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Preface

Nonlinear Structures and Systems represents one of eight volumes of technical papers presented at the 37th IMAC, A
Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and held in
Orlando, Florida, on January 28–31, 2019. The full proceedings also include volumes on Dynamics of Civil Structures;
Model Validation and Uncertainty Quantification; Dynamics of Coupled Structures; Special Topics in Structural Dynamics
& Experimental Techniques; Rotating Machinery, Optical Methods & Scanning LDV Methods; Sensors and Instrumentation,
Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing; and Topics in Modal Analysis & Testing.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Nonlinearity is one of these areas.

The vast majority of real engineering structures behave nonlinearly. Therefore, it is necessary to include nonlinear effects
in all the steps of the engineering design: in the experimental analysis tools (so that the nonlinear parameters can be correctly
identified) and in the mathematical and numerical models of the structure (in order to run accurate simulations). In so doing,
it will be possible to create a model representative of the reality which, once validated, can be used for better predictions.

Several nonlinear papers address theoretical and numerical aspects of nonlinear dynamics (covering rigorous theoretical
formulations and robust computational algorithms) as well as experimental techniques and analysis methods. There are also
papers dedicated to nonlinearity in practice where real-life examples of nonlinear structures are discussed.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Liége, Belgium G. Kerschen
Houston, TX M. R. W. Brake
Bristol, UK Ludovic Renson
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Chapter 1
Nonsmooth Modal Analysis of a Non-internally Resonant Finite
Bar Subject to a Unilateral Contact Constraint

Carlos Yoong and Mathias Legrand

Abstract The present contribution describes a numerical technique devoted to the nonsmooth modal analysis (natural
frequencies and mode shapes) of a non-internally resonant elastic bar of length L subject to a Robin condition at x = 0
and a frictionless unilateral contact condition at x = L. When contact is ignored, the system of interest exhibits non-
commensurate linear natural frequencies, which is a critical feature in this study. The nonsmooth modes of vibration are
defined as one-parameter continuous families of nonsmooth periodic orbits satisfying the local equation together with the
boundary conditions. In order to find a few of the above families, the unknown displacement is first expressed using the
well-known d’Alembert’s solution incorporating the Robin boundary condition at x = 0. The unilateral contact constraint
at x = L is reduced to a conditional switch between Neumann (open gap) and Dirichlet (closed gap) boundary conditions.
Finally, T -periodicity is enforced. It is also assumed that only one contact switch occurs every period. The above system of
equations is numerically solved for through a simultaneous discretization of the space and time domains, which yields a set of
equations and inequations in terms of discrete displacements and velocities. The proposed approach is non-dispersive, non-
dissipative and accurately captures the propagation of waves with discontinuous fronts, which is essential for the computation
of periodic motions in this study. Results indicate that in contrast to its linear counterpart (bar without contact constraints)
where modal motions are sinusoidal functions “uncoupled” in space and time, the system of interest features nonsmooth
periodic displacements that are intricate piecewise sinusoidal functions in space and time. Moreover, the corresponding
frequency-energy “nonlinear” spectrum shows backbone curves of the hardening type. It is also shown that nonsmooth modal
analysis is capable of efficiently predicting vibratory resonances when the system is periodically forced. The pre-stressed
and initially grazing bar configurations are also briefly discussed.

Keywords Nonsmooth systems · Modal analysis · Internal resonance · Unilateral contact constraints · Wave equation

1.1 Introduction

The concept of linear modes (natural frequencies and mode shapes) is a widely studied subject in the field of structural
dynamics [7]. A possible extension of this notion to nonlinear conservative systems sees a mode of vibration as a one-
parameter continuous family of periodic orbits displaying similar qualitative features [5]. In the phase space, nonlinear
modes emerge as invariant surfaces of periodic trajectories, referred to as invariant manifolds [10], where invariant implies
that the motion initiated on the manifold stays on it as time unfolds. To some extent, nonlinear modal analysis can be
employed for predicting vibratory resonances, computing the nonlinear spectra of vibration or performing model-order
reduction. Techniques traditionally employed for nonlinear modal analysis require a certain degree of smoothness in the
nonlinearities [11] and thus fail for systems with nonsmooth nonlinearities such as unilateral contact constraints. Certainly, an
accurate characterization of the vibratory response of these systems is essential to achieving enhanced and safer engineering
applications [12]. Modal analysis of nonsmooth mechanical systems, also called nonsmooth modal analysis, has been
recently proposed for a finite elastic bar of lengthL subject to a Dirichlet boundary condition at x = 0 and a unilateral contact
constraint at x = L [13]. This system satisfies a complete internal resonance condition, i.e. all linear natural frequencies are
commensurate with the first one, which has drastic consequences on the nonlinear modal response. Despite the simplicity of
the system, the computed nonsmooth modes (NSMs) indicate highly intricate vibratory behaviour. Corresponding periodic
displacements were observed to be unseparated piecewise linear functions of space and time, as opposed to their linear
counterparts which are sinusoidal functions separated in space and time. Moreover, for certain NSMs such internal resonance

C. Yoong (�) · M. Legrand
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e-mail: carlos.yoong@mail.mcgill.ca
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2 C. Yoong and M. Legrand

generates a discontinuity between the linear and nonlinear portions of the invariant manifold. To further explore the nonlinear
dynamics of this one-dimensional contact problem, a non-internally resonant configuration is investigated in the present
work. The complete internal resonance condition is annihilated by changing the boundary condition (BC) at x = 0 from
Dirichlet type u(0, t) = 0 to a Robin type ∂xu(0, t) − αu(0, t) = 0 which reflects that the elastic bar is now connected
to a rigid support through a simple linear spring.1 Analytical derivations are first proposed to facilitate the construction of
the sought NSMs. Then, a numerical scheme based on the simultaneous discretization of the space and time domains is
employed and the nonsmooth modes of vibration are constructed.

1.2 Non-internally Resonant Elastic Bar

The system of interest is a homogeneous elastic bar of length L > 0 and constant cross-sectional area S > 0 subject to
a conservative unilateral constraint at its right end. Its left end is connected to a rigid support through a spring of stiffness
κ > 0, as depicted in Fig. 1.1. The displacement, velocity, strain and stress fields are denoted by u(x, t), v(x, t), ε(x, t) and
σ(x, t) respectively where x is the coordinate of a point of the bar in the initial configuration and t denotes time. Young’s
modulus is denoted by E > 0 and ρ > 0 stands for the mass per unit volume, which are both, by assumption, space and
time independent. Hence, the propagation speed of any longitudinal wave is

√
E/ρ. In the framework of linear elasticity, the

stresses read σ = Eε, where ε = ∂xu should be infinitesimal and satisfy |∂xu| < 1 [1, p. 5]. The unilateral contact force
r(t) is related to the stresses by σ(L, t) = E∂xu(L, t) = r(t)/S. Further, the signed distance between the right extremity of
the bar and the rigid obstacle, termed gap function, is defined as g(u(L, t)) = g0 − u(L, t), where g0 is the signed distance
between the unrestricted resting configuration and the obstacle: it is strictly negative in the pre-stressed configuration, for
instance. Unless stated otherwise, there is no external excitation on the system. The full formulation reads:

Local equation ∂2
tt u(x, t)− c2∂2

xxu(x, t) = 0, ∀x ∈]0 ;L[, ∀t > 0, (1.1)

Robin BC ∂xu(0, t)− αu(0, t) = 0, ∀t > 0, (1.2)

Signorini BC g(u(L, t)) ≥ 0, r(t) ≤ 0, r(t)g(u(L, t)) = 0, ∀t > 0, (1.3)

Initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x), ∀x ∈]0 ;L[. (1.4)

where α = κ/(ES). This formulation possesses a unique solution which conserves the total energy [9]. It is worth noting
that the local equation (1.1) is the well-known wave equation (a hyperbolic partial differential equation) defined on a
one-dimensional finite domain. The natural frequencies ωk and 	k of the underlying linear system are solutions to the
transcendental equations:

spring−free BCs ωk − αc cot(ωkL/c) = 0, k ∈ N>0, (1.5)

spring−fixed BCs 	k + αc tan(	kL/c) = 0, k ∈ N>0. (1.6)

The corresponding natural periods are Tk = 2π/ωk and Pk = 2π/	k . In both configurations, the natural frequencies are
incommensurate, in the sense that ωk and 	k for k = 2, 3, . . . ,∞ are not multiples of ω1 nor 	1, respectively [8, p. 245].
Accordingly, the complete internal resonance condition emerging when the bar is clamped at x = 0 no longer holds [13].

Non-trivial solutions of the unilateral contact problem described by Eqs. (1.1)–(1.4) are successions of free phases (open
gap) and contact phases (closed gap) [2]. Hence, these solutions can be perceived as the combination of motions satisfying the
wave equation together with a switching boundary condition at x = L between ∂xu(L, ·) = 0 when the gap is open, referred

x
u(x, t)

L

g(u(L, t) )

Fig. 1.1 One-dimensional finite elastic bar attached to a spring at its left extremity and subject to unilateral contact constraint on its right tip

1In this document, operators ∂ξ (•) and ∂2
ξξ (•) stand for the first and second derivatives of (•) with respect to the argument ξ .
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to as “spring–free BCs” (or equivalently Robin–Neumann BCs), and prescribed displacement u(L, ·) = g0 which implies
v(L, ·) = 0 when the gap is closed, named “spring–fixed BCs” (or equivalently Robin–Dirichlet BCs). The nonlinearity
in the formulation arises in the dependence of the solution to the unknown switching time. To further elaborate on this
statement, consider the general solution to the local equation (1.1) comprising the superposition of forward h and backward
f travelling waves defined on the real line R [1, p. 91]

u(x, t) = f (ct + x)+ h(ct − x), (1.7)

At x = 0, the effect of the attached spring on the reflection of an incident backward wave f is computed by inserting the
general solution (1.7) in (1.2), yielding (∂ξf (ξ)− ∂ξh(ξ)) = α(f (ξ)+ h(ξ)), ∀ξ ∈ R, which in turns leads to the identity

h(ξ) = f (ξ)+ e−αξ(β − 2α
∫ ξ

0
eαsf (s) ds

)
, ∀ξ ∈ R (1.8)

Without going into the details, it is straightforward to check that the BC at x = L imply that β = 0. Incorporating (1.8)
in (1.7) leads to an integral expression of the displacement in terms of f only

u(x, t) = f (ct + x)+ f (ct − x)− 2αeα(x−ct)
∫ ct−x

0
eαsf (s) ds, (1.9)

which incorporates the reflection mechanism of the travelling waves at x = 0. At x = L, the boundary condition successively
switches from Neumann to Dirichlet and vice-versa. The corresponding reflections require additional considerations
elaborated later in the text.

Let us first denote by f |[a ;b] the set of all ordered pairs (ξ, f (ξ)), ∀ξ ∈ [a ; b], which is also referred to as the graph of
function f over the interval [a ; b]. Provided that f |[0 ;L] is known, the boundary condition at x = L is utilized to specify
f (ξ) over the remaining portions of the real axis R, that is for ξ ∈] − ∞; 0[ and ξ ∈]L ;∞[. During free phases (open
gap), a homogeneous Neumann BC is active at x = L, that is ∂xu(L, ·) = 0. Inserting Eq. (1.7) into the latter yields
∂ξf (ξ + 2L) = ∂ξh(ξ), which in turn results in f (ξ + 2L) − h(ξ) = f (2L) − h(0). Incorporating the influence of the
attached spring via Eq. (1.8), the latter is re-formulated in terms of the backward wave f only, that is

f (ξ + 2L)− f (ξ)+ 2αe−αξ
∫ ξ

0
eαsf (s) ds = f (2L)− f (0). (1.10)

During contact phases (closed gap), the right end of the bar satisfies a non-homogeneous Dirichlet BC, corresponding to a
prescribed displacement at x = L, which reads u(L, ·) = g0. Again, combining this boundary condition and the general
solution (1.7), the interaction of forward and backward travelling waves shall satisfy f (ξ +2L)+h(ξ) = g0, which can also
be expressed in terms of f only as follows:

f (ξ + 2L)+ f (ξ)− 2αe−αξ
∫ ξ

0
eαsf (s) ds = g0, (1.11)

Accordingly, if f is known in any region of length 2L, it can be expanded over the real axis, via (1.10) for a free phase (open
gap) and (1.11) for a contact phase (closed gap). It is then employed in (1.9) to calculate the corresponding displacement.

During each of the above phases, f |[0 ;2L] is obtained from the associated initial and boundary conditions [4, p. 80].
For the free phase, knowing that the displacement and velocity waves reflect at a free BC without changing signs, f |[0 ;2L]
satisfies

f |[0 ;2L]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(ξ)

2
+ 1

2c

∫ ξ

0
v0(s) ds ξ ∈ [0 ;L],

u0(2L− ξ)
2

+ 1

2c

∫ L

0
v0(s) ds + 1

2c

∫ ξ

L

v0(2L− s) ds ξ ∈]L ; 2L].
(1.12)

However, for the contact phase, knowing that u0(L) = g0 and that the displacement and velocity waves reflect with opposite
sign, f |[0 ;2L] shall satisfy
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f |[0 ;2L]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(ξ)

2
+ 1

2c

∫ ξ

0
v0(s) ds ξ ∈ [0 ;L],

g0 − u0(2L− ξ)
2

+ 1

2c

∫ L

0
v0(s) ds − 1

2c

∫ ξ

L

v0(2L− s) ds ξ ∈]L ; 2L],
(1.13)

Consequently, f can be completely defined over R for every phase. To summarize, the displacement of the elastic bar with
Robin BC on the left end is obtained through Eq. (1.9) provided that f is defined everywhere on the real axis. The successive
switches in boundary conditions at x = L, reflecting the unilateral contact constraint, are incorporated through appropriate
extensions: Eq. (1.10) for the free phase or Eq. (1.11) for contact phase. The following section is concerned with analytical
derivations for the computation of periodic solutions by employing the expressions (1.9)–(1.11).

1.3 Periodic Solutions and Nonsmooth Modal Analysis

Nonsmooth modes of vibration of the spring–bar system depicted in Fig. 1.1 are defined as continuous families of periodic
solutions satisfying the formulation (1.1)–(1.4) together with periodicity conditions in displacement and velocity: ∃T > 0
such that u(x, t + T ) = u(x, t) and v(x, t + T ) = v(x, t), ∀x ∈ [0 ;L] and ∀t > 0. Finding such solutions translates into
finding corresponding initial conditions u0 and v0 and period T which generate periodic motions. Without loss of generality,
it is assumed that within one period, over the interval t ∈ [0 ; T ], the initial time segment is a free phase that initiates at
t = 0+ and the final time segment is a contact phase that ends at t = T − and switches back to the initial free phase state at
t = T +. In general, various successions of free and contact phases might arise within one period. Knowing that the motion
of the bar can be uniquely defined by a single function f , the targeted trajectory is then an unknown periodic sequence of
functions u in the form (1.9) where f switches between (1.10) and (1.11).

Let us consider the simplest combination of one free phase and one contact phase of duration tf and tc = T − tf,
respectively. When the gap is open, displacement and velocity satisfy the following equalities ∀x ∈ [0 ;L] and ∀t ∈ [0 ; tf]:

u1(x, t) = f0(ct + x)+ f0(ct − x)− 2αeα(x−ct)
∫ ct−x

0
eαsf0(s) ds, (1.14a)

1

c
v1(x, t) = ∂tf0(ct + x)+ ∂tf0(ct − x)− 2αf0(ct − x)+ 2α2eα(x−ct)

∫ ct−x

0
eαsf0(s) ds, (1.14b)

where f0|[0 ;2L], calculated via Eq. (1.12) with the initial conditions u0 and v0, is then expanded throughout the real axis R
via (1.10). During gap closure, the motion is described by the composite function f1(f0( ·)) corresponding to a boundary
condition switch. This function arises by defining the graph f1|[0 ;2L] with u1( · , tf) and v1( · , tf) as the “initial conditions” in
Eq. (1.13) and then expanding it on R via Eq. (1.11). During a contact phase, the displacement and velocity read ∀x ∈ [0 ;L]
and ∀t ∈]tf ; T ]

u2(x, t) = f1(c(t − tf)+ x)+ f1(c(t − tf)− x)− 2αeα(x−c(t−tf))
∫ c(t−tf)−x

0
eαsf1(s) ds, (1.15a)

1

c
v2(x, t) = ∂tf1(c(t−tf)+x)+ ∂tf1(c(t−tf)−x)−2αf1(c(t−tf)−x)+2α2eα(x−c(t−tf))

∫ c(t−tf)−x

0
eαsf1(s) ds. (1.15b)

Accordingly, admissible T -periodic motions involving one lasting contact phase per period are described by functions f1 ◦f0
and f0 that satisfy the following periodicity condition, arising from u0(x) = u2(x, T ) and v0(x) = v2(x, T ), ∀x ∈ [0 ;L]

u0(x) = f1(ctc + x)+ f1(ctc − x)− 2αeα(x−ctc)
∫ ctc−x

0
eαsf1(s) ds, (1.16a)

1

c
v0(x) = ∂tf1(ctc + x)+ ∂tf1(ctc − x)− 2αf1(ctc − x)+ 2α2eα(x−ctc)

∫ ctc−x

0
eαsf1(s) ds. (1.16b)

together with the admissibility conditions reflecting Signorini’s conditions at x = L in Eq. (1.3):
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• the elastic bar shall not contact the obstacle during a free phase except at gap closure when t = tf; grazing is permitted
during free phase

g0 − f0(ct + L)− f0(ct − L)+ 2αeα(L−ct)
∫ ct−L

0
eαsf0(s) ds ≥ 0, ∀t ∈ [0 ; tf], (1.17a)

g0 − f0(ctf + L)− f0(ctf − L)+ 2αeα(L−ctf)
∫ ctf−L

0
eαsf0(s) ds = 0, (1.17b)

• the contact force should be non-positive during gap closure until contact separation at t = tf + tc = T

∂xf1(ct + L)− ∂xf1(ct − L)+ 2αf1(ct − L)− 2α2eα(L−ct)
∫ ct−L

0
eαsf1(s) ds ≤ 0, ∀t ∈ [0 ; tc], (1.18a)

∂xf1(ctc + L)− ∂xf1(ctc − L)+ 2αf1(ctc − L)− 2α2eα(L−ctc)
∫ ctc−L

0
eαsf1(s) ds = 0. (1.18b)

From Eq. (1.16), the equality c∂xu0(x) + v0(x) = c∂xu2(x, T ) + v2(x, T ) provides an additional relationship between f0
and f1 for potential periodic motions to exist: f1(ctc + x)− f1(ctc) = f0(x)− f0(0), ∀x ∈ [0 ;L].

Finding solutions to Eqs. (1.16)–(1.18) is a noticeably challenging task. The complexity for solving such problems lies
in the difficulty of defining a simple relationship between functions f0 and f1 incorporating the BC switching mechanism.
Additionally, the effect of the spring, arising as a delay integral term in the displacement (1.9) further complicates the
identification of admissible periodic motions.

1.4 Numerical Scheme

The main objective of the proposed numerical scheme is to simultaneously discretize the space and time domains of the
above formulation in order to accurately mimic the propagation of discontinuous waves along the characteristics lines:
x ± ct = constant. The main limitation of the proposed technique is the fact that the travelling-wave solution shall be
partially known (in the sense that identities such as Eqs. (1.16)–(1.18) can be derived) before discretization.

To compute families of periodic orbits, the space and time domains of the integral equations (1.16) are simultaneously
discretized in order to approximate the initial conditions that generate a periodic motion. Space is divided into N intervals
of identical lengthx = xi+1 − xi = L/N with i = 0, 1, . . . , N . Since travelling waves are required to propagate along the
characteristic lines, the time-step shall satisfy t = tn+1 − tn = x/c for n = 0, 1, . . . , nT , where nT satisfies nT t = T .
To approximate f1 in Eq. (1.16), the discretization of the real axis emerges from the discretized space-time coupling argument
x ± ct of the travelling-wave solution, hence the discretized f1 function is denoted as f1j ≈ f1(ξj ) such that ξj = xi ± ctn
where j = i ± n for i = 0, 1, . . . , N and n = 0, 1, . . . , nT . Similar notations also apply to f0j . The discretization of the
displacement and velocity during free phase produces u(n)1i ≈ u1(xi, tn) and v(n)1i ≈ v1(xi, tn) respectively, and in a similar
fashion during contact phase for u2 and v2. The discretized initial conditions read u0i ≈ u0(xi) and v0i ≈ v0(xi).

Since the duration of the free phase is tf = nft and the duration of the contact phase is tc = nct , the approximations of
f0|[0 ;2L] and f1|[0 ;2L] needed to approximately solve (1.16) are computed via a trapezoidal rule to compute the integrals:

• for a free phase via discretization of Eq. (1.12) with discrete initial conditions u0i ≈ u0(xi) and v0i ≈ v0(xi)

f0j =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0j

2
+ 1

4c

j∑
i=0

x(v0i + v0(i+1)) j = 0, 1, . . . , N,

a + u0(2N−j)
2

+ 1

4c

j∑
i=N+1

x(v0(2N−i) + v0(2N−i+1)) j = N + 2, N + 3, . . . , 2N,

(1.19)
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• for a contact phase via discretization of Eq. (1.13) with discrete “initial conditions” u(nf)
1i ≈ u1(xi, tf) and v(nf)

1i ≈ v1(xi, tf)

f1j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u
(nf)
1j

2
+ 1

4c

j∑
i=0

x
(
v
(nf)
1i + v(nf)

1(i+1)

)
j = 0, 1, . . . , N,

b − u
(nf)
1(2N−j)

2
− 1

4c

j∑
i=N+1

x
(
v
(nf)
1(2N−i) + v(nf)

1(2N−i+1)

)
j = N + 2, N + 3, . . . , 2N,

(1.20)

where 4ac = ∑N
i=0x(v0i + v0(i+1)) and 4bc = ∑N

i=0x
(
v
(nf)
1i +v(nf)

1(i+1)

)+4g0c. The above expressions (1.19) and (1.20)
known for j = 0, 1, . . . , 2N are then expanded on the real axis:

f0(j+2N) − f0(j) + sgn(j)αe−αjx
j∑
k=0

(eαξkf0(k) + eαξk+1f0(k+1)) = f0(2N) − f0(0), (1.21)

f1(j+2N) + f1(j) + sgn(j)αe−αjx
j∑
k=0

(eαξkf1(k) + eαξk+1f1(k+1)) = g0, (1.22)

where sgn(•) is the sign function. Since the period T = tf + tc = nT t is known, where nT = nf + nc, the approximated
displacement can be calculated for each phase as follows:

• free phase, via discretization of Eq. (1.14), for i = 0, 1, . . . , N and n = 0, 1, 2, . . . , nf

u
(n)
1i = f0(n+i) + f0(n−i) − sgn(n− i)αeα(xi−ctn)

n−i∑
k=0

x(eαξkf0(k) + eαξk+1f0(k+1)), (1.23)

• contact phase, via discretization of Eq. (1.15), for i = 0, 1, . . . , N and n = nf + 1, nf + 2, . . . , nT

u
(n)
2i = f1(n−nf+i) + f1(n−nf−i) − sgn(n− nf − i)αeα(xi−c(tn−tf))

n−nf−i∑
k=0

x(eαξkf1(k) + eαξk+1f1(k+1)). (1.24)

The corresponding velocity is calculated through a numerical time-differentiation scheme, such as the forward Euler method
v
(n)
i = (u(n+1)

i − u(n)i )/t . It is worth remarking that because f1j in Eq. (1.24) is compounded with f0j , and the latter is
computed from discrete initial conditions, then all displacements points u(n)1i and u(n)2i can be expressed in terms of u0i and
v0i .

The discretization of the periodicity condition (1.16) together with the unilateral contact condition yields a constrained
system of linear equations written in terms of the discrete initial conditions u0i and v0i , free-phase time-steps nf and contact-
phase time-steps nc:

periodicity: u0i − u(nf+nc)
2i = 0 and v0i − v(nf+nc)

2i = 0, i = 0, 1, . . . , N (1.25)

impenetrability: g0 − u(n)1N ≥ 0, n = 0, 2, . . . , nf (1.26)

compressive contact: Eε
(n)
2N ≤ 0, n = nf + 1, nf + 2, . . . , nf + nc (1.27)

where ε(n)2N is the strain at x = L at time tn calculated from the numerical space-differentiation of discrete dis-

placements u(n)2i ; for instance, the implementation of the forward Euler scheme yields discrete strains in the form of
ε
(n)
2i = (u(n)2i − u(n)2(i−1))/x. The discretized formulation given by Eqs. (1.25)–(1.27) is solved through the following steps:

1. Set number of time-steps nf and nc.
2. Calculate potential initial conditions u0i and v0i that generate a periodic motion satisfying Eq. (1.25) only.
3. Verify that the generated periodic motion satisfies the conditions of impenetrability (1.26) and compressive contact (1.27):

the corresponding initial conditions are admissible.
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4. If the initial conditions are admissible, compute and store the period of vibration and total energy.
5. Change values of nf and nc.

For the identification of families of periodic orbits, every feasible pair (nf, nc) ∈ N
2
>0 is examined. Nevertheless, verifying

among all potential combinations is computationally very inefficient. For that reason, the iteration intervals are bounded for
each family of admissible periodic motions by analyzing every possible combination of nf and nc on coarse meshes.

1.5 Spectrum of Nonsmooth Vibration

Three initial configurations of the bar are explored: unstressed (g0 > 0), prestressed (g0 < 0) and initially grazing (g0 = 0).
Without loss of generality, the mechanical parametersE, ρ, S and L are arbitrarily chosen to be unity and units are discarded.
The autonomous dynamics of the bar is investigated for two spring-bar stiffness ratios α. The linear natural frequencies
ωk(α) and 	k(α) respectively calculated using Eqs. (1.5) and (1.6), now only depend on the parameter α. The proposed
discretization technique with t = x/c = 10−3 is implemented. Modal responses were obtained with g0 = ±10−3 in
both unstressed and prestressed configurations. The response of the autonomous elastic bar is depicted in frequency-energy
plots (FEPs) where a backbone curve (also known as branch) represents a NSM. Each point pertaining to a backbone curve
represents a modal motion whose frequency is indicated on the horizontal axis and constant total energy along the vertical
axis. The frequencies in the FEPs are not normalized while the energy is normalized with respect to the energy of the first
linear mode grazing orbit.

NSMs computed for α = 1 and α = 1/2 are now investigated. In contrast to the results exposed in [13], the intricate
dynamics caused by the spring complicates the identification of NSM branches and a highly fine discretization is required to
discern how admissible periodic solutions organize to form a continuum. The backbone curves, emerging in the frequency
range [ω1 ;	1] are depicted in Fig. 1.2 as sets of scattered points supposedly belonging to NSMs. Contrary to main NSMs
of the internally resonant bar studied in [13] where the energy continuously depends on the frequency, the depicted scattered
points indicate more complicated backbone curves. Figure 1.2 suggests that a “nicely” connected continuum representing a
possible “main NSM” does not exist. However, several independent branches emerge around subharmonics frequencies lying
in the range for the unstressed configuration. This agrees with NSMs in discrete systems without linear internal resonance
[6, 12]. An equivalent phenomenon occurs for the prestressed configuration where independent branches align in a seemingly
softening branch. For the initially grazing configuration, the NSMs emerge as vertical lines embedding periodic solutions
with identical frequency and increasing energy. It also appears that every given collection of scattered points represents a
purely independent subharmonic vibration, as opposed to the internally resonant bar which features subharmonic as well as
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Fig. 1.2 Backbone curves in the frequency interval [ω1 ;	1] for α = 1 and α = 1/2 with bar configurations: unstressed [blue solid line],
prestressed [grey solid line ] and initially grazing [brown solid line]. Subharmonics frequencies [dashed line]
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Fig. 1.3 Periodic displacement fields for α = 1 corresponding to points b (left) and c (right) in Fig. 1.2
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Fig. 1.4 Periodic displacement fields for α = 1/2 corresponding to points b (left) and c (right) in Fig. 1.2

internally resonant NSMs [13]. This observation coincides with the fact that the system of interest does not satisfy the full
internal resonance condition.

Figures 1.3 and 1.4 depict NSM periodic displacement fields, for α = 1 and α = 1/2 respectively, corresponding to
points b and c in Fig. 1.2. Both points b represent periodic motions belonging to backbone curves that emerge in the
vicinity of the respective ω1. On the other hand, points c live in apparent NSM branches that arise in the neighborhood
of linear subharmonic frequencies. The complicated pattern of each solution is caused by an intricate interplay between
various travelling waves embedding the Robin and Signorini boundary conditions. In contrast to linear modes that are
purely harmonic functions, the nonsmooth modes of the non-internally resonant system are nonsmooth piecewise-sinusoidal
functions. The velocity fields shall present several jump discontinuities per period, which would not be accurately described
by traditional semi-discretization strategies [3]. From the reported motions, it also seems that the displacement field for
t ∈ [0 ; tf] presents an axis of symmetry in time located at the middle of the free phase: t = tf/2. This observation could
facilitate the derivation of closed-form expressions; this is left to future investigations.

1.6 Response to Periodic External Forcing

This section numerically investigates the relationships between NSMs and the system response under periodic excitation.
A slight amount of structural viscous damping is introduced in the governing equation (1.1) and a weak external damper is
attached at x = 0 so that the system can possibly reach a periodic steady-state with bounded energy. The system is forced
via a harmonically moving rigid wall that periodically compresses the bar, as seen in Fig. 1.5. The formulation for the forced
spring–bar system, to be compared to Eqs. (1.1)–(1.4), reads

∂2
tt u(x, t)+ ζ1∂tu(x, t)− c2∂2

xxu(x, t) = 0, ∀x ∈]0 ;L[, ∀t > 0, (1.28)

∂xu(0, t)− αu(0, t)− ζ2∂tu(0, t) = 0, ∀t > 0, (1.29)

g(u(L, t), w(t)) ≥ 0, r(t) ≤ 0, r(t)g(u(L, t), w(t)) = 0, ∀t > 0, (1.30)

u(x, 0) = u0(x), v(x, 0) = v0(x), ∀x ∈]0 ;L[, (1.31)

where ζ1 and ζ2 are respectively the structural and external damping coefficients. The moving wall excitation corresponds
to w(t) = w0 sinωt . For an elastic bar initially at rest, the response of the periodically-forced system is constructed by



1 Nonsmooth Modal Analysis of a Non-internally Resonant Finite Bar Subject to a Unilateral Contact Constraint 9

2

x
u(x, t )

L

g(u(L, T ), (t))

(t)

Fig. 1.5 Spring–bar system excited by a moving rigid wall
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Fig. 1.6 Response to periodic forcing over [ω1 ;	1] of the spring–bar system under various damping coefficients: α = 1 (top) and α = 1/2
(bottom). Bar configuration at rest: unstressed g0 > 0 (left), grazing g0 = 0 (center) and prestressed g0 < 0 (right). Bar damping coefficient ζ1:
low [red solid line] to high [solid line]. Grayed regions where NSMs were not found and forced-responses are not periodic

Fig. 1.7 Displacement over one
steady-state period due to
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computing, when possible, the steady-state solution for each frequency of excitation. In this study, such solutions are obtained
via the Wave Finite Element Method [13]. The total energy of the steady-state solution, averaged over one forcing period,
for increasing frequencies of excitation and various damping coefficients is illustrated in Fig. 1.6 in the interval [ω1 ;	1]. In
the frequency intervals where NSMs possibly do not exist,2 highlighted with grayed areas in Fig. 1.6, the forced system does
not seem to exhibit periodic steady-states. When non-periodic forced responses are detected, corresponding portions of the
response curves in the frequency diagram consider, for each frequency of excitation, the total energy of the forced motion
averaged over ten periods of the external forcing. It is observed that forced responses with high-energy periodic steady-state
align well with the NSM backbone curves. Also, Fig. 1.7 illustrates a steady-state displacement of the slightly-damped bar
under periodic forcing computed in the vicinity of an NSM. It clearly resembles the corresponding NSM motion, see Fig. 1.3.
Although this forced solution seems to be identical to the autonomous oscillation, its free phase is actually not symmetric
with respect to a time axis located in the middle of the free phase.

2The number of computable NSMs depends on the mesh size, and finer meshes should provide a more detailed spectrum.
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1.7 Conclusions

This contribution targeted the nonsmooth modal analysis of a non-internally resonant bar through a numerical strategy
based on simultaneous space-time discretization of the travelling-wave solution. The system of interest consisted of a finite
elastic bar of length L subject to a Robin boundary condition at x = 0 and a unilateral contact constraint at x = L.
Such configuration annihilates the full internal resonance condition featured by its internally resonant counterpart [13].
In addition, the Robin BC, physically corresponding to a simple spring attachment, causes a distortion in the waveform
that complicates the numerical construction of nonsmooth modes. A semi-analytical approach is derived from the exact
solution to the autonomous wave equation together with a switch in the boundary condition where unilateral contact arises.
As nonsmooth periodic solutions in closed form are inaccessible, a discretization strategy is proposed to find families of
periodic motions. The periodic nonsmooth motions are piecewise-sinusoidal functions, as opposed to the internally resonant
counterparts where modal displacements are piecewise-linear functions. The forced response plots illustrated the capability
of the Nonsmooth Modal Analysis to predict the vibratory resonances of the one-dimensional periodically-forced elastic
bar. Even though the vibratory characterization is more challenging than for the internally resonant counterpart [13], the
computed NSMs forecast most intervals involving nonlinear resonances.
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Chapter 2
A New Iwan/Palmov Implementation for Fast Simulation
and System Identification

Drithi Shetty and Matthew S. Allen

Abstract While Iwan elements have been shown to be an effective model for the stiffness and energy dissipation in bolted
joints, they are presently somewhat expensive to integrate. Currently, the Newmark-beta algorithm is used to integrate the
equations of motion when a structure contains Iwan elements, and a small time step is needed to maintain accuracy. This paper
presents a new way of simulating Iwan elements that speeds up the simulations dramatically by using closed form expressions
for the micro-slip regime and using an averaging method for regions of time in which no external force is applied. With this
method the response can be computed in about a hundredth of the time. The proposed algorithm is demonstrated on a single
degree-of-freedom (SDOF) system to understand the range over which it retains accuracy. Although current implementation
is applicable to SDOF systems, it can simulate the response of each mode in a structure that is modeled using the modal
Iwan approach (i.e. assuming uncoupled, weakly-nonlinear modes).

Keywords Non-linear damping · Iwan model · method of averaging · Newmark-beta integration · Runge-Kutta

2.1 Introduction

Built-up structures are typically modeled using linear solvers with springs approximating the joints and using modal or
proportional damping to account for energy dissipation. However, mechanical joints are a major contributor to the overall
damping of structures [1]. Their behavior is predominantly non-linear and the development of a predictive model for the same
is a challenge [2]. At lower amplitudes, only the edges of the joint surfaces slide relative to each other while a majority of the
joint remains intact, known as micro-slip. In the micro-slip regime, the stiffness of the joint decreases only slightly, but there
is significant energy loss [3]. Hence, the response is nearly linear although the damping is observed to change significantly
with the amplitude of vibration [4]. As the amplitude increases, the slip region gradually expands until macro-slip occurs. In
this case, relative motion occurs between the surfaces and the stiffness of the joint is significantly affected.

While the physics just described could be captured by modeling each joint in detail with a suitable friction law between
parts, to compute the dynamic response with such an approach would take months or years on current computers. As a
result, it is more common to use a reduced model with nonlinear elements between each component to account for micro-
and macro-slip in the joints. The Iwan element, initially introduced for metal elasto-plasticity [5], has been shown to be
effective in capturing joint behavior [4]. It is a lumped, hysteretic model consisting of a parallel system of spring-slider units
known as Jenkins elements. The most common Iwan model is Segalman’s four parameter model [6], with the four parameters
accounting for the joint stiffness, the force at which the joint slips completely and the power law energy dissipation that many
joints have been found to exhibit in microslip. While this is far less computationally expensive than modeling the contact in
detail, the computational burden is significant when many joints are present or when performing parameter studies. As an
alternative, Segalman proposed a modal approach [7], which exploits the fact that the modes of a structure tend to be mostly
uncoupled when the joints remain in the micro-slip regime [8] and hence, each mode can be modeled as a single degree of
freedom system but with an Iwan element to account for the nonlinearity.

In either case, the response of a structure that contains Iwan elements is typically found using the average acceleration
Newmark-beta integration method [9], with a Newton-Raphson iteration loop for the nonlinear force in the Iwan model.
This method is effective and quite reliable, but requires a small time step, making it computationally expensive. This paper
presents an alternative that is much less expensive. One study that is relevant to the current work is that on the RIPP joint,
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presented by Brake in [10], which uses somewhat similar concepts in an effort to accelerate integration of Iwan joints, while
preserving the ability of the joint to capture macro-slip.

This work makes use of the analytical formulas for the behavior of an Iwan joint in microslip but limits the solution to the
micro-slip regime and uses the averaging method to compute the time response much more quickly. The averaging method
is applicable to systems in which the amplitude and phase vary slowly with time [11]. The following integration technique
takes advantage of this behavior to improve the simulation time without significantly affecting the accuracy. It also has the
advantage that the instantaneous natural frequency and damping are computed in the course of the time integration. The
subsequent section explains the algorithm and the relevant theory behind it. It’s applicability for a single degree of freedom
system is then examined through a case study and future research is proposed.

2.2 Understanding the Algorithm

The algorithm presented in this work considers a single degree of freedom system (shown in Fig. 2.1) consisting of a linear
spring, linear damper and a single non-linear Iwan joint. The simulation is divided into two parts:

• Integration in the presence of an external impulsive force and
• Simulating the free decay response after the external force goes to zero.

Matlab’s adaptive fourth–fifth order Runge-Kutta (RK) algorithm (i.e. ode45), is used for both parts. This requires that
the differential equation be defined in the form ẋ = f (x, t) with the initial conditions provided as input. It is important
to note that the traditional Iwan element cannot be integrated using Runge-Kutta, because it is hysteretic by definition and
so it cannot be written in the form described above (without some kind of approximation). For that reason, the Newmark-
beta algorithm has been used with a fixed time step in most cases in the literature. The procedure for obtaining the initial
conditions is explained below.

2.2.1 When the External Force is Non-zero

The forced equation of motion can be approximated as follows when the Iwan joint remains in the micro-slip regime,

ẍ + 2ζ(A)ωn(A)ẋ + (ωn(A))2x = F(t)/m (2.1)

where A is the amplitude of vibration, which is elaborated below. The closed form expressions of dissipation per cycle
( D) and secant stiffness (Kj) derived in [6] are used after converting the physical Iwan parameters [Fs, Kt, χ,β] to their
mathematical equivalents [R, S, χ,φmax]

D = 4RAχ+3

(χ + 3) (χ + 2)
(2.2)

r = A

φmax
(2.3)

Kj = Kt
(

1 − rχ+1

(χ + 2) (β + 1)

)
(2.4)

Fig. 2.1 Schematic of the single
degree of freedom system
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Equations 2.2–2.4 are then substituted in the expressions below to obtain the effective natural frequency and damping
ratio.

ωn(A) =
√
Kj(A)+K∞

m
(2.5)

ζ(A) = D(A)

2πmω2
nA

2 + ζlinear (2.6)

By assuming that the change in amplitude is negligible over each cycle, a relationship between amplitude and response
can be established as shown in Eqs. 2.7–2.9,

x ∼= Acos (ωdt) (2.7)

ẋ ∼= −Aωd sin (ωdt) (2.8)

A =
√
x2 +

(
ẋ

ωd

)2

(2.9)

where

ωd = ωn
√

1 − ζ 2 (2.10)

As seen in the equations above, the amplitude, natural frequency and damping ratio are interdependent variables in that
the amplitude also changes with changing ωn and ζ . This makes it necessary to solve this iteratively. To do so, a simple
recursive scheme is implemented. The amplitude (and corresponding ωn and ζ ) is calculated within a loop, and the loop
is repeated until the absolute difference between the amplitude calculated in successive iterations falls within a pre-defined
tolerance. It was observed that a reduction in tolerance below 10−10 led to negligible change in the simulated response. Three
to four loop iterations were typically needed. The instantaneous natural frequency and damping ratio thus obtained are then
substituted in the equation of motion which is used to define the ODE that is solved.

The solution at the time at which the force ends (i.e. assuming the force is impulsive or otherwise short in duration) is
used to define the initial amplitude and phase of the solution for the averaging algorithm, which solves for the rest of the
transient response and is described in the next subsection.

2.2.2 When the External Force is Zero

The equation of motion in the absence of external force becomes the following.

ẍ + 2ζ(A)ωn(A)ẋ + (ωn(A))2x = 0 (2.11)

While the previous method could be used for the transient part of the response as well, a quicker solution can be achieved
by using the averaging method. On analyzing the response, it can be seen that while the response itself changes quickly with
time, the amplitude and phase of the response change slowly with time (as seen in Fig. 2.2). Under these circumstances,
the averaging method can be used to change the variables in the differential equation from displacement and velocity to
amplitude and phase, allowing larger time steps to be taken and thus achieving a less computationally expensive solution.
The differential equations used in this algorithm are derived in [12] by replacing displacement and velocity as states with
amplitude and phase and then integrating over a cycle (i.e. assuming that amplitude and phase change slowly with time). The
result is given in Eqs. 2.12 and 2.13.



14 D. Shetty and M. S. Allen

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time

–6

–4

–2

0

2

4

6

8
re

sp
on

se
 d

is
pl

ac
em

en
t

10–3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time

0

50

100

150

200

250

300

350

400

450

ph
as

e 
(r

ad
)

Fig. 2.2 Response amplitude and phase vs. time

Ȧ = −Aωnζ (2.12)

φ̇ = ωn
√(

1 − ζ 2
)

(2.13)

As given in the derivation in [12], once these are found as a function of time, the displacement and velocity can then be
recovered (if desired), using the following.

x = Aeiφ (2.14)

ẋ = Ȧeiφ + Aφ̇eiφi (2.15)

2.3 Application to Single Degree of Freedom System

The algorithm described was tested against the Newmark-beta integration technique for speed and accuracy. The accuracy
was measured by quantifying the error in the effective damping ratio and natural frequency as a function of amplitude and
the speed was measured as the time taken for integration on an Intel

®
Core™ i7-950 (3.07 GHz) processor. The response

displacement (and velocity) were simulated using three methods:

• Newmark-beta integration.
• The algorithm described in Sects. 2.1 and 2.2, which is referred to here simply as the “Averaging” algorithm.
• A combination of the Newmark-beta algorithm (replacing the algorithm in Sect. 2.1) with the averaging algorithm of Sect.

2.2, which is here referred to as “NB + Averaging”

Table 2.1 lists the parameters defining the test case being considered. A half sinusoidal impulse force of width 0.02 s
was applied at various amplitudes, focusing on the micro-slip regime. This was verified by checking the displacement of
the sliders in the Iwan joint. The time responses obtained by each method were then processed using the Hilbert transform,
as described in [13], to obtain the instantaneous damping ratio and natural frequency. The errors in these estimations were
calculated treating the Newmark-beta result as the truth solution, although some difficulty was encountered when doing this,
as explained in the subsequent section.
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Table 2.1 Parameters used in
the test case

Parameter Value

K∞ 1.4 × 105 N/m

ζ linear 1 × 10−4

Iwan Joint:
• [Fs, Kt,χ ,β] [40000 N, 2.5 × 105 N/m, −0.5, 1.0]

Half sinusoidal pulse:
• Amplitude (varies)
• Pulse-width 0.02 s
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Fig. 2.3 Response velocity predicted by the three methods
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Fig. 2.4 Trimming the velocity vector after computing the Hilbert transform to eliminate end effects

2.3.1 Results and Analysis

Accuracy

Figure 2.3 shows a sample of the responses obtained from the three simulation methods, corresponding to the case where
the force amplitude was 10 kN, (or Er = 0.9, as will be defined subsequently). The response was found for 40 s in each
case. Then, the Hilbert transform was computed and trimmed to mitigate the end effects, as shown in Fig. 2.4. To maintain
consistency, the same trim points were used for all simulation methods. The damping ratio and natural frequency obtained
from the Hilbert transform were then plotted against the response velocity amplitude to observe the power-law behavior.
It must be noted here that these graphs progress from right to left (i.e. from higher velocity amplitudes to lower velocity
amplitudes) since the response velocity decreases with time. To generalize the results, the non-dimensional velocity was
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Fig. 2.5 Damping ratio vs. non-dimensional velocity when residual tolerance = 10−8

defined as the ratio of the velocity to the product (ωn, 0φmax), where ωn, 0, is the natural frequency when the joint is stuck
and φmax, the displacement of the joint at macro-slip. The error in damping ratio and natural frequency was then calculated
as a percentage of the Newmark-beta solution, which was considered to be the truth solution.

On performing the simulation for the test case described above, it was initially observed that the damping ratio (and natural
frequency) estimated using the derived algorithm deviated from that obtained using the Newmark-beta (NB) integration at
low velocities. As seen in Fig. 2.5, the damping ratio calculated by the NB method decreases to values below linear damping
at lower velocities. On further investigation, it was noted that the response simulated by the NB method was sensitive to the
residual tolerance criterion set in the Newton-Raphson Iteration loop. This was surprising, because the tolerance of 10−13

had been used in many previous studies without difficulty, and it was already approaching machine precision. The tolerance
was reduced gradually until further reduction did not have a significant effect on the output. Finally, a tolerance of 10−15

was found suitable for the range of forces analyzed in this work. The arbitrary nature of this selection highlights a possible
drawback of the existing integration method and further warrants development of a more accurate technique.

Figure 2.6 compares the damping ratio and natural frequency calculated by each of the methods after changing the
tolerance described above. It can be observed that the results obtained are now in good agreement with the truth solution.
The averaging method is found to give quite accurate results over a large range of vibration amplitude, with errors of less
than 0.04% in the natural frequency over the whole range of amplitude and errors in damping of less than 8% (of the true
value, which ranged from ζ = 0.0001 to 0.003). The error is most pronounced at a non-dimensional velocity of 10−4, which
is possibly due to the noise introduced in the predictions by the Hilbert transform process. As expected, when the averaging
method is augmented by using the NB algorithm to compute the initial portion of the response (during which the force is
active), the error decreases relative to using the RK integration for initial portion. Note that the first instant shown in Fig. 2.6
(highest amplitude) corresponds to 0.70 s whereas the force pulse lasts 0.02 s.

The above plots used the Hilbert transform, which is susceptible to noise and end effects, to estimate the damping ratio
and natural frequency from time histories. The Averaging method, however, also estimates the same during the course of the
integration (i.e. Eqs. 2.5 and 2.6). To evaluate the potential errors in the damping and frequency due to the Hilbert transform
Fig. 2.7 compares the damping estimated directly from the algorithm with those obtained from the Hilbert transform from the
NB method and the Averaging method. All three solutions agree very well for non-dimensional velocities below 5 · 10−5, but
the values calculated directly using the Averaging method deviate from those estimated using the Hilbert transform at higher
velocities. The damping found by the Hilbert Transform shows a slight waviness that is not expected from theory, whereas the
damping found directly by the Averaging method shows exactly the expected power law behavior (i.e. the damping is linear
on a log-log plot). Another advantage of the averaging method is that one does not need to truncate the first 0.70 seconds of
data, as is required in the Hilbert transform to minimize end effects.

While the results above clearly show that the Averaging method produces a transient response that closely follows the
desired frequency versus amplitude and damping versus amplitude curves, they do not prove that the same transient response
will be obtained by each algorithm. Specifically, when the joint approaches macro-slip the initial response may deviate
significantly, causing the averaging solution to estimate inaccurate amplitudes in the initial phase. An example of this is
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shown in Fig. 2.8, for the case where the force amplitude was 3 · 105 N (or Er = 685). The averaging method behaves
differently over the 0.02 s force pulse, resulting in a higher velocity during the transient part of the response.

To further quantify this, the amplitude of the response was estimated from each method for various force amplitudes and
the results are summarized in Fig. 2.9. To generalize the results, the non-dimensional force amplitude was expressed as an
energy ratio Er = Eimp/PEmax where the numerator is the energy imparted by the impulse (Eq. 2.16) and the denominator
is the approximate potential energy for which the joint fully slips (Eq. 2.17). The results show that the averaging method
predicts the transient response amplitude well up until an energy ratio of unity, and still produces acceptable results up until a
ratio of 10. Beyond that point, it begins to significantly under-estimate the response amplitude, presumably because it doesn’t
have the ability to account for macro-slip.

Eimp = 1

2m

(∫
f (t)dt

)2

(2.16)

PEmax = 1

2
(K∞ +KT ) φ2

max (2.17)

Fig. 2.8 Response velocity vs. time, macro-slip

Fig. 2.9 Response amplitude after the impulse has ended for Newmark-beta method and Averaging method. The horizontal axis expresses the
force in terms of the energy relative to that which initiates macro-slip, as described above
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Table 2.2 Average simulation
time for each of the three
methods

Integration method Simulation time (in seconds)

Newmark–beta 214.24
Averaging 1.961
Newmark beta and
averaging combined
(NB + Averaging)

14.303
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Fig. 2.10 Variation of simulation time with input force amplitude

Speed

As a measure of speed, the average simulation time was compared for the range of force amplitudes considered. Table 2.2
shows the time taken by each of the three methods being compared to simulate the response. It is evident that the method of
averaging speeds up the integration process significantly. This was anticipated as applying the concept of averaging allows
for a larger time step to be considered, thus lowering the number of integration steps. For example, for the cases shown in
Fig. 2.10, 79,976 time steps were required for the NB method (200 samples per period) whereas for the same duration of
interest, with the method of averaging, the RK integrator used an average of 2984 time steps. It can also be observed that
varying the amplitude of the impulse force applied does not result in a considerable change in simulation time (2.10).

2.4 Conclusions

This work has shown that the method of averaging can be effectively used to speed up the integration of a single degree of
freedom system with an Iwan joint with minimal loss in accuracy up to surprisingly large forces. In the micro-slip regime, the
damping ratio, natural frequency and response amplitude estimated were found to be comparable to those from the Newmark-
beta method. In fact, in some cases the averaging method was more reliable and accurate (i.e. didn’t require adjusting the
ad-hoc convergence tolerance in the Newton loop). It is also preferable if the final goal is to estimate damping and frequency
versus time, because no further processing (i.e. with the Hilbert transform) is required to obtain these.

However, the averaging algorithm is fundamentally limited to micro-slip only. One can obtain the best of both worlds by
using the Newmark-beta method until the external force dies down and the method of averaging can be used thereafter. With
this approach the computation time is reduced significantly, but not as much so as when only the averaging method is used
(i.e. the computation time is only reduced by a factor of ∼10 rather than a factor of ∼100).

Future work will seek to couple this with a suitable optimization tool, allowing one to determine the modal Iwan
parameters for a weakly non-linear mode using frequency domain data. Such an approach could be critical in cases in
which modal filtering or bandpass filtering is not applicable.
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Chapter 3
Analysis of Transient Vibrations for Estimating Bolted Joint
Tightness

M. Brøns, J. J. Thomsen, S. M. Sah, D. Tcherniak, and A. Fidlin

Abstract It is difficult to determine and control the tension level in a bolt; however, there is a great need for that to ensure
safe operation of large structures. Bolts come in all sizes, but when properly tightened a bolt can roughly be considered an
axially stressed clamped-clamped beam. A novel technique is proposed to quantify the level of bolt tightness by analysing
natural frequencies and damping ratios of the bolt, based on simple hammer impacts. To study the application potential of
the technique a set of real bolted joints, holding together machinery parts for a fluid mechanic setup, are impulse hammer
impacted and the vibration response analysed. The tests aim to capture obstacles induced by working with bolts outside a
controlled laboratory.

Keywords Bolted joints · Tension estimation · Transient vibrations · Signal processing · Practical application

3.1 Introduction

Bolted joints are present in many different engineering structures, from wind turbines to heavy machinery, some of which are
critical joints where failure can have catastrophic consequences and is unacceptable. In those cases, it is of interest to be able
to monitor the tension level in the bolt by a simple measure. A newly proposed technique is to impulse hammer impact the
bolt and estimate the tension by analyzing the recorded dynamic response. An advantage of this method is that a tightening
procedure with heavy equipment, such as hydraulic tensioners, will only be performed on the bolts that are in fact loose,
potentially reducing maintenance cost.

Existing techniques count torque control [1], turn control [1] and ultrasonic methods [2, 3]. The new technique has been
studied experimentally by measuring accelerations of freely decaying vibrations of different bolts. At low tension the squared
natural frequency of the first bending mode increases strongly with tension. As the bolt is gradually tightened the squared
natural frequency starts changing more weakly and approximately linearly with tension [4]. A one-dimensional linear beam
model with clamped boundary conditions subjected to axial stress can theoretically explain the linear increase, while the
nonlinear transition can be explained by the increased effective boundary stiffness accompanying tension [4].

In this work, the knowledge obtained in the laboratory is applied to a real structure with multiple bolts, with the purpose
of exposing practical obstacles when using this novel technique in practice. One of the challenges when working with a real
structure with multiple bolts is to properly identify the first bending natural frequency of the impacted bolt, as damping and
signal noise is more pronounced, and the vibrations from other bolts and the structure itself are interfering.
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Fig. 3.1 (a) Measured first natural frequency squared as a function of tension for reference measurement. Three different test series indicated by
◦, �, ♦. Dashed line: Theoretical squared natural frequency for a clamped-clamped beam as a function of axial tension (cf. Eq. (3.1)); (b) Damping
ratio ζ as a function of tension; (c) Real test structure

3.2 Background

A rough model of a tightened bolt is to assume it as a clamped-clamped beam exposed to axial tension. The j’th natural
frequency can in that case be calculated as [5]:

ωj = λ2
j

ls

√√√√√E

ρ

⎛
⎝1 + σ

E

(
Kjs

λ2
j

)2
⎞
⎠, (3.1)

where l is the effective bolt length (from head to nut), λj is the eigenvalue for mode j, E Young’s modulus, ρ density, σ
applied axial stress, Kj a mode shape dependent constant, and s the slenderness ratio which is 2 l/r for a circular cross
section, when r is the radius of the bolt. It appears from Eq. (3.1) that the squared natural frequency increases linearly with
tension, with a proportion that depends on the slenderness of the bolt: the more slender the bolt, the bigger is the change in
natural frequency with respect to the axial stress σ .

Measurements with two different bolts have shown that this model assumption is reasonable, especially for slender bolts
and for higher tension [4]. Adapted from [4] Fig. 3.1 shows reference results of an M12 × 250 bolt tightened in a single
structure. Figure 3.1a shows the squared first natural bending frequency normalized with the natural frequency ωcc of an
un-tensioned clamped-clamped beam as a function of tension, and Fig. 3.1b the corresponding damping ratio. The yield
stress of the bolt is σ y = 640 MPa, and σ is the actual stress. For tensions exceeding about 20% of the yield stress, the
experimentally obtained natural frequency agrees with the model (dashed line). The damping ratio decreases with tension.

The idea is to go backwards and use the linear relation in Eq. (3.1) to estimate the tension of the bolts. The damping
ratio can support an estimation, as a low damping ratio indicates a tight bolt. The technique is tested for a real structure
used for fluid mechanic experiments. Figure 3.1c shows the setup, consisting of four bolts clamping two pipes and a
flowmeter together, via two flanges. Each bolt is impulse hammer impacted, and the accelerations recorded by a 4397 B&K
accelerometer mounted on the shaft of the bolt. The bolts in the setup was tightened by a torque wrench to three different
torque levels: approximately [100, 150, 200] Nm. Depending on the chosen nut factor these levels correspond to [20–40,
30–60, 45–80] % of yield stress (which also illustrates the need for better tension estimation techniques) [1]. The nominal
tension in a bolt is typically around 70% of yield stress [1]. The tightening order was counter-clockwise: Bolt 4-3-2-1. The
bolts are mounted in the same structure and tightening one bolt will therefore affect the other bolts. To try to minimize the
effect, the 100 Nm tightening was done in two steps: first tightening all the bolts to 50 Nm and then to 100 Nm. For 150 and
200 Nm, the torque wrench was applied twice on all bolts to try to prevent that the bolt tightened first did not loosen, as the
others were tightened.
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Fig. 3.2 FRF for the four bolts at three torque levels [100, 150, 200] Nm. The identified natural frequencies • (cf. Table 3.1)

Table 3.1 Natural frequencies and damping ratios for the four bolts at the three torque levels

Bolt 1 Bolt 2 Bolt 3 Bolt 4

1st natural frequency [Hz] 100 Nm 2298 2310 2246 2658
150 Nm 2524 2348 2300 2731
200 Nm 2587 2385 2340 2827

Damping ratio [%] 100 Nm 0.18 0.19 0.16 0.42
150 Nm 0.32 0.16 0.19 0.42
200 Nm 0.31 0.15 0.29 0.44

3.3 Analysis

Figure 3.2 shows the frequency response function for each of the four bolts at the three levels of torque. Firstly, the figure
illustrates how the identification of the natural frequency corresponding to that of the impacted and measured bolt is not
trivial, as several peaks appear in one response. The multiple peaks arise from the response of the other bolts, and since
the bolts are symmetric, there is a peak for each transverse direction. In this case it is assumed that the frequency with the
largest magnitude is that of the impacted bolt (in the impact direction); however, that may not always be the case. Secondly,
the frequencies for the four bolts are different within the same torque, despite the fact that the attempt was to tighten all
bolts to the same level by the torque wrench. It indicates that the obtained tension is not the same, though the tightening
torque nominally is. Table 3.1 shows the identified natural frequencies and damping ratios. The damping ratio is generally
small and varies only little between torques, with the exception of Bolt 4, which is more damped than the other bolts and
has significantly higher frequencies. A possible explanation is that the bolt was mounted a little off center in the setup, with
the shaft of the bolt touching a flange clearance hole (cf. Fig. 3.1c) (which implies a shorter effective length and thus higher
stiffness.).

The natural frequencies of all four bolts increase with the torque, but they cannot be modelled with the same parameters
in Eq. (3.1) and still give meaningful tension estimations. One of the obstacles is the effective length: it is the only tunable
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parameter in Eq. (3.1), why it covers any discrepancy between model and experiment. The frequencies of Bolt 1 and 3 can
only fit to Eq. (3.1) if the effective length is unrealistically long. It suggests that the boundary stiffness does not entirely
correspond to a clamped-clamped boundary, and the model is not sufficient in that case.

3.4 Conclusion

Experiments has been performed with a real bolted structure to illustrate the challenges when working with real structures
and multiple bolts. It was possible to measure and identify the first natural bending frequency of each mounted bolt and
determine a damping ratio. However, the simple clamped-clamped beam model cannot in this case sufficiently explain the
behaviour of the bolts. The experiments also showed a need to develop the experimental technique and signal processing to
better separate the frequency peaks.
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Chapter 4
Spider Configurations for Models with Discrete Iwan Elements

Aabhas Singh, Mitchell Wall, Matthew S. Allen, and Robert J. Kuether

Abstract Lacayo et al. (Mechanical Systems and Signal Processing, 118: 133–157, 2019) recently proposed a fast model
updating approach for finite element models that include Iwan models to represent mechanical joints. The joints are defined
by using RBE3 averaging constraints or RBAR rigid constraints to tie the contact surface nodes to a single node on each
side, and these nodes are then connected with discrete Iwan elements to capture tangential frictional forces that contribute to
the nonlinear behavior of the mechanical interfaces between bolted joints. Linear spring elements are used in the remaining
directions to capture the joint stiffness. The finite element model is reduced using a Hurty/Craig-Bampton approach such
that the physical interface nodes are preserved, and the Quasi-Static Modal Analysis approach is used to quickly predict
the effective natural frequency and damping ratio as a function of vibration amplitude for each mode of interest. Model
updating is then used to iteratively update the model such that it reproduces the correct natural frequency and damping at
each amplitude level of interest. In this paper, Lacayo’s updating approach is applied to the S4 Beam (Singh et al., IMAC
XXXVI, 2018) giving special attention to the size and type of the multi-point constraints used to connect the structures, and
their effect on the linear and nonlinear modal characteristics.

Keywords Iwan elements · Joints · Quasi-static modal analysis · Nonlinear updating · Model updating

4.1 Introduction

Mechanical structures with complicated geometry can be accurately modeled with finite element techniques if the structure
is monolithic and manufactured from a single piece of material. However, even with additive manufacturing, most structures
cannot be manufactured as such and therefore mechanical interfaces are introduced between sub-assemblies, which are
then jointed with bolts, rivets or welds. These joints introduce uncertainty and significant modeling challenges due to the
physics involved with frictional contact. While joints in general can introduce strong nonlinearity, resulting in complicated
phenomena such as modal coupling, response at higher harmonics, and even chaos, in many structures of practical interest
the nonlinearity is weak and is observed as a change in the effective natural frequency and damping of some of the structure’s
vibration modes as vibration amplitude increases.

While commercial finite element analysis or multi-body dynamics software can presumably solve contract problems with
friction [1], most practitioners do not appreciate the level to which the mesh must be refined near the interface in order
to obtain a predictive model. This was illustrated recently by Jewel et al. [2] who found that tens of hours were required
to obtain accurate solutions for the static response of a structure with only one or two joints when the joint was meshed
with adequate refinement and the solver settings were tuned to accurately solve the contact problem. It would be extremely
expensive to perform dynamic simulations with such a model, and even more so for realistic structures with hundreds of
joints. As a result, the majority of dynamic models use relatively coarse meshes and then spider regions of the structure to
connect different parts through linear springs, whose stiffnesses can be tuned when the model is updated to correlate with
test data.

In some cases, nonlinear hysteretic models are used in place of linear springs when using this whole-joint approach.
These models represent the nonlinearity through constitutive equations between the degrees of freedom of a single set of
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Fig. 4.1 The S4 Beam side view

nodes. When introduced into a reduced order model (ROM), such as a Hurty/Craig-Bampton (HCB) reduced model, they
can capture nonlinear behavior while maintaining tractable computational cost. An example of the whole-joint model is the
four parameter Iwan joint introduced by Segalman in 2006 [3], which was derived based on analytical solutions to contact
problems and empirical data to best capture the energy dissipation observed in joints. These joint models can often be used
to capture the amplitude dependent frequency or damping measured in experiments, so long as the joints remain in the
micro-slip regime.

The parameters of a whole-joint model such as an Iwan element cannot currently be predicted from first principles, so
measurements must be taken and model updating used to update the joint parameters until the model reproduces the measured
response. The Hilbert Transform can be used to extract the frequency and damping as a function of amplitude from transient
response measurements [4]. Then the recently developed Quasi-Static Modal Analysis (QSMA) approach [5, 6] can be used
to quickly compute these quantities. Lacayo et al. [6] recently demonstrated this workflow to update a reduced model of
the Brake-Reuss (BRB) beam. Similarly, this paper investigates the model updating procedure and applicability of the four
parameter Iwan joint with a new benchmark structure studied at Sandia’s Nonlinear Mechanics and Dynamics Institute in
2017 that is shown in Fig. 4.1.

The S4 Beam was studied experimentally by Singh et al. [7], and data from their study is used in this work. First, an HCB
model is made for each beam and linear springs are inserted and updated to match the measured linear frequencies. Then,
Iwan joints are inserted in place of some of the springs and QSMA is used to compute and iterate on the amplitude dependent
damping and frequency in an effort to reproduce the experimentally measured frequency and damping. The experimental
structure showed a high degree of nonlinearity in the first shearing mode (Mode 6), so the goal is to use the methodology to
calibrate the model to capture this mode. In doing so, prior works have shown that a pareto front is often observed, a case
in which the model cannot be updated to capture both the stiffness and damping. This work explores this issue by creating
models with various types of spiders, or various ways to define the Multi-Point Constraints (MPCs) used to reduce the contact
surfaces to a single node.

4.2 Modeling Approach

4.2.1 Hurty/Craig Bampton Reduction

To incorporate the high geometric detail of the structures of interest, finite element models can quickly become excessively
large and computationally expensive. As a result, ROMs are used to approximate the full-order model at a set of reduction
nodes between the mechanical interfaces. The approximation requires that these components remain linear and that the only
source of nonlinearity within in the joined system is at the contact interface [8]. Although many methods of model reduction
exist, this paper will focus on the HCB method as discussed in [9]. The FE discretized equations of motion for an undamped
multi-degree of freedom (MDOF) system are given by Eq. 4.1, where M is the mass matrix, K is the stiffness matrix, F is
the external forcing, FJ(u) is the joint force (either linear or nonlinear) and u is the physical displacement.

Mü + Ku + FJ (u) = F (4.1)

The system can be equivalently written with matrices partitioned between the boundary and interface DOFs as
[
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üb

}
+

[
Kii K ib

Kbi Kbb

]{
ui
ub

}
+

{
0

FJ,b (ub)

}
=

{
0

Fb

}
(4.2)

where subscripts b and i represent the boundary and interface DOF respectively. Note that only the boundary DOF are
assumed to be forced either externally or internally through the joint. Then, a small number of fixed interface modes,1 �, are

1Fixed interface modes are normal modes obtained by fixing the interface between two subcomponents.
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computed and that basis is augmented with constraint modes,2 �, as detailed [10] to obtain the HCB transformation matrix
in Eq. 4.3.
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}
(4.3)

This transformation then reduces the equations of motion to those shown in Eq. 4.4.
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(4.4)

The ROM can be used to analyze the dynamic response of a structure more efficiently than a dynamic simulation of a full
finite element model.

4.2.2 Spidering

In order to connect the contact surfaces with one-dimensional linear or nonlinear elements, two types of spider elements were
used in this work, which shall be referred to as RBAR and RBE3 elements (i.e. using NASTRAN’s naming convention). An
RBAR element is a rigid beam that rigidly constrains each node to a single node with 6 DOF, whereas an RBE3 is an
averaging element that ties the average displacement and rotation of the surface to that of the slave node [11]. Both are types
of MPCs (Fig. 4.2). Depicts an example of the MPC spiders on the S4B. Note that separate virtual and HCB reduction nodes
had to be created because the implementation of the HCB method within Sandia National Laboratories Sierra Structural
Dynamics (Sierra/SD) code doesn’t allow a virtual node to be used as an interface node in a HCB model [11]. These are
shown expanded for visualization, but in fact they are all concident.

The spiders reduce an area of nodes to a single point that can be used to connect the surfaces. These spiders can be used
to attach linear springs or Iwan elements to capture the linear/nonlinear dynamics of the system.

4.2.3 Whole-Joint Model

One of the most well-developed whole-joint models is Segalman’s 4-parameter Iwan element. It was developed as part of
a large research effort at Sandia National Laboratories that considered both analytical solutions for contact and empirical
evidence that showed that joints exhibit power-law energy dissipation versus force (or vibration amplitude) [3]. An Iwan

Fig. 4.2 Finite element model of
the S4B depicting the CS

RBAR/RBE3
Elements

“Virtual” Nodes
CB Reduction
Nodes

2Constraint modes are obtained by deflecting a single mode by a unit displacement while fixing the other DOF.
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Table 4.1 Definition of Iwan parameters (physical description)

Fs The force necessary to cause macroslip
KT The tangential stiffness of the Jenkins elements (i.e. the joint stiffness when no slip occurs)
χ The exponent that describes the slope of the energy dissipation curve
β The ratio of the number of Jenkins elements that slip before micro-slip and then at macroslip

element is simply a collection of slider or Jenkins elements in parallel, in which the slip force3 for each slider is chosen to
create an element that exhibits power-law energy dissipation. This approach simplifies joint modeling significantly; typical
joint models consider every point in the interface to be independent and goverened by several parameters, i.e. the friction
coefficient, normal force, etc. . . . When one multiplies these unknowns by the number of contact elements there may be
hundreds or thousands of free parameters. Segalman’s model recognizes that the net effect of all of these parameters must
be to produce power-law dissipation versus vibration amplitude, which is goverened by only two of the four parameters in
the Iwan model. The other two parameters control the transition to macro-slip when the joint slips completely. Macro-slip is
typically not observed in engineered joints if they are tightened properly, except perhaps under extreme loading.

The four parameter Iwan model can be represented by four parameters: Fs, KT , χ , and β, given in Table 4.1. For an
in-depth discussion of the Iwan element, refer to [3].

For the nonlinear analysis, the Iwan joint replaces a linear spring between two spiders, and the corresponding spring
constant becomes the KT parameter of the Iwan element.

4.2.4 Linear Model Updating

Between the single point reduced interfaces, six DOF springs are attached to calibrate the linear natural frequencies of the
model to the experimental data. Linear springs are attached with three translational and three rotational spring constants.
These constants were varied from 1e4 to 1e10 (lb/in or in-lb/rad) in a Monte Carlo study to minimize the difference between
the model and experimental frequencies as shown in Eq. 4.5.

Objective Function =
∑n

i=1

(
ωmodel,i − ωtest,i

ωtest,i

)2

(4.5)

The results of the Monte Carlo updating are presented in Sects. 4.3 and 4.4.

4.2.5 Nonlinear Model Updating

Quasi-Static Modal Analysis (QSMA) was originally proposed by Festjens et al. [5] as a method that replaces a dynamic
simulation of a joint with a quasi-static problem that can be solved to estimate the effective natural frequency and damping
of a single mode due to the joints in the structure. A quasi-static distributed force is applied that replicates the inertial loading
experienced during vibration in that mode and coupling between the vibration modes is ignored. Lacayo and Allen further
extended QSMA, developing an even faster algorithm for the case where the joints are represented by Iwan elements [14].
The theory is presented in depth in that paper and for brevity it will not be repeated here other than key points. The HCB
model still has the general form given in Eq. 4.1, and the nonlinear joints can be represented through a nonlinear force FJ(u)
as shown in Eq. 4.6.

Mü + Ku + FJ (u) = F (4.6)

QSMA consists of solving the equation above for a static case, i.e. ü = 0, where the forcing is F = α[M]ϕi. After solving
Eq. 4.6, one obtains the static response, u(α), from which the modal velocity amplitude, natural frequency, and damping
ratio can be written as function of α as shown in Eqs. 12–17 in [14]. The damping ratio is obtained from a load-displacement

3If all sliders have the same friction coefficient then the slip force is defined by the normal force for each slider.
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hysteresis curve that is derived using Masing’s Rules. Given that all three variables are functions of amplitude, the damping
and natural frequency can be plotted in terms of modal velocity amplitude and this is the convention that will be used in this
work.

4.3 Application to S4 Beam: Linear Updating

The finite element model used for the S4 Beam is shown in Fig. 4.3. This high-fidelity model incorporates two C shaped
beams that are held together by bolts. The bolts were modeled separately and glued to the top and bottom of the beam, but
with the contact interfaces between the beams left free to slide relative to each other or to penetrate.

Prior to adding the linear springs or nonlinear Iwan elements, the FEM was reduced by creating a HCB model in which
only the spider DOF were retained as interface nodes to create a compact and efficient model for the linear and nonlinear
structure. The resulting model had 24 interface DOF (a six DOF virtual node at each of the four interfaces) and 30 fixed
interface modes. This reduced the FEM to 54 DOF. The output transfer matrices were saved so that the response could be
computed at 22 observation nodes, which were spaced every 2.5′′ along the top and bottom of the beam.

For this paper, the spiders were defined over two different areas: the full interface and a reduced interface, both of which
are shown in Fig. 4.4. The full interface consists of all nodes on the flat portion where contact is possible whereas the reduced
interface consists of nodes that were found to be in contact in a nonlinear contact simulation that was performed in Abaqus.
The result of this contact simulation is also shown in Fig. 4.4. Note that this simulation approximates the surfaces as perfectly
smooth and flat, and there is some evidence, as reported in [7], that the surfaces were not truly flat. Nevertheless, these models
are in line with the typical approach, considering the information that might be available during the design of a structure. For
each of the interface areas, two models were created, one using RBAR elements and one using RBE3s, resulting in a total of
four candidate HCB models.

Bolts 

Beams 

X 

Y 
Z 

z
Y

X

Fig. 4.3 Finite element model of the S4B depicting the coordinate system. The beam is segmented into blocks with nodes corresponding to
measurement points

Fig. 4.4 (Left) Full contact area, (Middle) Reduced contact area, (Right) Abaqus Contact Simulation
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Table 4.2 Modes of a single beam (half of the S4 assembly) vs. model frequencies

Mode Description Experimental frequency (Hz) Single beam model frequency (Hz) Percent error (%)

1 1st Bending 177.87 177.29 −0.33
2 2nd Bending 497.84 498.09 0.05
3 1st Stiff Bending 576.00 576.84 0.14
4 2nd Stiff Bending 979.84 988.44 0.88
5 Torsion 1474.67 1471.22 −0.23
6 – 1556.46 – –
7 Torsion 1585.58 1595.47 0.62

Table 4.3 Single beam material
property updating

Nominal Optimal

Elastic Modulus 29,000 (ksi) 27,245 (ksi) (−6.05%)
Poisson Ratio 0.29 0.29 (0.00%)

4.3.1 Single Beam Calibration

Prior to calibrating the whole-joint models with linear springs, a finite element model for a single beam was used to calibrate
the material properties for steel. Table 4.2 lists the adjusted elastic modulus and Poisson ratio for the single beam and shows
the resulting agreement between the experimental natural frequencies and those of the model. All model frequencies were
within 1% of the experimental frequencies, with the highest error in a second stiff bending mode. The densities of the model
were calibrated by measuring the mass of the experimental beams and dividing by the volume of the FEM to ensure that the
FEM has correct mass. The first four elastic bending modes were used to tune the elastic modulus and the fifth and seventh
modes (torsion) were used to tune the Poisson ratio. Although, Mode 6 for the single beam was identified by the experimental
setup, it was not matched within the FEM and thus was not used in the calibration of the beam. These properties were then
used in all subsequent modeling (Table 4.3).

4.3.2 Whole-Joint Spring Calibration

Linear model updating was performed for all four candidate models, and after using a Monte Carlo Simulation to minimize
the objective function in Eq. 4.5, a set of values was found for each of the six spring constants. The springs on either end of
the S4 beam were assumed to be identical. Tables 4.4 and 4.5 depict the percent error natural frequencies of the assembly
after optimization and the spring stiffnesses for each of the cases respectively.

The S4 Beam has several different types of mode shapes, and each is influenced by different springs depending on how
the joint is loaded. The mode shapes shown in Table 4.4 can be used to deduce these differences. For example, Modes 1
and 5 involve opening of the joint and hence are most sensitive to the Z-direction translational stiffness, whereas Mode 4 is
completely insensitive to the joint stiffness.

While the overall agreement was similar for each candidate model, a few differences are noted between the results obtained
using RBE3 and RBAR elements. Most notably, the models with RBE3s were not able to capture Mode 2 as accurately; this
mode is sensitive to the axial stiffness of the joint, loading it in the fashion of the lap joints that have been studied in many
prior works [6, 12]. The RBE3 models have very high values for Tx and yet they still under-predict the frequency of this
mode. On the other hand, the RBE3 models do slightly better at predicting the frequencies of Mode 1, and this might have
been expected since the RBE3 doesn’t artificially rigidize the interface and Mode 1 would tend to be sensitive to this because
it bends the interface region.

In comparing the results with the reduced and full interfaces, one can see that the reduced interface typically required
higher spring stiffnesses than the full interface (e.g. consider RY in Table 4.5). This result makes sense, as reducing the
interface area effectively decreases the stiffness of the joint region, and so the spring constants must be increased to
compensate. To get a sense of how sensitive the natural frequencies are to the spring constants found in each case, the
constants for the full interface RBAR case were used in the three other models and the natural frequencies were computed.
As expected, the natural frequencies of modes 3 and 4 didn’t change significantly. However, the models gave frequency
errors ranging from 1 to 7% for the other modes. For conciseness, these results are presented in the Appendix.
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Table 4.4 Natural frequency errors for each of the candidate models

Full interface Full interface Reduced interface Reduced interface Reduced, bonded

Mode # Test [Hz] RBAR (%) RBE3 (%) RBAR (%) RBE3 (%) interface (%) Mode shape

1 258.0 0.60 0.43 0.63 0.29 3.65

2 331.7 0.37 −1.65 −0.47 −2.12 −0.48

3 478.6 −0.78 −0.98 −0.87 −0.99 −0.88

4 567.7 −2.20 −2.24 −2.22 −2.23 −2.25

5 708.3 −0.78 −0.05 −0.25 −0.12 3.71

6 851.5 −0.34 0.33 0.16 0.12 4.26

The four candidate models contain different spider areas (full vs. reduced) and different constraint elements (RBAR vs. RBE3)

Table 4.5 Linear spring stiffnesses for each candidate model

Spring Full interface RBAR spring Full interface RBE3 spring Reduced interface RBAR spring Reduced interface RBE3 spring

TX [lb/in] 1.00E+08 1.65E+10 6.71E+12 5.04E+11
TY [lb/in] 1.43E+12 1.68E+05 1.20E+05 1.43E+09
TZ [lb/in] 4.61E+03 1.64E+02 1.48E+03 3.00E+04

RX

[
in−lb
rad

]
2.55E+07 8.59E+04 1.25E+06 2.85E+06

RY

[
in−lb
rad

]
3.66E+05 1.89E+06 6.10E+05 1.04E+07

RZ

[
in−lb
rad

]
2.08E+06 7.72E+11 4.15E+07 1.82E+07

In the end, considering only the ability of the models to capture the linear natural frequencies, the best models contained
RBAR elements, as those were able to best capture Mode 2. Overall, the area of influence had a weaker effect than the choice
of spider elements (i.e. RBAR vs. RBE3). These effects are somewhat overshadowed by the errors in Modes 3 and 4, which
were not sensitive to any spring constants. All modes, apart from Mode 4, were correlated to below one percent error. Mode
4 is the only mode that involves bending in the y-direction (stiff direction), and the six springs all have negligible effect
on this mode since the joint is not loaded when the structure bends into this mode. It was thought that this mode may be
sensitive to the mass of the bolts or accelerometers, but those were included in the model and their values verified and even
then, the agreement shown is the best that could be obtained within the timeline of the project. Furthermore, since this mode
is linear, this mode was not one of interest and no further steps were taken to improve correlation and as a result, these spring
stiffnesses can be then applied as a basis for QSMA.

The uncertainty of these spring parameters must be evaluated prior to nonlinear updating, i.e. can different sets of
parameters produce the same linear natural frequencies? If so, there is additional uncertainty and these parameters must
be variable during nonlinear updating. Figure 4.5 shows the objective function for each iteration of the Monte Carlo study
versus each of the spring stiffnesses.

This figure illustrates that the objective function, and hence the percent error in each natural frequency, is governed
primarily by the Y rotation spring stiffness. The objective function can be small even when the other spring stiffnesses vary
by several orders of magnitude, but it is only small if Y is between about 2e5 and 8e5 in-lb/rad. In other words, there are no
other local minima that might produce similar results. Additionally, the X translation spring and the Z rotation spring must be
above about 106 in order to obtain good correlation. To further illustrate which parameters are important in linear updating
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Fig. 4.5 Monte Carlo study depicting the objective function as a function of the spring stiffnesses for the Full Interface RBAR model

Fig. 4.6 Frequency Error as each spring stiffness is varied separately for the full interface RBAR model

and what ranges for these parameters might be reasonable, Fig. 4.6 depicts the percent error in each natural frequency
(compared to the experimental) as each design variable changes relative to the values in Table 4.5.

Although the elastic modulus was established with the single beam study, it was varied in the parameter study to see if
the second beam affected the modulus of the system. It changes the frequencies of every mode in approximately the same
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way. Furthermore, no value of the X rotation spring stiffness can better correlate the model since the joints and modes do not
exercise this rotation within the frequency range of interest. For the other parameters, there exists an optimal value that can
improve the correlation of some modes, while not affecting the other modes. Mode 2 is only sensitive to X translation spring
stiffness but has a large range of applicable values that result in little change in the other linear frequencies. This allows the
freedom to vary the parameter in nonlinear updating in order to improve correlation. For Mode 6, a mode involving shearing
of the joint, the Y translation and Z rotation springs can be selected to minimize the error, while marginally affecting the other
modes. However, there is little freedom to vary the Z rotation spring stiffness before one begins to reduce the correlation of
the fifth and sixth natural frequencies.

4.4 Nonlinear Model Updating

This paper uses the methodology discussed in Sect. 4.2 to identify the Iwan parameters of the whole-joints. In the results that
follow, since only Mode 6 was considered, an Iwan element was only placed in the Z rotation direction since that affects the
shearing of the joint and is assumed to cause the nonlinearity observed in this mode. The tangential stiffness (Kt) of the joint
is chosen as the linear stiffness obtained from the linear model updating, while the other three parameters are free parameters
to be calibrated. In order to ensure that a global optimum is obtained, Monte Carlo simulation (MCS) is used to explore the
parameter space and find an optimal solution for unknown Iwan parameters. Before running MCS, it is informative to first
perform a sweep of some of the parameters to understand what effect they have and to define limits over which to vary the
parameters in the MCS. The power law exponent, χ , is measured from the slope of the experimental damping vs. amplitude
curve [3, 13], and therefore is treated as a known parameter in this study; however since Fs and β cannot be measured, they
are allowed to vary. To illustrate the effect of these parameters, using χ = − 0.12 and an arbitrary β = 1 for both of the joints
(in the z-rotation direction), and allowing Fs to vary over a large range, we see the behavior shown in Fig. 4.7. The model
predictions are compared with the measurement for Mode 6 at an impact level of 22.5 lbf and a torque levels of 25.1 N-m
(18.5 ft-lb).

This preliminary test shows excellent correlation between model and experiment for both damping and frequency trends
for Fs = 0.599, and gives an idea of how large of a change in Fs might be needed to probe the parameter space. This
was repeated for various values of β, revealing that β had a much weaker effect. This provided an initial guess for Fs and
established the range of these parameters to use in the Monte Carlo simulation.

Fig. 4.7 Frequency shift and Damping ratio amplitude dependency for different Fs values for the full interface RBAR model
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Fig. 4.8 RMS error for frequency shift and damping for the Monte Carlo simulations with (a) Full Interface RBAR, (b) Full Interface RBE3, (c)
Reduced Interface RBAR, and (d) Reduced Interface RBE3 models

Table 4.6 Iwan parameters and errors from the Monte Carlo simulations

Interface Fs Kt χ β RMS ωn shift error (Hz) RMS damping error

Full RBAR 0.4472 2.08e6 −0.1697 2.3521 0.023 2.62e−5
Reduced RBAR 0.0971 4.15e7 −0.1833 7.589e-5 0.274 1.567e−4
Full RBE3 0.0945 7.72e11 −0.112 0.00307 0.716 3.6975e−4
Reduced RBE3 0.1207 1.83e7 −0.1905 0.000951 0.113 1.155e−4

A large Monte Carlo simulation was then conducted for full/reduced interfaces and RBAR/RBE3 joint models where β
was uniformly distributed in a logarithmic sense over 6 orders of magnitude, centered on β = 0.1, and Fs as well over 2
orders of magnitude centered on Fs = 0.1, while χ was varied linearly between 0 and −0.2. Figure 4.8 depicts the root mean
square (RMS) error in damping and frequency shift for each iteration of the MCS, and Table 4.6 gives the numerical value
of the RMS errors and the Iwan parameters obtained for the optimal solution.

In the study in [14] a Pareto front was observed where one was forced to choose between low error in frequency or
damping. In contrast, in this study the RMS error in frequency and damping are found to tend to zero together. However, the
minimum errors obtained in each model vary quite significantly, with the Full Interface RBAR model obtaining an order of
magnitude smaller error in frequency and damping than the others (see Table 4.6). Furthermore, the maximum errors varied
greatly for each of the models, with the Full RBAR model having the least maximum RMS error in both frequency and
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Fig. 4.9 Experimental damping and frequency shift versus QSMA predictions for the candidate models after optimization for (a) Full Interface
RBAR, (b) Full Interface RBE3, (c) Reduced Interface RBAR, and (d) Reduced Interface RBE3 models

damping. So, in a sense, each of these models is limited in how well it can fit the measurements for any value of the Iwan
parameters, as was the model in [6].

The amplitude dependent frequency and damping for each set of optimal Iwan parameters are shown in Fig. 4.9, where
the best solution is obtained by the Full Interface RBAR model and the Full Interface RBE3 model gave very poor results.
The optimization routine was able to find reasonably good correlation for the other two models, however, the curve in the
damping vs. amplitude plots reveals that the parameters of the Iwan joints are tuned such that the models are nearing macro-
slip. As a result, the models do not agree very well at higher amplitudes, and if the model was forced a little too high then
it might exhibit macro-slip whereas the measurements show no sign that macro-slip is imminent. Interestingly, this same
behavior was observed in the study by Lacayo et al. [6], and was the primary deficiency in their reduced model. The authors
have had similar experiences with other models.

In an effort to understand why the Full Interface RBAR model was superior, a parameter study was conducted in the
spring stiffness was varied for the Full Interface RBAR model and the resulting frequency and damping curves are shown in
Fig. 4.10. In this case study, the optimal Fs, χ and β values were used, and the spring stiffness was varied from 1 to 10,000%
of the value obtained from linear updating. This parameter study shows that a small decrease in Kt leads to an increase in
damping. However, as Kt is decreased further, the damping begins to decrease. In other words, there is not a single, simple
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Fig. 4.10 Natural frequency and damping versus amplitude when the Iwan joint stiffness (Kt) is scaled and varied with the other parameters held
at their optimal values for the Full Interface RBAR model

Fig. 4.11 Error plot for the case study where the Iwan joint stiffness (Kt) is varied and Fs is held at the optimal value for the Full Interface RBAR
model

rule of thumb governing how Kt will affect the results. To explore this further, QSMA was performed for 1000 values of Kt

between 1 and 10,000% and the RMS Error in frequency and damping is shown in Fig. 4.11.
The results in Fig. 4.11 further show that the frequency shift and damping do not depend monotonically on Kt, and that

one might observe several Pareto fronts, depending on the range used for Kt. The arrows show the direction of increasing
stiffness. A solution in Region A will yield only excellent damping correlation, whereas a solution in region B will yield
only excellent frequency correlation. Region B will yield the optimal solution for both damping and frequency. Clearly the
quasi-static solution depends strongly on Kt, and yet, for a single spidering method one has little leeway in adjusting the
value of Kt, without impairing the model’s ability to capture the linear natural frequencies of the structure. Furthermore, this
case study was conducted with an Fs value that correlates to an optimal solution using the nominal Kt, and different results
might be obtained for other values of Fs.
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It is very interesting that, although these models all produced relatively similar results for linear updating, they produce
completely different results for the nonlinear damping. Furthermore, since the reduced interface of the S4B was established
through a nonlinear contact simulation, it was expected that the reduced interface would yield the most optimal results;
however, this was not the case as the full interface was most accurately able to capture the measured dynamic behavior.

4.5 Conclusion

This paper explored the applicability of linear and nonlinear model updating to a new nonlinear benchmark structure, the
S4 Beam. High fidelity models were created using RBAR and RBE3 spidered joints to understand the effects of the area
of influence for the joint (i.e. using full and reduced contact interface areas). The viability of the models was studied by
evaluating their ability to reproduce the linear natural frequencies of the assembly (i.e. by updating linear springs at the
interface) and their ability to capture the amplitude dependent frequency and damping caused by the joints (i.e. by updating
the parameters of nonlinear Iwan elements at the interfaces).

The linear updating exercise showed that all models were quite similar, although the models with spiders constructed
with rigid bar elements captured the second mode more accurately, and this was significant because the second mode was
sensitive to shearing of the joint due to bending of the beam, a phenomenon that is often observed in lap joints. We also
explored simply bonding all nodes in the interface that were found to be in contact by a high fidelity simulation of preload,
but we did not obtain as good of agreement using that approach as was seen by Fronk et al. [14] although that aspect of this
study deserves further investigation.

Quasi-static modal analysis was then used to update the parameters of the nonlinear Iwan elements, using the joint
stiffnesses found in the linear updating step. Although the models captured the linear modes quite similarly, they produced
a widely varying results for the nonlinear damping and for the change in frequency with vibration amplitude. The model
with a full interface spidered with RBAR elements resulted in the excellent correlation between the experimental nonlinear
frequency and damping curves, perhaps the best that has been observed in this type of study to date, whereas the model that
used the Full Interface with RBE3 spiders gave very poor results. Both of the models using a reduced interface area gave
reasonable correlation, but the Iwan joints were forced to the verge of macro-slip and so one would not have high confidence
in simulations from these models. The preliminary conclusion of this work is that the method of spidering the interface does
indeed matter very much for this type of modeling. Future work will be needed to understand this further and to develop best
practices.
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Appendix: Full Interface RBAR Springs for all Models

In this case study, the full interface RBAR case linear spring stiffnesses were used to attach the four interfaces for the other
three models. The tables below depict their results with Table 4.7 showing the linear frequencies and Table 4.8 showing the
percent errors.

Table 4.7 Linear frequencies for each model using the spring stiffnesses of the full interface RBAR case

Experimental Full interface Full interface Reduced interface Reduced interface

Mode # (Hz) RBAR (Hz) RBE3 (Hz) RBAR (Hz) RBE3 (Hz)

1 258.01 259.56 246.92 253.41 244.39
2 331.73 332.97 325.90 329.80 324.34
3 478.55 474.81 473.86 474.40 473.83
4 567.69 555.22 555.00 555.10 555.03
5 708.29 702.80 670.48 687.05 663.68
6 851.54 848.68 812.16 817.12 797.27
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Table 4.8 Percent errors for the modes for each model using the spring stiffnesses of the full interface RBAR case

Mode # Full interface RBAR (%) Full interface RBE3 (%) Reduced interface RBAR (%) Reduced interface RBE3 (%)

1 0.60 −4.30 −1.78 −5.28
2 0.37 −1.76 −0.58 −2.23
3 −0.78 −0.98 −0.87 −0.99
4 −2.20 −2.24 −2.22 −2.23
5 −0.78 −5.34 −3.00 −6.30
6 −0.34 −4.62 −4.04 −6.37

In comparison to the optimal models, the frequencies for Modes 3 and 4 did not change. However, for all other modes, the frequency errors
increased significantly though not dramatically
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Chapter 5
Predicting S4 Beam Joint Nonlinearity Using Quasi-Static Modal
Analysis

Mitchell Wall, Matthew S. Allen, and Iman Zare

Abstract Recently, a new algorithm was presented (Festjens et al., Int J Mech Sci 75 (2013) 170–177) that allows one to
predict the effective natural frequency and damping ratio as a function of amplitude for a structure with bolted joints. This
paper applies a variant on that algorithm to a finite element model of the “S4 Beam” (two C-shaped beams bolted together on
their ends) and compares the results with the measurements described in (Singh et al., IMAC 2019). The algorithm, which
is here referred to as Quasi-Static Modal Analysis (QSMA), is applied to a detailed finite element model of the beam in the
commercial software package, Abaqus

®
. Coulomb friction is assumed to govern the contact interface. Amplitude dependent

damping and natural frequency curves are calculated for the structure and compared to experimental measurement. Several
studies are included which explore the solver tolerances and preload values needed to reach agreement with experimental
measurements. Additionally, the shape of the actual contact interfaces is measured using a profilometer and fed into the
model to quantify the effect of slight curvature in the contact.

Keywords Quasi-static modal analysis · Nonlinearity · FEA · Damping · Natural frequency

5.1 Introduction

The dynamic response of large structures is determined by their inertia, stiffness and damping properties. While mass and
stiffness properties can be readily deduced from design data, the prediction of damping properties is difficult, particularly in
the case of nonlinear damping caused by friction in joints. Although mechanical joints are integral parts of most engineering
structures, their effects on structural dynamics are not yet fully understood. Frequently, our ability to design dynamically
loaded structures is hampered by the linear and nonlinear behavior of joints; because the joints aren’t well understood, they
are represented using simplified elements whose parameters must be identified or tuned through testing. As pointed out by
Berger [1], joints are governed by physics at a length scale orders of magnitude smaller than the structures, so analysts
are faced with a trade-off in the spatial resolution of the nonlinear degrees of freedom within a joint interface versus the
computational effort required to evaluate such a model.

Although bolted joints are needed in almost all structures, they are a large source of uncertainty in the stiffness of the
structure, and that stiffness is typically weakly nonlinear due to the joints. Furthermore, dissipation due to frictional slip in
joints typically far exceeds the material damping, and the damping tends to nonlinear, increasing by a factor of 2–10 at high
vibration amplitudes. Energy dissipation helps to reduce vibration amplitudes and decreases the loads on a structure. Hence,
any predictions of the life of a structure may be erroneous if this effect is not taken into account in the design phase. If a more
accurate estimate of a structure’s capacity for energy dissipation can be computed for different levels of environment loading,
then engineers can be better informed so as to create more lightweight designs for aircraft and spacecraft, and perhaps even
design joints to exploit this effect to maximize dissipation.

The energy dissipation in joints comes about due to the slip in the contacts between components. In each cycle of vibration,
the loads on the joints cause some regions within the contact to slip relative to each other while other regions remain stuck
[2]. Depending on the transmitted load, the contact interface is divided into stick and slip zones. Bolted joints exhibit two
types of motion during vibration, micro-slip, in which only the outer edges of the contact region experience slip, and macro
slip, in which the entire joint experiences slip [3].

M. Wall · M. S. Allen · I. Zare (�)
Department of Engineering Physics, University of Wisconsin, Madison, WI, USA
e-mail: zareestakhra@wisc.edu

© Society for Experimental Mechanics, Inc. 2020
G. Kerschen et al. (eds.), Nonlinear Structures and Systems, Volume 1, Conference Proceedings of the Society for Experimental
Mechanics Series, https://doi.org/10.1007/978-3-030-12391-8_5

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12391-8_5&domain=pdf
mailto:zareestakhra@wisc.edu
https://doi.org/10.1007/978-3-030-12391-8_5


40 M. Wall et al.

In analyzing the dynamic response of structures, it is common to represent the friction that occurs at contact surfaces by
means of Coulomb friction law. As simple Coulomb models with few parameters oversimplify the description of frictional
joints, a continuous model with the ability to include micro-slip seems to be advantageous. Moreover, we should consider
that the coefficient of friction is also not constant. It depends primarily on the contact surface properties which change during
slip, and on the magnitude of the clamping pressure exerted by the bolts. In [4], it is shown that the coefficient of friction
decreases with increasing clamping pressure. According to [5], for “practical surfaces” the coefficient of friction decreases
approximately linearly with an increasing normal load.

In order to represent micro-slip friction accurately, the finite element model typically requires a mesh of elements having
far greater density in the region of the joint compared to the rest of the structure. Computationally, high-fidelity models may
be feasible for simple structures that contain one or a few joints, though some simplifications may be employed to speed
up the computational time such as model-order reduction of the linear domain away from the joint. Using the best of these
approaches, the time required to simulate the response to a dynamic loading is still on the order of hours, and this time would
stretch to weeks or months for more realistic structures, such as the turbofan jet engine, which can contain hundreds of bolted
joint interfaces.

It can be claimed that when a structure vibrates in the shape of one of its modes, the joints dissipate energy and lose
stiffness in a manner that is unique to that mode. When the structure is excited to higher response amplitudes, the loss in
stiffness and increase in energy dissipation can be observed experimentally as a decrease in the natural frequency and increase
in the damping ratio, respectively, for that mode. Both the natural frequency and the damping can be retrieved for each mode
using well-established experimental practices and signal processing techniques. The current techniques for extracting the
frequency and damping from a model are based on signal processing of the simulated response. Both the signal processing
techniques and dynamic simulations are prohibitively expensive to compute, which devalues their use in a practical model
updating routine.

The problem of computational expense in dynamic simulations was overcome by treating the joint as a quasi-static
subcomponent in an otherwise linear, dynamic global model. The groundwork for this solution was laid out in a paper by
Festjens et al. [6]. They used the fact that the contact nonlinearity is governed by micro and meso-scale parameters (geometry,
roughness, local pressure, etc.) and as a result cannot be included in a macro-size model of a whole structure because of the
computational cost. They investigate the idea of using the normal modes of the linearized structure as boundary conditions on
a detailed model reduced to the joints only. It has been observed that after a number of repetitive loading cycles, the response
of a bolted joint structure may lead to a stabilized state called limit cycle and in the case of an assumed linear structure, this
limit cycle is known [6]. Moreover, we can consider the fact that under linear assumption the use of modal coordinates is
useful to reduce the size of vibrational problems [7, 8].

After a few modifications to the approach of Festjen et al. [6], Allen et al. [9] later presented a fast and efficient
computational method for extracting the amplitude-dependent modal properties from a finite element model and applied it to
structures where the joints were modeled as discrete Iwan elements. The new method termed “quasi-static modal analysis”
(QSMA), estimates the effective modal natural frequency and damping from a single, static deflection in response to a
monotonically-increasing load distributed over the entire structure in the shape of one of its modes. Masing’s rules are then
applied to the force-deflection relationship to quantify the amount of energy dissipated and stiffness lost in the all joints
when the structure vibrates in the mode of interest [9]. For Allen et al.’s work, Iwan elements were selected since they
can capture microslip efficiently, which gives rise to energy dissipation and nonlinear behavior of the joint. However, Iwan
elements require four parameter inputs that must be tuned based upon prototype results since they cannot be deduced from
first principles but must be measured experimentally [10, 11].

The method of QSMA dramatically reduces the computational effort because the change in the natural frequency and
damping of each mode with modal amplitude can be completely determined from a single set of quasi-static, monotonic
loading cases. This is in stark contrast to a dynamic simulation, where the free-response history must be computed until its
amplitude decays to the smallest level of interest [12]. This advancement prompted Jewell, Allen & Lacayo [13] to apply this
technique to detailed finite element models that included nonlinear contact between the bolted interfaces using a commercial
software package. While their results showed that such an analysis is feasible, they struggled to obtain accurate results and
noted that, once the structure had been meshed with adequate fidelity to capture micro-slip, the computational cost was very
significant even to perform a single static analysis.

Zare and Allen [14, 15] explored a more computationally efficient alternative that follows the work of Ahn and Barber
[16, 17] in that they combined QSMA with a static reduction technique, retaining only those DOF on the interface. They
implemented the QSMA for structures where the joint is modeled in detail, using a block Gauss-Seidel algorithm to solve
the nonlinear contact problem in Matlab.

In this paper, a model of the S4 Beam is constructed in the commercial finite element analysis software package,
Abaqus

®
, with a Coulomb friction law assigned at the interfaces between the parts. The model is loaded using Quasi-Static



5 Predicting S4 Beam Joint Nonlinearity Using Quasi-Static Modal Analysis 41

Modal analysis, and the nonlinear frequency and damping behavior is predicted and compared to experimentally measured
properties for a single mode. Several parameters are studied in order to create an efficient and accurate model, such as,
convergence tolerances, preload, and small perturbations in the flatness of the surface.

5.2 Background

The Quasi-Static Modal Analysis method implemented in this paper is similar to one developed by Festjens, Chevallier, and
Dion, [6], where the effective natural frequency and modal damping ratios are extracted from a nonlinear static analysis. This
is done by imposing a quasi-static load to the model that would excite only a single mode of the linearized structure. Allen
and Lacayo, [12] recently elaborated on this method, and used the modal load-displacement curves to construct a hysteresis
curve from which the effective natural frequency and damping were estimated. The method is reviewed below.

Suppose that a preload is applied to a structure such that the members come into contact in at least one location. The
equation of motion for the coupled structure(s) can then be written as

Mẍ + Cẋ + Kx + fJ (x, θ) = fext(t) (5.1)

where M, C, and K are, respectively, the mass, damping, and stiffness matrices of the system, and x, ẋ, and ẍ are the
displacement, velocity, and acceleration vectors, respectively. The vector fJ represents the internal forces due to a joint
model containing internal sliders, and θ is a vector that captures the state (slip or stick) of each slider element.

At low vibration amplitudes, the joints can be replaced with springs equivalent to the preloaded stiffness of the joints
(when vibratory loads are small),

KT = ∂fJ
∂x

∣∣∣∣
x=0

(5.2)

where x = 0 corresponds to the preloaded state and an eigenvalue problem can be solved to estimate the mass-normalized
mode shapes, ϕr, of the structure.

([K + KT] − λM)ϕr = 0 (5.3)

At this point, Festjens et al. [6] divided Eq. (5.1) into a nonlinear domain near the joint and a linear domain away from
the joint. While their approach could reduce the computational burden, it does require a specialized implementation and
introduces additional uncertainties as there is an additional convergence tolerance governing the connection between the
linear and nonlinear domains. Allen and Lacayo instead let the nonlinear domain encompass the entire structure, in which
case only one nonlinear static analysis is needed per mode. Using their approach [9], the following quasi-static problem is
solved.

Kx + fJ (x, θ) = Mϕrα (5.4)

where α is a scalar which sets the load amplitude. A finite element package returns the response, x(α), which can then be
mapped onto the rth mode using:

qr (α) = ϕr
TMx (α) (5.5)

Then using Masing’s rules, the force (and similarly displacement) over a full loading cycle can be estimated yielding the
following forward and reverse curves. To avoid the computing of a complete cycle for each energy E, it is assumed that the
hysteretic behaviors of the joint follow the Masing rules [18]. This description simplifies the modeling of hysteretic behaviors
if a full cycle in a force-amplitude hysteresis can be extrapolated from the initial loading (so-called backbone curve) [6].

f̂1 (qr ) = 2fr
(
qr+qr (α)

2

)
− α

f̂2 (qr ) = α − 2fr
(
qr (α)−qr

2

) (5.6)
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The secant of this hysteresis curve is then used to estimate the instantaneous natural frequency of the mode in question:

ωr (α) =
√

α

qr (α)
(5.7)

The energy dissipated for each vibration cycle is the area under the hysteresis curve,

Dr (α) = ∫ qr (α)
−qr (α)

(
f̂1 (qr )− f̂2 (qr )

)
dqr

= 2
∫ qr (α)

−qr (α)
(
fr

(
qr+qr (α)

2

)
+ fr

(
qr (α)−qr

2

)
− α

)
dqr

(5.8)

The integral above is readily evaluated using the trapezoid rule and then the effective damping ratio ζ r(α) may be
determined by analogy with a linear system [9, 12].

ζr (α) = D (α)

2π(qr (α) ωr (α))2
(5.9)

5.3 Model Creation

The structure of interest was named the S4 Beam in [19] and is shown in Fig. 5.1. The structure consists of two C shaped
beams, bolted together at each end. Impact testing was used to determine the amplitude dependent natural frequency
and damping for the first several modes of the structure. These experimental measurements will be compared with the
amplitude dependent natural frequency and damping predicted from various finite element models. A detailed explanation
of experimental setup for the S4 Beam can be found in [19].

The finite element model used in this work borrowed from the 3D model created in [20], using the parameters, mesh
density, etc. previously found to give reasonable results. For the S4 Beam, the mesh density very close to the hole (where
slip does not occur until very large loads), as well as along the long beam section was coarsened to reduce computational
cost. Tangential contact behavior was defined using the penalty method and μ = 0.6. Normal behavior was also defined with
the penalty method with “Hard” contact defined as the pressure-overclosure parameter and a contact stiffness scale factor of
10. The tangential penalty constraint was set to 10−6, which is much tighter than the default, as was found to be necessary in
[20]. The model consists of 386,666 user defined nodes and 348,818 user defined elements. All models with reported solve
times were solved on a computer with 16 Gb of memory allocated to the solution (of 32 Gb) and a 3.6 GHz, Intel

®
i7–7700

processor using 2 cores (of the 8 available; Windows
®

treats the four physical cores as 8). The time to solve on two cores
was only about 5–10% less than the time required to solve on a single core, so additional parallelization was not explored.

The simulation was split into two steps. First, the preload was applied in a nonlinear loading step in Abaqus and the modes
shapes were found using a linear modal analysis. Inertial relief was applied so that preload analysis could be performed on
this free-free model. The inertia relief process was apparently not perfect, so an additional rotational constraint was applied

Fig. 5.1 (left) Photo of a test on the S4 Beam. (right) S4 Beam finite element model
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to the center of the beams during the preload process. The nodes in contact were then welded together (according to Abaqus’s
default practice) for the modal analysis. Then the quasi static modal force was calculated in Matlab

®
as described in Eq. (5.4)

and applied to the structure. The amplitude of the deflection will be referred to in units of thicknesses of the beam (i.e. in
some models, the beam was deflected to 0.01 thicknesses of the beam). Inertial relief was also applied in the quasi static
loading step, but in this step no additional constraints were needed.

5.3.1 Bolt Preload

Bolt preload was an important parameter to experiment with because it has a high level of uncertainty. In some cases, the
preload of the bolt can vary +/−35% for a given torque level [21]. For the 5/16 × 24 grade 8 bolts used in the actual
experiment, one can calculate the nominal preload force using a torque-tension relationship. In this case the Motosh Eq.
(5.10) was used [22].

T = F
(
P

2π
+ μrrt

cos (β)
+ μnrn

)
(5.10)

Here in Eq. (5.10), the torque applied to the bolt, T, is related to the preload force, F, and multiplied by three terms. The
first accounts for the load transferred due to the pitch of the threads, P. The second term is the frictional loss incurred in the
threads, where μr is the coefficient of friction between the threads on the bolt and the nut, rt is the effective diameter of the
threads, and β is the half angle of the threads. The last term is the friction loss incurred between the head of the bolt and the
clamped member, where μn is the coefficient of friction between the head and the clamped member and rn is the effective
diameter of the bolt head contact region. For the purposes of these calculations, a coefficient of friction of 0.1 was used for
both the threads and head of the bolt, though these numbers can vary widely. A load of 21.2 Kn. is calculated after using data
from [23] to estimate the effective diameter of the threads and bolt head contact region. This load will be varied to quantify
its effect on the amplitude dependent natural frequency and damping of the S4 Beam model.

5.3.2 Modeling Surface Curvature

The joint interfaces on the beams were machined to be nominally flat, but measurements revealed that there was some
curvature, and so an effort was made to quantify the curvature of the contact patches and apply this to the FEM. In later
sections of this paper, the measured surface contours of the beams were applied to the nodal positions on the joint interface
to model a more realistic contact. In order to do this, surface contour plots were constructed which showed that the nominally
flat surfaces had variation of up to 150 μm in height. Two measurements were used to extrapolate a surface contour. Referring
to the coordinate system in Fig. 5.1, one measurement was parallel with the X axis and one with the Y, both measurements
intersecting at the center of the bolt hole. Each measurement was fit with a sixth degree polynomial. All fits had R2 values
of greater than 0.97. The curvatures in x- and y- were then added together to approximate the surface of the real machined
components. For brevity, the measurements and the fits to them were not included here, but plots of the surface profiles are
shown in Fig. 5.2. The titles above each surface indicate which interface they belong to, referring to the coordinate system
in Fig. 5.1. For example, the +Y, +X surface is on the top beam on the right joint in Fig. 5.1, and −Y, −X would be on the
bottom beam on the left.

It should be clearly stated that the surface contours for this model are gross approximations meant only to roughly
represent the variations in the surfaces. This method is likely a poor approximation of the edges of the interfaces, but as
is shown later, the edges of the interface likely play no role in the contact of the joint.

5.4 Test Cases

In seeking to obtain agreement between the simulations and the experimental measurements, three main variables were
studied. The solver tolerances were varied to find the settings that provide the minimum solve time without sacrificing
significant accuracy. The preload of the bolt was varied over multiples of the nominal value to span any uncertainty in the
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Fig. 5.2 Polynomial fit to surface shapes for the S4 Beam. Four surfaces were fit, two on each end of the beam. The bolt hole, which is not shown
in these fits, would be at the center of each of the surfaces shown

Fig. 5.3 Mode 2 of the S4 Beam

actual load. And finally, the measured surface contour was applied to the interfaces of the FEM to quantify the effect of small
but realistic changes to the interface geometry on the results. In all models, mode 2 of the S4 Beam was used. Figure 5.3
shows that mode 2 is first order, in phase bending mode with motion in the Y-direction.
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Table 5.1 Solve time (hours)
and convergence tolerances for
the 0.02 thickness deflection
models

– Cαn

Rαn – 2 × 10−2 2 × 10−1 2 × 100 2 × 101

5 × 10−3 N/A N/A N/A –
5 × 10−2 10.59 12.57 10.96 –
5 × 10−1 5.82 5.07 5.60 –
5 × 100 – – – 5.77

N/A signifies models that did not solve after 2+ days

5.4.1 Solver Tolerances

When initially creating many of the models in this paper, convergence issues caused the models to take several days to
solve and many did not converge at all. Computation time was also a topic of discussion in [20], which was a precursor
to this work. Hence, the solver settings were explored further to seek to speed up the computations. The default solution
control parameters defined in Abaqus/Standard are designed to provide reasonably optimal solution of complex problems
involving combinations of nonlinearities as well as efficient solution of simpler nonlinear cases. However, the most important
consideration in the choice of the control parameters is that any solution accepted as “converged” is a close approximation to
the exact solution of the nonlinear equations. We can reset many solution control parameters related to the tolerances used for
field equations. If we define less strict convergence criteria, results may be accepted as converged when they are still close to
the exact solution of the system but with the less computational cost. In this research, we’ve changed two parameters to get
the accurate results in the acceptable amount of time, Cαn and Rαn . Most nonlinear engineering calculations will be sufficiently
accurate if the error in the residuals is less than ( 1

2 %). Therefore, Abaqus/Standard normally uses:

rαmax ≤ Rαn qα (5.11)

where rαmax is the largest residual in the balance equation for field α and qαis the instantaneous magnitude of the force for
field α at time t, averaged over the entire model.

If this inequality is satisfied, convergence is accepted if the largest correction to the solution,Cαmax , is also small compared
to the largest incremental change in the corresponding solution variable uαmax ,

Cαmax ≤ Cαn uαmax (5.12)

where Cαmax is the largest correction to any nodal variable of type of α provided by the current Newton iteration.
The defaults are 5 × 10−3 for Rαn and 2 × 10−2for Cαn . Table 5.1 presents the results of a study in which, the convergence

tolerances were varied and the corresponding solve times are listed. The solve time is given in what Abaqus defines as “wall
clock time”, or the total time from the submission of the job to the completion.

The solve time was improved drastically by increasing Rαn . Up until 100 times the default value the solve time decreased.
Furthermore, while the results of these computations are not shown here for brevity, each of these solutions gave damping
curves that differed by less than 0.001% after the results were processed with QSMA. Since Rαngoverns the largest residual
in the model, it appears that, if the value is set too low, the solver spends a lot of time iterating between solutions when it is
already very close to being converged. Relaxing this tolerance still gives good results while also decreasing the solve time
drastically. To obtain the maximum speed while keeping the tolerance as small as possible, Rαn = 5 × 10−1, or 100× the
default, was used for many of the subsequent models in this paper.

5.4.2 Bolt Preload

In the experimental measurements presented in [19], the only parameter measured to estimate the preload of the bolt was the
torque applied. Given the possible variation in the coefficient of friction as well as the nonlinear dependence of coefficient of
friction with pressure [4], a large uncertainty is assumed in the experimental bolt preload. The max tensile strength of a grade
8, 5/16′′ × 24 bolt is about 31.1 kN loads up to 84.4 kN were tested in order to span all possible loads and then exceeding the
possible loads to show the level of preload needed to obtain correlation with experimental results. In total, factors of 0.5×,
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Fig. 5.4 Variation in effective damping ratio and natural frequency with preload

Table 5.2 Solve time vs. preload Preload (kN.) Solve times (hours, abaqus wall clock time)

42.4 21.8
31.8 7.46
21.2 (nominal) 9.97
10.6 18.92

1.5×, 2× and 4× were applied to the nominal bolt preload of 21.2 kN calculated in Sect. 5.3. The general trend is that as the
preload increases the structures natural frequency is increased and the damping is decreased (Fig. 5.4).

It is also worth noting that the preload in the joint, and thus the amount of microslip occurring, had a substantial effect
on solve time. For all the load cases within the physical limitation of the bolt, the solve time decreases with preload, likely
because of reduced slip and hence the reduced computational cost of modeling slip. Though once very high loads were
reached, computational costs increased rapidly. Solve times for the preceding models are shown in Table 5.2: Solve time vs.
preload. The solve times are from models with Rαn = 5 × 10−2 and Cαn = 2 × 10−1.

These results are not presented for the purpose to showing which model is most efficient, but only to show that there are
other factors that may slow down or speed up the simulation depending on the preload in the model. At the moment, the exact
causes of the spike in computational cost at very high preloads are unclear, but it is likely that the high preload is causing
some nodes to jump in and out of contact, and the solver tolerances may be too strict to address this in an efficient manner.

Figure 5.5 compares the damping from these simulations with the measured damping. When damping values are compared
to experimental data, extremely high preloads are needed to bring the model near agreement with the experimental damping
measurements. The cyan curve shows the raw experimental data, and the subsequent curves account for the lack of material,
and any other form of linear damping in the FEM by subtracting a constant value from the experimental curve. Values of
ζ = 0.0004, ζ = 0.0006 and ζ = 0.0008 are shown to span reasonable values for damping in the linear regime, although the
curve using, ζ = 0.0006 produces damping from the joint that most closely obeys a power-law model [24] and is thought to
be the most reliable curve.

When frequency shift is plotted in Fig. 5.6, it is clear that the 84.8 kN model agrees with the experimental data the best.
But, the frequency shift is very small so all models show reasonably good agreement with experimental measurements,
always being less than 1% away from the measured values.

The results in Fig. 5.6 (left) show that the linear natural frequency predicted by the model is 0.9% higher than the measured
value. In [19], additional correlation was performed to reach agreement in the experimental modes of one half of the S4 Beam
and a FEM. The elastic modulus needed to be shifted −6.05% in order to bring the FEM into agreement, which may explain
why some discrepancy in the experimental measurements and the FEM presented here. The effect of the contact on the linear
natural frequencies was studied in detail in [23] and so was not investigated further here.

In summary, this preload study shows that the model does show promise in predicting the nonlinear stiffness and damping
of this structure, as the simulations and experiments agree in a qualitative sense and are not so far off quantitatively. However,
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Fig. 5.5 Preload variance and experimental data with various values of material damping

Fig. 5.6 (left) Preload variance and experimental natural frequency curves, (right) frequency shift for preload variance models and experimental
data

it is not possible to bring both natural frequency and damping ratio into agreement without an impossibly high preload on
the bolt, so clearly there are unmodeled physics that must be addressed.

5.4.3 Surface Contours

To explore the issues previously stated, efforts were made to model the geometry of the contact more precisely. Efforts were
made in [19] to use profilometry to measure the actual roughness and topography of the surface. While the measurements
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Fig. 5.7 Abaqus CSTATUS for flat surface vs. modified surface, 21.2 Kn. Preload

were not completely successful (the sample was too large for the machine used), sizeable variation in the surface shape
was discovered. As described in Sect. 5.3, these measurements were used to estimate the profile of the surface and this was
applied to the FEM by moving the nodes in the contact surface. The models were then solved as described previously under
various preloads. First, the contact patch will be examined. The CSTATUS output from Abaqus is shown in Fig. 5.7. This
shows the regions in the model that are either stuck, slipping or not in contact. On the left is the contact patch for the flat
FEM interface and on the right is the contact patch for the modified interface.

There is a dramatic difference in the area of the closed, or in contact, region of the joint. As a result, the maximum pressure
in the contact (and in the micro-slip regime on the edges) will be much higher than was found for the nominally flat model.
Figure 5.8 quantifies, the maximum contact pressure (CPRESS) of the flat interface (left) which is 17× smaller than the
pressure on the modified interface (right).

In the preload study in Sect. 5.4.2, very high pressures in the interface of the joint took the longest to solve. This is
reinforced here as Abaqus took eight steps to solve the nonlinear preload step for the flat interface and twenty steps to
solve the same step for the modified surface. Unfortunately, because the mesh was coarsened near the hole to speed up
computation for the flat-on-flat model, there is now not a sufficient mesh density to accurately resolve the microslip in the
joint. A finer mesh would need to be made to study this curved interface in more depth, and thus, the model with the modified
interfaces will not be explored beyond a brief preload study. The damping and frequency vs. velocity plots are compared to
experimental data below.

The models with the modified surface geometry show lower damping for the same preload, which makes sense considering
that the contact pressure is higher. As was the trend for the bolt preload cases in Sect. 5.4.2, a higher contact pressure
decreased the damping in the joint. The lack of mesh quality is apparent in the damping curve, which now deviates from
power-law behavior at low amplitudes, presumably because the mesh density is insufficient to resolve the small changes that
occur near the periphery of the contact.

As was the case previously, the simulations do not agree with the experimentally measured damping curves for reasonable
values of the contact pressure, as shown in Fig. 5.9. However, the mesh of the model is known to be insufficient, and so the
fact that the model moves in the correct direction (towards lower damping for the higher preload) is promising (Fig. 5.10).

The effect for the natural frequency is now reversed and the linear natural frequency moved closer to the experimental
measurement with higher pressure. This is expected since the curved interfaces now provide a Hertzian-type contact [16]
where the area of the contact increases with increasing pressure.

Comparing the natural frequency versus amplitude to the experimental data, we see that the models with a modified
surface have natural frequencies that are about 4 Hz lower. Hence, the uncertainty in the interface shape may account for
the shift in linear frequencies that was noted earlier; it is probable that the modulus value used is accurate but the surface
geometry accounts for any discrepancies in the linear natural frequencies.

One reason for the modified surfaces not bringing the model into better agreement, especially for natural frequency, could
be due to poor quality measurements or the method for extrapolating a surface as described in Sect. 5.3. The biggest takeaway
from these surface measurements is that implementing a realistic surface contour for a nominally flat model can produce a
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Fig. 5.8 Abaqus CPRESS for flat surface vs. modified surface, 21.2 Kn. Preload

large effect on the dynamic behavior of the joint. It seems that it will be critical to measure the surface geometry accurately
and implement that into the FEM in order to obtain better agreement in the future..

5.5 Conclusion and Future Work

This paper has summarized work to date using quasi-static modal analysis (QSMA) to model nonlinearity due to micro-slip
in the S4 Beam. The current model included about one million DOF, and was the smallest model that our group has been
able to create to date that can capture the joints in this structure in sufficient detail while coarsening the mesh as much as
possible in areas away from the joints. While it is probably possible to create a smaller model with additional effort, models
of approximately this size are probably typical when seeking to describe a few joints in detail. With this model, a dynamic
transient analysis would take several decades (extrapolating based on the static analysis that was performed), while with
QSMA one could estimate the behavior that would be observed when the structure vibrates in one mode in 5–24 h. While it
was not demonstrated here, from the QSMA results one could reconstruct the dynamic transient response until the amplitude
of vibration decayed to zero (tens of seconds in the experimental results).

This work sought to use QSMA to correlate the FEM with measurements from a real S4 Beam, in which impact testing was
used to extract the nonlinear behavior of a few modes. Our initial results were qualitatively very similar to the measurements,
though they over-predicted damping by about an order of magnitude. A parameter study revealed that the model could not
be made to agree with the measurements unless the preload was increased far beyond the yield strength of the bolts. An
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Fig. 5.10 Natural frequency plots for modified surface and flat surface. 1× and 1.5× nominal preloads shown against experimental data

investigation was performed in which the actual measured curvature of the surfaces was included in the FEM, and even
though the geometry only changed by a few thousandths of an inch (about 100 μm), this had a dramatic effect on the contact
pressure and on the predicted stiffness and damping of the joint. We expect that even larger differences may be observed
once the FE mesh is refined to better capture the surface geometry. In retrospect, considering how stiff the structure/material
is, it should have been obvious that the surface geometry would be so important.

Moving forward, the existing FE Model is also being used to compute the nonlinearity in the sixth mode of vibration,
which was experimentally found to exhibit even stronger nonlinearity than Mode 2, which is the mode that was studied here.
New profilometry measurements will be obtained and used to create a new FE model, whose mesh will be tailored to capture
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the contact more accurately. It is hoped that these investigations will reveal whether it is possible to reproduce the physics
(amplitude dependent damping and stiffness) that were observed in these experiments using an FE model with Coulomb
friction at the interface. If this succeeds, this tool could be used to predict the effect that joints in a wide variety of structures
have on the dynamics of their fundamental modes of vibration.
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Chapter 6
The Best Linear Approximation of MIMO Systems: First Results
on Simplified Nonlinearity Assessment

Péter Zoltán Csurcsia, Bart Peeters, and Johan Schoukens

Abstract Many mechanical structures are nonlinear and there is no unique solution for modeling nonlinear systems. When
a single-input, single-output system is excited by special signals, it is easily possible to decide whether the linear framework
is still accurate enough to be used, or a nonlinear framework must be used. However, for multiple-input, multiple-output
(MIMO) systems, the design of experiment is not a trivial question since the input and output channels are not mutually
independent. This paper shows the first results of an ongoing research project and it addresses the questions related to the
user-friendly processing of MIMO measurements with respect to the design of experiment and the analysis of the measured
data.

When the proposed framework is used, it is easily possible (a) to decide, if the underlying system is linear or not, (b) to
decide if the linear framework is still accurate (safe) enough to be used, and (c) to tell the unexperienced user how much it
can be gained using an advanced nonlinear framework. The proposed nonparametric industrial framework is illustrated on a
ground vibration testing of an electrical airplane.

Keywords MIMO systems · Nonlinearity · Nonparametric estimation · System identification · Ground vibration testing

6.1 Introduction

In this paper we focus on nonparametric vibration analysis. Many mechanical and civil structures are inherently nonlinear.
The problem lies in the fact that there are many different types of nonlinear systems, each of them behaves differently,
therefore modelling is very involved, and universally usable design and modelling tools are not available. For these reasons
the nonlinear systems are often approximated with linear systems, because its theory is user friendly and well understood.

Since the development of advanced digital signal processing algorithms and the increased computational capability,
it became possible to use complex input signals such that a large variety of shaker excitation signals can be used to
experimentally determine the broadband FRFs, which are required to obtain parametric models (e.g. resonance frequencies,
modes shapes, etc.). One of the (best) possibilities is the usage of special multisines (known as pseudo random signal as well)
because they can avoid spectral leakage, inconsistency, non-persistency, and they provide a handy, robust solution to build
linear models (FRFs) and to detect the level and type of nonlinearities. The state-of-the-art knowledge known as the Best
Linear Approximation (BLA) (best in mean square error sense) framework is already available for single-input, single-output
(SISO) systems [1–4].

The aim of the paper is to introduce the BLA framework of multiple input-multiple output (MIMO) systems based on
industrial vibrational measurements. The proposed BLA provides a user-friendly interpretation of the measurement data by
extracting the user relevant information. The procedure consists of two main steps.

In the design of experiment step (step 1), systems are excited by multisine signals. The excitation signal consists of
independent series of periodic multisines that are mutually independent over the experiments.
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The analysis of the measured signals (step 2) differs from the classical H1 Frequency Response Function (FRF) estimation
process. The key idea is to make use of some statistical properties of the excitation signal such that is becomes possible to
split up the classical coherence function of the FRF measurement into noise and nonlinearity information.

The proposed nonparametric industrial framework is illustrated on the ground vibration testing (GVT) measurement of a
battery operated electrical airplane.

This paper is organized as follows. Section 6.2 briefly describes the considered systems and assumptions applied in this
work. Section 6.3 addresses questions related to the experiment design. Section 6.4 discusses the estimation framework in
detail. In Sects. 6.5 and 6.6 the description of the GVT measurement and its analysis are given. Conclusions can be found in
Sect. 6.7.

6.2 Basics

The dynamics of a linear MIMO system can be nonparametrically characterised in the frequency domain by its Frequency
Response Matrix (FRM) [5] G at a discrete frequency index k, which relates the inputs U to outputs Y as follows:

Y (k) = G(k)U(k) (6.1)

In this work arbitrary number of input and output channels are considered and the underlying systems are BIBO stable
physical systems [6]. For the sake of simplicity, the frequency indices will be omitted, and it is assumed to understand each
quantity at frequency index k.

This system represented by the G is linear when the superposition principle is satisfied in steady-state, i.e.:

Y = G(a + b)U = a GU + b GU = (a + b) GU (6.2)

where a and b are scalar values. If G is constant, for any a, b (and excitation), then the system is called linear-time invariant
(LTI). On the other hand, when G varies with a and b (and the variation depends also on the excitation signal—e.g. level of
excitation, distribution, etc.) then the system is called nonlinear.

Because time-varying systems are often misinterpreted as nonlinear systems, it is important to mention that when G varies
over the measurement time, but at each time instant the principle of superposition is satisfied, then the system is called linear
time-varying (LTV) [7].

In this work we consider nonlinear time-invariant stable (damped) mechanical (vibrating) systems where the linear
response of the system is still present and the output of the underlying system has the same period as the excitation signal
(i.e. the system has PISPO behaviour: period in, same period out [8]).

Further, it is assumed that the excitation signal is known (measured precisely). The actuator of the system is linear.

6.3 Design of Experiment

6.3.1 Multisine Excitation and Detection of Nonlinearities

In modern system identification special excitation signals are available to assess the underlying systems in a user-friendly,
time efficient way [9]. To avoid any spectrum leakage, to reach full nonparametric characterization of the noise, and to
be able to detect nonlinearities, a periodic signal is needed. Many users prefer noise excitations, because they are simple to
implement, but in this case nonlinearities are not identifiable, and there is a possible leakage error. The best signal that satisfies
the desired properties is the user-friendly multisine signal (see Fig. 6.1) which looks like Gaussian white noise, behaves like
it but it is not a noise. The random phase (uniformly distributed) multisine is a sum of harmonically related sinusoids. The
amplitude distribution of a random phase multisine is approximately normal (it approaches a Gaussian distribution as the
number of harmonics tend to infinity).

In this work, random phase multisines are used and generated in the frequency domain such that the magnitude
characteristic is set by the user, and the phases of the cosines are chosen randomly from a uniformly distribution [8]. Note
that this signal is also known as pseudo-random (multisine) signal.



6 The Best Linear Approximation of MIMO Systems: First Results on Simplified Nonlinearity Assessment 55

Gaussian noise

Frequency Frequency Frequency

Periodic noise

Time Time Time

Random multisine

Fig. 6.1 Different excitation signals in time and in frequency domain

6.3.2 Multisines for Multiple Input Measurements

For the sake of simplicity—without loss of generality—we will focus on systems with two inputs and two outputs. This
allows to illustrate the additional problems that appear when moving from SISO to MIMO for a minimal increase of the
complexity. The straightforward extension of the SISO excitation case can be formulated in the frequency domain as follows:

Y = GU ⇐⇒
[
Y1

Y2

]
=

[
G11 G12

G21 G22

] [
U1

U2

]
(6.3)

where the indices of the input and output data refer to channel number.
The above-mentioned set of linear equations suffers from the degrees of freedom: there are 4 unknown parameters and

only 2 independent equations. In order to overcome the issue with the degrees of freedom, the number of independent
equations has to be increased. In this work this has been done by increasing the number of experiments by expanding the
number of columns in U (and hence the number of columns in Y). Each column in U (Y) represents an experiment. In case
of 2 inputs there are at least 2 experiments needed.

The solvability of the above-mentioned linear algebraic equation strongly depends on the condition number (i.e. the
randomness) of the excitation signal’s matrix U. In classical MIMO identification, one of the most often applied solution
to this problem is the use of Hadamard decorrelation technique: a square matrix (whose entries are either +1 or −1) is
elementwise multiplied with one realization of signal. The restriction here is that the order of the matrix must be 1, 2, or
multiples of 4.

In order to overcome the issue with the limited possible orders of the Hadamard matrix, and to improve the estimation
properties [10, 11] proposed to use orthogonal random multisines, extending the idea of the orthogonal inputs proposed for
linear MIMO measurements in [12]. In this work the proposed procedure is to generate independent random excitation for
every input channel such that we have (more) randomness in the measurement with respect to the Hadamard’s technique.
This sequence of signals will be placed in the first blocks of experiments (i.e. first column of U) and they will be shifted
orthogonally for the subsequent experiments (i.e. the next columns in U) with the following weighting-shifting matrix:

Wcn = e−j2π(c−1)(n−1)/Ninput (6.4)

where c refers to input channel number (i.e. the row number in U), n refers to the experiment number (column number in
U), and Ninput stands for the number of inputs. In case of 2 input/output channels, for one set of realization of the multisine
signal, the following equation is given:

[
Y11 Y12

Y21 Y22

]
=

[
G11 G12

G21 G22

] [
U11 U12

U21 U22

]
=

[
G11 G12

G21 G22

] [
U1W11 U1W12

U2W21 U2W22

]
=

[
G11 G12

G21 G22

] [
U1 U1

U2 −U2

]
(6.5)
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6.4 Best Linear Approximation

The Best Linear Approximation (BLA) has been widely used in the last decades to efficiently estimate FRFs [9]. The BLA of
a nonlinear system is an approach of modelling that minimizes the mean square error between the true output of a nonlinear
system and the output of the linear model.

The proposed BLA technique makes use of the knowledge that the excitation signal has both stochastic and deterministic
properties. In this work the excitation signal is a random phase multisine signal and it is assumed to be measured precisely.
In each measurement there are m different random realizations of multisines (orthogonally shifted number of input channels
times) and each of the realization is repeated p times.

From the philosophical point of view there are two main differences between the proposed BLA and the classical H1
(cross-power spectral density) estimate [13] frameworks. First, in the BLA case the FRM is estimated from the discrete
Fourier transformed data instead of using the cross-power and auto-power matrices. Second, instead of directly using the
averaged input and output data, a partial BLA estimate is calculated for each period of the excitation. A BLA FRM estimate,
for a given signal, is then calculated via the average of partial BLA estimates. In this case we can easily estimate the noise
levels and standard deviations on each frequency line. Using this information, the coherence function will be virtually split
into (1) noise level and (2) nonlinear contribution estimates.

6.4.1 Theoretical Structure and the Basic Assumptions

As aforementioned, the BLA of a nonlinear system is an approach of modelling that minimizes the mean square error between
the true output of a nonlinear system and the output of the linear model [8]. In the proposed robust BLA framework, multiple
repeated realizations of the random phase multisine excitation are needed. The BLA estimate consists of several components.
Figure 6.2 shows the theoretical structure of the considered BLA estimator.

GLinear is the linear (transfer function) component of BLA. This component is phase coherent: random phase rotation in
the input excitation would result in a proportional phase rotation at the output.

In case of non-coherent behaviour, the input phase rotation would result in a random phase rotation at the output. Please
note that significant part of the nonlinearities is non-coherent. When many input phase rotations are performed, the random
output rotations can be seen as an additional (nonlinear) noise source (GS) next to the ordinary measurement noise (GE)—
assumed to be additive i.i.d. normal distributed with zero mean with a finite variance. The usage of periodic excitation reduces
the effects of the measurement noise GE. The usage of multiple random phase realizations reduces the level of non-coherent
nonlinearities.

The (coherent) nonlinearities remaining after multiple realizations of the excitation signal result in a bias error of the BLA
(denoted by GBias). The next section discusses a possibility to reduce the effects of GS, GE.

6.4.2 Two-Dimensional Averaging

When the BLA estimation framework is applied, the observed system is excited by random phase multisines (assumed to
be measured precisely). In this work there are (Ninput times phase-rotated) m different realization of the multisine excitation
signal, each realization is repeated p period times. The considered steady-state model in the frequency domain at frequency
bin index k is given by:

Fig. 6.2 The theoretical
structure of the best linear
approximation
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Fig. 6.3 Evaluation of BLA estimate with the help of 2D averaging

Ĝ[m][p] = Ŷ [m][p]
measuredU[m]−1 = ĜBLA + Ĝ[m]

S + Ĝ[m][p]
E (6.6)

The steady state signals are obtained in this work by discarding some periods at the beginning of each realization block.
In order to estimate the underlying system one has to average over p periods of repeated excitation signal, and over the m
different realizations of the excitation signal [8] (see Fig. 6.3).

First, let us average over the p periods of a realization. If p is sufficiently large then (considering the law of large
numbers and the distribution properties the observation noise) the expected value of Ĝ[m][p]

E converges to zero, so that term
is eliminated. In other words, averaging over repeated blocks results in an improvement of the SNR. Because the stochastic
nonlinear contribution Ĝ[m]

S does not vary over the repetition of the same realization we have to average over the m different

realizations. If m is sufficiently large, then Ĝ[m]
S nonlinear noise source converges to zero, so that term is eliminated. After

the 2D averaging the BLA estimate is obtained.
The estimate of the noise sample variance σ̂ 2

GE
is calculated from the averaged sample variance of each FRM realization

and it is normalized by m. The total variance of the FRM σ̂ 2
ĜBLA

is calculated from the sample variance of each different

partial BLA estimates Ĝ[m] and is normalized by m. The additional m normalization helps to show the average noise and
nonlinearity effects on the FRF measurement.

The difference between the total variance and the noise variance is an estimate of the variance of the stochastic nonlinear
contributions σ̂ 2

NL ≈
(
σ̂ 2
ĜBLA

− σ̂ 2
GE

)
. When the user intends to see how much nonlinearty is present on an arbitrary block

(period) of the measurement, one has to consider m-times σ 2
NL such that σ 2

NL mσ
2
NL, and the noise variance term mp-times

σ 2
GE

mpσ 2
noise.

Using the proposed 2D averaging technique the influence of the noise and nonlinear contribution can be decreased, and
the final result is BLA FRF estimate. In [5] it has been suggested to choose the number of periods more than one (p ≥ 2) and
the different realizations are more than six (m ≥ 7). Detailed calculations of the proposed 2D approach can be found in [14].

6.5 Measurement

This section provides a brief overview of the GVT measurement of a battery operated small aircraft. The measurement took
place at Magnus testing facility in Kecskemét, Hungary in 2017. The eFusion aircraft (see Fig. 6.4) is a two-seat, all-electric,
low-wing monoplane, based on the piston engine. The light sport aircraft has a symmetric wing profile, a titanium firewall,
and a centre section made of chrome molybdenum alloys. The fuselage is attached with a non-retractable tricycle landing
gear. It has a length of 6.7 m, height of 2.4 m, and a wingspan of 8.3 m including winglet, whereas the wing area is 10.59 m2.
The aircraft is powered by a 60 kW electric drive system. The electric propulsion system including motor and batteries is
designed by Siemens. The aircraft has an endurance of approximately one hour. The aircraft has an empty weight of 410 kg
and a maximum take-off weight of 600 kg. It requires a landing roll from 150 to 200 m.

The measurement setup (see Fig. 6.5) consists of 2 shakers–2 force cells, and various 91 acceleration channels. The shaker
reference (Volt) signals are random phase multisine signals. The sampling frequency is 200 Hz. The period length is 1024
resulting in a frequency resolution of 0.1953 Hz. The smallest excited frequency is 1.1719 Hz, the highest excited frequency
is 50.7813 Hz.

There are eight different multisine realizations for each input channel per experiment. Each multisine realization is
repeated 3 times. As explained earlier, the extra experimental blocks (necessary to solve the MIMO equations) are obtained
by orthogonal phase shift. Thus, there are in total m · p · Ninput = 8 · 3 · 2 = 48 blocks.
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Fig. 6.4 The eFusion battery operated small aircraft

Fig. 6.5 The measurement setup and instrumentation

6.6 Analysis

This section concerns the analysis the random phase multisine GVT measurement. The GVT measurement has been executed
at three different levels. Figure 6.6 shows the lowest and highest level excitation signals in the frequency domain. The
excitation force is measured with approximately 65 dB SNR. This SNR is sufficiently good to fulfil the assumption on the
precise excitation signal measurement. However, it is interesting to point out that the high level excitation signal is 10 dB
higher than the low level excitation signal but the SNR improvement is only around 2 dB: the noise level estimate moved
together with the excitation signal estimate. This indicates the presence of (low level) nonlinearities at the excitation system.
The analysis of this phenomenon is out of the scope of this paper. Further, in order to simplify the analysis, the output and
FRF are shown at the driving points only. The output (acceleration) measurement is shown in Fig. 6.7. As can be seen, the
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Fig. 6.6 The input (force) signal measured in frequency domain at the low and high amplitude levels

SNR dropped a little resulting around 60 dB SNR at the resonances. At the higher excitation level, the right wing SNR
decreased with approximately 4 dB. This is a further indication of nonlinearities being present at the measurement.

In order to ensure that the measured signals are in the steady-state, a simple transient check-up is performed. Figure 6.8
shows the first realization of one of the output channels (with the slowest decay) in time domain. In order to determine the
length of the transient (i.e. the number of delay blocks), the last block (period) of the first realization—assumed to be in
steady-state—is subtracted from every block in that realization. As can be seen on the right side of Fig. 6.8, only the first
block is disturbed by the transient. In this work, each first block (period) is discarded.

Figure 6.9 shows the FRFs at the driving points at low and high level excitation. It can be clearly observed that FRFs at
different levels differ a lot from each other. This clearly indicated the presence of nonlinearities. The interesting point here
is to tell the inexperienced user from only one measurement if the system is linear or nonlinear—on that particular level of
excitation.

The classical H1 framework suggest calculating the coherence function for each frequency line. When the coherence
function gives one it means that there is 100% linear correlation between the measured output and input data. When the
coherence is lower than one it indicates the presence of (among others) high level noise and/or transient and/or leakage
and/or nonlinearities. Since we have used periodic excitation with discarding the delay blocks (transient), we made sure that
the lack of coherence stands only for the noise and nonlinearities. In the following part we focus on the first FRF in FRM at
high level excitation.
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Fig. 6.7 The output (acceleration) signal measured in frequency domain at the low and high amplitude levels

Fig. 6.8 Periodicity of the output measurement at high level in time domain. Left figures shows the block repetitions in one realization. The right
figure shows the difference between the last block minus every block

In the classical H1 framework the coherence function (pink thick line in Fig. 6.10) is used to estimate the FRF
measurement’s standard deviation (pink thin line in Fig. 6.10). For the numerical computation of coherence function in
MIMO case we refer to [15]. Please note that by the use of the proposed BLA framework we can directly estimate the
standard deviation and split it to into noise level estimation (black thin line in Fig. 6.10) and nonlinearity level estimation
(red thin line in Fig. 6.10) as explained in the 2D averaging section of this paper.
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Fig. 6.9 FRFs at driving points estimated at the low and high excitation levels

With the help of these curves it is possible to tell how much is from the lack of coherence accounts for the noise and
nonlinearity. For instance, the first resonance (around 3 Hz) has an SNR of 35 dB and an SNLR (signal-to-nonlinearity ratio)
of 40 dB. This means that at this resonance the main error source is the noise. Looking at the largest resonance (fourth
resonance at around 12 Hz) one can read that the SNR is around 60 dB and the SNLR is around 30 dB. At this resonance the
dominant error source is the nonlinearity.

A further interesting point is to highlight that periodic excitation is used, therefore it is possible to estimate the standard
deviation directly from the data instead. A standard deviation comparison between BLA and H1 is shown in Fig. 6.11. This
comparison indicates that the BLA estimate is indeed more robust — the BLA’s standard deviation can reach lower values
than the standard deviation of H1.

The figures above show the improved FRM, noise and nonlinearity estimates by taking into account all the different
realizations and experiments. The question arises: what would be the noise and nonlinearity level on an arbitrary chosen
measurement block (period) without using the BLA technique. In this case one has to correct for the number of experiments
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Fig. 6.10 The BLA FRF estimation at high level excitation using the proposed technique—taking into account all data

Fig. 6.11 Comparison of standard deviation estimation of BLA estimate (green line) and H1 (pink thin line)

(multiply the noise estimate by
√
p ·m, nonlinearity estimates by

√
m). This is shown in Fig. 6.12 for both low (lighter

colors) and high (darker colors) level excitation. In this case, if the end-user decides the use a simple linear model in his
application the error levels would be in order of SNLR. If the end-user decides to opt for an appropriate nonlinear model
the error levels would be in order of SNR. The gain (improvement) by the use of an advanced nonlinear model would be
approximately the difference between the SNR and SNLR.

A further interesting thing to mention is that the anti-diagonal FRFs have a significantly higher nonlinearity level then in
the diagonal FRFs.
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Fig. 6.12 Expected noise and nonlinearity levels at one measurement block (period)

6.7 Conclusion

In this work a MIMO Best Linear Approximation framework was developed to provide a user-friendly interpretation of the
nonlinear behavior of MIMO measurement data by extracting user relevant information. The proposed framework turned to
be useful for modelling FRFs because:

• orthogonal excitation signals have been provided (1) to improve the SNR, (2) to better characterize the underlying system,
(3) to avoid spectral leakage, and (4) to overcome the issues with transient

• the input and output measurements were characterized,
• the frequency response matrix was estimated and characterized by virtually slitting up the coherence function into noise

and nonlinearity level information
• at each amplitude level the noise and nonlinearity information can be retrieved.

Using the provided information potential users can decide if the usage of an advanced nonlinear framework is necessary.
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Chapter 7
Forced Response of Nonlinear Systems Under Combined
Harmonic and Random Excitation

Alwin Förster, Lars Panning-von Scheidt, and Jörg Wallaschek

Abstract Mechanical systems are often subjected to different types of excitation. In addition to the commonly considered
case of deterministic excitation, random excitation or a combination of both types can occur. The authors present a method
to calculate periodic probability density functions of nonlinear mechanical systems under combined harmonic and random
excitation. During the calculation, the non-stationary Fokker–Planck equation is solved with a Galerkin-type method. The
method uses combined orthogonal, time dependent polynomial as well as harmonic correction terms to reshape an initial
guess of the probability density function. It can be used to calculate the stochastic behavior of smaller multi-degree of
freedom systems. The applicability is demonstrated using different nonlinear mechanical systems, whereby the results of
Monte-Carlo simulations validate the method.

Keywords Random excitation · Probability density function · Combined excitation · In-stationary Fokker–Planck
equation · Periodic

Nomenclature

a,b, . . . ,z Counting indices

B Diffusion matrix

D Spectral density

f Drift vector

FN Normal force

H Galerkin-matrix

m,c,k,λ Mass, damping, stiffness, qubic stiffness

m Number of correction polynomials

n Number of state space dimensions

NDOF Number of DOF’s

N
(b)
ϕ bth approximation order

p Probability density function

p0 Weighting function

P {A} Occurrence probability of case A

q Generalized coordinate

bsk,l Num. of factorized diffusion terms per bk,l

f sk Num. of factorized drift terms per fk

t Time

w Wiener-process

xk State space variable

δ (y) Dirac delta function

δi,j Kronecker-delta

ζi Correction coefficient

μg Friction coefficient

ξ Gaussian white noise

σ Standard deviation

ϕi One-dim. orthogonal correction functions

�i Multi-dim. orthogonal correction functions

‖A‖ Euclidean norm

A ⊗ B Kronecker-product

A⊕ B Exclusive disjunction

DOF Degree of freedom

FDM Finite difference method

FEM Finite element method

FFT Fast Fourier transform

FPE Fokker–Planck equation

GWN Gaussian white noise

IFFT Inverse fast Fourier transform

JPDF Joint probability density function

MCS Monte-Carlo Simulation

MHBM Multi-Harmonic Balance Method

PDF Probability density function

RMS Root mean square

SDE Stochastic differential equation
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7.1 Introduction

Most real mechanical systems are subjected to a variety of different forms of excitation. Starting with periodic/harmonic, over
non-periodic to different types of random excitation. In literature commonly, one type of excitation is reviewed. Regarding
nonlinear mechanical systems, the principle of superposition cannot be used to add the results of different excitation types.
This paper describes a way to calculate the response of a nonlinear system to an additive noise-superimposed harmonic
excitation.

The most important quantity when it comes to describing the random oscillations of a mechanical system is the probability
density function (PDF). The probability density function is a function of the state space variables and time. The temporal
evolution of the probability density function of a mechanical system is determined by the Fokker–Planck equation, also
known as the Kolmogorov forward equation. Interested readers are referred to Risken [1].

In the last decades different methods were developed to describe oscillations in consequence of random excitation. This
paper takes a special look at the field of turbine blade vibrations. One method is the Path Integral Method (PIM) which
was investigated by Naess [2], Kumar [3, 4], Pirrotta [5] and Narayananan [6] (see [3] with regard to turbine blades).
The method is suitable for determining non-Gaussian stationary probability density functions of low-dimensional systems.
Further possibilities are offered by the Finite Difference Method (FDM) of Kumar [3] and the Finite Element Method
(FEM) of Kumar [7] and Narayanan [6]. Both methods have been considered so far mainly for steady-state probability
density functions, but could be extended to an additional harmonic excitation. The complex calculation, however, limits both
methods to systems with one, maximum two, degrees of freedom. The equivalent linearization method, which was used by
Caughey [8] and by Cha [9] for turbine blades, offers only the possibility to calculate stochastic stationary system responses.
The calculated approximations are always Gaussian and stationary. With this method a linear system is determined whose
Gaussian distributed response shows as small a deviation as possible from that of the nonlinear system. The simplest and most
straightforward approach for calculating random oscillations is given by the Monte-Carlo Simulation (MCS) (see Pradlwarter
[10], Higham [11]). It is a collective term for different numerical time step integration methods e.g. the Euler–Maruyama
method.

This paper introduces an extension of a Galerkin-type method to determine the system response of nonlinear systems
under noise superimposed harmonic excitation. The original method was presented by Wedig [12–14] and von Wagner [15–
17] and applied in various ways by Martens [18–20] and Lentz [21]. The method can only be used for the calculation of
stochastic steady-state probability density functions. The authors have applied this method in Förster [22] to a simple model
of a friction damped bladed disk assembly.

This Galerkin-type method is now extended for the calculation of probability density functions of nonlinear mechanical
systems under a well-defined deterministic excitation and an additive random excitation. The advanced method calculates
coefficients for weighting orthogonal time-dependent polynomials and harmonic functions to correct an initial estimate for
the transient but periodic probability density function of a nonlinear system. Since the method calculates coefficients of a
function and not the function values at certain points in the state space (e.g. finite difference method), this method is not
as limited in the number of degrees of freedom as the other methods mentioned above. The applicability of the method is
demonstrated using various nonlinear exemplary systems.

7.2 The Fokker–Planck Equation

The Fokker–Planck equation is a second-order linear partial differential equation which describes the time evolution of the
JPDF p (x, t) for a mechanical system under random excitation. Interested readers are referred to Risken [1]. The equation is

∂p (x)

∂t
= −

n∑
k=1

∂

∂xk
[fk (x) p (x)] +

n∑
k=1

n∑
l=1

∂2

∂xk∂xl

[
bk,l (x) p (x)

]
, (7.1)

where fk are the components of the drift vector f and bk,l are the components of the diffusion describing matrix B. The drift
vector and diffusion matrix are taken from the systems ITÔ SDE

dx = f (x, t) dt + G (x, t) dw, (7.2)
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which describes its stochastic behavior, whereby ξ = dw
dt is the time derivative of a Wiener-process. A Wiener-process

is an example of a Markov-process with normally distributed growth (see Gardiner [23]). In the multi-dimensional FPE,
ξ = dw

dt is a vector of uncorrelated Gaussian white noise (GWN) with E
[
ξiξj

] = 2Dδ (t). The B-matrix is calculated using
B = 1

2GT DG, with the spectral density D and the diffusion matrix G, which originate from the systems SDE.
The JPDF p obeys the normalization condition

∫ +∞

−∞
p (x, t) dx = 1, (7.3)

so that the total probability is always equal one

P {−∞ ≤ x ≤ +∞} = 1. (7.4)

In the case that the left side of the FPE vanishes
(
∂p(x)
∂t

= 0
)

one refers to it as the stationary FPE respectively a stationary

PDF/JPDF.

7.3 Galerkin-Type Method for Combined Harmonic and Random Excitation

This section introduces a new Galerkin-type method to calculate the probability density function of nonlinear mechanical
systems under harmonic and random excitation. The harmonic part of the external force has a distinct phase and is therefore
not included in the random excitation.

The first step is to define an initial guess for the PDF respectively a multi-dimensional weighting function

p0 (x, t) = p(t)0 (t)

n∏
b=1

p
(b)
0 (xb, t) , (7.5)

which is a product of n one-dimensional weighting functions for every state space dimension and one function for the time.
The weighting function is 	-periodic, whereby 	 is the fundamental frequency of the harmonic excitation force. The initial
PDF is corrected by orthogonal, multi-dimensional and time dependent correction functions

�i (x, t) = ϕ(t)it
(t)

n∏
b=1

ϕ
(b)
ib
(xb, t) , (7.6)

which apply to the orthogonality condition

∫ +∞

−∞
p
(b)
0 (xb, t) ϕ

(b)
ib
(xb, t) ϕ

(b)
jb
(xb, t) dxb = δib,jb (7.7)

respectively

∫ 2π
	

0
p
(t)
0 (t) ϕ

(t)

it (t)
ϕ
(t)

jt
(t) dt = δit ,jt (7.8)

for the time. For the spacial dimensions time dependent normal distributions and orthogonal polynomials can be used, while
the time only needs a correction factor as a weighting function and harmonic functions as correction functions. The ansatz
for the time dependent JPDF is

p (x, t) ≈ p0 (x, t)

m∑
i=1

t ζi�i (x, t) =
m∑

i=1

t ζi

n+1∏
b=1

⎧⎨
⎩
p
(b)
0 (xb, t) ϕ

(b)
ib
(xb, t) for b ≤ n

p
(t)
0 ϕ

(t)

it
(t) for b = n + 1

. (7.9)
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It means, that the initial weighting function is reshaped by the correction functions, which are weighted by the factors t ζi .
Inserting this ansatz into the weak form of the non-stationary FPE gains

m∑
i=1

t ζi

[
n∑

k=1

∫ +∞

−∞

∫ +∞

−∞
p0 (x, t)�i (x, t) fk (x, t)

∂�j (x, t)

∂xk
dxdt+ . . .

. . .+
n∑

k=1

n∑
l=1

∫ +∞

−∞

∫ +∞

−∞
p0 (x, t)�i (x, t) bk,l (x, t)

∂2�j (x, t)

∂xk∂xl
dxdt+ . . .

. . .+
∫ +∞

−∞

∫ +∞

−∞
p0 (x, t)�i (x, t)

∂�j (x, t)

∂t
dxdt

]
= 0.

(7.10)

Equation (7.10) is simplified written as

m∑
i=1

t ζi

∫ +∞

−∞

⎡
⎣

n∑
k=1

f sk∑
a=1

n+1∏
b=1

a,b
t �

i,j
k (t)+

n∑
k=1

n∑
l=1

bsk,l∑
a=1

n+1∏
b=1

a,b
t �

i,j
k,l (t)+

n+1∑
a=1

n+1∏
b=1

a,b
t �i,j (t)

⎤
⎦ dt = 0 (7.11)

with

a,b
t �

i,j
k (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(t)
0 ϕ

(t)

ib
ϕ
(t)

jb
if b = n + 1

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib

af
(b)
k

∂ϕ
(b)
jb

∂xb
dxb if b = k

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib

af
(b)
k ϕ

(b)
jb

dxb

︸ ︷︷ ︸
=af

(b)
k ·δib,jb ∀ af

(b)
k =const.

if b �= k ∧ b ≤ n

(7.12)

as well as

a,b
t �

i,j
k,l (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(t)
0 ϕ

(t)

ib
ϕ
(t)

jb
if b = n + 1

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib

ab
(b)
k,l

∂ϕ
(b)
jb

∂xb
dxb if b = k ⊕ b = l

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib

ab
(b)
k,l

∂2ϕ
(b)
jb

∂x2
b

dxb if k = l ∧ b = k

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib

ab
(b)
k,l ϕ

(b)
jb

dxb

︸ ︷︷ ︸
=ab

(b)
k,l ·δib,jb ∀ ab

(b)
k,l =const.

if b �= k ∧ b �= l ∧ b ≤ n

(7.13)

and
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a,b
t �i,j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(t)
0 ϕ

(t)

ib
ϕ
(t)

jb
if a �= b ∧ b = n + 1

p
(t)
0 ϕ

(t)

ib

∂ϕ
(t)

jb

∂t
if a = b ∧ b = n + 1

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib

∂ϕ
(b)
jb

∂t
dxb if a = b ∧ b ≤ n

∫ +∞

−∞
p
(b)
0 ϕ

(b)
ib
ϕ
(b)
jb

dxb

︸ ︷︷ ︸
=δib,jb

if a �= b ∧ b ≤ n

(7.14)

for the spacial integrals. The time integral from −∞ to +∞ in Eq. (7.11) only vanishes if the zeroth Fourier-coefficient

F (0)
⎡
⎣

n∑
k=1

f sk∑
a=1

n+1∏
b=1

a,b
t �

i,j
k (t)+

n∑
k=1

n∑
l=1

bsk,l∑
a=1

n+1∏
b=1

a,b
t �

i,j
k,l (t)+

n+1∑
a=1

n+1∏
b=1

a,b
t �i,j (t)

⎤
⎦ != 0 (7.15)

is zero. Therefore the integration limits can be changed from (−∞,+∞) to
[
0, 2π

	

)
. So that Eq. (7.11) than changes to

m∑
i=1

t ζi

∫ 2π
	

0

⎡
⎣

n∑
k=1

f sk∑
a=1

n+1∏
b=1

a,b
t �

i,j
k (t)+

n∑
k=1

n∑
l=1

bsk,l∑
a=1

n+1∏
b=1

a,b
t �

i,j
k,l (t)+

n+1∑
a=1

n+1∏
b=1

a,b
t �i,j (t)

⎤
⎦ dt = 0. (7.16)

Equation (7.16) generates a linear system of equation

0 = H · tζ (7.17)

to calculate the weighting factors t ζi. Where the entries of the H -matrix are calculated by

hj,i =
∫ 2π

	

0

⎡
⎣

n∑
k=1

f sk∑
a=1

n+1∏
b=1

a,b
t �

i,j
k (t)+

n∑
k=1

n∑
l=1

bsk,l∑
a=1

n+1∏
b=1

a,b
t �

i,j
k,l (t)+

n+1∑
a=1

n+1∏
b=1

a,b
t �i,j (t)

⎤
⎦ dt . (7.18)

Due to the fact, that every derivative of a zeroth order correction function—polynomial or harmonic—is going to be zero,
Eq. (7.17) is reduced to

H (2,...,m)×(2,...,m) · tζ (2,...,m) = −H (2,...,m)×(1) · t ζ1, (7.19)

where t ζ1 is chosen to be one. After solving Eq. (7.19), one can calculate approximations for time-dependent PDFs by

p(k)
(
xk, tg

) ≈ 2π

	

m∑
i=1

⎡
⎢⎣t ζip(k)0

(
xk, tg

)
ϕ
(k)
ik

(
xk, tg

) ·
⎡
⎢⎣

n∏
b=1
b�=k

∫ +∞

−∞
p
(b)
0

(
xb, tg

)
ϕ
(b)
ib

(
xb, tg

)
dxb

⎤
⎥⎦ · p(t)0

(
tg
)
ϕ
(t)

it

(
tg
)
⎤
⎥⎦

(7.20)
or time-independent PDF by integrating over one period

p(k) (xk) ≈
m∑

i=1

⎡
⎢⎣t ζi

∫ 2π
	

0
p
(k)
0 (xk, t) ϕ

(k)
ik
(xk, t) ·

⎡
⎢⎣

n∏
b=1
b�=k

∫ +∞

−∞
p
(b)
0 (xb, t) ϕ

(b)
ib
(xb, t) dxb

⎤
⎥⎦ · p(t)0 (t) ϕ

(t)

it
(t) dt

⎤
⎥⎦ . (7.21)

JPDFs for any sub-spaces xk ∈ R
N with k ∈ R

N and N ≤ n,N ∈ N can be calculated with
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p(k) (xk) ≈
m∑

i=1

⎡
⎢⎢⎣t ζi

∫ 2π
	

0
p
(t)
0 (t) ϕ

(t)

it
(t) ·

⎡
⎢⎢⎣

n∏
b=1

⎧
⎪⎪⎨
⎪⎪⎩

∫ +∞
−∞ p

(b)
0 (xb, t) ϕ

(b)
ib
(xb, t) dxb forb /∈ k

p
(b)
0 (xb, t) ϕ

(b)
ib
(xb, t) forb ∈ k

⎤
⎥⎥⎦ dt

⎤
⎥⎥⎦ . (7.22)

One can also calculate conditional probabilities for certain states ux ≤ x ≤ ox by

P {ux ≤ x ≤ ox} ≈
m∑

i=1

[
t ζi

∫ 2π
	

0

[
n∏

b=1

∫
oxb

uxb

p
(b)
0 (xb, t) ϕ

(b)
ib
(xb, t) dxb

]
· p(t)0 (t) ϕ

(t)

it
(t) dt

]
. (7.23)

7.4 Orthogonal Time-Dependent Correction Functions

As mentioned above, the weighting function for the time is just a correction factor

p
(t)
0 = 	

2π
(7.24)

and the solely time dependent correction functions are harmonic functions

ϕ
(t)

it
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 it = 0

√
2 · cos

(
2it+(−1)it+1+1

4 	t
)

∀ it%2 = 1

√
2 · sin

(
2it+(−1)it+1+1

4 	t
)

∀ it%2 = 0

. (7.25)

The factors in Eqs. (7.24) and (7.25) are chosen to hold the orthogonality condition from Eq. (7.8). The weighting functions
p
(b)
0 for all spacial dimensions are chosen to be time-dependent normal distribution

p
(b)
0 (xb, t) = 1√

2πς2
b (t)

exp

[
− (xb − μb (t))

2

2ς2
b (t)

]
(7.26)

with the mean value and the standard deviation being a function of time. All time-dependent orthogonal polynomials and
their derivatives for such a function can be derived analytically from the time-independent orthogonal polynomials in Martens
[20]. The zeroth order polynomial is given by

ϕ
(b)
0 (xb, t) = 1 (7.27)

with its derivatives

∂ϕ
(b)
0 (xb, t)

∂xb
= 0,

∂2ϕ
(b)
0 (xb, t)

∂x2
b

= 0 and
∂ϕ
(b)
0 (xb, t)

∂t
= 0. (7.28)

The first order polynomial is given by

ϕ
(b)
1 (xb, t) = xb − μb (t)

ςb (t)
(7.29)

so that its derivatives are
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∂ϕ
(b)
1 (xb, t)

∂xb
= 1

ςb (t)
, (7.30)

∂2ϕ
(b)
1 (xb, t)

∂x2
b

= 0 (7.31)

and

∂ϕ
(b)
1 (xb, t)

∂t
= −

∂μb(t)
∂t

ςb (t)
− [xb − μb (t)]

∂ςb(t)
∂t

ς2
b (t)

. (7.32)

All higher order polynomials can be recursively calculated via

ϕ
(b)
d+1 (xb, t) = xb − μb (t)

ςb (t)
√

d + 1
ϕ
(b)
d (xb, t)−

√
d

d + 1
ϕ
(b)
d−1 (xb, t) . (7.33)

All derivatives of these high order polynomials can be expressed analytically by

∂ϕ
(b)
d+1 (xb, t)

∂xb
= 1

ςb (t)
√

d + 1
ϕ
(b)
d (xb, t)+ xb − μb (t)

ςb (t)
√

d + 1

∂ϕ
(b)
d (xb, t)

∂xb
−

√
d

d + 1

∂ϕ
(b)
d−1 (xb, t)

∂xb
(7.34)

for the first derivative with respect to the spacial dimension xb and

∂2ϕ
(b)
d+1 (xb, t)

∂x2
b

= 2

ςb (t)
√

d + 1

∂ϕ
(b)
d (xb, t)

∂xb
+ xb − μb (t)

ςb (t)
√

d + 1

∂2ϕ
(b)
d (xb, t)

∂x2
b

−
√

d
d + 1

∂2ϕ
(b)
d−1 (xb, t)

∂x2
b

(7.35)

for the second derivative. The first time-derivative is given by

∂ϕ
(b)
d+1 (xb, t)

∂t
= − 1

ςb (t)
√

d + 1

∂μb (t)

∂t
ϕ
(b)
d (xb, t)+ xb − μb (t)

ςb (t)
√

d + 1

∂ϕ
(b)
d (xb, t)

∂t
− . . .

. . .− xb − μb (t)

ς2
b (t)

√
d + 1

∂ςb (t)

∂t
ϕ
(b)
d (xb, t)−

√
d

d + 1

∂ϕ
(b)
d−1 (xb, t)

∂t

. (7.36)

For this ansatz the functions μb (t) and ςb (t) have to be known approximately. To gain these functions, methods like
the multi-Harmonic Balance Method (MHBM, see Urabe [24], Cameron [25] and Cardona [26, 27]) and the Monte-Carlo
simulation can be used.

7.5 Application

This section demonstrates the application of the method described above to various nonlinear systems. As this is a numerical
study, no units are used for all parameters and variables of the systems under consideration. All calculations were performed
using MatLab 2018a. In order to improve the weighting functions, the calculations were carried out several times, whereby
the weighting functions are improved iteratively. In this procedure, low correction functions are used and only replaced by
higher orders in the last calculation step.
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7.5.1 Duffing-Oscillator

The Duffing-oscillator is a simple and often used nonlinear one degree of freedom system with a qubic stiffness. The
associated differential equation is

mq̈ + cq̇ + kq + λq3 = fex (7.37)

with the cubic stiffness λ. In the case of a harmonic excitation superimposed with GWN, the external force has the form
fex = f̂ex cos (	t)+ σ dw

dt with dw
dt being GWN. The corresponding SDE is

dx =
(

x2

− c
m
x2 − k

m
x1 − λ

m
x3

1 + f̂ex
m

cos (	t)

)

︸ ︷︷ ︸
f

dt +
(

0 0
0 σ

m

)

︸ ︷︷ ︸
G

dw (7.38)

where f is the drift vector and G is the diffusion matrix. The B-matrix

B = 1

2
·
(

0 0

0 σ 2

m2

)
(7.39)

can be calculated from the diffusion matrix G. The system parameters are m = 0.2, c = 0.425, k = 40 and λ = 150. It is
excited with a harmonic force amplitude of f̂ex = 2.5 at the angular frequency 	 = 15 and additionally with GWN with a
standard deviation of σ = 0.075.

The initial functions for the time-dependent mean value μb (t) and the standard deviation curve σb (t) can be determined
in different ways. The standard deviation ςb (t) can either be roughly estimated or taken from a short MCS. The mean
value progression μb (t) can be estimated using the MHBM, the shooting method or the time step integration of the
deterministic system. If these time-dependent functions are approximated with harmonic functions, it is advisable not to
select the maximum order of the harmonic correction functions smaller than the one used in the approach. In this case, the
MHBM and a short MCS were used to determine the time progression. These functions can then be used for a Gaussian
approach. The harmonic order used is Nh,μ = 5 respectively Nh,σ = 10 and the orders of the correction functions are

N
(1)
ϕ = 6, N(2)ϕ = 6 and N(t)ϕ = 20. In order to improve the quality of the results, the calculation is carried out several times,

whereby the approach is repeatedly adapted to the results. The correction orders are low for the first computations and only
increased in the last step.

Figure 7.1 shows the one-dimensional PDFs for the displacement x1 and velocity x2. The red curve represents the results
of a MCS and the blue curve shows the results of the Galerkin-type method. Both PDFs are time-integrated over N periods
and are calculated with Eq. (7.21). The black lines indicate the value of the amplitude of the deterministic system. The
results of the MCS and the Galerkin-type method show only minor deviations. In Fig. 7.2 one can see a time-integrated
two-dimensional JPDF [left] calculated with Eq. (7.22). On the right side the PDF for the displacement at t = N 2π

	
is

shown. The dotted black and blue lines show the temporal progression of the maximum of the PDF, where black stands for
the ansatz function and blue for the Galerkin solution. The green curve is the result of a MCS, while the blue curve shows
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the Galerkin solution. One can see a small difference between the course of the maxima of the weighting function and the
Galerkin solution. This means that the weighting function could be chosen even better or that there is a deviation from a
purely Gaussian distribution due to the non-linearity. There is also a small difference between the PDF from the MCS and
the Galerkin-type method. This can be primarily explained by different time discretization, but also partly by the general
inaccuracy of the MCS. Other than that, the results of the MCS and the Galerkin-type method also agree very well in the
individual time steps.

The calculation took around 10 s with low approximation orders and around 2 min for the final high quality results. An
MCS of comparable quality would take much longer.

7.5.2 Duffing-van der Pol-Oscillator

The Duffing-van der Pol-oscillator is a combination of the Duffing-oscillator and the van der Pol-oscillator. Its differential
equation is

mq̈ + cq̇ + kq + λq3 + νq2q̇ = fex (7.40)

with the cubic stiffness λ and the van der Pol-coefficient ν. The external force fex is identical with the one used before, so
that the corresponding stochastic differential equation is as follows

dx =
(

x2

− c
m
x2 − k

m
x1 − λ

m
x3

1 − ν
m
x2

1x2 + f̂ex
m

cos (	t)

)

︸ ︷︷ ︸
f

dt +
(

0 0
0 σ

m

)

︸ ︷︷ ︸
G

dw (7.41)

with the drift vector f and diffusion matrix

B = 1

2
·
(

0 0

0 σ 2

m2

)
(7.42)

resulting from the matrix G. The system is characterized by its parameters m = 0.2, c = 0.425, k = 40, λ = 150, ν = 120.
The external force is given by σ = 0.075, f̂ex = 2.5 and 	 = 14.

The harmonic order used is Nh,μ = 5 as well as Nh,σ = 5 and the orders of the final correction functions are N(1)ϕ = 6,

N
(2)
ϕ = 6 and N(t)ϕ = 10. In order to improve the quality of the results, the calculation is also carried out several times in this

case, whereby the approach is always adapted to the intermediate results
Figures 7.3 and 7.4 show the results for the Duffing-van der Pol-oscillator, for which there is also a large similarity

between the results of MCS and the Galerkin-type method.
Due to the strong damping of the Duffing-van der Pol-oscillator, the Galerkin-type method is able to calculate the temporal

course of the PDF for any excitation frequency 	 using Gaussian ansatz functions. If the solutions calculated for adjacent
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frequencies are used as approaches for the next frequency, the PDFs for entire FRFs can be calculated relatively quickly. For
each frequency the calculation is carried out several times, whereby the approaches are always adapted to the intermediate
results and the order of approximation is increased step by step. The result of such a calculation can be seen in Fig. 7.5,
where the red curve is the FRF of the entirely deterministic system. The magenta curve represents the 1% limit for x1. This
means that the probability of occurrence for displacements greater than this line is equal to 1%. Figure 7.5 can be calculated
in high resolution within 1 h on a state of the art desktop computer.

A calculation of the PDF for almost all frequencies of harmonic excitation is, however, usually only possible for small
systems without overhanging branches in the frequency response. With overhanging branches or isolated areas, several stable,
deterministic oscillation states can occur. In the case of a disturbance, e.g. by a noise excitation, several stable states into
which the drift vector could pull the system would in principle be present. However, the current Gaussian approach only
allows one stable state at a time, which is why the method has only limited applicability so far. The calculation time is about
10 s for low and 1 min for the final high approximation orders. The calculations were performed on a state-of-the-art desktop
computer. An MCS with comparable or even lower quality takes more time, from several seconds to minutes or even hours
depending on the quality.
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7.5.3 3-DOF-System

The next system to be considered is a 3-DOF system with friction elements as shown in Fig. 7.6. The system consists
of three identical masses, which are connected to each other and to the environment by a spring, a damper and a cubic
spring. In addition, all masses are connected to the environment via a sliding friction element. The force FN = 0.25 is a
constant contact force, which is converted into a friction force by the friction coefficient μ = 0.01. The other parameters are
chosen to be mass m = 0.25, stiffness k = 140, cubic stiffness λ = 1330 and damping c = 1.47. The external forces are
fex,1 = fex,2 = fex,3 = 5 cos (	t)+σ dw

dt with	 = 27.5 and σ = 0.25. The system is described by its differential equation

⎛
⎝
m 0 0
0 m 0
0 0 m

⎞
⎠

︸ ︷︷ ︸
M

·q̈ +
⎛
⎝

2c −c 0
−c 2c −c
0 −c 2c

⎞
⎠

︸ ︷︷ ︸
C

·q̇ +
⎛
⎝

2k −k 0
−k 2k −k
0 −k 2k

⎞
⎠

︸ ︷︷ ︸
K

·q +
⎛
⎝

λq3
1 + λ (q1 − q2)

3 + μFN 2
π

arctan (γ q̇1)

λ (q2 − q1)
3 + λ (q2 − q3)

3 + μFN 2
π

arctan (γ q̇2)

λq3
3 + λ (q3 − q2)

3 + μFN 2
π

arctan (γ q̇3)

⎞
⎠

︸ ︷︷ ︸
f nl

= . . .

. . . =
⎛
⎝

5
5
5

⎞
⎠ cos (	t)

︸ ︷︷ ︸
f ex,det

+
⎛
⎝
σ 0 0
0 σ 0
0 0 σ

⎞
⎠

︸ ︷︷ ︸
	

·dw

dt
,

(7.43)
where 2

π
arctan (γ q̇i) is an approximation of the signum-function sgn (q̇i)with γ = 104. The drift vector of the corresponding

SDE is

f (x, t) = E1 · x + E2 · 1

m

[
f ex,det − f nl (x)− C · E3 · x − K · E4 · x

]
(7.44)

with the matrices E1 = I 3 ⊗
(

0 1
0 0

)
, E2 = I 3 ⊗

(
0
1

)
, E3 = ET

2 and E4 = I 3 ⊗ (
1 0

)
. The diffusion matrix is

B = 1

2

[[
	 ⊗

(
0 0
0 1

)]T

·
[
	 ⊗

(
0 0
0 1

)]]
. (7.45)

The calculation was performed using the harmonic orders Nh,μ = 3 and Nh,σ = 3 as well as the correction function orders

N
(b)
ϕ = 2∀b ∈ [1, . . . , n] and N(t)ϕ = 6.
In Fig. 7.7 one can see calculation results for the second DOF. There is a large agreement between the results of the MCS

and those of the Galerkin-type method. The results for a single point in time shown in Fig. 7.8 also show a good agreement
between the MCS and the Galerkin-type method. Also the two-dimensional projection on the location and velocity of the
second degree of freedom seems plausible. In other projections, e.g. onto the subspace x1–x3, it can be seen that second order

cccc
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mmm

μμμ

FNFNFN
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Fig. 7.6 3-DOF-system with friction
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polynomials are not suitable in this case to correct the one-dimensional Gaussian approach sufficiently. In this projection,
which is not shown here, slightly negative values would occur in some areas.

The calculation time in this case is about 30 min. The long calculation time is due to the large number of multi-dimensional
correction functions, which result from the large number of combinations of one-dimensional polynomials and harmonic
functions. In this case, an MCS would probably be faster with acceptable quality of the results.

7.5.4 20-DOF Model of a Bladed Disk Assembly

The last exemplary system considered in this paper is a cyclic 20-DOF system as a model of a bladed disk assembly. This
system can be seen in Fig. 7.9. The system is excited with engine order (EO) 30, so that the harmonic force has the form

fex,i,det = f̂ex,i · cos (	t − χi) , (7.46)

where f̂ex,i = 5, 	 = 9.5 and χi = (i − 1) 2π ·EO
NDOF

. The drift vector components 2i − 1 ∀ i ∈ [1, . . . , NDOF ] are

f2i−1 = x2i (7.47)

and the components 2i ∀ i ∈ [1, . . . , NDOF ] are
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Fig. 7.9 M-DOF-model of a bladed disk assembly
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(7.48)
The entries of the diffusion describing matrix are b2i,2i = 1

2
σi
mi

∀ i ∈ [1, . . . , NDOF ] and bk,l = 0 for k �= 2i ∧ l �= 2i. The

individual blade has the mass mi = 1.2, the stiffnesses Gki = 80 and Bki = 30.5, the damping values Gci = 0.08 and Bci =
0.03, and the cubic stiffnesses Gλi = 1.5 and Bλi = 10.2. The standard deviation of the additive excitation with uncorrelated
GWN is σi = 1 for each blade. The final correction orders used are N(1)ϕ = 6, N(2)ϕ = 6 and N(b)ϕ = 0 ∀ b ∈ [3, . . . , n] as

well as N(t)ϕ = 10. Before the final calculation, two calculations with lower approximations were performed. In Fig. 7.10 one
can see the one-dimensional PDFs for the first DOF. Especially in the PDF for the displacement one can see that there are
some differences between the results of the MCS and those of the Galerkin-type method. These differences probably occur
because the correlation between the DOFs with the selected correction polynomials cannot be sufficiently mapped. Although
the information about a correlation is taken into account during the calculation, the equilibrium to be solved is only correct
on average. This is why the result is only as good as the available polynomials. Figure 7.11 shows the two-dimensional JPDF
of the first DOF after the correction and the PDF of the displacement of the first DOF at t = 2π

	
.

As this is a cyclic system, the other DOFs can be derived comparatively well from the results of the first DOF. This allows
the representation in Fig. 7.12. Even if the most DOFs are not improved with correction functions, different JPDFs can be
calculated approximately.

7.6 Problems and Limitations

Although the presented method offers some possibilities, it is subject to several restrictions. On the one hand, the ability
to break down the drift vector into one-dimensional functions is a basic prerequisite for being able to apply the method.
However, this is not the case, for example, if there is a simple friction contact between two DOFs. In this case, the
signum function would depend on the velocities of both DOFs. If, as in this case, only two dimensions are connected, a
two-dimensional integration could be carried out in the state space, followed by the time integration. For more complex
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Fig. 7.12 JPDFs between x1 and different dimensions; x1 is always on the abscissa; additionally the phase shift of the excitation between the
dimensions is indicated

connections, such as a stick-slip element, even higher dimensional integrations would be necessary. Thus, the method would
at least be inefficient or no longer applicable. A further limitation results from the number of dimensions to be corrected. It
is possible to provide only individual degrees of freedom with correction functions. However, this only provides satisfactory
results as long as there is no particularly strong correlation between the state space dimensions at individual points in time.
However, this can occur with a stiffer connection between the degrees of freedom or in the resonance case. The number of
correction functions cannot simply be increased for all dimensions, because otherwise the size of the system of equations to
be solved increases with

m =
n+1∏
b=1

(
N(b)ϕ + 1

)
. (7.49)

The effort to calculate all entries of the matrix H (see Eq. (7.18)) is then, from one point, no longer justifiable. While the
resonance case may not be represented by one-dimensional Gaussian approaches, it is certainly not possible to calculate
areas with overhanging branches in the deterministic FRF. The only exception could be if at most one branch represents a
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stable equilibrium. However, if several stable equilibria occur, this should also be reflected in the PDF by the fact that it has
several local core areas. Such a form cannot be represented by either one- or multi-dimensional Gaussian approaches.

7.7 Conclusion and Outlook

In this paper a new method for obtaining approximate solutions of the Fokker–Planck equation for nonlinear mechanical
systems in the case of periodic probability density functions as a result of combined harmonic and stochastic excitation
is presented. In addition to the basic method, suitable weighting functions and both proper time-dependent orthogonal
polynomial and harmonic correction functions are provided. As a proof of feasibility, the Galerkin-type method is verified
with various nonlinear mechanical systems.

It is shown that the method is fully applicable to smaller nonlinear systems of one to three degrees of freedom. The basic
requirement is that the stochastic part of the excitation is Gaussian. For one and two degree of freedom systems, the method
offers a clear speed advantage over Monte-Carlo simulations. Starting from three degrees of freedom this advantage ends,
if all degrees of freedom are to be provided with correction functions. For larger systems, the method can only be used to
a limited extent. Thus, it is only possible to correct the probability density in the dimensions of one to three degrees of
freedom simultaneously. Here, a possibly existing correlation can be considered only with restrictions. Nevertheless, the
application in the 20 degrees of freedom system shown leads to acceptable results, which can be calculated in considerably
shorter time than with a Monte-Carlo simulation. Limitations also result from the fact that the components of the drift vector
must be separable into one-dimensional functions. This is no longer the case with a simple friction contact between two
degrees of freedom. Furthermore, the selected approaches cannot be used if the system has several stable states into which
it tends despite the noise superposition. This is one of the points that must be investigated in further work. The authors see
possible approaches to overcome the weaknesses of the method in the choice of other weighting functions. For example,
the use of coordinate transformed multi-dimensional weighting functions is an area of investigation for future work. In this
context, but also with regard to the decomposability of the drift vector, integration methods such as the quasi-Monte-Carlo
method (see Dick [28]) could possibly be useful. A further possibility to calculate higher dimensional systems in a short
time with high approximations without neglecting the correlation between several degrees of freedom could be to choose the
polynomials skilfully. This could considerably reduce the size of the equation system to be calculated and solved. In spite of
the still existing limitations and weaknesses, the Galerkin-type method offers a good possibility to calculate smaller nonlinear
systems which are under a noise superimposed harmonic excitation. In most cases the calculation time remains considerably
shorter than in the Monte-Carlo simulation, which to the best knowledge of the author’s is the only other method that can be
used for this purpose.
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Chapter 8
Gerrymandering for Interfaces: Modeling the Mechanics
of Jointed Structures

T. Dreher, Nidish Narayanaa Balaji, J. Groß, Matthew R. W. Brake, and M. Krack

Abstract Recent experiments with the Brake-Reuß-Beam (BRB), a three-bolt lap-jointed benchmark system, have shown
that neither the contact pressure nor the contact area are constant within the interface during oscillation, two traditional
assumptions made for modeling bolted structures. Thus, it is important to preserve interfacial kinematics and represent the
underlying physics in a consistent fashion to develop consistent computational models. Most consistent formulations tend
to result in large model sizes and thus make computations for large structures nearly intractable. However, there have been
multiple efforts at interface reduction. Most of these formulations though, have the disadvantage of having to deal with
large number of points for the nonlinear force calculations. The current study proposes an interfacial reduction approach
that is both consistent with the kinematics and at the same time does not require transformations to the original coordinates.
Based upon this framework, the current work also compares different criteria for the reduction procedure. The method is
demonstrated to improve the efficiency of nonlinear simulations (conducted using two different approaches), with little to no
sacrifice in accuracy.

Keywords Interface reduction · Rough surface contact · Zero Thickness Elements (ZTEs) · Quasi Static Modal Analysis
(QSMA) · Hyper-reduction

8.1 Introduction

The presence of jointed structures in nearly every mechanical assembly demonstrates the necessity of creating reliable contact
models and the significance of understanding the underlying physics. The common practice of modeling a jointed structure
is to assume that the contact pressure and area are constant during dynamic excitation. However, recent experiments with
the Brake-Reuß-Beam (BRB) benchmark system [2, 9] have shown that neither the contact pressure nor the contact area are
constant within the interface during oscillation. These observations are incongruent with traditionally used approaches for
modeling jointed interfaces, as e.g. a low number of Iwan Elements are used to represent the interfacial properties. In this
research a new modeling approach that considers the physical effects during oscillation and reduces the model order of the
interface is investigated. Contact patches that are

1. uniformly distributed over the interface
2. based on the salient physical phenomena

are analyzed with zero thickness elements [6] in combination with a rough contact constitutive model [4]. A perfectly elastic
unilateral spring and a 2D coupled elastic dry friction formulation are used in normal and tangential directions.
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8.2 Model Description

An Abaqus Finite Element (FE) Model with a structured mesh serves as basis for the study. Each bolt of the three-bolt lap
joint is pre-stressed to extract the mass and stiffness matrix of the assembly using Abaqus substructuring, whose theory
can be found in the user manual [3], with 20 fixed-interface modes. All nodes on both contact surfaces of the structure are
retained. In a second reduction step the matrices obtained from Abaqus were transformed into relative coordinates between
the coincident nodes of the two contact interfaces. Thus, the number of Degrees of Freedom (DOFs) is reduced to the number
of interface nodes (680 × 3) plus the 20 generalized coordinates. To the reduced model, a segment to segment contact with
Zero Thickness Elements (ZTEs) is applied [6], which introduces a new mesh of surface elements with new nodes. For this
purpose a transformation between the original nodes and the new nodes of the ZTEs can be established. This reduction allows
that the contact model can be evaluated in the reduced coordinates, which is often called hyper-reduction. The number of
generalized coordinates is reduced to three times the number of nodes of the ZTE Mesh plus modal degrees of freedom.

8.2.1 ZTE Meshes

A Zero Thickness Element Mesh, which is similar to the interfacial mesh of the Abaqus Model, serves as reference for all
investigations and is shown at top of Fig. 8.1. Against this reference model, two different reduction methods are compared
against each other. One of them is an uniformly distributed mesh shown in the middle of Fig. 8.1. It is deduced from the
original mesh by combining adjacent elements. The second mesh is shown in the bottom of Fig. 8.1 and is generated based on
the interface’s static pressure distribution due to the pre-load and the mode shape of the first mode. The pressure distribution
and mode shape are normalized and weighted equally to create a 3D surface, which is used to seed new nodes on different
contour lines. Ensuring that element quality standards are fulfilled, re-meshing of the seeded nodes results in the shown mesh.
Taking the static pressure and the mode shape for the mesh generation into consideration accounts for the salient physics, as

Fig. 8.1 Investigated meshes and the corresponding interpolated pressure distribution for: mesh of the original Abaqus FE model (top), uniformly
distributed mesh (middle), and physics based mesh (bottom)
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e.g. regions with higher static pressure gradient are finer resolved. The uniformly distributed mesh consists of 232 elements
(282 nodes) and the pressure based mesh of 240 elements (240 nodes). Both three and four node linear triangular and
quadrilateral ZTEs are used.

For all meshes the pressure distribution in the interface is shown as a contour plot. The pressure (and displacement)
distribution are obtained by interpolating the nodal pressures from the Abaqus model. Nodal element forces are computed
by integration of the interpolated pressure distribution.

8.2.2 Quasi Static Modal Analysis

Quasi Static Modal Analysis (QSMA) is conducted on the resulting system matrices for the different meshes after applying
the ZTEs. It is assumed that the modal deflection shape, obtained by linear modal analysis for a contact in sticking conditions,
remains constant for all vibration levels, which allows that the theory for an uncoupled system as per [1] is used. A rough
contact constitutive model as proposed by Greenwood in [4] is applied to model the nonlinear behavior of the interface.
For this purpose the contact model is evaluated at the 25 integration points of each element and weighted with the shape
function to obtain the nonlinear force at the nodes. The contact model takes as input: interpolated pressure values extracted
from the pre-stressed Abaqus model (as shown in Fig. 8.1), the tangential stiffness value of the interface kt estimated by
[7], the normal stiffness kn obtained with kt and the Mindlin relationship between kt and kn [5, 8], and a friction coefficient
of μ = 0.1 (the effect of μ is considered in a later study). The standard deviation of the roughness in the equation for kt
was tuned to match the measured natural frequency for low excitation amplitudes for the reference mesh (see Fig. 8.1 (top)).
The tuned value for the standard deviation of roughness is approximately three and a half times larger than measured. As
the formula assumes an exponential asperity peak distribution, that might not represent the reality sufficiently, the deviation
between the measured and tuned parameter can be justified.

The QSMA hysteresis loops for different modal excitation forcing levels are predicted and natural frequency and damping
are extracted to determine the backbone curves of the nonlinear system. The secant of the quasi-statically traced hysteresis
loop is used to calculate the natural frequency, ωr , as

ωr(αn) =
√

2 · αn
max (qr (αn))− min (qr (αn))

. (8.1)

Here, αn represents the modal excitation force of the nth loading level and qr the modal displacement for the rth mode. The
modal damping ratio due to the nonlinearity in the interface is calculated as

ζr (αn) = D(αn)

2π (qr(αn)ωr(αn))2
, (8.2)

with D(α) as energy dissipation per cycle, which is equal to the area of the hysteresis loop defined in [1]. In addition 0.5%
linear modal damping are added to account for the material damping of the system. Results of the numerical analysis are
presented in the following section.

8.3 Results

In Fig. 8.2, the natural frequency ωr (left) and the modal damping ratio ζr (right) are shown over the modal acceleration
amplitude for the BRB’s first bending mode. The model for this analysis was pre-stressed with a force to the effect of a
6.8 Nm bolt torque. Comparing the natural frequency for all curves, a softening behavior is observed, as the natural frequency
decreases with increasing modal response amplitude. The convergence towards a limit value—the linear natural frequency—
for low response amplitudes can be observed. However, the limit value differs for the different reduction methods. Both
reduced meshes overestimate the natural frequency, i.e. the stiffness of the system. For the pressure based mesh a deviation
of about 2 Hz is seen, and the uniformly distributed meshes’ linear natural frequency is about 1.4 Hz higher, compared to
the reference solution. The increased frequency for the reduced meshes is explained by the coarser mesh in the interface,
which stiffens the system. It is supposed that for the pressure based mesh especially the triangular elements stiffen the system,
making the observed difference plausible. With increasing amplitude the solution for both types of mesh converge towards the
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Fig. 8.2 Backbone curves for natural frequency ωr (left) and modal damping ratio ζr (right) over modal acceleration amplitude for different
meshes

reference. While the analysis for the pressure based mesh shows a higher natural frequency compared to the reference within
the whole response range, the curve for the uniformly distributed mesh converges faster towards the reference solution and
oscillates around it. The results for the pressure based mesh show no deviation for amplitudes higher than 101 m/s2, whereas
the curve for the uniformly distributed shows comparable low deviation for a wider range (above 2 · 10−1 m/s2).

The modal damping ratio for the reference system, shown on the right side of Fig. 8.2, increases with the response as
expected. For low amplitudes the damping due to nonlinear effects is small, as ζ is only slightly greater than the added
linear damping of 0.5%. For a response level of 102 m/s2 the nonlinear damping increases up to about 0.9%. The damping
prediction with the reduced meshes are similar for the low and the high end of the response range, but show different behavior
in-between. Compared to the reference, peaks in the damping curve are present for the response at about 100 m/s2 for the
pressure based, and at about 2 · 10−1 m/s2 for the uniformly distributed mesh. The peaks are suspected to be induced by
macro slip behavior in the interface, which emerges only for the reduced interface meshes as the resolution is lower. For the
pressure based mesh the overall prediction of the modal damping is better compared to the uniformly distributed mesh, as
the maximal deviation is lower (about 0.2% compared to 0.3%) and the absolute difference for a wider response range is
smaller.

8.4 Conclusion

Both interface reduction approaches have the ability to predict the trend of the backbone curve. However, the reduced
number of elements leads to stiffening of the system and therefore an overestimation of the linear natural frequency. For the
studied case with an uniformly distributed mesh the nonlinear frequency behavior is predicted to be more accurate. For both
approaches additional peaks in nonlinear damping behavior are seen. The total deviation is lower for the pressure based mesh.
However, between the two mesh approaches no significant difference is observed. Further analysis with different meshes and
contact models is needed to come to a final conclusion. This hyper-reduction method allows an efficient calculation of the
nonlinear forces in the reduced domain.
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Chapter 9
An Analysis of the Gimballed Horizontal Pendulum System for
Use as a Rotary Vibrational Energy Harvester

D. Sequeira, J. Little, and B. P. Mann

Abstract This paper examines a gimballed horizontal pendulum for use as an energy harvester. It can be designed for
threshold escape behavior rather than the conventional method of matching frequencies. A nonlinear electromechanical
model is developed to study the system’s equilibrium states as a function of tilt angle. Bifurcation diagrams are generated to
illustrate these equilibria and their associated stability. A bifurcation point is solved for analytically and the implications for
an energy harvester, one that can be designed to jump across stable attractors based on forcing amplitudes, are discussed.

Keywords Nonlinear energy harvester · Bifurcation analysis · Bistable system · Electromechanical · Attractors

9.1 Introduction

Vibratory energy harvesting has grown increasingly popular in recent years as battery technology has been unable to keep
pace with the rapid advancements in the field of micro-electronics [1]. This motivation has led to a significant amount of
research on novel ways to scavenge energy from environmental excitations where the majority of studies focus on designing
harvesters to match their natural frequencies with the environmental excitation frequency [2]. This paper investigates a new
type of rotary vibrational energy harvester with unique tuning capabilities that allow for designing to the excitation amplitude
rather than its frequency. This approach can be useful when the excitation amplitude is significantly more predictable than
the excitation frequency as is the case in numerous environmental excitations. The proposed system resembles an inclined
pendulum with an additional gimbal-like rotational degree of freedom that introduces complex dynamics into the system
which can be leveraged for improved energy harvesting under various conditions.

To analyze this system, multiple steps are taken. First, the system is described geometrically by breaking it into its
component pieces and allowing for three degrees of rotation, where one of the rotations powers an electromechanical
transducer. The electromechanical equations of motion are derived using Lagrange’s equations under the assumption that
the harvester uses electromagnetic inductance. Next, a bifurcation analysis of the system is performed to investigate the
system behavior at various orientations in absence of external forcing. An analytical expression is derived for the transition
point as a function of the system’s geometric parameters and bifurcation diagrams are generated that unveil the presence of
non-trivial equilibrium solutions for certain tilt angles. Finally, the implications of these bifurcation diagrams is discussed
to bridge the gap between understanding how the system behaves in a static setting and how it would respond to dynamic
excitations with an emphasis on how interaction across stable attractors could be encouraged [3].

9.2 Analysis

Figure 9.1 illustrates both the electrical circuit and corresponding mechanical system that this paper will study. As shown,
three rotations have been defined to describe the system’s position at any given time: a rotation of the entire system ψ out
of the page, another rotation θ about the gimballed axis, and a third rotation φ about the horizontal pendulum’s axis. This
paper will assume that the whole system is driven in ψ by an external forcing function which results in prescribed motion,
ψ(t) = Asin(ωt) where A is the amplitude of rotation in radians and ω is the frequency of rotation in rad/s. This assumption
defines the system using two rotational degrees of freedom (θ and φ) being driven by a prescribed rotational motion (ψ).
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Fig. 9.1 (a) Illustration showing the electrical circuit that could be used to harvest energy from the mechanical system through electromagnetic
induction. (b) Drawing of the gimballed horizontal pendulum which identifies the three rotations

The analysis that follows will investigate how these two degrees of freedom respond to various external forcings with a
particular focus on how the system responds for different amplitudes.

Equations of motion can be obtained for this system by applying Lagrange’s equations and assuming that energy is
transferred from the mechanical system into the electrical circuit through electromagnetic inductance. Once equations of
motion have been obtained, equilibrium solutions are determined by putting the system into state space form, setting all time
dependent terms equal to zero, and solving for the resulting equilibria as a function of the tilt angle ψ . The corresponding
stability of these equilibria can be determined from the state space equation by evaluating the Jacobian at its equilibria and
calculating the resulting eigenvalues. In particular, if the real part of the eigenvalues is greater than zero, the associated
equilibrium position is unstable. Otherwise, they represent stable equilibria.

Using these methods, bifurcation diagrams can be generated for this system by solving for the equilibria and their
associated stability as a function of a changing parameter. For this study, ψ was chosen as the control parameter for its
implications on the forced dynamic system. To do this, ψ was treated as a static value rather than a time varying one and
the system characteristics were studied as a function of different fixed values of ψ . Figure 9.2 shows multiple different
interpretations of the equilibrium solutions for both θ̃ and φ̃ as the fixed value for ψ is varied where solid lines correspond
to stable solutions and dashed lines represent unstable solutions. Figure 9.2a, b show the bifurcation diagrams for the system
as they exist in two-dimensional space where only non-trivial equilibrium solutions are included for clarity. When analyzing
these results, it is worth noting that these equilibrium solutions repeat themselves periodically every 2π radians in each
variable. This makes intuitive sense because the system is characterized by three rotations so should look mathematically
identical for a full revolution in any direction. Further inspection shows that the non-trivial solutions for θ̃ trace out a circle
with a characteristic radius. The value of this radius can be determined analytically by solving for θ̃ when ψ = 0 as

ξs = cos−1
[(
lm+ bM
mr

)
sin ξs

]
(9.1)

where l and b represent distances from the rotating mass and disc to the gimballed pivot, respectively, m and M are the masses
of the point mass and disc (shown in Fig. 9.1), respectively, and ξ s is the radius of the circle traced out on the bifurcation
diagram. This value represents an important transition at ψ = ± ξ s where non-trivial bistable equilibrium solutions converge
onto a single trivial equilibrium solution. This bifurcation point can be determined numerically by solving the implicit Eq. 9.1
for a given set of geometric parameters. This value represents a particularly interesting characteristic of the system because
it signifies both the angle θ̃ that the system comes to rest at when ψ = 0 which is the same as the minimum displacement
angle ψ that is required for the system to equilibrate at θ̃ = 0. These angles are important because they act as transition
points between trivial and non-trivial solutions. If ψ is within one of the periodically repeating intervals ψ = (nπ ± ξs),
then the system is in a non-trivial state where small changes in ψ correspond to a change in both θ and φ. If ψ is outside

of this range, however, the system equilibrates at
(
θ̃ , φ̃

)
= (nπ, kπ) and remains there throughout small changes in ψ .

This trivial solution is interesting because it connects symmetrically opposing branches of non-trivial equilibrium solutions
and consequently offers a smooth avenue for the system to travel along either branch. This avenue could be exploited in a
dynamic setting to encourage interaction across stable attractors, which is desirable for energy harvesters.

Figure 9.2c combines these previous two plots to create a three-dimensional bifurcation diagram to illustrate how θ̃ and
φ̃ vary together as a function of ψ . This figure also includes the trivial equilibrium solutions which have been superimposed
onto the plane, θ̃ = 0, that they exist on. These solutions overlap one another in a two-dimensional plot due to their periodicity
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a b c d

Fig. 9.2 (a, b) Bifurcation diagrams showing non-trivial solutions for θ and φ as functions of ψ where solid lines indicate stable solutions and
dotted lines indicate unstable solutions. (c) Three-dimensional bifurcation which includes trivial solutions as the exist on the plane ψ = 0. (d)
Three-dimensional bifurcation diagram where results have been wrapped around a cylinder to illustrate the system’s periodicity

which is the reason they were excluded from Fig. 9.2a, b. Finally, Fig. 9.2d shows the results obtained by converting Fig.
9.2c from cartesian into cylindrical coordinates where the trivial solutions now exist on the edge of a cylinder to illustrate
the system’s periodicity.

9.3 Conclusion

This paper investigated using a gimballed horizontal pendulum as an energy harvester. In doing this, a static stability analysis
was conducted that revealed the development of non-trivial equilibria occurring at a critical tilt angle which was a function
of the system’s geometric parameters. By altering these parameters to match expected forcing characteristics, desirable
energy harvesting outcomes can be realized with applications ranging from ocean energy harvesting to monitoring structural
integrity.
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Chapter 10
On the Dynamic Response of Flow-Induced Vibration
of Nonlinear Structures

Banafsheh Seyed-Aghazadeh, Hamed Samandari, and Reza Abrisham Baf

Abstract Fundamentals of Fluid-Structure Interaction (FSI) of a nonlinear structure placed in the wake of a prismatic bluff
body is studied, experimentally. Elastically mounted prismatic structures placed in flow can undergo Flow-Induced Vibration
(FIV). Flow forces acting on these structures consist of a main frequency, close to the natural frequency of the system, as well
as its higher harmonic components. Mostly in FIV studies, the structural stiffness is provided through linear springs. The
linearity of the structure limits occurrence of potential large amplitude oscillations at higher harmonics of the main frequency.
In this study, an inherently nonlinear structure is implemented in FIV study of a prismatic structure. The results show that
large amplitude, low frequency galloping type oscillation is accompanied by large contributions from the higher harmonics
in the frequency content of the oscillations. Numerical simulation using Differential Quadrature Method was conducted to
identify the optimum structural configurations for coupling between the higher harmonics and natural frequencies of the
system.

Keywords Flow-induced vibration · Fluidic energy harvester · Nonlinear structure · Fluid-structure interactions ·
Higher harmonics

10.1 Introduction

Converting vibrations to usable form of electrical energy has been the subject of several studies over the past few years
[1–3]. Research into energy harvesting started with the fundamental efforts for converting simple harmonic vibrations into
electricity. However, in the last couple of years, research efforts have focused on converting other forms of mechanical
energy, such as random ambient vibrations, surface strain energy of civil engineering structures and vibration induced by
wind and water flow. On this basis, energy harvesters from vibration induced by flow energy have been proposed to operate
self-powered devices including micro-electro-mechanical systems and wireless sensors. They are also designed to replace
small batteries that have a finite life span or would require expensive and time-consuming maintenance.

When a flexible or flexibly mounted structure is placed in fluid flow, it can deform or oscillate. The deformation or
oscillation of the structure will result in the change of flow forces, which in turn will result in the change of the structure’s
deformation or oscillation. This oscillation is called Flow-Induced Vibration (FIV). The most common fluidic energy
harvester works based on Flow-Induced Vibration that can harvest energy from external sources available in the environment
such as wind or marine currents. There are several studies on FIV with applications in wind energy with novel energy
extraction ideas [4–8].

Most common fluidic energy harvesters consist of a piezoelectric cantilevered beam, clamped at one end, connected to a
rigid prism with a specific cross-section at the free end, placed in flow. When the vortex formation frequency in the wake of
the prism is relatively close to the beam’s modal frequencies (usually the first), FIV will occur. The oscillation will cause
large strain near the clamped end. The strain produces a voltage difference in the piezoelectric patches and a circuit converts
the electric potential to a current. Flow forces acting on the structure undergoing FIV consists of the main frequency, close to
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Fig. 10.1 Experimental setup consisting on an L-shaped beam carrying a square prism at its tip, placed in the test-section of the wind tunnel

the NF of the system, as well as its higher harmonic components [9, 10]. In previous studies of FIV based energy harvesters,
while linear structures are widely used to provide structural stiffness, the structure could only experience oscillations at
frequency values close to its natural frequencies. Despite the existence of such high frequency flow forces, contributions
from higher harmonic components of the flow forces are not observed in the frequency content of the oscillation.

In this study, we propose implementing an inherently nonlinear structure in FIV study of a prismatic structure. The
system is designed such that the structural nonlinearity, coupled with the aerodynamic nonlinearity allows generation of
higher harmonics in the frequency content of the oscillation. Dynamics of Fluid-Structure Interaction of this configuration
is studied, experimentally. This configuration will be able to extract energy from the incoming flow, and potentially improve
the electrical outputs in fluidic energy harvesters by employing the nonlinear features of the beam. Through numerical
simulations, we will investigate how the geometric parameters of the L-shaped beam will influence the internal resonance of
the nonlinear beam and how that in return will affect the FSI response of the system.

10.2 Experimental Setup

The experiments were performed in a subsonic wind tunnel, with a test section of 1.27 m × 0.5 m × 0.38 m. An L-shaped
beam, holding a square cross-section prism at the tip was tested. Figure 10.1 shows the experimental setup which consists
of an L-shaped beam, clamped to a fixture at one end, which fixed the structure to the frame of the wind tunnel. The square
cross-section prism was attached to the free end of the beam, where its flat side was facing the incoming flow. For each test,
the wind speed was increased from its minimum to its maximum in small steps. The beam was subjected to uniform air-flow
with mean flow speed, U. When the mean speed, U, exceeds a critical speed, the beam underwent steady-state oscillations.
At each step, the steady-state tip displacements of the beams was measured, using a laser displacement sensor running in
tandem with a piezo sensor attached closed to the clamped end of the beam. The prism’s displacement in the crossflow
direction were measured in the flow velocity range of U = 0.5–12.9 m/s, and Reynolds number range of Re = 4270–12,800.

10.3 Results

Figure 10.2a, b shows the dimensionless amplitudes and frequencies of oscillations versus flow velocity for a square prism.
To shed light on different types of response observed in Fig. 10.2a, three representative points at three wind velocities of
U = 1.4 m/s, 4.3 m/s, 10.5 m/s have been selected (shown with highlighted columns in Fig. 10.2a). Figure 10.2c–e shows
the frequency contents (FFT plots) of the flow-induced vibration response for the sample wind speeds.

The FFT plots exhibit distinct frequency contents: while the main peak in all of these FFT plots corresponds to a frequency
close to the natural frequency of the system, contributions of the second and third harmonics, i.e. with twice and three times
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the frequency of oscillations, are observed in these cases. The contribution from the third harmonics of the main frequency
got larger as the flow velocity was increased. High frequency flow forces at odd integers of the main harmonics has been
previously observed in the galloping response of an elastically mounted square prism [11]. These measurements are the first
evidence of existing high frequency oscillations in the galloping response of a nonlinear structure.

A series of numerical simulations were also conducted to study the structural dynamics of the L-shaped beam in absence
of the fluid flow. The goal was to calculate the natural frequencies of the system and the corresponding higher harmonics
under external excitation. The numerical simulations used to determine the nonlinear multi-modal dynamics of L-shaped
beams are based on Differential Quadrature Method (DQM), a higher order finite element solution approach. Differential
Quadrature Method (DQM) has the capability of producing highly accurate results with minimum computational effort
compared to conventional finite element and finite difference methods. This technique enables one to monitor the tuning
of the first two bending mode frequencies of the L-shaped beam by studying the influence of each of following geometric
parameters: the length of L-shaped beam, width, structural elasticity and the tip prismatic structure mass and mass moment
of inertia. Studying the amplitudes and frequencies of oscillations, one can investigate the interplay between the internal
resonance of the first two bending modes of the beam, the higher harmonics of the main resonance and high frequency flow
forces matching the vibrational modes of the beam. Each line in Fig. 10.3 represents the ratio between the second to the first
mode frequency in an L-shaped beam with varying geometrical parameters. The first two bending mode frequencies in the
current study are tuned such that the structure has a 3:1 internal resonance. On the other hand, with such frequency tuning,
the second bending mode frequency matches the high frequency flow forces resulting from high frequency vortex shedding
in the wake of the prismatic structure. These phenomena would affect the FSI response of the system, which in turn can
change the level of the energy harvested in the proposed device.

Fig. 10.2 (a, b) Dimensionless amplitudes and frequencies of oscillations versus wind velocity for a square prism, (c–e) frequency contents (FFT
plots) for the sample wind speeds of U = 1.4 m/s, 4.3 m/s, 10.5 m/s

Fig. 10.3 The ratio between the second to the first mode frequency in an L-shaped beam with varying geometrical parameters
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10.4 Conclusion

Flow-Induced Vibration of an inherently nonlinear beam with prismatic bluff-body attached at the tip was studied,
experimentally. The existence of high frequency flow-induced vibrations as a result of the existing high frequency flow
forces was investigated. Large contributions of the higher harmonics in the oscillations of the nonlinear L-shaped beam with
a prismatic tip oscillator were observed. In addition, through numerical simulations it was shown that the bending mode
frequencies for an L-shaped beam can be tuned to have integer ratios. This tuning cannot be achieved for classical energy
harvesters using conventional cantilevered beam configuration. Through this unique design, energy exchange between the
first two modes is possible. This could potentially affect the FSI response of the system, which in turn will change the level
of the energy harvested in the proposed device.
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Chapter 11
Potential and Limitation of a Nonlinear Modal Testing Method
for Friction-Damped Systems

Maren Scheel, Tobias Schulz, and Malte Krack

Abstract Experimental nonlinear modal analysis has been applied successfully, mainly on structures with stiffness
nonlinearities. However, it remains a challenge to experimentally extract a nonlinear modal model of structures with nonlinear
damping, such as friction. To systematically investigate a modal testing method for friction-damped structures, we introduce
a new test specimen. The specimen is a beam that is clamped on one side and offers six possible locations to induce friction.
Changing the friction location varies the significance of the non-linear effects, that is, frequency shift, increase in damping
and change of mode shapes. We apply experimental modal analysis with one excitation point to track the properties of one
mode from full stick to macro slip. To assess the quality and validity of the extracted modal model, we compare predicted
steady-state vibrations with frequency response measurements close to resonance. Based on these results, we discuss the
potential and limitation of the applied modal testing approach.

Keywords Nonlinear modes · Modal analysis · Force appropriation · Jointed structures · Nonlinear system identification

11.1 Introduction and Method

In lightweight structures, the dry sliding friction in mechanical joints is often the main dissipation mechanism (friction
damping). The strongly nonlinear frictional interactions cause a dependence of the joint’s effective stiffness and damping
on the vibration level. Contact interactions are commonly described by empirical laws involving parameters that have to
be identified from suitable measurements. Moreover, measurements are required to properly verify simulation approaches.
Nonlinear (normal) modes capture the vibration signature of a nonlinear system and are therefore an interesting basis both
for contact parameter identification and for verification of simulation approaches.

We use the extended periodic motion concept (EPMC) which defines a nonlinear mode as family of periodic motions of
an autonomous system [1]. In the non-conservative case, the motions are made periodic by an artificial negative damping
term. This concept is consistent with the conservative case and the linear case with modal damping. The concept allows to
determine how modal frequency, damping ratio and deflection shape (including higher harmonics) for a given mode depend
on the vibration level. With these properties one can define a single degree of freedom nonlinear modal oscillator. The
agreement of the response of this model with the initial one measures the significance of the modal properties. The above
defined nonlinear modes accurately represent steady-state periodic oscillations if the vibration energy is mainly confined in a
single nonlinear mode, which is typically the case under harmonic forcing near primary resonances, or self-excited vibrations
under negative damping of a particular mode [1].

To experimentally realize the EPMC, we apply the method proposed in [2], where the negative damping is replaced by a
phase resonant external forcing. By varying the forcing amplitude and measuring the steady-state response, one effectively
tracks the system’s backbone curve. Scheel et al. [2, 3] considered systems with well-spaced modes, moderate damping level
and only a few percent nonlinear variation of modal frequency and damping ratio. A focus was placed on structures with
bolted joints. It was shown that reasonable results can already be achieved with only a single-point, single-frequency phase
resonant forcing. Once the nonlinear mode is isolated in a periodic state, the modal frequency can be easily determined
and the mode shape (including higher harmonics) measured. The modal damping ratio is obtained using the active power
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Fig. 11.1 Experimental setup: (a) One-sided clamped beam. (b) Zoom of the friction nonlinearity

provided by the fundamental harmonic component of the excitation force and the experimentally identified modal mass of
the deflection shape.

Up to this point, it has not been assessed if the proposed single-point, single-frequency phase resonant excitation force
is sufficient for systems with highly nonlinear damping or significant changes in mode shape. Therefore, the experimental
realization of the extended periodic motion concept is applied in this work to a test rig with a friction nonlinearity, ranging
from (nearly) full stick to macro slip. To assess the mode isolation quality, we also investigate how sensitive the extracted
modal properties are with respect to the excitation location.

11.2 Beam Test Rig with Friction Nonlinearity

The test rig [4] consists of a one-sided clamped beam (see Fig. 11.1). The beam has six pockets, each equipped with an inlet
(green). To introduce friction, two metal plates (orange) are inserted in one of the pockets. The contact interfaces between
inlet and plates are ideally lines, two on the top plate and two on the bottom plate. An air tube (red) inserted between the
plates applies normal load to the contact, which can be set through the air pressure in the tube. By design, the location of
the nonlinearity can be varied in the test rig, thus varying severeness of nonlinearity, e. g., change in frequency, damping and
deflection shape.

11.3 Experimental Nonlinear Modal Analysis

The nonlinear modal analysis described in [2] is applied to the setup shown in Fig. 11.1. Here, the force appropriation
is ensured using a phase-locked loop controller implemented on a dSPACE MicroLabBox with successively decreasing
excitation level. The mode under investigation is the first horizontal bending mode at about 115 Hz for low vibration levels
(contact interfaces presumably in full stick).

For low amplitudes, the extracted modal frequency is nearly constant (see Fig. 11.2a) which supports that contact
interfaces are in full stick. As the amplitude increases, the modal frequency drops significantly, and the system shows the
expected softening behavior. For high amplitudes, the frequency-amplitude curve flattens which suggests that the joint is in
macro slip. Note that the frequency is normalized with the modal frequency at small amplitudes. The damping ratio is low
for small amplitudes and increases to a maximum value of about 17% with a subsequent decrease.

To asses the amplitude dependence of the deflection shape, the first harmonic component of the nonlinear deflection shape
is projected onto linear modes to determine the amplitudes of the linear modal coordinates. First, the first three linear bending
modes identified for low amplitudes (full stick) are used as basis. The magnitude of the modal amplitudes are indicated with
solid lines in Fig. 11.2b. Note that the values are normalized such that they sum up to one. For low amplitudes, the nonlinear
deflection shape resembles the linear first bending mode with a fully stuck joint. With increasing amplitude, the nonlinear
deflection shape changes such that the other two linear modes contribute significantly. To further understand the change in
shape, the nonlinear deflection shape is also projected onto modes identified for the beam without contact between beam and
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Fig. 11.2 (a) Normalized resonant frequency and damping ratio over drive point amplitude. (b) Normalized modal amplitudes of linear full
stick modes (solid line) and linear modes of beam without contacting plates (dashed line) over drive point amplitude. (c) Measured (dots) and
synthesized (solid line) frequency responses for the drive point at three forcing levels

plates (dashed lines in Fig. 11.2b). For high amplitudes, when the joint is in macro slip, the deflection resembles the first
bending mode of a beam without joint. For the regime at moderate amplitudes (high damping ratio), however, the deflection
shape cannot be explained by a single mode of either modal basis. The shape is in fact a combination of three linear modes.
At this point, it is unclear if this is a property inherent to the structure or if it is induced by the imperfect excitation.

For validation of the extracted modal properties, frequency responses are synthesized with the associated nonlinear modal
model for three forcing levels (0.5 N, 4.3 N, and 19.4 N). As reference, frequency responses are measured using force-
controlled stepped sine excitation at the same forcing levels (see Fig. 11.2c). Note that the excitation location is the same as
for the backbone measurement. The predicted frequency responses match the measurements well for lower amplitude levels.
For the highest excitation level, the prediction differs significantly from the measurement, underestimating the maximum
amplitude. The difference can be accounted to imperfect phase control during the backbone measurement and moderate
measurement repeatability. The dynamics for frequencies lower than the resonance are not captured well. This work will be
presented in more detail at the conference, analyzing the amplitude-dependent modal properties in more depth. Furthermore,
the influence of the excitation location will be addressed [5].

11.4 Conclusion

With the suggested experimental realization of the extended periodic motion concept, amplitude-dependent modal properties
can be extracted from full stick to macro slip regime. The tested beam structure exhibits strong nonlinearity: modal frequency,
damping ratio and deflection shape change significantly with amplitude. Vibration predictions near the first resonance based
on the extracted modal model are deemed satisfactory. However, the excitation location in this work was the same for
backbone and frequency response measurements. Therefore, further work is required to assess the validity of the model with
respect to changes in the exciter and friction contact location.
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Chapter 12
Dynamics of a Magnetically Excited Rotational System

Xue-She Wang and Brian P. Mann

Abstract This extended abstract investigates the dynamics of a non-contact linear-to-rotary magnetic transmission system.
Equations of motion were derived using a Dipole Model. An equilibria and stability analysis revealed coexisting solutions
exist as magnets are close, and experimental studies were conducted to verify this trend. Simulation results gave the system’s
dynamic response under forward and reverse frequency sweeps, which show good agreement with experimental studies.

Keywords Dipole model · Equations of motion · Equilibria and stabilities · Dynamics

12.1 Introduction

Harvesting energy from vibration has been broadly discussed in recent decades [1, 2]. Among various energy conversion
methods (piezoelectric transduction, electromagnetic induction, electrostatic transduction, etc.), harvesting energy from
rotational movement has advantages of high efficiency, easy implementation and space-saving [3]. However, most types
of environmental vibration are translational. Traditionally, translation can be converted to rotation with connecting rods but
friction in the transmission process oftentimes consume lots of energy thus impairing conversion efficiency. This extended
abstract will introduce a novel design of transmission system, which achieves the conversion from translation to rotation and
utilize non-contact magnetic interaction to avoid energy consuming from friction. In the following sections, mathematical
modeling of this transmission system will be formulated, and its static property and dynamic responses will be investigated.

12.2 System Description

Figure 12.1 shows a shaker provides translational motions of the drive magnet, which applies magnetic force to the rotary
driven magnet. The mass center of the driven magnet is pinned at a non-moving potentiometer, thus limiting to pure rotation.
A rotary circular plate is attached to the driven magnet and wrapped around by two strings, which connect springs to provide
linear restoring torque. The potentiometer was used to measure the angle of the driven magnet, and a laser tachometer was
used to measure the displacement of the drive magnet.

The equation of motion for the driven magnet could be written as a linear mass-spring-damper system driven by magnetic
torque T(θ , x):

I θ̈ + cθ̇ + k (θ − θ0) = T (θ, x) (12.1)

where I, c, k and θ0 are the driven magnet’s moment of inertia, torsional damping coefficient, torsional spring coefficient and
offset bias angle respectively. Dipole Model was used to describe the magnetic torque and the equation of motion becomes:

I θ̈ + cθ̇ + k (θ − θ0) = α
{

sin θ
[
(b + A cos (	t))2 + h2

]3/2 − 3
[b + A cos (	t)] [h cos θ + (b + A cos (	t)) sin θ ]

[
(b + A cos (	t))2 + h2

]5/2

}

(12.2)
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a b

Fig. 12.1 (a) Experimental setup and (b) schematic diagram of the non-contact linear-to-rotary magnetic transmission system

where α =μ0M0V0M1V1/(4π ),μ0 is the permeability of free space, M0, V0 are the drive magnet’s magnetization and volume
respectively, and M1, V1 are the driven magnet’s magnetization and volume respectively.

12.3 Equilibria and Stabilities

Dipole Model gives the expression of the system’s potential energy as follow:

U = α
[

cos θ(
h2 + b2

)3/2
+ 3

b (h sin θ − b cos θ)(
h2 + b2

)5/2

]
+ 1

2
k(θ − θ0)

2 (12.3)

Taking the first derivative of the total potential energy U, with respect to the generalized coordinate θ , and setting it equal

to zero gives the equilibria of the static rotary system θ̃ :

k

α

(
θ̃ − θ0

) (
h2 + b2

)5/2 +
(

2b2 − h2
)

sin θ̃ + 3hb cos θ̃ = 0 (12.4)

The Lagrange-Dirichlet theorem states that the stability of a single degree-of-freedom system’s equilibria can be
determined by evaluating the sign of the second derivative of the potential energy function with respect to the generalized
coordinate at the equilibrium position. Therefore, stability is determined by the sign of the following expression:

d2U

dθ2

∣∣∣∣
θ=θ̃

= k + α
(
h2 + b2

)−5/2 [(
2b2 − h2

)
cos θ̃ − 3hb sin θ̃

]
(12.5)

where d2U/dθ2 > 0 indicates a stable equilibrium and d2U/dθ2 < 0 indicates an unstable equilibrium. Figure 12.2 shows
the trend of equilibrium and stability with a varying bias, b. When the bias is small, i.e. two magnets are close, multiple
equilibria were found. As shown in Fig. 12.2b, a non-zero θ0 breaks the symmetry of the bifurcation diagram. Especially for
θ0 = π /4, the remote solution indicates that the magnetic torque here is extremely strong to balance the large restoring force.
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Fig. 12.2 Bifurcation diagrams showing the equilibria and their stabilities. (a) shows the case with an offset bias angle θ0 = 0, while (b) shows
the case with an offset bias angle θ0 = π /4. Equilibrium angle of the driven magnet were found by sweeping a control parameter of bias b, where
blue lines represent stable equilibria while red lines represent unstable equilibria. Cross points are the experimental data

Fig. 12.3 The responses of the driven magnet under (a) forward frequency sweep and (b) reverse frequency sweep. The excitation has an amplitude
of 3 mm and frequencies ranging from 0.5ωn to 2ωn, where ωn is the natural frequency of the driven magnet. Grey areas represent time series
responses, black dots represent stroboscopic samples, and black crosses represent the envelope of responses experimentally measured

12.4 Dynamic Response

Simulation were performed using Eq. (12.2) along with the parameters measured from the experiments. Figure 12.3 shows
the simulation result of the transmission system’s frequency responses. In Fig. 12.3a, b, excitation frequency is linearly
increasing and decreasing with time respectively, thus making horizontal axis represent frequency as well as time. The
shaded gray line therefore shows the time series for the driven magnet’s angle and the amplitude of each steady state driven
by a given frequency. Stroboscopic samples (black dots and lines) were also used to illustrate the periodicity of the response
with respect to the excitation frequency [4].

As shown in Fig. 12.3, the forward and reverse frequency sweeps result in coexisting solutions. Multiple periodicities
of response were found by observing the stroboscopic samples, including harmonic, sub-harmonic and chaotic responses.
Compared with the forward sweep, the reverse sweep yields larger responses of amplitude near the natural frequency.
However, the forward sweep gives larger and more stable (non-chaotic) responses far away from natural frequency.
Experimental studies were performed to obtain the envelopes of responses under forward and reverse sweep, which show
good agreement with simulation results.
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12.5 Conclusion

This extended abstract derived the equation of motion for the non-contact linear-to-rotary magnetic transmission system. The
good agreement of theoretical equilibria with experimental studies proves the applicability of Dipole Model for describing
the magnetic force in this prototype. For the system’s dynamic response, simulations show multiple periodicities, coexisting
solutions of steady states, and a broadening in the frequency response. Experimental studies verify the simulation results by
comparing the amplitude of responses under forward and reverse frequency sweeps.
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Chapter 13
Experimental Nonlinear Dynamics of a Post-buckled Composite
Laminate Plate

John I. Ferguson, Stephen M. Spottswood, David A. Ehrhardt, Ricardo A. Perez, Matthew P. Snyder,
and Matthew B. Obenchain

Abstract Composite laminate materials are prevalent in the aerospace industry as programmable high-strength structural
options. An increased focus on high-speed and space flight demands an understanding of composite materials subject to
extreme combined thermal, aeroelastic and acoustic loading. Under such conditions constrained composite panels may
buckle, thus exhibiting nonlinear structural behavior. This study focuses on a unidirectional carbon fiber epoxy composite
laminate plate, a surrogate for more complex composite structures, with four stable static equilibria under fixed-fixed,
free-free boundary conditions. The experiment includes pre- and post-buckled modal analysis as well as characterization
of the nonlinear response due to transverse excitation. An electrodynamic shaker excites the plate at varying frequencies
and loading amplitudes. The dynamic response of the post-buckled plate is measured with the 3D dynamic digital image
correlation (DIC) technique combined with a laser vibrometer. The results show single-well and coexisting responses for the
four stable equilibria along with chaotic snap through between equilibria. The experimental results of the pre-buckled plate
modal analysis are compared to an analytical solution based on classical laminate plate theory (CLPT) and the equation of
motion for transverse vibration of laminated plates. Future efforts include modeling and analyzing carbon fiber laminates
with respect to damage initiation and material degradation due to high-stress snap through response.

Keywords Composite plates · Post-buckled plates · Snap-through · Experimental mechanics · Digital image correlation

13.1 Introduction

The aerospace industry has become reliant on composite materials due to the high strength to weight ratio and programmable
stiffness of composite components. The structural applications of these materials range from micro air vehicles to Lockheed
Martin’s JCM missile to the future SpaceX Big Falcon Rocket (BFR). A primary concern during high-speed flight is that
constrained panels will buckle due to the substantial temperature variation within a flight regime [1, 2]. A thermally buckled
panel, simultaneously excited by large aeroelastic and acoustic loads, can exhibit nonlinear dynamic behavior, to include
snap-through between stable equilibria [3]. Post-buckled behavior of aircraft skin panels has been observed in both the X-
15 (Fig. 13.1a) and SR-71 Blackbird (Fig. 13.1b). The large amplitude deformation of a snap-through event results in a
significant compressive load that can threaten the structural life of the component. Specifically, delamination of composite
ply layers may be accelerated by the large instantaneous compressive load [4, 5]. The delamination of composite plies within
a component can rapidly reduce the structural integrity and lead to catastrophic failure of the system. Therefore, knowledge
of the post-buckled dynamic behavior of composite panels is critical to the development and safety of high-speed aerospace
structures.

This study focuses on experimentally characterizing the dynamic behavior of a unidirectional carbon fiber epoxy laminate
plate, a surrogate for more complex composite structures. A linear modal analysis is conducted on the pre-buckled laminate
with fixed-fixed, free-free boundary conditions as well as in a cantilever configuration. The modal behavior is compared to
an analytical model based on the classical laminated plate theory (CLPT) and fundamental mode shapes of beams [6, 7]. The
composite plate is then buckled under fixed-fixed, free-free boundaries to exhibit four stable states. The post-buckled analysis
includes linear modal experimentation as well as an investigation of the nonlinear response under transverse excitation. The
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Fig. 13.1 High-speed vehicles with observed nonlinear behavior of skin panels. (a) North American X-15 [8] (b) Buckled skin panel on the
underside of the fuselage of an SR-71 [9]

post-buckled plate is excited by an electrodynamic shaker to investigate the transition to chaotic snap-through and coexisting
response between equilibria. The dynamic response is measured using the 3D digital image correlation technique (DIC) and
a laser vibrometer.

13.2 Pre-buckled Analysis

13.2.1 Analytical Solution

Development of the equation of motion for the free transverse vibration of a plate follows the methods found in many
composite mechanics texts [6, 10]. The differential equations of motion based on the stress resultants and external loads are:

∂2Nx

∂x
+ ∂Nxy

∂y
= ρ0

∂2u

∂t2
(13.1)

∂2Ny

∂y
+ ∂Nxy

∂x
= ρ0

∂2v

∂t2
(13.2)

∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+ ∂2My

∂y2 = ρ0
∂2w

∂t2
(13.3)

In Eqs. 13.1–13.3, N and M represent the load and moment resultants, respectively. The load and moment resultants are
assumed to relate to the mid-plane strains and curvatures of the plate based on classical laminated plate theory, as shown in
Eq. 13.4 [6].

[
N
M

]
=

[
A B
B D

] [
ε0

κ

]
(13.4)

In this study, the formulation is restricted to isotropic plates and symmetric laminates, thus the substitution of the
relationships in Eq. 13.4 decouples the three equations of motion, and the governing equation for transverse vibration
becomes:
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Fig. 13.2 Experimental modal analysis of unidirectional composite plate. (a) Clamped-clamped, free-free boundary conditions (CCFF). (b)
Cantilever boundary conditions (CFFF)

D11
∂4w

∂x4
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∂2w

∂t2
= 0 (13.5)

The D coefficients in the equation of motion are components of the plate’s bending stiffness matrix, which are readily
obtained using classical laminated plate theory.

This analysis assumes the solution to the transverse vibration of the plate is harmonic, according to:

w (x, y, t) = W (x, y) eiωt (13.6)

where W(x, y) is a mode shape function for the plate’s given boundary conditions. The solution is in the form:

W (x, y) = X (x)Y (y) (13.7)

where X(x) and Y(y) are the fundamental beam mode shapes of the plate in each direction. This analysis utilizes a series
of shape functions published by Leissa [7]. The substitution of the modal W(x, y) shape functions results in the analytical
solution to the composite laminates natural frequencies, in the form:

ω =
√

1

ρ0W

[
D11

∂4W

∂x4 + 2 (D12 + 2D66)
∂4W

∂x2∂y2 + D22
∂4W

∂y4

]
(13.8)

The first four analytically determined natural frequencies and mode shapes are validated against the experimental results
for the pre-buckled unidirectional carbon fiber epoxy laminate plate.

13.2.2 Experimentation

The pre-buckled modal experimentation focused on a unidirectional composite plate with clamped-clamped, free-free
boundary conditions (Fig. 13.2a) as well as a cantilever configuration (Fig. 13.2b). The geometric and material properties of
the composite specimen are shown Table 13.1.

In this experiment, a roving input was used to excite the fundamental modes of the plates, while a fixed-point laser
vibrometer output measured the dynamic response. The response was measured at Point 13 (x = 4.5 in, y = 3.75 in) at
a 6000 Hz sampling frequency. A fast Fourier transform converted the response to the frequency domain to determine the
natural frequencies and subsequently the mode shapes of the unidirectional carbon fiber plate.



106 J. I. Ferguson et al.

Table 13.1 Geometric and
material properties of specimen

Property Specimen

Layup [0]4

Length (in.) 9
Width (in.) 5
Thickness (in.) 0.026
E11 (Msi) 15
E22 (Msi) 0.6
G12 (Msi) 0.8
Poisson’s Ratio, ν12 0.3
Density, ρ0 (lb/in.3) 0.0503

Fig. 13.3 Clamped-clamped, free-free experimental modal results. (a) Bottom torsional mode ω1 = 116 Hz (b) Top torsional mode – ω2 = 184 Hz
(c) Bending mode – ω3 = 221 Hz

13.2.3 Comparison of Analytical Solution and Experimental Results

The clamped-clamped, free-free experimental modal results (Fig. 13.3) and the analytical solution (Fig. 13.4) exhibited
largely different mode shapes at different frequencies. The low transverse stiffness (E22) and incongruities in the composite
matrix due to the room temperature lay-up technique resulted in independent torsional modes. The top half of the composite
plate was stiffer, causing the top torsional mode to occur at 184 Hz versus the bottom torsional mode at 116 Hz. The stiffness
differential is also apparent in the first bending mode at 221 Hz in which the mode shape is asymmetric, skewing toward the
bottom half of the plate. Figure 13.4 illustrates the analytically determined first bending and torsional modes. The analytical
model assumes a perfectly orthotropic plate, without material incongruities. Also, the analytical solution does not account
for pre-stress in the material due to the clamping procedure. These simplifying assumptions result in disparity between the
analytical and experimental natural frequencies and shapes. The model does not predict the two independent torsional modes
and the experimental modes are higher likely due to tensioning of the material while the fixed ends are clamped.

The inaccuracy of the analytical solution in the clamped-clamped, free-free analysis motivated an investigation of
cantilever boundary conditions to eliminate the pre-stress in the material. The shape functions in the analytical solution
were altered to model a single clamped edge in a cantilever configuration. Figure 13.5 illustrates the experimental first two
modes of the cantilevered composite laminate. The experimental fundamental mode exhibits a nearly symmetric bending
mode at 13.7 Hz (Fig. 13.5a), while the second mode occurring at 41.1 Hz is an asymmetric torsional mode, favoring the
top half of the plate (Fig. 13.5b). Figure 13.6 displays the model results for the first two cantilever modes. The analytical
fundamental mode (Figure 13.6a) at 13.7 Hz has a 16% error in comparison to the experimental first bending mode result.
The correlation between the model and experimental results is significantly improved by eliminating the pre-stress in the
material. The second mode approximation does not correlate as well with the experimental results due to the incongruities
of the material causing an asymmetric mode shape. The model will continue to be improved by accounting for pre-stress and
material inconsistency.
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Fig. 13.4 Clamped-clamped, free-free analytical solution modal results. (a) Bending mode – ω1 = 99.47 Hz (b) Torsional mode – ω2 = 147.1 Hz

Fig. 13.5 Cantilever experimental modal results. (a) Bending mode – ω1 = 13.7 Hz (b) Torsional mode – ω2 = 41.1 Hz

Fig. 13.6 Cantilever analytical solution modal results. (a) Bending mode – ω1 = 11.5 Hz (b) Torsional mode – ω2 = 71.97 Hz
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13.3 Post-buckled Analysis

13.3.1 Experimentation

In the post-buckled experiment, the digital image correlation (DIC) technique is used to obtain full-field measurements of the
dynamic response of the unidirectional plate specimen. The three-dimensional specimen is reconstructed using the binocular
stereovision technique [11]. The two FASTCAM SA5 high-speed cameras (Fig. 13.7a) are positioned with intersecting fields,
to capture the full-field dynamic response of the specimen. The cameras trace the speckle pattern (Fig. 13.7b) at a 2000 Hz
sampling frequency, with laser vibrometers measuring the out of plane response at a 6000 Hz sampling frequency. Figure
13.8 shows the sampling points for the DIC measurement. The cameras captured 111 sampling points on the plate and 4
sampling points on the fixture in order to obtain the displacement of the plate relative to the motion of the clamp.

Fig. 13.7 DIC Experimental Setup. (a) Two laser vibrometers and two FASTCAM SA5 cameras (b) DIC speckle pattern on specimen

Fig. 13.8 Superposition of the plate (red line), 111 sampling points on the plate (blue circles), and 4 sampling points on the clamp (green circles)
for DIC measurement
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13.3.2 Asymmetric Buckle

The unidirectional composite laminate plate was mechanically buckled with clamped-clamped, free-free boundary condi-
tions. The resulting buckle was largely asymmetrical due an imprecise buckling technique and a low transverse stiffness
along the width of the plate. Figure 13.9 shows the four independent statically stable equilibria of the post-buckled laminate.
The interpolated surface plots, viewed along the clamped width, show the buckled shape of the specimen reconstructed by
the static measurements from DIC with 111 sampling points before the specimen was subjected to transverse loading [12].
Table 13.2 lists the transverse displacement of the critical points of each static equilibria (named P1 to P4).

Fig. 13.9 Post-buckled stable equilibria. (a) Initial P1 Configuration (b) Initial P2 Configuration (c) Initial P3 Configuration (d) Initial P4
Configuration

Table 13.2 Post-buckled critical
points transverse displacement

P1 (mm) P2 (mm) P3 (mm) P4 (mm)

1 (−) 1.61 (+) 1.78 (+) 1.85 (−) 1.42
2 (−) 2.02 (+) 2.32 (−) 2.07 (+) 2.20
3 (−) 1.01 (+) 1.46
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Fig. 13.10 P4 Snap to P2 at 0.4 g loading at peak response frequency of 145 Hz. (a) Time history of snap-though (b) DFT of response at snap-
through

13.3.3 Chaotic Snap Through

The identification of chaos in the dynamic response of the specimen was achieved with the heurisitic approach of identifying
regions of excessive noise in the data [13]. The P4 configuration (Fig. 13.9d) was qualititaviley determined to be the least
stable equilibrium state and the most readily excited to respond chaotically. The shallow buckle of the bottom half of the
plate in the P4 state was excited to snap through to the P2 configuration at a 0.4g sine sweep from 40 to 180 Hz. Figure 13.10
shows the single snap-through event (measured by the laser vibrometers) at a peak reponse frequency of approximately
145 Hz during the sweep up and sweep down.

The bottom half of the plate in the P4 configuration realized chaotic snap-through response at loading amplitudes as low
as 1.3 g (Fig. 13.13). Figure 13.11 illustrates a segment of the chaotic response between the P2 and P4 states during an
amplitude sweep from 0.5 to 3.5 g at a frequency dwell of 135 Hz. The chaotic response initiated at 2.0 g, continued to the
peak 3.5 g, and continued down to 1.8 g. Figure 13.11a exhibits the time history of point 86 in Fig. 13.8. This is the nominal
midpoint of the bottom half of the plate. The large amplitude oscillations favor the P2 state as seen in Fig. 13.11b as the
plate chaotically snaps to the P4 configuration of Fig. 13.11d. Figure 13.11e, f show the path of the snap-through event. The
path is asymmetric, favoring the same region illustrated in the plate’s first bending mode (Fig. 13.3c). The modal shape and
dynamic response may favor the lower edge of the plate due to a material incongruity resulting in a more compliant section.

Unlike the P4 configuration, the P3 state (Fig. 13.9c) illustrated coexisting snap-through response between the
independently bistable top and bottom sections of the laminate. Figure 13.12 illustrates the coexisting response of the P3
configuration during a frequency sweep from 100 to 140 Hz at 4.5 g. Under the large amplitude load of 4.5 g, the plate
exhibits large single well response until a single snap event to the P2 configuration (Fig. 13.12d, e). The bottom section of
the specimen then responds chaotically (Fig. 13.12f), and finally settles into an equilibrium at its original P3 configuration
(Fig. 13.12g). The large amplitude chaotic cross-well response exists between an excitation frequency of 116 and 135 Hz.

An investigation into the P4 configuration snap boundary was conducted as it was the least stable state. Figure 13.13
shows the presumed snap boundary for chaotic snap-through of the bottom half of the plate. This figure illustrates that the
lowest amplitude chaos occurred at 1.3 g at 140 Hz. This was a qualitative analysis; Fig. 13.13 is schematic in nature.

13.3.4 Low Amplitude Modal Sweeps

The first tests conducted on each day of testing were low amplitude (0.5 g) random transverse excitation (50–850 Hz) to
determine the state of the plate. The plate was manually transitioned between each state to excite and measure the response of
each static equilibria individually. Figure 13.14 illustrates the results of the frequency domain analysis of the laser vibrometer
data collected from each modal sweep. The power spectral density (PSD) plots exhibit the variation of the plate’s state
throughout the testing. The P2 equilibrium, the plate buckled toward the cameras, realized the most significant variation
throughout testing with a variation of 64 Hz between the fundamental peaks of the morning and afternoon tests on 19
June. Also, the least stable state (P4) became statically unstable toward the end of several days. The primary cause of the
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Fig. 13.11 Chaotic dynamic response of bottom half of plate originally in P4 configuration and deflected shapes of specimen. (a) Part of chaotic
response of point 86 in Fig. 13.8 (b) Interpolated deflected shape at (1). (c) Interpolated deflected shape at (2) (d) Interpolated deflected shape at
(3) (e) Interpolated deflected shape at (4). (f) Interpolated deflected shape at (5)
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Fig. 13.12 Coexisting snap-through response originally in P3 configuration and deflected shapes of specimen. (a) Chaotic response of point 86
(blue) and point 82 (red) (b) Interpolated deflected shape at (1). (c) Interpolated deflected shape at (2) (d) Interpolated deflected shape at (3) (e)
Interpolated deflected shape at (4). (f) Interpolated deflected shape at (5) (g) Interpolated deflected shape at (6)
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Fig. 13.13 P4 chaotic snap boundary schematic

Fig. 13.14 (a and b) Power spectral density for the P1 and P2 states at low amplitude, random transverse excitation. (a) P1 power spectral density
(b) P2 power spectral density. Power spectral density for the P3 and P4 states at low amplitude, random transverse excitation. (c) P3 power spectral
density (d) P4 power spectral density
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state change was the variation of the temperature of the testing environment. The plate was originally buckled with a frame
temperature of 66.4 ◦F. The temperature of the room peaked at 72.9 ◦F in the afternoon of 19 June. This temperature variation
was due to external factors such as no overnight air conditioning, outside air temperature increasing throughout the day, as
well as large halogen overhead lights emitting heat. The temperature increase resulted in expansion of the aluminum plate
fixture (the coefficient of thermal expansion of aluminum is significantly greater than that of the composite plate), which
reduced the compressive buckling load, and produced a shallower post-buckled configuration. The change of state could also
be attributed to material degradation, as the plate was subject to continuous large transverse loads and snap-through events;
however, the results do not indicate a continuous state change as if caused by crack propagation.

13.4 Summary and Future Work

The pre- and post-buckled dynamic response of a composite plate was collected using a laser vibrometer and the digital
image correlation technique and presented in this paper. The pre-buckled dynamic response was compared to an analytical
solution based on the classical laminated plate theory. The analytical solution was not precise in modeling the plate under
clamped-clamped, free-free boundary conditions because the pre-stress of the material was not modeled. In future work, the
analytical solution will be modified to include the material pre-stress and material incongruities.

The post-buckled experimental results illustrated single-well and snap-through response between the statically stable
equilibria. In future work, a focus on control of the testing environment will ensure minimal post-buckled state change. Also,
the snap-through boundaries will be further investigated along with efforts to numerically model snap-through phenomena
and damage propagation caused by the in-plane compressive loading during a snap-through event.
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Chapter 14
Simulation of a Self-Resonant Beam-Slider-System Considering
Geometric Nonlinearities

Florian Müller and Malte Krack

Abstract Self-adaptive systems have the special ability to adjust their dynamical characteristics depending on certain
operating conditions. In previous research a clamped-clamped beam with an attached slider has shown self-resonant
behavior in experiments. However, the physical mechanisms producing this self-adaptivity are not yet fully understood.
Here, we present a numerical model in which the beam is described by its lowest-frequency normal modes and taking into
account geometric nonlinearities. Additionally, a clearance between beam and slider allows for unilateral and dry frictional
contact interactions between the respective bodies. We demonstrate that the contact interactions are the key to explain
the self-adaptive behavior. Moreover, we illustrate that the beam’s geometric nonlinearity is essential to simulate jumps
to significantly higher amplitude levels.

Keywords Self-resonant · Self-adaptive · Non-smooth dynamics · Geometric nonlinearities · Midplane stretching

14.1 Introduction

Self-adaptive systems provide the potential to act in energy harvesting applications or as broadband vibration absorbers
passively, so that no electrical power is needed for adaptation. A self-adaptive system consisting of a clamped-clamped beam
with moveable slider was investigated by several groups in the past. In [1, 2], the self-adaptive process of this system was
demonstrated experimentally. Hereby the vibrational amplitude was initially small, but enlarged after the slider has passively
achieved a certain position on the beam. The self-adaptive process could be reproduced successfully for a broad range of
exciting frequencies and size scales of the system. However, no conclusive theory explaining this behavior was provided.
Different kinds of unsuccessful adaptation processes were reported in [3]. Hereby the slider’s gap size was identified as
crucial parameter. In [4], a numerical model of the system was developed. The beam was described in terms of its linear
bending modes. A gap between beam and slider was introduced to allow for unilateral and frictional contact interactions.
The contact interactions turned out to be crucial for the adaptation process. However, the jumps to significantly higher
vibrational amplitudes known from experiments couldn’t be reproduced.

In this work, the model proposed in [6] is used to consider geometric nonlinearities of the beam. Simulations with
free and axially fixed slider are performed and compared in order to understand the self-adaptive process. Additionally,
an approximation for the system’s first natural frequency is provided. The system specification is mostly adopted from [2].
More precisely, a steel beam of length L = 130 mm, thickness 2r = 1 mm and a slider of mass m = 25 g is considered, see
Fig. 14.1a.

14.2 Natural Frequency of Clamped-Clamped Beam with Bonded Slider

In this work, the beam’s deformation is described in terms of its bending modes. Considering theN lowest-frequency bending
modes, the equations of motion without slider read
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q̈n + 2Dnωnq̇n + ω2
nqn +
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l=k
b
(n)
j,k,lqj qkql = γnẅ0(t) with n = 1, 2, . . . , N, (14.1)

where qn are the modal coordinates of the mass-normalized bending modes ϕn(x) determined in accordance with linear
Euler-Bernoulli theory. The terms on the left hand side represent forces due to inertia, damping (modal damping ratio Dn,
natural frequency ωn), linear restoring forces and nonlinear restoring forces respectively. The nonlinear restoring forces
account for coupling between bending and stretching of the midplane and cause a coupling between the equations. Their
coefficients b(n)j,k,l can be found analytically according to [5]. The right hand side accounts for base excitation of the system,
where γn is the modal excitation coefficient and ẅ0(t) the acceleration of base, see Fig. 14.1a.

In previous research [1, 2, 4], the frequency range around the system’s first natural frequency was investigated. To identify
the relevant frequency range, the first natural frequency of the beam with bonded slider was approximated as a function of
the slider’s position xC using the Rayleigh quotient [4]. However, the influence of vibrational amplitude due to geometric
nonlinearities was neglected. In [6], we propose an approach for estimating the system’s first natural frequency ω̃1 as a
function of modal amplitude q̂1 and slider position xC ,

ω̃2
1(q̂1, xC) := ω2

1 + 3
4b
(1)
1,1,1q̂

2
1

1 +m(ϕ1(xC))2 + J (C)yy (ϕ
′
1(xC))

2
. (14.2)

Considering the first bending mode only (N = 1), Eq. (14.1) reduces to the classical Duffing equation. The amplitude
dependent natural frequency of this oscillator can be approximated by Harmonic Balance with the single-term ansatz q1 =
q̂1 cos(ω̃1,HBt). This approximation provides the numerator of Eq. (14.2). The denominator accounts for the influence of
mass m and inertia J (C)yy of the slider as proposed in [4]. Herein ϕ1 denotes the shape of the first bending mode and ϕ′

1 its
first derivative with respect to x.

14.3 Self-Resonant Process

To simulate the self-resonant process, we extend the model proposed in [4] by the nonlinear terms in the beam’s equation of
motion [6]. We account for unilateral and frictional contact interactions between beam and slider applying the set-valued
Signorini’s and Coulomb’s laws. To this end, the equation of motion is converted to a measure differential inclusion.
Numerical integration of this equation is perfomed using Moreau’s time stepping scheme. For more details on the numerical
model see [4].

A result of the time integration is given in Fig. 14.1b. Here, the gap size is chosen to be R/(2r) = 1.05 and harmonic
base excitation with ˆ̈w0 = 20 m/s2 and fex = 180 Hz is applied. Initially, the slider moves toward clamping (red line). At
t ≈ 66 s, the beam’s vibrational amplitude (gray line) jumps to a higher level, however decreases slowly after that, while

Fig. 14.1 (a) Two dimensional model of self-adaptive system. (b) Simulation of unsuccessful process. Gray: Beam’s deformation at center. Red:
position of slider
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Fig. 14.2 (a) Simulation of self-resonant process. Gray: Beam’s deformation at center. Red: position of slider. (b) Vibrational amplitude versus
slider position. Orange/Green: increasing/decreasing prescribed slider position. Black: self-resonant process, arrows indicate direction. Dashed
gray: relation between amplitude and slider position for resonance according to Eq. (14.2)

the slider keeps moving toward clamping. The same behavior was observed in experiments [3], whereby a too large gap size
was identified to be crucial for the failure of adaptation.

Considering a smaller gap size (R/(2r) = 1.02) yields successful adaptation within the simulation as shown in Fig. 14.2a.
Firstly, the beam’s vibration level is small and the slider moves toward clamping. At t ≈ 17 s, the vibrational amplitude jumps
to a higher level and the slider starts moving back toward beam’s center. The vibrational amplitude grows further until the
slider reaches the beam’s center. Now, the system maintains the slider position and a high vibrational amplitude in the steady
state. This simulation result is in good accordance with previous experimental observations [1, 2].

To get more insight in the adaptive process, we now consider a modified system, in which the slider position xC is no
longer a free variable but a prescribed parameter. Based on this model, a diagram showing the beam’s amplitude vs. xC is
given in Fig. 14.2b. Steady state is achieved via time integration until the vibrational amplitude doesn’t change anymore.
The system’s state at the end of the simulation is used as initial condition for the next calculation for a slightly changed xC
(xC/L = 0.004). This sequential continuation procedure is done for increasing (orange line) and decreasing (green line)
xC . For increasing xC , the steady state amplitude is initially small, but jumps to a higher level at xC/L ≈ 0.72 and merges
with the branch for decreasing xC . For decreasing xC , the steady state amplitude grows until xC = 0.5L. The result of the
simulation with free slider is also plotted into this diagram (black line). Here, the slider is initially placed at xC/L = 0.65.
First, the black curve follows the orange curve. After the jump to higher amplitude it follows the green curve until the slider
stays at the center, where the non-adaptive system exhibits a maximum amplitude. Therefore the adaptive process is self-
resonant. To complete the picture, one can approximate the relation of amplitude and slider position for which the system is
at resonance according to Eq. (14.2). To this end, Eq. (14.2) is solved for q̂1 and resonance condition ω̃1 = 2πfex is applied.
To visualize the deformation at beam’s center instead of the modal coordinate, the result is multiplied by ϕ1(L/2) and plotted
in Fig. 14.2b (dashed gray line). Simulations with free and prescribed slider position both are approaching this curve as the
slider’s position gets closer to beam’s center.

14.4 Conclusion

In this work, the self-resonant behavior of a clamped-clamped beam with a sliding mass is investigated. The models proposed
in [6] are used to consider kinematic nonlinearities describing the coupling between bending and stretching of the beam. For
the system with bonded slider, an approximation of the first natural frequency dependent on vibration level and slider position
is derived. For the system with free slider, simulation results are in good accordance with experimental observations, both
successful and unsuccessful adaptation processes can be reproduced. For the system with prescribed slider position, the
illustration of steady state amplitude versus slider position exhibits coexisting stable states with different amplitudes and a
certain point after that both solution branches are merging. This point marks the position, where the slider turns back toward
the beam’s center and the amplitude jumps to a higher level. The amplitude of the system with free slider closely follows
the different steady-state response branches of the system with prescribed slider position. This explains why the slider has to
initially move away from its final position and turn at a certain point to bring the system into resonance.
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Chapter 15
Reinforcement Learning for Active Damping of Harmonically
Excited Pendulum with Highly Nonlinear Actuator

James D. Turner, Levi H. Manring, and Brian P. Mann

Abstract Active vibration dampers can reduce or eliminate unwanted vibrations, but determining a good control policy can
be challenging for highly nonlinear systems. For these types of systems, reinforcement learning is one method to optimize
a control policy with only limited prior knowledge of the system dynamics. An experimental system was constructed by
attaching a permanent magnet to the end of a pendulum and positioning an electromagnetic actuator below the resting
position of the pendulum. The pendulum was excited with a sinusoidal force applied horizontally at the pivot point, and the
control input was the applied voltage across the electromagnet. Due to the geometric arrangement and the strong dependence
of magnetic force on distance, the relationship between the position of the pendulum and the actuation torque for any control
input was highly nonlinear. A generalized version of the PILCO reinforcement learning algorithm was used to optimize a
control policy for the electromagnet with the objective of minimizing the distance between the end of the pendulum and
the downward position. After 16 s of interaction with the experimental system, the resulting learned policy was able to
substantially reduce the amplitude of oscillation. This experiment illustrates the applicability of reinforcement learning to
highly nonlinear active vibration damping problems.

Keywords Reinforcement learning · Active damping · Nonlinear dynamical system · Nonlinear control · Vibration

15.1 Introduction

Vibration in mechanical structures such as machines, buildings, and vehicles can reduce user comfort and damage the
structure due to high stresses or fatigue. One approach to reduce vibration amplitude is to add an active damper that provides
controlled force inputs to the structure. Applications of active vibration dampers include helicopters, optical systems such
as cameras, and manufacturing machinery [1]. Reinforcement learning (RL) provides an approach for controlling active
dampers when traditional techniques are insufficient. For example, RL can handle cases where developing an analytical
model of the system dynamics is difficult. Additionally, RL can handle optimal control problems such as minimizing total
actuation energy to reach and maintain a desired amplitude of oscillation. RL does not require prior knowledge of the system
dynamics; the control policy is improved based on information collected while interacting with the system.

Interacting with an experimental system can be time-consuming or expensive, so an important characteristic of RL
algorithms is their sample efficiency, i.e. how much experience is required to learn a good policy. One RL algorithm known
for its sample efficiency is the probabilistic inference for learning control (PILCO) algorithm [2, 3]. PILCO approximates
the system dynamics with a Gaussian process (GP) model learned from data collected while interacting with the system, and
then improves the policy by simulating the system with the GP model.

An experiment was conducted to determine the applicability of an extended version of the PILCO algorithm to the system
illustrated in Fig. 15.1 with the goal of reducing the amplitude of oscillation of the pendulum. The pivot was fixed to a shaker
table, a permanent magnet was attached to the end of the pendulum, and an electromagnet was placed directly under the
pivot. The pendulum was driven by a 1 Hz sinusoidal force applied to the shaker table, and the system was controlled by
applying voltage v across the electromagnet. Due to the geometric configuration and strong dependence of magnetic force
on distance, the electromagnet could apply a noticeable torque on the pendulum only in a narrow band on either side of the
downward position. The objective was to minimize the angle of the pendulum over an episode of 4 s, with the system starting
from steady-state forced oscillation at t = 0. The control frequency was 20 Hz, and the applied voltage was constrained to
−vmax ≤ v ≤ vmax.

J. D. Turner (�) · L. H. Manring · B. P. Mann
Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC, USA
e-mail: jim.turner@duke.edu

© Society for Experimental Mechanics, Inc. 2020
G. Kerschen et al. (eds.), Nonlinear Structures and Systems, Volume 1, Conference Proceedings of the Society for Experimental
Mechanics Series, https://doi.org/10.1007/978-3-030-12391-8_15

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12391-8_15&domain=pdf
mailto:jim.turner@duke.edu
https://doi.org/10.1007/978-3-030-12391-8_15


120 J. D. Turner et al.

15.2 Methods

The PILCO algorithm optimizes the parameters for a control policy for an iterative dynamical system given no prior
knowledge of the system dynamics. The PILCO algorithm assumes that the system is fully observable, the next state depends
solely on the state xt and control ut , and the dynamics are continuous and smooth. The objective is to find the parameters
ψ for a control policy ut = π(xt ,ψ) that minimize the total expected cost J π (ψ) = ∑T

t=0 Ext [c(xt )] of controlling the
system for an episode of T time steps, where c(xt ) is a function of the difference between xt and a target state xtarget.
Briefly, the PILCO algorithm works by learning an approximate GP model of the dynamics from data, evaluates the policy
by simulating the system with the GP and policy, and then improves the policy based on the simulation. The process of
applying the policy to the system to collect data, updating the GP, simulating the system, and improving the policy repeats
until convergence [2, 3].

For the forced pendulum problem, however, this approach is inadequate: the next state of the system depends not only on
the state and control but also on the forcing f t . Assuming the forcing is the same for each episode such that f t = f (t), the
PILCO algorithm can handle this type of problem with two modifications: (1) incorporate f t as inputs to the GP model and
policy, and (2) when simulating with the GP and policy, use the sequence of forcing (f 0, . . . ,f T ) recorded during the most
recent episode.

For the experimental system in Fig. 15.1, the state, forcing, and control were x = {θ θ̇ x ẋ i}�, f = {f }�, and u = {v}�,
respectively, where θ and θ̇ were the angle and angular velocity of the pendulum, x and ẋ were the position and velocity of
the shaker table, i was the current in the electromagnet, f was the external force applied to the shaker table, and v was the
applied voltage across the electromagnet. However, the mass of the shaker table in the experimental system was so much
larger than the mass of the pendulum that its motion could be approximated as being independent of the motion of the
pendulum. This simplified the problem because the position and velocity of the shaker table could be handled as forcing

terms. The new state and forcing vectors were then xo = {θ θ̇ i}� and f i = {f x ẋ}�. It was also useful to split the angle

into components for input to the GP and policy, so this state vector was xi = {sin θ cos θ θ̇ i}�. The GP model GP was then
xo, t+1 − xo,t = GP

(
xi,t , f i,t , ut

)
, and the policy function π was ut = π

(
xi,t , f i,t , ψ

)
. The target was θ = 0.

15.3 Results

Figure 15.2 shows the steady-state response of the system with v = 0. The amplitude was 0.27 rad, and the frequency was
the same as the forcing frequency, 1 Hz. Figures 15.6, 15.3, 15.4 and 15.5 show the results of experimental episodes with
various control policies, where each episode started at t = 0 at the point of the steady-state response with maximum θ .

Figure 15.3 shows the result of applying a constant voltage v = −vmax. This corresponds to always attracting the
pendulum to the electromagnet with as much force as possible. This policy immediately reduced the response amplitude to
0.18 rad. Then, the transient response gradually died out with damping, reaching a new steady-state response with amplitude

Fig. 15.1 Schematic of experimental system
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Fig. 15.2 Steady-state response with v = 0
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Fig. 15.3 Experimental episode when applying a constant v = −vmax. Note that the time duration shown in the figure is longer than a single
episode in order to illustrate the long-term behavior of this policy
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Fig. 15.4 Experimental episode when applying bang–bang control with control values v ∈ {−vmax, 0}
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Fig. 15.5 Experimental episode when applying optimized policy generated by PILCO after 16 s of experience
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Fig. 15.6 Comparison of policy performance: v=−vmax (dotted green), bang–bang (dashed orange), PILCO-generated (solid blue)

0.02 rad. This demonstrated that the amplitude could be kept small after dissipating as much energy as possible, but simply
applying v = −vmax required the inherent damping of the system to reduce the amplitude to this level.

Given prior knowledge of the dynamics, another approach was a bang–bang policy. This policy applied v = 0 while the
pendulum was moving towards the target and v = −vmax while it was moving away from the target. Figure 15.4 shows that
this policy rapidly brought the pendulum near the target and kept it there, substantially outperforming the constant voltage
policy.

Figure 15.5 shows the result of a policy generated by the extended PILCO algorithm after 4 episodes of experience. The
series of control values is more interesting than those of the other two policies. This policy repelled the pendulum as it moved
toward the target in order to reduce overshoot, then mostly attracted it to keep its amplitude small.

Figure 15.6 shows a comparison of the pendulum angle for the episodes of all three policies. Both non-constant policies
performed substantially better than the constant v = −vmax policy. The difference between the bang–bang and PILCO-
generated policies was less significant, but the PILCO-generated policy exhibited less overshoot and overall 15% lower cost.
Unlike the bang–bang policy, which was developed from intuition of the system’s behavior, the PILCO-generated policy was
based solely on 16 s of experience, with no prior knowledge of the dynamics.
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15.4 Conclusion

A pendulum subject to sinusoidal external forcing and controlled by an electromagnet positioned below its pivot was
constructed. An extended version of the PILCO reinforcement learning algorithm was used to optimize a policy with the
goal of minimizing the angle of the pendulum from the downward position for a 4 s episode. The policy generated after
16 s of experience, with zero prior knowledge of the system dynamics, outperformed a simple human-generated bang–bang
policy. This experiment demonstrated the applicability of the extended PILCO algorithm to highly nonlinear forced vibration
problems.
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Engineering Graduate (NDSEG) Fellowship.
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Chapter 16
Investigation of Nonlinear Dynamic Phenomena Applying
Real-Time Hybrid Simulation

Markus J. Hochrainer and Anton M. Puhwein

Abstract Real-time hybrid simulation techniques have developed significantly in the last decades, driven by scientific
research and steady progress in simulation and modeling techniques together with powerful automatic code generation
tools. In engineering applications, hybrid simulation is mainly used for physical testing of critical components, while the
remaining rest of the system is incorporated as computer model and properly coupled to the elements being tested. The focus
of this research is to connect virtual nonlinear components with arbitrary characteristics to an existing mechanical model.
This approach allows experimental verification of almost any classical nonlinear dynamic phenomena. The methodology can
be applied for both, the optimal design of nonlinear components as well as testing of complex elements or materials based on
experimental data, respectively. The laboratory setup comprises of standard hardware components used in modal testing
including electrodynamic shakers, force, displacement and acceleration sensors and furthermore a real-time processing
unit with feedback control for proper system coupling. For periodic forcing, the efficiency of the proposed method is
demonstrated in a laboratory setup consisting of a rigid mass attached to a virtual nonlinear spring-damper element. All
tests performed confirm the efficiency of the proposed system because nonlinear oscillations are reproduced with a very high
level of accuracy.

Keywords Real-time hybrid testing · Hardware in the loop · Nonlinear vibrations · Periodic forcing · Experimental
substructuring

16.1 Introduction

The concepts of substructuring, real-time hybrid testing (RTHT) or real-time hybrid simulation (RTHS) have become well
accepted and established in engineering since their first introduction many decades ago, see e.g. [1–3]. Consequently, real-
time substructuring is widely used in research and development because of its salient features, including the reduction of
development costs, a reduced time to market, the availability of virtual prototypes during the development process and the
outstanding possibilities in product testing. Driven by the steady development of simulation techniques and the permanent
increase of computer performance, hybrid simulations have become popular in almost any field of engineering. The technique
is particularly attractive because it allows testing of physical components under most realistic conditions, by coupling them
to a virtual model simulated in a real-time environment. The appeal of RTHT, also known as hardware in the loop (HIL)
or cyber physical testing, is to use the benefits of both, experimental techniques and numerical simulations, respectively.
Consequently, the physical model under test can often remain isolated and at component level without the need to embed it
into its adjacent subsystems during experimental testing. However, when designing a RTHS experiment, the boundaries of the
virtual and the physical system must be chosen carefully, since their selection determines the coupling/interface conditions,
which generally predefine the complexity and feasibility of an experiment. Although real-time hybrid testing and simulation
have reached a high level of reliability and acceptance, they only reduce the amount of full scale testing at the moment, but
are still no substitute. Another important aspect of the increasing acceptance of the hybrid techniques is the availability of
a wide range of real-time hardware. Popular low-cost embedded systems can be used in the same way as high performance
assemblies, because most simulation environments support the development of virtual models by graphical design tools and
model based design methodologies. Furthermore, automatic code generation is provided by most development tools. In a
modern environment the real-time target platform can be changed or even remain undefined up to the last development steps.
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Starting from first applications in civil engineering RTHT has become established in many other areas, including
automotive and aerospace industry, mechanical engineering, chemical industry or automation technology. The complexity of
RTHS applications is varying accordingly, beginning from rather simple small scale laboratory setups, to full scale testing of
individual components as well as high fidelity testing of complete systems. There is no doubt, that the technique has become
wide spread and very attractive to the engineering community.

16.2 Nonlinear Vibrations in Hybrid Simulation

When designing real-time hybrid testing experiments, the most critical step is the separation of the physical and the virtual
components. Proper coupling is straightforward at interfaces requiring only the transmission of digital or analog signals,
but it is significantly more difficult if a component is physically separated from its adjacent (linked) elements, because all
kinematic and dynamic boundary conditions must be fulfilled at the newly created physical interface, see Fig. 16.1a. When
replacing a physical component by its virtual substitute, all interaction forces and displacements must be provided by an
auxiliary system denoted “transfer system”. In a minimum configuration it consists of a feedback controlled actuator as well
as force and motion sensors for every degree of freedom. In vibration experiments, the actuation force is commonly provided
by electrodynamic or hydraulic shakers which have been proven in vibration testing for many decades. Nevertheless, the
authors are not aware of a universal transfer system that reliably fulfills different boundary conditions without the need
for reconfiguration, reparametrization or other adaptions for a specific testing task. Typical challenges comprise nonlinear
dynamic effects, limited frequency ranges, actuator saturation and most critical the presence of delays [4–6]. A fundamental
property of force controlled physical systems is, that most disturbances remain unobserved until they deteriorate the actuator
output. One common way to circumvent this difficulty is to assume periodicity and restrict the RTHT to periodic vibrations.
In the work presented, this approach is pursued, because the length of a period can be chosen according to the dynamic
phenomenon of interest. This even allows the investigation of transient phenomena, if the experiment can be repeated
periodically.

It is demonstrated, that RTHT is an adequate, comparatively simple and efficient technique for studying and testing
nonlinear oscillations. Therefore, a typical low order mechanical system with lumped parameter will be considered, and
consequently, Duffing’s equation, see e.g. [7, 8].

mẍ + Fd (ẋ)+ Fk(x) = F0sin (ωt) , (16.1)

describing a well researched single degree of freedom nonlinear oscillator with displacement x, is studied in this work. To
keep the interface conditions simple, the physical model consists only of the lumped mass m, whereas all other components

Fig. 16.1 Real-time hybrid simulation/testing (a) separation of a mechanical system into physical and virtual (simulation) components (b)
schematics of the nonlinear vibration experiment
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are collected in the virtual system. A simulated damper dissipates energy by the damping force Fd (ẋ) and a nonlinear elastic
spring model renders the restoring spring force Fk(x). The excitation is described by a harmonic driving term of amplitude F0
and angular frequency ω. The RTHT schematics and the model separation is illustrated in Fig. 16.1b. Rearranging Eq. (16.1)
according to the separation into a virtual and a physical model, the interaction force Fs (x, ẋ, t) provided by the transfer
system becomes

Fs (x, ẋ, t) = F0sin (ωt)− Fd (ẋ)− Fk (x ) . (16.2)

At any physical system boundary, it is possible to prescribe either the flow or the potential quantity. Thus, it would also
be possible to determine the reference displacement (or velocity) from the real-time simulation and measure the required
interaction force, see e.g. [9] for such an application in dynamic vibration absorption. During testing, the physical model
displacements and/or their derivatives are measured and transmitted to the simulation model for immediate processing.
Finally, the computer simulation calculates the required interaction force Fs which is applied to the physical model,
instantaneously, thereby closing the feedback loop. Since the entire (nonlinear) system dynamics is determined by Fs an
extremely precise control of the interaction force it is obligatory. Within the scope of this work, all investigations are restricted
to periodic processes, because this simplifies the control of the transfer system’s actuator. All relevant control parameter are
adapted by a learning algorithm until steady state equilibrium conditions are reached.

The separation of the mass m at the proposed interface, see Fig. 16.1b, has the advantage that spring and damping
components can be selected without any limitations or restrictions. Theoretically, any nonlinear spring or damper
characteristics can be implemented as long as the actuator of the transfer system can provide the required force. Therefore,
smooth non-linearities described by polynomials or piecewise linear functions are easy to implement, whereas limits stops
and similar elements causing impulsive loading are rather difficult to include in a RTHS experiment.

16.3 Control of Transfer System

Although the idea of RTHT seems surprisingly simple and straightforward for mechanical systems, its major challenge is to
fulfil the dynamic boundary/interface conditions at the highest possible level of accuracy. Therefore, a feedback controlled
actuator with excellent tracking performance and good disturbance rejection is inevitable. Since the control of actuators is
very common in vibration testing, there is a vast literature available on actuator control see, e.g. [10–13]. Shakers like most
other actuators, behave nonlinear, show complicated friction effects, deliver limited forces, have restricted stroke and power
supply and most important, the control-structure interaction force is often difficult to predict an thus hard to include in the
force control. Consequently, the supply of a desired forcing is very demanding. If, however, the system dynamics is periodic
and the same trajectory are repeated, iterative learning control (ILC) or repetitive type control (RC) schemes have proven
to work effective in many applications [14, 15]. Those algorithms update the control input based the errors of the previous
iterations. From a control point of view the performance enhancing method is classified as a feedforward control, which
can be added to any existing (feedback) controlled system, see Fig. 16.2. For an acceptable learning process, it is vital to
converge after several iteration cycles. Therefore, a suitable feedback controller R(z−1) with excellent tracking properties is
obligatory as inner control loop in the transfer system.

Fig. 16.2 Iterative learning/repetitive control (a) typical setup [modified from 15] (b) structure implemented in control of transfer system G(z−1)
for period T
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Although the implementation of ILC finally turned out as the key technology for successful hybrid testing of nonlinear
oscillators, the first design task is the setup of the transfer system, and the characterization of the actuator and sensor
dynamics. Consequently, the identification of the plant model G(z−1) is fundamental. It is, in essence, determined by the
electrodynamic shaker and the power amplifier dynamics in the appropriate frequency and amplitude range. For further
analysis, a plant model of output error type was identified from voltage input and acceleration output measurements. It is used
for the design of a fairly robust, linear output feedback control R(z−1) based on Nyquist’s stability criterion. Surprisingly,
it turned out that a simple time discrete integral control law renders a favorable closed loop behavior in the considered
frequency range. Although this I-type controller guaranteed a stable closed loop performance with an acceptable frequency
response amplitude, the phase shift, equivalent to a delayed actuation force, was not acceptable in the project. Additionally, a
second order high pass filter had to be added to remove undesired low frequency actuator motion. Even though the transient
behavior of the closed loop dynamics was not sufficient for a direct application in RTHT, it formed a suitable and robust
foundation for an ILC algorithm of the form

ui(k) = R
(
z−1

)
ei(k)+ L

(
z−1

)
ei−1(k)+Q

(
z−1

)
ui−1(k), (16.3)

with i and k denoting the iteration number and the discrete time index, respectively. In the control update ui(k), the filter
Q(z−1) can be adjusted to limit the learning bandwidth. In controller used for RTHT, the learning filter L is set L = 0 and
the filter Q(z−1) which limits the learning bandwidth to the highest expected actuator frequency ωmax is implemented as
a non-causal low pass zero phase FIR filter with a cut off frequency of ωmax = 10ω. The closed loop tracking behavior
of the transfer system is shown in Fig. 16.3. Apparently, the output feedback control (I-control) is not able to follow the
reference signal without significant errors, but the developed ILC algorithm shows perfect tracking behavior without any
delay, and a negligible steady state error bound in the considered frequency range, see Fig. 16.3b for a detailed view of the
outstanding control performance. Another benefit of the implemented ILC algorithm is the relatively fast convergence of
typically much less than 50 iterations. Hence, the developed ILC control algorithm meets all expectations and is adequate
for RTHS experiments. All further results presented, were obtained with a real-time operating system (Simulink Real-Time)
running at a sampling frequency of fS = 5000 Hz. The analog/digital IO is done using a multi function I/O card of type
Humusoft MF624 with 14-bit AD/DA conversion. Acceleration is measured by IEPE transducers (BK4507) with proper
signal conditioning and possible displacement measurements are carried out using a single point Laser Dopper Vibrometer
(LDV) with controller OMV-5000 and sensing head OMV505. Finally, an electrodynamic shaker (LDS V406) with the
matching amplifier (LDS P100E) were used as actuator in the transfer system.

Fig. 16.3 Signal following of feedback controlled transfer system (a) comparison of ILC and output feedback (I-control) (b) detail of dynamic
signal tracking
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16.4 Real-Time Hybrid Testing of a Duffing Oscillator

The effectiveness of RTHT for nonlinear oscillations is illustrated by comparing experimental data of the Duffing oscillator
with numerical simulations. Since the physical system consists of the lumped mass m rigidly attached to the transfer system’s
actuator, Newton’s law renders the mass-shaker interaction force Fs = mẍ directly. Thus, the need for an additional force
measurement is eliminated assuming that ẍ is already measured. During the RTHT the damping and spring forces are
described by

Fd = dẋ,
Fk = k (x + αx3

) (16.4)

with d, k and α denoting the linear viscose damping constant, the linear elastic spring constant and the coefficient describing
the cubic spring hardening effect, respectively. Since the acceleration of the physical system ẍ is identical to the shaker
acceleration as the mass normalization of nonlinear equation of motion, Eq. (16.1), renders

ẍ = as = aF sin (ωt)− 2ζω0ẋ − ω2
0

(
x + αx3

)
, (16.5)

with ω0 = √
k/m, ζ = d/2mω0 describing the undamped natural frequency and the damping coefficient of the corresponding

linear oscillator, respectively. aF = F0/m represents the equivalent acceleration of the external forcing. In RTHT, the transfer
system accelerates the mass according to the respective forcing, and the velocity ẋ and displacement x are obtained or
derived from measurements. This is in contrast to a simulation, where the displacements are obtained from a numerical
solution of the nonlinear equation of motion, Eq. (16.5). A comparison between the RTHT results and those obtained from
pure numerical simulations show almost perfect agreement. Figure 16.4 compares displacement and acceleration responses
of a linear (α = 0) SDOF oscillator at resonance for both, RTHT and simulation, respectively. By visual inspection it is
difficult to detect any deviations, and therefore the time responses are averaged over several periods to determine the mean
vibration amplitude. This additional data processing renders a corresponding relative displacement and acceleration error of
edisp = 0.36% and eaccel = − 0.87%, respectively. The small variance in the relative error can be traced back to the different
transducers used for displacement and acceleration measurements.

Next, the virtual spring model is chosen nonlinear with cubic stiffening by setting α = 108. The RTHT steady state
vibrations responses are given in Fig. 16.5. Again, there is an excellent correspondence with the simulated system, and when
compared to the linear system response, see Fig. 16.4, the high order harmonics are clearly perceptible. The responses also
show that the nonlinear system has significantly smaller vibration amplitudes due to a resonance shift at larger displacement
amplitudes. Very similar results have been obtained for other nonlinearities, e.g. turbulent damping forces or a bilinear spring

Fig. 16.4 Comparison between RTHT and simulation: steady state response for linear system with α = 0, aF = 1 m/s2, ω0 = ω = 20π rad/s,
ζ = 0.2 (a) measured (LDV) and simulated displacement x (b) measured (accelerometer) and simulated acceleration ẍ
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Fig. 16.5 Comparison between RTHT and simulation: steady state response for nonlinear system with α = 108, aF = 1 m/s2, ω0 = ω= 20π rad/s,
ζ = 0.2 (a) measured (LDV) and simulated displacement x (b) measured (accelerometer) and simulated acceleration ẍ

Fig. 16.6 Comparison between RTHT and simulation: transient response during decay of external forcing for α = 108, ω = 25π rad/s,
ω0 = 30π rad/s, ζ = 0.2 (a) measured (LDV) and simulated displacement x (b) measured (accelerometer) and simulated acceleration ẍ

characteristics. The steady state T-periodic results and a comparison to their corresponding numerical simulations clearly
demonstrate that the setup is adequate for RTHT of nonlinear dynamic systems.

Although designed for periodic processes, the setup turned out to perform satisfactorily under weakly nonstationary
conditions, e.g. the moderate decay of oscillations, see Fig. 16.6. The results confirm that the possible application to transient
vibrations is only limited by the transfer system’s dynamics. Once again, this underlines, that the development of a flexible,
reliable and robust transfer system is the most important requirement for successful RTHT applications.

16.5 Conclusion

In this work, the idea of real-time hybrid testing has been applied to the investigation of nonlinear vibrations. Although
known for many decades, RTHT has become popular about 20 years ago, because of the availability of a broad spectrum
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of real-time hardware and software necessary for simulation and control. For an engineer, RTHT is attractive, because an
isolated physical component can be tested under realistic conditions, since all components eliminated from physical tests are
collected in a virtual model. This model is running in a real time simulation and is interacting with the physical component.
For a fundamental demonstration of the practicability of RTHT of nonlinear dynamic systems, both, the physical and the
simulation model are kept simple. The former consists of a rigid mass, the latter of a nonlinear spring damper element.
If the models are coupled in accordance with all boundary conditions, a nonlinear single degree of freedom oscillator of
Duffing type is obtained. Although the Duffing oscillator can be used to demonstrate several nonlinear effects, all experiments
are restricted to time periodic forcing. This restriction results from limitations of the developed transfer system, which
must possess a highly accurate tracking performance for reliable results. The transfer system’s main components are an
electrodynamic shaker and an iterative learning control algorithm, which is particularly appropriate for periodic processes.
The hybrid simulation technique presented allows easy modification of the simulation model’s nonlinearities and shows
excellent agreement with all simulations. The efficiency of the proposed system is confirmed for different periodic forcings,
and all results underline that the method presented enables developments, which are hardly possible with traditional methods,
or only at the price of a significantly greater effort.
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Chapter 17
Experimental and Numerical Aeroelastic Analysis
of Airfoil-Aileron System with Nonlinear Energy Sink

Claudia Fernandez-Escudero, Miguel Gagnon, Eric Laurendeau, Sebastien Prothin, Annie Ross,
and Guilhem Michon

Abstract Recent studies on nonlinear passive absorbers present high control efficiency for broadband frequency range with
low added mass. This work presents a configuration of an airfoil typical section where the flap is considered as a Nonlinear
Energy Sink (NES), which adds zero mass and has a cubic stiffness. An aeroelastic test-bench was created and characterized
for linear and nonlinear structural configurations and tested in a subsonic wind-tunnel experimental campaign. The strongly
nonlinear hardening stiffness is obtained by using linear springs and geometric nonlinearities. For the nonlinear tests, several
Limit Cycle Oscillation (LCO) and subcritical and supercritical Hopf bifurcations were observed. Numerical analysis was
also carried out for both linear and nonlinear cases using: Unsteady Vortex Lattice Method (UVLM) and Theodorsen theory
(both low fidelity), Euler (medium fidelity) and Reynolds-Averaged Navier Stokes (high fidelity) methods. The numerical
methods present good agreement, within the limits of each approach, and correspond with the experimental data. Using the
NES, a gain of flutter speed is reached compared to the linear flap restoring force configuration.

Keywords Aeroelasticity · Unsteady aerodynamics · Flutter · LCO · Nonlinear dynamics

17.1 Present Work

An important phenomenon encountered in dynamic aeroelasticity is flutter. If there are no sources of nonlinearities the system
can only experience classic flutter which is defined as self-excited vibration of the structure due to energy extraction of the
incident airflow. This generally results from the coalescence of two structural modes: pitch and plunge, which reach the same
vibration frequency. If the speed becomes greater than the flutter speed, the amplitude of the movement grows exponentially
causing structural failure [1].

The presence of nonlinearities can change dramatically the observed behaviour as other phenomena, such as limit cycle
oscillations (LCOs), can appear in the system’s response. During a LCO, the vibration reaches a finite amplitude which
remains constant unless the wind speed changes. LCOs can be observed in subcritical or in supercritical regime once flutter
speed is exceeded [2].

In order to increase the systems flutter speed, active methods (energy input) are very efficient but can be obsolete in
emergency cases (ie. lack of power). Tuned Vibration Absorbers (TVA) are a good alternative and are already widely used in
civil engineering [3]. The classic linear TVA is simple and efficient but only close to a single frequency. The main drawback
is the inefficiency to control an oscillator whose natural frequencies changes with the wind speed (ie. aeroelastic wing). Semi-
active strategies could solve this problem but the energy dependency is still present. This is the reason why some research
studies focus on Nonlinear Tuned Vibration Absorber (NLTVA) [4]. The Nonlinear Energy Sink (NES) [5] is a NLTVA with
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Fig. 17.1 Configuration of wing with NES with zero added mass

Fig. 17.2 CAD of 3DOF mechanism [6]

a purely nonlinear stiffness that presents high vibration absorption characteristics for a broadband frequency range and a low
added mass.

With the objective of controlling passively flutter of a wing for a minimum added mass, the idea of this work is to design
one of the wing’s flaps as a NES (Fig. 17.1). In this respect, the work continues on the fundamental observations of Amar
[6]. For a better understanding of the system, an experimental campaign was carried on a 2 degrees of freedom (DOF) and
3DOF aileron/airfoil typical section with a strongly nonlinear stiffness in the control surface. Similarly, pertinent numerical
analysis is carried out. The aerodynamic forces acting on the airfoil are computed and these forces together with the equations
of motion enable the computation of the fluid-structure interaction and, therefore, the resolution of the aeroelastic system.
Different numerical methods are used for this purpose: Theodorsen theory, UVLM, unsteady Euler and URANS.

The experimental setup was designed to enable the number of degrees of freedom to be varied to enable, firstly, the
stiffness of each DOF to be calculated and, secondly, the 2DOF and 3DOF cases to be tested. In order to enable the movement
of the wing, a mechanism is placed above and below the wind tunnel test section so that it has no influence on the airflow.
The mechanical system can be divided into three subsystems each responsible for one of the DOF (see Fig. 17.2). Also, the
stiffness of each DOF can be modified by changing the springs so nonlinearies can easily be introduced. The inlet velocity of
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the wind tunnel was varied in order to see the change in the response of the system. Flutter and subcritical and supercritical
LCOs were encountered.

Regarding the aeroelastic analysis, the linear flutter speed is identified for a 2DOF and a 3DOF typical section. Non-
linearities through freeplay and cubic stiffness in the pitching DOF for the 2DOF case and aileron freeplay for the 3DOF are
added to the system to evaluate its response. Both Theodorsen and UVLM are able to capture subcritical LCOs similar to
those identified in the literature. Since they are low fidelity methods which include several simplifications, the computational
time and cost of Theodorsen and UVLM are lower by several orders of magnitude than those of URANS or even unsteady
Euler method.
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Chapter 18
On the Modal Surrogacy of Joint Parameter Estimates in Bolted
Joints

Nidish Narayanaa Balaji and Matthew R. W. Brake

Abstract The Surrogate system hypothesis for jointed mechanics proposes that the influence of a jointed interface on
an otherwise linear system is identical irrespective of the structural features of the so-called far-field linear structure.
The implication, if the hypothesis finds support, is that the characterization of a joint in a single structural context can
be used for developing predictive models of completely different structures, albeit with identical joint configurations. In
critical applications such as aerospace, this can potentially lead to a more cost-effective design flow enabling tighter design
optimization. In order to evaluate the hypothesis, the major influences on the nonlinear behavior of a jointed structure has to
be delineated and studied individually as well as in combinations. Proceeding in the spirit of previous investigations where
the effect of far-field structures and joint interface modeling approaches have been tackled, the current investigation studies
the so-called “modal surrogacy” of a structural system. The investigation serves to understand the sufficiency of modeling
the nonlinear behavior in lower modes to make high-modal nonlinear predictions. The Brake-Reuß Beam (BRB), which is an
assembly of two monolithic beams connected together using a bolted lap joint with three bolts, is used as a test specimen for
the current investigations. Due to the presence of regions with zero static pre-stress in the interface, considerable separation
combined with stick & slip has been numerically as well as experimentally observed. This leads to significant nonlinear
effects in the response of the system and thus serves as a convenient benchmark for the current work.

Keywords Joint mechanics · Multi-objective optimization · Interface modeling · Friction · Parameter identification ·
Nonlinear modal response

18.1 Introduction

Predictive dynamic modeling for bolted joints has been a persisting challenge for the joint mechanics community due to
gaps in the understanding of the fundamental physics governing the interfacial mechanics leading to nonlinear macro-
level behavior [10]. Although highly resolved as well as kinematically consistent approaches have been reported (see,
for example [6, 7, 11]), there is still not much consensus about contact-consitutive modeling. However, experimental as
well as numerical efforts have demonstrated that experimentally identified models of joints can be used to make meaningful
predictions in a limited sense. But the classical idea of the context-independence of system identification has to be scrutinized
for nonlinear systems.

The surrogate system hypothesis for joint mechanics [1, 2] provides a framework for assessing the robustness of parameter
estimations across multiple “structural contexts”. The hypothesis proposes that the influence of a jointed interface on an
otherwise linear system is identical irrespective of the structural features of the so-called far-field linear structure. The
implication, if the hypothesis finds support, is that the characterization of a joint in a single structural context can be used for
developing predictive models of completely different structures, albeit with identical joint configurations, or in the very least
develop an estimator for the confidence of the same. In order to evaluate the hypothesis, the major influences on the nonlinear
behavior of a jointed structure has to be delineated and studied individually as well as in combinations. Proceeding in the
spirit of previous investigations where the effect of far-field structures and joint interface modeling approaches have been
tackled, the current investigation studies the so-called “modal surrogacy” of a structural system. The investigation serves to
understand the sufficiency of modeling the nonlinear behavior in lower modes to make high-mode nonlinear predictions. The
Brake-Reuß Beam (BRB), which is an assembly of two monolithic beams connected together using a three-bolt lap joint,
is used as the test structure for the current investigations. Due to the presence of regions with zero static pre-stress in the
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interface, considerable separation combined with stick & slip has been numerically as well as experimentally observed. This
leads to significant nonlinear effects in the response of the system and thus serves as a convenient benchmark for the current
work.

While the principles developed [1, 2] are applicable in a general system identification context, the current study focuses on
interfaces modeled with simplified kinematics but detailed constitutive models. This simplification, coupled with the modal
quasi-static simulation approach QSMA [5], makes it possible to conduct modal feature extraction in a highly efficient
manner.

In [2] the authors investigated the surrogacy confidence between physically perturbed configurations of the BRB and
the developed metric is shown to be robust across different contact constitutive models. The main implication is that the
confidence metric can be thought of to be independent of the contact constitutive model and can be used just to study the
similarity of structural behavior. In the present work, the relationship between contact parameters tuned for three different
structural modes of the BRB are studied in the same context. The computational efficacy enabled partly by the kinematic
simplification and by the simulation strategy is exploited in order to conduct a large number of random simulations for
empirical extraction of the surrogacy confidence.

18.2 Methodology

A finite-element model is developed for the BRB and five patches are defined on the interface which are independently
constrained to five virtual nodes. The nonlinear element is then applied across pairs of these nodes on an extracted
substructure. For QSMA, the system is subjected to a forcing in the shape of the mode shapes. Since the contact models do not
model separation, the frictional elements obey Masing’s rules, i.e., their hysteresis loops preserve certain symmetries enabling
one to predict the complete hysteresis using just the backbone. The solution at each load step is transformed back to modal
coordinates (following the assumption that the mode shape is not modified too much by the presence of the nonlinearity) and
the natural frequency & effective damping factor are extracted using the modal secant stiffness and the hysteretic dissipation
(area) respectively. Specifically, the current investigation uses Segalman’s four-parameter Iwan model [9] in the tangential
direction and linear springs in the normal direction. With 5 parameters for each patch, the estimation problem has a total of
15 parameters to be estimated (3 unique patches out of 5 by symmetry). Since the model itself is a tuned model, no further
assumptions are made.

Experimentally, the transient responses of the system subjected to hammer impacts are passed through a modal filter and
processed using the Hilbert Transform to obtain the ring down envelope and the time varying phase. Since the envelope
corresponds to a much longer time-scale than the change in the system’s phase, it is assumed that the system is quasi-linear,
i.e., instantaneously being governed by a linear system defined by the current response amplitude (envelope). This leads to
a time dependent estimate of the instantaneous natural frequencies and damping factors as the system rings down. Thus,
the experimentally derived dependence of the linear modal characteristics to the modal displacement may be compared with
numerical predictions from QSMA. For the following analysis the root-mean-squared error between the prediction and the
experiment are used to evaluate the error in the prediction by a contact model.

Since the main objective of refining contact parameters is to reduce the above error in terms of both the frequency and
damping factor, the estimation procedure is cast as a bi-objective optimization problem. Defining an “acceptability region” in
the error-space for each structure, it becomes possible to define a surrogacy metric based on the percentage overlap between
the pre-images of the acceptability regions in the error space mapped back to the parameter-space. In [2] this region was
defined based on maximal error bounds on the predicted quantities. In the current study however, the region is defined using
the ranks of non-dominated sets in the error-space.

A non-dominated set, sometimes referred to as a Pareto set, is defined as a set of designs in which no design performs
better than any other design in terms of both the objectives [4]. Furthermore, the Pareto rank of a non-dominated set is
defined as the number of non-dominated sets that perform at least as good as the best designs in this set in terms of both
the objectives. For a bi-objective minimization problem, the highest ranked (rank 1) Pareto set, will be at the bottom left in
a normed error plot. The shape of the Pareto set can be used to further classify the problem into convex and non-convex.
From Fig. 18.1a it can be observed that while the rank 1 set is clearly non-convex, higher ranked sets become progressively
convex. Intuitively, convexity in the Pareto front indicates that it is possible, by appropriate choice of parameters, to make
either of the objectives arbitrarily small at the expense of the other.

Figure 18.1 depicts the error-space plots for the different modes considered. Different ranks of Pareto designs are
highlighted in each subfigure. For the Pareto sets, it was first constrained that the maximal RMS error in frequency can
not exceed 1% of deviation. The error-space performance of the population was sorted using a free and open-sourced
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Fig. 18.1 Error-space plots for (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Pareto population distribution; (e) Evolution of the surrogacy confidence
metric with the Pareto ranks

implementation of non-dominated sorting.1 The distribution of the number of designs lying on each Pareto rank for the
three modes are depicted in Fig. 18.1d. It can be seen here that most of the designs are concentrated around the higher Pareto
ranks (until around 750). The low density near rank 1 can be corroborated to the “data sparsity” effects expected for high
dimensional random populations [8]. It may be observed that the Pareto sets are no longer non-convex in the tail region.

The empirical surrogacy confidence metric for a given Pareto rank p considering mode i as surrogate to mode j is
calculated as the ratio between the number of designs ranked higher than p for both the modes and the number of total designs
of mode i ranked higher than p. This is a Bayesian statistic evaluating the predictive capability of parameter identification
on mode i for mode j . In order to test the robustness of the estimate, the functional dependence of the metric to the rank p
is studied. Mathematically the surrogacy confidence can be expressed as

SC[i, j ](p) = P(Ajp|Aip) = E[P(X ∈ Mj
p|X ∈ Mi

p)], (18.1)

where the event Aip is defined as the event of the Pareto rank of a design for predicting the ith mode being atleast p, and
Mi
p is the “acceptability region” defined by the Pareto rank p. The last part of Eq. (18.1) offers an alternative definition as

the expectation of a given design X to be acceptable for mode j given that it is acceptable for mode i. After applying Bayes’
theorem, the following empirical estimator is used for the calculations:
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(18.2)

with, I ip(xn) =
{

1 xn ∈ Mi
p

0 otherwise

The sums over the function I ip(xn) represents counts of the number of designs from a simulation that lie in the region Mi
p.

1https://github.com/matthewjwoodruff/pareto.py.
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18.3 Results and Conclusions

Figure 18.1e depicts the surrogacy confidence metric evaluated empirically by an LHS-sampled simulation with 5,000,000
designs in total. Surrogacy Confidence [i, j] denotes the confidence one can place on parameter estimates conducted by tuning
mode i for predicting mode j . More rigorously, the confidence metric may be understood as the conditional probability of
a random design lying in the acceptable region for mode j given that the design lies in the acceptable region for mode i.
Along with these, the total surrogacy, i.e., the confidence of estimations on one mode alone being accurate for all modes,
is also plotted in the last column. It can be seen that a little after rank 750, the confidence metric converges to a constant
value in all cases. This demonstrates that the metric is indeed asymptotically independent of the definition of the error-space
acceptability region used for the estimation.

It is known that the first and third mode shapes are similar in nature on the interface. However, the surrogacy pairs [1, 3]
& [3, 1] seem to converge to a much lower value than the pair [1, 2] & [2, 1]. This, being counter-intuitive to the physical
argument, may be due to the kinematic inaccuracies inherent to the whole-joint modeling approach. This is further indicated
by the fact that the total surrogacy for all the modes is very low. However, the fact that it is indeed possible to obtain an
acceptable design for each mode shows that the whole-joint model can be tuned for a given (modal) response. Therefore,
once tuned, the whole-joint model can be sufficient for modeling a given joint in different structures but the same does not
apply for making accurate predictions about the higher modes of the structure.

Although the empirical estimator used here is technically unbiased, population of the parameter-space need not be. Though
there must be a continuous region in the parameter-space with designs which map onto a particular rank in the error space,
due to finite sampling, one will end up with just a portion of this region, which need not be unbiased (evolutionary algorithms,
for example, are known to show clustering). Thus any estimator averaging over the finite population is bound to have bias.
Nevertheless, it is used as a first-pass estimator. In order to investigate the dimensionality of the acceptable design parameters,
its principal component variances were calculated. This revealed that the component variance contributions seem to be
distributed rather uniformly and thus no dimension reduction can be carried out using classical PCA methods. The authors are
currently investigating the suitability of generalized statistical distances [3] and estimators based on kernel density estimates
of the acceptable regions as alternatives to the estimator in Eq. (18.2).
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Chapter 19
Vehicle Escape Dynamics on an Arbitrarily Curved Surface

Levi H. Manring and Brian P. Mann

Abstract This paper derives a planar model for a vehicle on an arbitrarily curved surface. The goal is to investigate different
strategies that may be used to free a vehicle from a ditch. More specifically, extricating a modern vehicle typically requires
someone to get behind the vehicle and assist in pushing it out of the ditch. Due to human limitations in power output, the
individual learns to rhythmically time their push, or applied force, to build momentum and achieve escape.

Numerical simulations were used to explore different strategies, or forcing functions, on this system. For example, this
paper considers forcing the system at its linear natural frequency and a forcing strategy more akin to human behavior.
Comparisons are made to determine the safest and most efficient strategy to achieve an escape. This paper will show the
effectiveness of human intuition in pushing a vehicle out of a ditch.

Keywords Vehicle dynamics · Nonlinear dynamical system · Unknown terrain · Arbitrary surface · Escape

19.1 Introduction

The experience of having a vehicle stuck in a ditch is one that likely resonates with many automobile owners. In such a
scenario, the driver and any potential passengers may get out and try to dislodge the vehicle by pushing. This research seeks
to examine the vehicle dynamics associated with this scenario and consider different control strategies for achieving escape
from the ditch.

The motivation for this research is directly related to the development of autonomous vehicle technology. As the demand
for autonomous vehicles continues to grow, there is a need for adaptive control for hazardous situations. It would be useful,
in the lodged vehicle scenario, for the vehicle to have a predictive model of the system dynamics surrounding its predicament
and be able to intuitively maneuver an escape without driver intervention. One problem to overcome in developing a robust
control strategy for escape is the fact that ditches are all unique in shape. Thus, a dynamics model is needed for an arbitrary
surface profile.

In addition to a dynamics model, there are issues to overcome in creating a robust control system for achieving escape.
Like humans pushing a vehicle, applying high torque to the wheels has power limitations and the possibility of slipping. In
many dynamic systems, one way to generate a large amplitude response is to force the system at its linear natural frequency.
Since the end goal is to generate a large enough response to achieve escape, this open-loop control strategy seems feasible
for this system. Additionally, forcing the system in a way that is comparable to human behavior is a useful control strategy
to model. The reason for this is that humans can push vehicles out of ditches despite their power limitations.

This paper will consider the problem of a vehicle escaping a ditch with an arbitrary profile by (1) developing a model of
the system dynamics, (2) detailing two methods for escape: linear natural frequency forcing and human-behavioral forcing,
and (3) comparing the results from these two control strategies to gain further insight into the dynamics of this system.

19.2 Background

There is a vast amount of literature on the topic of vehicles and so it is unsurprising there are many models of vehicle
dynamics. Many of these vehicle models seek to understand complex problems such as steering, tire deformation, suspension
systems, and braking and involve many degrees of freedom (DOF). A comprehensive survey of different vehicle dynamics
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applications is presented in [1]. This survey focusesad primarily on automotive suspension systems, worst-case maneuvering,
minimum-time maneuvering, and driver modeling, while citing 185 references. However, in the minimum-time maneuvering
problem these applications are more focused on minimum track time for the purposes of racing, whereas this work is focused
on getting a vehicle out of a ditch with minimum effort and time. Another article summarizes advancements in the study
of vehicle dynamics across a range of vehicle, tire, and driver models [2], and identifies a need for further development
of comprehensive nonlinear dynamic models for vehicles. In [3], several benchmarks for vehicle dynamics problems are
considered for both rail and road vehicles, particularly focusing on studying wheel sticking/slipping and lateral dynamics.

As mentioned previously, the demand for vehicle automation and innovative optimal control solutions has been a strong
motivation for further understanding of vehicle dynamics. A vehicle motion prediction module utilizing vehicle dynamics is
presented in [4]. Multi-body simulation software (ADAMS-car) was used for vehicle dynamic analysis and for simulation
of precalculated maneuvers on public roads. A vehicle is modeled as a 6 DOF system composed of two rigid bodies in [5]
to develop a nonlinear robust control design for an interconnected set of H∞ control problems. However, the authors only
model vertical motion of the vehicle, ignoring translational motions. Some researchers have sought to develop vehicle control
strategies that perform well in hazardous scenarios. In [6], a modified fixed-point control allocation scheme is implemented
in a Simulink CarSim simulation to test braking during high-speed double lane changing on slippery roads and hard braking
with an actuator failure. A gyroscope is used in [7] to enhance vehicle handling in strenuous control situations. The authors
used a 10 DOF linear vehicle model as a basis for developing an LQR control framework. In [8], a coordinate control system
involving electronic stability control, active roll control, and engine torque control is used to maximize driver comfort.
However, the authors do not present their nonlinear dynamics model that is used to simulate the response of their controller.
A linearized 2 DOF dynamics model is used in [9] to develop an adaptive optimization based second-order sliding mode
controller. For modeling the controller, the authors assume the vehicle velocity while turning is pseudoconstant and the
steering and side-slip angles are small. In [10], Chebyshev series expansions were used to approximate analytical solutions
for nonlinear ODEs modeling tire dynamics and the steering mechanism.

While most vehicle dynamics models in the literature seek to include some combination of steering, suspension, and tire
dynamics, few seek to address anything like the problem of a vehicle moving on an arbitrary curved surface. A model of
a cart moving on a smooth surface is presented in [11, 12], but the author provides an insufficient mathematical derivation
and no validation of the model through simulation or experiment. Cart dynamics are considered in [13] as well, where the
authors derive the dynamics of a cart that is being excited by a moving base using Lagrange’s method. They include results
from an earthquake response simulation. A similar dynamics problem of a ball rolling on a 2-dimensional potential surface
is shown in [14], with a resulting dynamic model that appears similar in form to the dynamics model presented in this paper,
without the effect of additional rigid bodies.

In addition to modeling the dynamics of a vehicle moving on an arbitrary surface, this paper seeks to consider the effect
of a human pushing this system. While the literature does not discuss this effect, there have been some studies on humans
pushing carts, particularly as they relate to ergonomics and risk of injury [15–18]. There is also a study on the metabolic
demands of pushing a vehicle as a form of exercise [19], which provides the rather obvious result that pushing a vehicle for
exercise imposes high levels of metabolic and neuromuscular stress on a human.

19.3 Models

This paper presents a planar model of a vehicle moving on a surface y(x). In developing a model for a vehicle moving on
an arbitrary surface, the wheels were assumed to roll without slipping and to maintain contact with the surface. This planar
model consists of three rigid bodies: two wheels and the main body of the vehicle.

Figure 19.1 provides a visual description of how this system was modeled. The coordinate x is the contact point between
the wheel A and the surface y(x). For this research, a Gaussian function of the form y(x) = −βe−(μx)2 was used for a surface
profile. Torques τA and τB are control inputs that can be applied at wheels A and B of radius R respectively. The main body
of the vehicle is represented by rigid body M, which forms an angle θM with the horizontal and has a center of mass located
at (xc, yc) relative to the center of wheel A. Since the vehicle does not leave the surface, θM = f (x), where f (x) is the solution
to a transcendental equation dependent on the length l of rigid body M. This system was modeled using three equations for
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Fig. 19.1 A diagram of a vehicle composed of three rigid bodies moving on a surface y(x)
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of the center of mass, θk is the orientation, and Ik is the moment of inertia for each rigid body denoted by subscript k. The
position vectors for each rigid body are shown in Eq. (19.1). In the following derivation, subscript x denotes derivatives with
respect to the system coordinate and subscripts A and B the contact point between each wheel and surface y(x).
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The corresponding acceleration vectors necessary to develop the equations for the rigid bodies are shown in Eq. (19.2)
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where

PA = 1 − RyA,xx(
1 + y2

A,x

)3/2
, PB = 1 − RyB,xx(

1 + y2
B,x

)3/2
, σ = yc

xc
. (19.3)

The rotational acceleration for each rigid body is defined in Eq. (19.4). The rotational accelerations for wheels A and B
were developed by applying a roll without slip constraint.
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⎝ ẍPB

(
PA − lθM,x sin θM

) + ẋ2
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Using Eqs. (19.1–19.4), a 1 DOF model was developed, where g is the gravitational constant:
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which can be simplified to

G(x)ẍ +H(x)ẋ2 + J (x)g +QA(x)τA +QB(x)τB = 0 (19.6)

where G(x), H(x), J(x), QA(x), and QB(x) are all nonlinear functions of x. The results shown in this paper only consider
torques applied to wheel A, so QB(x) is set to be zero.

19.4 Methods

This paper considers two forcing or open-loop control strategies for achieving escape: (1) forcing at the linear natural
frequency for this system and (2) forcing in a human-behavioral pattern. For control strategy 1, the linear natural frequency
was obtained using a variational method. By perturbing this system about the equilibrium position with τA, τB = 0, a
variational equation in terms of the perturbation is obtained:

f (ξ) = J (x + ξ)− J (x)
G (x + ξ) g = 0 (19.7)

where x is the equilibrium position and ξ is the perturbation. By numerically solving for f (ξ ) and fitting a polynomial
f (ξ ) ≈ a0 + a1ξ + . . . anξ

n to the resulting curve, ω = √
a1 = 1.85 rad/s. This result was confirmed in simulation.

For control strategy 2, we introduce and apply a model for human-behavioral forcing. People usually attempt to get a
vehicle out of a ditch by pushing hard until the vehicle achieves a maximum velocity (i.e., at the bottom of the ditch),
releasing, then waiting for the vehicle to rock backwards toward them, and then repeating. Additionally, they start pushing at
some initial force value and then increase force until they release the vehicle. Thus human-behavioral forcing is a function
of vehicle position since it is applied over some length of the ditch, but it is also a function of vehicle velocity since it is
only applied when velocity is positive. It should be noted that this contrasts with forcing this system at its linear natural
frequency, which involves continuously applying force in two directions due to the nature of a sinusoidal function. A sketch
of the human-behavioral forcing can be seen in Fig. 19.2.

Figure 19.2 illustrates the human-behavioral forcing pattern. As the vehicle moves in one direction, denoted by the large
arrow, the human will push by starting at an initial force value and ramping up to a maximum force value as the vehicle
crosses the bottom of the ditch. The shape of this forcing function looks like the first integral of a sawtooth, which is the
function used in this paper to generate results for this control strategy.
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Fig. 19.2 A diagram of human-behavioral forcing

Fig. 19.3 A comparison of forcing at linear natural frequency and human-behavioral forcing showing displacement, torque, and work done on the
system. Top row: with a maximum applied torque of 35 N-m. Bottom row: with a maximum applied torque of 50 N-m. The dashed line denotes
the escape criteria

19.5 Results

The results from this research were obtained by applying the control strategies presented in the Methods section to the
dynamics model presented in Eq. (19.6). Two benchmarks were used to compare the results from the two control strategies:
achieving escape from the ditch and total work done on the system. The key results of this research can be seen in Fig. 19.3.

In the upper left corner of Fig. 19.3, the natural frequency excitation with a maximum torque of 35 N-m does not result in
the vehicle escaping. Instead, the vehicle develops a steady-state periodic motion that never grows in amplitude. In contrast,
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Fig. 19.4 A comparison of the total work done on the vehicle to achieve escape (dots indicate escape was achieved, arrows indicate was not
achieved)

using human-behavioral forcing at the same maximum torque (see upper right corner of Fig. 19.3), achieves escape in ∼34 s.
Forcing the system at its linear natural frequency does result in escape for a maximum torque of 50 N-m (bottom left of
Fig. 19.3) but the human-behavioral forcing achieves escape in half the time (bottom right of Fig. 19.3). The two maximum
torque examples shown in Fig. 19.3 are indicative of the overall performance difference between these two control methods.
Across the board, using human-behavioral forcing outperforms forcing the system at its linear natural frequency. Figure 19.4
shows that human-behavioral forcing uses less energy as well.

The results shown in Fig. 19.4 clearly indicate that in every instance, human-behavioral forcing consumes less energy
than forcing at the linear natural frequency. In addition, for small torque amplitudes, linear natural frequency forcing does
not result in escape at all (also shown in the upper left corner of Fig. 19.3), which means infinite work can be done on
the system without any escape. One of the reasons for the disparity between these two control strategies is that humans
intuitively know how to build momentum in this system, and with every well-timed push are increasing the energy of the
system. Thus, the human-behavioral method will always result in escape, provided the forcing is sufficient to overcome
damping.

The primary reason that the linear natural frequency method has less success than the human-behavioral method is that
this system is highly non-linear. While this is known analytically from Eq. (19.6), the degree of nonlinearity is difficult
to quantify without producing some simulated results. One method for understanding the nonlinearity of this system is to
determine its stiffening/softening characteristics.

From Fig. 19.5, the static torque to keep the vehicle stationary is a complex function, illustrating that the dynamics for
this system are softening, stiffening, and then softening again for different parts of the ditch profile. These are characteristics
of a highly nonlinear system in contrast to the linear stiffness for this system denoted by the linear dashed line. It should
be noted that the reason the equilibrium point is not directly over x = 0 is because the coordinate is not measured from the
center of the vehicle, but from the contact point of wheel A with the surface.
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Fig. 19.5 Stiffening/softening illustrated by the static torque to maintain equilibrium

Another method for understanding the performance of the linear natural frequency method is to understand how the linear
natural frequency changes across the ditch profile. To simulate this, the vehicle was released from a range of initial conditions
along the ditch profile to determine the natural frequency.

From Fig. 19.6, the linear natural frequency obtained in the Methods section (∼1.85 rad/s) is only valid for two
perturbations (equilibrium and 2.3 m). As the system builds amplitude, the linear natural frequency approximation becomes
invalid, and a different linear natural frequency more accurately represents this system. It is possible that creating a closed-
loop control strategy which involves an amplitude-dependent forcing frequency may produce better results, since such a
control strategy would always be forcing the system at its linear natural frequency.

19.6 Conclusion

This paper has presented an investigation of a vehicle stuck in a ditch. To understand the dynamics of this system, a dynamic
model was developed using Newtonian mechanics. This model treated the vehicle as a system of three rigid bodies moving on
a arbitrarily curved surface. Additionally, two control strategies to achieve escape were put forward: forcing the system at its
linear natural frequency and human-behavioral forcing. Using the dynamics model, these control strategies were examined
and the results conclusively showed that the human-behavioral method outperforms the linear frequency method both in
terms of achieving escape and lower energy consumption. It was shown that the linear natural frequency varies across the
surface of the ditch, meaning that a single approximation of the linear natural frequency is insufficient to achieve good
control. Thus, for this highly nonlinear system, a nonlinear control strategy, such as human-behavioral forcing, is a good
method for achieving escape.
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Fig. 19.6 Illustrating the linear natural frequency variation across the ditch profile by a plot of frequency vs. perturbation magnitude. The
horizontal black line indicates the linear natural frequency value obtained from equilibrium (see Methods)

19.7 Future Work

In the future, we would like to expand the model and results to include the complexity that arises from introducing stick/slip
friction into the system. This model could be further developed to include a 3D surface profile and rigid bodies. The control
system for this could be expanded to include models for control of wheel B in conjunction with wheel A.
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Chapter 20
Nonlinear Dynamical Analysis for Coupled Fluid-Structure
Systems

Q. Akkaoui, E. Capiez-Lernout, C. Soize, and R. Ohayon

Abstract The present research concerns the numerical dynamical analysis in elasto-acoustics, taking into account the
geometrical nonlinearities induced by the large displacements/deformations of the structure and assuming the internal
acoustic fluid occupying an internal cavity coupled to the structure to remain in a linear range of vibration. More particularly,
the modeling includes sloshing and capillarity effects on the free surface. A numerical application is presented.

Keywords Fluid-structure interaction · Sloshing · Capillarity · Reduced-order model · Geometric nonlinearities

20.1 Introduction

The structural-acoustic system under consideration is made up of a tank structure filled with a linear inviscid compressible
fluid. Gravity effects and surface-tension effects of the free surface and corresponding coupling terms are taken into account
as described in [1]. A linear elastic constitutive equation is considered for the structure. It is also assumed that the structure
undergoes sufficiently large deformations and large displacements in order to consider the geometrical nonlinear effects [2],
but also sufficiently moderate so that the fluid behavior remains linear [3]. A total Lagrangian formulation around a static
equilibrium state taken as a reference configuration is used.

20.2 Description of the Computational Model

Let U(t), P(t), and H(t) be the RnS ,RnF , and RnH -vectors corresponding to the finite element discretization of the structural
displacement, fluid pressure, and free-surface elevation fields. The computational model is then written [3] as,

[MS] Ü(t)+ [DS] U̇(t)+ [KS] U(t)+ FNL(U)+ [Cpu] P(t)+ [Cηu]T H(t) = FS(t) , (20.1)

−[Cpu]T Ü(t)+ [M] P̈(t)+ [D] Ṗ(t)+ [K] P(t)− [Cpη]T Ḧ(t) = 0, (20.2)

[Cηu] U(t)+ [Cpη] P(t)+ [Kgc] H(t) = 0, (20.3)

in which [MS], [DS], [KS] and [M], [D], [K] are the mass, dissipation and stiffness matrices for the structure and the
corresponding one for the acoustic fluid, where [Cpu], [Cηu], and [Cpη] are coupling matrices, and where [Kgc] is the
stiffness matrix of the free surface induced by the gravitational and the capillarity effects [1, 3, 4]. The RnS -vector FNL(U) is
the nonlinear term issued from the large displacements/deformations induced by the geometrical nonlinearities. An adapted
numerical nonlinear reduced-order model of order N requiring the numerical computation of the elastic modes of the
structure with fluid added mass effect, of the acoustic modes of the fluid, and of the sloshing modes of the free surface
[1] is proposed in [3]. Such computation on mid-power computers can be very challenging when large finite element meshes
are involved. The original computational strategy [5] that allows for circumventing these difficulties is used in this analysis.
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The nonlinear reduced-order model is then written as

X(t) =
⎡
⎣

U(t)
P(t)
H(t)

⎤
⎦ = [� ] Q, [ � ] =

⎡
⎣

[�S] 0 0
0 [�F ] [�FH ]
0 0 [�H ]

⎤
⎦ (20.4)

in which Q is the RN -vector of the generalized coordinates, solution of the nonlinear dynamical equation

[MFSI ] Q̈ + [DFSI ] Q̇ + [KFSI ] Q + FNL(Q) = F , (20.5)

in which [MFSI ], [DFSI ], and [KFSI ] are the reduced mass, damping, and stiffness matrices of the coupled fluid-structure
system, where F and FNL(Q) are the RN -vectors of the reduced external force and of the reduced nonlinear force that is
obtained numerically from the explicit construction of the quadratic and cubic reduced stiffness terms with the finite element
method [2].

20.3 Numerical Application

The coupled fluid-structure system under consideration is made up of a cylindrical tank with external radius Re = 3.06 ×
10−2 m, thickness e = 2.79 × 10−4 m, and height h = 7.97 × 10−2 m, partially filled with an acoustic fluid with height
hf = 3.05 × 10−2 m. It is described in a global cartesian coordinate system (O, e1, e1, e3), where O is the center of the
cylinder basis, and where the cylinder axis is defined along e3. The structure is composed of a linear isotropic homogeneous
elastic material for which the Young modulus, the Poisson ration, and the mass density are E = 2.05 × 1011 N m−2,
ν = 0.29, and ρS = 7800 kg m−3. The fluid has mass density ρF = 1000 kg m−3 and sound velocity cF = 1460 m s−1.
A fixed boundary condition is applied at the bottom of the cylinder. Furthermore, capillarity effects are added in the numerical
model with surface tension coefficient σ� = 0.0728 and contact angle α = 83◦. The main curvature radii R1 and R2 of the
free surface and the numerical coefficients that characterize the triple line are computationally obtained in each node of the
mesh according [4].

The finite element model of the coupled fluid structure system is constructed using mS = 111,746 and mF = 133,719
three dimensional solid finite elements with 10 nodes for the structure and for the acoustic fluid (tetrahedral finite elements),
mH = 3392 bi-dimensional finite elements with 6 nodes for the free-surface andmγ = 144 one-dimensional finite elements
with 3 nodes for the triple line. Thus, there are nS = 658,209 dofs, nF = 194,354 dofs and nH = 6929 dofs corresponding
to the displacement unknowns of the structure, to the pressure unknowns of the fluid, and to the normal displacement
unknowns of the free surface. The damping matrices of the acoustic fluid and of the structure are defined as [D] = τF [K]
and [DS] = τS[KS] in which τF = 10−5 and τS = 10−6. A small patch located on one side of the structure is subjected to a
transverse load. Such load is of intensity s0 = 0.001 N and uniformly excites the frequency band Be = [2000, 4000] Hz. In
such excitation frequency band, it should be noted that 11 structural modes and no acoustic modes neither sloshing modes
are excited. The computations are carried out with a nonlinear reduced-order model whose optimal order, issued from a
convergence analysis is set to {NS,NF ,NH }={100, 40, 1000}. Let ν be the frequency in Hz. Figures 20.1 and 20.2 display
the graph ν �→ ||̂u(2πν)|| of the structural displacement and the graph ν �→ ĥ(2πν) of the normal displacement of the
free surface located on the triple line for both linear and nonlinear cases. It can be seen that the presence of geometrical
nonlinearities modifies the nonlinear behavior of the fluid-structure system and that non-expected resonances do appear
outside Be.
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Fig. 20.1 Graph ν �→ ||̂u(2πν)|| of the structural displacement for both linear (dashed line) and nonlinear (full line) cases

Fig. 20.2 Graph ν �→ ĥ(2πν) of the normal elevation for both linear (dashed line) and nonlinear (full line) cases

20.4 Conclusions

The nonlinear dynamical analysis of a coupled fluid-structure system taking into account both sloshing and capillarity effects
has been investigated. Its efficiency is demonstrated through a numerical application.
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Chapter 21
Experimental Nonlinear Vibration Analysis of a Shrouded
Bladed Disk Model on a Rotating Test Rig

Ferhat Kaptan, Lars Panning-von Scheidt, and Jörg Wallaschek

Abstract The optimization of the mechanical design process of turbomachinery has already been subject of research for
decades. In this context, many researchers developed efficient numerical methods to calculate the vibration response of bladed
disks. In particular, shrouded bladed disks with frictional contacts present a major challenge in the design process. Beside
efficient simulations, the validation process plays an important role in most recent studies. The quality of the comparison
depends directly on the system’s boundary conditions in the simulation as well as in the experiment. For instance, the
estimation of the excitation forces should be as precise as possible, because the vibration response, in particular in the
nonlinear case, depends strongly on the excitation forces.

In this paper, a newly developed rotating test rig for bladed disks is introduced. The test rig consists of a rotating shaft
mounted in a vacuum chamber, in order to avoid any aerodynamic loadings and damping, and an excitation with multiple
permanent magnets. Here, a large number of permanent magnets is applied to approximate a continuous force distribution
along the circumference. To estimate the overall force distribution, magnetic field simulations are performed and compared
to the measurements with a very good agreement. Compared to other excitation methods such as a single ac-magnet or
air jet excitation, the presented method manages a high energy input at a specific engine order or frequency with modest
complexity. The nonlinear vibration response is measured by strain gauges for various numbers of magnets and excitation
force amplitudes. The presented results are characterized by an excellent repeatability and precise measurements of resonance
passages. Especially, the nonlinear behavior of the structure such as rotational speed and excitation force dependent resonance
amplitudes and frequencies as well as jumping phenomena can be shown. The developed rotating test rig proves to be
particularly suitable for the vibration analysis of rotating bladed disks considering nonlinearities.

Keywords Nonlinear dynamics · Bladed disk · Shroud contact · Rotating test rig

21.1 Introduction

During operation of turbomachinery, the streaming unsteady airflow causes dynamic excitation of the rotating turbine blades.
Actually, the airflow is a chaotic distributed dynamic pressure field. Due to a certain number of preconnected guide vanes or
other parts in the flow channel, the pressure field contains periodic components leading to a stationary harmonic excitation of
the rotating system. To avoid High Cycle Fatigue (HCF) failure, a good prediction of the vibration response at the operating
range of the system is necessary. Friction damping, e.g. through underplatform dampers or tip shrouds, is commonly used
to reduce the vibration amplitudes by energy dissipation. The design process of friction damped blades is still subject of
research due to the strongly nonlinear characteristics. The calculation of the nonlinear forced response is generally based
on the well-known Multiharmonic Balance Method (MHBM)[1, 2]. Beside calculations, the experimental validation of the
numerical results plays an important role in current research projects. For an accurate comparison between simulations and
experiments, a clear modeling of the system’s boundary conditions is required. In particular, the excitation forces have a
significant influence on the force response, thus, it is essential to estimate and to predict the excitation forces as precisely as
possible. Several excitation techniques are used in the literature as non-contact excitation, e.g. magnets [3, 4] or air jets [5],
or piezoelectric excitation [6–9]. All methods have their benefits as well as drawbacks and depend on the specific application.
For the excitation of a rotationally periodic structure, a traveling wave type excitation is necessary [10]. This can be achieved
by a rotating excitation mechanism and a non-rotating test setup, and vice versa. In most studies, a so-called blisk (bladed
integrated disk) without any joints is investigated to estimate for example the structural damping [6, 11] or to characterize
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mistuning induced mode localizations [7, 9]. Also frictionally coupled structures, for instance by underplatform dampers
[3, 8], shroud contacts [12], friction rings [13] or root contacts [14], are analyzed in several studies. Due to the considerable
complexity of the nonlinear vibration response of coupled rotating systems, there is still a great demand concerning this
subject.

In this context, a new rotating test rig is designed and developed at the Institute of Dynamics and Vibration Research to
measure the vibration response of bladed disks. Basically, excitation is achieved by ac-/permanent magnets, piezo patches or
air jets. However, due to the high global stiffness of the investigated bladed disk model, a sufficient excitation force amplitude
is needed. Thus, a large number of permanent magnets is used in this study. In particular, the blades are coupled with each
other to the tip shroud and at multiple locations with the disk to the root. To analyze the nonlinear characteristics of the
system, a variable excitation level is essential. Here, quasi-static ANSYS Maxwell simulations are performed and compared
to an experimental setup to estimate the excitation force potential. The rotating experiments are carried out at different
excitation levels in a wide rotational speed range. It should be noted that the main focus of this paper is the experimental
study of a bladed disk model. However, numerical results of a linearized modal analysis will be shown in the next chapter. A
detailed description of the numerical nonlinear vibration response is given in [15].

21.2 Bladed Disk Model

The investigated bladed disk model consists of 60 single blades and a comparatively rigid disk, see Fig. 21.1. The blades are
statically prestressed at the tip shroud by an interference fit and coupled at multiple locations with the disk to the root. During
operation, centrifugal forces cause a deformation of the system leading to a change of the contact forces. As a result, the
dynamic behavior of the structure is highly nonlinear and depends on the rotational speed. To characterize the linear dynamic
behavior, a numerical linear modal analysis, under the assumption of a perfectly tuned system, is applied. The symmetric
properties of rotationally periodic structures can be exploited to compute the dynamic behavior of the full system by only one
sector model [16]. In this study, ANSYS Mechanical is used to discretize a sector model of the system and to compute the
nonlinearly prestressed cyclic modal parameters. The computational procedure is divided into two parts. First, a quasistatic
nonlinear analysis is applied by considering an interference fit at the shroud contact and by preloading the structure with
centrifugal forces. Subsequently, the system is linearized by considering the computed contact areas. In a second step, a
modal analysis of the linearized system is applied. Here, the modal parameters, such as natural frequencies and eigenvectors,
depend on the so-called nodal diameter, which corresponds to the phase relation between the cyclic edges. For instance, at

Fig. 21.1 Bladed disk model (a), finite element segment model (b), tip shroud contact area (c), root contact areas (d)
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Fig. 21.2 Nodal diameter map of the linear system at zero rotational speed N = 0 (a), rotational speed dependent natural frequency and MAC
value of 1F-ND15-mode (b)

nodal diameter zero, all blades oscillate in phase and at nodal diameter 30 (i.e. half of the amount of blades) in antiphase. The
nodal diameter map is given in Fig. 21.2a at zero rotational speed. Note that the color of the dots corresponds to a mode family,
i.e. red for the first flapwise (1F) mode, blue for the first edgewise (1E) mode and green for the second flapwise (2F) mode.
The color scaling is based on the modal assurance criterion (MAC) value at nodal diameter 30 and illustrates nodal diameter
dependent veering regions, for instance at nodal diameter 10. Veering is a well-known phenomenon regarding bladed disks,
see [17]. It is caused by disk-dominated modes and, here, indicated by the color of the dots and the low correlation to the
blade modes. The nodal diameter map in Fig. 21.2a is only valid for one specific rotational speed. Increasing the rotational
speed leads to a change of the modal properties of the system. On the one hand, centrifugal forces increase due to the stress
stiffening effect of the system’s natural frequencies. On the other hand, the contact area depends on the rotational speed.
To quantify the influence of both phenomena independently, the rotational speed dependent natural frequency and MAC
value of the 1F-ND15-mode is shown in Fig. 21.2b. It can be seen that the natural frequency is highly sensitive to a variable
contact area. The relative decrease of the natural frequency amounts to 9%, while the increase due to stress stiffening effects
is approximately 1%. Regarding the MAC value, a decrease by 2% in case of a variable contact area can be noted, while a
variable stiffness shows no change. Even a decrease of the MAC value by 2% is marginal, a change of the MAC value leads
to a slightly different mode shape and thus to a different stress condition of the blades.

21.3 Rotating Test Rig

The experimental study is performed on the rotating test rig shown in Fig. 21.3. An electric motor is used to drive the bladed
disk model up to 3600 rpm. To avoid any aerodynamic effects, such as damping or ventilation, the tests are performed in a
vacuum chamber at low pressure level pvacuum < 1 mbar. The vacuum chamber is connected to a foundation with a high
mass of mf > 8 tons and is dynamically isolated by air bearings. In addition, the vacuum chamber has several connection
possibilities in radial direction and a glass window at the top of the chamber for optical measurement systems. However,
in this study, strain gauges are used to measure the vibration response of the blades. The electric signals are amplified on
a circuit board and transferred by a slip ring to the data acquisition. As an excitation unit, up to 45 permanent magnets are
used to approximate a continuous magnetic field distribution along the circumference. A particular part of this study is the
estimation of the resulting force amplitudes during operation, thus, the excitation mechanism is considered in detail in the
following chapter.

21.4 Excitation Mechanism

The aim of the developed excitation unit is to excite a desired mode by a specific engine order. Due to the comparatively
rigid disk and the blade coupling by shrouds, a high energy input is necessary to sufficiently excite the system. In addition, a
large number of magnets is essential to excite the system at its resonance frequency in the considered rotational speed range.
Regarding nonlinear systems, an accurate estimation of the excitation spectrum is particularly important. For this purpose,
an ANSYS Maxwell model is set up to calculate the applying forces by magnetostatic analysis, see Fig. 21.4a. The magnetic
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Fig. 21.3 Scheme of the rotating test rig: front view (a), top view (b), interior view (c), image of the bladed disk model (d)

Fig. 21.4 ANSYS Maxwell simulation model (a), results of magnetostatic simulations (b), experimental setup for magnetic force measurements
(c), comparison of simulation and experimental results (d)



21 Experimental Nonlinear Vibration Analysis of a Shrouded Bladed Disk Model on a Rotating Test Rig 159

forces are evaluated at the reference blade for various magnet gap values gM and angles ϕM/ϕM, wherebyϕM = 2π/NM
is defined by the number of magnets NM = 45, see Fig. 21.4b. It can be noted that the static magnetic forces are highly
sensitive to gap variation. The magnetic force increases up to 45 N at gM = 0.5 mm and shows a sinusoidal progression
over the rotation angle ϕM. However, for the rotational operation only the dynamic components of the excitation unit are
crucial, which can be obtained by a decomposition of the spatial magnetic force distribution in its harmonic coefficients by
FOURIER series. For the verification of the results, the magnetic forces are also measured by an experimental setup shown
in Fig. 21.4c. A piezoelectric force sensor is used to measure the magnetic forces during rotation for various gap values
gM. The results of the comparison between simulation and experiment of the first three harmonic coefficients are given in
Fig. 21.4d. The agreement of the comparison is remarkable. In particular, the first two harmonics are perfectly suitable for a
gap variation in the rotational experiments due to a very marked gradient of the force amplitude. The third harmonic is rather
unsuitable because of an approximately constant force level over the gap distance gM. The slight deviation for gM < 2 mm
is caused by a mistuning of the gap between each blade and the magnet unit in the experiment. It should be noted that during
the rotational experiments the magnetic forces will not be measured. To sum up, the developed permanent magnet unit is
excellently suitable for the excitation of rotating bladed disks due to a high energy input in a desired engine order and an
exceptional variability with respect to excitation amplitude and frequency.

21.5 Experimental Results

All measurements performed and presented in this paper are summarized in Table 21.1. The measurement series are defined
by the number of magnets and by the gap value gM. All measurements are carried out under technical vacuum conditions
(pvacuum < 1 bar) in the rotational speed range 0 ≤ N ≤ Nref. The vibration response is measured under steady-state
conditions, meaning that the stationary vibration response of the strain gauges is recorded for each rotational speed step in
the time domain. Based on this data, the mean value of the results are visualized in a Campbell diagram.

The functionality of the excitation mechanism as well as the data acquisition are investigated first. For this purpose, the
Campbell diagrams of the measurement sets 1–3 are compared in Fig. 21.5. Without any magnet excitation, Fig. 21.5a, b,
the structure is only excited by a dynamic imbalance of the system. Due to an adjustment of the bearings of the shaft,
the imbalance of the system also has an effect in axial direction and, consequently, can excite blade modes. The vibration
response shows a very low signal-to-noise ratio (SNR) but regarding the 2D Campbell diagram in Fig. 21.5b, it can clearly
be seen that the response at a low order is dominant. It should be noted that the color scaling of each 2D Campbell diagram
always refers to its maximum value. The rotational speed independent amplitude at f/f ref ≈ 0.8 is caused by the cut-off
frequency of the amplifier board. Considering one permanent magnet, Fig. 21.5c, the SNR is still very low, proving that a large
number of magnets is necessary for the excitation of a comparatively stiff system. It is interesting to note that in this case,
dominant orders can be figured out regarding the spectrum in Fig. 21.5d. Due to the 1F mode at the frequency f/fref ≈ 0.35,
see Fig. 21.2, increased amplitudes at N/Nref > 0.5 occur. It is also notable that the spectrum shows increased amplitudes at
f/fref ≈ 0.1 over a wide rotational speed range. This frequency corresponds clearly to the system’s nodal diameter 0 mode,
also known as the umbrella mode, and is mainly excited by the ball pass frequency of the bearings. Increasing the number of
magnets to 45, it can be recognized that the SNR significantly increases and that the engine order 45 as well as its harmonics
appear mainly in the Campbell diagram, see Fig. 21.5e, f. Again, the umbrella mode appears at f/fref ≈ 0.1, which is in this
case negligible compared to the amplitudes at engine order 45 and 90. The results of the first experimental study show that
the rotating test rig and, in particular, the developed excitation mechanism work as intended. In addition, the reproducibility
of the measurement results is of great importance and is investigated in the following within the scope of an order analysis

Table 21.1 Overview of the
measurement series

Number of Gap gM Rotational speed
Set magnets in mm range

1 0 − 0 −Nref

2 1 5 0 −Nref

3 45 5 0 −Nref

4 45 4 0 −Nref

5 45 3 0 −Nref

6 33 5 0 −Nref

7 33 4 0 −Nref

8 33 3 0 −Nref
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Fig. 21.5 Measured Campbell diagrams of the measurement sets 1–3: without magnet excitation (a, b), using one magnet (c, d), using 45 magnets
(e, f)

of measurement set 3. For this purpose, the frequency responses along the first three orders, i.e. engine order (EO) 45 (red),
90 (blue) and 135 (green), are analyzed in detail, see Fig. 21.6a. The relation between the engine order EO and the nodal
diameter ND is

EO = kNs ±ND, (21.1)

where Ns denotes the number of segments and k = 0(1)∞. Thus, the nodal diameter 15 is excited by the engine order 45
and 135, and the nodal diameter 30 by the engine order 90. The frequency response of 5 repeated measurements is presented
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Fig. 21.6 Order analysis of measurement set 3 considering 5 repeated measurements: Campbell diagram with marked order numbers (a), mean
(solid line) and maximum (dashed line) value of the vibration response at the orders 45, 90 and 135 (b)

in Fig. 21.6b, whereby the solid line represents the mean value and the dashed line the maximum value of all strain gauges.
The obtained results are characterized by an excellent reproducibility as well as a high accuracy. The measured resonance
frequencies at engine order excitation 45 and 90 clearly belong to the 1F-mode with nodal diameter 15 and 30, respectively.
In particular, a resonance frequency shift of 5% between the engine order 45 and 135 is remarkable, even though it is
theoretically the same mode shape , i.e. 1F-mode-ND15. This phenomenon is caused by the nonlinear structural mechanical
behavior of the system and depends highly on the system’s rotational speed. The rotational speed obtained by an engine order
45 excitation is three times larger as by an engine order 135 excitation. According to Fig. 21.2b, increasing the rotational
speed leads—due to a change of the contact pressures at the joints—to lower natural frequencies.

In addition, the excitation level of the first harmonic, see Fig. 21.4d, is significantly larger than of the third harmonic
leading to an additional frequency shift due to sliding processes at the joints. It is also noticeable that additional local
maxima occur at engine order 135. This is caused by the gap mistuning of the excitation setup and the low energy input in
this specific engine order. The nodal diameter 30 is excited by the engine order 90 (red lines) that corresponds to an antiphase
mode shape of the blades. In this case, the resonance magnification shows an asymmetric, strongly nonlinear behavior. The
unsteady curve progression implies local separation at the joints. Regarding the dynamic behavior of the whole system, it
can be noted that the bladed disk model is highly mistuned. Due to manufacturing tolerances, material inhomogeneities
and, in case of coupled bladed disks, installation conditions, the cyclic symmetry is highly disturbed leading to a mode and
frequency splitting of the system, see [18]. As a result, the system’s response consists of a superposition of standing and
traveling waves despite a traveling wave excitation. With increasing the intensity of the mistuning, the amount of standing
waves increases, while the travelling wave component decreases. Thus, localization effects can occur, such that some blades
can show increased vibration amplitudes. This situation explains the differences between the maximum and the mean value
in Fig. 21.6b.

To quantify the nonlinear structural mechanical effects, a gap variation and, thus, an excitation level variation is performed,
see Fig. 21.7. It should be noted that for each gap value the mean value of 5 measurements is shown. For the sake of
comparison, the results are normalized by a reference amplitude for each measurement set separately. Note that in the linear
case, all frequency responses would lie on top of each other. Here, decreasing the gap between the magnets and blades leads
to higher excitation forces and further to a decrease of the resonance frequencies. This is based on the frictional joints of the
system. Increased excitation amplitudes lead to higher relative motion in the joints and, consequently, to more sliding and
separation. In particular, the mode shapes of shrouded blades depend highly on the contact situation, as seen for instance in
Fig. 21.2b. Regarding the 1F-ND15 mode, the maximum of the normalized response increases by increasing the excitation
forces. This is obviously caused by a changing contact situation producing a slight change of the mode shape, see Fig. 21.7a.
At off-resonance, the normalized response roughly shows a linear behavior. The 1F-ND30-mode shows a nonlinear jumping
phenomenon, see Fig. 21.7b. An increase of the excitation level leads to lower frequencies and higher maximum amplitudes
of the normalized vibration response. This is basically caused by the antiphase vibration between the blades with nodal
diameter 30. Due to a high relative motion in normal direction of the shroud contact, local separation leads to a jumping
phenomenon.
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Fig. 21.7 Normalized vibration results by magnet gap variation: 1F-ND15-mode (a), 1F-ND30-mode (b)

Fig. 21.8 Results of measurement sets 6–8: Campbell diagram (a), vibration results by an engine order 66 excitation (b)

In the last experimental study, the number of magnets is reduced to 33. According to Eq. (21.1), the nodal diameter 6 can
be excited by the second harmonic of the excitation, i.e. EO66. In comparison to the nodal diameter 15, the nodal diameter
6 is isolated to other nodal diameters and is obviously a disk-dominated mode, see Fig. 21.2a. The Campbell diagram in
Fig. 21.8a shows a resonance passage at the frequency f/f ref ≈ 0.14 with the engine order 66. In addition, a resonance
passage appears at the frequency f/f ref ≈ 0.37 with the engine order 99, which corresponds to the nodal diameter 21. The
amplitude level is comparatively low. Therefore, this mode is not considered further. Here, the order analysis is only applied
to the engine order excitation 66, see Fig. 21.8b. Again, the mean value of 5 repeated measurements is considered. It is
interesting to note that the vibration response shows significant differences between a run-up and a run-down measurement.
A frequency difference of up to 4% can be noted. This phenomenon suggests that high contact separation occurs, which
is, for instance, well-known for a prestressed mechanical gap oscillator. Due to high relative vibrations in normal direction
of the contact, the contact separates leading to a spontaneous loss of stiffness and further to a reduction of the resonance
frequency. The amplitude response is characterized by a hanging branch with multiple solutions at specific frequencies. The
idealized model of a gap oscillator can be transferred only to a limited extent to the investigated bladed disk system. Due to
the highly mistuned system, the contacts at the 60 blades do not separate simultaneously. Contact mistuning is still largely
unexplored and should be investigated in future research to improve the understanding of shrouded bladed disks.
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21.6 Conclusions

In this paper, a shrouded bladed disk model is investigated experimentally. A newly developed rotating test rig is used to
measure the nonlinear vibration response for various excitation levels and engine orders. The developed excitation system,
consisting of up to 45 permanent magnets, is analyzed in detail by means of a magnetostatic analysis and a validation of the
excitation spectrum by an experimental test setup. The developed excitation system can be used to excite a specific engine
order with a high energy input. It has been shown that the vibration response, i.e. resonance frequency as well as amplitude,
strongly depends on the excitation and rotational speed level. In particular, the mode shapes of shrouded blades highly depend
on the pressure distribution of the shroud contact. Increasing the excitation level leads to more local separation and, thus, to
an increase of the vibration response at resonance condition. It could be noted that the system is highly mistuned, which, in
this case, is mainly induced by the installation conditions leading to different contact pressures at the shrouds. Future work
will be the numerical validation of the experimental results based on the computational methodology described in [15].
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Chapter 22
The Measurement of Tangential Contact Stiffness for Nonlinear
Dynamic Analysis

C. W. Schwingshackl and D. Nowell

Abstract Nonlinear dynamic models for frictional interfaces require a number of input parameters to allow a realistic
representation of the contact interface. Interface geometry and static pressure distributions can be obtained reliably from
numerical analysis. However, it is also necessary to measure the friction coefficient, and the tangential and normal contact
stiffness. The tangential contact stiffness plays a significant role in the dynamic response, but is very challenging to measure.
In this paper quasi-static and dynamic experiments developed at the University of Oxford and at Imperial College London
respectively, will be compared and discussed. Of particular interest is the dependence of the stiffness on the static normal
load and the overall contact area.

Keywords Tangential contact stiffness · Measurement · Nonlinear dynamics

22.1 Introduction

Most mechanical engineering systems consist of an assembly of individual components with frictional interfaces which
transfer load between the parts. In order to accurately predict the vibration performance of the system it is necessary to know
the properties of each interface. Surface roughness will mean that each interface has a finite stiffness in both the normal
and tangential directions. Imperial College and the University of Oxford have independently developed test rigs capable
of measuring contact stiffness, but starting from quite different initial requirements. Hence the two rigs differ in contact
geometry, frequency of loading, measurement systems, etc., but they should be capable of measuring the same underlying
parameters. The purpose of this paper is to compare the two rigs, focussing particularly on the measurement of tangential
contact stiffness, which is found to be the most difficult of the three parameters to measure.

22.2 Oxford Rig

The rig developed at the University of Oxford was originally intended to assess friction coefficients for different coating
materials under conditions representative of those in the dovetail root of an aero-engine fan blade. Figure 22.1a shows a
schematic of the contact configuration. An opposing pair of pads, each of 80 mm2 nominal contact area are pressed against
a flat specimen by a hydraulic cylinder. The threaded end of the specimen is attached to the piston of a servo-hydraulic test
machine, and may be moved up and down relative to the pads to create relative tangential motion at the interfaces. Tangential
load is measured by the load cell in the test machine, and it is assumed that an equal load is carried at each contact. An LVDT
is used to give a measurement of relative tangential motion between the pads and the specimen, but since the measurement
points are somewhat remote from the contact, this is insufficient to provide reliable measurement of contact stiffness. Hence,
digital image correlation is employed local to the interface. A ‘Questar’ log-range microscope is used to focus on an area
approximately 0.65 × 0.50 mm at the centre of one of the contacts using a digital camera. This allows production of a
force-displacement hysteresis loop for two points very close to the interface. The rig is essentially designed to investigate
quasi-static conditions, and a loading frequency of 1 Hz was employed in the experiment. The rig is more fully-described in
[1] and the overall arrangement of the rig is shown in Fig. 22.1b.
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Fig. 22.1 (a) schematic contact configuration, (b) general view of the apparatus

Fig. 22.2 Imperial College London 1D friction rig, (a) the specimen configuration and (b) the general setup

22.3 Imperial College Rig

The 1D friction test rig at Imperial College London [2] has been designed to measure friction interface parameters (friction
coefficient, μ, and the tangential contact stiffness, kt) under realistic operational conditions for under-platform dampers,
providing a flat-on-flat contact interface with a nominal area of 1 mm2, a maximum mean contact pressure of 500 MPa,
frequencies from 20 to 200 Hz, interface motion from 0 to 100 μm (covering stuck, micro-, and macro-slip regimes), and
temperatures up to 1000 ◦C. The main concept of the test rig shown in Fig. 22.2b is based on a unidirectional motion of a
moving mass and specimen, against a static specimen. The system is excited via an electrodynamic shaker and the variable
normal contact load is applied with a pneumatic loading system. The specimens in Fig. 22.2a consist of two cylindrical
rods, each with a flat top that leads to a square contact area once they are mounted 90◦ rotated to each other. A contactless
measurement of the relative displacement between the two test specimens is achieved by two LDVs [3] and the transmitted
friction forces are measured via three force transducers at the static side of the rig. A combination of the measured friction
forces and the relative displacement between the two specimens leads to a hysteresis loop from which the tangential contact
stiffness, kt, is extracted from the slope of the ‘fully stuck’ section of the loop, immediately after load reversal, while the
friction coefficient, μ, can be obtained from the macro-slip zone.

22.4 Comparison of Tangential Contact Stiffness

Results for the Imperial rig are presented in Fig. 22.3a, which shows the variation of tangential contact stiffness with mean
contact pressure taken with the initial ‘as machined’ surfaces. Results for a single specimen with five newly refurbished
contact areas ranging consecutively from 2.15 to 2.96 mm2 are presented where the stiffness values were extracted under
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Fig. 22.3 Variation of tangential contact stiffness with pressure for (a) different contact areas and (b) different numbers of cycles (time) in the
Imperial rig; (c) variation with pressure in the Oxford rig (rough and smooth specimens) from [5]

stuck conditions. It can be seen that for each contact pair, the stiffness increases with load, more rapidly at first, before
reaching an approximately linear variation. There is no clear correlation with contact area, although the range of areas
considered is limited. The first contact pair was then run in sliding contact for a total of 15 min, to allow wear to take place
at the interface. In 5 min intervals the kt vs. pressure measurements were repeated leading to the results in Fig. 22.3b. It
can be seen that the stiffness increases with wear, most noticeably between 0 and 10 min. The curves for 10 and 15 min are
similar, suggesting that the roughness profile of the surfaces had reached a steady state. It would be expected that the initial
wear process would remove the high points on each surface, and therefore reduce the overall surface roughness. The results
are therefore consistent with the predictions of [4], which suggest that stiffness should vary inversely with rms peak height.
Figure 22.3c shows recent results from the Oxford rig, which show the variation of normalised tangential stiffness with mean
pressure. Two sets of results are shown: crosses for a ‘smooth’ pair of contacts, and dots for a ‘rough’ pair. It will be seen
that similar trends to the Imperial results are obtained.

22.5 Discussion and Conclusions

The results presented for the Oxford and Imperial rigs show broadly similar trends, despite being very different in concept
and in measurement methods. Tangential contact stiffness is found to increase with mean contact pressure in both cases.
Further, smooth interfaces (either worn in the case of the Imperial rig or prepared by a different process (Oxford rig)) are
found to have higher tangential stiffness than rough interfaces. Both these trends are as predicted by simple elastic models of
surface roughness. Absolute values of the stiffness from the Oxford rig appear to be about 10 times larger than the Imperial
one, when normalised for contact area, but it should be borne in mind that both surface roughness and normal pressure are
different in the two cases. The presentation will discuss these results and will draw conclusions relevant to the design of
future rigs.
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Chapter 23
Investigating Nonlinearity in a Bolted Structure Using Force
Appropriation Techniques

Benjamin R. Pacini, Daniel R. Roettgen, and Daniel P. Rohe

Abstract Understanding the dynamic response of a structure is critical to design. This is of extreme importance in high-
consequence systems on which human life can depend. Historically, these structures have been modeled as linear, where
response scales proportionally with excitation amplitude. However, most structures are nonlinear to the extent that linear
models are no longer sufficient to adequately capture important dynamics. Sources of nonlinearity include, but are not limited
to: large deflections (so called geometric nonlinearities), complex materials, and frictional interfaces/joints in assemblies
between subcomponents. Joint nonlinearities usually cause the natural frequency to decrease and the effective damping ratio
to increase with response amplitude due to microslip effects. These characteristics can drastically alter the dynamics of a
structure and, if not well understood, could lead to unforeseen failure or unnecessarily over-designed features.

Nonlinear structural dynamics has been a subject of study for many years, and provide a summary of recent developments
and discoveries in this field. One topic discussed in these papers are nonlinear normal modes (NNMs) which are periodic
solutions of the underlying conservative system. They provide a theoretical framework for describing the energy-dependence
of natural frequencies and mode shapes of nonlinear systems, and lead to a promising method to validate nonlinear models.
In and, a force appropriation testing technique was developed which allowed for the experimental tracking of undamped
NNMs by achieving phase quadrature between the excitation and response. These studies considered damping to be small
to moderate, and constant. Nonlinear damping of an NNM was studied in using power-based quantities for a structure with
a discrete, single-bolt interface. In this work, the force appropriation technique where phase quadrature is achieved between
force and response as described in is applied to a target mode of a structure with two bolted joints, one of which comprised a
large, continuous interface. This is a preliminary investigation which includes a study of nonlinear natural frequency, mode
shape, and damping trends extracted from the measured data.

Keywords Nonlinear normal modes · Force appropriation · Nonlinear structural dynamics · Experimental techniques ·
Modal analysis

23.1 Approach

The tested structure is referred to as the Cylinder-Plate-Beam (CPB) and has been used in previous nonlinear studies. The goal
of the nonlinear testing is to excite the CPB such that the response of the target NNM (mode 7) is isolated, allowing for the
extraction of the amplitude-dependent characteristics of frequency, mode shape, and damping. This was accomplished using
the force appropriation technique developed in. The general concept is, for sinusoidal excitation of a NNM, the input force
will be 90 degrees out of phase with the acceleration, i.e. the input and response will be in phase quadrature. While the theory
states that this phase quadrature criterion must be satisfied for all degrees of freedom and each harmonic (requiring an input
at each degree of freedom), Peeters showed that NNM isolation can be approximately achieved using single-point excitation.
Several mode indicator functions (MIFs) have also been developed for appraising the quality of NNM isolation. However,
given the preliminary nature of this work, these were not used. Instead, NNM isolation was judged by the quadrature between
the excitation force and the highest responding point of the target mode while using single-point excitation provided by a
modal shaker. Closed loop control was utilized to isolate the NNM as indicated by this phase quadrature criterion. Once this
was satisfied for a given excitation level, a 2 s frame of data was recorded, the force level increased, and the control sequence
repeated. Phase resonance was achieved at 95 different excitation levels.
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23.2 Results

Figure 23.1 shows the fundamental frequency for each measurement frame where a 13% decrease is seen between low
and high-level response. Figure 23.2 shows the magnitudes of the fundamental frequency and its harmonics for the control
accelerometer. Note that the amplitude of the ninth harmonic begins to increase near frame 45 and eventually becomes larger
than the fundamental near frame 69. This response is due to the nonlinearity produced by the target mode and indicates
a potential modal interaction. More detail will be given in the conference presentation. Other topics that will be covered
include: assessment of NNM isolation purity via two different MIFs, mode shape analysis, evidence supporting a modal
interaction, and computation of an amplitude-dependent damping coefficient for the target mode.

Notice: This manuscript has been authored by National Technology and Engineering Solutions of Sandia, LLC.
under Contract No. DE-NA0003525 with the U.S. Department of Energy/National Nuclear Security Administration.
The United States Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
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Chapter 24
Techniques for Nonlinear Identification and Maximizing Modal
Response

D. Roettgen, B. R. Pacini, and R. Mayes

Abstract Recent research has shown that weakly nonlinear structures can be modeled as a combination of nonlinear pseudo-
modal models. These modal models consist of a linear spring, mass, and damper with the addition of a nonlinear element
often identified using a restoring force surface technique. This approach is limited by force level achieved when exciting
the system for identification. Extrapolation leads to poor results when predicting the nonlinear response; thus, there is a
need to maximize the modal amplitude excited in these weakly nonlinear structures. Previous works have compared hammer
testing to shaker testing using windowed sinusoidal input forces. This appeared to be a promising technique to increasing the
excited modal amplitude. In this work the windowed sinusoidal technique is further investigated to understand how window
parameters (such as window width) can be optimized to maximize the modal amplitude obtained during the identification
process.

Keywords Nonlinear system identification · Experimental techniques · Structural dynamics · Modal analysis ·
Nonlinear testing methods

24.1 Introduction

Many industries design and manufacture mechanical structures with bolted joints. The frictional interfaces that occur due
to these joints often introduce nonlinearity into an otherwise linear system. Two main approaches exist to account for
these nonlinearities: local physical models and pseudo-modal modeling [1–3]. Local physical modeling attempts to capture
the physics happening at each local joint. While physically insightful, this method can be computationally expensive,
and the constituative models require expensive calibration for every structural joint. Nonlinear pseudo-modal modeling is
computationally inexpensive, and nonlinear parameters can be identified from a quick experiment focused on each nonlinear
mode. In this work, a weakly nonlinear system is studied which exhibited small shifts in frequency with large changes in
damping. In previous works [4, 5] pseudo-modal modeling was found to be a practical approach for this type of nonlinear
system.

Nonlinear pseudo-modal models take a form analogous to a standard modal model except augmenting a single degree-
of-freedom (DOF) system with a nonlinear forcing element. This element has taken many forms, from an Iwan element [6]
to simple polynomial springs and dampers [5]. This approach relies on two primary assumptions. First, the modes of the
system must remain uncoupled in the amplitude range of interest. Second, the mode shapes of the system must not change
with amplitude. These assumptions allow for the use of a modal filter to obtain single degree-of-freedom signals in order to
identify a nonlinear model. Like most nonlinear modeling techniques, the model is only accurate in the amplitude range used
in parameter identification, so maximizing this amplitude range is of great interest.

In previous works [4, 7], the achievable structural response was not limited by mechanical factors but by the maximum
allowable voltage output by the shaker amplifier. The objective of this work is to maximize the modal response using the
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windowed sinusoidal approach first presented in [4] by investigating the influnces of two factors of the input signal: frequency
of the sine wave and the window width. An experimental bolted assembly was utilized in order to obtain linear and nonlinear
response. Using a given shaker-amplifier configuration, the structure was tested with various windowed sinusoidal loadings
to observe which properties of the input signal resulted in increased modal response amplitude, thus increasing the range for
which the identified nonlinear model is valid.

This paper is organized as follows. Section 2 contains a brief description of the nonlinear pseudo-modal modeling
technique, the modal filter, and a windowed sinusoidal excitation method. Section 3 shows the experimental system of
interest and Sect. 4 details a standard nonlinear modal model fit to a baseline windowed sinusoidal excitation as performed
in [4]. Section 5 shows the different experimental loading cases investigated and Sect. 6 compares the models obtained from
select load cases. Finally, Sect. 7 contains conclusions from this study along with questions for future investigations.

24.2 Theory

This section provides an overview of the pseudo-modal model method used in this work to extract experimentally observed
nonlinearity. The objective of this study is to compare the modal amplitude levels and models fit from different loading cases.
Thus, this section also contains a summary of the modal filter and a detailed look at the arbitrary source excitation technique
employed.

24.2.1 Nonlinear Pseudo-Modal Model

This work focuses on weakly nonlinear mechanical systems, which can be modeled as nonlinear pseudo-modal models.
A nonlinear pseudo-modal model retains the assumptions of a linear modal model and acts similarly with a modal mass
connected to ground by a spring and damper, but with the addition of an unknown nonlinear forcing element. Note that this
technique assumes that the modes remain uncoupled and shapes do not change with amplitude. In [8], Eriten has shown a
rigorous theoretical foundation for these assumptions in the presence of weak nonlinearities.

For this work, the nonlinear forcing element are parameterized with polynomial springs and dampers as shown in
Fig. 24.1. In order to identify these polynomial stiffness and damping coefficients a Restoring Force Surface [9] technique
was implemented. A classical linear modal equation of motion is written as shown in Eq. (24.1), where q̈, q̇, and q are the
modal acceleration, velocity, and displacement, c0 and k0 are the linear modal damping and stiffness, and φTF is the modal
excitation force.

q̈ + c0q̇ + k0q = φT F (24.1)

The nonlinear elements are added to this equation of motion as seen in Eqs. (24.2) and (24.3). In Eq. (24.2), Fnl is a
generic nonlinear functional form, while in Eq. (24.3) this is parameterized with quadradic and cubic springs and dampers,
a form which has worked well in previous studies.

q̈ + c0q̇ + k0q + Fnl = φT F (24.2)

Fig. 24.1 Schematic of single
degree-of-freedom nonlinear
pseudo-modal model
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q̈ + c0q̇ + k0q + c1q̇ |q̇| + c2q̇
3 + k1q |q| + k2q

3 = φT F (24.3)

The mode shapes and linear coefficients (c0 and k0) are defined from low-level linear testing and the modal acceleration
(q̈), velocity (q̇), displacement (q), and force (F) are measured during a high-level test. Thus the procedure from [5] is
implemented to obtain the nonlinear spring and damper coefficients c1, c2, k1, and k2. This procedure involves gathering
terms with known or measured coefficients on one side of the equations and terms with unknown coefficients on the other as
shown in Eq. (24.4).

U = φT F − q̈ − c0q̇ − k0q =
[
q̇ |q̇| q̇3 q |q| q3

]
⎡
⎢⎢⎣

c1

c2

k1

k2

⎤
⎥⎥⎦ = P

⎡
⎢⎢⎣

c1

c2

k1

k2

⎤
⎥⎥⎦ (24.4)

Note, the best parameters were obtained by transforming these quantities to the frequency domain, and stacking the real
and imaginary parts of the signals as described in [5]. A least-squares estimate of these unknown coefficients are obtained
by pre-multiplying U by the pseudo-inverse of experimental derived values P as in Eq. (24.5). Using these polynomial
coefficients, the nonlinear forcing element can now be used to predict the nonlinear response of this mode to several different
loading cases.

⎡
⎢⎢⎣

c1

c2

k1

k2

⎤
⎥⎥⎦ = P+U (24.5)

24.2.2 Modal Filter Theory

The nonlinear pseudo-modal model technique described in Sect. 2.1 relies on obtaining a single degree of freedom modal
response. Thus, modal filtering is an essential step in the nonlinear modal modeling process. In this study, a spatial filter
referred to here as the full-modal filter [5, 10] was used to isolate the single degree-of-freedom response for the target mode
of the system.

In linear modal analysis, physical and modal accelerations are related through the linear mode shape matrix, Φ, as shown
in Eq. (24.6).

�q̈ = ẍ (24.6)

By premultiplying the physical domain measurements with the Moore-Penrose pseudo-inverse of the mode shape matrix,
measured modal responses can be obtained (see Eq. 24.7). This filtering is key to the nonlinear pseudo-modal modeling
process and thus sufficient instrumentation must be used in order to properly filter the modes.

q̈ = �+ẍ (24.7)

24.2.3 Experimental Applied Force

Hammer and shaker excitation techniques were studied and compared in [4]. For this study, the windowed sinusoid approach
discussed in [4] was used to excite an experimental structure to high excitation levels. This has been found to be a practical
way to obtain high amplitude response of a single mode. The windowed sinusoid approach takes a sine wave at a designated
center frequency, fe, and applies a window to modulate the amplitude. This signal is used as the input voltage to the amplifier
that powers the modal shaker. Because of the window, the frequency content of the signal is not contained solely at fe,
but spread over the frequency band fe ± Δfr, where Δfr is the excitation bandwidth determined by the window function.
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Fig. 24.3 Example windowed sinusoidal input

Figure 24.2 shows this input voltage in the frequency domain, while Fig. 24.3 shows the input voltage, sine wave, and
window in the time domain.

Spreading of the frequency content is ideal for nonlinear investigations. Often, a weakly nonlinear system contains a small
shift in resonant frequency as amplitude is increased. Therefore, a single tone sine wave may not input sufficient energy into
a nonlinear mode as the system softens or hardens unless the frequency is constantly updated to match the shifting resonance.
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The windowed sinusoid spreads the frequency content to help ensure the system has some excitation energy at resonance
regardless of shifting due to nonlinearity. In past studies, windows with large Δfr were used to ensure energy was input at
resonance. Signals with large Δfr in the frequency domain correspond to short pulses in the time domain, which reduces
the excitation of the target mode. During testing, amplifier voltage limits were typically reached, reducing the achievable
response amplitude of the mode. It was theorized that concentrating the input energy over a narrower band and shifting it
near where the nonlinear resonance of the mode is expected to transition to at higher response levels would result in larger
responses without exceeding the electrical limits of the amplifier. For example, if preliminary tests show that the target mode
is softens at high amplitude, then fe is set to be lower than the linear natural frequency. However, if the band is too narrow,
the mode may soften or harden past the input energy band and fall off-resonance, therefore, a balance must be achieved
such that a high response level is achieved while also continuously excitingthe mode’s resonance. This study iterates on the
center frequency, fe, and excitation bandwidth, Δfr, in order to optimize the response of a target mode of a jointed structure.
Note that in previous works [4, 7], a triangle window was used on the sinusoid, but in more recent works and this study, a
Blackman-Harris [11] window was utilized. The latter is preferred as it has lower side lobes in the frequency domain which
allows for more energy input in the frequency band of interest.

24.3 Experimental Set-Up

24.3.1 Hardware Description

A picture of the experimental set-up is shown in Fig. 24.4. The hardware consists of an aluminum beam and plate connected
with two bolts and a layer of epoxy. This subassembly is connected to an aluminum cylinder with eight bolted joints along
a large continuous interface. This system is referred to as the Cylinder-Plate-Beam (CPB) and has been the focus of many
nonlinear studies including [4, 5, 7].

The system was instrumented with 26 triaxial accelerometers in the same configuration as tested in [4]. These were
selected using mode shapes from a finite element model to ensure independent shapes below 1600 Hz. The CPB was
suspended using two bungee cords to approximate a free-free boundary condition. For all testing, a force transducer and
shaker set-up were attached at the rear of the cylinder. This shaker was used to perform low-level burst random testing as
well as high-level arbitrary source excitations.

24.3.2 Linear Model Extraction

A low-level burst random test was performed in order to obtain linear modal parameters. The linear shapes from this test
were used to filter high-level accelerometer measurements into single degree-of-freedom modal responses while the linear
natural frequencies and damping ratios were used as known quantities during the nonlinear identification process. The linear
natural frequencies and damping ratios of the system are shown in Table 24.1.

Fig. 24.4 Physical CPB hardware configuration
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Table 24.1 Linear modal
parameters

Mode fn (Hz) ζ (% cr) Shape description

7 129.6 0.397% 1st soft bending of Beam
8 172.6 0.322% 1st stiff bending of Beam
9 385.8 0.069% (2,0) Ovaling model
10 391.9 0.083% (2,0) Ovaling model
11 551.6 0.278% Axial mode
12 945.4 0.413% (3,0) Ovaling model
13 1025.7 0.076% 2nd soft bending of Beam

Fig. 24.5 Model process
overview

Fig. 24.6 Time domain modal force and acceleration

24.4 Nonlinear Modal Model Extraction Overview

In this section, the results from a traditional windowed sinusoid excitation are analyzed resulting in a nonlinear pseudo-modal
model.

The procedure used to identify nonlinear pseudo-modal models from experimental data as described in Sect. 2.1 can be
broken into three main steps. First, a high-level excitation must be applied, such as the windowed sinusoid discussed in Sect.
2.3. Next, a single degree-of-freedom modal response must be obtained, often with the use of a spatial modal filter. Finally,
using this modal response the restoring force surface technique described in Sect. 2.1 can be used to identify a nonlinear
pseudo-modal model that best fits the measured data in a least squares sense (Fig. 24.5).

For a baseline, the CPB was tested using a wide-bandwidth windowed sinusoid. For this initial test, the structure was
excited using a windowed sinusoid where the center frequency, fe, was the first linear natural frequency of 130 Hz, and the
excitation bandwidth, Δfr, was ±30 Hz. This provides a wide pulse of energy in the frequency domain near the first bending
resonance of the structure. The voltage level was tuned to maximize the voltage output of the amplifier without exceeding
the electrical limits. After applying the modal filter, the accelerometer measurements were transformed into a single DOF
response of the first bending mode. Figure 24.6 shows the applied modal force and response in the time domain, while
Fig. 24.7 shows the data in the frequency domain.

Following the RFS procedure from Sect. 2.1, a nonlinear modal model was extracted using a cubic and quadradic
polynomial spring and damper as the nonlinear forcing elements. A simulation of the model was performed and obtained
good agreement with the measured response data as shown in Fig. 24.8. Early in time, at high amplitude levels, the signals
have great correlation, while later in time the measurement has more damping and the model begins to overpredict. This
wide bandwidth windowed sinusoid is similar to those applied to the system in recent works [4], where results with similar
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Fig. 24.7 Frequency domain modal force and response

Fig. 24.8 Simulated response for baseline case

accuracy were obtained. The slight degredation in the prediction late in time is believed to be a result of the least-squares
fitting since this method biases the coefficients to minimize the error at the high amplitude responses.

24.5 Experimental Results to Modified Windowed Sinusoidal Inputs

In order to optimize modal amplitude, the values of fe andΔfr were adjusted from this baseline case to observe the impact of
these input parameters on the modal amplitude achieved for the mode of interest. These test cases are summarized in Tables
24.2, 24.3, and 24.4. First, the center frequency was held constant and the excitation bandwidth, fr, was narrowed from
30 Hz to 20, 10 and 5 Hz respectively. By narrowing fr but maintaining the same maximum voltage, the applied force
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Table 24.2 Windowed
sinusoidal signal parameters
Cases A–D

Test case fe (Hz) fr (Hz) Amplifier level Description

A 130 ±30 70 Baseline
B 130 ±20 70 –
C 130 ±10 70 –
D 130 ±5 70 –

Table 24.3 Windowed
sinusoidal signal parameters
Cases E–G

Test case fe (Hz) fr (Hz) Amplifier level Description

E 129 ±30 70 Second
Baseline

F 119 ±30 70 –
G 119 ±5 70 –

Table 24.4 Windowed
sinusoidal signal parameters
Cases E and H

Test case fe (Hz) fr (Hz) Amplifier level Description

E 129 ±30 70 Second
Baseline

H 119 ±5 43 Matched
Amplitude

Fig. 24.9 Cases A–D modal response time and frequency response

provided additional margin to the shakers electrical limits, allowing the applied force to be increased. These are represented
in Test Cases A–D.

Next the system was excited with a windowed sinusoid with a shifted center frequency. Note that the testing was conducted
over a period of two days, during which the linear natural frequency of the target mode shifted. Thus, a new baseline case
is contained in Test Case E, and Test Cases F–H contain correspond to experiments with shifted center frequencies. From
preliminary testing and previous studies conducted on this structure, the target mode is known to soften, so Cases F–H have
center frequencies lower than the linear natural frequency. Case F retained the baseline 30 Hz window width. Case G applied
a force with a center frequency of 119 Hz but narrows the excitation bandwidth to ±5 Hz. Finally, Case H lowers the input
voltage of Case G to obtain approximately the same modal amplitude as the second baseline case.

24.5.1 Experimental Results from Cases A–D

Table The results of Experimental Cases A–D are shown in Figs. 24.9 and 24.10, where Fig. 24.10 shows the modal response
obtained from the excitation inputs displayed in Fig. 24.9. The frequency band from ±30 to ±5 Hz to see the effect on the
resulting modal amplitude. The windowed sinusoid signal parameters are summarized in Table 24.2.
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As shown in Fig. 24.10, the broadband frequency input of Case A does apply a smaller force in the frequency domain
than the narrower window Cases B–D. In a linear system, the higher modal forces would be expected to obtain higher modal
response but the opposite is seen in Case D where the forcing is concentrated in a narrow band around the linear natural
frequency. Recall the nonlinearity for this mode results in a softening effect. The lower modal amplitude at a higher force
implies that, as the mode achieved higher response levels, its resonant frequency decreased out of the excitation bandwidth.
Conversely, loading from Case B provided the highest modal response without applying the highest modal force, so there is
an optimal excitation bandwidth for exciting a high modal response.

The instantaneous frequency of each of the above cases was computed as the inverse of the oscillation period as determined
from the zero crossings in the respective responses, see Fig. 24.11. The initial timeframes, ti, begin near 130 Hz which was
the selected forcing frequency for these experiments. As the amplitude increases, each of the experimental cases follows a
different trajectory as the frequency traces through the response transient. Eventually, Cases A–C converge onto the same
curve and end at the final time, tf . Note that as the signals become smaller, the calculated instantaneous frequency becomes
very noisy, so only a certain amplitude range of data was considered which is why the curves do not end at the linear natural
frequency of 130 Hz. Cases A and B lay on the same curve as the frequency shifts from ∼122 Hz back to ∼128 Hz. Case
D never falls onto this curve because the by the time the force response ends the signal is almost fully decayed. This is
confirmed in the time histories shown in Figs. 24.9 and 24.10. These case studies show that an optimal window width can
be selected to maximize modal amplitude but a balance must be achieved such that the excitation envelopes the shift in the

Fig. 24.10 Cases A–D acceleration time and frequency response

Fig. 24.11 Cases A–D frequency tracking
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Fig. 24.12 Cases E–G modal response time and frequency response

Fig. 24.13 Cases E–G modal acceleration time and frequency response

nonlinear resonance Ideally, a quality nonlinear pseudo-modal model would match all time responses as it should be able to
accommodate complicated, potentially off-resonance loadings.

24.5.2 Experimental Results from Cases E–F

With the insight gained from Cases A–D, another series of tests were conducted with the center frequency of the windowed
sinusoid shifted from the linear natural frequency of the target mode. This was accomplished by adjusting fe in the input
voltage signal. These new loading signals, Cases E–G, are summarized in Table 24.3.

This shifted resonance study consists of Case E–G shown in Figs. 24.12 and 24.13. Cases E and F provide nearly identical
results, with both reaching around the same modal amplitude while Case G magnifies the modal amplitude by over a factor
of 2 in the time domain. With more optimization on center frequency shift and excitation bandwidth, this magnification could
be even higher. The modal response also has a second pulse as can be observed in Fig. 24.13.

Figure 24.14 shows the frequency tracking plot for Cases E–G. Here, the responses of Case E and F begin near their
respective forcing frequencies. Both cases eventually converge to the same backbone during the free decay portion of the
transient. Case G begins at the forced natural frequency of around 119 Hz, then softens as it reaches peak modal amplitude
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Fig. 24.14 Cases E–G frequency tracking

Fig. 24.15 Cases E and H modal force time and frequency response

down to around 114 Hz before hardening to around 125 Hz. The signal of the response, while under forced response
conditions, appears to be semi-bounded by the excitation bandwidth Δfr set of ±5 Hz.

24.6 Experimental Results from Cases E and H

In order to evaluate the nonlinear models extracted from varying inputs, the voltage input from Case G was scaled until it
excited the same modal amplitude as Case E. The second baseline and the new loading signal, Case H, are shown in Table
24.4.

This new loading case is shown as Case H in Figs. 24.15, 24.16, and 24.17. While the modal amplitudes are similar,
the peak modal force required for Case H is much smaller. Figure 24.17 shows the frequency tracking for these two cases
which behave as expected: the initial frequency of each response is near their corresponding forcing frequencies and then the
free-decay portions overlay near the end of the transient. In the next section, models fit from these two cases are compared
in order to understand how shifting fe influences the model obtained from a restoring force surface identification process.
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Fig. 24.16 Cases E and H modal acceleration time and frequency response

Fig. 24.17 Cases E and H frequency tracking

Table 24.5 Windowed
sinusoidal signal parameters
Cases E, G, and H

Test case fe (Hz) fr (Hz) Amplifier level Description

E 129 ±30 70 Second
Baseline

G 119 ±5 70 –
H 119 ±5 43 Matched

Amplitude

24.7 Model Comparison

The restoring force surface technique outlined in Sect. 2.1 was implemented in order to find nonlinear modal models for Cases
E, G and H. For convienance, the loading parameters for these simulations, Cases E, G and H, are shown in Table 24.5.

The cubic and quadradic polynomial stiffness and damping coefficients obtained are displayed in Table 24.3. Note, the
value of these coefficients are drastically different for Cases E and G. This is expected as these two tests reached different
modal amplitude levels and used the same model order to fit this different range of amplitudes. Comparing the coefficients
from Cases E and H is more useful as these two cases reached nearly the same modal amplitude level but used different
values of fe and Δfr. The models obtained for these two cases are nearly identical showing that peak modal amplitude is
more influential in the model than the center frequency and/or window width (Table 24.6).
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The response of the target mode was simulated using two different models: one identified from the Case E measurements
and the other from Case G measurements. The forcing for both of these simulations is that from Case E. The results are
shown in Fig. 24.18. Both simulations compare to measured data favorably with the Case E model performing slightly better,
as it overlays with the measured in late time. The error in the late time simulation using the Case G model is similar to the
error seen in previous studies [4]. Even with different coefficient values for the nonlinear models, the two models exhibited
similar nonlinear effects in the response range achieved with Case E forcing. Figure 24.19 displays the effective stiffness
and damping for each of these models where keff = k0 + k1|q| + k2q2 and ceff = c0 + c1 |q̇| + c2q̇

2. These show good
agreement between the two models but the Case G model goes to a higher modal amplitude. There is a slight discrepancy in
modal effective dissipation, potentially due to the nature of the forced response of Case G model but this is a topic for future
study.

Next, the Case G loading was applied to the same two models. Here, the Case G model vastly outperforms the Case
E system. This is expected as the Case E simulation has to extrapolate to reach the modal response levels of the Case G
excitation (Fig. 24.20).

Finally, models identified from Case E and Case H were used to simulate the response of the target mode to the Case
H loading, see Fig. 24.21. The results of the two simulations are very similar which is to be expected given that they had
very little difference in their nonlinear coefficient values. so they are expected the perform similarly. As shown in Fig. 24.21,
the Case E model can capture the milder second pulsing of this loading case and the effective stiffness and damping curves
overlay as shown in Fig. 24.22. Neither model matches the measured response for the entire transient like the baseline loading
presented in Sect. 4 and this should be a topic for further study.

Table 24.6 Nonlinear coefficients for cases E, G and H

Test Case Case E Case G %diff, EG Case H %diff, EH

k1 −7.50E+07 −5.63E+07 −25% −7.28E+07 −3%
k2 1.54E+10 4.73E+09 −69% 1.37E+10 −11%
c1 −1.489 −1.186 −20% −1.403 −6%
c2 −0.025 0.109 −536% −0.034 36%

Fig. 24.18 Cases E and G simulations to Case E forcing
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Fig. 24.19 Effective stiffness and damping for Cases E and G

Fig. 24.20 Cases E and G simulation to Case G

24.8 Conclusions and Future Work

Nonlinear models identified from experiments are only accurate to the response amplitudes achieved during testing, thus
obtaining higher modal amplitudes during experiments is very important to the versatility of the identified models. This work
demonstrated new innovative techniques for optimizing modal amplitude given a specific shaker and amplifier configuration.
These techniques were implemented on a bolted assembly consisting of an aluminum cylinder, plate, and beam. In previous
studies, windowed sinusoidal inputs proved to be a useful excitation technique when attempting to reach high modal
amplitudes in a jointed structure. In previous studies, this sinusoidal pulse was centered around the linear natural frequency.
In this work, the windowed sinusoidal technique was implemented with varied window widths and center frequencies with
the goal of placing more energy near the expected resonance of the structure which softened due to nonlinearity. By applying



24 Techniques for Nonlinear Identification and Maximizing Modal Response 187

Fig. 24.21 Cases E and H simulation to Case H

Fig. 24.22 Effective stiffness and damping for Cases E and H

a narrow window at an offset frequency, the modal amplitude achieved double that of previous tests using the same set-up.
Additional optimization could be performed to increase the amplification to even higher levels and is of interest for future
work. This amplification is significant as it means natural excitations slightly off of linear resonance can still lead to large
response due to a nonlinearity in the structure.

A restoring force surface technique was applied to identify several nonlinear models from experiments with different load
cases to capture the nonlinearity of the structure for the mode of interest. It was shown that the model identified from a
standard windowed sinusoidal excitation was equivalent to that of the new technique, provided, they both excite the system
to the same modal amplitude. Additionally, a model identified from a data set with even higher modal amplitude provided a
quality fit for the standard excitation providing a model more versatile of multiple excitation configurations.
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Chapter 25
Influences of Modal Coupling on Experimentally Extracted
Nonlinear Modal Models

Benjamin J. Moldenhauer, Aabhas Singh, Phil Thoenen, Daniel R. Roettgen, Benjamin R. Pacini,
Robert J. Kuether, and Matthew S. Allen

Abstract Research has shown that mechanical structures can be modeled as a combination of weakly nonlinear uncoupled
modal models. These modal models can take many forms such as a basic cubic stiffness and damping force model, or a modal
Iwan model. This method relies on two assumptions: (1) the mode shapes of the structure are not amplitude dependent, and
(2) the modes of the structure do not couple or interact in the amplitude range of interest. Recently, a hypothesis was proposed
that when multiple modes are excited that exercise the same nonlinear joint, the modes begin to couple. This hypothesis is
tested on a physical system using a series of narrow-band excitation techniques via a modal shaker and broad-band excitation
from a modal hammer. The resulting amplitude dependent stiffness and damping from the various excitation types are used
to characterize the degree of modal coupling. Significant modal coupling is observed between three of the low order modes
of a cylindrical structure with a beam connected to a plate on its end, which exhibits nonlinearity due to micro-slip in bolted
joints.

Keywords Modal coupling · Nonlinear modal model · Iwan model · Nonlinear simulation · Hilbert analysis · Nonlinear
reduced order models

25.1 Introduction

Mechanical structures with jointed interfaces are common in modeling and design due to ease of assembly and the difficulty
in producing single part structures. These jointed interfaces introduce nonlinearity to structural dynamic response in the form
of frictional energy dissipation caused by microslip in low pressure contact regions. This behavior affects the frequency and
damping characteristics observed in the mechanical response of the global system, which is difficult to model and requires
advanced computational and experimental techniques to characterize.

Modal analysis is the most utilized approach for non-destructive experimental testing to determine natural frequencies and
damping ratios of built-up systems. For linear analysis, it is proven that the modes of vibration are amplitude independent
and can be superimposed due to their orthogonality properties. For pseudo—nonlinear modal analysis, it is assumed that
the nonlinearity primarily affects damping and does not alter the mode shapes; thus, the linear modes are assumed to
remain uncoupled and can be used to decouple nonlinear data, as shown by Eriten et al. [1]. However, recent studies have
demonstrated that the coupling between modes is nonnegligible and can lead to inaccurate nonlinear models [2]. This work
drives to challenge the uncoupled mode assumption by experimentally measuring modal coupling behavior in a controlled
testing environment. Multimodal structural response is passed through a modal filter to approximate a single degree of
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Fig. 25.1 A schematic of the Cylinder – Plate – Beam (CPB)

freedom response, which is then analyzed with the Hilbert Transform, as described by Feldman [3], to extract the amplitude
dependent natural frequency and damping ratio for each mode. These modal characteristics serve as the metrics for evaluating
the influence of modal coupling.

The structure of interest is the Cylinder–Plate–Beam (CPB) benchmark structure, which consists of an aluminum cylinder
with an end plate and a cantilever beam, as shown in Fig. 25.1. The small joint interface between the plate and beam is
presumed to be essentially bonded, as the beam is attached via two steel bolts and an adhesive. Thus, most nonlinearity in
the system is assumed to be frictional damping in the large, continuous interface between the plate and cylinder flange.

To capture the modal coupling within this system, the first three elastic modes, the soft and stiff cantilever beam modes and
the first drum mode of the end plate, are excited both independently and simultaneously. In this work, windowed sinusoids
from a modal shaker [4] and modal hammer impacts are used to excite these CPB modes. By comparing the nonlinear
response from each, the degree of coupling can be quantified, as detailed in the results that follow.

25.2 Experimental Theoretical Background

25.2.1 Pseudo – Modal Models

Linear motion in structural dynamics implies that the response of the system is linearly proportional to the excitation
amplitude and the modal frequency and damping is constant with respect to response amplitude. A typical linear system
can be denoted by Eq. (25.1) where M, C, and K are the mass, damping and stiffness matrices, respectively, F is the physical
input force vector, and x(t) is the physical motion of the system.

[M] ẍ(t)+ [C] ẋ(t)+ [K] x(t) = {F } (25.1)

A modal filter can transform the physical motion to a set of single degree of freedom (SDOF) modal systems as shown in
Eqs. (25.2) and (25.3), where q(t) is the modal response as described in [5–7]. The modal filter consists of the system linear
mass normalized mode shapes.

ẍ(t) = �q̈(t)→ q̈(t) = �†ẍ(t) (25.2)

q̈r (t)+ 2ζrωr q̇r (t)+ ω2
r qr (t) = �T {F } (25.3)

A nonlinear pseudo–modal model introduces a nonlinear term into Eq. (25.3) as shown in the following equation.

q̈r (t)+ 2ζrωr q̇r (t)+ ω2
r qr (t)+ Fnl (q̇r , qr ) = �T {F } (25.4)

This model assumes:

1. The mode shapes of the structure are amplitude independent
2. Mode shapes do not couple or interact, and no energy is transferred between modal DOF
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Using these assumptions, the linear mode shapes can decouple nonlinear response of the system into a modal response.
However, if significant interactions between modes are introduced, i.e. modal coupling, these assumptions fail and cannot
accurately capture the nonlinear behavior of the system. The nonlinear terms added to the linear equations of motion (EOM)
could incorporate additional stiffness and damping that are functions of the response of other modes.

25.2.2 Hilbert Analysis

Linear modal analysis is used to capture the modal parameters (i.e. mode shapes, frequencies, and damping) of a time
invariant system. However, for systems that depict nonlinearities, Hilbert Analysis is widely used to depict the amplitude
dependent frequency and damping behavior [8–10] of a SDOF response. If the modes can be sufficiently uncoupled to yield
SDOF modal equations for the rth mode, the response envelope can be described as a sum of the decaying harmonic response
and its Hilbert transform as governed by

Qr(t) = qr(t)+ iq̃r (t) (25.5)

where q̃r (t) is the Hilbert transform of the signal Qr(t) = A(t) exp (iψ(t)), A(t) is the magnitude of the envelope and ψ(t) is
the instantaneous phase of the modal response.

Using that equation, the nonlinear amplitude dependency can be described through the modal damping and stiffness as a
function of amplitude. As a result, the instantaneous damped natural frequency and the instantaneous damping ratio can be
described as derivatives of the phase and amplitude, respectively, where ωr = ωr,damped/

√
1 − ζ 2

r .

ωr,damped = dψ(t)

dt
(25.6)

−ωrζr = dA(t)

dt
(25.7)

An extended overview of the Hilbert transformation and its application to modal analysis can be found in Feldman [3]. In
this work, the Hilbert transformation is used to determine the amplitude dependent modal parameter behavior of experimental
system response from windowed sinusoid shaker testing and modal hammer impacts.

25.3 Experimental Methodology

25.3.1 Test Structure

The Cylinder – Plate – Beam (CPB) structure, depicted in Fig. 25.2, is manufactured from 6061-T6 aluminum and anodized
for aesthetic reasons. The structure consists of an 18′′ long, 11′′ diameter hollow cylinder in which eight steel inserts are
press-fit into the flange on each end. The interior of the cylinder was lined with foam to mitigate any acoustic resonances of

Fig. 25.2 A side view of the Cylinder – Plate – Beam (CPB)
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Fig. 25.3 CPB Accelerometer Layout. Green denotes triaxial, blue are uniaxial, and black are uniaxial accels underneath a force transducer to
serve as shaker drive points

Table 25.1 Experimental natural
frequencies and damping ratios

Mode 1 Mode 2 Mode 3

Natural frequency (Hz) 121.2 155.7 548.8
Damping ratio (%) 0.206 0.325 0.247

the cylinder that could interfere with the recorded responses. An 8.5′′ diameter × 0.25′′ thick plate is attached to the cylinder
flange using eight steel bolts, threaded into the steel inserts to a torque of 50 in-lbs. A 1′′ × 2′′ × 12′′ beam is bolted to the
plate using two bolts as well as bonded with dental cement to minimize contact nonlinearities at this particular interface. The
intent of this was to localize any nonlinear behavior in the response to the large contact area between the plate and cylinder
flange.

Twenty-six accelerometers, eighteen triaxial and eight uniaxial, are placed on the structure according to engineering
judgement, as shown in Fig. 25.3. Accelerometers on flat faces were attached with superglue while those on the curved wall
of the cylinder were mounted with dental cement to better bond to the non-flat surface. Point 341, on the cylinder flange and
in the axial direction, was selected as the shaker drive point since the first three modes of the CPB, the target modes, could
all be easily excited from this location. The accelerometer response data was recorded in LMS Test.Lab™ software with an
88 channel LMS SCADAS frontend. In order to achieve a fine time domain resolution, a bandwidth of 12,800 Hz was used
with 65,536 frequency lines, leading to a time sample increment of 39.0625 μs.

25.3.2 Linear Testing

To collect the linear modal parameters for the CPB, low level burst random excitation from the shaker was utilized to avoid
exciting any nonlinearity in the cantilevered beam modes and drum mode of the end plate. The resultant linear FRFs, a
composite of which is shown below in Fig. 25.4, were curve fit using the Algorithm of Mode Isolation (AMI) [11] in
MATLAB, producing the natural frequencies and damping ratios contained in Table 25.1, and mass normalized mode shapes,
representations of which are given in Fig. 25.5.

25.3.3 Nonlinear Shaker Testing

To obtain nonlinear response data, the shaker was used to excite the CPB via the setup shown in Fig. 25.6. The aluminum
stinger connecting the shaker to the CPB was set to have a free length of 1.5′′ to maximize separation between the CPB and
the shaker while keeping the first stinger buckling mode above the frequency range of interest.

To excite the CPB, the shaker was supplied with signal traces to create windowed sinusoidal inputs, or a sine beat [12].
These signals are a sine wave of specified frequency and sample rate passed through a Blackman-Harris window [13],
resulting in a signal of definable width in the frequency domain. For example, the signal used to excite the first mode is
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Fig. 25.4 Composite FRF from a low level burst random shaker test of the CPB

Fig. 25.5 The first three elastic modes of the CPB

Fig. 25.6 Experimental Setup, showing the shaker, CPB, and the stinger connecting them

shown in Fig. 25.7. The time trace on the left shows the widowed sine wave, while its FFT on the right shows that the
frequency content contained in the signal is centered at the natural frequency and has a maximum width of 60 Hz. A 30 Hz
roll off to either side of the natural frequency was chosen to produce a peak wide enough to continually excite the mode as
the natural frequency shifts due to nonlinear effects, while narrow enough to only significantly excite the mode of interest.

The goal of this work is to study whether the test specimen exhibits a different nonlinear response when a single mode is
excited versus when multiple modes are excited. To excite two modes simultaneously, the same process was completed on
each mode, with the windowed signals then added and superimposed. To exemplify this, the signal created to excite mode 1
and mode 2 is shown in Fig. 25.8.

Windowed sine excitations were defined for each mode individually and for each pairing between the first three modes,
or modes 1 & 2, 1 & 3, and 2 & 3. For the individual modes, peak voltages of 7.0, 5.6, 3.5, and 1.4 volts were used. A
maximum of 7 volts was set due to the shaker amplifier at predetermined settings being unable to accept above this level
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Fig. 25.7 Voltage signal sent to produce a windowed sine centered on mode 1

Fig. 25.8 Voltage trace used to simultaneously excite modes 1 and 2

Table 25.2 Test Matrix showing all the test cases and voltages used

Mode 1 Mode 2 Mode 3 Modes 1 & 2 Modes 1 & 3 Modes 2 & 3

1.4 V 1.4 V 1.4 V 1.4 V 1.4 V 1.4 V 1.4 V 1.4 V 1.4 V
3.5 V 3.5 V 3.5 V 3.5 V 1.4 V 3.5 V 1.4 V 3.5 V 1.4 V
5.6 V 5.6 V 5.6 V 1.4 V 3.5 V 1.4 V 3.5 V 1.4 V 3.5 V
7.0 V 7.0 V 7.0 V 3.5 V 3.5 V 3.5 V 3.5 V 3.5 V 3.5 V

5.6 V 1.4 V 5.6 V 1.4 V 5.6 V 1.4 V
1.4 V 5.6 V 1.4 V 5.6 V 1.4 V 5.6 V

without clipping the signal. The subdivisions below 7 V were set to provide several intermediary excitation levels to compare
the response from each. The mode pairs were performed with various combinations of these voltage levels, as shown in Table
25.2. This was done to collect data with modes at different relative excitation levels, which could cause varying degrees of
modal coupling.

25.3.4 Shaker Experimental Results

After performing all the necessary windowed sine excitations, the recorded time responses from the accelerometers were
imported into MATLAB. This physical domain data was transferred to the modal domain by a modal filter, using the mass
normalized mode shapes from the linear tests. This produces an approximately SDOF response for each mode, which can
then be analyzed via the Hilbert Transform to acquire the amplitude dependent natural frequency and damping ratio. For the
isolated modes 2 and 3, excited at various voltage levels, the Hilbert curves for damping ratio and natural frequency versus
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Fig. 25.9 Damping Ratio & Natural Frequency vs. Velocity Amplitude for (Left) Mode 2 and (Right) Mode 3 at various excitation levels. The
horizontal black line represents the linear value

modal velocity amplitude are shown in Fig. 25.9; mode 1 results closely resemble mode 2 and are consigned to Appendix A,
Fig. 25.15, for brevity.

In these figures, the horizonal black line represents the linear modal value, as determined from curve fitting a low level
burst random test performed immediately prior to the windowed sinusoid tests. This value was found to agree with results
from a curve fit of an additional low level burst random performed immediately after the windowed sines, signifying that
the linear system did not significantly change during the test. At low amplitude, the Hilbert curves converge toward the
expected linear value, while as amplitude increases, the natural frequency gradually decreases for all three modes. For mode
3, damping is observed to continually increase, while modes 1 and 2 experience an initial increase and then decrease in
damping value, which may be indicative of macro-scale slip in the joint. However, all three modes follow their same trend in
frequency and damping over all four excitation levels, in that the curves overlay. This signifies that, while the modes exhibit
clearly nonlinear attributes, these effects are consistent and repeated excitations at various levels do not alter the system
characteristics.

When exciting two modes simultaneously, the modally filtered response results in two SDOF responses that can be
analyzed with the Hilbert Transform. Figure 25.10 shows the response of mode 2 when it is excited together with mode 1.
The dashed line represents the response of an isolated mode 2, while the other lines represent the various combinations of
mode 1 and 2 excitation. In the legend, the numbers are the voltage level of the mode with respect to the order given at the
beginning of the entry. As the excitation of mode 1 increases relative to the mode 2 excitation, the Hilbert curves deviate
further from the isolated baseline. The decrease in natural frequency becomes much more prominent and the damping curves
seem to shift to the left, where the damping is increasing at lower amplitudes. These changes can be interpreted as follows:
mode 2 has a certain damping nonlinearity when it is excited in isolation, which comes about because a larger fraction of the
joint area slips as mode 2’s amplitude increases. When mode 1 is also excited, this apparently puts the joints into a state of
slip that is greater than what they would experience if mode 2 was excited alone, and so mode 2’s apparent stiffness decreases
and its damping increases. A similar trend is visible in the mode 1 response when mode 2 is excited, as shown in Fig. 25.16.
Specifically, when mode 2 is excited to a higher level than mode 1, the mode 1 response deviates away from the isolated
baseline.
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Fig. 25.10 Mode 2 response when modes 1 and 2 are excited simultaneously

Figure 25.11 shows the mode 2 response when mode 3 is also excited. This case does not show any significant change in
natural frequency while also displaying a very slight decrease in damping for all the mode pair levels. This reveals that modes
2 and 3 are not significantly coupled, and perhaps arises because these modes exercise the joints in a way such that they do
not influence the stiffness/damping of the other mode. Mode 1 also does not exhibit any reaction to mode 3 excitation, as
shown in Fig. 25.17. These results indicate that modes 1 and 2, the first two cantilevered beam modes of the CPB, have some
degree of modal coupling, while both seem to be independent of Mode 3, the drum mode of the plate.

Seemingly contrary to the previous statement, large deviations in the mode 3 response are observed when mode 2 is
simultaneously excited, as seen in Fig. 25.12. Any degree of mode 2 excitation causes the mode 3 response to deviate from
its isolated state, again given by the dashed line. Also, the various cases with the same mode 2 voltage level are grouped
together, as in all three 1.4 V and both 3.5 V cases show very similar responses. A comparable scenario is observed when
mode 1 is also excited, as shown in Fig. 26.18. As the mode 1 or 2 excitation increases, the mode 3 response exhibits
consistently decreasing natural frequency and increasing damping.

Thus, while modes 1 and 2 both affect the response of the other, mode 3 seems to have little to no effect on modes 1 and 2,
while mode 3 is greatly affected by modes 1 and 2. This would indicate that there is some degree of modal coupling present
between all three modes, but to varying degrees. An explanation for this could simply be the dynamics of the physical motion
associated with each mode. As seen in Fig. 25.5, modes 1 and 2 are first cantilever beam modes acting in perpendicular
directions, but with the same mass. For both modes to be simultaneously excited, each must act against the inertia associated
with the other. This will produce some degree of diagonal motion, changing how to beam contacts the plate at the root, thus
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Fig. 25.11 Mode 2 response when modes 2 and 3 are excited simultaneously

slightly altering the characteristics of the modes. For mode 3, it likely doesn’t affect the beam modes because the beam is
rooted at the center of the plate. This location is a nodal point in the plate drum mode shape; the cantilevered motion of
modes 1 and 2 are unperturbed by the root of the beam translating axially. However, it is the transverse motion of the beam in
modes 1 and 2 that causes the drastic shifts in mode 3. As the beam oscillates, the plate flexes and warps under it, distorting
the shape of the drum mode and thus how the plate contacts the cylinder flange. This range of dynamic interaction could be
the cause of the modal coupling observed in the experimental data shown above.

25.3.5 Nonlinear Hammer Testing

Immediately following the shaker testing, a modal hammer was used to excite the CPB under the same boundary conditions,
i.e. the same environment and with the shaker still attached. The CPB was impacted beside the shaker drive point to directly
compare with the shaker results and at the tip of the beam in all three directions to directly excite each mode. As with
the shaker data, the physical response was passed through a modal filter before preforming Hilbert analysis. Figure 25.19
contains plots of typical hammer input, physical response, and modal response in the time and frequency domain. The
resultant Hilbert curves for mode 2 due to the various impact cases are shown in Fig. 25.13, where the dashed line shows the
response due to a windowed sinusoidal excitation from the shaker. In terms of natural frequency, all the impact responses
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Fig. 25.12 Mode 3 response when modes 2 and 3 are excited simultaneously

overlay with the shaker results throughout the entire amplitude range. For damping, the impact excitation responses generally
show the same curve profile as found in the shaker data, but at a lower magnitude. When impacting at the end of the beam,
the damping converges toward the linear damping found in the low level burst random shaker data. Also, as the impact force
level increases at the point near the shaker drive point, the damping curves seem to converge toward what is observed in the
shaker response curve. The data for mode 1 again displays similar results to mode 2 and is shown in Fig. 25.20.

The Hilbert response curves for mode 3 are shown below in Fig. 25.14. In this case, only the very low force level impacts
match the shaker results for natural frequency and show similar, or lower damping levels. As the excitation level increases,
the response deviates further from the linear values and the shaker response curve. This agrees with what was observed in the
shaker data when mode 3 was excited simultaneously with modes 1 or 2. The same is true here, as the broadband frequency
content imparted by the modal hammer excites all modes up to several thousand Hertz, depending on the force level.

These results strongly correlate to those found from the shaker excitation. This shows that the effects of modal coupling
can be observed under different excitation techniques, and thus, cannot be avoided by simply choosing a different excitation
method.
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Fig. 25.13 Mode 2 response to various impact locations and force levels

25.4 Conclusions

The purpose of this work was to experimentally characterize a structure and establish a dataset that depicted modal coupling.
To acquire this experimental data, a new Cylinder-Plate-Beam structure was manufactured and instrumented. Low-level
shaker testing was done to identify baseline linear modal parameters, such as natural frequency, damping ratio, and mass
normalized mode shapes. For nonlinear data, windowed sinusoidal excitations were completed at various excitation levels
on each mode individually and on pairs of modes simultaneously. Modal hammer testing was also done at several locations
and force levels to collect impact excitation response. After passing the physical response from each test case through a
modal filter and preforming Hilbert Analysis on the single degree-of-freedom modal responses, amplitude dependent natural
frequency and damping ratio curves were found for each mode. For the isolated modes excited at various shaker levels,
the curves were found to overlay, implying that while each is nonlinear, the corresponding response is consistent over the
observed range and is independent of initial excitation. However, when Modes 1 and 2 are excited simultaneously, the Hilbert
curves for each deviate from the isolated baseline as the relative excitation of the other increases. Such a relationship was
not observed with either of these modes when Mode 3 was also excited. Conversely, Mode 3 was observed to vastly deviate
from its isolated baseline when Modes 1 or 2 were also excited. Similar trends were also observed in the nonlinear modal
hammer impact responses. Thus, the experimental data collected indicates that some degree of modal coupling is present and
observable between the first three modes of the structure.
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Fig. 25.14 Mode 3 response to various impact locations and force levels

Future work will seek to further understand these results by better quantifying the degree to which each mode was excited
in the coupled responses and to understand what types of models can be used to capture the observed coupling. We have
also begun to create a high-fidelity model that characterizes the interface using whole joint elements to represent each bolt.
It also may be possible to create a model that reproduces the experimental data by using Restoring Force Surface Analysis
Method [13–15] to fit quadratic/cubic stiffness and damping models to the measurements. Experimentally, additional mode
pairings that include higher order modes could be examined. Expanding beyond pairs, groups of three or more modes could
be excited simultaneously with windowed sinusoids.
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Appendix A—Additional Shaker Hilbert Plots

Fig. 25.15 Mode 1 response at various excitation levels

Fig. 25.16 Mode 1 response when modes 1 and 2 are excited simultaneously
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Fig. 25.18 Mode 3 response when modes 1 and 3 are excited simultaneously
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Appendix B—Additional Hammer Data Plots

Fig. 25.19 Example of hammer, physical, and modal response in time and frequency domains
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Chapter 26
Dynamic Response of a Curved Plate Subjected to a Moving
Local Heat Gradient

David A. Ehrhardt, B. T. Gockel, and T. J. Beberniss

Abstract Structures moving faster than the speed of sound will experience localized pressure and temperature gradients due
to shockwave impingement. During in-flight maneuvers, these gradients will move across the surface of the structure, causing
quasi-static thermal and mechanical strains. Loading conditions in these combined environments includes complicated
aero-thermal-mechanical coupling, which is difficult to replicate in laboratory conditions. This work focuses on thermo-
mechanical loading of a 12 inch × 18 inch curved stainless-steel plate when subjected to a moving thermal gradient at a peak
temperature of 200 ◦F and distributed white noise mechanical loading at 9 g’s from 100 to 800 Hz. The dynamic response
of this plate is measured with high-speed 3D digital image correlation, and the temperature distribution is measured with a
high-speed FLIR camera.

Keywords Combined loading · Nonlinear dynamics · Digital image correlation · IR camera

26.1 Introduction

Air vehicles operating in high-speed environments experience sharp pressure and temperature gradients in addition to
extreme acoustic and mechanical loading [1, 2]. The complicated nature of such combined loading is difficult to reproduce
in a laboratory environment. For simplicity, this work explores a repeatable thermal-mechanical laboratory scale experiment.

The two aspects of loading considered in this work are mechanical and thermal. While mechanical loading is provided
with established electrodynamic shaker techniques, the thermal loading used in this work is provided inductively via a
uniquely designed non-contacting coil. While a majority of previous work using inductive heaters [3, 4] aims to provide
isothermal, or distributed, loading across a specimen, the coil of an inductive heater can be modified to apply any shape of
thermal loading as done in this work. One additional benefit of inductive heating is the small time scale in which a structure
will heat up allowing the application of a moving thermal gradient.

The localization of temperature distribution and structural responses require greater spatial measurement resolution since
the exact location of the peak temperature or peak response is not known. Coupling full-field mechanical and thermal
measurement techniques include additional challenges. In this work, full-field response measurements are optically obtained
using high-speed stereo 3D digital image correlation (3D-DIC) techniques. The surface preparation is chosen to provide high
contrast in the visible light range while maintaining consistent emissivity in the infrared range allowing full-field temperature
measurements with Forward-looking Infrared cameras (FLIR).

This work examines the dynamic behavior of a cylindrically curved stainless steel plate, previously examined in [5], when
subjected to a moving localized thermal load and distributed base excitation. Section 26.2 describes the experimental setup
and Sect. 26.3 details the current results examining the quasi-static deformation and dynamic motion of the plate.
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Fig. 26.1 Diagram of experimental setup

Fig. 26.2 Snapshot of the time dependent thermal gradient at (a) 0 s, (b) 33 s, and (c) 66 s

26.2 Experimental Setup

26.2.1 Introduction

The 12 inch × 18 inch cylindrically curved stainless steel plate of interest was mounted to a slip table as shown in Fig. 26.1.
This slip table, connected to a 20,000 lbf shaker, provided 100–800 Hz band limited white random noise base excitation at
9 g’s of acceleration. In addition to base excitation, a 6 kW inductive furnace was used to apply localized heating to the plate
during excitation. The inductive heater was attached to a motorized linear stage which moved the heater head across the plate
in 67 s. Images of the plate surface were measured at 1500 Hz using two Photron SAZ cameras and at 2 and 400 Hz using a
forward looking infrared (FLIR) camera and provided full field coordinates and temperature measurements, respectively.

26.2.2 Thermal Loading

The inductive coil attached to a 6 kW furnace is placed behind the plate and suspended above the slip table as shown in
Fig. 26.1. This furnace heats the article by inducing eddy currents in the material through a magnetic field via an oscillating
current through a coil attached to the head of the furnace [3, 4]. For this series of tests, a coil is built to direct a magnetic
field in a line along the plate and the head of the furnace is mounted to a linear stage to move the coil across the plate. The
time dependent concentrated thermal gradient is controlled at 200 ◦F and set to traverse the plate in 67 s. However, there is
lag in the controller during the temperature sweep due to the curvature of the plate and the temperature decreases to 167 ◦F
at the center of the plate. This is demonstrated in Fig. 26.2 with snapshots of the temperature distribution presented at 0 s,
33 s, and 66 s where red to blue is high to low temperature, respectively.

26.3 Results

26.3.1 Quasi-Static Response

As the temperature gradient is moved across the plate, a quasi-static deformation is observed as shown in Fig. 26.3 at 0 s, 33 s,
and 66 s. The traversing thermal gradient demonstrates the effect of simultaneous heat-up and cool-down. Prior to the heater
traversing the plate, the localized steady-state deformation from the local thermal gradient (Fig. 26.2a) is shown in Fig. 26.3a.
As the heater traverses the plate, the induced thermal gradient causes the quasi-static deformation of the plate to change as
shown in Fig. 26.3a and b. Since the heat-up time scale of the inductive heater is shorter than the conduction/convection
experienced in the plate, the final deformation (Fig. 26.3c) includes effects from the heater even though the coil has moved.
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Fig. 26.3 Snapshot of the time dependent deformation of plate at (a) 0 s, (b) 33 s, and (c) 66 s

Fig. 26.4 First five linear modes of cold structure. (a) 214 Hz, (b) 257 Hz, (c) 298 Hz, (d) 372 Hz, and (e) 383 Hz
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Fig. 26.5 The full-field response of the plate projected onto the first five resonance shapes of the cold structure (a) at each point in time and (b)
averaged over 1 s intervals

26.3.2 Dynamic Response

Prior to heating, the curved plate is subjected to a low amplitude base excitation of 1 g’s. Using single-value decomposition,
the first five resonance shapes and frequencies are identified from the full-field displacement response measured with high-
speed 3D-DIC. The first five linear resonances identified without heating correlates well with previous work [5] (Fig. 26.4).

After the initial linear tests, the base excitation is increased to 9 g’s, which has been shown to result in nonlinear resonance
behavior. The identified resonances shapes are used to project the full-field dynamic response of the hot-structure onto
approximate modal coordinates as shown in Fig. 26.5a. For illustration, the mean value of the coordinate is taken at 1 s
intervals and plotted in Fig. 26.5b. As the heater traverses the plate, these figures show a quasi-static change in dynamic
equilibrium around which the structure vibrates (i.e. the thermal and mechanical loading affect the response of the plate at
different time scales). Although the change in coordinate induced by the heater is slower than the dynamic response of the
plate, the time dependent equilibrium of the plate with change the resonances of the plate.

The approximate modal coordinates shown in Fig. 26.5a are further decomposed into the frequency domain by calculating
the power spectral density (PSD) of the Hanning windowed time series at 1 s intervals with 50% overlap. The resulting PSDs
(Fig. 26.6) show how the approximate modal coordinates become coupled in the resonance behavior of the hot structure.
Figure 26.6a shows that the first cold modal coordinate becomes coupled to the first three resonances of the hot structure as
the heater traverses the plate. The level of coupling is relative to the approximate modal coordinate system and is shown from
low (blue) to high (red). Each subsequent cold modal coordinate show coupling to multiple hot resonances. For example, the
first hot resonance shows coupling between the first, second, and third cold modal coordinates.
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26.4 Future Work

Time dependent localized heating has shown a rich variation of dynamic response of the curved plate of interest. Full-field
temperature and displacement measurements provide a complete picture of how the dynamic response of the plate changes
throughout heating. A further examination of the appropriate modal basis is needed and additional high speed thermal effects
will be explored.
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Chapter 27
A Test-Case on Continuation Methods for Bladed-Disk Vibration
with Contact and Friction

Z. Saeed, G. Jenovencio, S. Arul, J. Blahoš, A. Sudhakar, L. Pesaresi, J. Yuan, F. El Haddad, H. Hetzler,
and L. Salles

Abstract Bladed-disks in turbo-machines experience harsh operating conditions and undergo high vibration amplitudes
if not properly damped. Friction at the blade-to-blade or blade-to-disk interfaces plays a key role in dampening the high
amplitudes. Due to the inherent complexity of these structures and non-linearities introduced by the friction joints, accurate
response prediction becomes very difficult. There are variety of methods in the literature to predict non-linear vibration due to
contact friction. However, their application to the bladed-disks remains limited. Furthermore, there are not many 3D realistic
test-cases in the open literature for testing those methods and serve as a benchmark. A bladed-disk representative of a real
turbine is presented as an open numerical test-case for the research community. It is characterized by a blade root joint and a
shroud joint. The bladed-disk sector is meshed in different ways along with component mode synthesis (CMS) model order
reduction for onward non-linear computations. The steady-state solution is obtained by multi-Harmonic Balance method and
then continuation method is employed to predict the non-linear frequency response. Thus, it can serve as a case for testing
previous and new methods as well as a benchmark for comparative studies.

Keywords Bladed-disk · Cyclic symmetry · Nonlinear forced response · MHBM · Continuation method

27.1 Introduction

Turbo-machine components design is a great challenge in the presence of multitude of problems. High cycle fatigue of
the rotating blades is one of those problems and requires that accurate modelling of the forced response is done including
the damping from all the possible sources [1]. Contact friction at the blade-roots or shrouds (or under-platform dampers)
provides some damping but it is highly non-linear. Different solution approaches in the literature have been presented in a
period of over two decades, comprising of friction models as well as iterative solutions, for example [2–4].

In spite of various advanced models and methods developed for prediction of friction damping, their application to the
bladed-disks remains limited due to their inherent complexity and large number of degrees of freedom (DOF). On the
other hand, access to a real geometry with some experimental data also remains a big concern due to confidentiality and
competitiveness of the industries. Sometimes, choosing a particular model is based on current practices of the institutions
or as a call of faith, instead of the comparative knowledge basis. Therefore, a test-case geometry of blade assembly for the
FUTURE project (2009–2012) [4] is used in this study and open-access modules are developed ranging from building the
system matrices, model order reduction, harmonic balance method with continuation steps to penalty based friction models
with a possibility to include fretting and wear. Such a modular framework might already be in a more advanced form with

Z. Saeed (�)
Politecnico di Torino, Turin, Italy
e-mail: zeeshan.saeed@polito.it

G. Jenovencio
Technical University of Munich, Garching, Germany

S. Arul · A. Sudhakar
IT4I National Supercomputing Center, Ostrava, Czech Republic

J. Blahoš · L. Pesaresi · J. Yuan · F. El Haddad · L. Salles
Imperial College London, London, UK

H. Hetzler
University of Kassel, FG Technische Dynamik, Kassel, Germany

© Society for Experimental Mechanics, Inc. 2020
G. Kerschen et al. (eds.), Nonlinear Structures and Systems, Volume 1, Conference Proceedings of the Society for Experimental
Mechanics Series, https://doi.org/10.1007/978-3-030-12391-8_27

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12391-8_27&domain=pdf
mailto:zeeshan.saeed@polito.it
https://doi.org/10.1007/978-3-030-12391-8_27


210 Z. Saeed et al.

some industries and research institutions, but falls under confidentiality agreements. As a baseline work, modules on state-
of-the-art methods have been developed and tested on simple cases.

27.2 Methodology and Analysis

The approach to solution of the aforementioned problem is followed using coupled static and dynamic multi-harmonic
balance method [5]. Due to cyclic nature of the structure and excitation encountered by a bladed-disk, only a sector is
considered for modelling using cyclic symmetry boundary conditions, as shown in Fig. 27.1a. The system matrices of the
sector, discretized with finite elements (FE), undergoing subsequent refining for convergence of static and modal solutions
up to a desired frequency range. The FE model is too large for non-linear response solution that it needs to be reduced. A
Craig-Bampton reduction is applied to retain the interface, internal (for response) and cyclic DOFs and the modes of interest.
The equation of motion of a single sector whose DOFs are condensed at the interface and response DOFs is

M̄ü+ C̄u̇+ K̄u− f̄ext + f̄NL(u, u̇) = 0 (27.1)

where M̄ , C̄, K̄ are the reduced mass, Rayleigh damping and prestressed stiffness matrices due to rotation, respectively, f̄ext
is an external excitation harmonic force and f̄NL(u, u̇) is a non-linear force due to contact friction. The reduced matrices are
subsequently used in multi-harmonic balance method (MHBM) in which N nonlinear differential equations are converted to
N(2NH + 1) nonlinear algebraic equations:

(−h2ω2M̄ + ihωC̄ + K̄)û(h) = f̂ (h)ext − f̂ (h)NL(û) (27.2)

with h = 0, . . . , NH and at h = 0, only K̄ is considered for static balance. The non-linear forces are computed using a
friction element in an alternate frequency time domain (AFT) fashion. The friction element is based on 3D Jenkins element
with coupled tangential motion and variable normal load. The friction force is calculated in terms of contact parameters such
as a tangential stiffness Kt , a normal stiffness Kn and a coefficient of friction μ. The Jacobian needed for Newton iteration
within the continuation iteration is also computed analytically to save computational time and better convergence [3, 6]. The
solution in the frequency domain is tracked by a parametric continuation procedure, such as pseudo arc-length [7]. A value
for frequency ωi is chosen and the residual of equation Eq. (27.1) is linearized based on the previous amplitude solution ũi

[
∂R̃(ũi;ωk)
∂ũi

]
δũpred = R̃(ũi) (27.3)

where δũpred = ũ
pred
i+1 − ũi is the amplitude predictor. The solution of Eq. (27.3) must be updated by an additional pseudo

arc-length constraint, known as the corrector phase C(ũcorri+1 , ωi+1)− ||δũpred|| = 0. A flow-chart of the above methodology
with appropriate transformations is shown in Fig. 27.1b.

Fig. 27.1 (a) A bladed-disk with a meshed sector. (b) Flow chart for the framework
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Fig. 27.2 (a) Campbell Diagram at ND = 5, (b) coupled tangential contact forces (x and y direction) over one period of oscillation and (c) first
harmonic response of a mass and slider using pseudo arc-length continuation

27.2.1 Framework

The reduced system matrices are obtained in AMfe, an open source finite element library, are exported in an MHBM
continuation code based on C++. This solves Eq. (27.3) iteratively using Trilinos library [8] and evaluates the nonlinear
friction forces. The framework is modular with separate modules for friction model, continuation method, model order
reduction, etc. The test-case blade assembly is used for verification of the solver and will be available as a benchmark. The
framework and the geometry are available in open GIT repository: http://github.com/jenovencio/NDCSI4-2018.

27.2.2 Preliminary Results

During testing of the modules, critical resonances of the cyclic sector are obtained by the Campbell diagram, see Fig. 27.2a.
This is helpful in selecting the nodal diameter modes to be retained in the basis for non-linear iterative solution. The evolution
of the tangential frictional forces is plotted in Fig. 27.2b with coupled behavior and Coulomb limit prescribed by a circle (for
isotropic friction coefficient). Finally, the pseudo-arc length continuation scheme is plotted in Fig. 27.2c for a simple mass
and slider with free and stick response and slipping in between for varying normal loads.

27.3 Conclusion

This work has aimed to develop individual modules for the bladed-disks subject to nonlinear friction forces with an open-
access for all. All the modules have been individually tested on simple cases. This work can be used by the research
community to compare different methods available in the research spectrum, along with their own work, against different
parameters of interest. The present framework has two different platforms Python (AMfe library) and C++ (interface code
and Trilinos library) which needs to be converted into one platform. Necessary interfacing between coding environments and
inclusion of more models will be done in the future.
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Chapter 28
Dynamics of Geometrically-Nonlinear Beam Structures, Part 1:
Numerical Modeling

D. Anastasio, J. Dietrich, J. P. Noël, G. Kerschen, S. Marchesiello, J. Häfele, C. G. Gebhardt, and R. Rolfes

Abstract The need of lightweight design in structural engineering is steadily growing due to economic and ecological
reasons. This usually causes the structure to exhibit moderate to large displacements and rotations, resulting in a distributed
nonlinear behavior. However, the characterization of geometrical nonlinearities is challenging and sensitive to structural
boundaries and loading. It is commonly performed with numerical simulations, utilizing particularly finite element
formulations. This study comprises simulations of a clamped-clamped beam with moderate to large amplitude oscillations.
Four different (commercial and noncommercial) numerical approaches are considered: three finite element representations
and one assumed-modes approach. A first comparison is conducted when the system is under a sine sweep excitation over one
single mode. Subsequently, a modified model featuring nonlinear internal resonance is considered, to disclose differences
in the modeling of the nonlinearity when coupling between modes occurs. The results show some expected features for
geometrical nonlinearities in all methods, but also some important differences, especially when the modal interaction is
activated.

Keywords Numerical methods · Distributed nonlinearity · Geometrical nonlinearity · Nonlinear beam · Internal
resonances · Modal interaction

28.1 Introduction

Considering the last decades, the need of light and slender structures in structural engineering is steadily growing both for
economic and ecological reasons [1]. Therefore, more structures exhibit moderate to large deflections and rotations causing
strongly nonlinear system responses. For the characterization and the consideration of resulting geometrical nonlinearities,
numerical simulations are commonly utilized. In comparison to linear simulations, incorporating nonlinearities is more
challenging and complex, because there are particular nonlinear phenomena that have to be considered, such as modal
interaction and resonance frequency shifts. There are different approaches for the formulation of the nonlinearities and the
coupling between modes provided by both commercial or noncommercial codes. The aim of this study is to gain a better
understanding of different approaches and their nonlinear simulations for engineering structures. For this purpose, four
different (commercial and noncommercial) approaches are considered to perform simulations of a slender clamped-clamped
beam featuring geometrical nonlinearities. Comparisons between the simulation results obtained by the considered codes are
conducted for different load cases and simulation prerequisites.
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28.2 Background

In order to obtain reasonable and reliable predictions for nonlinear structures, four commercial and noncommercial numerical
codes are compared and discrepancies are analyzed. The comparison involves the two commercial codes Abaqus [2] (AB) and
ANSYS [3] (AN). Noncommercial approaches like the geometrical local frame representation proposed by Sonneville and
Brüls [4] (LF) and the modal coordinates reduction [5] (MC) are considered as well. It should be noticed that the first three
approaches rely on a finite element representation of the system, while the last one is based on a modal superposition principle
with an expression of the nonlinearity by a modal coupling. Since the expression of the nonlinearity is analytic and in a
closed-form in this case, it is also possible to compute the nonlinear response using the harmonic balance method [6], for the
computation of stable and unstable paths. The setup contains a slender steel beam with the dimensions of 500 × 1 × 20 mm
(length × thickness × width). The first resonance frequencies are located at f1 = 20.75 Hz, f2 = 57.21 Hz, and f3 = 112.15 Hz.
For the modeling of the beam, a formulation with shear-deformable beam finite elements is used in Abaqus, ANSYS and
the LF approach. Furthermore, the beam is modeled using Euler-Bernoulli beam theory in the analytical modal coordinates
method. As it is a thin and slender beam, results from all approaches are comparable to each other. The time integration is
performed according to the algorithms available for the different codes, which in any case belong to the Newmark family. No
numerical damping was added in the approaches that allows such a control. Table 28.1 resumes the most important properties
of the different approaches.

Five different forcing levels ranging from low to high amplitudes are taken into account. As an excitation signal, an
upward linear sine sweep over the first mode is chosen, acting on a node close to one clamping. Based on this setup, a
convergence study is performed and simulations settings are determined. In the next step, the simulation results obtained
from the different codes are compared considering two scenarios: first, a single mode is responding to the excitation; second,
an internal resonance is created to force a modal interaction between two different modes.

28.3 Results

The four simulation approaches generate simulation results differing in amplitudes and resonance frequencies. After the
convergence study, the sampling frequency and the element discretization of the beam was set to 5000 Hz and 40 elements,
respectively. In particular, the spatial discretization is an important parameter for the FE codes (AB, AN, LF), while it does
not play any role in the accuracy of the response of the MC method, because it is based on a superposition of modes. Instead,
the number of modes included in the response is crucial. Optimal results are obtained considering three modes.

Typical nonlinear behavior such as an increase of the resonance frequency and jumps can be detected for all the codes
under moderate to large excitation amplitudes. Considering different levels of nonlinearity, the discrepancies between the
codes increase for stronger nonlinear system responses. It is important to highlight that the implementation of the geometrical
nonlinearity is done differently for the different codes, and in particular there might be some limitations in the assumptions
made by each. For this reason, the final comparison is made in a moderately large amplitude setup, as shown in Fig. 28.1.
Here, the results from LF and MC method are comparable using 40 elements for the discretization, while there is still a
distinct difference to the results from Abaqus and ANSYS. The comparison shows that the simulations results from Abaqus
are off. Neither can be stated, which computed response and, thus, which formulation is right. Even for the simple beam
model without a modal interaction, the different approaches do not compute the same system responses considering the
nonlinear case.

In a second part of the study, the beam model is modified by adding a mass close to the right boundary. The resonance
frequencies vary with this modification in a way that the third harmonic of the first mode is in the vicinity of the second
resonance frequency. Therefore, a 2-1 internal resonance is activated, meaning that also the second bending mode is
responding when the first is excited. Internal resonances are very common in nonlinear systems, especially when a large

Table 28.1 Properties of the different approaches

Name Type Beam elements Time integrator

Abaqus AB Nonlinear FEM Timoshenko HHT-α [7]
ANSYS APDL AN Nonlinear FEM Timoshenko Newmark [8]
Local Frames LF Nonlinear FEM Timoshenko Generalized-α [9]
Modal Coordinates MC Modes superposition Euler–Bernoulli Generalized-α
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number of modes is present. In this case the presence of such a phenomenon is a good test to see how the different methods
behave when more than one mode is present in the response. Simulations are performed with MC, LF and AN approaches.

All the computed responses match up to a frequency of 16 Hz, which is the region where only the first mode dominates the
response. For larger excitation frequencies, the codes differ strongly in the magnitude of the response and jump frequencies
due to the interaction with the second mode (Fig. 28.2). In particular, for LF the jump occurs at noticeably higher frequencies
compared to the other solutions accompanied by a distinctly larger displacement amplitude. The reason for this might be a
convergence to an isolated solution in the LF simulation, that is not expected by the other methods. This causes the structure to
feature a system response up to a higher resonance frequency with response amplitudes belonging to the isolated solution. On
the contrary, results obtained by the ANSYS code seem to lead to an underestimation of the response amplitude in comparison
to the other codes. From the comparison between all the approaches, it can be stated that a modal interaction evokes even
greater differences between the simulation results, as dimensions of resonance amplitudes are noticeably different. The
reason for this strong deviation between the simulation has not been determined yet. Especially for the commercial code
ANSYS, it is unknown how the coupling between the modes is implemented.

28.4 Conclusion

Numerical simulations were conducted using different approaches for the simple model of a thin clamped-clamped beam.
It was observed that the computed system responses differ. In particular, the two commercial codes ANSYS and Abaqus
predict different system responses for strongly nonlinear cases. When an internal resonance is created, the simulation results
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comprise significant differences in the response amplitudes and resonance frequencies of the system. Since the formulation
of the nonlinearities is unknown for the commercial codes, the source of these differences cannot be determined exactly.
From the results, it can be stated that the prediction of nonlinear system responses with numerical simulations is challenging
and not necessarily reliable, even for simple models. It is not trivial to define, which approach leads to the most accurate
solution compared to responses of real-life structures and circumstances.
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Chapter 29
Dynamics of Geometrically-Nonlinear Beam Structures, Part 2:
Experimental Analysis

D. Anastasio, J. Dietrich, J. P. Noël, G. Kerschen, S. Marchesiello, J. Häfele, C. G. Gebhardt, and R. Rolfes

Abstract System identification is a key tool to gather information about dynamical structures. In the last decades, important
steps have been made to perform this task in the presence of localized nonlinearities. However, the continual interest in
improving structural performance has created the need of designing light and flexible elements in several engineering fields.
These elements are usually characterized by moderate and large deformations, exhibiting distributed nonlinearities. System
identification of structures with distributed nonlinear features remains particularly challenging, especially when dealing
with experimental data. This work proposes a method to perform such a task, relying on a convenient basis reduction of
the measured signals. The identification is then performed using the nonlinear subspace identification method (NSI) in
the reduced domain together with a closed-form nonlinear description. This methodology is validated on an experimental
structure, consisting of a very thin steel beam that is clamped at both ends. Excited with a multisine, the beam undergoes
large amplitude oscillations. A final objective of the identification is to exploit its response through the correct identification
of the parameters that define the nonlinearity. Results show a high level of accuracy, which validates the effectiveness of the
methodology and paves the way toward the identification of more complex real-life structures exhibiting large deformations.

Keywords Nonlinear system identification · Subspace identification · Geometrical nonlinearity · Nonlinear beam ·
Large deformation

29.1 Introduction

Large-amplitude vibrations of mechanical structures have been studied for decades, and many efforts have been made in order
to mathematically represent their characteristics [1]. However, their importance has increased in the last years, driven by the
need for designing flexible and light structures [2]. Generally, geometrical nonlinearity arises when a structure undergoes
large amplitude vibrations, resulting in nonlinear strain-displacement relations. In this framework, a nonlinear model is very
often obtained relying on a convenient basis reduction [3]. Linear normal modes (LNMs) are the most common choice when
dealing with linear systems, but they have some limitations when nonlinearities are present [4]. Yet, their implementation
is fairly easy especially when dealing with experimental data, and they are still capable of giving a nonlinear dynamical
description when moderately large amplitude vibrations are considered [5].

In this work, a method is presented to identify a distributed nonlinear behavior from experimental data, relying on such
a reduction. The identification is then performed using the nonlinear subspace identification (NSI) method [6–8] in the
reduced domain using a closed-form nonlinear description. This approach has already been tested on numerical data [9],
and it is now validated on experimental measurements acquired on a very thin clamped-clamped beam, undergoing large
amplitude vibrations.
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29.2 Beam Under Moderately Large Lateral Oscillations

A 2D Euler–Bernoulli beam with moderately large lateral deflection is considered. The governing equation is [1]:

μ
∂2y

∂t2
+ EI ∂

4y

∂x4
− EA

2L

(∫ L

0

(
∂y

∂x

)2

dx

)
∂2y

∂x2
= u(t) δ (x − xU ) (29.1)

where μ is the linear mass, E is the Young’s Modulus, I is the moment of inertia, A is the section, L is the length, xU is the
forcing position and y is the lateral displacement. If LNMs φ are used as a reduction basis, the solution to Eq. (29.1) can
be found applying the modal transformation [9]. A set of N equations is obtained considering N modes, as expressed in Eq.
(29.2):

mj η̈j + kjηj − EA

2L

∑R

r=1

(
αnlr η

2
r

)
βnlj ηj = qj , j = 1, . . . , N, R ≤ N (29.2)

where qj = φT
j u are the modal forces, mj is the modal mass, kj is the modal stiffness and αnlr , β

nl
j are the nonlinear

coefficients. It should be noticed that the number of nonlinear terms per mode is R ≤ N.

29.3 Nonlinear System Identification

Many methods can be found in the literature to perform nonlinear system identification [2, 10], and the procedure here
presented can be adapted to many of them. Nonlinear Subspace Identification (NSI) method has already proved its
effectiveness in several nonlinear structures with localized nonlinearities, and it is used in the following sections adapted
to the distributed case. The method relies on the feedback interpretation of the nonlinearity, considered as a set of additional
inputs to the underlying linear system. In this way it is possible to solve the state-space problem using subspace methods,
either in the time domain (TNSI) [6] or in the frequency domain (FNSI) [7]. The outcome of the identification is the so-
called extended state-space model, which includes both the underlying-linear and the nonlinear dynamics. The shape of
the nonlinearity is needed as an a priori information together with the input-output data. In this case the identification is
performed in the reduced-order domain, and the theoretical nonlinear shape for each mode is:

qnlj =
∑R

r=1
η2
r ηj j = 1, . . . , N, R ≤ N (29.3)

It should be noticed that even terms are not expected in this model. This is generally not the case when dealing with
experimental data, as slight asymmetries in the structure can easily lead to even nonlinearities in the response. To account
for this eventuality, second degree nonlinear couplings are also included in the nonlinear shape.

29.4 Experimental Tests and Results

A very thin steel beam of dimensions 479 × 20 × 0.75 mm is considered. The ends of the beam are clamped, and the
excitation source is a shaker positioned at 15 mm from one end, as can be seen in Fig. 29.1. The response is recorded with 7
accelerometers along the length of the beam. The chosen input is a full multisine signal [11] in the range 14–100 Hz, with 6
periods and 5 realizations.

Several tests have been performed increasing the input amplitude, from a linear regime to a highly nonlinear one. This
can be observed in Fig. 29.2b, which shows the FRFs for the lowest and highest levels of amplitude. A distinctive hardening
effect can be noticed on the three excited modes.

The nonlinear identification is performed on the highest level of amplitude, using the first four realizations as a test set.
Outputs are then generated from the obtained nonlinear state-space model and compared with the validation set, consisting
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Fig. 29.1 Photo of the experimental setup
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Fig. 29.2 (a) Recorded acceleration for one realization. Blue line: lowest level. Red line: highest level. (b) Inertance. Blue line: lowest level. Red
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Fig. 29.3 Results of the identification - comparison between measured output and simulated one in time and frequency domains. Black line:
measured signal. Red line: Residual with the simulated signal

of the last realization of the measured signal. The comparison is reported in Fig. 29.3 in both time and frequency domains. It
can be seen that the residual between the measured output and the simulated one is very low, giving an averaged RMS error
of 10%.
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29.5 Conclusion

A methodology for performing nonlinear system identification of structures exhibiting distributed geometrical nonlinearities
has been presented and validated on an experimental test bench. The results of the identification show a high level of accuracy,
validating the effectiveness of the methodology and paving the way toward the identification of more complex real-life
structures exhibiting large deformations.
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Chapter 30
Constructing Backbone Curves from Free-Decay Vibrations Data
in Multi-Degrees of Freedom Oscillatory Systems

Mattia Cenedese and George Haller

Abstract Backbone curves are often the best representation of the nonlinear behavior for the vibrations of mechanical
systems. Several approaches for obtaining them are present in literature, either analytical, numerical or experimental ones.
However, they often make assumptions that unavoidably limit the range of applicability, such as the dynamics of the
underlying conservative system and the modeling of damping terms. Here, we describe a mathematical theory and the
corresponding numerical methodology that is able to rigorously extract backbone curves from free-decay vibrations data
and that can overcome some of the main limitations of existing methods. We illustrate our findings with synthetic and real
experiment vibration measurements.

Keywords Backbone curves · Nonlinear vibrations · Damped vibrations · Nonlinear system identification · Spectral
submanifolds

30.1 Introduction

In the field of nonlinear structural dynamics, backbone curves often represent the most valuable information to be extracted,
either from a model or an experimental setup. Indeed, these amplitude-frequency plots are able to properly characterize the
dynamics quantifying the nonlinear behavior and also predicting eventual interactions. The original definition of backbone
curve was proposed by Nayfeh and Mook in [1] that refer to it as the frequencies of amplitude maxima in frequency responses
of different forcing amplitudes. In literature, the same name is also given to the relation between amplitude and frequency
of conservative periodic orbits in nonlinear normal modes (NNMs) [2] or Lyapunov subcenter manifolds (LSMs) [3]. Even
though fundamentally different, these two different objects are often observed to be close, in some cases even identical.
However, rigorous results that establish a relation between forced-damped backbone curves and conservative ones are still
missing [4].

In order to compute backbone curves, other than generic methods such as analytical techniques (e.g. method of multiple
scales [1] and averaging [5]) or numerical ones like continuation (see the packages AUTO [6], MATCONT [7] and COCO

[8]), several ad-hoc developments do exist. For conservative backbone curves, popular analytical techniques rely on the
normal form method of [9], while several numerical ones have been established within the framework of nonlinear normal
modes [10], like the shooting technique in [11]. The most common experimental method for backbone curve extraction is
a two-step procedure [12]. First, one applies the force appropriation method [13] where the main underlying assumption is
that introducing a periodic forcing with a 90◦ phase lag in a conservative system with a small linear damping term should
preserve exactly a periodic orbit of the conservative part. Once this orbit is detected, the second step exploits the nonlinear
resonance decay method [14, 15] in which excitation is turned off. Here, it is assumed that the decaying vibrations are close
to conservative ones such that, by properly post-processing the signal, the instantaneous amplitude-frequency plot describes
the backbone curve. Other approaches utilize experimental continuation [16], always starting from the assumptions of the
force appropriation method. In spite of being considerably less expensive than generic techniques, all these ad-hoc methods
make strong assumptions often limiting their range of applicability: small enough oscillations amplitude, accurate knowledge
of the nonlinear normal mode manifold, small position independent linear damping and the yet unproven relation between
forced-damped backbone curves and conservative ones [4].

In this contribution, we propose a data-driven method for extracting forced-damped backbone curves that, having its
foundations on the work of Haller and Ponsioen [17], should overcome most of these limitations. In this work, they define
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the concept of spectral submanifolds (SSMs) for generic multi-degrees of freedom mechanical systems (even in case of small
time-dependent terms) where two-dimensional autonomous SSMs, i.e. when they are tangent at a stable equilibrium to one
related modal subspace in case of no forcing, have a very special role. Indeed, the reduced dynamics on a single-mode SSM
gives an exact nonlinear extension of the modal linear dynamics associated with the SSM. Thus, as discussed in [4, 18],
the first approximation forced-damped backbone curve is exactly the graph expressing the decaying instantaneous vibration
amplitude as function of the instantaneous frequency along the SSM. So, without requiring any assumption on damping terms
nor relying on the conservative limit, we can directly and rigorously extract the backbone curves from the freely decaying
vibrations in the vicinity of the natural frequencies of the linearized system at the equilibrium. Here, we give an overview of
the method, that is described in all its details in [4], also showing some results using synthetic data.

30.2 Method Overview and Numerical Example

In our method we assume to deal with a damped n-degree of freedom mechanical systems to which state of the art linear
modal analysis is applied [19]. Thus, we know a priori natural frequencies and mode shapes of the linearization. Moreover,
we fix a priori the number of modes contributing to the system response to be nc > 2. At this point, we select the mode of
interest, a sampling time T and a single generic scalar observable, for instance, a position or a velocity coordinate of a certain
material point of the mechanical system. Then, we perform a number of tests to gain the necessary free-decay data about
this latter quantity. Precisely, we need to excite the structure in the vicinity of the mode of interest and the excitation should
be strong enough to trigger the nonlinear behavior. In order to verify the nonlinear quality of the signal, one can look at its
Hilbert or wavelet transforms [12]. At this point, we fit on these data a Nonlinear Auto-Regressive (NAR) polynomial-based
model [20] that, thanks to Theorems 5.2 and 6.3 in [4], allows us to compute the SSM parametrization, the reduced dynamics
and, in the end, the backbone curve. As a numerical experiment, consider the three degree-of-freedom mechanical system:

⎧⎨
⎩
mq̈1 + k (2q1 − q2)+ c (2q̇1 − q̇2)+ κq3

1 + γ q2
1 q̇1 = 0

mq̈2 + k (2q2 − q1 − q3)+ c (2q̇2 − q̇1 − q̇3) = 0
mq̈3 + k (2q3 − q2)+ c (2q̇3 − q̇2) = 0

. (30.1)

By simulating 15 decay responses per mode with the dimensionless parameters m = k = 1, κ = 1, c = 0.003 and γ = 0.03,
our data-driven SSM method truncated at order 5 returns the backbone curves depicted with the red lines in Fig. 30.1 related
to the first two modes. These plots are completed with black lines representing frequency responses for different small
forcing amplitudes obtained with the PO toolbox of the continuation package COCO [8] and we can notice that the extracted
backbone curves suitably fit with their peaks.
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Fig. 30.1 Frequency-amplitude plots where the y-axis indicates the maximum in the first coordinate over one oscillation period around the first
(a) and second (b) modes. The red lines represent the data-driven SSM backbone curves while black lines depict frequency responses computed
with numerical continuation for different small amplitudes pure sinusoidal forcing applied to the first mass
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30.3 Conclusion

We described a methodology that is able to rigorously extract the backbone curve from free-decay vibrations data. Relying
on the powerful concept of spectral submanifolds, we do not need to make assumption on the underlying conservative system
dynamics nor on the modeling of damping and our theoretical predictions have been verified with data coming either from
numerical simulations and real experiment. Moreover, with respect to other experimental routines, our method only requires
a limited amount of data that can be efficiently obtained by performing hammer impact tests on the structure of interest.
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Chapter 31
Nonlinear 3D Modeling and Vibration Analysis of Horizontal
Drum Type Washing Machines

Cem Baykal, Ender Cigeroglu, and Yigit Yazicioglu

Abstract In this study, a nonlinear 3-D mathematical model for horizontal drum type washing machines is developed
considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of
nonlinear algebraic equations by using Harmonic Balance Method (HBM). The resulting nonlinear algebraic equations are
solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the
effects of orientation angles of springs and dampers between drum and the cabinet. In order to reduce the steady state
vibration amplitude of the drum, suitable orientation angles of the springs and dampers and their implementation locations
are identified. Moreover, in order to further reduce the vibration amplitude of the drum at high frequencies, instead of viscous
dampers, dry friction dampers are introduced to the system. Effect of orientation angles and parameters of the dry friction
damper and springs on the force transmitted to the cabinet are studied.

Keywords 3D washing machine model · Nonlinear vibrations · Harmonic balance method

31.1 Introduction

As the life standards are going up and customer expectations are going towards reduced noise and vibration, manufacturing
of washing machines has been an important issue for the industry. To satisfy customers, design criterion of any machine,
as well as washing machines, has tendency toward minimized vibration. Therefore, there have been many studies about
minimizing vibration and noise amplitudes of both horizontal and vertical type washing machines during operation.

Türkay et al. [1, 2] worked on a 3D dynamic model of horizontal washing machines by neglecting gyroscopic effects and
assuming inertia as time invariant. They solved the nonlinear equations with time integration and studied on minimization
of sum of vertical-horizontal vibration amplitudes. Li and Yam [3] studied another model by assuming small deflections
where they try to decrease the maximum vibration amplitude below the requirements of quality control. Papadopoulos and
Papadimitriou [4] created another simplified model by just considering the four legs of horizontal type washing machines.
Using a linear model, they analyzed walking and jumping conditions of washing machines. To reduce vibration amplitudes,
authors introduced balancing masses around the drum of the washing machine.

Argentini et al. [5, 6] considered both finite element model (FEM) and 6-degrees of freedom (DOF) mathematical model
by linearizing gyroscopic terms and neglecting time dependency of terms in the equation of motion. After linearizing the
system around its equilibrium position, FEM is solved and a validated numerical model is constructed. By introducing dry
friction dampers, additional masses and a secondary suspension system, vibration amplitudes are reduced.

Lim et al. [7] created a dynamical model for the drum by considering the effects of bearings in the washing machine.
Rotor dynamics equations are solved by time integration to observe the effects of parameters of the washing machine. They
validated their numerical model by comparing the results with experiments. Authors obtain Campell diagram and forward
whirling frequencies are also identified.

Nygårds and Berbyuk [8, 9] created another model utilizing dry friction and cubic stiffness as resilient elements. Pittner et
al. [10–12] used another model by neglecting the translational motion of the mass center of the drum along the main rotation
axis. By introducing two concrete blocks as extra masses and on-off dampers, vibration amplitudes are reduced.

Chen et al. [13, 14] mostly worked on stability analysis of the horizontal type washing machines using Poincaré mapping
and by checking Floquet multipliers. Stability analysis is made in frequency domain by considering Torus bifurcation. In
time domain, again, time integration is used to calculate vibration amplitude. Ball balancers are introduced to the system
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to reduce vibration amplitude. Generic algorithm is used to determine the amount of balls to be used in the gasket of the
washing machine.

There are many studies aimed to reduce the vibration amplitude in horizontal type washing machines by using three
dimensional dynamic models. Almost all of the studies consider the time response of the washing machine drum at a specific
frequency. However, for washing machines working in a broadband frequency range, i.e. between 100 and 1000 rpm; it
is to better analyze the vibration amplitude of the washing machine and obtain a frequency response function (FRF) to
expedite the design procedure. In this work, a three dimensional dynamical model is introduced for horizontal-type washing
machines without making any linearization. Resulting nonlinear differential equations of motion are converted into set of
nonlinear algebraic equations utilizing Harmonic Balance Method (HBM). Newton’s method with arc-length is used to solve
the resulting nonlinear equations. Effects of orientation positions and angles of the compliant elements, spring stiffness,
damping constant and the type of the damper used on the vibration amplitude of the washing machine drum are studied
under steady state conditions.

31.2 Analysis

3-D dynamic model for horizontal-type washing machines developed in this study including the drum, springs and dampers is
shown in Fig. 31.1. Cabinet and cabinet side of the dampers and springs are assumed as fixed. A inertial reference frame F0
and an non-inertial reference frame Fd are placed at the geometrical center of the washing machine. Initial Frame Based
(IFB) 1-2-3 sequence is used to describe the transformation matrix between non-inertial and inertial reference frames.
Transformation matrix can be written for IFB 1-2-3 sequence by using exponential transformation matrices [15] as follows:

Ĉ(0,d) = e ∼
u1θ3e

∼
u2θ2e

∼
u3θ1 , (31.1)

e
∼
u1θ3 =

⎡
⎣

1 0 0
0 cos (θ3) sin (−θ3)

0 sin (θ3) cos (θ3)

⎤
⎦ e

∼
u2θ2 =

⎡
⎣

cos (θ2) 0 sin (θ2)

0 1 0
sin (−θ2) 0 cos (θ2)

⎤
⎦ e

∼
u3θ1 =

⎡
⎣

cos (θ1) sin (−θ1) 0
sin (θ1) cos (θ1) 0

0 0 1

⎤
⎦ . (31.2)

Fig. 31.1 Model of washing machine
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At first, viscous dampers are introduced. Forces on springs and viscous dampers are calculated in the base frame, F0. The
equation of motion is derived using Newton-Euler formulation as

∑(−→
Fc + −→

Fs

)
= m−→

a , (31.3)

∑(−→
Mc + −→

Ms

)
= J̌ · −→α + −→ω × J̌ · −→ω . (31.4)

However, in order to simplify the calculations, column matrix representations of vectors and inertia tensors are used as
follows

∑(
Fc
(0) + Fs(0)

)
= ma(0), (31.5)

∑(
Mc

(0) +Ms(0)
)

= Ĵ (0)α(0) + ∼
ω
(0)
Ĵ (0)ω(0). (31.6)

Overbars indicate the column matrix representations of vectors; where, supper scripts are used for the reference frames
of which the vectors are resolved. Hats indicate matrix representation of the tensors and tilde represents the skew-symmetric
form of the column matrices or simply cross product matrices. Fc & Mc are forces and moments coming from the viscous
dampers, respectively; whereas, Fs & Ms represent the forces and moments of linear springs. Even though, it is preferred
to work on the moving body frame, it is chosen to work in the inertial base frame, since, in eq. (31.6), to describe relative
angular velocity and acceleration of the drum frame. Expressing relative angular velocity and acceleration in drum frame will
lead lengthy equations; on the other hand, using inertial reference frame as the working frame, inertia matrices are needed
to multiplied from both its left and right sides by transformation matrix and transpose of transformation matrix, respectively.
Therefore, this decision is an engineering tradeoff, and base frame is selected as the working frame in this study.

Three dimensional, six degree of freedom, nonlinear differential equations of motions are converted into nonlinear
algebraic equations utilizing HBM. In HBM, all nonlinear internal and external forces are represented by Fourier series.
These representations are substituted in nonlinear differential equations and coefficients of similar harmonics are balanced
to resolve all the displacements. Newton’s method with arc-length continuation is used to obtain the steady state response of
the system. The number of harmonics used in the solution is determined based on the accuracy desired in the calculations.

An example case, where all compliant elements and the mass center of laundry (the reason of rotating unbalance) are
placed at the same fictitious y–z plane that includes the point W, is considered. After converting the system to a two
dimensional, three degrees of freedom dynamical model, the results are compared with another study [16] to validate the
model developed. Results are obtained by using 8 harmonics. It is observed from Fig. 31.2 that in order to accurately model
the system, using three or four harmonics is sufficient.

As it seen from Fig. 31.2, at high frequencies excessive forces occur since force on the viscous dampers are directly
proportional to the excitation frequency. To overcome this problem, dry friction dampers may be introduced instead of
viscous dampers. Dry friction dampers are acting like springs for small deflections, which occur at every frequency, but
around resonance. Due to this behavior, force transmitted to the cabinet will be much more small compared to viscous
damper case.

31.3 Conclusion

A 3D nonlinear dynamical model of a horizontal type washing machines is developed in this study. HBM is used to obtain
frequency response function (FRF) of the 6-DOF system. Multiple harmonics are used in order to accurately capture the
steady-state vibration response. Several case studies are performed to see the effects of system parameters or geometrical
orientations of compliant elements on system FRF.
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Fig. 31.2 Responses of the system and force transmitted to the cabinet in logarithmic scale
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Chapter 32
Comparison of Linear and Nonlinear Modal Reduction
Approaches

Erhan Ferhatoglu, Tobias Dreher, Ender Cigeroglu, Malte Krack, and H. Nevzat Özgüven

Abstract Periodic vibration response of nonlinear mechanical systems can be efficiently computed using Harmonic Balance
Method. However, computational burden may still be considerable and impede extensive parametric studies needed for,
e.g., design optimization and prediction of vibration response especially when the degree of freedom is very large. In
this work, the methods which had been previously developed by the authors for further model order reduction to one or
a few coordinates are compared. The focus is placed mainly on modal approaches, namely Modal Superposition Method
using Linear Modes (MSM-LM), Modal Superposition Method using Hybrid Modes (MSM-HM), and Modal Superposition
Method using Nonlinear Modes (MSM-NM). Another method for vibration analysis of nonlinear structures is the Receptance
Method (RM), in which the harmonic response of a nonlinear MDOF system is calculated from the receptances of the linear
counterparts. This method exploits the sparsity of the nonlinear terms in frequency domain equations and therefore may
be very efficient when the nonlinearity is local, which is the case in several applications. Performances and accuracies of
these methods are compared with each other using the results of the direct analysis of the full order model as reference. The
methods are applied to a benchmark system consisting of a finite element model of a beam with different nonlinear elements;
but, only the results of dry friction elements are presented here. The focus is placed on periodic forced response regimes near
resonances. Several conclusions and recommendations that may guide users are derived from the comparison studies.

Keywords Nonlinear vibration · Nonlinear normal modes · Hybrid modes · Harmonic balance · Nonlinear modal
reduction

32.1 Harmonic Vibration Analysis of Nonlinear MDOF Systems

In this paper, the performances of four methods developed by the authors in previous studies for harmonic vibration analysis
of nonlinear systems are compared. Some of these methods have been known for a while, but there was no thorough
comparison of them. The first method, Modal Superposition Method using Linear Modes (MSM-LM), developed by Kuran
and Özgüven [1] more than two decades ago, is one of the first methods for harmonic vibration analysis of nonlinear MDOF
systems in modal domain. In the original formulation Describing Function Method (DFM) of Tanrıkulu et al. [2] was used;
here the same method is formulated with Harmonic Balance Method (HBM), as it is easier to express higher harmonic
responses with this approach. The second method, Modal Superposition Method using Hybrid Modes (MSM-HM), is a very
recent method proposed by Ferhatoglu et al. [3], which reduces model order down to one or a few modal coordinates and
thus reduces computational effort. The third method, Modal Superposition Method using Nonlinear Modes (MSM-NM), is
a method developed by Krack et al. [4], based on the extended periodic motion concept for defining a nonlinear (normal)
mode [5]. In this method it is assumed that the vibration response of a nonlinear system is dominated by a single nonlinear
mode, such that the system behaves like a single-degree-of-freedom nonlinear oscillator. These three methods use modal
models, whereas the last method, Receptance Method (RM), is based on receptances. In RM, the harmonic response of
a nonlinear system is calculated from the receptances of the linear counterparts which can easily been obtained by using
linear modes. The receptance based method was developed by Menq et al. [6], in order to handle the nonlinear friction
damping element located between two adjacent blades. It utilizes the partitioned receptance matrix to decrease the number of
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nonlinear algebraic equations to be solved to the number of nonlinear DOFs. Another receptance based approach developed
by Tanrıkulu et al. [2] uses the so-called “pseudo-receptance matrix” to determine the response of nonlinear systems with
multiple nonlinear elements. This method exploits the sparsity of the nonlinear terms in frequency domain equations when
nonlinearity is local, which is very often the case. Maliha et al. [7] re-formulated the receptance based method given in [2]
similar to the one given in [6]. In this study, the receptance based solution method is referred to as Receptance Method (RM).
The details of the formulation of RM used in this study can be found in [8].

Reducing the computational effort substantially without sacrificing accuracy significantly is of upmost importance,
especially when extensive parametric studies are needed such as in design optimization and probabilistic analyses, the
performances and accuracies of these methods are compared by applying all four methods to a benchmark system. The
benchmark system consists of a finite element model of a beam with dry friction elements. Since the core attention in the
design of nonlinear structures is mostly given to resonance regions, where the periodic vibration amplitudes and resonance
frequencies determine the main dynamic characteristics, the main focus of this study is placed on periodic forced response
regimes near resonances. A cantilever beam with different numbers of nonlinear elements and excited by different forcing
levels is used for the comparison of these four methods in terms of computational time and accuracy. Several conclusions are
derived from the case studies, the main objective being to provide guidelines to users in academia and industry about when
to use which method for better accuracy and/or computational speed.

32.2 Case Study

The theories of all four methods compared here are given in previous works of the authors [1–4, 7, 8].
The application and the comparison of the methods are presented here by using a cantilever beam with different number

of dry friction elements. The cantilever beam is divided into eight elements in which each node has transverse and rotational
DOFs adding up to 16 DOFs. Firstly a single dry friction element is inserted between the transverse DOF of the free end and
the ground; and then eight dry friction elements are placed between all transverse DOFs of the beam nodes and the ground.
Two different force amplitudes, numerically F = 10 N and F = 1 N, are exerted on the system in turn. Transverse responses
of the free end are calculated and compared with each other, as well as with the reference1 responses obtained by using
MSM-LM including all modes.

Performances of the methods in all cases are compared using three different criteria. The first one is the computational
time comparison for about 250 solution points. For frequency response analyses, equidistant frequency points were specified
in the depicted interval of interest. For the preliminary nonlinear modal analysis, the step length of the path continuation
with respect to energy was adjusted to achieve 250 solution points as well. All methods are implemented in Matlab R2015
and the analyses are performed in the same computer whose properties are as Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz,
8.00 RAM and 64-bit operating system. Secondly, amplitude error is used, which is defined as the difference between the
maximum amplitude obtained by using the method considered and the exact maximum amplitude in the frequency range of
interest. The last one is frequency error, which is the difference between the resonance frequency value corresponding to the
maximum amplitude obtained in each approach and the exact one. Mathematically, they are expressed as

Amplitude Error =
∣∣∣∣
xexcmax − xobtmax

xexcmax

∣∣∣∣ × 100 , F requency Error =
∣∣∣∣
ωexcmax − ωobtmax

ωexcmax

∣∣∣∣ × 100.

In Fig. 32.1, the forced responses are depicted for varying excitation levels utilizing one and eight nonlinear elements. For
this specific case, using just one mode gives satisfactory results at resonance region in almost all modal methods. However, it
is seen from Tables 32.1, 32.2, 32.3, and 32.4 that in this specific case study MSM-HM outperforms other methods in terms
of response accuracy for almost all cases considered. It is interesting to note that the number of nonlinear elements directly
affects the computational time. The maximum increase in computational time with the increase in the number of nonlinear
elements is observed in RM. Further studies showed that when the contributions of all modes are considered, using RM is
the most beneficial if nonlinearity is local, as the computational effort mainly depends on the number of nonlinear DOFs
and therefore is almost independent of the number of remaining DOFs. When the total number of nonlinear DOFs increases,
MSM-LM will require less computational time as can be seen from Tables 32.3 and 32.4. MSM-NM requires a Preliminary
Modal Analysis (PMA) which is performed to determine the single mode where the energy is basically concentrated. This

1In the following, the numerical results obtained by Harmonic Balance for this reference model are briefly referred to as ‘exact’ results.
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Fig. 32.1 Displacement amplitude of free end in transverse direction ((a) 1 nonlinear element attached, (b) 8 nonlinear elements attached)

Table 32.1 Error and time comparison of the methods for 1 dry friction element (F = 10 N)

Comp. time (s)
Method used Amp. error (%) Freq. error (%) PMA FRA Total

MSM-LM (1Mode) 3.28 0.32 – 0.42 0.42
MSM-HM (1Mode) 0.13 0.08 – 0.61 0.61
MSM-NM (1Mode) 0.46 0.69 2.03 – 2.03
RM (1Mode) 3.28 0.32 – 0.57 0.57
RM (2Modes) 0.44 0.02 – 0.61 0.61

Table 32.2 Error and time comparison of the methods for 1 dry friction element (F = 1 N)

Comp. time (s)
Method used Amp. error (%) Freq. error (%) PMA FRA Total

MSM-LM (1Mode) 0.33 0.33 – 0.47 0.47
MSM-HM (1Mode) 0.003 0 – 0.66 0.66
MSM-NM (1Mode) 0.0071 0.034 2.03 – 2.03
RM (1Mode) 0.33 0.33 – 0.58 0.58
RM (2Modes) 0.07 0 – 0.59 0.59

Table 32.3 Error and time comparison of the methods for 8 dry friction elements (F = 10 N)

Comp. time (s)
Method used Amp. error (%) Freq. error (%) PMA FRA Total

MSM-LM (1Mode) 0.093 0.29 – 0.77 0.77
MSM-HM (1Mode) 0.43 0.48 – 0.98 0.98
MSM-NM (1Mode) 0.13 0.93 3.44 – 3.44
RM (1Mode) 0.093 0.29 – 1.69 1.69
RM (2Modes) 0.17 0.10 – 1.71 1.71

mode dominates the system response and is treated as nonlinear. This procedure introduces an extra computational cost which
is in the order of calculating a single Frequency Response Analysis (FRA) for a given nonlinearity. It is carried out only once
at the very beginning of the response calculations and therefore, when the response calculations at several excitation levels
are of interest, the additional computational overhead becomes less important, making this method advantageous from the
computational time point of view, compared to the other methods.
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Table 32.4 Error and time comparison of the methods for 8 dry friction elements (F = 1 N)

Comp. time (s)
Method used Amp. error (%) Freq. error (%) PMA FRA Total

MSM-LM (1Mode) 0.033 0.35 – 0.74 0.74
MSM-HM (1Mode) 0.003 0 – 0.97 0.97
MSM-NM (1Mode) 0.014 0.014 3.44 – 3.44
RM (1Mode) 0.033 0.35 – 1.81 1.81
RM (2Modes) 0.05 0 – 1.87 1.87

The precise computation times depend, among others, on the chosen resolution. Recall that our target was to have 250
solution points for both FRA and PMA. This is to some extent arbitrary, as a different resolution of the frequency axis might
be appropriate than of the energy axis.

32.3 Conclusions

In this study, four methods developed in the previous studies of the authors [1–4, 7, 8] for periodic response analysis of
nonlinear multi degree of freedom systems are compared. It is aimed to study the computational accuracy and speed of
each method under different conditions (such as, different response levels and types of nonlinearity). Although many case
studies with different types of nonlinear elements are conducted, only the results for dry friction nonlinearity are given here,
because of space limitations. From these case studies it is concluded that RM is the most advantageous when the number of
nonlinear DOFs are small as in the case of local nonlinearities, since its computational effort is basically determined by only
the number of nonlinear algebraic equations—nonlinear DOFs—to be solved, not by the number of total DOFs. It should be
noted that elements of receptance matrix used in RM are calculated by utilizing the linear modes of the system. Therefore,
the number of modes used can be increased in order to improve response accuracy, since computational burden of RM is not
strongly dependent on the number of modes used. As the number of nonlinear DOFs increases, on the other hand, MSM-LM
performs much better than RM in terms of computational effort. It should also be noted that exactly the same accuracy level
is obtained when the same number of linear modes are used in MSM-LM and in RM. Both methods can also deal with strong
modal interactions. MSM-HM, which uses hybrid mode shapes, is able to capture the amplitude dependence of the deflection
shapes, and can, thus, be more efficient than MSM-LM or RM, which use classical linear modes, in terms of accuracy for
almost all cases. Additionally, in case of a highly nonlinear system, MSM-HM reduces the number of nonlinear equations to
be solved further. Hence, it is also more advantageous than the other methods in terms of computational effort since one needs
to increase the number of modes in MSM-LM or RM to attain a similar accuracy level of MSM-HM. However, MSM-HM
is limited to regimes where single-term Harmonic Balance offers sufficient accuracy. MSM-NM also gives quite accurate
responses in the neighborhood of resonance region for systems with well-separated modes. Since the method assumes the
nonlinear response is dominated by a particular nonlinear mode, it cannot account for strong nonlinear modal interactions.
Moreover, MSM-NM requires a preliminary modal analysis to compute nonlinear mode. After this, a closed-form expression
is available for the frequency response, making the computation cost for the actual response analysis negligible. This makes
MSM-NM well-suited when only excitation forces, linear damping properties and certain other properties are varied, since
then the preliminary modal analysis does not have to be repeated. If other parameters are varied, or the response is of interest
for only a single parameter set, the computation overhead of the preliminary analysis makes MSM-NM less attractive.
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7. Maliha, R., Doğruer, C.U., Özgüven, H.N.: Nonlinear dynamic modeling of gear-shaft-disk-bearing systems using finite elements and describing

functions. J. Mech. Des. 126(3), 534–541 (2004)
8. Koyuncu, A., Cigeroglu, E., Özgüven, H.N.: Localization and identification of structural nonlinearities using cascaded optimization and neural

networks. Mech. Syst. Signal Process. 95, 219–238 (2017)



Chapter 33
Reduced Order Modeling of Bolted Joints in Frequency Domain

Gokhan Karapistik and Ender Cigeroglu

Abstract Most of the structural systems assembled by using bolted joints. Therefore, bolted joint models have a critical
importance to estimate the behavior of the overall assembled system. There are several linear bolted joint models which
consist of spring and dashpot elements in literature. While they can estimate the resonant frequency of the overall system
with a sufficient accuracy, linear bolted joint models are inadequate for approximating the damping which arises from the
friction in the contact interface of assembled system. On the other hand, there are examples of nonlinear bolted joint models
which utilize 3D contact models to account for the frictional damping behavior in the literature. However, modeling the
structures with many bolted joints by using high fidelity 3D contact models is very time consuming. Therefore, reduced
order bolted joint models with sufficient accuracy are in need. In this paper, a method for modeling bolted joints in frequency
domain is introduced. The joint model consists of microslip friction elements each one of which is constructed by several
Coulomb friction elements in parallel and located at both sides of bolt holes.

Keywords Joint model · Reduced joint model · Microslip friction · Multiple macroslip elements · Nonlinear vibrations

33.1 Introduction

Bolts are utilized to establish connection in many structural components. Fastening a structural component with bolts
introduce complexity to the structural integrity in terms of both stiffness and damping characteristics. There are several
studies to estimate the behavior of the bolted joints with linear springs and dashpots [1, 2]. However, inadequacy in capturing
the energy loss of the structural system, especially with changing excitation levels, is a shortcoming of the linear joint
models. To deal with the shortage of damping estimation, high fidelity models have been studied in the past few decades
[3–5]. Nonetheless, computational cost of high fidelity models is considerable if a structural system with a lot of bolts is to
be modeled. Main reason in this insufficiency of damping behavior in reduced order linear models is the absence of microslip
friction model in the contact area. Structures with bolted joint have a complicated contact area exhibiting a variable contact
force distribution. The contact forces near the bolt hole are sufficiently high; whereas, they become very low at some distant.
Due to variability in contact forces, microslip like behavior arises. Hence, it is crucial to model the microslip friction present
in the contact area. In order to model the microslip behavior, either specific microslip models [6–10] or distributed macroslip
models are utilized [11, 12]. In macroslip models, entire surface associated with the friction model is either in slip state or in
stick state. However, in microslip models, unlike macroslip models, partial slips in localized areas are allowed in the contact
interface; hence, energy can be dissipated without the necessity of gross slip. In this study, the microslip friction element
developed by Cigeroglu et al. [6] is used in modeling of bolted connections. However, since the variations of normal force
in the bolted joints are relatively small, in this study, normal load variation is neglected. A reduced order joint model is
introduced and it is compared with a representative high fidelity model obtained by utilizing multiple macroslip elements
which is common in the modeling of friction contacts in bladed disks [11–13]. The Brake-Reuß beam [14] is considered for
the comparison of the two different friction models. A nonlinear static analysis is performed in order to obtain the contact
force distribution in the joint area which is used as the normal forces acting on the macroslip elements used in the high

G. Karapistik
Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
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fidelity model similar to [13]. For the reduced order joint modeling, microslip friction elements are attached at both sides of
bolt holes. Both systems are analyzed and the results obtained are compared with each other.

33.2 Theory

33.2.1 Nonlinear Static Analysis of Brake-Reuß Beam

Abaqus FEA software is used for the nonlinear static analysis of the Break-Reuß beam. In this model; bolts, washers and
nuts are connected to each other so that they behave as a single part (tie constraint). Surface to surface contact algorithm with
the penalty method is imposed between the contacting surfaces of beam structures in order to obtain the contact pressure
distribution. 11500 N preload is applied from the center of the bolt shank to each bolt in the model. Finite element model
(FEM) of Break-Reuß beam and the normal contact force distribution obtained through stacte analysis are shown in Fig.
33.1.

33.2.2 Representative High Fidelity Model

In this model all the nodes coincident to each other in the contact area are connected with one dimensional macroslip friction
elements with constant normal loads. 1D macroslip friction elements consist of three parameters: tangential stiffness, normal
load and coefficient of friction. In this model, tangential stiffness and coefficient of friction for all the friction elements are
assumed to be 1000 N/mm and 0.12, respectively. Normal contact forces obtained from nonlinear static analysis are used as
the normal loads acting on the friction elements. Locations of the contact nodes used in the high fidelity model are shown in
Fig. 33.2 which are selected based on the normal contact force distribution given in Fig. 33.1b.

33.2.3 Reduced Order Joint Model

In the reduced order model, contact area is divided in to six regions, and two virtual nodes are placed at both sides of each
bolt hole in the center of the divided regions as shown in Fig. 33.3. Hence, 12 virtual nodes are created in total for the six

Fig. 33.1 (a) FEM of Break-Reuß beam and (b) normal contact force distribution [N]
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Fig. 33.2 Contact nodes used in the high fidelity model

Fig. 33.3 Locations of the virtual nodes used for reduced joint model

Fig. 33.4 Comparison of normalized displacement of high fidelity and reduced order joint models

contact pairs used. Virtual nodes coincident to each other form the contact pairs with reduced order joint elements created
by utilizing the microslip friction model presented in [6]. Main idea of the reduced order joint element is to estimate the
microslip behavior occurring in the joint contact area by utilizing less number of contact pairs. Parameters of the reduced
order joint model are obtained by optimizing the summation of hysteresis loops of representative high fidelity model in the
corresponding region of virtual nodes.

33.3 Results and Discussion

For high fidelity model and reduced order joint model, harmonic balance method with a single harmonic content is used for
the frequency domain solution. Modal superposition method [15] is employed in order to reduce the number of nonlinear
equations resulting from the use of FEM. Rigid body modes and first three bending modes of the system are included in
the modal superposition. Excitation and output locations are shown in Fig. 33.1a. Both models are solved with free-free
boundary conditions and 0.2% structural damping is imposed.
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Normalized displacement for both high fidelity model and reduced order model are obtained for several excitation levels
which are shown in Fig. 33.4. In the high fidelity model, 400 1D macroslip friction elements are used in total. However, in
the reduced order joint model, 18 friction elements (6 reduced order joints and 3 1D macroslip friction elements for each
joint) are used in total. Although there is a great difference in the number of friction elements utilized, results show that
dynamic behavior of the jointed structure with the reduced order joint model can be estimated with similar accuracy as the
one estimated from the high fidelity contact model.

Acknowledgments Authors would like to gratefully acknowledge the support provided by ROKETSAN A.Ş. through SAYP project no:
82202625-250.02-2016-O-17255.
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Chapter 34
Comparison of ANM and Predictor-Corrector Method
to Continue Solutions of Harmonic Balance Equations

Lukas Woiwode, Nidish Narayanaa Balaji, Jonas Kappauf, Fabia Tubita, Louis Guillot, Christophe Vergez,
Bruno Cochelin, Aurélien Grolet, and Malte Krack

Abstract In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations
arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The
first algorithm relies on a predictor-corrector scheme and an Alternating Frequency-Time approach. This algorithm can be
applied directly also to non-analytic nonlinearities. The second algorithm relies on a high-order Taylor series expansion of
the solution path (the so-called Asymptotic Numerical Method) and can be formulated entirely in the frequency domain.
The series expansion can be viewed as a high-order predictor equipped with inherent error estimation capabilities, which
permits to avoid correction steps. The second algorithm is limited to analytic nonlinearities, and typically additional variables
need to be introduced to cast the equation system into a form that permits the efficient computation of the required high-
order derivatives. We apply the algorithms to selected vibration problems involving mechanical systems with polynomial
stiffness, dry friction and unilateral contact nonlinearities. We assess the influence of the algorithmic parameters of both
methods to draw a picture of their differences and similarities. We analyze the computational performance in detail, to
identify bottlenecks of the two methods.

Keywords Harmonic balance · Continuation · Alternating frequency-time scheme · Asymptotic numerical method ·
Nonlinear vibrations

34.1 Introduction

Harmonic Balance (HB) permits the efficient approximation of periodic solutions of nonlinear ordinary differential equations.
Often, we want to determine the solution as a function of a free parameter. To this end, numerical path continuation is
commonly applied. Continuation provides higher robustness and efficiency as compared to simply computing the solution
for a sequence of equidistant parameter values. Perhaps more importantly, continuation allows us to overcome turning points
and therefore to capture multiple solutions for a single parameter value. The purpose of this work is to enlighten the strengths
and weaknesses of two popular methods for continuing solutions of the HB equations.

HB uses a truncated Fourier series as approximation ansatz. Substitution into the ordinary differential equation system
gives a residual term, which is then made orthogonal to the Fourier basis function (Fourier–Galerkin projection). This
corresponds to requiring that the Fourier coefficients of the residual are zero, for those harmonics retained in the ansatz.
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When we apply this method to the equation of motion of a mechanical system, with generalized coordinates q, subjected to
periodic forcing, we obtain the algebraic equation system,

r̂(q̂,Ω) := S(Ω) q̂ + f̂ nl(q̂,Ω)− f̂ ex
!= 0 . (34.1)

Herein, Ω is the angular excitation frequency, q̂ is the vector of Fourier coefficients of the approximation for q(t), and f̂ nl

and f̂ ex are the Fourier coefficients of the nonlinear forces and the external forces, respectively. S is dynamical stiffness
matrix representing linear internal forces proportional to q, q̇, and q̈, where overdot denotes derivative with respect to time.
S is block diagonal (different harmonics are decoupled in the linear case).

34.1.1 Alternating-Frequency-Time Scheme with Predictor-Corrector Continuation
(AFT-PreCo)

The AFT scheme approximates the Fourier coefficients f̂ nl by sampling q and q̇ at a certain number of equidistant time
instants N along one period, evaluating f nl (q, q̇) in the time domain, and applying the discrete Fourier transform to the
samples of the nonlinear force. Hence, the nonlinear forces are represented by N samples. N affects the accuracy of the
procedure and has to be selected properly. For polynomial forces, the sampling procedure is exact beyond a certain N .
Otherwise, f̂ nl is an approximation and contains aliasing errors. The great advantage of the AFT procedure is that it can
be easily applied to smooth as well as non-smooth nonlinear forces. The downside of the AFT scheme is that it is not
straight-forward to efficiently compute derivatives of order higher than one.

The AFT scheme is commonly combined with PreCo continuation. Suppose we want to determine q̂ for a range of the

free parameter Ω . Starting from an initial solution X0 with X :=
[
q̂

T
Ω

]T
, we can do a prediction,

X
pre
PreCo = X0 + αX1 , (34.2)

where X1 is the unit tangent to the solution path at the point X0 and α is the step length of the prediction. X
pre
PreCo will

usually not satisfy Eq. (34.1). Hence, correction steps are necessary, commonly in the form of Newton iterations, to improve
the estimate until ||r̂(X)|| < ε for a given tolerance ε. Note that the equation system is under-determined. This is often
resolved by considering an additional equation that ensures that the new solution point lies at a certain distance α from X0

(arc-length continuation). In the PreCo, the step length is a crucial parameter: A too small step length leads to spurious
computation effort, a too large step length may lead to many and costly correction iterations or even divergence. The step
length is commonly adjusted automatically with the intent to achieve a desired number of correction iterations. However, it
is advisable to choose reasonable upper and lower bounds, to avoid overlooking important features of the solution path and
getting stuck near branching points, respectively. These bounds are usually chosen based on experience.

34.1.2 Classical Harmonic Balance with Asymptotic Numerical Method (cHB-ANM)

The ANM can be interpreted as high-order predictor (order p), which is a Taylor series expansion of the solution path, around
X0, in the arc length α,

X
pre
ANM = X0 + αX1 + . . .+ αpXp . (34.3)

The step size α is determined such that the estimated error, based on the range of utility of the Taylor series, remains below
the tolerance ε, with the intent to completely avoid correction iterations. For the ANM, the algebraic equation system is
commonly recast into quadratic form, i.e., with only constant, linear and bilinear (quadratic) terms in the unknowns. The
Fourier coefficients of the nonlinear terms can in this case be expressed analytically without having to resort to sampling,
which corresponds to classical HB. Note that all variables, including the nonlinear forces are represented by 2H + 1 Fourier
coefficients. The quadratic form permits the successive computation of Xk up to high order. Only a single Jacobian matrix
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has to be factorized to determine all Xk , k > 0, per expansion point X0 [1]. This contrasts the PreCo where several of such
factorizations are required, one per Newton iteration, to get to the next point on the solution branch.

The cHB-ANM cannot directly deal with non-smooth nonlinearities. These have to be approximated by appropriate
analytic functions (regularization). Moreover, the equations have to be brought into quadratic form, which generally requires
introducing auxiliary variables and equations. For details on how the cHB-ANM can be implemented in a computationally
efficient and user-friendly way, we refer to [2].

34.2 Results

Figure 34.1a depicts the frequency response of the Duffing oscillator. For the same H , both methods have the same number
of unknowns (Fourier coefficients of q up to order H ). However, the results differ as the nonlinear terms are represented in
a different way. For the cubic term of the Duffing oscillator, it can be shown that the sampling procedure yields the Fourier
coefficients of the nonlinear forces up to order H without aliasing error for N ≥ 4H + 1. For Fig. 34.1a N was selected
accordingly. For 2HcHB + 1 = NAFT, the nonlinear terms are represented with the same number of Fourier coefficients
in cHB as samples in the AFT, so that a similar accuracy can be expected. Hence, AFT NAFT = 5 agrees well with cHB
HANM = 2, NAFT = 13 with HANM = 6 and so on.

Figure 34.1b shows the results for a single degree of freedom (SDOF) oscillator with elastic dry friction nonlinearity.
Without regularization, only AFT can be applied, and a reasonable approximation is achieved with H = 1, N = 45. To
regularize, an auxiliary variable describing the force had to be introduced, which is not well-represented withH = 1. Again,
for H = 22 = (45 − 1)/2 both methods yield similar results for the regularized model. The remaining deviation to the
reference is due to regularization. To compute the results depicted in Fig. 34.1b, AFT-PreCo H = 1, N = 45 (non-smooth)
was about 25 times faster than cHB-ANM H = 22. We observed that as the regularization becomes steeper, the number of
harmonics in the cHB-ANM has to be increased to continue the whole branch. Sometimes this value seems too high to be
useful.

In Fig. 34.1c the computation effort is shown for a modal model (n modes) of a beam with geometric nonlinearity. The
results suggest that cHB-ANM becomes more efficient for larger numbers of DOFs. The number of solution points was
larger in the case of the cHB-ANM, which overall lead to approximately the same total number of Jacobian factorizations
for the entire solution path. Apparently, the AFT calculation of the nonlinear forces and their derivatives is less efficient than

Fig. 34.1 Representative results: (a) Duffing oscillator; (b) SDOF system with elastic dry friction; (c) geometrically nonlinear beam with n
coupled modal coordinates. ARMS is the root-mean square of the generalized coordinate. More results on different benchmark systems and further
analyses of opportunities and limitations of both methods will be published in a journal article
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the evaluation of the nonlinear terms and calculation of higher-order Taylor series coefficients within the cHB-ANM. Further
investigations are in progress to gain a better understanding of this.

34.3 Conclusions

The results indicate that the AFT-PreCo is better suited for non-smooth nonlinearities such as stick-slip friction or unilateral
constraints. The cHB-ANM is highly efficient for low-order polynomial nonlinearities and problems with a large number
of DOFs, as in the case of geometrically nonlinear finite element models. It is expected that the cHB-ANM would greatly
benefit from selecting a separate, higher truncation order for the auxiliary variables.
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Chapter 35
A Priori Methods to Assess the Strength of Nonlinearities
for Design Applications

E. Rojas, S. Punla-Green, C. Broadman, Matthew R. W. Brake, B. R. Pacini, R. C. Flicek, D. D. Quinn,
C. W. Schwingshackl, and E. Dodgen

Abstract One of the greatest challenges to the optimization of assembled systems is a lack of understanding of how jointed
interfaces augment system dynamics. Thus, a design tool that can assess the nonlinearity of a joint prior to manufacturing
and experimentation will lead to significant savings in qualification testing and improved performance in terms of dynamic
properties and failure rates. This paper explores the a priori metric hypothesis for jointed structures, which states that the
strength of a nonlinearity (SNL) can be estimated by a metric derived from both the magnitude and uniformity of contact
pressure within an interface and the modal strain energy at an interface’s location.

Keywords Jointed structures · Bolted joints · Nonlinear stiffness · Nonlinear damping · Interface dynamics

35.1 Introduction

The a priori metric hypothesis, stating that the SNL of a jointed system can be derived from the contact pressure and the
modal strain energy at an interface’s location, was based off four observations regarding the behavior of nonlinear systems:

1. Interfaces with high, uniform contact pressure yield system dynamics that appear linear [1].
2. Portions of interfaces that have a moderate contact pressure, which have previously been assumed to be time invariant

during dynamic excitation, exhibit significant fluctuations during dynamic loading [2].
3. Portions of interfaces with low contact pressure are the source of energy dissipation within a jointed structure [1–3].
4. Modifications to the far-field structure around an interface affect how the interface is loaded, and thus affect the perceived

strength of nonlinearity [4].
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This work attempts to validate this hypothesis by defining a SNL metric based on the reduction of natural frequency and
the increase in energy dissipation as the response amplitude of a structure is increased. This metric will be developed by
correlating numerically extracted contact pressure and modal strain from a finite element model (FEM) to experimentally
extracted amplitude dependent frequency and damping.

35.2 Defining Strength of Nonlinearity

For the purposes of assessing the hypothesis, the SNL is defined here as Eq. (35.1).

S (α, β,K1,K2) =
√
(αK1)

2 + (βK2)
2 + (αK1)

2 + (βK2)
2 (35.1)

ωp = ωl +K1A
m−1 (35.2)

ξp = ξl +K2A
m−1 (35.3)

Let Eq. (35.1) be the form of the SNL metric that was developed. This form was selected because a linear combination of
a Euclidean norm and a sum of squares gave high resolution to a wide range of values. Equations (35.2) and (35.3) represent
the theoretical behavior of amplitude dependent frequency and damping as derived through a perturbation analysis on a
simplified 1 DOF mass-spring system with hysteretic damping. ωp and ξp are the amplitude dependent natural frequency
and damping of the examined system, ωl is the linear natural frequency, ξ l is the linear damping of the system, and A is the
physical-space acceleration amplitude envelope of the system. Coefficients K1 and K2 enumerate the effect of the joint on
the system, and m reflects how the interface of the joint influences the system. To focus on the effects of K1 and K2, m is held
constant at 1.25 across all systems; this value was selected to reflect the general shape of the amplitude dependent frequency
and damping curves. Parameters α and β evenly weigh K1 and K2 so both frequency and damping nonlinearities equally
impact the SNL.

35.3 Parameter Extractions

35.3.1 Amplitude Dependent Frequency and Damping

To investigate the universal applicability of the a priori metric hypothesis, experimental data from the Brake Reuss Beam [5],
the S4-Beam [6], and the Four Bolt Interface (Fig. 35.1) were utilized. Amplitude dependent natural frequency and damping
ratios for various modes of each structure were extracted from time responses measured from impact tests using the following
process.

1. Impact structure and measure ring down time response.
2. Bandpass filter a single signal to isolate the response of a target mode as measured by that degree of freedom.
3. Hilbert transform this data and fit the amplitude dependent frequency and damping.
4. Repeat steps 1–3 at least 10 times for the target mode.

Fig. 35.1 The four bolt interface
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5. Smooth and average the curves to generate a single amplitude dependent frequency curve and a single amplitude
dependent damping curve for the targeted mode of the structure/configuration.

6. Scale measured response to the maximum response using FEM mode shape values as shown in Eq. (35.4).
7. Apply a least squares fit of Eqs. (35.2) and (35.3) to frequency and damping curves, extract the coefficients K1 and K2,

and calculate S using Eq. (35.1). Note: α and β were set to 20 and 1 respectively because these values most closely related
the magnitudes of α[K1] and β[K2] for all K1 and K2, allowing frequency and damping to affect SNL equally.

Amax = Aresponse

(
umax

uresponse

)
(35.4)

This process was repeated for each target mode for various assembled structures. For all configurations, bolt torque and
impact force were altered to vary the contact pressure and to understand how force affects the behavior of systems. Due
to modal coupling, the magnitude of change in frequency and dissipation increased with force. Modal coupling is still not
well understood, so rather than normalize the response amplitude with respect to force levels, only trials with similar impact
forces were compared. The post-processed data (S from step 7) was used as the training and validation sets to develop a
correlation to contact pressure and modal strain (see Sect. 35.4).

35.3.2 Contact Pressure and Modal Strain

With emphasis on reducing the need for extensive computation, models of each configuration were created in Abaqus/CAE
2017 without rigorously tuning the model to the manufactured specimen nor defining the nonlinear characteristics of the
joint. These models were run through the following analyses.

1. Linearized eigen analysis to obtain modal strain
2. Nonlinear frictionless interface contact pressure analysis

Based on these analyses, eleven statistics were calculated for each target mode of the various test structures: maximum,
mean, standard deviation, skewness and kurtosis for both strain and contact pressure, and the contact area. These statistics
were based on the strain and pressure values between individual elements in the joint interface and served as the independent
variables for the model to determine SNL.

35.4 Correlation of Numerical and Experimental Parameters

The contact pressure and modal strain statistics data from Sect. 35.3.2 were input into MATLAB’s built-in machine learning
linear regression functions (fitlm, step, and stepwiselm) to establish a correlation with the measured SNL, S from Sect. 35.3.1.
The results are shown in Eq. (35.5) with a determination of 70%. For all regression models, only statistically significant
variables (p-value < 5%) were used.

S = 0.0658 + 1.74με − 1.30σε − 5.74
(

10−9
)
σCP − 41.3ACP + 0.0413β2

2ε (35.5)

where με = Mean strain, σε = Standard deviation of strain, σCP = Standard deviation of contact pressure, ACP =
Area of contact pressure, γ1ε = Skewness of strain, β2ε = Kurtosis of strain.

This result is significant because this supports that the SNL of a beam can be mostly determined by evaluating contact
pressure and the modal strain of a FEM. Using just five variables extracted through two non-rigorous numerical analyses, 70%
of the SNL of a joint can be accounted for. To find the source of indeterminacy, SNL was split into frequency- and damping-
based components by setting β and α to zero respectively. The strain and contact pressure parameters were correlated to
frequency SNL (6) with 83% determination but were only correlated to damping SNL (7) with 52% determination. This
indicates that just assessing variables pertaining to contact pressure and modal strain are not enough to describe the damping
SNL; rather, another variable, such as surface roughness, must be used to better calculate SNL.
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Sω = 0.00163 − 0.0777με + 0.0634σε − 0.00301γ1ε + 1.28
(

10−10
)
σCP + 2.97

(
10−4

)
β2ε + 0.516ACP (35.6)

Sζ = 0.0771 + 0.514με − 4.18
(

10−9
)
σCP − 18.0ACP − 0.0318 Maxε (35.7)

where με = Mean strain, σε = Standard deviation of strain, σCP = Standard deviation of contact pressure, ACP =
Area of contact pressure, γ1ε = Skewness of strain, β2ε = Kurtosis of strain.

35.5 Conclusion

This work demonstrated the creation of a strength of nonlinearity metric to a priori predict the nonlinearity of a structure. A
strength of nonlinearity metric was defined and then computed for different systems using experimentally extracted amplitude
dependent natural frequency and damping curves. Along with this test data, modal strain and contact pressure from FEMs of
the different test structures were used to create a model using machine learning that correlated contact pressure and modal
strain statistics to SNL. This model identified the five variables needed to predict 70% of S, the six variables needed to
predict 83% of Sω, and the four variables needed to predict 52% of Sζ . While these results are promising, the model could
be improved by including variables such as surface roughness. Future research should focus on implementing this data into
the metric, in addition to accounting for modal coupling and using different correlation methods to obtain a more accurate
model.
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Chapter 36
Predictive Modeling of Bolted Assemblies with Surface
Irregularities

Matthew Fronk, Gabriela Guerra, Matthew Southwick, Robert J. Kuether, Adam Brink, Paolo Tiso,
and Dane Quinn

Abstract Bolted interfaces are a major source of uncertainty in the dynamic behavior of built-up assemblies. Contact
pressure distribution from a bolt’s preload governs the stiffness of the interface. These quantities are sensitive to the true
curvature, or flatness, of the surface geometries and thus limit the predictive capability of models based on nominal drawing
tolerances. Fabricated components inevitably deviate from their idealized geometry; nominally flat surfaces, for example,
exhibit measurable variation about the desired level plane. This study aims to develop a predictive, high-fidelity finite element
model of a bolted beam assembly to determine the modal characteristics of the preloaded assembly designed with nominally
flat surfaces. The surface geometries of the beam interface are measured with an optical interferometer to reveal the amount
of deviation from the nominally flat surface. These measurements are used to perturb the interface nodes in the finite element
mesh to account for the true interface geometry. A nonlinear quasi-static preload analysis determines the contact area when
the bolts are preloaded, and the model is linearized about this equilibrium state to estimate the modal characteristics of
the assembly. The linearization assumes that nodes/faces in contact do not move relative to each other and are enforced
through multi-point constraints. The structure’s natural frequencies and mode shapes predicted by the model are validated
by experimental measurements of the actual structure.

Keywords Modal analysis · Preload analysis · Bolted joints · Perturbed mesh · Interface stiffness

36.1 Introduction

The dynamic behavior of monolithic structures can be accurately modeled using conventional and well-established
computational and analytical tools such as finite element analysis. However, the presence of joints and mechanical interfaces
adds an appreciable degree of uncertainty to the dynamic behavior of a mechanical system and presents significant modeling
challenges. Since the use of joints in design is ubiquitous, it is imperative to develop accurate models to predict the structural
dynamic response of assembled systems that include bolted interfaces.
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Many studies have investigated the uncertainty associated with the vibration of jointed structures. Paez et al. characterized
the variability of the natural frequencies of a cantilever clamped beam with a bolt and washer using combined finite element
analysis and experimental data [1]. Uncertainties in the parameters of non-ideal (i.e., flexible, non-rigid) boundary conditions
have been investigated in [2, 3]. Fuzzy set theory has been applied to quantify the uncertainty of joint stiffness and damping
[4, 5]. A review of the uncertainties in the prediction of dynamic response of jointed structures can be found in [6]. The
literature, however, does not quantify the effect of surface waviness on the dynamic properties of a jointed structure or its
associated uncertainty on experimental measurements. Bickford discusses that tightening joints composed of non-parallel
or warped members hinders the accuracy of torque-preload relationships [7], but does not address its effect on the dynamic
response of the assembly.

A common technique to improve the accuracy of computational models is model updating, wherein experimental test
data is used to adjust—or update—model parameters. An overview of the model updating procedure applied to structural
dynamics problems is found in [8]. When calibrating linearized models of jointed structures, prior studies have optimized
the values of springs, masses, and dampers at the model’s interface to match modal characteristics measured from actual
hardware [9–12]. Additional techniques include varying geometric parameters [13] as well as the material properties of a
“doubly connective layer” [14]. Some of the authors recently published a study that proposed a model updating routine
in which the contact definitions of elements at the nonlinear interface were varied (e.g. stuck, slipping or no contact) as
a function of their normal contact pressure magnitude [15]. In comparison to modal test data, close agreement across six
elastic modes was obtained for an optimal value of the model’s “cut-off pressure”, which was a single, scalar value used
to assign the appropriate multi-point constraints. The current work expands on this study by performing model updating of
individual beams to reduce the uncertainty of material properties, and evaluates the predictive capability of an FE model of
the preloaded assembly when surface waviness at the interface is included.

A variety of techniques have been documented for modeling joint behavior in computational studies. In [16], two different
multi-point constraint (MPC) configurations are compared in the calculation of the vibration modes of an automobile engine.
The first confines member stiffness to be around each bolt hole and the second distributes member stiffness across the entire
joint interface. The second configuration produces better agreement with the first two flexible modes of the actual engine.
Four different approaches for modelling bolts in jointed structures were compared in [17]: a solid model of the bolt with
solid elements, rigid spiders coupling the nodes around the bolt hole, a web of beam elements, and a constant preload force
applied to the washer surfaces. While the most computationally expensive, the approach incorporating solid elements for
the bolt produced the best agreement with static and dynamic test measurements. Other models characterizing the nonlinear
effects of joints have been developed over recent years [18–21], but these studies are beyond the scope of this work since
this work focuses on linear vibration responses at low excitation levels.

This paper presents the development of a high-fidelity finite element (FE) model of a jointed structure, with the aim of
determining the effect of surface waviness at the interface on the assembled system’s natural frequencies. A benchmark
structure consisting of two steel beams with nominally flat interfaces is studied, and a roving hammer impact test provides
its linear natural frequencies and mode shapes for validation. Individual beams and fasteners are calibrated in isolation to
obtain their material properties. In the FE model of the bolted assembly, nodes along the contact surfaces are perturbed
based on measurements of surface heights on the actual beams. A brief outline of the paper is as follows: Sect. 36.2
describes the benchmark structure studied in this work. Section 36.3 outlines the model updating procedures carried-out
on individual system components to minimize uncertainties due to material properties and interface geometry. Section 36.4
presents the results of the experimental modal analysis on the bolted assembly as well as the computational results of the
model with the updated parameters and surface geometry from Sect. 36.3. The natural frequency predictions of the updated
computational model are then compared to the measurements in the actual bolted assembly. Comparisons with the accuracy
of other computational modelling approaches for the jointed structure are made.

36.2 System Description

Figure 36.1 depicts the bolted assembly considered in this study. The beams are manufactured from 4340 alloy steel and each
are prescribed to have the same dimensions provided in Appendix A. The raised pads at the beams’ ends create well-defined
regions of contact for the bolted interface. The assembled bolted structure uses two 5/16”-24 UNF-2B bolts and its associated
nut and washer to fasten the individual beams at each end. Additionally, the beams were assigned serial numbers B9A and
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Fig. 36.1 Isometric view of bolted C-beam assembly

Fig. 36.2 Roving hammer impact test set-up for the single beam structure. (a) Top view, (b) Front view

Table 36.1 Natural frequencies
[Hz] for the individual beams:
experimental measurements
compared to FE model with no
updating

Natural frequency (Hz)
Mode Beam 9A Beam 9B FE (nominal beams)

First y-bending 187.5 187.1 189.3
Second y-bending 526.3 525.1 523.3
Third y-bending 610.8 610.3 603.8
First z-bending 1042.7 1042.8 1037.9
First torsion 1545.5 1541.8 1530.7

B9B to facilitate the model updating process. A flatness tolerance of 0.001” was imposed on the manufacturing drawing to
minimize the deviations from a nominally flat interface.

36.3 Single Beam Structure

The details of this experiment and model calibration of the individual beams are given in Sects. 36.3.1 and 36.3.2.

36.3.1 Experimental Modal Analysis

Roving impact hammer testing was performed on each of the individual beams to fit the natural frequencies and mode shapes.
Figure 36.2 shows the test setup and reference coordinate grid for a single beam structure without any bolt hardware. The
single beam was suspended by bungee cords to approximate free–free boundary conditions. Impacts from a roving hammer
were carried out at a total of thirty-three input points in both the y and z directions. To maintain linearity of the response, the
impacts were performed at low force levels around 11 lbf for all test points.\

The natural frequencies and mode shapes for the first five elastic modes are presented in Table 36.1 for beam
subcomponents B9A and B9B. The experimental modes were extracted using the LMS “PolyMAX” tool, a polyreference
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least squares frequency domain modal parameter estimation method [22, 23]. Note the slight variation between the
frequencies of B9A and B9B, which are likely due to small differences in their material properties. These results are
compared to predictions from a high-fidelity FE model of the individual beams with nominal geometry and material
properties (Young’s modulus of 29,000 ksi, Poisson’s ratio of 0.283, and density of 7.12E−04 slug/in3 [24]). Moderate
agreement is obtained with these experimental measurements: the 3rd y-bending mode possessed the highest amount of error
in its natural frequency of 1.2% whereas the 1st torsional mode possessed the lowest diagonal modal assurance criterion
(MAC) value of 49.9%.

36.3.2 Model Updating

To further reduce the error between the model’s predicted natural frequencies and those measured in the individual beams,
model updating of the material properties of all subcomponents used in the final assembly was performed. As a result, sources
of uncertainty outside of the mechanical interfaces were eliminated.

36.3.2.1 Density

The first material property updated in the FE model was mass density. Each individual beam and fastener were weighed
to obtain the mass, and the density of each subcomponent was calculated by dividing each mass by its associated volume
estimated from the FE model. It was assumed that the small deviations from nominal dimensions of the beams have a
negligible effect on their overall volume and thus were not included in these calculations. The updated densities were used
in the material property definitions of the linear elastic constitutive model. Furthermore, each bolt, nut, and washer were
serialized to maintain consistency in the structure’s configuration during assembly/reassembly and in the FE model. Table
36.2 lists the mass measurements and density calculations for all the components.

36.3.2.2 Young’s Modulus

The elastic modulus of each beam was optimized in the FE model using the natural frequencies measurements from the roving
hammer modal tests. The FE model included a point mass to account for the mass loading from the single accelerometer used
during testing. The Young’s modulus values that minimize the least squares error with the measured natural frequencies are
30,850 and 30,470 ksi for B9A and B9B, respectively. These values are approximately 6% and 5% larger than the nominal
value of 4340 steel which is 29,000 ksi. Table 36.3 compares the experimental and material property-updated FE natural
frequencies for B9A and B9B.

Table 36.2 Sub-component mass measurements and density calculations

Beam Bolt Nut Washer
B9A B9B Right Left Right Left Top right Bottom right Top left Bottom left

Mass (Slug) 7.3E-03 7.3E-03 1.0E-04 1.0E-04 2.87E-05 2.8E-05 1.1E-05 1.2E-05 1.1E-05 1.2E-05
Density (Slug/in3) 7.3E-04 7.4E-04 6.7E-04 6.7E-04 9.1E-04 9.0E-04 6.3E-04 6.4E-04 6.3E-04 6.4E-04

Table 36.3 Natural frequencies from the experiment and FE model with updated density and Young’s modulus values

B9A B9B
Natural frequency (Hz) Natural frequency (Hz)

Mode Experimental Young’s modulus updated FE Experimental Young’s modulus updated FE

First y-bending 187.5 187.7 (+0.1%) 187.1 187.3 (+0.1%)
Second y-bending 526.3 527.4 (+0.2%) 525.1 526.4 (+0.2%)
Third y-bending 610.8 608.1 (−0.4%) 610.2 606.9 (−0.5%)
First z-bending 1042.7 1046.5 (−0.4%) 1042.9 1044.5 (+0.2%)
First torsion 1545.6 1541.8 (−0.2%) 1541.8 1538.8 (−0.2%)

Percent errors of the FE model predictions are listed in parenthesis
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Fig. 36.3 Optical interferometer measurements of the beam surfaces. Hotter colors correspond to surface heights that are above the level plane
while cooler colors correspond to surface heights below the level plane.

Fig. 36.4 Line scan of the surface displaying the magnitude of the deviation about the level plane from optical interferometer measurements

36.3.2.3 Surface Geometry

While tight tolerances were imposed on the fabricated beams, their geometry will inevitably deviate from the nominally flat
design due to a number of factors during machining including vibration and deformation of the machine tools, insufficient
clamping, and workpiece material inhomogeneities [25]. These deviations from the ideal flat surface were incorporated
into the FE models of the beams to investigate their influence on the contact pressure distribution in the bolted assembly.
Optical interferometer measurements generated high-resolution surface profile data for each of the four contact surfaces (two
raised pads for each beam). Figure 36.3 presents images of the surface measurements in which hotter colors correspond to
deviations above the level plane while cooler colors correspond to deviations below the level plane.

Figure 36.4 plots a line scan about the center of the raised pad to provide insight into the data of the surface deviation.
For each node on the contact surfaces, the nearest coordinate, in the roughly 8000 by 5000 grid of measurements, was
located and its corresponding surface height extracted. This array of deviated surface heights was used to update the nodal
coordinates in the FE mesh. Each node was matched with a data point in the optical interferometer measurements with the
closest coordinates and perturbed to have the corresponding amount of surface height deviation.

36.4 Bolted Beam Assembly

After minimizing the error between the computational model and experimental measurements of the individual beams,
the bolted assembly was investigated to understand the influence of the interface geometry on the modes of the bolted
assembly. Details of the experimental and computational analysis of the bolted assembly are provided here, concluding with
a discussion of the predictive capability of different FE modelling approaches.
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Fig. 36.5 Roving hammer impact test set-up for the bolted beam assembly

36.4.1 Experimental Modal Analysis

Modal testing was performed on the bolted assembly to extract linear natural frequencies and mode shapes at low excitation
levels. Figure 36.5 depicts the experimental test setup. The assembly was supported with bungee cords to approximate free–
free boundary conditions. Impact forces were applied in the y and z directions at sixty-six distributed points to accurately
resolve the mode shapes along the length of the beam. Two triaxial accelerometers measured the accelerations for each
impact point. Bolts were tightened to 110 in-lbf using a torque wrench and Table 36.4 provides a summary of the first eight
elastic modes of the bolted beam assembly.

A linearity study was conducted to ensure the natural frequencies were extracted from hammer input levels known to
excite linear vibration responses. The purpose of this study is to identify input forces that produce linear responses with little
to no change in the system’s measured frequency response function (FRF). The structure was impacted at a range of forces
between 3 and 40 lbf and the measured FRF’s from the different impact levels were visually compared. Figure 36.6 depicts
the two forms of nonlinear responses observed in specific modes. The first type of nonlinear response is characterized
by an opening/closing of the interface at higher input levels, which produced a shift in peak frequency and increase in
FRF magnitude resulting from the apparent decrease in stiffness and damping during vibration. The 1st and 2nd out-of-
phase y-bending modes exhibited this behavior. The second type of nonlinear response resulted from shear loads at the
interface resulting in significant energy dissipation due to friction. Figure 36.6b shows how the 1st out-of-phase z-bending
mode exhibits this behavior. Higher input levels produced a reduction in FRF magnitudes and an apparent decrease in peak
frequency. The remaining results for the linearity study are provided in Appendix B.

In contrast to the behavior observed with the 1st out-of-phase z-bending mode, the 1st in-phase z-bending mode
was inherently linear as evidenced by the FRF consistency across all input force levels. As apparent in its mode shape
deformations, the 1st in-phase z-bending mode does not induce significant stresses at the interface when compared to the
other modes. Between 3.5 and 14.2 lbf, the natural frequencies observed from the peak points of the FRF remain essentially
unchanged with less than 1 Hz shifts. Only the damping levels seemed to be significantly affected by the input level. For all
the results from the linearity study, it appeared that it was difficult to apply a low enough input force the excite the structure
in such a way that linearity of the response can be confirmed via visual inspection of the FRF. The experimental modes
used for validation purpose were fit from the FRFs obtained from the lowest possible input forces in hopes that these best
approximate the linear response. This seemed reasonable since the natural frequencies were of most interest to understand
the effect of surface geometry on the joint stiffness.

36.4.2 Computational Preload Analysis

The FE model was preloaded by applying an axial force along the bolt shank, then gluing the nut to the shank, thus locking
in the preload. The conversion from torque to axial preload was determined using the Motosh equation [26]. This method
produced the 2400 lbf preload used in the model. It should be noted that there is considerable uncertainty in the joint preload
with a torque wrench. The preload force in an unlubricated bolt tightened with a torque wrench has been shown to be possess
a 35% uncertainty its predicted value [27].
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Table 36.4 Comparison of natural frequency predictions from different FE models to experimental measurements

Flat surface, fully stuck (Hz) Flat surface, preloaded (Hz) Perturbed surface, preloaded (Hz) Experiment (Hz)

Mode shape

297.0 (+2.2%) 283.0 (−2.6%) 289.2 (−0.4%) 290.4

359.2 (+1.5%) 354.5 (+0.2%) 355.5 (+0.5%) 353.8

513.9 (+1.1%) 513.3 (+1.0%) 513.5 (+1.0%) 508.4

597.0 (−0.3%) 597.0 (−0.3%) 597.1 (−0.3%) 598.6

814.6 (+2.1%) 773.0 (−3.2%) 791.6 (−0.8%) 797.6

982.9 (+2.8%) 925.9 (−3.2%) 948.7 (−0.7%) 955.6

1183.7 (−0.2%) 1176.0 (−0.8%) 1178.9 (−0.6%) 1185.6

1359.4 (+1.1%) 1353.0 (+0.6%) 1353.7 (+0.7%) 1344.4
Percent error between natural frequencies from the FE models and experimental measurements are displayed in parenthesis

Figure 36.7 presents the results of the preload analysis for the nominally flat surfaces. Note that the contact pressure is
largest around the bolt hole and decreases further away from it, forming concentric rings of pressure. Such a contact area is
characteristic of receding contact in which the area remains independent of the load while the pressures scale linearly with
the load [28].

Figures 36.8 and 36.9 present the results of the preload analysis for the surfaces with irregularities. The resulting contact
area is markedly different than that of the nominally flat case. Zones of high contact pressure loosely correspond to regions
near the bolt hole with large surface deviations.
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Fig. 36.6 Two classes of nonlinear behavior observed in the measured FRF’s of the bolted assembly: (a) stiffness decrease due to opening of the
interface (b) high dissipation due to shearing forces at the interface

Fig. 36.7 Results of the static preload FE analysis for the flat beam assembly. (a) Z displacements in the structure. (b) Left side contact pressure
at the beam/beam interface. (c) Right side contact pressure at the beam/beam interface

The results from the preload analysis on the non-flat geometry are compared to digitized pressure film measurements in
the actual beam assembly. These films were inserted in the interface and output contact pressures between 350 and 1400 psi
after applying the torque to the bolts. Figure 36.10 displays the results. While they are not in complete agreement, note
that the model for the left side captures the two “strips” of high pressure to the left and right sides of the bolt hole. This
agreement looks qualitatively better than the nominally flat results, which suggest the pressures are distributed in concentric
rings around the bolt hole.
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Fig. 36.8 Computationally-determined interface contact pressure for the left side of the bolted beam assembly

Fig. 36.9 Computationally-determined interface contact pressure for the right side of the bolted beam assembly

36.4.3 Modal Analysis Validation

The results from the preload analysis are transferred into the Sierra Structural Dynamics FE code [29] to perform modal
analysis and calculate the linearized natural frequencies and mode shapes. It was assumed that the bolt preload was high
enough such that regions in contact remained in contact during vibration. Thus, rigidly tied multi-point constraints were
applied to all nodes surrounding elements in contact. Additionally, both structural damping and dissipation caused by relative
motion at the interface were neglected. Free–free boundary conditions were prescribed to the model to match the approximate
boundary conditions from test (Figs. 36.11 and 36.12).

Table 36.4 compares the natural frequency predictions of each of the computational models relative to the experimental
measurements. Each computational model incorporates higher complexity in its description of contact and surface geometry.
The percent error of each computational prediction of natural frequency relative to the experimental value is listed in
parenthesis. The simplest modeling approach—flat surface, fully stuck—defined all nodes on the perfectly flat raised pads
to be rigidly tied together, enforced by multi-point constraints. Such configuration overpredicts the natural frequencies as it
has much larger stiffness than the actual structure. The second modelling approach—flat surface, preloaded—uses the static
preload results on the flat beams to determine which nodes are tied together using the method described in Sect. 36.4.2. With
this approach, a constant ring of stuck elements was formed around the bolt hole, which offers the most accurate natural
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Fig. 36.10 Computationally-determined contact pressures compared to digitized pressure film measurements in the actual beam assembly

Fig. 36.11 Dimensions of the individual beams

frequency predictions for the in-phase y-bending modes. The most complicated modelling approach—perturbed surfaced,
preloaded—updates the surface geometry based on the surface deviation data and then runs the static preload analysis to
determine the distribution of struck and free nodes at the interface. This method offers an order of magnitude reduction in
the error of its natural frequency predictions relative to the flat surface case for the out-of-phase y and z-bending modes.

For all the modes in which the perturbed surface model has a higher level of accuracy compared to the flat surface model,
the stiffness of the structure increases to raise the natural frequency. Such trend may be due to the points far away from the
bolt hole that have high surface deviation and therefore come into contact during the static preload. A receding contact model
cannot capture these points and thus may under-predict the joint’s stiffness. If out-of-phase bending modes are desired to
be predicted by a model, the perturbed surface approach may be the most attractive candidate in applications where a high-
degree of accuracy is demanded. However, this modeling approach requires special equipment to measure surface deviations
which may not be readily available or such measurements may not be easily carried-out for large and complex engineering
structures.
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Fig. 36.12 Linearity study of the bolted beam assembly

36.5 Conclusions

A high-fidelity FE model of a bolted beam assembly was developed, calibrating the material properties of individual
beams and fasteners with experimental measurements and perturbing nodal coordinates at the interface with surface height
measurements from an optical interferometer. A preload analysis determines the distribution of contact pressure in the
interface and consequently which nodes/faces are tied together. Significant improvements in the model’s predictions of
natural frequency for the actual beam system are observed in out-of-phase bending modes, likely due to perturbed surface
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heights coming into contact far away from the bolt hole, a phenomenon unable to be captured by a receding contact
description for nominally flat surfaces. This high-fidelity modelling method could be implemented in applications where
enhanced predictive capability is important.

While finer meshes capture more detail in the surface topographies, it is advised in future studies to employ an averaging
method to the mesh perturbation such that a small neighborhood of points in the data file are averaged for each nodal
coordinate. Doing so would account for outliers in the measured data from specks of dust or large angles in the surface
(for low magnification lenses) or points located on edges. Additionally, it is suggested to consider surface geometries with a
prescribed curvature instead of those that are nominally flat to investigate the robustness of this method.
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Chapter 37
A Novel Computational Method to Calculate Nonlinear Normal
Modes of Complex Structures

Hamed Samandari and Ender Cigeroglu

Abstract In this study, a simple and efficient computational approach to obtain nonlinear normal modes (NNMs) of
nonlinear structures is presented. Describing function method (DFM) is used to capture the nonlinear internal forces under
periodic motion. DFM has the advantage of expressing the nonlinear internal force as a nonlinear stiffness matrix multiplied
by a displacement vector, where the off-diagonal terms of the nonlinear stiffness matrix can provide a comprehensive
knowledge about the coupling between the modes. Nonlinear differential equations of motion are converted into a set of
nonlinear algebraic equations using DFM under harmonic motion assumption. A matrix manipulation based on dynamic
stiffness concept was used to localize nonlinearities and reduce the number of nonlinear equations improving the efficiency
of the approach, which becomes important in solving large complex structures. The nonlinear algebraic equations are solved
numerically by using Newton’s method with Arc-Length continuation. The efficiency of proposed computational approach
is demonstrated using a two-degree-of-freedom nonlinear system. The proposed approach has the potential to be applied to
large-scale engineering structures with multiple nonlinear elements and strong nonlinearities.

Keywords Nonlinear normal modes · Describing function method · Nonlinear vibrations · Nonlinear numerical solver

37.1 Introduction

Nonlinear normal modes (NNMs) can be used to explain a wide class of nonlinear phenomena, mathematically and
theoretically. However, the majority of structural engineers view it as a concept that is foreign to them. Recent studies show
that the concept of NNMs can be used to describe nonlinear behaviors such as jumps, bifurcations, internal resonances, modal
interactions, sub- and super-harmonic motions [1, 2]. Such potentials triggered the need to identify NNMs in engineering
applications. In much of initial works to identify NNMs, analytical methods were commonly used [3]. However, analytical
methods are not useful in analysis of complex high-dimensional structures, i.e. realistic systems, that led to the development
of computational methods dedicated to NNMs.

Numerical algorithms to compute NNMs of conservative mechanical structures are rare and complex. Many of these
algorithms require time integration of the equations of motion, combined with shooting and pseudo-arc-length continuation
[4–6], which becomes computationally expensive with increasing number of degrees-of-freedom (DOF) in finite element
models. Furthermore, computation of NNMs using shooting method is limited by the capabilities of used time integration
algorithms. For example, these algorithms can hardly deal with nonsmooth systems with piecewise linear stiffness. Renson
et al. [7] provides a summary of recent frameworks used in calculating NNMs based on time-integration methods. There have
been also few recent attempts [8, 9] to experimentally isolate and identify NNMs, however the majority of these attempts are
limited to simple structures.

Complexity of existed computational tools have prevented engineers from developing a practical nonlinear analog using
the concept of nonlinear normal modes. This work focuses on developing a simple and efficient computational approach to
identify nonlinear normal modes. The describing function method (DFM) is used to capture nonlinearities of the structure
under periodic motion. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations
using DFM for periodic motion. Since the proposed approach works in frequency domain, it is free from typical challenges
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confronted in time integration methods. A matrix manipulation based on dynamic stiffness concept is proposed in order to
localize nonlinearities and reduce the number of nonlinear equations improving the efficiency of the approach even more.

37.2 Theory

Equations of motion of a nonlinear structure for free-vibration can be written as follows

M.ẍ + C.ẋ + iH.x + K.x + fN (x) = 0, (37.1)

where M, C, H, and K represent the mass, viscous damping, structural damping, and stiffness matrices of the linear system,
respectively. fN(x) is the vector of internal nonlinear forcing and x is the vector of displacements. dot denotes differentiation
with respect to time and i is the unit imaginary.

37.2.1 Describing Function Method

Response of a nonlinear system to periodic excitation in general can be periodic, quasi-periodic or chaotic. Since the focus
of this study is to find the steady-state solutions of the nonlinear system, only periodic solutions, which are of importance in
the design of several mechanical systems, are considered. Using DFM, the nonlinear internal forcing vector can be written
as a matrix multiplied by displacement vector as

fN (x) =  (x) .x = [re (x)+ i im (x)] .x, (37.2)

(x) is a displacement or velocity dependent complex nonlinearity matrix. Elements of the complex nonlinearity matrix
are pre-determined for each type of nonlinearity. Details of DFM and formulations to obtain (x) for any given type of
nonlinearity are given in [10–12]. For example using a single harmonic, describing function (DF) for cubic stiffness, for
which the nonlinear internal force is fN(x) = kNx3, is 3/4kNx2. DFs for typical internal nonlinear forces such as piecewise
linear stiffness nonlinearity, gap nonlinearity and dry friction nonlinearity can be found in [11] for single harmonic motion
and can be calculated in a similar manner for multi-harmonic motions.

37.2.2 Dynamic Stiffness Formulation to Obtain NNMs

Assuming a harmonic motion (x = x∗eiωt), the following set of nonlinear algebraic equations is obtained

[
−ω2M + iω C + i (H + im)+ (K + re)

]
x∗ = 0. (37.3)

A similar approach can be used to obtain the set of nonlinear algebraic equations if multiple harmonics are used. The real
part of the nonlinearity matrix changes the overall stiffness matrix of the system; whereas, the imaginary part modifies the
overall structural damping matrix.

Focusing on the undamped response of the system, the dynamic stiffness matrix, KD, of the linear counterpart is defined as

KD =
[
(K + re)− ω2M

]
, (37.4)

A similar approach as described in [13] is used to partition Eq. (37.3) localizing nonlinear DOFs as a result of which the
following nonlinear equations for undamped response can be obtained

[
KD

NN − KD
NL

[
KD

LL

]−1
KD

LN

]
xN + rexN = 0. (37.5)
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Fig. 37.1 Energy dependency (left panel) of 1st nonlinear natural frequency (circle denotes results reported in [1], dashed-line denotes single
harmonic motion, and solid-line denotes multi-harmonic motions). Modal contributions (right panel) of mode shapes of the relevant linear system
in the identified NNM at different energy levels calculated using Modal Assurance Criterion [13]

Above equation can be solved by using Newton’s method with arc-length continuation as described in [11–13] to obtain
the variation of nonlinear natural frequency with respect to the system’s energy (i.e. sum of kinetic and potential energies).

37.3 Results

To demonstrate the approach, a two-degree-of-freedom system with a cubic nonlinearity is studied. The same parameters as
reported in [1] are used for the comparison purpose. Equation of motion of the system in matrix form is given as follows

[
1 0
0 1

]{
ẍ1

ẍ2

}
+

[
2 −1

− 1 2

]{
x1

x2

}
+

{
0

0.5x3
1

}
= 0.

Figure 37.1 represents the backbone curve of the first natural frequency of the two-degree-of-freedom (DOF) system as
a function of total energy. As it can be seen from the figure, the nonlinear natural frequency and the corresponding mode
shape of the system depends on the total energy of the system. The proposed multi-harmonic approach is also successful
in capturing other branches of harmonic motion detected in this system. These branches represent the realization of n:m
interactions between the in-phase and out-of-phase modes of the system. As discussed in [1], this two-DOF system is able
to realize such modal interactions, since the frequency ratio between 1st and 2nd mode shapes varies with increasing energy
level from its original value of

√
3 to ∞.

37.4 Conclusion

The concept of NNMs has proven to be very effective in understanding complex behavior of nonlinear systems. This study
has demonstrated an effective computational approach to identify nonlinear normal modes of such systems. The approach is
demonstrated by using an easily understandable two-degree of freedom system. However, it can readily be extended to any
large complex system. The used matrix manipulation based on Dynamic Stiffness has the advantage of reducing the number
of nonlinear equations limiting it to the degrees of freedom only associated with nonlinearities.
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Chapter 38
Experimental-Numerical Comparison of Contact Nonlinear
Dynamics Through Multi-level Linear Mode Shapes

Elvio Bonisoli, Domenico Lisitano, and Christian Conigliaro

Abstract An experimental nonlinear cantilever beam, including non-holonomic contacts, is experimentally tested. Time
domain evolution is compared with simulated responses obtained by the proposed methodology, called Multi-Phi, which is
based on piecewise linear mode shapes. The nonlinearities can be retained in a reduced model, using a linearisation in the
configurations space. For each linearisation point a different base is used, consisting of a subset of linear mode shapes. The
nonlinear system is globally approximated by a linear time variant system, described through a set of linear time invariant
systems. The experimental time domain responses obtained from non-zero initial conditions are compared with the numerical
simulation results. The comparison validates Multi-Phi method against non-smooth nonlinear piecewise systems behaviour
in transient response.

Keywords Multi-Phi · Computational mechanics · Non-smooth nonlinearity

38.1 Introduction

Accurate simulations of a complex systems require high number of Degrees of Freedoms (DoFs) and therefore high
computational cost. Computational effort further increases when the system requires the use of nonlinear models to describe
its behaviour. In recent years, efforts have been made reduce the number of model DoFs, with a marginal loss of accuracy.
Methods resulting from such activities are generically called Model Order Reduction (MOR) methods. These methods have
been applied to several engineering fields, as summarized in [1, 2]. Examples of their application can be found in structural
dynamics [3–6], systems and control [7, 8] and mathematics [9–11].

Two classes of MOR methods can be identified: Data-based and Model-based. The first class is based on a database
of previous simulations of the full original nonlinear system. Proper Orthogonal Decomposition method (POD) [12, 13] is
one of the examples of MOR method for nonlinear systems: a base of orthogonal modes is built to describe the system.
The second class is based on the full nonlinear model itself and no preliminary simulations are required. The model is
generically projected into a sub-manifold, whose definition depends on the method used. The reduced system has a lower
computational cost and it is therefore useful for simulations, both in time or frequency domain. Methods of this class
and aimed to nonlinear systems have been proposed, both retaining the nonlinearities [14, 15] and linearising them. Two
interesting methods belonging to this last subclass are the Trajectory Piecewise Linear Approximation (TPWL) [16–18] and
the Global Modal Parametrization (GMP) [19, 20].

In [21–23] the important topic of how to select a base is considered. Recently, classical model reduction techniques have
been applied to contact problems [24], implementing linearised event-driven simulations that also address the problem of
changing the reduced base.

Multi-Phi, the method proposed in this paper, is a linearisation method based on the projection of the original nonlinear
system into the configuration space. Theoretically, it is possible to use any other space as long as it is possible to determine a
univocal linear representation for each linearisation point. Since the span of the possible system states must be known before
the simulation itself, the configuration space is the most predictable space and it is the one used in this paper. The nonlinear
system is described by means of a set of linear systems (linearisation), and each one could be reduced by using a subset of
its mode shapes.

Multi-Phi uses each base separately from the others, differently from TPWL: the bases are not orthonormal between each
other, but they result to be orthonormal within themselves. With respect to GMP, the aim is not to transform Differential
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Algebraic Equations (DAEs) into nonlinear Ordinary Differential Equations (ODEs), but to build piecewise linear ODEs. In
the proposed method, the off-line computation consists just in a series of linear modal analysis.

Nonlinearities in Multi-Phi are implied in the differences between the different bases. Non-holonomic constraints, such
as contacts, or continuous nonlinear effects can be handled similarly. In the following, the proposed method is introduced
and a simple application is provided.

Multhi-Phi methodology was presented in [25, 26], where it is applied to numerical nonlinear systems with localised
nonlinearity. The method seems to be quite robust when the nonlinearities are both discrete or continuous. The potentiality
in terms of accuracy and computational time reduction are shown through numerical simulations compared to classical
integration. The aim of this work is to predict the time domain response of a non-smooth nonlinear system with a discrete
nonlinearity and compare it to experimental results of the real system.

The paper is organised as follow: in Sect. 38.2 the experimental test-rig is shown with attention to the system equipment,
in Sect. 38.3 the methodology for discrete system is explained. In Sect. 38.4 the results of a non-null initial condition case
study are analysed and compared to the experimental results. Finally, some comments on this work are discussed in the
conclusion.

38.2 Experimental Set-Up

The experimental laboratory test-rig is shown in Fig. 38.1. The nonlinear system is a flexible aluminium cantilever beam
with an additional steel mass of 213 g in the free tip. The dimensions of the beam are shown in Fig. 38.2. A non-smooth
nonlinearity is obtained though the addiction of an ideally rigid support at 400 mm from the constraint, called Support
constraint in Fig. 38.1, with a gap of 1.35 mm from the beam in its undeformed configuration. This is a non-holonomic
constraint; therefore, the system is nonlinear because of the change of boundary conditions/stiffness matrix when the gap is
closed. Three points of interest are selected along the beam: node 1 distant 95 mm from the clamped constraint and used for
the excitation, node 2 that is the contact point of the non-smooth nonlinearity, and node 3 that is the free tip of the beam. A
shaker is used to excite the system in node 1 during preliminary modal analysis tests. The response of the nonlinear beam
is measured though three displacement laser sensors, monitoring node 1 (Keyence LK-H052), 2 (Keyence LK-H082) and 3
(Keyence LK-H152). The data are acquired using a LMS Scadas Mobile and Test.Lab software.

The characterisation of the beam natural frequencies and damping ratios is performed by sweeps from 2 to 250 Hz on the
linear structure, i.e. with the support constraint removed. Only the bending modes in x–z plane are investigated. The natural
frequencies of the bending modes inside the spanned frequency range are listed in Table 38.1.

A finite element model, shown in Fig. 38.3, is implemented to represent the beam. The model is made of one-dimensional
Timoshenko beam with a total of 348 DoFs. The model was tuned on the experimental data; the resulting density ρ and
Young Modulus E are respectively ρ = 2700 kg/m3 and E = 43.5 GPa. The steel mass is modelled as a punctual mass in the
DoF at 529 mm from the constraint, with the actual mass and inertia tensor of the steel cylinder.

Fig. 38.1 Laboratory test-rig and experimental setup
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Fig. 38.2 Sketch of the non-linear system, relevant dimensions are in millimeters

Table 38.1 Experimental
bending modes in x–z plane Mode

Clamped
free (Hz)

Damping
ratio (−) (%) Description

1 3.99 4.340 First bending xz

2 37.00 1.670 Second bending xz

3 108.09 0.009 Third bending xz

4 205.29 0.240 Fourth bending xz

Fig. 38.3 One-dimensional finite element model

Several different tests are performed on the beam with non-null initial conditions. The initial conditions are obtained by
the application of a static force in the three holes highlighted in Fig. 38.2, in both directions ±z: the application of the force
in different positions let to have different deformed initial conditions. If the force is applied in −z, the beam is in contact
with the support constraint. The force is applied with a hanged weight linked to the beam by mean of a cable, which is cut to
observe the free oscillations of the system.
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38.3 Multi-Phi Method

Linear modal analysis allows to rewrite the equations of a linear dynamic system by means of diagonal matrices only, so
uncoupling the problem. The proposal of Multi-Phi is to describe the nonlinearities through a limited number of parameters
and to decompose the nonlinear system into a series of linear systems, each one characterised by a reference value of each
parameter. In the following, the assumption of a single parameter α is made. It is considered a set of lv linearised models
characterised by a reference values αl.

Linear modal analysis is performed on each linear system l, obtaining rl modes, used to build a collection of lv linear
models. Each linear model can represent with a good approximation the system behaviour for α ≈ αl.

Considering a generic l linear system, the equations of motion are described by Eq. (38.1).

M(l)ẍ + C(l)ẋ + K(l)x = f(t) (38.1)

where x, ẋ, ẍ ∈ �n×1 are respectively displacements, velocities and accelerations of the system, M(l), C(l), K(l) are
respectively mass, damping and stiffness matrices of the l linear system and f(t) is the time depending external forcing
function applied to the system.

Assuming a proportional damping matrix, the modal superposition results:

x = �(l)η(l) (38.2)

where �(l) ∈ �n×rl and η(l) ∈ �rl×1.
In Eqs. (38.1) and (38.2) the superscript (l) is referred to the modal coordinates of the lth linear model.
If the eigenvectors are unitary modal mass normalised, Eq. (38.1) can be then expressed by means of modal coordinates

as Eq. (38.3).

I η̈(l) + diag
(
2ζlωl

)
η̇(l) + diag

(
ω2
l

)
η(l) = �(l)T f(t) (38.3)

where ωl and ζl are the vector of natural frequencies and corresponding damping ratios vectors of the lth linear model.
The state in terms of physical coordinates can be obtained using Eq. (38.4):

⎧⎨
⎩

x(t) = �(t) η(t)+ x∞(t)
ẋ(t) = �(t) η̇(t)

ẍ(t) = �(t) η̈(t)

(38.4)

In Eq. (38.4) the addition of x∞, called asymptotic configuration, is necessary whenever the set of mode shapes used to
simulate the system evolution cannot describe the system state because of non-null boundary conditions. It is considered
function of time because it depends on the linearised system considered at each time instant.

To determine x(l)∞ , the Guyan reduction is applied, by means of Eq. (38.5). In such equation, xk represents the boundary
conditions (known DoFs) while xu represents the not constrained DoFs (unknown).

⎧⎪⎨
⎪⎩

x∞ =
[

−
(

K(l)uu
)−1

K(l)uk
I

]
xk

ẋ∞ = 0

(38.5)

The matrix �(t) is varying in time as a consequence of the transition between the linearised system: it is composed by the
succession in time of the matrices �l, with l = 1, . . . , L if a number of linearised systems equal to L is considered.

In the following it will be referred to each linearised system as to a “level”, so that at the level l it is associated the linearised
system characterised by α = αl, the set of reduced matrices diag(2ζω)l, diag(ω2

l ), �l and the asymptotic configuration x∞, l.
When the nonlinearity is discrete, it is supposed that the parameter α can assume only discrete values. Therefore, during

the simulation only one level at the time is considered, depending on the value of α. The evolution of the full system, during
the span of time in which α = αl, depends only by the linearised system l and the transition to another level m occurs
whenever α = αm.
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The transition is governed by Eq. (38.6), in which the initial conditions of the modal coordinates of the level m are
described by means of the final conditions of modal coordinates of the level l:

{
ηm,0 = �−1

m

(
�lηl,end + x∞,l − x∞,m

)
η̇m,0 = �−1

m �l η̇l,end
(38.6)

The class of problem targeted is the one in which: (1) the external actions are potentially non-periodic; (2) the interest lies
in the transient solution as well as in the steady state.

38.4 Comparison Between Prediction and Experimental Data

The case study discussed in this paragraph is the free oscillations of the system described in Sect. 38.2 due to non-null initial
conditions. A force is applied in the hole closest to the free tip in +z direction, as shown in Fig. 38.4, producing a deformation
of the beam. The imposed deformation represents the displacement initial conditions of the free vibrations, while the velocity
initial conditions are null. The observation of the free vibrations starts when the force is suddenly removed.

The evolution starts with a series of impacts of the beam on the support constraint, until the displacement oscillations of
the beam contact point decreases under the gap level.

Time-frequency analysis of the evolution of the three measured points is shown in Fig. 38.5, through Wavelet [27]
transformation. The time domain evolution presents 3–4 harmonics clearly identified related to the system natural frequencies
when it is in contact with the support or not and some other natural frequencies that are the linear combination of those. The
natural frequencies have an unexpected trend, in fact they are higher in the first second of oscillations and then they smoothly
converge to the expected natural frequencies. This experimental behaviour is under further investigations, due to possible
related geometric nonlinearity when the system presents large oscillations or non-ideal behaviour of the constraint.

The numerical model of the system has a discrete nonlinearity, the parameter is in this case the displacement of the contact
point, α = x2. Two levels (L = 2) are used for the numerical prediction through Multi-Phi method. In particular, when the
displacement of the contact point x2 > − g the corresponding linear system, shown in Fig. 38.6 (left), is a clamped free
beam. On the other end when x2 < − g the boundary condition of the system changes and the displacement of the contact
point along z is constrained, as shown in Fig. 38.6 (right). The modal properties used in the simulation are therefore related to
these to linearised system. The natural frequencies of the bending modes of the two configurations are shown in Table 38.2.

The initial condition of all the degrees of freedom of the system is required for the numerical simulation. The initial
conditions are obtained by imposing a static load in the same node on which it was applied in the experimental test (Fig. 38.7),
in order to have the displacement of the contact point as in the experimental case.

Fig. 38.4 Non-null initial condition imposed displacements (undeformed state is overlapped in transparency)
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Fig. 38.5 Time-frequency analysis of the measured points: node 1 (left), node 2 (middle) and node 3 (right)

Fig. 38.6 Discrete levels used in the simulation: clamped-free (left) and clamped-pinned (right)

Table 38.2 Natural frequencies
of each level Mode

Clamped-
free (Hz)

Clamped-
pinned (Hz) Description

1 3.99 14.43 First bending xz

2 37.00 85.56 Second bending xz

3 108.09 228.10 Third bending xz

4 205.29 287.90 Fourth bending xz

Fig. 38.7 Imposed non-null initial condition in the numerical model (undeformed state is overlapped in transparency)

The comparison of the free vibrations in terms of displacement for the three measured points is shown in Figs. 38.8, 38.9,
and 38.10.

The time span in which the system is in the “free–free” level have white background, while the grey background indicates
a contact condition between the beam and the support constraint.

The behaviour of node 1 in Fig. 38.8 is well predicted by the simulations. Both low frequency oscillations and high
frequency excitations compare very well. The high frequency oscillations of the measured data have larger amplitude. This
difference can be related to the non-ideal behaviour, with some degree of flexibility, of the constraint, with respect to the
perfectly fixed boundary condition of the model. The initial condition of this point is significantly less than the experimental
one, this is another prove of the non-perfectly rigid constraint that influence more the closest analysed point.

The comparison of the contact point displacement in Fig. 38.9 is much more interesting. The displacement is bounded
in the lower part to the gap value in both the experimental and numerical simulation. The duration of the contact is very
well predicted from the numerical method, even if it is visible a small flexibility of the experimental constraint that is not
taken into account in the model. The time domain behaviour is very well predicted from the simulation, except the change
of frequency of the experimental result already discussed for Fig. 38.5. It is very interesting to observe that both lower and
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Fig. 38.8 Displacement of node 1: comparison between experimental data and numerical prediction
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Fig. 38.9 Displacement of node 2: comparison between experimental data and numerical prediction

higher frequency and amplitude of oscillations are almost coincident between experimental and numerical result. Moreover,
the behaviour of the system during the first contact is really surprising: some oscillations can be seen in the experimental
curves, with bouncing of the beam on the support; the same behaviour is also numerically found, with the beam that loss the
contact with the support two times inside the first contact in correspondence of the experimental bouncing.

In Fig. 38.10 the experimental measured data of the beam tip are compared with the numerical ones. This point is useful
to understand the excited natural frequency of this system. The numerical initial condition in this case is really close to the
experimental one. Also in this case the simulation results are almost coincident with the experimental one, except the phase
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Fig. 38.10 Displacement of node 3: comparison between experimental data and numerical prediction

shift starting from 6 s. The detailed view on the first oscillations gives an idea of the level of accuracy of the simulation,
which is very high.

38.5 Conclusion

The Multi-Phi method has been successfully applied to a non-smooth nonlinear system to predict the response in time
domain. The basic theory of the method is evident: it lets to reduce the computational cost of a non-linear system
integration by using only linearised discrete levels of the considered nonlinear system. The method has been valuated against
experimental results of the free vibrations of a laboratory test-rig. The predicted time domain displacements agree very well
with the measured ones, even if the model could be substantially improved. Some aspects requires further investigations, in
particular the flexibility of the clamp. Moreover support constraints are not actually considered and the hardening effect of
the experimental system when the amplitude of oscillation is larger should be deeper investigated and eventually included in
the numerical model.
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Chapter 39
Dynamic Behavior and Output Charge Analysis of a Bistable
Clamped-Ends Energy Harvester

Masoud Derakhshani and Thomas A. Berfield

Abstract Vibration energy harvesting systems are an excellent power source alternative to batteries or other green energy
alternatives, given that many application environments feature vibration sources significant enough for power scavenging.
The most important challenge faced by these types of energy harvesters is their general operating inefficiency when driven by
the chaotic, low frequency vibration sources characteristic of most real-life scenarios. Prediction of power for these systems
requires a detailed understanding of their performance under dynamic conditions. In this study, an analytical method is
applied to dynamically analyze the output electrical charge of a piezoelectric-based bistable energy harvester under harmonic
excitation. This system is made of a clamped-clamped buckled beam with attached piezo patches and a lump mass at the
center. The bistability is created by a compressive load applied at the beam ends. In order to appropriately analyze the
dynamic behavior of the structure, the beam is divided into two components in a way that the dynamic effect of the tip mass
appears in the boundary conditions as a matching relation between two parts. First, natural frequencies and mode shapes of
the system are found by theoretically solving the free undamped linear system. These obtained mode shapes are then used
in a Galerkin approach to discretize the nonlinear equations of the buckled structure. By solving the nonlinear equations,
Poincare’ plot and output electrical charge for a buckled case under three different exciting frequencies are investigated to
analyze the performance of the bistable energy harvester.

Keywords Vibration energy harvesting · Nonlinear dynamics · Piezoelectricity · Output charge · Bistability

39.1 Introduction and Model Description

Systems with the capability of harvesting ambient vibrational sources have been studied for several years [1, 2]. As shown
previously in the literature, linear structures usually fail to fulfill the practical needs for energy harvesters due to their narrow
frequency bandwidth and local vibrational motion for low input energy density, which in turn results in low efficiency [3, 4].
In order to address these issues, nonlinear structures with the ability to create snap-through motion have been considered as
an alternative to linear systems [5–9]. A compressive buckled beam is a typical structure for such purpose which dynamic
behavior has been heavily investigated by researchers in this area [10–12]. One of the common issues of buckled beam energy
harvesters is their relatively high natural frequencies for small-scale systems. Adding concentrated mass to such a buckled
structure significantly decreases the first natural frequency and consequently paves the way for having bistable motion at
lower frequency range.

In most of the previous studies on the piezoelectric-based bistable beam energy harvesters, they have been simplified
to a single degree of freedom vibrational system with the equivalent mass, stiffness, and damping coefficients. While such
simplification could deliver a good estimation of the dynamic behavior of these systems, having a more accurate analysis
of the dynamic behavior and possible output power of such devices would definitely lead to better understanding of their
performance under various exciting situations. In this study, the dynamic analysis of a clamped-clamped buckled beam with
a tip mass in the middle is theoretically being reviewed. A schematic view of this system is shown in Fig. 39.1. A unimorph
setup with a piezoelectric layer attached to the top surface of the buckled beam is considered for this system. The buckling is
created via a compressive load applied at the ends of the beam and the whole structure is subjected to a transversal harmonic
base excitation. The parametric dimensions considered for this study are depicted in Fig. 39.1.
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Fig. 39.1 Schematic view of the piezoelectric bisable energy harvester with an attached tip mass in the middle

To accurately model the described nonlinear system, the buckled beam is divided into two individual parts, so the effect
of the concentrated mass can be considered as the boundary condition in the dynamic model. For each part, the nonlinear
equation has been derived based on Euler-Bernoulli beam theory as:
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where Wi (i = 1, 2) is the lateral deflection of the beam and WB is the base excitation. Considering the fact that the thickness
of the piezoelectric layer is very thin compared to the structural layer, its dynamic behavior is neglected in the model. To solve
such a nonlinear system, Galerkin’s method is chosen to discretize the nonlinear equations, for which a set of known spatial
shape functions are required. These functions can be developed by solving the free vibration of the undamped linear system,
in which all the damping, nonlinear, and external forcing terms are neglected. By shaping such functions, the following
presumed solution can be written for each part of the beam:

W
j
i =

N∑
i=1

ψ
j
i (x)q

j
i (t) ; (j = 1, 2) (39.3)

where ψ i and qi are the linear shape function and the unknown generalized coordinate for mode i respectively. Applying
Galerkin’s discretization process, a set of nonlinear ordinary differential equations (ODE’s) for each part of the beam is
developed. Considering the matching conditions existing at the location of the concentrated mass, the coupling process of
these obtained ODE’s could be performed as described in [13], which yields the final form of the nonlinear equations as:

[M] q̈ + [C] q̇ + [K] q + fNT = F (39.4)

where [M], [C], and [K] are the mass, damping, stiffness matrices respectively,fNT is the vector of nonlinear terms, and F
is the external force vector for the coupled structure. Solving nonlinear Eq. (39.4) using Runge–Kutta numerical algorithm
would deliver the vertical deflection of the beam under the harmonic excitation.

To estimate the electrical charge produced by the thin layer of piezoelectric attached to the top surface of the beam, the
constitutional piezoelectric equation for the described arrangement in Fig. 39.1 can be written as:

Dz = d31σxx + εT33Ez (39.5)
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where d31 is the coupling coefficient of the piezoelectric material, σ xx is the longitudinal stress, ε33 is the electrical
permittivity, and Ez is the electrical field across the device. By considering the short-circuit configuration (zero external
resistance), the following relation is obtained for the output electrical charge of the studied bistable energy harvester:

Q(t) = bd31E

(∫ L
2

0
ε1
xx dx +

∫ L

L
2

ε2
xx dx

)
(39.6)

where εxx, and Q are the mechanical strain at the topside of the beam, and the output electrical charge of the piezoelectric
layer due to mechanical deformation. Note that the mechanical strain shown in Eq. (39.6) could be found from the nonlinear
Euler-Bernoulli beam relation between the strain and vertical deflection for each part individually.

39.2 Results and Discussion

The results of the Poincare plot and output electrical charge for the described system in Fig. 39.1 are developed under
three different excitation frequencies. Table 39.1 shows the parameters of the model considered for developing such results.
Acrylonitrile butadiene styrene (ABS) and lead zirconate titanate (PZT-5A) are considered as the structural and piezoelectric
material respectively [14] and the compressive load is selected just above the critical buckling load ensuring a moderately
buckled bistable system with a small base exciting amplitude (B = 0.1 mm).

As can be seen from Figs. 39.2, 39.3, and 39.4, the amplitude of the electrical charge captured for both 20 and 150 Hz
excitations (Figs. 39.2 and 39.4) are pretty small due to the local vibration of the buckled beam around one of its stable
states. However, the amplitude of the electrical charge obtained for the 50 Hz excitation (Fig. 39.3) is noticeably higher
compared to the other two exciting situations. This difference occurs as a result of snap-through motion created in the beam

Table 39.1 The parameters of the studied bistable energy harvester used for the modeling results

Parameters Beam length (mm) Beam width (mm) Beam thickness (mm) Tip mass (g) Young’s Modulus (GPa) PZT thickness (μm)

Values 100 10 2 50 2.3 10

Fig. 39.2 Poincare plot and output electrical charge of the bistable system under 20 Hz excitation



276 M. Derakhshani and T. A. Berfield

Fig. 39.3 Poincare plot and output electrical charge of the bistable system under 50 Hz excitation

Fig. 39.4 Poincare plot and output electrical charge of the bistable system under 150 Hz excitation
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at around the first natural frequency obtained from solving the free vibration of the undamped linear system (first natural
frequency of the described model is obtained as ωn = 38.3242 Hz). This indicates the significance of the concentrated mass
added to the buckled beam to work as a low-frequency bistable energy harvester. Note that the compressive load applied
to the system shifts the maximum amplitude toward the higher frequencies in the amplitude-frequency response due to the
hardening behavior of the nonlinear structure.

39.3 Conclusion

The importance of snap-through motion in the efficiency of the vibration energy harvesters has been reviewed in this study
by accurately modeling a nonlinear bistable structure suitable for low operating frequency range. It has been shown that
dividing the bistable structure into its components with the possibility of considering the dynamic effect of the concentrated
mass as a boundary condition could lead to a more accurate model of the studied nonlinear system. Furthermore, adding
more inertia to a bistable structure could result in better performance as an energy harvester under low-frequency exciting
conditions.
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