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Abstract Plasma membrane Ca2+ transport ATPases (PMCA1-4, ATP2B1-4) are
responsible for removing excess Ca2+ from the cell in order to keep the cytosolic
Ca2+ ion concentration at the low level essential for normal cell function. While
these pumps take care of cellular Ca2+ homeostasis they also change the duration
and amplitude of the Ca2+ signal and can create Ca2+ gradients across the cell.
This is accomplished by generating more than twenty PMCA variants each having
the character – fast or slow response, long or short memory, distinct interaction
partners and localization signals – that meets the specific needs of the particular
cell-type in which they are expressed. It has become apparent that these pumps
are essential to normal tissue development and their malfunctioning can be linked
to different pathological conditions such as certain types of neurodegenerative and
heart diseases, hearing loss and cancer. In this chapter we summarize the complexity
of PMCA regulation and function under normal and pathological conditions with
particular attention to recent developments of the field.
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Abbreviations

AD Alzheimer’s disease
ATP adenosine triphosphate
CaM calmodulin
CaMKII calcium/calmodulin-dependent protein kinase II
CASK calcium/calmodulin-dependent serine protein kinase
CBS calmodulin binding sequence
ER endoplasmic reticulum
ERK extracellular-signal regulated kinase
HDAC histone deacetylase
HER2 human epidermal growth factor receptor 2
HUVEC human umbilical vein endothelial cell
IP3 inositol 1,4,5-trisphosphate
IP3R inositol 1,4,5-trisphosphate receptor
IS immunological synapse
MAGUK membrane-associated guanylate kinase
MLEC mouse lung endothelial cells
NFAT nuclear factor of activated T-cell
NHERF2 Na+/H+ exchanger regulatory factor 2
nNOS neural nitric oxide synthase
PIP2 phosphatidylinositol-4,5- bisphosphate
PKC protein kinase C
PKA protein kinase A
PMCA plasma membrane Ca2+ ATPases
POST partner of STIM
PSD-95 post synaptic density protein 95
RANKL nuclear factor κB ligand
RASSF1 Ras association domain-containing protein 1
RBC red blood cell
SCD sickle cell disease
SERCA sarco/endoplasmic reticulum Ca2+ ATPases
SNP small nucleotide polymorphisms
SOCE store operated Ca2+ entry
SPCA secretory-pathway Ca2+ ATPase
STIM stromal interacting molecule
TGF transforming growth factor
TM domain transmembrane domain
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TSA trichostatin A
VEGF vascular endothelial growth factor
VSMC vascular smooth muscle cell

5.1 Introduction

The plasma membrane Ca2+ transport ATPase (PMCA protein, ATP2B gene) was
first described as a Ca2+ extrusion pump in red blood cells by Hans J. Schatzmann
in 1966 [1]. It became evident that this pump is an essential element of the Ca2+
signaling toolkit, and that it plays a vital role in maintaining Ca2+ homeostasis in all
mammalian cells [2]. After the first discovery of the PMCA many years were spent
on identifying its regulators (for example calmodulin and acidic phospholipids)
before it was cloned and sequenced at around the time when sequences for many
of the other P-type ATPase family members also became available [3, 4]. Further
structure-function studies concentrated on the PMCAs unique C-terminal regulatory
region (often called the C-tail) and identified there calmodulin and PDZ-domain
binding sequence motifs, a built-in inhibitor sequence, phosphorylation sites for
protein kinases and a localization signal [5]. It became apparent that PMCAs
comprise a P-type ATPase sub-family, encoded by four separate genes ATP2B1-
4 [6, 7] from which alternative splicing generates more than 20 variants with
distinct biochemical characteristics that make them suitable to perform specific
cellular functions [8, 9]. By now it is well documented that PMCAs are not simply
Ca2+ extrusion pumps but by changing their abundance and variant composition,
having different activation kinetics, locale and partners, they can actively modulate
the Ca2+ signal in space and time, and hence affect Ca2+ mediated signaling
events downstream. The PMCA variants are expressed in a tissue and cell type
specific manner and many of them have specific function. Although, in the past
decades these pumps have been extensively characterized their importance is rather
underestimated. This is because only recently we gathered more information on
their involvement in diseases such as cancer, neurological disorders, hearing loss
and others. In this book chapter, therefore, we will summarize briefly the long
known basic characteristics of these pumps paying more attention to the most recent
findings on their roles under normal and pathophysiological conditions.

5.2 Structural Features of the PMCA

PMCAs (ATP2B1-4 gene) belong to the P-type ATPase family and share basic
structural and catalytic features with them. The closest relatives of the PMCAs are
the sarco/endoplasmic reticulum type Ca2+ pumps (SERCAs, ATP2A1-3) with an
overall 30 % sequence homology between PMCA4 and SERCA1 [10]. Homology
modeling using the SERCA1 structure as a template [11–13] has revealed four major
domains shared with SERCA1, and a relatively large unstructured C-terminal region
(30–130 residues depending on the isoforms and their variants), which is unique
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Fig. 5.1 Structural model of the PMCA in the E1-Ca-ATP and E2-ADP conformations.
Structures of several intermediates in the enzyme cycle have been determined for SERCA [11–
13]. Based on those, models of the intermediates have been constructed for PMCA4b (lacking
90 residues from the C-tail). (a): The models show 2 of the intermediates, E1 with Ca and ATP
(SERCA PDB 1VFP and 1T5S) and E2 with ADP (SERCA PDB 2C88). In the latter, the Ca
has been ejected into the extracellular space. They are colored as follows: A domain red; P
domain yellow; N domain purple; stalk; insert and transmembrane domains white; C-tail straw;
Calmodulin-binding domain cyan; Ca2+metallic blue-green. (b): The positively charged residues
of the PIP2 binding regions are colored. The blue collar and the insert blue, the calmodulin-binding
domain (CBD) cyan. The CBD would have the potential of releasing from the conformation shown
and lying on the surface of the membrane in a PIP2-rich region

to the PMCAs (Fig. 5.1a) (for a review see also [14]). The M-domain consists
of 10 trans-membrane spanning helices that provide the coordinating ligands for
the binding of one cytosolic Ca2+ ion to be transported. The N-domain binds an
ATP molecule of which the terminal phosphate is transferred to a highly conserved
aspartate in the P-domain forming a high-energy acyl-phosphate intermediate. As a
result of these events hydrolysis of one ATP molecule provides sufficient energy
to translocate one Ca2+ ion through the membrane [15] that is coupled to H+
transport in return with a Ca2+:H+ ratio of 1:2 [16]. The A-domain coordinates
the movements of the other three domains during the E1-E2 transition to complete
a full reaction cycle [17]. While the catalytic domains N, P and the M-domain
are largely conserved between the PMCAs the C-tail and the A-domain – where
alternative splicing generates substantial sequence divergence – vary substantially.
These variations in the C-tail and A-domain can generate PMCA proteins with
distinct characteristics [18, 19].

The Blue Collar In contrast to the endoplasmic reticulum-resident SERCA pump
a cluster of positively charged residues were found at the intracellular near-
membrane region of the PMCA forming four binding pockets for the phosphorylated
inositol ring of PIP2 (phosphatidylinositol-4,5-bisphosphate) [20], in addition to the
previously determined linear PIP2 binding sequences near the A splice-site region
at the A-domain [21, 22] and the calmodulin binding sequence at the C-tail [23].
Figure 5.1b shows a blue collar formed from the four PIP2 binding pockets and the
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Fig. 5.2 C-tail of the “b” splice variants of PMCA1-4. (a) Schematic representation of the C-
tail of PMCA4b emphasizing important sequence motifs highlighted below. Calmodulin-binding
domain is colored burgundy. (b) An alignment of C-terminal sequences of ”b” splice forms of
PMCA1-4 demonstrates that the variants may have distinct regulatory features (i.e. the di-leucine
motif in PMCA4b) however; some sequence motifs (caspase 3 sites and the PDZ-binding tails)
are relatively conserved. These motifs are colored cyan. The PKA, PKC and tyrosine kinase
phosphorylation sites are highlighted in green and the calmodulin-binding sequence is marked
burgundy. The arrow indicates where alternative splice changes the sequence in the other splice
variants of PMCA1-4

linear lipid binding region of the A domain around the stalk region of the PMCA.
This arrangement of positively charged residues follows the positive inside role,
which is quite common in plasma membrane proteins and often involved in PIP2
binding [24, 25].

The C-Tail The C-tail, which is also known as the main regulatory unit of these
pumps, is the most characterized although the least conserved region of the PMCAs
(Fig. 5.2). A major portion of this region is structurally disordered [5], containing
multiple recognition sites: a DxxD caspase cleavage site [26, 27], a calmodulin-
binding domain (CBD) with an overlapping auto-inhibitory region and acidic lipid
binding side chains [3], several protein kinase phosphorylation sites [28, 29], a di-
leucine-like localization signal [30] and a PDZ-domain-binding sequence motif at
the C-terminus [31]. Some of these motifs are present in nearly all PMCAs (caspase
3 cleavage sites, CBD) while others are specific to certain variants; for instance
the di-leucine-like motif is specific to PMCA4b whereas the PDZ-binding motif
is present in all “b” splice variants. However, specificity of the PDZ binding may
vary because the terminal amino acid is Val in PMCA4b but Leu in PMCA1-3. As
an example the sodium-hydrogen exchange regulatory cofactor NHERF2 interacts
with PMCA2b but not with PMCA4b [32].
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Ca2+-Calmodulin Binding is critical for PMCA function. Early studies identified
a 28 residue long sequence at the C-tail of PMCA4b that could bind Ca2+-
calmodulin with high affinity. Extensive kinetic [33, 34] and NMR [35] studies with
a peptide (c28) representing the complete 28-residue sequence region have revealed
two anchor sites Phe-1110 and Trp-1093 in a relative position of 18 and 1, and two
steps of Ca2+-calmodulin binding in an anti-parallel manner (Fig. 5.3). In the first
step the C-terminal lobe of calmodulin binds the N-terminal Trp-1093, followed by
the second step, which is binding of the C-terminal Phe-1110 to the N-terminal lobe
of calmodulin. As a result, calmodulin wraps around the c28 peptide that adopts an
α-helix with its anchors buried in the hydrophobic pockets of the two distinct CaM
lobes. This model correlates well with an earlier NMR structure of Ca2+-calmodulin
with a shorter c20 peptide lacking the second anchor Phe-1110 [36]. In that case the
peptide could bind only to the C-terminal lobe of calmodulin, which retained its
extended structure, as is expected (Fig. 5.3).

The w Insert Another structurally less defined region of the molecule is the
sequence that couples the A domain to the third membrane spanning helix. An

Fig. 5.3 NMR structure of
calmodulin in complex with
calmodulin binding
peptides. (a): Structures of
C28-calmodulin (https://
www.rcsb.org/structure/
2KNE) and C20-calmodulin
complexes (https://www.rcsb.
org/structure/1CFF). C20 and
C28 correspond to the
appropriate calmodulin
binding sequence of
PMCA4b. Colors: calmodulin
blue; peptide burgundy; green
spheres correspond to the 4
Ca2+ bound to CaM. (b):
Sequences of the peptides
C20 and C28 with the
anchors 18-1

https://www.rcsb.org/structure/2KNE
https://www.rcsb.org/structure/2KNE
https://www.rcsb.org/structure/2KNE
https://www.rcsb.org/structure/1CFF
https://www.rcsb.org/structure/1CFF
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alternative splice at splice site A changes the structure of this region by including
or excluding a single exon, producing the x and z variants of the isoforms [37],
however, no functional significance has been linked to these changes. In PMCA2,
however, additional variations exist in which two more exons can be inserted
generating the PMCA2 y and w forms. Importantly, the w insert – which is a 44-
residue long sequence – is essential for targeting PMCA2 to the apical compartment
of polarized cells.

5.3 Regulation of PMCA Expression and Function

PMCAs are encoded by four separate genes (ATP2B1-4) located at distinct chro-
mosomes: 12q21–23, 3p25.3, Xq28 and 1q25–q32, respectively [8]. Two major
alternative splice options at splice sites A and C of the primary transcripts of each
ATP2B gene have the potential of generating >30 PMCA protein variants, however,
only 20 of them have been identified in different tissues [38, 39]. In addition,
mutations, single nucleotide polymorphisms and posttranslational modifications
further increase PMCA variations. It is not surprising that to keep the level of
calcium within a suitable range in the cytoplasm of different cell types with very
different function tight regulation of PMCAs is required at the transcriptional,
splicing, translational and protein levels.

5.3.1 Regulation at the Transcription Level

Transcriptional regulation of ATP2B genes is complex and still not well understood.
The intricate regulatory structure of the promoter and enhancer regions of the
genes allows the fine-tuning of each PMCA’s transcription during embryonic
development, in various tissues, as well as upon various stimuli. It has been shown
that in mouse smooth muscle cells Atp2b1 expression during G1/S phase is reduced
via c-myb binding to the promoter region of the gene [40]. This transcription
factor is also involved in the down-regulation of Atp2b1 in differentiating B-
lymphocytes [41]. The active form of vitamin D induces the transcription of
ATP2B1 in various tissues and cell types [42–45]. ATP2B2 gene has four alternative
promoters and alternatively spliced 5’ exons, which showed higher expression and
different promoter usage in mammary gland compared to neuronal cells [46]. EGR1
can bind to a specific region in the CpG island of the ATP2B2 gene and controls
the α-type promoter activity, which is specific to brain and auditory cells [47]. The
ATP2B4 gene contains an enhancer in the intron 1, which has an essential role in the
erythroid differentiation, but has no effect in other cell types [48]. From these studies
it appears that PMCAs possess general and specific transcription factor binding sites
and regions, which only play role under certain conditions, under proper stimulus
or differentiation state of the given cell type.
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5.3.2 Regulation at the Protein Level

Auto-Inhibition PMCA activity is determined by the presence of an auto-
inhibitory unit at the C-tail, which largely overlaps with the calmodulin-binding
sequence [49]. This inhibitory unit binds to the N- and A-domains interfering
with Ca2+ binding to the catalytic sites, and slowing down the reaction cycle by
inhibiting the movements of the cytosolic domains [23]. The extent of the auto-
inhibition differs from one isoform to the other and is affected by the alternative
splice at splice site C [50–52]. As a result, PMCA4b is the only truly inactive pump
at resting cytosolic Ca2+ ion concentration while all the other pumps are partially
active, as determined in cell free systems.

Activation by Caspase 3 The auto-inhibitory C-tail is removed by the executor
protease caspase 3 during apoptosis. Caspase 3 cleaves PMCA4b at a canonic
caspase 3 cleavage site (DEID) just upstream of the CBD-auto-inhibitory sequence
removing the complete auto-inhibitory region [26, 27]. While there has been a long
debate on whether caspase 3 activates or inhibits PMCA4b during apoptosis [53] it is
conceivable that deleting the auto-inhibitor should result in a gain-of- function pump
[54], however, the overall outcome could depend on the given cell type, stimulus and
conditions that need further studies.

Activation with Ca2+-Calmodulin A functionally important feature of the PMCA
variants is the difference in their activation with Ca2+-calmodulin that determines
the rate by which they can respond to the incoming Ca2+ signal, and equally
important is the length of time during which they remain active after the stimulus
[55]. Since pump and calmodulin compete for CBD-autoinhibitor it is expected
that a strong pump-CBD-auto-inhibitor interaction will result not only in a low
basal activity but also in a slow activation rate. Indeed, PMCA4b has both the
lowest basal activity and the slowest activation with calmodulin among the isoforms
(slow pump, T1/2 is about 1 min) [56]. Although, PMCA4b is activated slowly its
inactivation rate is even slower (long memory, remains active for about 20 min)
because calmodulin remains bound to the pump for a long period of time [57]. An
alternative splice that creates a shorter version of PMCA4 changes the response of
the pump to Ca2+ completely so that PMCA4a binds Ca2+-calmodulin quickly (fast
pump, T1/2 is about 20 s) but then calmodulin dissociates also quickly, resulting in a
fast responding pump that remains active for a relatively short period of time (short
memory, active for less than a minute) [34]. It is important to note, that PMCA4a
also has a relatively high basal activity suggesting weak interaction between pump
and auto-inhibitor. All other forms – variants of PMCA2 and PMCA3 – that have
been characterized are fast responding pumps having slow inactivation rates (long
memory), and as mentioned above they also have relatively high activity even
without activators [50, 57].

Activation with Acidic Phospholipids Acidic lipids like PS and the PIPs – PI,
PIP and PIP2 – can activate the pump and the amount of activation is augmented
as the negative charge of the phospholipid head group increases [58]. It has been
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demonstrated that both the CBD and the linear basic sequence in the A-domain
are involved in this type of activation [21–23]. It has been suggested that changes
in the lipid composition may affect PMCA activity and that PMCAs might be
more active in PIP2-rich lipid rafts [59]. Recently, it was demonstrated that the
activity of the PMCA is also modulated by neutral phospholipids. The activity of
PMCA4b was optimal when it was reconstituted in a 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC) bilayer of approximately 24

′
Å thickness [60]. Molecular

simulation studies have revealed that in DMPC several lysine and arginine residues
at the extracellular surface are exposed to the medium while in a thicker layer of
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) these residues are embedded in
the hydrophobic core that could explain the reduced activity observed in DOPC.

Regulation by the Actin Cytoskeleton First it was shown that PMCAs interact
with F-actin in activated platelets and they are associated with the F-actin rich
cytoskeleton at or near the filopodia [61, 62]. Later it was documented that the
purified PMCA4b can bind both monomeric and filamentous actin and while actin
monomers activate the pump, F-actin may inhibit its function [63, 64]. These
results were confirmed by using live HEK cells expressing isoforms PMCA2 and
PMCA4 [65]. Based on these findings it has been suggested that PMCA can
regulate actin dynamics through a series of feed-back regulations by lowering Ca2+
concentration in its vicinity and promoting actin polymerization, which in turn
switches off the PMCA function allowing increase in Ca2+ levels and hence actin
de-polymerization [66].

5.4 Function of the PMCAs in the Living Cell

It is quite remarkable how the above described diverse structural and biochemical
characteristics of the PMCA proteins are translated into specific physiological
functions in the different cell types. Distinct kinetics of the PMCAs are transcribed
into distinct Ca2+ signaling properties while additional structural diversity between
the PMCAs determines their localization and interaction patterns with different
scaffolding and signaling molecules resulting in unique PMCA variant-specific
cellular function (Table 5.2).

5.4.1 PMCAs Shape the Ca2+ Signal

It has been widely accepted that PMCAs play a role in the decay phase of the
store-operated Ca2+ entry (SOCE). However, expression of PMCAs with distinct
kinetic properties (see also Table 5.1 and Fig. 5.4) – fast or slow, with or without
memories – resulted not only in a faster decay of the signal but also in very
different Ca2+ signaling patterns in HEK and HeLa cells [67]. While the “slow with
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Table 5.1 Distinct kinetic properties and distribution of the PMCAs

Basal activity Activation with CaM Memory Pump variant Cells, tissues

High Fast Short PMCA4a Smooth muscle, heart,
sperm

High Fast Long PMCA2b Neuron, mammary gland
PMCA2a Neuron, cochlear hair cells

Low Slow Long PMCA4b Erythrocyte, breast, colon
heart, kidney, HUVEC,
melanoma

Fig. 5.4 Schematic representation of the role of PMCAs in Ca2+signaling. The abundance of
PMCA is regulated at the transcriptional and protein levels. Localization is affected by specific
sequence motifs and interaction with other proteins. The activity is regulated by proteins (such as
calmodulin) and acidic lipids. This can result in the modulation of the Ca2+ signal at two levels: (i)
Ca2+ extrusion; (ii) IP3-induced Ca2+ release. The resultant Ca2+ signal then might be translated
to distinct cell responses

memory” PMCA4b induced Ca2+ oscillation after the first spike, the C-terminal
splice variant of the PMCA4 isoform – the “fast without memory” PMCA4a –
responds quickly to the incoming Ca2+ but then since it becomes inactivated also
quickly the signal returns to an elevated level without oscillation. PMCA2b – a
fast pump with memory – allows only short Ca2+ spikes and Ca2+ concentration
always returns to the basal level quickly. It was also demonstrated that in addition to
shaping the SOCE mediated Ca2+ signal PMCAs also control the formation of IP3
by controlling the availability of the signaling PIP2 molecules, and hence regulate
the release of Ca2+ from the stores [20] (Fig. 5.4). It is important to note that
the Ca2+ signal can also be altered through additional cell type-specific regulatory
mechanisms of the PMCA. During T-cell activation, for example, it was shown that
the activity of PMCA4b is inhibited by the interaction with the ER Ca2+ sensor
protein STIM1 [68] and its partner scaffold protein POST [69] resulting in a more
sustained elevation in intracellular Ca2+ concentration.
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5.4.2 Cell Type Specific Expression of the PMCAs

Homozygous deletion of the ATP2B1 gene in mice is lethal suggesting that PMCA1
is the housekeeping isoform [70]. The other isoforms PMCA2-4 are expressed
at different stages of development [8]. The slow PMCA4b variant is present in
erythrocytes, T lymphocytes and in epithelial cells but also abundantly expressed
in the heart and smooth muscle cells [39]. PMCA4a is expressed in the brain and
it is the only PMCA isoform present in the sperm tail [71]. Altered expression of
ATP2B4 in mice was associated with arrhythmias, cardiac hypertrophy and heart
failure. Deletion of both copies of ATP2B4 in mice caused male infertility [70,
72]. Interestingly, in activated sperm cells the pattern of the Ca2+ signal is similar
to that seen in the PMCA4a expressing Hela cells [73]. Ca2+ pumps (PMCA1
and PMCA4) were shown to contribute to sustained Ca2+ oscillations in human
mesenchymal stem cells [74] and airway smooth muscle cells [75].

The fast pumps PMCA2 and PMCA3 are abundantly expressed in excitable
tissues such as the brain and skeletal muscle [76, 77]. The PMCA2w/a and
PMCA2w/b forms are found in vestibular hair cells and in Purkinje neurons of the
cerebellum where they can react quickly to the fast signals induced by the voltage-
gated Ca2+ channels. A specific form PMCA2w/b is also expressed in the lactating
mammary gland. Knock down of the ATP2B2 gene induced ataxia, deafness [78]
and reduced Ca2+ concentration in the milk [79]. These are just a few examples
demonstrating how variations in PMCA expression contribute to cell-type specific
functions (see more details in refs (39, 55, 76, 77) and in Table 5.1.

5.4.3 Polarized Expression of the PMCA

To perform their cellular function it is also important to target PMCA proteins to the
appropriate membrane compartment. This is accomplished by intrinsic localization
signals and/or by interaction with other proteins in a cell-type specific manner. In
many cases these characteristics of the PMCAs are sensitive to alternative splicing.
For example, the di-leucine-like localization motif is unique to the “b” splice variant
of PMCA4 that was shown to direct this pump to endocytic vesicles in non-confluent
epithelial cells [30]. Hence, PMCA4b localizes to the plasma membrane only in
fully confluent differentiated cells where it can be stabilized and/or modulated by
other interacting molecules [80]. Most recently, basigin/CD147 was identified as
a novel interacting protein that may serve as a subunit of the PMCA [81]. It was
demonstrated in a variety of cell types that PMCA1-4 interacts with basigin in
the ER, which is essentially involved in functional targeting PMCAs to the plasma
membrane.

PMCA proteins are localized to specific membrane compartments in polarized
cells where they contribute to trans-cellular Ca2+ fluxes. While the lateral compart-
ment seems to be the default place, in some cell types PMCAs localize apically.
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PMCA2 for example can be directed to the apical compartment by an alternative
splice option at site A that introduces a 44-residue long “w” sequence at the
region that connects the A and TM domains [37]. The resultant PMCA2w/b and
PMCA2w/a variants have very specific functions in the lactating mammary gland
[79] and the stereocilia of hair cells [78, 82, 83] where PMCA2w/b is responsible
for milk Ca2+ while PMCA2w/a contributes to hearing, respectively. The “b”
splice variant of PMCA2w might be connected through PDZ-interactions with the
scaffold protein NHERF2 to the actin cytoskeleton by which it is immobilized in
the apical membrane [84]. In contrast, PMCA2w/a, which is lacking the PDZ-
interacting tail, is very mobile, trafficking in and out of the stereocilia of hair cells
[85]. In parotid gland acinar cells PMCA4b was found in the apical membrane
compartment and its localization was modulated by PDZ-interaction with Homer2
[86]. In the same cells PMCA1 was also found in the apical membrane but only
when it was phosphorylated by PKA [87]. PMCA4b plays an important role in the
immune synapse where it is targeted to specific signaling micro domains beneath the
mitochondria where it is actively involved in Ca2+ handling during T-cell activation
controlling Ca2+ influx through the CRAC channels [88].

Polarized distribution of PMCA was also found in migrating cells. In collectively
migrating human umbilical vein endothelial cells (HUVEC) PMCA located to the
front of the cells by which it contributed to the front-to-rear Ca2+ gradient essential
for directed cell migration [89]. In addition, downregulation of PMCA4 increased
while its overexpression decreased cell migration in a wound-healing assay of
HUVECs [90]. These data are in line with the latest finding demonstrating that
PMCA4b interferes with cell migration of a highly motile BRAF mutant melanoma
cell line [91]. These examples highlight the importance of PMCA targeting and
demonstrate that different interacting partners may change the location of PMCAs
resulting in distinct cellular functions (see Table 5.2).

5.4.4 Interaction of PMCAs with Signaling Molecules

Through interactions with other proteins PMCAs can influence downstream signal-
ing events (Table 5.2). In many cases they influence the activity of the interacting
signaling molecule by reducing the Ca2+ concentration in its vicinity. One example
is the interaction of PMCA2 and PMCA4 with the Ca2+-CaM dependent phos-
phatase calcineurin through their catalytic domain that was found to reduce the
activity of the nuclear factor activated T-cell (NFAT) pathway [92, 93]. Inhibition of
this interaction increased Fas-ligand expression and apoptosis in breast cancer cells
[94], while PMCA4b overexpression in endothelial cells reduced VEGF initiated
cell migration and angiogenesis [95]. Another example for this type of interaction
was described between PMCA4b and calcium/calmodulin-dependent serine protein
kinase (CASK) in rat brain and kidney where PMCA4b binds CASK through its
C-terminal PDZ binding motif [96]. CASK together with Tbr-1 induces T-element
dependent transcription; however, this is strongly decreased upon interaction with
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PMCA4b in HEK cells. Interestingly, CASK and PMCA4b interaction was also
found in mouse sperm where CASK inhibited the activity of the pump resulting in
an increased Ca2+ level and ultimately decreased motility of the sperm [97]. Several
other interactions between PMCA proteins and their partners were described that
influence downstream signaling events such as interactions with nNOS in the heart,
CD147 in T-cells, STIM and POST in the immune synapse or with F- and G-actin.
These results demonstrate that besides maintaining the low intracellular calcium
level PMCAs are also important signaling molecules modulating the outcome of a
variety of cell-type specific functions.

5.5 PMCAs in Disease Pathogenesis

PMCA proteins have been associated with several diseases in humans. Since many
isoforms have highly specialized, cell type specific function alterations in their
expression, localization, regulation or activity may contribute to the development
of distinct pathological conditions (Table 5.3) [98]. Alterations of the PMCAs have
been described in cardiovascular diseases, neurodegenerative disorders and cancer
[99, 100]. More recently genetic variations in the ATP2B genes were also linked to
certain pathological conditions.

5.5.1 Diseases Related to Genetic Variations in ATP2B1-4

ATP2B1 Small nucleotide polymorphisms (SNPs) found in the ATP2B1 gene were
associated with hypertension [101, 102], coronary artery disease [103–105] and
early onset preeclampsia [106]. Preeclampsia is a disorder during pregnancy and
it is characterized by high blood pressure and proteinuria. Reduced Ca2+-ATPase
activity of myometrium and the placental trophoblast was described in preeclamptic
women [107], and a decreased expression of PMCA1 and PMCA4 in preeclamptic
placental tissue was also found [108] suggesting a pivotal role of PMCAs in calcium
homeostasis and transport through the placenta. The susceptibility to hypertension
resulting in elevated blood pressure was linked to SNP rs11105378 in ATP2B1 that
was suggested to decrease PMCA1 expression in human umbilical artery smooth
muscle cells [109]. In patients with chronic kidney disease, SNPs in ATB2B1 were
associated with coronary atherosclerosis and myocardial infarction [105].

ATP2B2 SNPs in the ATP2B2 gene were associated with autism in both European
and Chinese population [110, 111]. Also, a missense mutation of PMCA2 (V586M)
was shown to exacerbate the effect of the mutation in cadherin-23 leading to hearing
loss [112, 113] in good accordance with the finding that ablation or missense
mutations in PMCA2 cause deafness in mice [83, 114].
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Table 5.3 PMCA related diseases

PMCA/ATP2B Diseases associated with genetic
variation in the ATP2B1-4 genes

Diseases associated with altered
expression, localization or activity of
the PMCA proteins

PMCA1 Hypertension Multiple sclerosis
(ATP2B1) Coronary artery disease Reduced bone mineral density

Myocardial infarction Oral cancer
Early onset preeclampsia Ovarian cancer

PMCA2 Hereditary deafness Parkinson’s disease
(ATP2B2) Autism Type 1 and type 2 diabetes

Breast cancer
PMCA3 X-linked cerebellar ataxia Multiple sclerosis
(ATP2B3) Aldosterone producing adenomas
PMCA4 Familial spastic paraplegia Cardiac hypertrophy
(ATP2B4) Developmental dysplasia of the hip Hypertension

Malaria resistance Sickle cell disease
Alzheimer’s disease
Chronic kidney disease
Diabetes
Adult idiopathic scoliosis
Colon cancer
Breast cancer
Melanoma

ATP2B3 Missense mutation in the ATP2B3 gene was found in patients with X-
linked congenital cerebellar ataxia in two separate cases, in which the ability of the
pump to decrease intracellular Ca2+ concentration after stimulation was compro-
mised [115, 116]. Later it was demonstrated that the G1107D replacement altered
both activation and auto-inhibition of this pump at low Ca2+ levels [117]. Mutations
in the ATP2B3 gene were also identified in some aldosterone producing adenomas
(APA), and were linked to elevated aldosterone production compared with wild type
APAs [118, 119]. In cellular models it was demonstrated that impaired PMCA3
function resulted in elevated intracellular Ca2+ levels and consequently increased
aldosterone synthase production in the cells [120].

ATP2B4 Missense mutation in the ATP2B4 gene was found in one family with
familial spastic paraplegia that causes lower limb spasticity and weakness in patients
[121]. Later it was shown that overexpression of the mutant PMCA4 protein in
human neuroblastoma cells increased the resting cytosolic Ca2+ concentration and
elevated the maximal Ca2+ surge after stimulation relative to the wild type pump
[122]. Rear heterozygous variants in the ATP2B4 and the HSPG2 genes were
described in a family with developmental dysplasia of the hip and based on in silico
analysis an epistatic interaction was suggested between the genes [123]. SNPs in the
ATP2B4 gene were related to resistance against severe malaria that will be discussed
in detail in the next chapter.
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5.5.2 PMCAs in Red Blood Cell Related Diseases

PMCAs were among the first proteins described – and later characterized – in
the membrane of red blood cells [124–126]. Since mature red cells (RBCs) are
easily accessible, and have no internal membrane organelles involved in Ca2+
homeostasis, they have become important model cells for the examination of the
enzymatic activity and kinetic parameters of the plasma membrane-bound PMCA
protein [22, 127, 128]. Two isoforms have been identified in the RBC surface,
PMCA1b and PMCA4b, of which PMCA4b appeared to be the most abundant
[129–132]. These high affinity calcium pumps are responsible for maintaining the
exceptionally low total Ca2+ content of red cells [133–135]. They have a crucial role
in balancing cell calcium during shear stress in the microcirculation [136], volume
control [137, 138] and in senescence and programmed cell death [131, 139, 140] of
RBCs. Under certain pathological conditions – such as hereditary hemolytic anemia,
malaria and diabetes mellitus – the intracellular Ca2+ levels in RBCs are altered
[135, 141], therefore, the role of PMCAs in these cases emerges.

In Hereditary Hemolytic Anemia Ca2+ transport has a particular importance. In
case of sickle cell anemia (SCD) and thalassemia, atypical hemoglobin (such as
HbS) polymerization and deoxygenating processes lead to membrane deformation
and activation of the mechanosensitive stretch-activated cation channel PIEZO1
[142]. As a result, Ca2+ permeability of these atypical RBCs increases. Subsequent
stochastic activation of the Gardos or Ca2+-sensitive potassium channel can lead to
sickling and dehydration of red cells in SCD patients [131, 138, 143, 144]. It was
found that PMCA inhibition is also involved in the maintenance of the high Ca2+
concentration needed for sickle cell dehydration [145, 146].

Severe Malaria is one of the most studied infectious diseases worldwide [147,
148]; however, the molecular mechanisms underlying the survival and growth of the
parasite in the human body are still not fully understood. As a result of co-evolution
of human and Plasmodium species, many alleles preserved in our genome, which
provide some degree of protection against malaria infection [149, 150]. Majority
of these alleles are important in the erythroid stage of the parasite [150] when it
binds to the uninfected RBC, invades it and grows inside the red cells. The firstly
described genetic factors linked to malaria protection were the hemoglobin genes
[151, 152], but there are several other red cell related genetic variants involved in
the susceptibility to malaria [148] including ABO blood group [153, 154], G6PD
[151, 155], glycophorin genes [156, 157], CR1 [158], band 3 protein (SLC4A1)
[157], pyruvate kinase (Pklv) [159], basigin [160] and ABCB6 [161]. It was recently
discovered that PMCAs present in RBCs are involved in the survival and growth of
the parasite and some variations in the ATP2B4 (encoding PMCA4) gene may lead
to malaria resistance [162–165].

The latest genome wide association (GWA) [163, 164] and multicenter [165]
studies have shown that the ATP2B4 gene also carries a haplotype that is involved
in malaria protection and this haplotype showed association with red blood cell traits
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such as mean corpuscular hemoglobin concentration (MCHC) [166]. According
to Lessard et al. [167], this haplotype is located in the enhancer region of the
protein, and the complete deletion of this region lead to complete loss of PMCA
expression in some erythroid related cell lines, while in case of some other cell
lines the deletion does not cause any change in its expression. It is also described
[168] that this haplotype leads to reduced expression of PMCA4b in RBCs, but
this change is not associated with any additional physiological conditions, probably
because this genome region is only essential in erythrocyte development. It is also
notable, that this haplotype is much more frequent in malaria-endemic than in
malaria-free countries (NCBI and CDC databases). While the relationship between
these variations in the ATP2B4 gene and malaria susceptibility is apparent, the
exact function of the PMCA in the parasite’s lifecycle within RBCs is still not
known [169]. There are controversial data [170] whether the parasitophorous
vacuolar membrane (PVM), surrounding the parasite inside the RBCs, contains host
membrane proteins [171] or they are excluded from it [172]. Although, the locale of
the PMCA during RBC phase of the parasite lifecycle has not been determined, it
has been suggested that PMCA remains in the vacuolar membrane, and the parasite
may use this protein to maintain a sufficiently high concentration of Ca2+ within
the vacuolar membrane to proliferate [162]. Thus, selective inhibition of the PMCA
may offer a potential new treatment option for malaria in the future.

Diabetes In poorly controlled diabetic patients increased glycosylation and
decreased Ca2+-ATPase activity were detected [173]. In another study, oral glucose
administration to healthy subjects also decreased the activity of the RBC Ca2+-
ATPase [174] Similar results were obtained when protein glycosylation and
Ca2+-ATPase activity were measured in membranes from normal erythrocytes
pre-incubated with glucose [175]. It has also been shown that the activity of
the pump decreases with cell age, however, this effect was independent of the
patients’ glucose level indicating that glycation could not be responsible for the age
dependent decline in pump’s activity [176].

5.5.3 PMCAs Linked to Neuronal Disorders and Other
Diseases

Although, in several diseases no genetic alterations in the ATP2B genes have been
identified, modified expression, altered activity or de-regulation of one or more
PMCA isoforms could be associated with the disorder. For example, PMCAs have
an important role in the brain where they have been linked to certain neurodegen-
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erative disorders [100]. In Alzheimer’s disease (AD) deposits of amyloid β-peptide
are extensively formed and it was suggested that activation of the amyloidogenic
pathway was associated with the remodeling of neuronal Ca2+ signaling [177].
First it was found that Ca2+ dependence of PMCAs was different in membrane
vesicles prepared from human AD brains as compared to non-AD brains [178]. Later
amyloid β-peptide aggregates were shown to bind to PMCA and inhibit its activity
in the absence of calmodulin [179]. Furthermore, microtubule-associated regulatory
protein tau, that is hyperphosphorylated and forms neurofibrillary tangles in AD,
has been shown to interact with PMCA, as well, and inhibited its activity [180].

Altered activity of PMCA proteins in human brain tissue was also proposed
in Parkinson’s disease (PD) [181]. In an in vitro model of PD in neuroblastoma
cells it was found that the resting cytosolic Ca2+ concentration was elevated
while PMCA2 expression was decreased leading to decreased cell survival [182].
Alterations in the expression of PMCAs were also found in multiple sclerosis
(MS), an inflammatory, demyelinating and neurodegenerative disorder of the central
nervous system. In gene microarray analysis of brain lesions from MS patients
both PMCA1 and PMCA3 expression was found to be downregulated compared
to control [183]. Down-regulation of PMCA2 expression was also described in rats
with experimental autoimmune encephalomyelitis (EAE), an animal model of MS.
Interestingly, after disease recovery PMCA2 expression was restored in the animals,
while in mouse models with chronic EAE PMCA2 level remained low throughout
the disease course [184, 185].

Expression of PMCA4b has been shown to be increased in platelets from patient
with both type I and type II diabetes compared to control; this might contribute
to increased thrombus formation in diabetic patients [186]. In cellular models it
was found that PMCA2 plays an important role in the regulation of pancreatic β-
cell proliferation, survival and insulin secretion [187–189]. An analysis of PMCA
expression in rat pancreatic islets showed that PMCA1 and PMCA4 are expressed
in all islet cells while PMCA3 is present only in the β-cells [190]. In fructose
rich diet induced insulin resistant rats PMCA expression was altered in the islet
cells resulting in reduced total activity. This caused an elevation in the intracellular
calcium level that contributes to the compensatory elevated insulin secretion in
response to glucose [191]. Alterations in PMCA activity were related to kidney
diseases, as well. Decreased PMCA activity and concomitantly increased cytosolic
Ca2+ concentration was described in red blood cells of children with chronic
kidney disease [192]. Furthermore, in patients with idiopathic hypercalciuria PMCA
activity of the erythrocytes was increased compared to controls [193].

5.5.4 PMCA4 in Heart Diseases

During cardiac relaxation SERCA and NCX proteins are mainly responsible for
Ca2+ removal and PMCA4 acts primarily as a signaling molecule in the heart.
It plays a role in the regulation of cardiac β-adrenergic response, hypertrophy
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and heart failure [194]. β-adrenergic stimulation can initiate neural nitric oxide
synthase (nNOS) activity and NO production in cardiac myocytes [195] while nNOS
regulates contractility and oxygen radical production [196]. It was demonstrated
that PMCA4b can directly interact with the Ca2+ sensitive nNOS molecule through
its C-terminal PDZ binding motif and it decreases nNOS activity by reducing the
Ca2+ concentration in its vicinity [197]. In cardiac specific PMCA4b transgenic
mice nNOS activity was reduced compared to WT animals and that caused a
decreased responsiveness to β-adrenergic stimulation [198]. This interaction might
play an important role in remodeling after myocardial infarction (MI). In mice, after
induction of MI, nNOS and its adaptor protein CAPON (carboxy-terminal PDZ
ligand of NOS1) relocate to caveolae where they make a complex also with PMCA
and this way possibly protect the cardiomyocytes from calcium overload. In mice
lacking nNOS the redistribution does not happen [199].

PMCA4 also forms a ternary complex in cardiac cells with α-1 syntrophin and
nNOS [200]. A mutation in α-1 syntrophin (A390V-SNTA1) was found in patients
with long QT syndrome and it was demonstrated that the mutation resulted in the
disruption of the interaction with PMCA4. This led to increased nNOS activation
and late sodium current causing arrhythmias [201]. Interestingly, in a GWAS study
a mutation in CAPON was found to be associated with QT interval variations
[202] and variants of the ATP2B4 gene were associated with congenital ventricular
arrhythmia [203].

PMCA4 can also influence cardiac hypertrophy. It is well established that the
calcineurin-NFAT pathway is activated during cardiac hypertrophy and it was found
that PMCA4 is able to inhibit this pathway through direct binding of calcineurin
[92]. In mice overexpressing PMCA4 in the heart both the NFAT-calcineurin
signaling and hypertrophy were reduced, while the mice lacking PMCA4 were
more susceptible to hypertrophy [204]. Furthermore, after induction of experimental
myocardial infarction in mice overexpression of PMCA4 in cardiomyocytes reduced
infarct expansion, cardiac hypertrophy and heart failure [205]. However, deletion
of PMCA4 in cardiac fibroblasts also prevented cardiac hypertrophy in mice. In
the absence of PMCA4, intracellular Ca2+ level was elevated in the fibroblasts
enhancing secreted frizzled related protein 2 (sFRP2) production and secretion
which reduced Wnt signaling in the neighboring cardiomyocytes [206]. Interest-
ingly, overexpression of PMCA4 in arterial smooth muscle cells in mice caused an
increase in blood pressure through the inhibition of nNOS [207].

5.5.5 The Role of PMCAs in the Intestine and Bone
Mineralization

PMCA1 plays a crucial role in the transcellular Ca2+ absorption both in the
duodenum and in the large bowel. Its expression is induced by vitamin D metabolite
1,25-(OH)2D3 and by estrogens, as well [208]. In mice it was demonstrated that
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high bone density correlated with PMCA expression and mucosal to serosal Ca2+
transport in the duodenum [209]. Treatment of mice with 1,25-(OH)2D3 strongly
increased PMCA1 mRNA level in the duodenum [210] while selective deletion
of PMCA1 in the intestinal absorptive cells caused reduced whole body bone
mineral density and lower serum Ca2+ level [211]. Furthermore, in ovariectomized
rats a negative Ca2+ balance was induced and this was associated with decreased
PMCA1 mRNA expression in an estrogen dependent manner [212], a model for
postmenopausal osteoporosis. Interestingly, in biopsies of ulcerative colitis patients
reduced PMCA1 expression was also found [213].

PMCAs play an important role in the regulation of bone mineral density already
during development. The expression level of PMCA3 in the placenta correlates with
neonatal bone mineral content [214] while during lactation PMCA2 expression is
strongly induced in the mammary epithelium and it provides Ca2+ into the breast
milk that is required for the normal bone development of the offspring. In PMCA2-
null mice the Ca2+ content of the milk was 60% less than in the wild type mice [79].
PMCA isoforms 1, 2 and 4 were described in human osteoblasts, and PMCA1 and
PMCA4 in osteoclasts. In osteoblasts of patient with adolescent idiopathic scoliosis
expression of PMCA4 was found to be downregulated [215]. During osteoclast
differentiation PMCA4 was shown to have an anti-osteoclastogenic effect on one
hand by reducing NF-κB ligand–induced Ca2+ oscillations, on the other hand by
decreasing NO synthesis in the cells [216]. However in mature osteoclast PMCA
had an anti-apoptotic effect on the cells. Furthermore, in premenopausal women
PMCA4b level showed correlation with high peak bone mass.

5.5.6 Altered PMCA Expression Linked to Tumorigenesis

Ca2+ plays an important role in the regulation of many cellular processes such as
proliferation, migration or cell death. In tumorous cells these processes are strongly
altered and changes in the expression or activity of Ca2+ handling molecules in
several cancer types have been described. These modifications can result in altered
resting Ca2+ level in the cellular compartments and can change the spatial and
temporal characteristics of the intracellular calcium transients [217].

Alterations in the expression of PMCA proteins have been described in several
cancer types. In colorectal cancer a decrease in PMCA4 expression was found
during the multistep carcinogenesis of the human colon [218]. In normal human
colon mucosa samples PMCA4 was present both at the mRNA and protein levels,
however, in high grade adenomas, adenocarcinomas and lymph node metastases
the protein expression strongly decreased. Interestingly, the PMCA4 mRNA level
was not altered in the samples. Furthermore, after spontaneous differentiation of the
colorectal cancer cell line Caco-2 the expression of PMCA4 strongly increased, and
treatment with the histone deacetylase (HDAC) inhibitor Trichostatin A induced
differentiation and PMCA4 expression in several gastric and colon cancer cell
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lines [219, 220]. PMCA1 was also found in colon cancer cells and its expression
increased after 1,25-(OH)2D3 treatments, however, this was not accompanied by a
change in cellular differentiation [221].

Expression of PMCA proteins was also analyzed in breast cancer. In normal
breast epithelium PMCA4 is abundantly present [222], while PMCA2 expression
is induced only in the lactating mammary glands. In breast cancer cell lines it was
found that the mRNA level of PMCA1 and PMCA2 is increased compared to non-
tumorigenic human breast epithelial cell lines [223, 224], while PMCA4 expression
is downregulated [222]. In human breast cancer samples PMCA2 mRNA level
showed association with higher tumor grade and docetaxel resistance in patients.
In a tissue microarray analysis of 652 primary breast tumors PMCA2 expression
showed positive correlation with lymph node metastasis and human epidermal
growth factor receptor 2 (HER2) positivity. Furthermore, overexpression of PMCA2
in breast cancer cells reduced their sensitivity to apoptosis [225]. It was suggested
that PMCA2 regulates HER2 signaling in breast cancer cells and knocking down
PMCA2 inhibits HER2 mediated cell growth [226]. In another study PMCA2
expression was found in 9% of 96 breast tumors with various histological subtypes
and there was no association with grade or hormone receptor status. However,
higher PMCA2 expression was described in samples with basal histological subtype.
It was also demonstrated that downregulation of PMCA2 level decreased breast
cancer cell proliferation and increased the sensitivity to doxorubicin treatment [227].
While PMCA2 expression is upregulated in certain breast cancer cells, PMCA4
level seems to be downregulated. In MCF-7 breast cancer cells treatment with
HDAC inhibitors or with phorbol 12-myristate 13-acetate (PMA) strongly induced
PMCA4b expression and this effect was coupled with increased Ca2+ clearance
from the cells [222].

Altered PMCA protein levels were described in melanomas. In melanoma cell
lines with different BRAF and NRAS mutational status PMCA4 and PMCA1
isoforms were detected. Mutant BRAF specific inhibitor treatment selectively
increased PMCA4b expression in BRAF mutant melanoma cells and this was
coupled with faster Ca2+ clearance and strong inhibition of migration [91]. When
PMCA4b was overexpressed in a BRAF mutant melanoma cell line A375, it
strongly reduced the migratory and metastatic capacity of the cells both in vitro
and in vivo, while it did not influence their proliferation rate. Furthermore, HDAC
inhibitor treatment increased the expression of both PMCA4b and PMCA1 in
melanoma cell lines independently from their BRAF mutational status [228].
Similarly to BRAF inhibitor treatment, HDAC inhibition also increased Ca2+
clearance and reduced the migratory activity of the highly motile A375 melanoma
cells. These results suggested that PMCA4b plays an important role in the regulation
of melanoma cell motility, and its expression is under epigenetic control.

PMCA1 was also found to be epigenetically downregulated in human oral cancer.
PMCA1 expression was reduced both in primary oral squamous cell carcinomas
(OSCCs) and in oral premalignant lesions (OPLs) compared to normal tissue. In
OSCC derived cell lines it was demonstrated that decreased PMCA1 level was
caused by the increased DNA methylation in the promoter region of PMCA1 [229].
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The emerging role of PMCAs in the regulation of the immune response might
also be considered in the treatment of malignant diseases. Immune checkpoint
inhibitors are relatively new but promising treatment options in cancer therapy that
are able to enhance cytotoxic T-cell activation by blocking the negative regulatory
signals coming from tumor cells [230]. Recently, it was found that PMCA4
interacts with Ig-like glycoprotein CD147 upon T-cell activation and this interaction
is necessary for the immunosuppressive effect of CD147 through the decrease
of IL-2 production [231]. CD147 was shown to participate in the development
and progression of several cancer types including malignant melanomas, and
antibodies targeting CD147 are under development [232]. All these results show that
remodeling of the activity and expression of PMCA proteins play an important role
in altered cancer cell growth, motility, and in T-cell activation during the immune
response to cancer cells that might influence therapy response, as well.

5.6 Conclusion

PMCAs comprise a big family of Ca2+ transport ATPases including four separate
genes (ATP2B1-4) from which more than twenty different protein variants are tran-
scribed. The variants have different regulatory properties, and hence they respond
differently to the incoming Ca2+ signal, differ in their sub-plasma membrane
localization and interact with different signaling molecules. The expression, and
thus the abundance of the variants are also tightly regulated in a development and
cell-type specific manner, by processes not yet very well understood. In the past
we studied many aspects of the biochemical characteristics of these pumps, but
we still know very little on how their transcription and translation are regulated
and how stable the proteins are in the plasma membrane. Our main goal, therefore,
should be to study further these mechanisms particularly because alterations in the
PMCA expression and genetic variations in the ATP2B genes have been linked to
several diseases such as cardiovascular and neurodegenerative disorders, and cancer.
Understanding PMCA pathophysiology and learning more about the consequences
of PMCA dysfunction may help finding ways to predict, prevent and/or cure
such diseases.
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Cell Biochem Biophys 66(1):187–198
65. Dalghi MG, Ferreira-Gomes M, Montalbetti N, Simonin A, Strehler EE, Hediger MA et al

(2017) Cortical cytoskeleton dynamics regulates plasma membrane calcium ATPase isoform-
2 (PMCA2) activity. Biochim Biophys Acta 1864(8):1413–1424

66. Dalghi MG, Ferreira-Gomes M, Rossi JP (2017) Regulation of the plasma membrane calcium
ATPases by the actin cytoskeleton. Biochem Biophys Res Commun

67. Paszty K, Caride AJ, Bajzer Z, Offord CP, Padanyi R, Hegedus L et al (2015) Plasma
membrane Ca2+-ATPases can shape the pattern of Ca2+ transients induced by store-operated
Ca2+ entry. Sci Signal 8(364):ra19

68. Ritchie MF, Samakai E, Soboloff J (2012) STIM1 is required for attenuation of PMCA-
mediated Ca2+ clearance during T-cell activation. EMBO J 31(5):1123–1133

69. Krapivinsky G, Krapivinsky L, Stotz SC, Manasian Y, Clapham DE (2011) POST, partner of
stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proc Natl
Acad Sci U S A 108(48):19234–19239

70. Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O’Connor KT, Neumann JC et al (2004)
Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major
housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and
male fertility for PMCA4. J Biol Chem 279(32):33742–33750

71. Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC et al (2004)
Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol
Chem 279(27):28220–28226

72. Prasad V, Okunade GW, Miller ML, Shull GE (2004) Phenotypes of SERCA and PMCA
knockout mice. Biochem Biophys Res Commun 322(4):1192–1203

73. Lefievre L, Nash K, Mansell S, Costello S, Punt E, Correia J et al (2012) 2-APB-potentiated
channels amplify CatSper-induced Ca2+ signals in human sperm. Biochem J 448(2):189–200

74. Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M (2003) Ca2+ oscillations regulated by
Na(+)-Ca2+ exchanger and plasma membrane Ca2+ pump induce fluctuations of membrane
currents and potentials in human mesenchymal stem cells. Cell Calcium 34(2):145–156

75. Chen YF, Cao J, Zhong JN, Chen X, Cheng M, Yang J et al (2014) Plasma membrane Ca2+-
ATPase regulates Ca2+ signaling and the proliferation of airway smooth muscle cells. Eur J
Pharmacol 740:733–741

76. Prasad V, Okunade G, Liu L, Paul RJ, Shull GE (2007) Distinct phenotypes among plasma
membrane Ca2+-ATPase knockout mice. Ann N Y Acad Sci 1099:276–286

77. Cali T, Brini M, Carafoli E (2018) The PMCA pumps in genetically determined neuronal
pathologies. Neurosci Lett 663:2–11

78. Ficarella R, Di Leva F, Bortolozzi M, Ortolano S, Donaudy F, Petrillo M et al (2007) A
functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic
deafness. Proc Natl Acad Sci U S A 104(5):1516–1521

79. Reinhardt TA, Lippolis JD, Shull GE, Horst RL (2004) Null mutation in the gene encoding
plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J Biol Chem
279(41):42369–42373

80. Padanyi R, Paszty K, Strehler EE, Enyedi A (2009) PSD-95 mediates membrane clustering
of the human plasma membrane Ca2+ pump isoform 4b. Biochimica et Biophysica Acta
1793(6):1023–1032

81. Schmidt N, Kollewe A, Constantin CE, Henrich S, Ritzau-Jost A, Bildl W et al (2017)
Neuroplastin and basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases
and key regulators of Ca2+ clearance. Neuron 96(4):827–38 e9

82. Grati M, Aggarwal N, Strehler EE, Wenthold RJ (2006) Molecular determinants for differen-
tial membrane trafficking of PMCA1 and PMCA2 in mammalian hair cells. J Cell Sci 119(Pt
14):2995–3007

83. Spiden SL, Bortolozzi M, Di Leva F, de Angelis MH, Fuchs H, Lim D et al (2008) The novel
mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss.
PLoS Genet 4(10):e1000238



5 Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases:. . . 121

84. Padanyi R, Xiong Y, Antalffy G, Lor K, Paszty K, Strehler EE et al (2010) Apical scaffolding
protein NHERF2 modulates the localization of alternatively spliced plasma membrane Ca2+
pump 2B variants in polarized epithelial cells. J Biol Chem 285(41):31704–31712

85. Grati M, Schneider ME, Lipkow K, Strehler EE, Wenthold RJ, Kachar B (2006) Rapid
turnover of stereocilia membrane proteins: evidence from the trafficking and mobility of
plasma membrane Ca2+-ATPase 2. J Neurosci 26(23):6386–6395

86. Yang YM, Lee J, Jo H, Park S, Chang I, Muallem S et al (2014) Homer2 protein regulates
plasma membrane Ca2+-ATPase-mediated Ca2+ signaling in mouse parotid gland acinar
cells. J Biol Chem 289(36):24971–24979

87. Baggaley E, McLarnon S, Demeter I, Varga G, Bruce JI (2007) Differential regulation of the
apical plasma membrane Ca2+ -ATPase by protein kinase A in parotid acinar cells. J Biol
Chem 282(52):37678–37693

88. Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C et al (2011) Calcium
microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium
pumps generate local calcium signals for efficient T-cell activation. EMBO J 30(19):3895–
3912

89. Tsai FC, Seki A, Yang HW, Hayer A, Carrasco S, Malmersjo S et al (2014) A polarized Ca2+,
diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol
16(2):133–144

90. Kurusamy S, Lopez-Maderuelo D, Little R, Cadagan D, Savage AM, Ihugba JC et al (2017)
Selective inhibition of plasma membrane calcium ATPase 4 improves angiogenesis and
vascular reperfusion. J Mol Cell Cardiol 109:38–47

91. Hegedus L, Garay T, Molnar E, Varga K, Bilecz A, Torok S et al (2017) The plasma
membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF
mutant melanoma cells. Int J Cancer 140(12):2758–2770

92. Buch MH, Pickard A, Rodriguez A, Gillies S, Maass AH, Emerson M et al (2005) The
sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway
via interaction with the calcineurin A catalytic subunit. J Biol Chem 280(33):29479–29487

93. Holton M, Yang D, Wang W, Mohamed TM, Neyses L, Armesilla AL (2007) The interaction
between endogenous calcineurin and the plasma membrane calcium-dependent ATPase is
isoform specific in breast cancer cells. FEBS Lett 581(21):4115–4119

94. Baggott RR, Mohamed TM, Oceandy D, Holton M, Blanc MC, Roux-Soro SC et al
(2012) Disruption of the interaction between PMCA2 and calcineurin triggers apoptosis and
enhances paclitaxel-induced cytotoxicity in breast cancer cells. Carcinogenesis 33(12):2362–
2368

95. Baggott RR, Alfranca A, Lopez-Maderuelo D, Mohamed TM, Escolano A, Oller J et al (2014)
Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-
mediated angiogenesis through interaction with calcineurin. Arterioscler Thromb Vasc Biol
34(10):2310–2320

96. Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L (2003) Interaction of the plasma
membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated
kinase CASK. J Biol Chem 278(11):9778–9783

97. Aravindan RG, Fomin VP, Naik UP, Modelski MJ, Naik MU, Galileo DS et al (2012)
CASK interacts with PMCA4b and JAM-A on the mouse sperm flagellum to regulate Ca2+
homeostasis and motility. J Cell Physiol 227(8):3138–3150

98. Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ (2017) The plasma membrane
calcium ATPases and their role as major new players in human disease. Physiol Rev
97(3):1089–1125

99. Giacomello M, De Mario A, Scarlatti C, Primerano S, Carafoli E (2013) Plasma membrane
calcium ATPases and related disorders. Int J Biochem Cell Biol 45(3):753–762

100. Hajieva P, Baeken MW, Moosmann B (2018) The role of Plasma Membrane Calcium ATPases
(PMCAs) in neurodegenerative disorders. Neurosci Lett 663:29–38

101. Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M et al (2011)
Blood pressure loci identified with a gene-centric array. Am J Hum Genet 89(6):688–700



122 L. Hegedűs et al.
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