
Chapter 1
Synthesis of Metallic and Metal Oxide
Particles

Kateryna Loza and Matthias Epple

Abstract The diversity of applications in catalysis, energy storage and medical
diagnostics utilizes unique and fascinating properties of metal and metal oxide
nanostructures. Confined to the nanometer scale, materials may display properties
that are different from the equivalent bulk compounds. To meet the requirements
for various applications, numerous production techniques were developed to control
particle size, morphology, aggregation state, crystal structure, surface charge and
composition. This chapter presents an overview of the preparation of metallic and
metal oxide nanoparticles by bottom-up and top-down approaches.We describe basic
synthetic routes for prominent cases of metals (gold, silver, platinum and copper)
and metal oxides (zinc oxide, titania, and silica).

1.1 Introduction

Metal nanostructures attract particular interest because of their unique and fascinating
properties compared to their bulk counterparts. The variety of applications comprises
biological sensing [1, 2], imaging [3–9], medical diagnostics [10–12], cancer therapy
[13, 14], catalysis [15, 16], and energy storage [17, 18]. The observed new chemical,
optical, and thermal properties of metallic nanoparticles occur when the size is con-
fined to the nanometer length scale [19]. Numerous techniques were developed to
producemetal nanoparticles tomeet the requirements for various applications. In gen-
eral, there are two strategies to manufacture materials on the nanoscale: “Top-down”
and “bottom-up” (Fig. 1.1) [20, 21]. The first method is based on breaking down
a system (i.e., the bulk material) into smaller units. Common “top-down” techniques
are lithography, milling, ultrasound treatment, and laser ablation. These processes
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Fig. 1.1 Schematic illustration of synthetic methods for metal nanoparticles. (Adapted with per-
mission from New J. Chem., 1998, 1179–1201. Copyright 1969 The Royal Society of Chemistry)
[22]

are comparatively simple and usually lead to ligand-free (“naked”) nanoparticles.
However, there is a limited control over the manufacturing process, e.g., an exact
size or shape adjustment of resulting particles. The “bottom-up” method relies on
material synthesis from atomic or molecular species via a suitable chemical reaction,
allowing the particles to grow from smaller units. This approach uses the chemical
properties of single molecules or atoms to cause self-organization into the desired
particle shape.

The “bottom-up” approach is commonly associated with wet-chemical methods,
because colloidal metallic particles are commonly produced by chemical reduction
of metal salts dissolved in a suitable solvent in the presence of surfactants or ligands
that cover the surface [23]. A wide range of reducing agents have been used in the
colloid-chemical synthesis of metal nanoparticles [24]. For example, H2, hydrazine,
hydroxylamine, hydrides (e.g.NaBH4 orB2H6), ascorbic acid or ascorbate, citric acid
or citrate, reducing polymers (e.g., PVA) and solvents (like alcohols, diols, aldehydes,
and DMF) have been used to prepare metal nanoparticles [25–29]. Reduction can
take place at room temperature or at elevated temperatures, depending on the relative
reduction potentials of the precursor and the reducing agents [30–33].

In the following, we discuss the cases of gold, silver, copper, and platinum as
representative examples, and also the preparation of alloyed nanoparticles by various
synthetic methods. The described methods can typically be transposed to other kinds
of nanoparticles, typically of noble metals.
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1.2 Metals (Gold, Silver, Platinum and Copper)

1.2.1 Gold

The first systematic synthesis of Au colloids was reported 160 years ago by Michael
Faraday using phosphorus to reduce AuCl4− ions [34]. In the 1950s, an easier
approach was established and standardized by Turkevich [35]. He used the mildly
reducing agent trisodium citrate, added to a boiling aqueous solution of HAuCl4, to
obtain monodisperse gold nanoparticles in the size range from 10 to 40 nm. Due to
its simplicity, this synthesic method was adapted in many variations [36, 37]. For
example, switching to a mixture of reducing agents (e.g. citrate and tannine) allows
to clearly shorten the reaction time and to enhance the stability of the formed colloid
[38, 39].

The reduction of tetrachloroauric acid in an aqueous medium is a versatile syn-
thetic route and possible with many different reducing agents like sodium borohy-
dride (NaBH4), ascorbic acid, and hydroquinone [40–42]. The use of NaBH4 as
reducing agent results in a fast reduction and a gold particle size of 1–5 nm [29,
43, 44]. In general, the choice of the reducing agent has a strong influence on the
resulting particle size, since with increasing reduction potential the number of the
formed nuclei increases and the growth of particles is limited. On the nanometer
scale, metals tend to nucleate and grow into multiply twinned particles with their
surfaces defined by the lowest-energy facets [45]. Anisotropic gold nanoparticles
(rod-, rectangle-, hexagon-, cube-, triangle- and star-like shapes) with less stable
facets were kinetically achieved by adding chemical capping reagents, i.e. agents
that selectively block certain crystal faces, to the reaction mixture [25, 46, 47].

The previously described methods are based on a synthesis from atomic or molec-
ular species by chemical reaction, so called “bottom-up” approach. In liquid media,
dispersedmetallic nanoparticles canbegeneratedby thepulsed laser ablationprocess,
a “top down” technique [48]. This method provides ligand-free nanoparticles [49].
The size of obtained particles can be varied to some extent by the laser parameters
and by subsequent laser fragmentation steps [50, 51]. Furthermore, an in situ conju-
gation of nanoparticles with biomolecules by laser ablation in an aqueous medium
is a highly promising one-step method for the production of functional nanoparticles
[52].

The polydispersity of nanoparticles is a key concern in nanoscience research.
Even though reasonably monodisperse nanoparticles can be produced, usually not
all nanoparticles are fully identical (see Fig. 1.2 for an example). This fact leads to
the ultimate aim for a synthesis of atomically precise nanoparticles [53]. In the case
of gold, this was accomplished for ultrasmall gold nanoparticles (containing 10–300
atoms, often called nanoclusters) [54, 55]. Several groups established synthetic routes
to produce a gold core in the size range of 1–3 nm. Such ultrasmall nanoparticles are
typically formed by metal salt reduction in the presence of phosphanes (PR3) [56,
57] or thiols (HS–R) [44]. Exerting a strict control over the size of a cluster strongly
affects the activity and the selectivity in a catalytic process [58]. Furthermore, a



6 K. Loza and M. Epple

Fig. 1.2 Transmission electron micrographs of PVP-stabilized gold nanoparticles, prepared by
the standard citrate method after Turkevich. (Reproduced from the dissertation of D. Mahl, 2011,
University of Duisburg-Essen) [60]

supracolloidal self-assembly of atomically precise nanoparticles is a promising plat-
form for novel 2D and 3D materials with additional plasmonic functionalities, novel
mechanical properties, and inherent flexibility [59].

1.2.2 Silver

Colloidal silver is known since about 120 years [61]. The manufacturing of silver
nanoparticles can be done by physical processes such as ultrasonication, chemical
vapor deposition, or pulsed laser ablation in liquids [62–64]. However, wet-chemical
“bottom-up” syntheses offer more possibilities for the variation of particle size, mor-
phology and functionalization. The most commonly used precursor for preparing
silver nanoparticles in wet-chemical reductions is silver nitrate (AgNO3) because of
its high solubility in many polar solvents and dispersability in less polar solvents,
sometimes after adding surfactants and/or using ultrasonication. The reducing agents
used in the synthesis of nanoparticles from silver(I) ions are comparable to those used
for gold nanoparticle preparation. Already in 1889, M. C. Lea published the syn-
thesis of citrate-stabilized silver nanoparticles [65]. In general, one-pot methods for
the reduction of silver nitrate have evolved, where different reducing agents such
as sodium citrate [66], glucose [67], ascorbate [68], sodium borohydride [69, 70],
polyols [71, 72], and ammonium formiate were used [73]. Typically, the reactions
are performed at elevated temperatures by conventional heating in an oil bath. Alter-
natively, microwave-assisted syntheses can increase the reaction rates and yields as
well as selectivity and reproducibility [30].

The particle properties depend not only on their size but also on their morphol-
ogy. As a result, a shape-controlled synthesis of silver nanoparticles is of special
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Fig. 1.3 Transmission electron micrographs of different kinds of PVP-stabilized silver nanoparti-
cles, prepared by glucose reduction (a) [67], a microwave-assisted reduction (b) [30], a modified
polyol synthesis (c) [79], and a microwave-assisted modified polyol process (d) [80]. (Adapted
with permission from Cryst. Growth Des. 16, 7, 3677–3687. Copyright 2016 American Chemical
Society) [81]

interest. Xia et al. and others described the structural evolution of silver nanoseeds
to nanoparticles with defined shapes like platelets [74], cubes [75], rods [76], rings
[77], and bipyramids [78] (Fig. 1.3).

It is critical to understand not only the growth mechanism of nanostructures, but
the process of seed formation, because the number of twin planes in the initial stage
is the key factor for determining the shape of the final product (single-crystal seeds
form cubes, multiply-twinned decahedral seeds form wires) [82].
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Fig. 1.4 Transmission electronmicrographs of platinum nanoparticles, prepared by solution-phase
synthesis usingmetal carbonyls as reducing agents. This syntheticmethodproduces highlymonodis-
perse Pt octahedral, icosahedra, cubes, truncated cubes, cuboctahedra, spheres, tetrapods, star-
shaped octapods, multipods, and hyper-branched structures. (Reproduced with permission from
ACS Nano 7, 1, 645–653. Copyright 2012 American Chemical Society) [89]

1.2.3 Platinum

Platinum nanostructures are of particular interest for many industrial applications
due to their extraordinary catalytic properties in various industrial syntheses like
petrochemistry or energy conversion [83–86]. Conventional techniques to prepare
platinum nanoparticles are based on wet-chemical methods [87–89]. Typically, the
reaction involves the reduction of a Pt(II) precursor (like K2PtCl4 or Pt(acac)2) or a
Pt(IV) precursor (like K2PtCl6) in the presence of a stabilizing polymer by reducing
agents such as hydrogen [90], carbon monoxide [91], sodium borohydride [92],
lithium borohydride [93], and ethylene glycol [94]. The resulting nanoparticles may
be considered as monodisperse in size, but they are often irregular in shape and
lack well-defined facets [95]. Further modifications may include sonication during
the reaction [96] or microwave-assisted heating [94]. Because the reactivity and the
selectivity of Pt nanoparticles are highly dependent on the exposed facets [97], the
synthesis of uniformly shaped particles is decisive for high catalytic performance
[98]. Their morphological evolution is often controlled by the reduction kinetics
of the platinum precursor [95], the reaction temperature [98], or the use of shape-
directing reagents [99, 100] (Fig. 1.4).

The previously syntheses were based on the “bottom-up” approach. However,
chemical synthesis methods often lead to impurities of the nanoparticle colloids
caused by additives and precursor reaction products [101]. In contrast, Barcikowski
et al. demonstrated the preparation of ligand-free platinum nanoparticles by laser
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ablation in liquids (“top-down” technique) for the surface modification of electrodes
for neural stimulation [102].

1.2.4 Copper

Since the ninth century, copper nanoparticles are known as coloring agents in
Mesopotamia [103]. Nowadays the application range comprises biomedicine [104,
105], sensors [106], conductive inks [107], and organic catalysis [108–110]. Being
inexpensive and rather abundant in nature, copper is utilized in large scale for the
fabrication of plasmonic solar cells [111]. Recently established methods for copper
nanoparticle synthesis include laser ablation [112], thermal decomposition [113],
the polyol process [114, 115], and other chemical reduction methods [116]. Typi-
cal precursors for copper nanoparticle wet-chemical syntheses are CuSO4, copper
acetylacetonate (Cu(acac)2), CuCl2, and Cu(NO3)2 [117]. Reducing agents comprise
ascorbic acid [118], sodium borohydride [119], and hypophosphite [120]. It should
be mentioned that the preparation of Cu nanoparticles is challenging due to its high
sensitivity to air because copper is easily oxidized to copper oxides, being less noble
than silver, gold, or platinum metals [121]. The oxidation of copper nanoparticles
can be avoided if the synthesis is conducted in non-aqueous media (sometimes under
inert gas) and in the presence of CO or H2. Previously described synthetic routes
result in spherical multi-twinned nanoparticles in the size range between 10 and
70 nm. As shown in Fig. 1.5, by variation of the ratio of copper acetylacetonate to
oleylamine, different particle size distributions can be achieved. If a hydrothermal
treatment is applied, anisotropic copper particles such as nanowires or nanorods can
be produced [110].

1.3 Alloyed Nanoparticles

The properties of metallic systems can be significantly extended by mixing ele-
ments to generate intermetallic compounds and alloys. Due to synergetic effects, an
enhancement in desired properties is possible. The diversity of compositions, struc-
tural organizations, and tunable properties of metallic alloys makes them suitable
for a wide range of applications in electronics, engineering, biomedicine, and het-
erogeneous catalysis [123–126]. For example, alloyed silver and gold nanoparticles
utilize the physicochemical properties of both metals, e.g., the optical properties of
gold and the toxicity towards bacteria or cells of silver [127, 128]. Surface structure,
composition, and segregation properties [129] of nanoalloys are of great importance
for the chemical reactivity and the selectivity in catalysis [130, 131]. If confined to
the nanometer scale, they may display properties that are different from the equiv-
alent bulk compounds. For example, iron and silver are immiscible in the bulk, but
can be mixed in nanoparticles [132] (Fig. 1.6).



10 K. Loza and M. Epple

Fig. 1.5 Transmission electronmicrographs andUV/VIS spectra of copper nanoparticles, prepared
with different ratios of copper acetylacetonate and oleylamine. Scale bars in a and b are 50 nm,
those in c, d, f , and h are 20 nm, and that in i is 2 nm. (Reproduced with permission from J. Phys.
Chem. C, 2010, 114 (37), pp 15612–15616. Copyright 2010 American Chemical Society) [122]

Due to the heterogeneity of different properties of individual components (e.g.,
crystal system, redox potential, crystal symmetry, or surface charge), the successful
mixture of these materials into a finite nanoparticle is challenging [123, 133]. In
general, the methods for preparation of nanoalloys are the same as for single metal
nanoparticles. Ligand-free manufacturing methods of nanoparticles are based on
laser ablation of solids in liquid environment [134, 135], pulsed arc discharge, and
sputtering techniques [123]. These approaches start with single, bimetallic or ternary
targets or mixed metallic powders. Figure 1.7 shows a typical setup and the obtained
alloyed Ag/Au nanoparticles by laser ablation in liquids.

Bimetallic colloids can be generated by chemical reduction of a suitablemixture of
salts (metal precursor) in the solution, using appropriate reducing agent. To avoid the
formation of core-shell structures due to the difference in redox potentials, different
ligands can be used [137]. Another variation is based on the reduction of doublemetal
complexes [22]. Instead of chemical reduction, an electrochemical process can be
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Fig. 1.6 Transmission electron micrographs of PVP-functionalized Ag/Au alloyed nanoparticles
and the viability of HeLa cells after incubation with alloyed nanoparticles. Note that the cytotox-
icity is not proportional to the relative silver amount, pointing to special effects that occur in the
alloyed nanoparticle beyond a mere additivity of the metal properties. (Adapted from Beilstein J.
Nanotechnol. 2015, 6, 1212–1220; © 2015 Ristig et al.; licensee Beilstein-Institut) [127]

used to create metal atoms from bulk metal. The particle size was be controlled by
the current density [138].

Seeded-growth techniques permit the synthesis of core-shell nanoparticles [139].
As seen from Fig. 1.8, Pd–Au core-shell nanoparticles can be prepared by a water-
based one-pot synthesis, followed by a stabilization with poly(N-vinyl pyrrolidone).
Here, a sequential metal deposition with a distinct boundary between both metals
was achieved [140].
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Fig. 1.7 a Representative AuAg nanoparticles with different molar fractions. b Correlation of the
gold molar fraction with a maximum surface plasmon resonance extinction peak. c TEM-EDX line
scan with an inset, showing a high-angular annular dark field micrograph. d TEM micrograph of
Ag50Au50 nanoparticle dispersion after stabilisation with BSA. e Aluminum batch chamber for
the synthesis of silver and gold-silver alloyed nanoparticles. (Reproduced with permission from
Analyst, 2014, 139, 931–942. Copyright 2014 The Royal Society of Chemistry) [136]
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Fig. 1.8 HAADF-STEM image and corresponding EDX map with an additional line scan (white
arrow) of Pd–Au core-shell nanoparticles. The EDXmaps and line scans clearly show the presence
of a core-shell structure with a palladium core (red) and a gold shell (green). The scale bars are
7 nm. (Reproduced with permission from ChemistrySelect 2018, 3, 4994. Copyright 2018, John
Wiley and Sons)

The synthesis of alloyed nanoparticles with non-spherical morphology can lead to
specific optical properties like plasmonic resonances and surface-enhanced Raman
scattering (SERS) [141, 142].

1.4 Nanoscale Oxide Particles

Due to their intrinsic properties, metal oxide nanoparticles strongly contribute to
a variety of applications in chemistry, physics, and materials science [143, 144].
A large diversity of oxide compounds with many structural geometries and vari-
ous electronic structure (metals, semiconductors, or insulators) is known. They are
widely applicable in the fabrication of sensors [145], microelectronic circuits [146],
piezoelectric devices [147], fuel cells [148, 149], passivation coatings [150], water
treatment agents [151], bactericides [152], sun screen [153], and as heterogeneous
catalysts [154]. Almost all active phases, promoters, or “supports” in industrial cat-
alytic reactions are based on oxides. The entanglement of size, shape, morphology,
crystal structure, and surface chemistry requires a fundamental understanding and
rational design for technologically relevant areas. In the following, we will discuss
the prominent cases of zinc oxide, titanium dioxide (titania), and silicon dioxide
(silica).
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1.4.1 Zinc Oxide Nanoparticles

Zinc oxide (ZnO) is extensively utilized in everyday applications, like transparent
electronics, smart windows, piezoelectric devices, chemical sensors, biosensors and
dye-sensitized solar cells [155, 156]. However, zinc oxide is used at least since 2000
BC as component of therapeutic creams for skin medication [157]. Registered as
safe material by the Food and Drug Administration (FDA) [158], it is used as food
additive and inorganic antimicrobial additive in polymericmatrices for the packaging
material, e.g. the incorporation of ZnO into the coatings of containers for meat,
fish, corn and peas can retain the food color and avoid degradation [159]. Today,
the commercial production of ZnO nanoparticles is realized by mechanochemical
processing and physical vapor synthesis [160]. The first method is based on physical
size reduction in a conventional ball mill with additives that are activated during
grinding. The reaction comprises the mechanical activation of precursors (ZnCl2
and Na2CO3) with a further thermal decomposition to ZnO [161]. The typical size
range of the produced nanoparticles is 20–30 nm. The particle size can be varied by
milling time and the heat treatment temperature. Physical vapor syntheses use the
plasma arc energy intake by a solid precursor to generate a vapor at high temperature.
Being decomposed into atoms, gases can react or condense to form particles when
cooled [162].

Wet-chemical methods include hydrothermal/solvothermal processes, solution-
liquid-solid, and surfactant-assisted synthesis. These methods provide a convenient
and facile platform for a low-temperature fabrication of the desired ZnO nanostruc-
tures [163–165]. Typical precursors for ZnO nanocrystal preparation are zinc nitrate
[166], metallic zinc [167], zinc chloride [168], zinc acetate [169, 170], and zinc sul-
fate [171]. If an anisotropic growth of ZnO nanoparticles is desired, surfactants such
as hexamethylenetetramine [172], ammonia [173], ascorbic acid [174], and sodium
hydroxide [175] can be added.Most reactions are performed at elevated temperatures
up to 180 °C [165]. As shown in Fig. 1.9, different kinds of ZnO nanoparticles are
obtained by adjusting the hydrolysis ratio. The nature of the protective agent added
during ZnO formation and hydrolysis ratio are two major handles for size and shape
control [176].

1.4.2 Titanium Dioxide Nanoparticles

Titanium dioxide nanoparticles are among the most frequently used metal oxide
nanoparticles in industrial products and consumer goods [177]. Due to its very high
refractive index and brightness, TiO2 is extensively utilized as a white pigment with
an annual consumption of almost four million tons worldwide [178]. Typical appli-
cations comprise paints [179, 180], coatings [181], plastics [182], papers [183], inks
[184], pharmaceuticals [185], food products [186], cosmetics [187, 188], sun screens
[189], and toothpaste [190]. Rompelberg et al. estimated the oral intake of TiO2 from
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Fig. 1.9 TEM micrographs of ZnO nanoparticles synthesized in diethylene glycol (DEG) by
variation of the hydrolysis ratio (H): a ZnO without addition of protective agents, b ZnO- tri-
n-octylphosphine oxide, and c ZnO-polyoxyethylene stearyl ether. (Reproduced with permission
from Langmuir 26, 9, 6522–6528. Copyright 2010 American Chemical Society) [176]

food, food supplements and toothpaste by measuring the total titanium concentra-
tions and subsequently calculated the TiO2 concentrations in selected representative
Dutch food products (see Table 1.1) [186].

Several processes have been developed for the preparation of nanostructured TiO2

with distinct characteristics. Commercial powders are typically prepared by the so-
called chloride-process fromTiCl4 using hydrocarbon-assistedflame synthesis [191].
In the sulfate-process, ilmenite (FeTiO3) is treated with concentrated sulfuric acid,
and the titanium oxygen sulfate (TiOSO4) is extracted and converted into titanium
dioxide [192].
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Table 1.1 Average measured total titanium concentrations and subsequently calculated TiO2 con-
centrations in selected representative Dutch food products, raw (cow) milk, and food supplements.
Samples rich in calcium were analyzed by ICP-HRMS, others by ICP-QMS. Limit of quantita-
tion 0.05 mg Ti/kg product. (Reproduced from Rompelberg et al., 2016, Nanotoxicology, 10:10,
1404–1414 © 2016 National Institute for Public Health and the Environment. Published by Informa
UK Limited, trading as Taylor & Francis Group) [187]

Number of
samples

Mean
total-Ti
(mg/kg
product) (±
SD)

Min
total-Ti
(mg/kg
product)

Max
total-Ti
(mg/kg
product)

Mean TiO2
(mg/kg
product)

Samples analysed by ICP-HRMS

Raw (cow) milk 6 (6) 0.31(±0.23) 0.05 0.63 0.51

Regular dairy
products (i.e. milk,
yoghurt)

11 (10) 0.47(±0.46) <LOQ 1.46 0.79

Processed dairy
products

10 (5) 0.12(±0.17) <LOQ 0.57 0.21

Soy milk 2 (2) 0.33(±0.01) 0.32 0.34 0.55

Dutch cake with
icing and cream

1 (1) 0.23 0.23 0.23 0.38

Coffee creamer
(powdered)

1 (1) 1640 1640 1640 2739

Samples analysed by ICP-QMS

Energy drink
(containing caffeine)

1 (1) 0.07 0.07 0.07 0.11

Soft drink 2 (2) 0.06
(±0.00)

0.06 0.07 0.11

Sports drink 2 (2) 0.09
(±0.05)

0.05 0.12 0.14

Syrup 2 (2) 0.17
(±0.00)

0.17 0.17 0.28

Ice (water-based) 1 (1) 0.16 0.16 0.16 0.26

Wine gums 1 (1) 0.25 0.25 0.25 0.42

Salad dressing 1 (1) 0.43 0.43 0.43 0.72

Food supplement
(multivitamin)

2 (2) 744
(±1009)

31 1458 1242
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The wet-chemical fabrication of TiO2 nanoparticles allows to control the stoi-
chiometry, homogeneity, and morphology of the resulting materials. Nevertheless,
the drawbacks are expensive precursors, long processing times, the nanoparticle
isolation/purification after the synthesis, and the presence of impurities. The sol-
gel technique is based on the hydrolysis of the precursors of the metal alkoxides
(Ti(OR)4) with further thermal decomposition [193]. By controlling solution com-
position, pH, and temperature, the particle size can be tuned [194]. The precipitation
process involves the addition of NaOH, NH4OH, or urea to metal precursors (e.g.,
TiCl4), followed by thermal treatment to crystallize the oxide [195]. The hydrother-
malmethod can be started frommetallic Ti, oxidized byH2O2 [196]. Nanocrystalline
TiO2 can be prepared by mechanical alloying from a metastable intermediate phase,
i.e. TiO(OH)2 powder [197]. By in-flight oxidation of titanium nitride powder in an
r.f. thermal plasma reactor, the formation of core-shell structured composites (with
TiN cores and oxide shells) was realized [198].

1.4.3 Silica Nanoparticles

Silicondioxide (SiO2) nanoparticles are extensively used since the 1950s in numerous
applications like additives for rubber (also in tires) and plastics [199–201], strength-
ening filler for concrete [202, 203], abrasives in toothpaste [204], thickeners in foods
[205], and anti-caking agents in foods (E551) [206, 207]. Due its excellent biocom-
patibility, low toxicity, easy surface modification, and facile synthetic routes, silica
nanoparticles are suitable for biological applications as grafting platform for imag-
ing, detecting, drug loading, and site-specific targeting [208–210]. Their particle size,
crystallinity, porosity, and shape can be accurately controlled, enabling a fine-tuning
of silica nanoparticles for the intended application.

The large scale production of silica nanoparticles is performed by flame aerosol
technology [211]. Developed by Kloepfer [212], this fabrication method is based on
the continuous flame pyrolysis of vaporized silicon tetrachloride (SiCl4) [213]. The
produced silica forms branched aggregates, with the primary amorphous particles in
the size range from5 to 50 nm [214]. The particle size and the particle size distribution
can be modified varying the concentration of the reactants, the flame temperature,
and the gas dwell time in the combustion [211].

Established in 1968, the Stöber method is a widely used sol-gel process for silica
nanoparticle synthesis [215]. This reaction permits a controlled evolution of spher-
ical silica particles of uniform size in the size range of 50 nm to 2 µm. Catalyzed
by ammonia, it is based on the hydrolysis of alkyl silicates (e.g., tetraethoxysilane
(TEOS)), and the subsequent condensation of silicic acid in alcoholic solutions. The
control of the ratio of solvent to TEOS permits a fine control of particle size in the
Stöber method [216]. As shown in Fig. 1.10, the diameter of the synthesized particle
decreases as the ratio of solvent to TEOS is increased. The method can be modified
for the incorporation of organic dyes and other nanosized materials [217].



18 K. Loza and M. Epple

Fig. 1.10 Silica nanoparticles synthesized by the Stöber method with variable methanol/TEOS
ratios before and after calcination. The MeOH/TEOS synthesis ratios and calcined versus noncal-
cined status are as follows: a 300/noncalcined, b 750/noncalcined, c 1125/noncalcined, d 1500/non-
calcined, e and f 1500/calcined, g 2250/noncalcined, h and i 2250/calcined, j 3000/noncalcined,
and k and l 3000/calcined. As the ratio of methanol/TEOS increases from 300 to 1125, the particle
size increases. However, from 1125 to 6000, the particle size decreased from 1500 to 10 nm in
diameter [216]. (Reproduced with permission from Shimura, N. & Ogawa, M. J Mater Sci (2007)
42:5299 Copyright © 2007, Springer Nature)

Another important technique for silica nanoparticle preparation is the reverse
microemulsion. Established by Arriagada and Osseo-Asare in the early 1990s, this
method utilizes the ammonia-catalyzed polymerization of tetraethoxysilane in a
reverse phase (water-in-oil microemulsion) [218]. The dispersion of nanodroplets
leads to nanoreactors to form nanoparticles. The size of the colloids depends on the
intrinsic properties of a surfactant and themolar ratio ofwater to surfactant [210]. The
variation of the nanoparticle morphology can drastically affect their biodistribution,
bioavailability, and toxicity [219, 220]. For instance, Trewyn et al. demonstrated the
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effect of organic Cn-methylimidazolium (n � 14,16,18) derivatives on the modified
Stöber synthesis [221]. The particles derived from modifications with C18MIM and
C14OCMIM exhibited a rod- or worm-like structure.
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