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Abstract We give a brief overview of the results on the behavior of the Lebesgue
constants for various partial sums of multiple Fourier series. In addition, we
establish a new property of the Lebesgue constants concerning its partly increasing
behavior.
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1 Introduction

Estimates for partial sums of Fourier series play an important role in many areas
of analysis. The norms of the corresponding operators are called the Lebesgue
constants. They have numerous applications: in the study of convergence and
summability of Fourier series, in approximation and interpolation theories, and
even in the study of the stability of homogeneous polynomials; for some of these
applications, see, e.g., [1, 3, 13, 15, 41]. When dealing with uniform convergence,
the operators are considered in L1 or, equivalently, in the space of continuous
functions C. In dimension one, the situation is clear: for the N-th partial sum,
the norm differs from (4/π2) ln N by a bounded value ([18]; see, e.g., [46,
Sect. 2.12]). This topic becomes much more complicated in the multivariate case.
The main reason is obvious: contrary to the univariate case, in several variables
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there are numerous ways of ordering the partial sums. This leads to various types
of convergence (or divergence), and the difference between some of them is drastic.
Given a set B ⊂ R

n, the Fourier partial sum generated by B ∩ Z
n is defined as

SB(x; f ) :=
∑

k∈B∩Zn

f̂ (k)ei〈k,x〉,

where f ∈ L1(Tn), with T
n = [−π, π)n, 〈k, x〉 = k1x1 + . . . + knxn, and

f̂ (k) := (2π)−n

∫

Tn

f (x)e−i〈k,x〉dx

is the k-th Fourier coefficient of f . The norm of the Fourier operator SB is called the
B-th Lebesgue constant and in the most of the regular situations it can be expressed
as

�B := sup
‖f ‖C(Tn)≤1

‖SB(·; f )‖C(Tn)

= sup
‖f ‖

L1(Tn)
≤1

‖SB(·; f )‖L1(Tn)

= (2π)−n

∫

Tn

∣∣∣∣∣
∑

k∈B∩Zn

ei〈k,x〉
∣∣∣∣∣ dx.

The core of the theory is specifying the set B and obtaining estimates for the
corresponding Lebesgue constants, as sharp as possible. In the study of the B-th
Lebesgue constants the compact or non-compact set B ⊂ R

n usually depends on a
scalar or vectorial parameter N . More precisely, if D is a fixed set, then we study
various ND as B. We use notation LN (instead of �ND) for the corresponding
Lebesgue constants, while the underlying D is assumed to be known. Last but not
least, the sum under the absolute value is called the Dirichlet kernel generated by B.
The main feature of the univariate case is that the Dirichlet kernel can be expressed
as a relatively simple function, while in the multivariate case this is possible only in
certain trivial situations.

A very detailed survey on the Lebesgue constants is given in [29] but it deals
mostly with linear methods of summation of the Fourier series than with partial
sums. There are other surveys (see, e.g., [16]) but some of them, including [16],
have the Lebesgue constants as a section only and in addition, they are outdated
now. This makes somewhat difficult to see the state of affairs just with the partial
sums. We do this in Sects. 2 and 3 of this paper, without unnecessary details. Note
that some new important results have been recently published and we discuss them
here.

However, we do not discuss the related problems in more general settings, say,
for spherical harmonics or even for compact Lie groups. We only note that the
interesting though very specific problem of the behavior of Lebesgue constants for
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Lie groups has been studied in the 1970s by Dreseler and later by G. Travaglini
and his colleagues (see, e.g., [19]). Furthermore, it turned out that the main open
problem for the trigonometric case (see Sect. 2.2) was affirmatively solved in [28]
for the case of spherical harmonic expansions. We also do not discuss the results
concerning the Lp norms, with p > 1 (see, e.g., [31]).

In Sect. 4 we establish a new result: the multidimensional Lebesgue constant is a
partly increasing function of N .

2 Lebesgue Constants Generated by the Homothety of a
Fixed Set

As mentioned, the sets B are mostly constructed by N-dilations of a fixed set
D. Different geometrical properties of D imply very important differences in the
behavior of the corresponding partial sums and, as a consequence, very different
convergence and approximation properties of the corresponding Fourier series.

2.1 Cubic Partial Sums

If D is a cube with faces parallel to the coordinate hyperplanes, its N-homotheties
give for LN the n-th power of the univariate asymptotic, which results in the
growth lnn N , with the remainder terms dominated by lnn−1 N . The situation is very
similar if D is a parallelepiped with faces parallel to the coordinate hyperplanes.
It is natural that it is Nj -dilated in each direction, j = 1, 2, . . . , n. Then LN is
asymptotically equal to ( 4

π2 )n ln N1 . . . ln Nn. This asymptotic looks natural, since
what is anticipated here is nothing more than the product of the univariate estimates.
But even in this case there exists Fefferman’s remarkable result [17], which gives an
example of a continuous function with everywhere rectangularly divergent partial
sums. Considering more general objects within the scope of “polyhedral” case, one
can see many non-trivial problems. We will overview them below in Sect. 3.

2.2 Spherical Partial Sums

The case of spherical partial sums, where D is a ball centered at the origin, is
completely different. If the polyhedral case is one of the poles of possible estimates
of the Lebesgue constants, the lowest one of logarithmic nature, the spherical one

is the other pole, with the largest, in a sense, possible bound CN
n−1

2 . What we have
there is bilateral power estimate: there are positive constants C1 and C2 such that

C1N
n−1

2 ≤ LN ≤ C2N
n−1

2 . (1)
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The lower estimate is known from [21], the upper one was obtained in [22] and
simultaneously and independently in Babenko’s preprint [3]. The publication of [22]
was apparently the reason why Babenko never converted his preprint into a regular
paper though a different method involving the Riemann zeta-function and number
theory arguments was used by Babenko.

There are many ways to prove (1); the reader can find them and other details in
[29] and in the recent books [41] and [23]. The main question posed in [3] (see also

[38]) was about the existence of the limit limN→∞ LNN− n−1
2 . This question is still

open. See other interesting results by Babenko in the same direction in [4].
Attempts to find which sets D are similar to the ball as far as the Lebesgue

constants are concerned had been undertaken long ago. First of all, let us mention

Yudin’s general upper estimate LN ≤ CN
n−1

2 [42] for starlike sets D having finite
upper Minkowski measure:

lim sup
ε→0

mes{x : ρ(x, ∂D) < ε}
ε

< ∞,

where ρ(x, ∂D) := inf
y∈∂D

ρ(x, y) and ρ(x, y) is the distance between two points

x, y ∈ R
n. Somewhat less general results but given in more transparent geometric

terms can be found in [33] and [44].
In the general lower estimate in the following Theorem 1 (obtained in[27] and as

a particular case in [30]), conditions are less restrictive than in the earlier paper [12]
and in the later paper [11]. Moreover, the conditions in [27] are local.

Theorem 1 Let the boundary of a domain D contain a simple (non-intersecting)
piece of a surface of smoothness n/2+1 in which there is at least one point with non-
vanishing principal curvatures. Then there exists a positive constant C depending

only on D such that LN ≥ CN
n−1

2 for large N .

This result shows that the presence of one boundary “curved” point is sufficient

for the Lebesgue constants LN to be of the growth N
n−1

2 . A similar two-dimensional
result is obtained in [20] without smoothness assumptions but for a convex set D. A
very general lower estimate in [43] is also of interest.

2.3 Hyperbolic Partial Sums

Since the publication of Babenko’s paper [2], linear means with harmonics in
“hyperbolic crosses”

B := ND = �(N, γ )

= {k ∈ Z
n : h(N, k, γ ) =

n∏

j=1

( |kj |
N

)γj

≤ 1, γj ≥ 1, j = 1, . . . , n}
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have attracted much attention of approximation and Fourier analysts. The exact
degree of growth for the Lebesgue constants of hyperbolic crosses is the same as

that for the spherical case, that is LN � N
n−1

2 . This fact was established in the two-
dimensional case independently by Belinsky [6] and by Yudin and Yudin [44], and
afterwards it was generalized to the case of arbitrary dimension in [26]. It should
be mentioned that these results were proved by step-by-step transition from sums to
the corresponding integrals. However, it is by no means surprising if we recall that
such a cross does not contain points with non-vanishing curvature (cf. Theorem 1)
and that the points of the coordinate hyperplanes do not contribute much to the
estimate though their cardinality is infinite. The situation may change if the cross is
rotated and then dilated. There are two principal cases there: the “rational turn” and
“irrational turn.” More precisely, the following results were obtained in [10] (the
two-dimensional results were obtained earlier by a different method in [7, 8]).

Let

Lj (x) = lj1x1 + . . . + ljnxn, j = 1, 2, . . . , n,

be linear forms with nonsingular coefficient matrix

� = {ljk}, 1 ≤ j, k ≤ n, det � = 0,

and

B = {x ∈ R
n :

n∏

j=1

|Lj(x)| ≤ Nn}.

We call the matrix � rational if each row of this matrix consists of integers, possibly
up to a common factor. In the contrary case, the matrix is said to be irrational.

Theorem 2 The following two statements hold.

1) If the matrix � is rational, then LN � N
n−1

2 .

2) If � is irrational, then there exists an integer N0 such that the operator LN is
unbounded for all N > N0.

One can see that this theorem does not deal with all the hyperbolic crosses.
Indeed, the proof is based on certain results in geometric number theory and such
results are not valid for all crosses. Let us present the most important ingredient for
such type results (see, e.g., [37, Th. 3.1.3]), a theorem on bounded linear projections
in L1. In our setting it reads as follows:

If the operator of taking partial sums with respect to some dilation of a given set
is bounded, then this set may be represented as a finite union of co-sets of discrete
subgroups of the lattice Z

n.



152 M. I. Ganzburg and E. Liflyand

3 Polyhedral Partial Sums

Theorem 1 shows that even one boundary point with non-vanishing curvature affects
the rate of growth of the Lebesgue constants. Therefore, the polyhedral case, where
D is everywhere flat, illustrates, in a sense, the case of flatness versus curvature.

Of course, many cases in this section can be related to the previous one, where
the N-dilations of a polyhedron D are considered. However, the polyhedral case
delivers interesting situations when B is constructed not by means of dilations.
Therefore, all polyhedral cases are given in one section.

3.1 General Estimates

In this case, there exist two positive constants C1 and C2, C1 < C2, such that for
each polyhedron D we have C1 lnn N ≤ LN ≤ C2 lnn N . Actually this was proved
by Belinsky [6]; nothing new was added in later publications [5, 34]. Thus, we see
an essential difference between this case and the spherical one. In the latter case, the
Lebesgue constants are of power growth, the worst possible, in a sense, while the
former is the best possible estimate one can achieve for partial sums generated by
a non-trivial set. We are going to concentrate on two important problems which are
essentially of “polyhedral” nature.

Note first that for strips, the results similar to those in Theorem 2 were obtained
in [9]. Let us also note that in the bilateral logarithmic estimates for the Lebesgue
constants in [45], the constant C1 in the lower estimate is absolute (absolute
constants may depend only on the dimension), while the upper estimate is given
as an absolute constant times the number of sides of the polygon D. Recently, this
result has been essentially refined in [24] as follows.

Theorem 3 If B is a convex polyhedron such that [0,M1] × . . . × [0,Mn] ⊂ B ⊂
[0, N1] × . . . × [0, Nn], then

C1

n∏

j=1

ln(Mj + 1) ≤ LB ≤ C2 s

n∏

j=1

ln(Nj + 1),

where s is the size of the triangulation of B.

As in some other results, a number theory technique was the key tool in the proof
of Theorem 3.

3.2 Intermediate Growth

The following question is quite natural.
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Can partial sums be defined by sets for which the norms of the corresponding

operators have an intermediate rate of growth between the classical power (N
n−1

2 )
and logarithmic (lnn N) rates of growth with respect to the N-dilations of these
sets?

Some trivial solutions were suggested in [43], where an intermediate growth
is achieved by Cartesian product of the two mentioned cases. Of course, this
is possible only for dimension three and higher. Thus, the interesting cases to
consider are in dimension two. These have been done by Podkorytov in [35]
(similar but weaker results were given in [45]). It is clear that the boundary cannot
have points of non-vanishing curvature—otherwise the maximal order of growth
N(n−1)/2 is immediately achieved. On the other hand, the Lebesgue constants for
any polyhedron enjoy the logarithmic estimates. Thus, the only chance for an
intermediate growth might be achieved by a “polyhedron” with an infinite number
of specially organized sides.

Let C1 and C2 denote, as above, positive constants such that C1 < C2. Then the
following result [35] is valid.

Theorem 4 The following two statements hold.

1) For any p > 2 there exists a compact convex set D for which C1 lnp N ≤ LN ≤
C2 lnp N , N ≥ 2.

2) For any p ∈ (0, 1/2) and α > 1 there exists a compact, convex set D for which
C1N

p ln−αp N ≤ LN ≤ C2N
p ln2−2p N , N ≥ 2.

3.3 Asymptotics

The next question also seems to be very natural.
Is it possible to write a certain asymptotic relation instead of the bilateral

logarithmic estimate?
Some partial cases were investigated by Daugavet [14], Kuznetsova [25],

Skopina [39]. For example, Kuznetsova generalized Daugavet’s result as follows.

Theorem 5 Let

B := BN1,N2 = {(k1, k2) : |k1|/N1 + |k2|/N2 ≤ 1}.

The asymptotic equality

LN = 32π−4 ln N1 ln N2 − 16π−4 ln2 N1 + O(ln N2)

holds uniformly with respect to all natural N1, N2, and l = N2
N1

.

The case l = 1 is the mentioned result of Daugavet. What differentiates both these
results from many others is that dilations of a fixed domain are not taken. This is a
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source of additional difficulties, and nothing is known for noninteger l as well as for
the case of higher dimensions.

As for the case where dilations of a fixed domain are considered, an unexpected
result was obtained again by Podkorytov [36]. He has shown that there are two main
cases. The first one, the aforementioned asymptotic results of Theorem 5 may be
referred to, deals with polygons (we are discussing two-dimensional results) with
integral or rational slopes of sides. In this case one can show that the estimates
change insignificantly if one considers the corresponding integrals instead of the
sums, that is, the Fourier transform χ̂ND of the indicator function of the N-dilation
of the corresponding set D. In other words, the Dirichlet kernel is well approximated
by χ̂ND. This circumstance allows one to obtain the logarithmic asymptotics,
namely LN is equivalent to both ln2 N and

∫
T2 |χ̂ND(x)| dx (see [39]).

In the second case, that is, when at least one slope is irrational, the situation
changes qualitatively: the upper limit and the lower limit of the ratio of LN and
ln2 N, as N → ∞, may be different. In other words, in this case the behavior
of the Fourier transform of the indicator function of ND is not representative of
the behavior of the corresponding partial sums. The quantitative estimate of this
phenomenon was given in [36]. The main shortcoming of that work is that this
result is true only for a very scarce number of cases. This uncertainty was partially
removed by Nazarov and Podkorytov [32].

4 Partial Increasing of Lebesgue Constants

In this section we assume again that B = ND, where N ∈ [0,∞) is a continuous
parameter and D ⊂ R

n is the closure of an open bounded star domain with respect
to the origin.

In case of n = 1 and D = [−1, 1], Szegö [40] (Fejér in [18] for large N ; see
also [46, Ch. 2, Ex. 24]) proved that LN is increasing in N . However, an extension
of this result to the multivariate Lebesgue constants is unknown. Here, we prove the
following weakened version of Szegö’s theorem.

Theorem 6 For any d ∈ N and any N ∈ [0,∞), the following inequalities hold:

LN/d ≤ LN ≤ LdN. (2)

Proof For any continuous and 2π-periodic in each variable function f on R
n, we

consider the Fourier operator

SND(x; f ) = SND(x1, . . . , xn; f ) = (2π)−n

∫

Tn

f (t)
∑

k∈ND∩Zn

ei〈k,x−t〉dt.
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Next, for a fixed d ∈ N, d > 1, and a continuous and 2π-periodic in each variable
function f on R

m, we define an averaging linear operator by the formula

QND,d (x; f ) := d−n
d−1∑

s1=1

. . .

d−1∑

sn=1

SND(x1+2πs1/d, . . . , xn+2πsn/d; f ). (3)

Then the integral representation for QND(·, f ) is given by the formula

QND,d(x; f ) = (2π)−n

∫

Tn

f (t)
∑

l∈(N/d)D∩Zn

ei d〈l,x−t〉dt. (4)

Indeed, for any s = (s1, . . . , sn) and k ∈ ND ∩Z
n, we obtain by simple calculation

d−n

d−1∑

s1=1

. . .

d−1∑

sn=1

e(2π/d)i〈k,s〉 =
{

1, (1/d)k ∈ Z
n,

0, (1/d)k /∈ Z
n.

(5)

Since D is a star domain with respect to the origin, the vector l = (1/d)k belongs
to (N/d)D. Therefore, (4) follows from (5).

Furthermore, we see from (4) that for a continuous function f (t) = ϕ(dt) on
R

n, where ϕ is 2π-periodic in each variable, the following representation holds:

QND,d(x; ϕ(d·)) = (2π)−n

∫

Tn

ϕ(t)
∑

l∈(N/d)D∩Zn

ei(d〈l,x〉−〈l,t〉)dt. (6)

In addition, the following relations follow from (3):

‖QND‖ := sup
‖f ‖C(Tn)≤1

‖QND(·; f )‖C(Tn) ≤ sup
‖f ‖C(Tn)≤1

‖SND(·; f )‖C(Tn) = LN.

(7)

Then we obtain from (6) and (7)

LN ≥ ‖QND‖ ≥ sup
‖ϕ‖C(Tn)≤1

‖QND(·; ϕ(d·))‖C(Tn)

= sup
‖ϕ‖C(Tn)≤1

‖S(N/d)D(·; ϕ)‖C(Tn) = LN/d .

Hence (2) is established. ��
Remark 7 We say that a function h : [0,∞) → R

1 is partly increasing if for any
d ∈ N and N ∈ [0,∞), the following inequality holds:

h(N/d) ≤ h(N). (8)
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Theorem 6 is equivalent to the statement that LN is partly increasing in N . It is obvi-
ous that an increasing function is partly increasing. The following counterexample
shows that the converse of this statement is not valid. The question as to whether
LN := LND is an increasing function of N for certain domains D in R

n remains
open.

Example 8 For fixed numbers α > 0 and N0 > 0 we define a function

h0(N) :=
{

Nα+ (1 − 2−α)(2m − 1)αNα
0 , N ∈ [(2m − 2)N0, (2m − 1)N0], m ∈N,

Nα, N ∈ [(2m − 1)N0, 2mN0], m ∈N.

The function h0 is not increasing in some neighborhoods of the points (2m −
1)N0, m ∈ N. Next, it is easy to verify that (8) holds for N ∈ [0, 2N0). Then (8)
can be proved for all N ∈ [0,∞)) by induction.
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