has an advantage over
SRAM in that the storage element requires less area to implement. This allows DRAM memory to have
much higher density compared to SRAM.

Fig. 10.13
SRAM operation during a read cycle – reading “0101” from address “10”

10.3 Volatile Memory Technology • 375

There are a variety of considerations that must be accounted for when using DRAM. First, the
charge in the capacitor will slowly dissipate over time due to the capacitors being non-ideal. If left
unchecked, eventually the data held in the capacitor will be lost. In order to overcome this issue,
DRAM has a dedicated circuit to refresh the contents of the storage cell. A refresh cycle involves
periodically reading the value stored on the capacitor and then writing the same value back again at
full signal strength. This behavior also means that that DRAM is volatile because when the power is
removed, and the refresh cycle cannot be performed, the stored data is lost. DRAM is also considered
read/write memory because the storage cells can be easily read from or written to during normal
operation.

Another consideration when using DRAM is that the voltage of the word line must be larger than VCC

in order to turn on the access transistor. In order to turn on an NMOS transistor, the gate terminal must be
larger than the source terminal by at least a threshold voltage (VT). In traditional CMOS circuit design, the
source terminal is typically connected to ground (0v). This means the transistor can be easily turned on
by driving the gate with a logic 1 (i.e., VCC) since this creates a VGS voltage much larger than VT. This is
not always the case in DRAM. In DRAM, the source terminal is not connected to ground but rather to the
storage capacitor. In the worst-case situation, the capacitor could be storing a logic 1 (i.e., VCC). This
means that in order for the word line to be able to turn on the access transistor, it must be equal to or
larger than (VCC + VT). This is an issue because the highest voltage that the DRAM device has access to
is VCC. In DRAM, a charge pump is used to create a voltage larger than VCC + VT that is driven on the
word lines. Once this voltage is used, the charge is lost so the line must be pumped up again before its
next use. The process of “pumping up” takes time that must be considered when calculating the
maximum speed of DRAM. Figure 10.15 shows a graphical depiction of this consideration.

Fig. 10.14
DRAM Storage Element (1T1C)

Fig. 10.15
DRAM charge pumping of word lines

376 • Chapter 10: Memory

Another consideration when using DRAM is how the charge in the capacitor develops into an actual
voltage on the digital line when the access transistor is closed. Consider the simple 4x4 array of DRAM
cells shown in Fig. 10.16. In this topology, the DRAM cells are accessed using the same approach as in
the SRAM array from Fig. 10.11.

One of the limitations of this simple configuration is that the charge stored in the capacitors cannot
develop a full voltage level across the digit line when the access transistor is closed. This is because the
digit line itself has capacitance that impacts how much voltage will be developed. In practice, the
capacitance of the digit line (CDL) is much larger than the capacitance of the storage cell (CS) due to
having significantly more area and being connected to numerous other storage cells. This becomes an
issue because when the storage capacitor is connected to the digit line, the resulting voltage on the digit
line (VDL) is much less than the original voltage on the storage cell (VS). This behavior is known as
charge sharing because when the access transistor is closed, the charge on both capacitors is
distributed across both devices and results in a final voltage that depends on the initial charge in the
system and the values of the two capacitors. Example 10.1 shows an example of how to calculate the
final digit line voltage when the storage cell is connected.

Fig. 10.16
Simple 4�4 DRAM array topology

10.3 Volatile Memory Technology • 377

The issue with the charge sharing behavior of a DRAM cell is that the final voltage on the word line is
not large enough to be detected by a standard logic gate or latch. In order to overcome this issue, modern
DRAM arrays use complementary storage cells and sense amplifiers. The complementary cells store the
original data and its complement. Two digit lines (DL and DLn) are used to read the contents of the
storage cells. DL and DLn are initially pre-charged to exactly VCC/2. When the access transistors are
closed, the storage cells will share their charge with the digit lines andmove them slightly away from VCC/
2 in different directions. This allows twice the voltage difference to be developed during a read. A sense

Example 10.1
Calculating the final digit line voltage in a DRAM based on charge sharing

378 • Chapter 10: Memory

amplifier is then used to boost this small voltage difference into a full logic level that can be read by a
standard logic gate or latch. Figure 10.17 shows the modern DRAM array topology based on comple-
mentary storage cells.

The sense amplifier is designed to boost small voltage deviations from VCC/2 on DL and DLn to full
logic levels. The sense amplifier sits in between DL and DLn and has two complementary networks, the
N-sense amplifier and the P-sense amplifier. The N-sense amplifier is used to pull a signal that is below
VCC/2 (either DL or DLn) down to GND. A control signal (N-Latch or NLATn) is used to turn on this
network. The P-sense amplifier is used to pull a signal that is above VCC/2 (either DL or DLn) up to VCC. A
control signal (active pull-up or ACT) is used to turn on this network. The two networks are activated in a
sequence with the N-sense network activating first. Figure 10.18 shows an overview of the operation of a
DRAM sense amplifier.

Fig. 10.17
Modern DRAM array topology based on complementary storage cells

10.3 Volatile Memory Technology • 379

Let’s now put everything together and look at the operation of a DRAM system during a read
operation. Figure 10.19 shows a simplified timing diagram of a DRAM read cycle. This diagram shows
the critical signals and their values when reading a logic 1. Notice that there is a sequence of steps that
must be accomplished before the information in the storage cells can be retrieved.

Fig. 10.18
DRAM sense amplifier

380 • Chapter 10: Memory

A DRAM write operation is accomplished by opening the access transistors to the complementary
storage cells using WL, disabling the pre-charge drivers and then writing full logic level signals to the
storage cells using the Data_In line driver.

CONCEPT CHECK

CC10.3 Which of the following is suitable for implementation in a read/write memory?

A) A look up table containing the values of sine.

B) Information captured by a digital camera.

C) The boot up code for a computer.

D) A computer program on a spacecraft

Fig. 10.19
DRAM operation during a read cycle – reading a 1 from a storage cell

10.3 Volatile Memory Technology • 381

10.4 Modeling Memory with VHDL

10.4.1 Read-Only Memory in VHDL

Modeling of memory in VHDL is accomplished using the array data type. Recall the syntax for
declaring a new array type below:

type name is array (<range>) of <element_type>;

To create the ROM array, a new type is declared (e.g., ROM_type) that is an array. The range
represents the addressing of the memory array and is provided as an integer. The element_type of the
array specifies the data type to be stored at each address and represents the data in the memory array.
The type of the element should be std_logic_vector with a width of N. To define a 4�4 array of memory,
we would use the following syntax.

Example:

type ROM_type is array (0 to 3) of std_logic_vector(3 downto 0);

Notice that the address is provided as an integer (0–3). This will require 2 address bits. Also notice
that this defines 4-bit data words. Next, we define a new constant of type ROM_type. When defining a
constant, we provide the contents at each address.

Example:

constant ROM : ROM_type :¼ (0 ¼> ”1110”,
1 ¼> ”0010”,
2 ¼> ”1111”,
3 ¼> ”0100”);

At this point, the ROM array is declared and initialized. In order to model the read behavior, a
concurrent signal assignment is used. The assignment will be made to the output data_out based on the
incoming address. The assignment to data_out will be the contents of the constant ROM at a particular
address. Since the index of a VHDL array needs to be provided as an integer (e.g., 0, 1, 2, 3) and the
address of the memory system is provided as a std_logic_vector, a type conversion is required. Since
there is no direct conversion from type std_logic_vector to integer, two conversions are required. The first
step is to convert the address from std_logic_vector to unsigned using the unsigned type conversion.
This conversion exists within the numeric_std package. The second step is to convert the address from
unsigned to integer using the to_integer conversion. The final assignment is as follows:

Example:

data_out <¼ ROM(to_integer(unsigned(address)));

Example 10.2 shows the entire VHDL model for this memory system and the simulation waveform.
In the simulation, each possible address is provided (i.e., “00,” “01,” “10,” and “11”). For each address, the
corresponding information appears on the data_out port. Since this is an asynchronous memory system,
the data appears immediately upon receiving a new address.

382 • Chapter 10: Memory

Latency can be modeled in memory systems by using delayed signal assignments. In the above
example, if the memory system had a latency of 5 ns, this could be modeled using the following
approach:

Example:

data_out <¼ ROM(to_integer(unsigned(address))) after 5 ns;

A synchronous ROM can be created in a similar manner. In this approach, a clock edge is used to
trigger when the data_out port is updated. A sensitivity list is used that contains only the signal clock to
trigger the assignment. A rising edge condition is then used in an if/then statement to make the
assignment only on a rising edge. Example 10.3 shows the VHDL model and simulation waveform for
this system. Notice that prior to the first clock edge, the simulator does not know what to assign to
data_out, so it lists the value as uninitialized.

Example 10.2
Behavioral model of a 4�4 asynchronous read-only memory in VHDL

10.4 Modeling Memory with VHDL • 383

10.4.2 Read/Write Memory in VHDL

In a read/write memory model, a new type is created using a VHDL array (e.g., RW_type) that
defines the size of the storage system. To create the memory, a new signal is declared with the
array type.

Example:

type RW_type is array (0 to 3) std_logic_vector(3 downto 0);
signal RW : RW_type;

Example 10.3
Behavioral model of a 4�4 synchronous read-only memory in VHDL

384 • Chapter 10: Memory

Note that a signal is used in a read/write system as opposed to a constant as in the read-only
memory system. This is because a read/write system is uninitialized until it is written to. A process is then
used to model the behavior of the memory system. Since this is an asynchronous system, all inputs are
listed in the sensitivity list (i.e., address, WE, and data_in). The process first checks whether the write
enable line is asserted (WE¼ 1), which indicates a write cycle is being performed. If it is, then it makes an
assignment to the RW signal at the location provided by the address input with the data provided by the
data_in input. Since the RWarray is indexed using integers, type conversions are required to convert the
address from std_logic_vector to integer. When WE is not asserted (WE ¼ 0), a read cycle is being
performed. In this case, the process makes an assignment to data_out with the contents stored at the
provided address. This assignment also requires type conversions to change the address from
std_logic_vector to integer. The following syntax implements this behavior.

Example:

MEMORY: process (address, WE, data_in)
begin
if (WE ¼ ’1’) then
RW(to_integer(unsigned(address))) <¼ data_in;

else
data_out <¼ RW(to_integer(unsigned(address)));

end if;
end process;

A read/write memory does not contain information until its storage locations are written to. As a
result, if the memory is read from before it has been written to, the simulation will return uninitialized.
Example 10.4 shows the entire VHDL model for an asynchronous read/write memory and the simulation
waveform showing read/write cycles.

10.4 Modeling Memory with VHDL • 385

A synchronous read/write memory is made in a similar manner with the exception that a clock is
used to trigger the signal assignments in the sensitivity list. The WE signal acts as a synchronous control
signal indicating whether assignments are read from or written to the RWarray. Example 10.5 shows the
entire VHDL model for a synchronous read/write memory and the simulation waveform showing both
read and write cycles.

Example 10.4
Behavioral model of a 4�4 asynchronous read/write memory in VHDL

386 • Chapter 10: Memory

Example 10.5
Behavioral model of a 4�4 synchronous read/write memory in VHDL

10.4 Modeling Memory with VHDL • 387

CONCEPT CHECK

CC10.4 Explain the advantage of modeling memory in VHDL without going into the details of
the storage cell operation.

A) It allows the details of the storage cell to be abstracted from the functional
operation of the memory system.

B) It is too difficult to model the analog behavior of the storage cell.

C) There are too many cells to model so the simulation would take too long.

D) It lets both ROM and R/W memory to be modeled in a similar manner.

Summary

v The term memory refers to large arrays of
digital storage. The technology used in mem-
ory is typically optimized for storage density
at the expense of control capability. This is
different from a D-Flip-Flop, which is
optimized for complete control at the bit level.

v A memory device always contains an
address bus input. The number of bits in the
address bus dictates how many storage
locations can be accessed. An n-bit address
bus can access 2n (or M) storage locations.

v The width of each storage location (N) allows
the density of the memory array to be
increased by reading and writing vectors of
data instead of individual bits.

v A memory map is a graphical depiction of a
memory array. A memory map is useful to
give an overview of the capacity of the array
and how different address ranges of the array
are used.

v A read is an operation in which data is
retrieved from memory. A write is an opera-
tion in which data is stored to memory.

v An asynchronous memory array responds
immediately to its control inputs. A synchro-
nous memory array only responds on the
triggering edge of clock.

v Volatile memory will lose its data when the
power is removed. Non-volatile memory will
retain its data when the power is removed.

v Read-only memory (ROM) is a memory type
that cannot be written to during normal oper-
ation. Read/write (R/W) memory is a memory
type that can be written to during normal
operation. Both ROM and R/W memory can
be read from during normal operation.

v Random access memory (RAM) is a memory
type in which any location in memory can be
accessed at any time. In sequential access

memory, the data can only be retrieved in a
linear sequence. This means that in sequen-
tial memory the data cannot be accessed
arbitrarily.

v The basic architecture of a ROM consists of
intersecting bit lines (vertical) and word lines
(horizontal) that contain storage cells at their
crossing points. The data is read out of the
ROM array using the bit lines. Each bit line
contains a pull-up resistor to initially store a
logic 1 at each location. If a logic 0 is desired
at a certain location, a pull-down transistor is
placed on a particular bit line with its gate
connected to the appropriate word line.
When the storage cell is addressed, the
word line will assert and turn on the pull-
down transistor producing a logic 0 on the
output.

v There are a variety of technologies to imple-
ment the pull-down transistor in a ROM. Dif-
ferent ROM architectures include MROMs,
PROMs, EPROMs, and EEPROMs. These
memory types are non-volatile.

v A R/W memory requires a storage cell that
can be both read from and written to during
normal operation. A DRAM (dynamic RAM)
cell is a storage element that uses a capaci-
tor to hold charge corresponding to a logic
value. An SRAM (static RAM) cell is a stor-
age element that uses a cross-coupled
inverter pair to hold the value being stored
in the positive feedback loop formed by the
inverters. Both DRAM and SRAM are volatile
and random access.

v The floating-gate transistor enables memory
that is both non-volatile and R/W. Modern
memory systems based on floating-gate
transistor technology allow writing to take
place using the existing system power supply

388 • Chapter 10: Memory

levels. This type of R/W memory is called
FLASH. In FLASH memory, the information
is read out in blocks; thus, it is not technically
random access.

v Memory can be modeled in VHDL using the
array data type.

Exercise Problems

Section 10.1: Memory Architecture
and Terminology
10.1.1 For a 512 k � 32 memory system, how many

unique address locations are there? Give the
exact number.

10.1.2 For a 512 k � 32 memory system, what is the
data width at each address location?

10.1.3 For a 512 k � 32 memory system, what is the
capacity in bits?

10.1.4 For a 512 k � 32-bit memory system, what is
the capacity in bytes?

10.1.5 For a 512 k � 32 memory system, how wide
does the incoming address bus need to be in
order to access every unique address
location?

10.1.6 Name the type of memory with the following
characteristic: when power is removed, the
data is lost.

10.1.7 Name the type of memory with the following
characteristic: when power is removed, the
memory still holds its information.

10.1.8 Name the type of memory with the following
characteristic: it can only be read from during
normal operation.

10.1.9 Name the type of memory with the following
characteristic: during normal operation, it can
be read and written to.

10.1.10 Name the type of memory with the following
characteristic: data can be accessed from any
address location at any time.

10.1.11 Name the type of memory with the following
characteristic: data can only be accessed in
consecutive order; thus, not every location of
memory is available instantaneously.

Section 10.2: Non-volatile Memory
Technology
10.2.1 Name the type of memory with the following

characteristic: this memory is non-volatile and
read/write and only provides data access in
blocks.

10.2.2 Name the type of memory with the following
characteristic: this memory uses a floating-
gate transistor, can be erased with electricity,
and provides individual bit access.

10.2.3 Name the type of memory with the following
characteristic: this memory is non-volatile and
read/write and provides word-level data
access.

10.2.4 Name the type of memory with the following
characteristic: this memory uses a floating-
gate transistor that is erased with UV light.

10.2.5 Name the type of memory with the following
characteristic: this memory is programmed by
blowing fuses or anti-fuses.

10.2.6 Name the type of memory with the following
characteristic: this memory is partially
fabricated prior to knowing the information to
be stored.

Section 10.3: Volatile Memory
Technology
10.3.1 How many transistors does it take to imple-

ment an SRAM cell?

10.3.2 Why doesn’t an SRAM cell require a refresh
cycle?

10.3.3 Design a VHDL model for the SRAM system
shown in Fig. 10.20. Your storage cell should
be designed such that its contents can be
overwritten by the line driver. Consider using
a resolved data type for this behavior that
models drive strength (e.g., in std_logic, a
1 has a higher drive strength than an H). You
will need to create a system for the differential
line driver with enable. This driver will need to
contain a high impedance state when
disabled. Both your line driver (Din) and
receiver (Dout) are differential. These
systems can be modeled using simple if/then
statements. Create a test bench for your sys-
tem that will write a 0 to the cell, then read it
back to verify the 0 was stored, and then
repeat the write/read cycles for a 1.

Fig. 10.20
SRAM cell block diagram

Exercise Problems • 389

10.3.4 Why is a DRAM cell referred to as a 1T/1C
configuration?

10.3.5 Why is a charge pump necessary on the word
lines of a DRAM array?

10.3.6 Why does a DRAM cell require a refresh
cycle?

10.3.7 For the DRAM storage cell shown in
Fig. 10.21, solve for the final voltage on the
digit line after the access transistor
(M1) closes if initially VS¼VCC (i.e., the cell
is storing a 1). In this system, CS ¼ 5 pF,
CDL ¼ 10 pF, and VCC ¼ +3.4v. Prior to the
access transistor closing, the digit line is
pre-charged to VCC/2.

Fig. 10.21
DRAM charge sharing exercise

10.3.8 For the DRAM storage cell shown in
Fig. 10.21, solve for the final voltage on the
digit line after the access transistor
(M1) closes if initially VS ¼ GND (i.e., the
cell is storing a 0). In this system, CS ¼ 5 pF,
CDL ¼ 10 pF, and VCC ¼ +3.4v. Prior to the
access transistor closing, the digit line is
pre-charged to VCC/2.

Section 10.4: Modeling Memory
with VHDL
10.4.1 Design a VHDL model for the 16�8, asyn-

chronous, read-only memory system shown
in Fig. 10.22. The system should contain the
information provided in the memory map. Cre-
ate a test bench to simulate your model by
reading from each of the 16 unique addresses
and observing Data_Out to verify it contains
the information in the memory map.

Fig. 10.22
16�8 asynchronous ROM block diagram

10.4.2 Design a VHDL model for the 16�8, synchro-
nous, read-only memory system shown in
Fig. 10.23. The system should contain the
information provided in the memory map. Cre-
ate a test bench to simulate your model by
reading from each of the 16 unique addresses
and observing Data_Out to verify it contains
the information in the memory map.

Fig. 10.23
16�8 synchronous ROM block diagram

390 • Chapter 10: Memory

10.4.3 Design a VHDL model for the 16�8, asyn-
chronous, read/write memory system shown
in Fig. 10.24. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the
address locations. Finally, your test bench
should read from each address location to
verify that the information that was written
was stored and can be successfully retrieved.

Fig. 10.24
16�8 asynchronous R/W memory block diagram

10.4.4 Design a VHDL model for the 16�8, synchro-
nous, read/write memory system shown in
Fig. 10.25. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the
address locations. Finally, your test bench
should read from each address location to
verify that the information that was written
was stored and can be successfully retrieved.

Fig. 10.25
16�8 synchronous R/W memory block diagram

Exercise Problems • 391

	10: Memory
	10.1 Memory Architecture and Terminology
	10.1.1 Memory Map Model
	10.1.2 Volatile Versus Non-volatile Memory
	10.1.3 Read-Only Versus Read/Write Memory
	10.1.4 Random Access Versus Sequential Access
	Concept Check

	10.2 Non-volatile Memory Technology
	10.2.1 ROM Architecture
	10.2.2 Mask Read-Only Memory (MROM)
	10.2.3 Programmable Read-Only Memory (PROM)
	10.2.4 Erasable Programmable Read-Only Memory (EPROM)
	10.2.5 Electrically Erasable Programmable Read-Only Memory (EEPROM)
	10.2.6 FLASH Memory
	Concept Check

	10.3 Volatile Memory Technology
	10.3.1 Static Random Access Memory (SRAM)
	10.3.2 Dynamic Random Access Memory (DRAM)
	Concept Check

	10.4 Modeling Memory with VHDL
	10.4.1 Read-Only Memory in VHDL
	10.4.2 Read/Write Memory in VHDL
	Concept Check

