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Readily Releasable Stores of Calcium
in Neuronal Endolysosomes:
Physiological and Pathophysiological
Relevance
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Abstract Neurons are long-lived post-mitotic cells that possess an elaborate
system of endosomes and lysosomes (endolysosomes) for protein quality control.
Relatively recently, endolysosomes were recognized to contain high concentrations
(400–600 μM) of readily releasable calcium. The release of calcium from this
acidic organelle store contributes to calcium-dependent processes of fundamental
physiological importance to neurons including neurotransmitter release, membrane
excitability, neurite outgrowth, synaptic remodeling, and cell viability. Patholog-
ically, disturbances of endolysosome structure and/or function have been noted
in a variety of neurodegenerative disorders including Alzheimer’s disease (AD)
and HIV-1 associated neurocognitive disorder (HAND). And, dysregulation of
intracellular calcium has been implicated in the neuropathogenesis of these same
neurological disorders. Thus, it is important to better understand mechanisms by
which calcium is released from endolysosomes as well as the consequences of
such release to inter-organellar signaling, physiological functions of neurons, and
possible pathological consequences. In doing so, a path forward towards new
therapeutic modalities might be facilitated.
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27.1 An Evolutionary Perspective on Calcium, Intracellular
Organelles and Endolysosomes

Intracellular calcium regulates many essential functions of neurons including
neurotransmitter release, excitability, synaptic plasticity, and cell viability [1].
Levels of intraneuronal calcium are very tightly regulated both temporally and
spatially by various mechanisms including calcium release from intracellular stores,
calcium influx across plasma membranes, and its association with a whole host
of calcium binding proteins. Because of its importance both physiologically and
pathologically, we start our story about the presence and functional significance
of readily releasable stores of calcium in neuronal endolysosomes with a brief
evolutionary perspective about calcium and intracellular organelles.

Calcium is well-known to be important for signal transduction in most cells
including neurons. Indeed, calcium has been referred to as a universal second mes-
senger in eukaryotic cells. The approximate 10,000-fold gradient of extracellular
to intracellular calcium originated evolutionarily because of the gradual rise in
calcium levels from about 100 nM during the period when the basic building blocks
of life developed in thermal ducts under the ocean floor to about 1 mM during
the Pre-Cambrian period when multicellular life evolved [2, 3]. Due to the toxic
nature of millimolar levels of calcium, evolutionary pressure was applied such that
cellular survival dictated that semipermeable membranes appeared and a variety of
mechanisms were formed to maintain appropriate calcium gradients across plasma
membranes [3]. Simultaneously, embedded in the plasma membranes were newly
developed calcium pumps and calcium binding proteins which helped with calcium
homeostasis [3]. Together, in neurons, these evolutionary changes provide unique
and complex spatial and temporal handling of calcium that is essential for not only
proper cellular signaling but also neuronal cell life and death.

It was also during this billion-year evolutionary period that intracellular
organelles began appearing including mitochondria resulting from symbiotic
relationships with bacteria and the development of functional endocytic machinery
[4]. Mitochondria are integral to the maintenance of cellular energetics and they are
important ‘sinks’ for intracellular calcium [5]. However, when too much calcium is
up-taken into mitochondria cellular energetics are compromised and the resulting
calcium overload can lead to a cascade of events including increased oxidative
stress and cell death. It has also become increasingly appreciated that organelles
including endoplasmic reticulum, endosomes and lysosomes (hereafter referred
to as endolysosomes) have readily releasable and functionally important pools of
intracellular calcium. Although less well known, the approximate 500 μM levels
of calcium in endolysosomes are similar to the calcium concentrations present in
endoplasmic reticulum [6]. This is a very important concept because endoplasmic
reticulum is commonly referred to as the principal intracellular store of readily
releasable calcium. Furthermore, as the field of inter-organellar signaling as well as
physical and chemical crosstalk between organelles has grown over the past decade
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it is prudent of us to now posit that this relatively new and highly complicated
area of modern cell biology is key to our understanding of the regulation and
dysregulation of calcium [7].

With this as a very quick trip across 1 billion years of evolutionary biology, here
we embark on a brief but focused summary of findings that neuronal endolysosomes
contain readily releasable stores of calcium and once released this calcium can lead
to calcium influx into cells, calcium release from other organelles, and calcium
dysregulation-induced neurotoxicity. The relevance of such an important upstream
store of calcium to the regulation of physiological functions and pathophysiological
events is obvious and will be discussed with particular relevance to the pathogenesis
of two neurodegenerative disorders; Alzheimer’s disease (AD) and HIV-1 associ-
ated neurocognitive disorder (HAND).

27.2 Endolysosomes Contain Readily Releasable Pools
of Calcium

Neurons are long-lived post-mitotic cells that possess an elaborate endolysosome
system for quality control especially for proteins. Endolysosomes are well known to
be acidic organelles that contain high levels of cations including calcium, iron, zinc
and copper. However, for the cation calcium it was not until fairly recently that these
organelles were described as being ‘acidic calcium stores’ because the luminal pH
of endolysosomes is acidic and endolysosomes contain high (400–600 μM) levels
of readily releasable calcium [8, 9].

Neuronal calcium signals display spectacular spatiotemporal complexity and
understanding how calcium signals are generated spatially and temporally is nec-
essary to understand calcium-dependent cellular processes. Endolysosome calcium
levels are maintained by a variety of uptake and efflux mechanisms. Essential for
uptake of calcium into endolysosomes, proton gradients are established mainly by
vacuolar H+-ATPase (v-ATPase) that pumps H+ into the lumen and this helps
regulate Ca2+ levels [9–11]. Four main mechanisms for calcium release from
endolysosomes have been described including: (1) Calcium release through two-
pore channels (TPCs) triggered by nicotinic acid adenine dinucleotide phosphate
(NAADP) [12–17]; (2) Elevation of endolysosome pH with, for example, the selec-
tive v-ATPase inhibitor bafilomycin (BAF) or the alkaline lysosomotropic agents
NH4Cl and chloroquine [8, 18, 19]; (3) Involvement of TRPML1 mucolipin-type
channels and P2X4 receptors [20–22]; and (4) Selective disruption of endolysosome
membranes with Gly-Phe-β-naphtylamide (GPN) [23, 24]. Of physiological signif-
icance, calcium released from endolysosomes has been shown to contribute to a
variety of calcium-dependent neuronal processes including neurotransmitter release,
neuronal excitability, neurite outgrowth, synaptic remodeling, and cell viability
[25–27].
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Fig. 27.1 HIV-1 proteins and other neurotoxic insults can cause deacidification of endolysosomes.
Increasing endolysosome pH can release calcium and other cations from endolysosomes. Calcium
released from readily releasable stores in endolysosomes can increase the release of calcium from
other intracellular stores and can increase the influx of extracellular calcium. Such increases in
pH and calcium levels can cause endoplasmic reticulum (ER) and mitochondrial dysfunction,
Alzheimer’s disease (AD)-like pathology, and synaptodendritic damage

Endolysosomes can release calcium transiently and in a highly localized and
distinct fashion [17, 28, 29]. Endolysosome calcium can affect the release of
calcium from organellar stores as well as through plasma membrane-based calcium
influx mechanisms. The inter-organellar signaling and signaling with the plasma
membrane is explained at least in part by findings that endolysosomes are highly
mobile in cells, are highly dynamic metabolically, have high rates of biogenesis,
and can interact physically and functionally with other intracellular organelles
(Fig. 27.1).

At least three models of acidic store-induced calcium signaling mechanisms have
been described [9]. (1) Acidic stores of calcium might communicate with endo-
plasmic reticulum calcium stores such that calcium released from endolysosomes
can enhance endoplasmic reticulum calcium loading [30] and calcium-induced
calcium release [13, 15]. (2) Changes in endolysosome pH may release calcium
from a subgroup of acidic calcium stores and the released calcium may affect other
subgroups of acidic stores through mechanisms such as vesicular fusion of late
endosomes and lysosomes [9, 15, 31]. (3) Calcium released from acidic calcium
stores might depolarize plasma membranes, evoke calcium-dependent currents, and
stimulate calcium influx across plasma membranes [12].
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27.3 Acidic Store-Operated Calcium Entry in Neurons

Acidic store-operated calcium entry (aSOCE) is a unique mechanism that links
readily releasable calcium in endolysosomes with influx of extracellular calcium
into neurons. This is a novel means by which intraneuronal stores of calcium can
contribute to spatial and temporal integration of calcium signaling. In support of this
novel mechanism, we found that calcium could be released from endolysosomes
following stimulation of a number of different mechanisms, that the calcium release
could be independent of other organellar stores of calcium, that release of calcium
from endolysosomes triggered calcium influx, and that the calcium influx was
regulated by N-type calcium channels and lysosome exocytosis (Fig. 27.2).

Capacitative influx of calcium into cells was described over 30 years ago
[32]. Such calcium influx mechanisms, that are now commonly referred to as
store-operated calcium entry (SOCE), are principally initiated by a reduction in

Fig. 27.2 HIV-1 Tat de-acidifies endolysosomes, increases amyloidogenesis, and releases calcium
from readily releasable stores in endolysosomes. Calcium released from endolysosomes can
affect mitochondrial and endoplasmic reticulum (ER) calcium stores, and increase store operated
calcium (SOCE) mechanisms. Mechanistically, following de-acidification endolysosome calcium
is released through TRPML1 and two pore channels (TPCs). The calcium signals can be amplified
by releasing calcium from other organelles including mitochondria and ER, and by activating ER-
based SOCE involving STIM1 and Orai channels as well as acidic store operated calcium entry
involving N-type calcium channels (NTCCs)
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endoplasmic reticulum calcium stores followed by influx of extracellular calcium
in a variety of cells including neurons in order to refill the depleted stores of
calcium. Mechanistically, depleting endoplasmic reticulum calcium stores drives
the oligomerization and translocation of stromal interaction molecule 1 (STIM1)
proteins to endoplasmic reticulum junctions close to the plasma membrane. Such
STIM1 translocation induces the clustering of calcium release-activated calcium
modulator 1 (Orai1) channels and/or transient receptor potential (TRP) cation
channels into plasma membranes thereby enabling extracellular calcium entry [33].

Conceptually, but not mechanistically, we observed similar store-operated cal-
cium entry involving endolysosomes in neurons. Using primary cultures of rat
cortical neurons, we found that calcium was released from endolysosomes following
treatment with the two-pore channel agonist NAADP-AM, the v-ATPase inhibitor
BAF, and the lysosomotropic agent GPN; all of which de-acidify endolysosomes
[34]. However, when these experiments were conducted in the absence of extracel-
lular calcium, de-acidification of endolysosomes with NAADP-AM, BAF and GPN
increased only slightly levels of free cytosolic calcium. When these same experi-
ments were conducted in the presence of extracellular calcium, NAADP-AM, BAF
and GPN all increased significantly the levels of free cytosolic calcium. Although
it is not well understood currently, the relatively small release of calcium from
endolysosomes causes a much larger influx of extracellular calcium and this might
be due to plasma membrane depolarization as is accompanied by NAADP-induced
endolysosome calcium release [34, 35]. Besides neurons, phenomena similar to
aSOCE have been described in other cell types where NAADP has been found to
induce endolysosome calcium release and large influxes of calcium across plasma
membranes [12, 36–39]. These observations suggested to us that endolysosome de-
acidification by three completely different mechanisms led directly or indirectly
to an enhanced influx of calcium into neurons. Accordingly, we next tested more
specifically the extent to which a store-operated mechanism might control the
observed calcium influx across the plasma membrane.

Using approaches similar to those used by others and us, we began studying
store-operated calcium mechanisms including the classical endoplasmic reticulum-
based capacitative SOCE. Indeed, we confirmed that in the absence of extracellular
calcium and following depletion of endoplasmic reticulum calcium with the SERCA
pump inhibitor thapsigargin (TG) there was a significant increase in levels of free
intracellular calcium only when calcium was re-introduced to the extracellular
medium. With this positive control for the functional presence of endoplasmic
reticulum-based SOCE in our cultured neurons, we conducted similar experiments
with agents that de-acidify endolysosomes and release calcium from endolysosome
stores. Even after depleting ER pools of calcium with TG, application of NAADP-
AM, BAF and GPN still caused increased influx of extracellular calcium and still
induced increased levels of intracellular calcium. Thus, in these neurons there
appeared to be at least two separate and functional store-operated calcium mech-
anisms; one governed by endoplasmic reticulum and the other by endolysosomes.
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In testing the distinctive nature of the two store-operated calcium mechanisms
governed by endoplasmic reticulum or endolysosomes, we used pharmacological
and molecular/genetic strategies. Using siRNA to knock-down protein expression
levels of STIM1, a protein that is central to SOCE, and the SOCE blockers SKF-
96365 and 2-APB we were able to block significantly TG-induced release of
calcium from endoplasmic reticulum, but we were unable to block significantly
NAADP-AM-, BAF- and GPN-induced calcium influx. However, we were able to
block significantly NAADP-AM-, BAF- and GPN-induced calcium influx with the
selective N-type calcium channel (NTCC) blocker (ω-conotoxin). The selective and
specific nature of this inhibition by ω-conotoxin was confirmed further by showing
that NAADP-AM-, BAF- and GPN-induced calcium influx was not blocked by
inhibitors of L-type (nimodipine, verapamil) and P/Q-type (ω-agatoxin) calcium
channels. Moreover, we confirmed these pharmacological findings by showing
that siRNA knockdown of NTCCs attenuated significantly NAADP-AM-, BAF-
and GPN-induced calcium influx, but did not affect TG-induced SOCE. Together,
the above results demonstrated that calcium released from endolysosomes can
be distinct from calcium released from endoplasmic reticulum through SOCE
mechanisms and that the calcium released from endolysosomes is capable of
activating cell surface calcium channels to stimulate calcium influx. These findings
support and extend earlier findings that calcium released from endolysosomes did
not stimulate endoplasmic reticulum-dependent SOCE in MDCK epithelial cells
[23]. Accordingly, this new mechanism was termed by us as “acidic store-operated
calcium entry” (aSOCE) [34].

27.4 Role of Lysosome Exocytosis in Acidic Store-Operated
Calcium Entry (aSOCE)

Multiple mechanisms might control aSOCE involving NTCCs. One such mecha-
nism might involve lysosome exocytosis because we have shown using a quanti-
tative biotinylation of surface proteins assay that NAADP-AM, BAF and GPN all
increased cell surface protein expression levels of NTCCs and lysosome-associated
glycoprotein 1 (LAMP1). Next, we addressed the possibility that lysosome exocyto-
sis and NTCCs were linked directly by conducting co-immunoprecipitation studies
and found a physical interaction between NTCCs and LAMP1. Because LAMP1
is critical for lysosome exocytosis [40], those observations suggested to us that
lysosome exocytosis might be a functional partner in aSOCE especially because
aSOCE was inhibited following siRNA knockdown of protein expression levels of
LAMP1. Thus, de-acidification of endolysosomes might be of central importance
because NAADP-AM, BAF and GPN through very different initial mechanisms
all appeared to enhance lysosome exocytosis and the recycling of NTCCs to the
plasma membrane where they participated in calcium influx generally and aSOCE
more specifically. Physically, this makes sense as well because of findings that
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de-acidification of endolysosomes changes cellular distribution patterns of these
organelles from a mostly peri-nuclear pattern to one where the endolysosomes
migrate close to the plasma membrane [41]. Thus, functionally and physically there
is evidence favoring endolysosomes and endolysosome exocytosis in calcium entry.

27.5 Physical Interactions and Functional Relevance
of Inter-organellar Signaling

In addition to physical interactions between endolysosomes and plasma membranes,
it is becoming increasingly clear that endolysosomes physically and functionally
interact as well with other intracellular organelles including mitochondria and
endoplasmic reticulum. Such recognition has led to an appreciation for dynamic
physical and chemical communications between intracellular organelles including
those regulated by pH and calcium.

Physical interactions between mitochondria and endoplasmic reticulum were
first described about 60 years ago and the functional significance of mitochondria-
associated membranes was first characterized about 30 years ago [42]. Even today,
there continues to be work focused on the physical and functional interactions
between organelles [43] as well as the role that organellar interactions plays in
the pathogenesis of neurodegenerative diseases [44, 45]. As it relates to endolyso-
somes, it is now known that there are extensive physical interactions between
endolysosomes and mitochondria and that these inter-organellar communications
participate in lipid and metabolite exchange as well as mitochondrial quality
control [46]. Conversely, mitochondrial dysfunction has been found to negatively
affect lysosome structure and function through reactive oxygen species-dependent
mechanisms [47]. Extensive membrane contact sites have been described between
lysosomes and endoplasmic reticulum, that these contact sites were evolutionarily
conserved, and that calcium released from lysosomes was sufficient to stimulate
endoplasmic reticulum-dependent calcium-induced calcium release [48, 49, 50].
However, only recently was it shown that endolysosomes maintain their 1000-fold
calcium concentration gradient in cells in part by refilling endolysosome stores of
calcium from IP3-regulated stores of calcium in endoplasmic reticulum [51]. Some
of the differences in findings as to calcium movements between organelles might be
because of cell-specific mechanisms. In addition, the difficult nature of understand-
ing inter-organellar calcium dynamics is highlighted by work showing that STIM1
and STIM2 are expressed in endolysosomes, at least in platelets, and that depletion
of acidic organellar stores of calcium can increase protein-protein interactions
between STIM proteins with Orai1 and TRPC channels to induce SOCE [52]. It
is further complicated by findings that calcium released through endolysosome-
resident TRML1 channels can cause calcium release from endoplasmic reticulum
and calcium influx [53] and that NAADP has been implicated in this “cross-talk”
[54].
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27.6 Possible Role of Endolysosomes and aSOCE
in Pathogenesis of Alzheimer’s Disease and HIV-1
Associated Neurocognitive Disorder (HAND)

Disturbances in endolysosome structure and/or function have been noted in a
variety of neurodegenerative disorders including Alzheimer’s disease (AD) and
HIV-1 neurocognitive disorder (HAND) [55–59]. AD is a devastating age-related
neurodegenerative disease that is the commonest cause of dementia in people
over the age of 65. People with HAND, on the other hand, exhibit neurological
complications ranging from mild (mild cognitive impairment) to severe (dementia).
In the current era of anti-retroviral therapeutics HIV-1 infected individuals are living
almost full life-spans, but are now experiencing a prevalence rate of over 50%
for HAND [60, 61]. Clinically and pathologically people living with neuroHIV-
1 are exhibiting AD-like symptoms including learning and memory deficits as
well as increased amyloidogenesis. Although the pathogenesis of HAND is not
fully understood, HIV-1 proteins including the HIV-1 transactivator of transcription
protein Tat have been implicated by others and us to be causative virotoxins in
HAND [62–69]. Among the HIV-1 viral proteins, HIV-1 Tat is present in brains
of HIV-1 infected individuals and its levels stay elevated in CSF even when HIV-
1 viral levels are immeasurable [70]. Others and we have shown that HIV-1 Tat
directly excites neurons [65, 71, 72], disturbs neuronal calcium homeostasis [64,
73], disrupts synaptic integrity [74, 75], and induces neurotoxicity [68, 76].

Endolysosome dysfunction has been implicated in the development of at least
two pathological hallmarks of AD and HAND; Aβ accumulation and neurofibrillary
tangle formation. Endolysosomes are very important for amyloidogenic processing
of AβPP to Aβ because amyloid β precursor protein (AβPP) is first endocytosed, the
amyloidogenic enzymes BACE-1 and γ-secretase are almost exclusively located in
endosomes and lysosomes, the acidic environment of endolysosomes is favorable
for amyloidogenic metabolism of AβPP, and Aβ can be either accumulated in
or released by exocytosis from endolysosomes [77–83]. Tau is a microtubule-
associated protein, and when hyperphosphorylated it aggregates and contributes
to the formation of neurofibrillary tangles. Tau aggregates can be degraded by
cathepsin D in autophagosomes-lysosomes [84, 85], and endolysosome dysfunction
contributes to tau aggregation and neurofibrillary tangle formation [86, 87]. On the
other hand, transcriptional activation of lysosome biogenesis can clear aggregated
tau [88]. Thus, endolysosomes are important sites for development of these neuro-
logical disorders.

Dysregulation of intracellular calcium has also been implicated in the neu-
ropathogenesis of these same neurological disorders. And it is clear (see above)
that de-acidification of endolysosomes releases calcium from these acidic stores
[28, 89, 90]. We found that HIV-1 Tat protein elevated endolysosome pH and
disturbed the structure and function of endolysosomes [74], a prominent and early
pathological feature of HAND [57, 58]. Clearly, endolysosome calcium stores
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contribute to neuronal calcium signaling and function [91–93] and calcium release
from endolysosomes triggers calcium release from endoplasmic reticulum [11, 17]
and through plasma membranes via aSOCE (see above).

HIV-1 proteins including HIV-1 Tat, and anti-retroviral therapeutic drugs con-
tribute to the development of AD-like pathology including increases in Aβ levels
[94–99]. HIV-1 Tat enters neurons via receptor-mediated endocytosis [100–102].
The Tat-induced de-acidification of endolysosomes and resulting effects on calcium
dyshomeostasis likely results from the ability of HIV-1 Tat to decrease the levels
and activity of vacuolar-ATPase as well as compensatory increases in cathepsin D
and LAMP-1 [103]. The consequences of such alterations in calcium dynamics and
homeostasis are synaptic disruption and neurotoxicity [104–106].

Endolysosomes contain physiologically important levels of calcium that is
readily releasable by a number of stimuli and insults. The calcium can exit through
a number of channels including TRPML and two pore channels. Once released
the calcium can signal other organelles to release calcium and for greater influx
of calcium through plasma membrane-resident calcium channels especially N-type
calcium channels. These effects on endolysosome structure and function have clear
implications to the pathogenesis of AD and HAND; neurological disorders that
show overlap in terms of clinical and pathological features. We are excited to be part
of this emerging area of cell biology focused on inter-organellar signaling and look
forward to further studies elucidating physiological and pathological consequences
of calcium release from endolysosome stores.
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