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Abstract. Simulation models are still often only part for decision support in the
planning area. For short-term decisions at the operational level, there have been
good fundamentals since the 1990s, but still relatively few implementations,
especially in the logistics sector. Our approach is to use real-time data to provide
short-term forecasts, by using a simulation model that provides required infor-
mation. Due to current hardware and a well-chosen degree of abstraction of the
model, real-time decision support (“real-time” means in this context: fast enough
to support the decision) is possible. This paper presents a concept of a procedure
model for the realization of such operational simulation-based decision support,
applied to the picking area of an industrial laundry. The operational use of the
simulation model is part of the project “Laundry Order Consolidation System
(LOCSys)”, which aims to improve the picking & storing processes in the clean
area of an industrial laundry through automation.

Keywords: Real-time simulation � Real-time decision making � Virtual
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1 Introduction

Today’s decision-makers have to analyse rapidly complex problems in the intralogis-
tics to make the right decision. There are not many tools to support this process but
usually many data is available. A concept to use this data, in an easy way to optimize
the own decision based on forecasts, would deliver a great benefit for the decision-
makers.

In planning of processes in intralogistics, the use of material flow simulation
models is quite common. The benefit of such simulation models does not necessarily
end in the planning process. Modern simulation approaches and the current rapid
hardware enable simulation runs in an extremely short time, fast enough to deliver
decision support for operational decisions. According to Rogers and Gordon [9] “real-
time” decision support implies a reaction time of the support tool that is smaller than
the time until the decision has to be made.

Many simulation software already offer numerous integrated optimization tools:
Beside classical optimization algorithms, this can also be artificial neural networks and
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genetic algorithms for an artificial intelligence approach. Furthermore, many programs
offer also a wide range of interfaces to connect the model with databases or a pro-
grammable logic controller (PLC).

For our approach, we develop a simulation model, which provides valid short-term
forecasts by using real-time data to validate different picking order sequences. The
optimization tools can directly use these data for changing various control parameters
to optimize the target parameters or alternatively an extern algorithm uses the simu-
lation results to create new (optimized) control parameters. Renewed simulation runs
enable the validation of this optimization. The decision-maker can use the highly
accurate results for the decision in his specific situation. The idea of real-time simu-
lation is not new and appeared beside the idea of real-time decision making to control
manufacturing systems [7, 9]. Since the 90s researchers already applicate real-time
simulation for example to “assign due dates on logistics-manufacturing networks” [10]
or in combination with artificial neural networks to control flows in sewerage networks
in real-time [6]. Despite the progress in this area, research continues to focus on other
use cases and new concepts nowadays.

We applicate our approach initially in the area of industrial laundries. These
companies are under a high cost pressure. Although the turnover of the laundry
industry as a whole is increasing, market concentration is taking place in Germany.
With increasing costs due to rising minimum wages, some laundries are trying to tap
new potential with innovative solutions. For example, the use of simulation models
helped to find optimization potentials and to improve the processes [1]. Real-time
simulation models go one-step further and provide meaningful results in a timely and
therefore more useful way. However, there are not many applications of real-time
simulation for industrial laundries. At least one approach describes the use of a real-
time algorithm that optimizes the sequence in order to save resources with a predictive
control [8]. A specific simulation-based approach is missing in this context.

As part of the current project “LOCSys—Laundry Order Consolidation System”, a
group of researchers and small- and medium-sized enterprises develop an automatic
picking solution for industrial laundries. In addition to the classic simulation model for
the planning of this solution, the picking solution communicates also to an operational
simulation model, which is used during operation to map an emulation and to make
short-term forecasts. This paper presents the conceptual model for this real-time con-
nection of the simulation model.

2 Laundry Logistics

2.1 Closed-Loop Supply Chain

Industrial laundries are, in contrast to the classical manufacturing industry, character-
ized by a material cycle, which is the basis for the business model. There are many
similar terms to describe laundry cycles because the topic of sustainability has a strong
influence describing cycles in the economy. We use a closed-loop supply chain to
describe the laundry cycle in the best way. Figure 1 shows a schematic representation
of the laundry cycle. The circular structure consists of the relationship between
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customer and industrial laundry. The figure also shows clearly that the circuit is not
completely closed. Purchases of laundry items or worn out laundry items vary the
amount of items in the circulation.

The focus of our application is on industrial laundries, as there is no influence on
the customer. The consideration of transport logistics between customer and laundry is
an interesting field, but the conventional and new approaches for typical transport
logistics problems are applicable here.

2.2 Processes in Industrial Laundries and RFID

The difficult handling of the laundry items decisively influences the logistical processes
of industrial laundries. Although large areas, in particular in the washing process, have
already been automated, the workers are still processing many operations manually,
especially between some process steps and above all in the picking area. Therefore,
there are current efforts to automate the picking area. This automation solution is based
on real-time data in order to react in an optimal way to every current situation. An
important prerequisite for this is the use of radio-frequency identification (RFID).
Industrial laundries are increasingly using this technology, for example to obtain
information about the loss of laundry in the laundry cycle. The use of this technology
makes it possible to process data, with the help of further data from the merchandise
management system, in order to make a real-time decision.

Since the considered system is the industrial laundry, it would make sense to collect
data using RFID in the incoming goods department to identify the incoming laundry
items and to have as much time as possible to make a decision. Figure 2 shows the
processes in an industrial laundry and puts the simulation model in a context. There
will not only be an identification point in the goods receipt, but also in the picking area.
However, the latter will probably just make fast calculations and smaller variant
comparisons to make a real-time decision.
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Fig. 1. Schematic representation of the laundry cycle.
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The picking solution “LOCSys” consists currently of one rack row and a mounted
on rails storage and retrieval unit.

3 Problem Description and Real-Time Decision Making

In our application, we face the complex challenge of combining a typical scheduling
issue with a space allocation and stacking problem. Due to this, a decision making
based on real-time data is essential, because several questions must be answered based
on this data:

• Which is the next laundry stack to transport (storage, relocate or retrieve)?
• Where should the laundry stack be stored or relocated?
• Should it put the laundry stack on another laundry stack?

Inaccurate data would quickly lead to incorrect or non-optimal answers to these
questions. The incoming material flow in industrial laundries is very variable in its
quantity and composition. A simple use of historical data to estimate the overall state of
the system supposedly known is thus not possible.

The optimization of sequence of different picking orders using certain limited
resources is a typical scheduling problem. Scheduling problems are not new [2] and
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Fig. 2. Typical processes in an industrial laundry and early concept of the core processes for
operational decision support of LOCSys.
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neither are the real-time approaches to solve them: with the emergence and spread of
computers and networks in production and logistics, researchers were already looking
for real-time solutions to optimize these problems with these new technologies in the
1990s [7, 9]. According to Rogers and Gorden there are three different approaches for
solving scheduling problems: the chosen simulation-based one, “O.R. tools” and “A.I.
concepts” [9]. Many approaches in the literature focus on applications in manufacturing
systems and less on typical logistics solution as a warehouse.

Our simulation-based approach is also called “Simulation-based Real-time
Decision-Making (SRDM)” [3] or “On-Line” simulation [4, 9, 12]. Looking less at
the decision-making component and focusing more on testing the real system, our
approach can also be described as a virtual commissioning [11], which leads also to
typical results of an emulation [5]. The intended picking algorithm in our project could
be considered as an A.I.-approach but will not be discussed further in this paper as it is
still in development and not yet completely clear. We can already state at this point that
the combination of the two approaches (simulation and A.I.) should be able to over-
come the three-part problem.

4 Concept

4.1 Simulation Model, Picking Algorithm and PLC

To optimize order picking and warehousing, an efficient data exchange between sim-
ulation model, picking algorithm, PLC and the real logistics solution is required.
Figure 3 shows the conceptual data exchange model at a high aggregation level. The
central point of exchange are various data tables, which can be located on a normal
computer with network connection in the enterprise. The merchandise management
system or the corresponding part of an ERP software provides data about the current
state of the overall system at regular intervals (e.g. every hour/day). This allows the
system to know exactly which and approximately where a laundry item is currently
located in the industrial laundry. Customer orders that result in picking orders can
either be transmitted via the ERP system, separately in another software or directly by
the customer. The actual real-time data comes from the real automated picking solution.
This can be primarily the position of the SRU, as well as data on the instantaneous
speed of the SRU and possibly faults that occur. With this data, the picking algorithm
can specify the (approximately) optimized sequence of the picking orders. For this
purpose, the algorithm uses not only its normal decision patterns but also the simulation
model, as long as the real system allows sufficient simulation runs in time. The
algorithm can conclude this period of time from the open picking orders and the current
items of laundry in the picking area.

The simulation model needs the real-time data from the data tables for initialization
in order to establish the current state of the real system. Already completed transport
orders have been noted in the data tables and give conclusions about the current
occupancy of the warehouse, despite the lack of sensor technology at this point. The
current position of the SRU is also transferred after a processed transport order and is
thus at least partially given in real time, if the SRU has no current transport order.
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After simulation, the picking algorithm receives the results. This can also result in
possible new variations of the sequence that the algorithm did not sent before. The
picking algorithm then forwards the sequence of the picking orders to the PLC as
separate transport requests. The PLC then translates the transport requests into corre-
sponding control commands. However, manual control commands can also be issued
via the user interface of the SCADA and allow the change of automated created
sequence or to create new transport orders.

4.2 Data Tables

Table 1 gives an overview of the planned entities for the central exchange of data. In
addition to the mentioned attributes, there are relationships between the entities that

Supervisiory Control 
and Data Acquisition (SCADA)

Simulation Model

Picking Algorithm

Programmable 
Logic Controller

Client Inventory 
Management System

SRU in Automated 
Warehouse

real-time data

planned 
sequences 

(& variations)

results & 
new variations identified laundry 

items in system

real-time data

real-time 
data (status 
SRU) 

manual 
instructions

automated instructions instructions

orders

status

(Real-Time) Data 
Tables 

Fig. 3. Conceptual data exchange model between simulation, algorithm, PLC and real system.

Table 1. Overview of the data tables.

Entity Primary
key

Further attributes

SRU ID Maximum speed; acceleration
Laundry item ID Length, width, height, location object, type of laundry, weight,

position in stack
Laundry stack ID Location object, x-position, y-height
Shelf level ID Length
Transport
order

ID/order
number

Type of transport (store, relocate, retrieve), creation time stamp,
completion time stamp, target object, target x-position

Picking order ID Date of delivery, creation time stamp, completion time stamp
Client Client

number
Name
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involve further data fields.
A central component of data exchange will be the table with transport requests.

Already assigned transport orders must be remembered in order to be taken into
account when assigning new transport orders. This is always the case when a new item
of laundry arrives via the conveyor belt to the picking area. In addition, the timestamps
enable a statistical evaluation of the assigned transport requests. Table 2 shows some
example data fields from the transport order table. The records of the transport orders
have beside the shown columns also data fields for “stack height”, “target stack”,
“transport mode” and might get more in the future. In this example transport order 9
and 10 are finished yet and transport order 11 would be taken next by a storage and

retrieval unit.

5 Conclusion and Outlook

The project is currently still in the planning phase and the approaches to real-time
decision support by means of simulation-based forecasts are to be implemented next
year. It has already become apparent that a database as a middleware is required for
smooth communication between the simulation model, the picking algorithm and the
PLC. The coordination of the data fields and transfer protocols is an important
prerequisite.

The paper has given a brief overview of the most important aspects and their state
of the art. In addition, it also presented a first data exchange model, which shows how
the future interaction should work.
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Table 2. Example of typical transport orders and some of their attributes.

Transport order
number

Creation
date

Completion
date

Transported
stack

Shelf
layer

x-
position

9 5:24.6667 5:53.3417 stack:3 layer:1 6.556
10 5:25.4333 6:20.4126 stack:4 layer:3 5.514
11 5:51.8333 stack:11 layer:2 0.539
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