
Chapter 22
Calcium Signaling and Gene Expression

Basant K. Puri

Abstract Calcium signaling plays an important role in gene expression. At the tran-
scriptional level, this may underpin mammalian neuronal synaptic plasticity. Cal-
cium influx into the postsynaptic neuron via: N-methyl-D-aspartate (NMDA) recep-
tors activates small GTPase Rac1 and other Rac guanine nucleotide exchange fac-
tors, and stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI; α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that are not imper-
meable to calcium ions, that is, those lacking the glutamate receptor-2 subunits,
leads to activation of Ras guanine nucleotide-releasing factor proteins, which
is coupled with activation of the mitogen-activated protein kinases/extracellular
signal-regulated kinases signaling cascade; L-type voltage-gated calcium channels
activates signaling pathways involving CaMKII, downstream responsive element
antagonist modulator and distinct microdomains. Key members of these signaling
cascades then translocate into the nucleus, where they alter the expression of
genes involved in neuronal synaptic plasticity. At the post-transcriptional level,
intracellular calcium level changes can change alternative splicing patterns; in
the mammalian brain, alterations in calcium signaling via NMDA receptors is
associated with exon silencing of the CI cassette of the NMDA R1 receptor (GRIN1)
transcript by UAGG motifs in response to neuronal excitation. Regulation also
occurs at the translational level; transglutaminase-2 (TG2) mediates calcium ion-
regulated crosslinking of Y-box binding protein-1 (YB-1) translation-regulatory
protein in TGFβ1-activated myofibroblasts; YB-1 binds smooth muscle α-actin
mRNA and regulates its translational activity. Calcium signaling is also important in
epigenetic regulation, for example in respect of changes in cytosine bases. Targeting
calcium signaling may provide therapeutically useful options, for example to induce
epigenetic reactivation of tumor suppressor genes in cancer patients.
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22.1 Introduction

Gene expression is the process by which the information in a DNA sequence in
a gene is used to biosynthesize an RNA or polypeptide [1]. In turn, this involves
transcription, that is, the synthesis of an RNA copy from a DNA template, and, in
the case of polypeptides, translation, that is, protein synthesis on a messenger RNA
(mRNA) template [1]. It has recently become increasingly apparent that calcium
signaling is relevant to the regulation of eukaryotic transcription, alternative splicing
patterns, and translation. In this chapter, the roles of calcium ion signaling in these
processes and in the regulation of epigenetic mechanisms will be discussed.

Calcium ion binding, and associated phosphorylation, are associated with
changes in protein electrical charge, conformation and interactions; phosphate
moieties can be removed by protein kinases from adenosine-5′-triphosphate (ATP)
and attached covalently to the three common amino acid residues which have free
hydroxyl groups, namely the polar amino acids serine, threonine and tyrosine [2,
3]. Thus, calcium ions and phosphate ions can effect signal transduction [2, 3].
Aside from its role in gene expression, calcium ion signaling, both intercellular and
intracellular, has numerous other important functions, ranging from mitochondrial
functioning and innate immunity to apoptosis and cell death pathways [2, 4, 5].
Other chapters of this work deal with many of these. An excellent review from the
year 2000 which considers the versatility and universality of calcium signaling is
that of Berridge, Lipp and Bootman [6], while Putney and Tomita review the role
of phospholipase C signaling and calcium influx [7]; in this chapter, the focus is on
the role of calcium ion signaling in respect of gene expression.

22.2 Pre-translation

22.2.1 Eukaryotic Transcription

Eukaryotic transcription occurs on a chromatin template (unlike the case for
prokaryotes, in which a DNA template is used for transcription); the following three
classes of RNA polymerase are involved: RNA polymerase I, which transcribes
18S/28S ribosomal RNA (rRNA); RNA polymerase II, which transcribes mRNA
and certain small RNAs; and RNA polymerase III, which transcribes transfer RNA
(tRNA), 5S rRNA and certain small RNAs [1].
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22.2.2 Calcium-Related Transcriptional Regulation

Calcium-dependent gene expression regulation at the transcriptional level is thought
to underlie animal neuronal synaptic plasticity and thereby mediate learning and
adaptation to the environment [8]. In mammalian neurons, such regulation involves
a complex cascade of signaling molecules, beginning with influx of calcium
ions into the postsynaptic neuron via N-methyl-D-aspartate (NMDA) receptors
(for glutamate), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors (also for glutamate), or L-type voltage-gated calcium channels (VGCCs)
[9–11]. Each of these three possibilities will be briefly considered in turn.

Calcium ion influx through NMDA receptors activates small GTPase Rac1
(also known as Ras-related C3 botulinum toxin substrate 1), which acts as a
pleiotropic activator of actin, and also activates other Rac guanine nucleotide
exchange factors (GEFs) such as kalirin-7 and betaPIX (βPIX) [12, 13]. It also
stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI, which in
turn phosphorylates βPIX [13]. Kalirin-7 interacts with AMPA receptors, con-
trolling their synaptic expression [12]. While most AMPA receptors are calcium
impermeable, those lacking the glutamate receptor-2 (GluR2) subunits do allow
calcium ion flow. Calcium ion influx through such calcium-permeable AMPA
receptors leads to activation of Ras guanine nucleotide-releasing factor (RasGRF)
proteins, which in turn is coupled with activation of the mitogen-activated protein
kinases/extracellular signal-regulated kinases (MAPK/ERK; also known as the
Ras-ERK or Ras-Raf-MEK-ERK) signaling cascade [14]. Finally, calcium ion
influx through L-type VGCCs appears to activate signaling pathways involving
CaMKII, downstream responsive element antagonist modulator (DREAM), dis-
tinct microdomains (MD-I and MD-II), and possibly the distal C-terminal (dCT)
fragment of the L-type receptor and beta subunits [15]. These consequences of
calcium ion influx through NMDA, AMPA receptors and VGCCs are summarized in
Table 22.1.

In turn, key members of the above signaling cascades, such as CAMKII, nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB), MAPK/ERK, GTP-
Rac, DREAM, MD-I, MD-II, and possibly dCT and β4c, cross from the cytoplasm
into the nucleus [8, 15]. Here, they alter the expression of, amongst others, the non-

Table 22.1 Primary activated molecules following calcium ion influx through NMDA and AMPA
receptors and VGCCs

Type of calcium ion receptor or channel NMDA receptors AMPA receptors VGCCs

Primary activated molecules Small GTPase Rac1 RasGRF CaMKII
Kalirin-7 DREAM
βPIX MD-I
CaMKK MD-II
CaMKI dCT

β subunits
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coding RNA (ncRNA) miR-132 (which is a microRNA), CREM (which encodes the
protein cyclic adenosine monophosphate (cAMP) responsive element modulator),
BDNF (which encodes brain-derived neurotrophic factor), the proto-oncogene c-
Fos, PDYN (which encodes a preproprotein which, following proteolysis, gives rise
to several opioid peptides), WNT2 (wingless-type MMTV integration site family,
member 2; encoding signaling proteins relating to the Wnt signal transduction
pathways), BCL2 (encoding B-cell lymphoma 2 or Bcl-2), SOD2 or MnSOD
(encoding superoxide dismutase 2, mitochondrial), XIAP (X-linked inhibitor of
apoptosis family of proteins), NR4A1 or Nur77 (nuclear receptor subfamily 4
group A member 1 or nerve growth factor IB), ARC (which encodes activity-
regulated cytoskeleton-associated protein), HOMER1 (Homer scaffold protein 1 or
Homer1a), SLC8A1 or NCX1 (solute carrier family 8 member A1 or sodium/calcium
exchanger), and SLC8A3 or NCX3. These are involved in synaptic development,
dendritic growth, and neuronal plasticity; changes in their expression, as well as
mutations in some of these loci, may be associated with neurocognitive disorders [8,
15]. Furthermore, EphB receptor tyrosine kinases, localized at excitatory synapses,
cluster with NMDA receptors and modulate the function of the latter during early
synaptogenesis [16].

A similar picture exists in respect of the mammalian heart, from which efflux
of calcium ions normally takes place via plasma membrane calcium ATPases
(PMCAs). Sustained increase in intracellular calcium ion concentration in cardiac
cells activates the calcineurin moiety of PMCA4, which in turn dephosphorylates
nuclear factor of activated T-cells (NFAT), which then translocates to the nucleus
where it activates genes involved in cardiac hypertrophy [17].

The above examples have been drawn from animal cells. Calcium-related
transcriptional regulation has also been shown to be important in plants. This has
been studied in the unicellular green alga Chlamydomonas reinhardtii, which has a
relatively short life-cycle and a fully sequenced genome [18–20]. In chloroplasts of
this alga, calcium ion signaling and the calcium ion-binding protein CAS, acting in
response to cues such as biotic and abiotic stress and carbon dioxide concentrating
mechanisms, ultimately act upon a number of nuclear targets, including: APX
(encoding ascorbate peroxidase); flg22 (flagellin 22); HSFs (heat shock transcrip-
tion factors); HSPs (heat shock proteins); and LHCRS3 (light-harvesting complex
stress-related protein 3) [21]. These result in changes in basal defense responses
and carbon dioxide concentration mechanisms [21].

22.2.3 Changes in Alternative Splicing Patterns

At the post-transcriptional, but pre-translational, level, intracellular calcium ion
level changes can also alter gene expression by causing changes in alternative
splicing patterns, whereby the same pre-mRNA generates mRNAs (post-splicing)
which have different exon combinations [1].
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In the mammalian brain, it has been shown that alterations in calcium ion
signaling via NMDA receptors is associated with exon silencing of the CI cassette
(exon 19) of the NMDA R1 receptor (GRIN1) transcript by UAGG motifs in
response to neuronal excitation [22]. CI mediates targeting of NMDA R1 to the
plasma membrane, has an endoplasmic reticulum retention signal, and contains a
binding site for calcium/calmodulin [23, 24]. This may offer a powerful strategy for
neuronal adaptation to hyperstimulation and may explain the diverse properties of
NMDA receptors in different groups of neurons [22, 24].

Mechanical stimulation of hair cells of the basilar papilla of the avian inner
ear, which is homologous to the organ of Corti, or spiral organ, of mammals, is
associated with changes in intracellular calcium ion concentration via changes in the
kinetic properties of calcium-ion-activated potassium ion channels; in turn, changes
in calcium concentration have been found to be associated with alternative mRNA
splicing patterns which tune individual hair cells to specific auditory frequencies
[25–27].

In a similar vein, it is also noteworthy that GH3 pituitary cell depolarization has
been shown to repress KCNMA1 or STREX (potassium calcium-activated channel
subfamily M alpha 1, previously stress-axis regulated exon) exon splicing in BK (big
potassium, also known as Maxi-K, Kcal.1 or slo1) potassium ion channel transcripts
via CaMKs [28].

Mammalian VGCCs are able to be activated over a relatively wide range
of electrical potential differences, whereas the activation voltage dependence of
calcium channel isoforms found in different tissues are tuned to their specific
corresponding physiological functions. For example, the type known as 1.1 is the
VGCC least responsive to depolarization and it has been found to achieve this
electrical property through alternative splicing [29]. It acts both as a calcium ion
channel in embryonic muscle and as a sensor of electrical potential difference in
mature skeletal muscle for excitation-contraction coupling, and its relative lack of
responsiveness to depolarization serves these functions well [29, 30]. On the other
hand, the type of VGCC known as 1.2, which is the main type found in the brain and
the cardiovascular system, is more responsive to depolarization; interestingly, the
adjustment of its optimum activation voltage-dependency has recently been shown
not to result from alternative splicing, showing that more than one mechanism is
involved in fine tuning VGCCs [30].

22.3 Translation

Calcium regulation of gene expression at the translational level has been demon-
strated in human cultured cells. The peptide transforming growth factor beta (TGFβ)
controls cell proliferation in many tissues, including connective tissue [31]. In
particular, repair of mammalian tissue injury can be initiated by TGFβ1 receptor
signaling [32–35]. Indeed, poor regulation of this process may lead to dysfunctional
cardiopulmonary fibrosis and chronic myofibroblast differentiation [36–38]. In



542 B. K. Puri

2013, it was shown, by Willis and colleagues, that the protein cross-linking
enzyme transglutaminase-2 (TG2) mediates calcium ion-regulated crosslinking of
Y-box binding protein-1 (YB-1) translation-regulatory protein in TGFβ1-activated
myofibroblasts; YB-1 binds smooth muscle α-actin (SMαA) mRNA and regulates
its translational activity [39].

22.4 Epigenetics

22.4.1 Epigenetic Mechanisms

Tollefsbol has defined epigenetic processes as ‘changes of a biochemical nature to
the DNA or its associated proteins or RNA that do not change the DNA sequence
itself but do impact the level of gene expression’ [40]. These biochemical changes
are reversible and include DNA methylation, modifications in chromatin, nucle-
osome positioning, and ncRNA profile alterations [41]. The study of epigenetics
is a rapidly developing field of research, which is of relevance to the study of
diseases and, at a fundamental level, to a deeper understanding of intracellular
communication [40–42]. It has recently become increasingly clear that calcium ion
signaling plays an important role in epigenetic regulation.

22.4.2 Calcium-Related Epigenetic Regulation

A few recent examples are given to illustrate the important role of calcium signaling
in epigenetic regulation.

Regarding DNA methylation, it has been shown that changes in the calcium
content of murine diets can induce methylation changes in DNA cytosine bases.
For example, a calcium-deficient diet in pregnant and nursing rats is associated with
hypomethylation of the pup hepatic HSD11B2 promoter region; this gene encodes
the NAD+-dependent enzyme corticosteroid 11-β-dehydrogenase isozyme 2 (also
known as 11-β-hydroxysteroid dehydrogenase 2), and such pups have higher serum
corticosterone levels than matched control pups from mothers fed a normal diet [43].

Raynal and colleagues tested a number of drugs which re-activate silenced
gene expression in human cancer cells [44]. They found 11 newly identified
pharmacological agents, such as cardiac glycosides, which induce methylated and
silenced CpG island promoters which drive GFP, the gene for green fluorescent
protein, and endogenous tumor suppressor genes in cancer cell lines. Surprisingly,
rather than causing local DNA methylation changes or global histone changes, all
11 agents were found to alter calcium ion signaling and trigger CaMK activity;
in turn, this released methyl CpG binding protein 2 (MeCP2), a methyl-binding
protein, from silenced promoters, thus causing gene activation [44–46]. Given
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that epigenetic changes are, in principle, reversible, this suggests that a potential
therapeutic approach to the treatment of cancer might involve targeting calcium
signaling in order to induce epigenetic reactivation of tumor suppressor genes [44].

It has been pointed out that the calcium ion influx through postsynaptic NMDA
receptors and VGCCs mentioned above, which can lead to changes in BDNF
expression, for example, also cause epigenetic changes such DNA hypomethylation
(unmethylated cytosines) and histone acetylation; indeed, histone modification and
changes in DNA methylation appear to be important features of the mediation of the
risk of the development of major depressive disorder [47].

It should also be noted that epigenetic changes can also regulate calcium
ion homeostasis. For example, epigenetic modification of the promoter region of
SERCA2a, which encodes sarcoplasmic reticulum Ca2+-ATPase and which is rich
in CpG islands, changes the expression of this gene and is associated with alterations
in calcium ion homeostasis; indeed, it has been suggested that demethylation
in this promoter region, induced by the hydrazinophthalazine antihypertensive
pharmacological agent hydralazine, may lead to modulated cardiomyocytic calcium
homeostasis and consequent improved cardiac functioning [48].

22.5 Discussion

The examples given above have shown that calcium signaling has an important role
in gene expression. This may involve regulation at the level of gene transcription; it
may involve the regulation of alternative splicing; it may occur at the level of gene
translation; and it may entail epigenetic mechanisms. Furthermore, these regulatory
processes are bidirectional, in that changes in gene expression can themselves affect
calcium ion homeostasis and calcium ion signaling. These findings offer important
potential therapeutic avenues for the treatment of numerous diseases.
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