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2018: 5th Workshop on Accelerator Programming Using
Directives (WACCPD)
http://waccpd.org/

Current hardware trends lead to ever more complex compute node architectures
offering multiple, heterogeneous levels of massive parallelism. As a result the ‘X’ in
MPI +X demands more focus. A node in a future exascale system is expected to consist
of GPU-like accelerators combined with processor architectures of other types. In order
to exploit the maximum available parallelism out of such systems, we are in dire need
of sophisticated programming approaches that can provide scalable as well as portable
solutions without compromising on performance. The expectation from the scientific
community is that such solutions should allow programmers to maintain a single code
base whenever possible and to avoid requiring maintaining and debugging multiple
versions of the same code.

Raising the abstraction of the code is one of the effective methodologies to reduce
the burden on the programmer. At the same time such a methodology will require a
heroic compiler to be designed. Software abstraction-based programming models such
as OpenMP and OpenACC have been serving this purpose over the past several years.
These programming models address the ‘X’ component by providing programmers
with high-level directive-based approaches to accelerate and port scientific applications
to heterogeneous platforms. Such programming paradigms played a decisive role in
establishing heterogeneous node architectures as a valid choice for a multitude of HPC
workloads.

The focus of this workshop is to explore this ‘X’ component in a hybrid MPI +X
programming approach. We are looking forward to technical papers discussing inno-
vative high-level language features and their (early prototype) implementations needed
to address hierarchical heterogeneous systems, stories and lessons learnt while using
directives to migrate scientific legacy code to parallel processors, state-of-the-art
compilation and runtime scheduling techniques, techniques to optimize performance,
as well as mechanisms to keep communication and synchronization efficient.

WACCPD has been one of the major forums for bringing together users, developers,
and the software and tools community to share knowledge and experiences to program
emerging complex parallel computing systems.

The WACCPD 2018 workshop received 12 submissions out of which six were
accepted to be presented at the workshop and published in the proceedings. The
Program Committee of the workshop comprised 26 members spanning university,
national laboratories, and industries. Each paper received a maximum of four reviews.
Four papers were accepted straight away whereas two papers went through a shep-
herding phase where the authors were asked to revisit and redo the paper based on
feedback obtained from reviewers. The authors were given a 7-day window to revise
the paper and resubmit for the shepherd to re-review and decide on an acceptance or a
rejection for the workshop.

http://waccpd.org/


All the 14 authors were also strongly encouraged to add source files for repro-
ducibility purposes, following SC18 guidelines, upon request from reviewers. Three
out of six accepted papers were able to add these source files, which the reviewers
greatly appreciated.

The program co-chairs invited Jack Wells from ORNL to give a keynote address on
“Experiences in Using Directive-Based Programming for Accelerated Computing
Architectures.” Dr. Jack Wells is the Director of Science for the Oak Ridge Leadership
Computing Facility (OLCF), a DOE Office of Science national user facility, and the
Titan supercomputer, located at Oak Ridge National Laboratory (ORNL). Wells is
responsible for the scientific outcomes of the OLCF’s user programs.

Based on rigorous reviews and ranking scores of all papers reviewed, the following
paper won the best paper award. The authors of the best paper award also included
reproducibility results to their paper, which the WACCPD workshop organizers had
indicated as a criterion to be eligible to compete for the best paper award.

– Anmol Padel and Satish Puri (Marquette University, USA)
– “OpenACC-Based GPU Parallelization of Plane Sweep Algorithm for Geometric

Intersection”

Emphasizing the importance of using directives for legacy scientific applications,
each presenter was given two recently released textbooks on programming models, one
on Using OpenMP – The Next Step and the other on OpenACC for Programmers:
Concepts & Strategies.

January 2019 Sunita Chandrasekaran
Guido Juckeland
Sandra Wienke
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Heterogeneous Programming
and Optimization of Gyrokinetic Toroidal

Code Using Directives

Wenlu Zhang1,2, Wayne Joubert3, Peng Wang4, Bei Wang5,
William Tang5, Matthew Niemerg6, Lei Shi1, Sam Taimourzadeh1,

Jian Bao1, and Zhihong Lin1(&)

1 Department of Physics and Astronomy, University of California, Irvine, USA
zhihongl@uci.edu

2 Institute of Physics, Chinese Academy of Sciences, Beijing, China
3 Oak Ridge National Lab, Oak Ridge, TN, USA

4 NVidia, Santa Clara, USA
5 Princeton University, Princeton, NJ, USA

6 IBM, New York, USA

Abstract. The latest production version of the fusion particle simulation code,
Gyrokinetic Toroidal Code (GTC), has been ported to and optimized for the next
generation exascale GPU supercomputing platform. Heterogeneous program-
ming using directives has been utilized to balance the continuously implemented
physical capabilities and rapidly evolving software/hardware systems. The
original code has been refactored to a set of unified functions/calls to enable the
acceleration for all the species of particles. Extensive GPU optimization has
been performed on GTC to boost the performance of the particle push and shift
operations. In order to identify the hotspots, the code was the first benchmarked
on up to 8000 nodes of the Titan supercomputer, which shows about 2–3 times
overall speedup comparing NVidia M2050 GPUs to Intel Xeon X5670 CPUs.
This Phase I optimization was followed by further optimizations in Phase II,
where single-node tests show an overall speedup of about 34 times on Sum-
mitDev and 7.9 times on Titan. The real physics tests on Summit machine
showed impressive scaling properties that reaches roughly 50% efficiency on
928 nodes of Summit. The GPU + CPU speed up from purely CPU is over 20
times, leading to an unprecedented speed.

Keywords: Massively parallel computing � Heterogeneous programming �
Directives � GPU � OpenACC � Fusion plasma � Particle in cell

1 Introduction

Fusion energy would ensure a safe, environmentally friendly, resource conserving
power supply for future generations. In an operating fusion reactor, part of the energy
generated by fusion itself will serve to maintain the plasma temperature as fuel is
introduced. However, to achieve the desired levels of fusion power output, the plasma
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in a reactor has to be heated and maintained to its operating temperature of greater than
10 keV (over 100 million degrees Celsius) and additional current drive must be
applied. Confinement of such a high density and high temperature burning plasma
poses big scientific and technological challenges. One critical mission for the fusion
energy research and development is the timely achievement of the capability to
understand, predict, control, and mitigate performance-limiting and integrity-
threatening instabilities in the burning plasmas. The excitation and evolution of the
most important instabilities can be expected to depend on kinetic effects and the
nonlinear coupling of multiple physical processes spanning disparate spatial and
temporal scales.

In the research of fusion plasma physics, simulations have always been an effective
tool due to the complexity of theoretical analysis and the high cost of experiments.
After several decades of development in the capability of high performance computing,
it becomes feasible to conduct massively parallel simulations to investigate the com-
plex physics using equilibrium and profiles close to realist discharges in fusion devices.
Along with the progress in computing power, a set of gyrokinetic theory [1–11] have
been proposed and established to construct a set of simple theoretical and numerical
model by eliminating the fine-scale gyro-phase dependence through gyro-averaging,
which reduces the original phase space dimensionality from six to five. This not only
assists in the comprehension of the low frequency physics in magnetized plasmas, such
as the anomalous transport that is critical for the magnetic fusion, but also facilitates the
development and application of massively parallel simulation codes.

As a well benchmarked massively parallel gyrokinetic toroidal code, GTC [12, 13]
is built upon the first-principles and adopts efficient low-noise numerical simulation
methods for integrated simulations of key instabilities. This is of great significance
since these instabilities not only limit the burning plasma performance but also threaten
device integrity in magnetic fusion such as the International Thermonuclear Experi-
mental Reactor (ITER) [14], which is a crucial next step in the quest for the fusion
energy. The particle-in-cell method is utilized so that particles are treated with a
Lagrangian scheme while fluid moments and field information are calculated with an
Eulerian scheme. The capability of GTC has been extensively expanded and verified to
deal with a wide range of physical problems such as neoclassical and turbulence
transport [15, 16], energetic particle transport by microturbulence [17, 18], Alfven
eigenmodes [19–22], radio frequency heating [23], static magnetic island [24] and
current-driven instabilities [25, 26]. Over the years, the GTC code has grown to a
prominent code being developed by an international collaboration with many users and
contributors from the magnetic fusion energy and high performance computing
communities.

GTC is the key production code for several multi-institutional U.S. Department of
Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) project
and National MCF Energy R&D Program, for example. GTC is currently maintained
and developed by an international team of core developers who have the commit
privilege and receives contributions through the proxies of core developers from

4 W. Zhang et al.



collaborators worldwide [13]. GTC continuously pushes the frontiers of both physics
capabilities and high-performance computing. It is the first fusion code to reach the
teraflop in 2001 on the Seaborg computer at NERSC [27] and the petaflop in 2008 on
the Jaguar computer at ORNL [16] in production simulations. GTC is also the
benchmark and early application code that fully utilizes the computing power of a list
of TOP500 machines such as Tianhe-1A [28] and Titan with a CPU and GPU
heterogeneous architecture and Tianhe-2 [29] with an Intel Xeon Phi accelerator
architecture.

In the pursue of extreme performance from the high computing community, many
excellent pioneer works have been carried by computer scientists and developers by
porting and optimization the GTC and its companion codes to the GPU on variety of
machines. The work of Madduri et al. [30, 31] discussed the porting of an earlier
version of GTC to GPU and concluded that the GPU was slower than the CPU for their
version of GTC, which only included kinetic ions with adiabatic electrons. Then the
GTC GPU [28] version, which was the Tianhe-1A benchmark code developed on the
production version using NVidia CUDA libraries, showed some speedup and excellent
scaling in the whole machine test with the actual physics simulation parameters. The
weak scaling to 3072 nodes of Tianhe-1A was obtained with 2X-3X overall speedup
comparing NVidia M2050 GPUs to Intel Xeon X5670 CPUs. A “companion” version
of the GTC code, the GTC-P code is a modern, highly portable GTC code now
operational on the top 7 supercomputers worldwide [32]. Over the years, GTC-P has
been ported and optimized on different supercomputers such as IBM Blue Gene/P
(BG/P) at Argonne Leadership Computing Facility (ALCF), IBM Blue Gene/Q (BG/Q)
of Mira at ALCF, Sequoia at Lawrence Livermore National Laboratory, the Cray XT4,
Cray XE6, and later Cray XC30 at Lawrence Berkeley National Laboratory, et al. [32,
33]. The scalability up to 131,072 BG/P and 32,768 XT4 cores were attained with as
little as 512 MB memory per core by incorporating a new radial decomposition
method, developed first by Ethier et al. that features a dramatic increase in scalability
for the grid work and decrease in the memory footprint of each core [33]. Later,
Madduri et al. made further optimizations of the code, such as multi-level particle and
grid decompositions, particle binning, and memory-centric optimizations. As a result,
they delivered 1.22x, 1.35x, 1.77x, and 1.34x performance improvement on BG/P, the
Cray XE6, and Intel Cluster, and a Fermi Cluster, respectively [30]. Recently, the radial
domain decomposition was optimized by Wang et al., which enables the GTC-P code
scale up to the full capability of Sequoia (98,304 nodes), and Mira (49,152 nodes) [32].
The performance was increased from nearly 50 billion particles per second per step
(BPST) to more than 100 BPST on 98,304 Sequoia nodes. GTC-P was also weak
scaling to 32,768 Fujitsu K nodes, and about 50 BPST was achieved [34].

In this work, the associated R&D has been focused toward the goal of delivering a
comprehensive and modern production version of the fusion GTC code capable of
greatly accelerating progress toward a realistic predictive capability for ITER experi-
ments. The technical advances are aimed at providing the computational foundations
needed for simulating nonlinear interactions of multiple physical processes covering
disparate spatiotemporal scales in burning plasmas. This is part of efforts to develop the

Heterogeneous Programming and Optimization of GTC Using Directives 5



next generation applications for exascale supercomputing platforms. For vast porta-
bility and easy maintenance, the directive approach is chosen to lower the technical
requirement for students and researchers of fusion plasma physics.

GTC is one of a small but growing number of production applications run on
leadership class systems to employ compiler directives to access modern accelerated
node hardware. Use of compiler directive programming models such as OpenACC and
OpenMP is of increasing importance to achieve performance portability across multiple
target computer architectures. We believe the lessons learned in this paper will be
useful to other developers wishing to use directives for programming to accelerated
architectures.

This paper is organized as follows. Section 2 briefly introduces the benchmark
platforms of Titan, SummitDev, and Summit. Section 3 discusses the technical basis of
the GTC code, which is followed by the porting and optimization strategies in Sect. 4.
Section 5 reports the status of the porting and optimization. Section 6 shows the
performance benchmarks. The conclusions are given in Sect. 7.

2 Simulation Platforms: Titan, SummitDev, and Summit

All the benchmark runs in the following sections were performed on the Titan,
SummitDev, and Summit supercomputers, both hybrid massively parallel processing
(MPP) systems with CPUs and GPUs.

The Titan system at Oak Ridge National Laboratory (ORNL) is a Cray XK7 system
composed of 200 cabinets containing 18,688 compute nodes, each equipped with a 16-
core Advanced Micro Devices AMD Interlagos processor with 32 GB of memory and
an NVidia Kepler K20X GPU accelerator with 6 GB memory, with Gemini inter-
connect. Titan’s peak speed is in excess of 27 petaflops. The GPU attains a peak double
precision rate of 1.311 TF/s with main memory bandwidth of 250 GB/s and is con-
nected to the CPU by a PCI Express Gen 2.0 bus with an 8 GB/s data transfer rate [41].

SummitDev is an early access system at ORNL used by developers to prepare
applications for the 200 PF Summit system to be available in 2018. SummitDev is
comprised of 54 IBM Power8 S822LC compute nodes connected with a Mel-
lanox EDR Infiniband network, each node containing two IBM POWER8 processors
with 10 cores and 80 hardware threads each. Each CPU is connected by an 80 GB/sec
NVLINK connection to two NVidia P100 GPUs with peak double precision rate of
5.312 TF/sec and with 16 GB of on-package high bandwidth memory with peak speed
of 732 GB/sec [42].

Summit is the next generation leadership supercomputer at ORNL, which is the
200PF system built upon IBM AC922 architecture. It consists of 4,608 nodes linked
with Mellanox EDR 100G InfiniBand network, each node host 2 22-core IBM Power 9
CPUs, 6 Nvidia Volta GPUs, 512 GB DDR4 memory and 96 GB HBM2 memory on
GPU.

6 W. Zhang et al.



3 Scientific Methods of GTC

As a gyrokinetic particle-in-cell [35, 36] (PIC) code, GTC tracks individual charged
marker particles in a Lagrangian frame in a continuous phase-space [10, 11], whereas
the moments of particle distribution of different species (thermal ion, thermal electron,
fast ion, fast electron, etc.) are simultaneously computed on a stationary Eulerian field
mesh. This field mesh is also used to interpolate the local electromagnetic fields at the
marker particle positions in phase-space. The trajectories of charged marker particles
(guiding centers) in a strong magnetic field are calculated by integrators of the equa-
tions of motion in the self-consistent electromagnetic fields computed on the field
mesh. The number density and current density carried by each marker particle is then
projected to the field mesh through interpolations. The moments of the distributions of
species, such as number density, charge density and current density, are then calculated
by accumulating the projected quantities of marker particles. The electromagnetic fields
are then solved on mesh grids using proper combinations of Poisson equation,
Ampere’s law, Faraday’s law and force-balance equations with finite difference
methods [37] and finite element methods [38].

The PIC approach implemented in GTC dramatically reduces the computation
complexity from O N2ð Þ to O NþMlogMð Þ, where N is the number of particles, and M
is the number of grid points [34, 39]. The use of spatial grids and the procedure of
gyro-averaging reduce the intensity of small-scale fluctuations (particle noise). Particle
collisions can be recovered as a “sub-grid” phenomenon via Monte Carlo methods. The
system geometry simulated in GTC is a torus with an externally-imposed equilibrium
magnetic field [30]. In order to capture and take advantage of the characteristics of this
curvature geometry, GTC employs the magnetic flux coordinate system w; h; fð Þ [40],
where w is the poloidal magnetic flux, h is the poloidal angle and f is the toroidal angle.
This is the base coordinate used for mesh construction, on which the equilibrium and
profiles are built. It is also used to construct an intermediate field-line-following
coordinate w; h; að Þ by a simple transformation a ¼ f� q wð Þh, where q is the tokamak
safety factor (representing magnetic field-line pitch). The introduction of such a field-
line coordinate system makes it convenient to decompose a vector into components
parallel and perpendicular to the direction of magnetic field and to separate the rapid
guiding center motion along the magnetic field lines from the slow motion across the
lines, which promotes the simplicity in theory analysis and efficiency in numerical
simulation. In particular, the field-line coordinate system drastically reduced compu-
tational complexity in the parallel direction. The Poisson equation can be simplified
and solved in the w; hð Þ plane perpendicular to the equilibrium magnetic field in this
field-line coordinate system.

Physical quantities and variables in GTC can be divided into various categories.
The first one includes the field quantities bounded to the stationary mesh, such as
electrostatic potential, vector potential, magnetic fields, and accumulated number
density and current density distributions on mesh. Originally, the field solver was built
on the Portable, Extensible Toolkit for Scientific Computation (PETSc), which was the
best choice in the dual core and multiple code age and has been the major solver for
daily electromagnetic simulations. However, it gradually emerges as a serious

Heterogeneous Programming and Optimization of GTC Using Directives 7



performance hot spot later in the many-core and heterogeneous architecture era due to
its lack of in-node accelerations for many-core architectures, for instance for general
purpose GPU and Intel Xeon Phi.

The other category includes marker particle related quantities for every species,
such as physical position, velocity or momentum, particle number and electric current
carried by each marker particle. Depending on the physics studied, a typical production
run in fusion plasma research may have multiple species with different governing
equations, such as thermal ions, thermal electrons, energetic ions, energetic electrons,
impurities, etc. Originally, each species had its own set of functions and subroutines
which are used to calculate the particle trajectories (push subroutine), manage and
exchange particle information between computing devices and processes (shift sub-
routine), and aggregate number density and current density as well as the thermal
pressure carried by each particle (charge subroutine).

GTC has successfully transferred the physical models into computing power by
employing a multi-level palatalization technique, which utilizes the Message Passing
Interface (MPI) to manage and balance the distributed computing resources cross

Fig. 1. Phase-I weak scaling of GTC on Titan (top), with the number of nodes ranging from 32
to 16384 (88% of the whole machine). Both grid number and total particle number are increased,
but the number of particles per core remains constant. The Poisson time (bottom) shows the
improved performance due to the Hypre multigrid solver. The total grid number is also shown.
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computing nodes or devices on the top level, and utilizes shared memory multipro-
cessing (SMP) techniques via OpenMP and OpenACC/CUDA inside each node or
device on the lower level so that it can take the advantage of the hardware hierarchy of
modern massively parallel computers and reach a scale up to millions of conventional
CPU cores and heterogeneous accelerating devices such as NVidia GPU and Intel
Xeon Phi (MIC) chips.

4 Porting and Optimization Strategy

When porting the GTC code to the next generation supercomputing machines powered
by accelerators or co-processors such as the GPU or Intel Xeon Phi (MIC), significant
challenges are anticipated. Achieving high parallel efficiency on complex modern
architectures is in general a formidable task facing PIC codes because of potential fine-
grained data hazards, irregular data access, and low arithmetic intensity. Attaining high
performance becomes an increasingly complex challenge as HPC technology evolves
towards vast on-node parallelism in modern multi- and many-core designs. In order to
harness the computing power of advanced systems such as Summit, application codes,
including GTC, need to be carefully designed such that the hierarchy of parallelism
provided by the hardware is fully utilized. To this end, the multithreading capabilities
in the GTC code will be enhanced.

GTC was originally written in Fortran 90. The current GTC version has four
species of particles: thermal ions, fast ions, fast electrons and kinetic thermal electrons.
Many routines are shared between those particle types. In fusion simulations using
GTC, the number of particles per mesh cell varies from tens to thousands in a typical
production run for each particle species, which means that every cell would have O
(10)–O(103) of particles. In other words, the total number of particles is O(10)–O(103)
larger than the total number of cells (with field data on cells). Most of the data, either
on disk or in memory, and runtime—including I/O time and computing time—are
accordingly consumed by the particle routines instead of field routines, which has been
consistent with our benchmarking results.

The preceding analysis and observations suggest that particle related routines are
the key for optimizing the PIC code like GTC. An appropriate effective strategy for
porting GTC to a CPU-GPU heterogeneous architecture would be as follows: migrate
all particle relevant data and computing onto the GPU. This approach will not only
enable the utilization of the most powerful computing unit of the heterogeneous
architecture but also minimize the data transfer between the CPU and the GPU which
can be the most challenge part when utilizing GPU in high performance computing.
Instead of porting each particle species one by one, all the particle related routines are
replaced with a set of unified push, charge and shift routines, which can then be ported
to the GPU using OpenACC. After the successful port of particle related part, the field
solvers will also be ported onto the GPU to boost the computing performance of field
solvers (Figs. 1 and 2).

Heterogeneous Programming and Optimization of GTC Using Directives 9



Given the existing MPI-OpenMP framework, the most natural parallel framework
for GTC on CPU-GPU nodes would be using one MPI rank per GPU. Since the CPU
version is already parallelized using OpenMP, OpenMP threads should also be enabled
to utilize all the available CPU cores.

A large part of the performance optimization work will thus focus on multi-
threading for NVidia GPU and Intel Xeon Phi architectures (MIC), as well as current
multicore processors. Fortunately, the GTC code has been using multithreading for
more than a decade and has already had initial porting efforts to advanced heteroge-
neous architecture systems that deploy the GPU and Intel MIC.

To satisfy the needs for performance portability across multiple HPC system
architectures, GTC will initially support multiple programming models via conditional
compilation. For shared memory multi-core and Intel Xeon Phi many-core processors,
OpenMP parallel directives are used. Support for NVidia GPUs will be deployed using
OpenACC directives. An alternative conditionally compiled CUDA code path will be
available for cases when compilers are not yet able to generate well-performing code
for OpenACC. Later as compiler support becomes available, OpenMP 4.5 and 5.0
target directives will be evaluated as a potential performance portability solution.

GTC currently uses the DOE-funded PETSc toolkit to implement the electro-
magnetic parallel solvers. PETSc is a well-established MPI-based framework through
which many different solvers can be exercised without having to change the source
code. Advanced third-party packages, such as LLNL’s Hypre multigrid solver, can also
be used via the PETSc framework with a simple parameter change in a runtime con-
figuration file. Nevertheless, in spite of its successful use in GTC, PETSc has some

Fig. 2. The Phase I timing breakdown for GTC particle weak scaling study on Titan. Note: x-
axis is the number of nodes and y-axis the total wall-clock time. The GPU delivers up to 3.0X
speedup compared with the CPU.
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limitations with respect to today’s advanced computer architectures. The main draw-
back is its lack of multithreading support, which especially impacts global PIC codes
like GTC since they run routinely in mixed-mode MPI + OpenMP. It would clearly be
beneficial to introduce OpenMP multithreading at the lowest level, for example, in the
PETSc functions. This would help us avoid having to deal with non-thread-safe issues
in higher-level functions.

In order to identify the hotspots and performance issues, code profiling was per-
formed to reveal performance characteristics and to identify performance issues. The
code’s timer instrumentation for major parts of the computation was revised to provide
performance data needed for the project (Fig. 3).

5 GPU Porting Status

Baseline code versions were extracted from current production version of GTC (For-
tran) as a starting point of the code porting and optimization work. Firstly, all the
particle routines (push, charge and shift) for thermal ions, fast ions and fast electrons
and kinetic thermal electrons have been replaced by the set of unified routines, which
can operate on every species controlled by the calling parameters like:

push(species_name, and other parameters)
charge(species_name)
shift(species_name)

Fig. 3. The Phase I timing breakdown for GTC hybrid weak scaling study on Titan. Here the
work per processor is increased as node count is increased. Note: x-axis is the number of nodes
and y-axis the total wall-clock time. GPU delivers up to 3.0x speedup compared with CPU.
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where species_name is the description keyword which can be any of “thermal-ion”,
“thermal-electron”, “fast-ion” or “fast-electron”. Such species, including both the
thermal and fast particles, are described by diverse physical models such as fully-
kinetic, gyrokinetic, drift-kinetic, or fluid-kinetic hybrid. This makes it possible that all
species benefit from optimizations, for example OpenACC optimizations for the GPU,
through changing only one subroutine.

Secondly, these unified routines have been successfully ported to the GPU using
OpenACC directives supported by PGI compiler. GTC’s main data structure is allo-
catable arrays within modules. The “acc declare” directive was used in the module file
to specify all the arrays that the GPU needs to access. Then, the CPU code for allo-
cating the array typically will not require any change since the OpenACC runtime will
automatically allocate a GPU copy if an array is specified in “acc declare”. Whenever
data needs to be copied between the CPU and the GPU, the “acc update” directive was
used. Finally, the “acc host_data” directive was used to interoperate with the CUDA
kernels.

The unified push routine was ported to the GPU using OpenACC. Most of the push
time is spent in two loops. The first loop performs a gather operation from grid points
to particles. By porting this loop to CUDA, it was identified that using texture cache for
the grid arrays will lead to *3X speedup compared to the base OpenACC version. So,
enabling texture cache in OpenACC will be an important next step for optimizing this
loop. The second loop updates the particle locations. It was identified that the memory
access of the private array “dx” was the main bottleneck. This “dx” array stores the
coefficients used to interpolate the local field quantities from the Euclidian meshes.

Table 1. Phase II GPU and CPU timings (in seconds) from the preliminary SummitDev
benchmarks. For comparison, the same physics case, for both GPU and CPU, is shown for Titan.
All runs use 32 MPI ranks; GPU runs have 1 GPU/MPI rank; the SummitDev CPU run has 5
OMP/MPI rank; and the Titan CPU case has 8 OMP/MPI rank, however in the data shown here,
we assume an ideal scaling in OMP from 8 to 16 threads, and so the data here is the real time
divided by 2. This latter point is done to yield a lower bound in the possible speed up. Also, so as
to keep the GPU to MPI rank ratio unity, there are 2 ranks/CPU and 1 rank/CPU on SummitDev
and Titan, respectively; hence, SummitDev CPUs have a larger compute load.

SummitDev
GPU
w/AmgX

SummitDev
GPU
w/PETSc

Titan
GPU
w/PETSc

SummitDev
CPU
w/PETSc

Titan CPU
w/PETSc (Ideal
OMP)

Pushi 0.66 0.65 2.37 23.97 17.3
Shifti 0.26 0.26 0.61 21.07 7.8
Chargei 0.66 0.65 1.03 9.59 2.0
Electron 8.40 8.37 22.40 370.23 266.0
Fast 1.53 1.54 4.74 55.47 28.7
Poisson 2.64 14.67 10.19 9.54 8.1
Pushfield 0.27 0.27 0.53 0.26 1.0
Total 14.42 26.41 41.87 490.13 330.9
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The optimization was to move the array bound variable for dx to a module file as a
parameter and rewrite some of the loops involving dx using the array bound parameter.
Those changes enabled the compiler to put this array in local memory, which led to
*4X speedup compared to the base OpenACC version. So, this made a case for adding
texture cache support to OpenACC. Experimental support of texture cache is now
being added to PGI’s OpenACC compiler, and we will test it when available.

The unified charge routine was ported to the GPU using OpenACC. Because
different particles may write to the same grid points, the OpenACC atomic directive
was used to handle write collisions. This strategy looked to be working well.

The shift routine was ported to CUDA before the US DOE Center for Accelerated
Application Readiness (CAAR) program. Since shift routine is not modified by
developer often at all, the GTC team thinks it’s fine to use the CUDA version for this
routine. So, the CUDA port in previous version was used for shift routine.

A binning subroutine, based on the out-of-place counting sort algorithm, was
implemented in GTC (radial_bin.F90). The first version of the binning algorithm bins
all particle species in the radial dimension periodically to improve data locality for
charge deposition and field interpolation. For linear problems, where spatial change is
small in the radial dimension from one time step to the next, up to 10% overall speedup
is observed. It is expected that binning will speed up the performance significantly for
nonlinear problems. Later, a cell-based binning was developed and improved the
performance by 70% for electron subroutines. Overall, over 10% performance
improvement is observed by enabling the cell-based binning.

Both Array of Structure (AoS) and Structure of Array (SoA) data layouts for
particles have been implemented on a simplified version of GTC. For GPU, perfor-
mance analysis is conducted using CUDA profiling toolkit nvprof on a single Titan
node. Higher bandwidth and transactions are observed for the AoS layout. Overall no
significant speedup is obtained with the SoA data structure for all versions including
CPU, GPU (OpenACC) and GPU (CUDA) of the code. We thus decide to use AoS
layout for all particle species (as before). The SoA alternative will be available in the
future for architectures for which this data layout might improve performance.

Due to increasing relative costs of the Poisson field solve, the PETSc standard solver
has been replaced with several alternatives. The Hypre algebraic multigrid solver,
whether used standalone or as part of PETSc, runs up to 11X faster than the PETSc
standard solver on SummitDev. An early GPU-enabled version of Hypre gave up to 15X
improvement over PETSc, and furthermore the NVidia AmgX solver executed up to
27X faster than PETSc. The new solvers also scale much better than PETSc, an
increasingly important property as larger and more complex problems are attempted.

GTC uses explicit OpenACC directives to manage GPU data. Unified memory has
been introduced since CUDA 6.0 for reducing the complexity of GPU programming
and improving performance through data locality. Though typical unified memory
implementation has lower performance than explicit memory management, it is
interesting to port GTC to unified memory to evaluate the tradeoff between productivity
and performance. The initial experiments have suggested that using unified memory in
GTC incurred a significant performance penalty due to page fault of Fortran automatic
arrays. It is expected that the performance of the unified memory will be improved as
PGI provides optimized pool allocator.
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Table 2. Phase II GPU speedups, for 15 time steps. SummitDev speedups are relative to the
SummitDev CPU w/PETSc & 5 OMP thread/rank case. The Titan GPU speedup is relative to the
Titan CPU w/PETSc & Ideal OMP case (see Table 1 caption). All GPU runs use 32 MPI, with 1
GPU/rank.

SummitDev GPU
w/AmgX, Speed up

SummitDev GPU
w/PETSc, Speed up

Titan GPU
w/PETSc, Speed up

Pushi 36.2 36.6 7.3
Shifti 82.5 80.5 12.7
Chargei 14.6 14.7 1.9
Pushe 27.4 27.6 14.0
Shifte 76.1 75.9 9.6
Chargee 10.2 10.2 2.7
Fast 36.2 36.0 6.0
Poisson 3.6 0.7 0.8
Pushfield 1.0 1.0 1.8
Total 34.0 18.6 7.9

6 Performance

A set of test problems was developed for evaluating performance (see scaling studies
below). The physics case [21] in the 2013 Physical Review Letters by Wang et al. was
prepared as a base case to measure improvements in performance. This choice is
appropriate since it is a good representation of future production runs and GTC’s
capabilities, since it employs all particle species, electromagnetic capabilities, experi-
mental profiles and realistic tokamak equilibrium.

6.1 Solver Performance Improvement

The GTC Poisson solver currently runs on the CPU. Though it is presently not the most
time-consuming part of GTC simulations, the solver time requirements have become
more significant since other parts of the code have been accelerated using GPUs. We
have replaced the standard PETSc solver with a Hypre multigrid solver. This solver is
threaded to effectively use the CPUs and is also scalable to many compute nodes.
Figure 1 shows comparative timings of the PETSc solver and the Hypre multigrid
solver for a representative set of GTC test cases. The Hypre solver for these cases is
*4X faster than the standard PETSc solver and has better scaling properties.

6.2 Scaling Performance

Two sets of weak scaling studies were carried out on Titan up to nearly the full system
(16,384 nodes; at the time of this study, many Titan nodes were unavailable, making it
impossible to run on all 18,688 nodes). The first test set is called “particle weak scaling
study”, where we fix the grid size, but scale the total number of particles. The second set
of tests is called “hybrid weak scaling study”, where we scale both the grid size and total
number of particles. The first study holds the number of particles per MPI rank and the
number of grid cells per MPI rank nearly constant, thus reflecting a conventional weak
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scaling study; the second study is a more realistic scaling study based on typical pro-
duction run of the code: grid size is proportional to the square root of number of nodes.
For both sets of weak scaling study, the number of particles per processor is fixed at 3.2
million. Compared with CPU (16 cores AMD 6274), GPU (NVidia K20x) has boosted
the overall performance by 1.6–3.0X. The decrease of the performance speedup in large
processor counts is mainly due to the increased portion of the non-GPU accelerated
subroutines as well as MPI time. These tests were conducted in May 2016 (Fig. 4).

Fig. 4. The Phase II timing breakdown for GTC performance study on SummitDev and Titan
for 15 time steps and 32 MPI processes. Note that in order to keep the GPU to MPI ratio unity,
there are 2 ranks/CPU and 1 rank/CPU on SummitDev and Titan, respectively. Hence,
SummitDev CPUs have a larger load. (Top) Pure CPU tests with a scan of OMP thread/rank.
(Bottom) GPU tests. All GPU runs use 1 GPU/rank.
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6.3 Tests on SummitDev

To foreshadow the performance of GTC on the next generation supercomputer,
Summit, a set of dedicated benchmarks have been executed on SummitDev and Titan,
again employing the physics case used in Sect. 6.1. The scaling study of Sect. 6.2 was
executed in May 2016, and since then much effort has been placed into GTC’s GPU
optimizations, such as removing unnecessary CPU to GPU data transfer and an
increase in compiler support for texture, for use on Titan, and these additions have
subsequently been ported for use on SummitDev. Hence, the speedups presented here
are larger than those shown above.

Since SummitDev is a small prototype machine, 32 MPI processes were used per
test. Tests covered both pure CPU runs and GPU dominant heterogeneous runs.
Table 1 tabulates the results of 5 tests: 2 CPU runs, one on Titan and one on Sum-
mitDev, and 3 GPU runs, one on Titan and two on SummitDev. The CPU runs aimed
to utilize both MPI and OpenMP parallelization with realistic job configurations,
employing 8 OMP threads1/MPI rank on Titan and 5 OMP threads/MPI rank on
SummitDev. This configuration leads to there being 2 ranks/CPU and 1 rank/CPU on
SummitDev and Titan, respectively; hence, the SummitDev CPUs have a larger load in
these runs, which explains why the SummitDev CPU timings are not as dramatically
better than the Titan CPU timings. The GPU runs used 1 GPU/MPI rank and no
OpenMP. Again, two GPU runs were carried out on SummitDev, each with a different
library to solve the Poisson equation. One used PETSc, and the other used AmgX, the
latter of which can take advantage of GPU acceleration. The Titan GPU run also uses

Fig. 5. The Phase II timing breakdown for GTC performance study on SummitDev and Titan
for 15 time steps and 32 MPI processes.

1 The timings for the TITAN CPU w/PETSc case in Table 1 assume an ideal scaling in OMP threads
from 8 threads to 16. i.e. the times presented in Table 1 for this case are those of the 8 OMP threads
case, but they are divided by 2. The motivation for this is to set a lower bound in the possible GPU
speedup attainable in TITAN.
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PETSc to solve the Poisson equation. With AmgX, the total number of particles pushed
per second on the SummitDev GPU run is 1.29 � 109.

The tabulated data is also presented in Fig. 4. The upper panel shows CPU only
tests on both SummitDev and Titan for a range of OMP threads/MPI rank. The scaling
from 8 to 16 OMP threads/MPI rank in Titan was poor. This is in part due to there
being a decrease in efficiency when using OMP threads across cores on Titan–hence we
assumed an ideal scaling from 8 to 16 OMP threads/MPI rank in Table 1 to obtain a
lower bound in the possible speedup attainable. The lower panel presents the GPU
timing data (Fig. 5).

Table 2 shows the GPU speedups obtained. SummitDev GPU speedups are relative
to the SummitDev CPU case with 5 OMP threads/MPI rank, and Titan GPU speedups
are relative to the Titan CPU case with ideal OMP scaling from 8 to 16 threads/MPI
rank. The overall speedups were 34.0 and 18.6 on SummitDev, for the AmgX and
PETSc libraries, respectively, and 7.9 on Titan. The most notable speedups came from
the particle push and shift routines on SummitDev, with a roughly 36 and 82 times
speed up for the ion push and shift, respectively; and a roughly 27 and 76 times speed
up for the electron push and shift, respectively. The high speedup factors are to large
degree enabled by the very effective use of texture cache as described earlier, as well as
need to further optimize the OpenMP threading version for CPU. Moreover, the uti-
lization of the AmgX library decreases the Poisson time by 5.5 times. It is noteworthy
that the SummitDev/GPU/AmgX to Titan/PETSc performance ratio is about 3X,
roughly in line with the 4X flop rate ratio and 3X memory bandwidth ratio of Sum-
mitDev vs. Titan GPUs.

6.4 Performance and Scalability on Summit

For testing the performance and scalability on Summit and the early science applica-
tions thereafter, a set of test problems was developed for evaluating performance. The
physics simulation reported in [21] was prepared as a base case to measure improve-
ments in performance. As shown in Table 3 and Fig. 6. GTC CPU-only runs scale
almost perfectly up to 928 nodes (about 20% of the whole Summit) in the weak scaling
test (i.e., by keeping constant number of particles per node). The simulation on 928
nodes uses 2 � 106, i.e., 1 million grids and 2 � 1011 particles utilizing 2/3 of the
GPU memory. GTC simulations using all GPUs and CPUs also show good scaling,
with a *50% efficiency at 928 Summit nodes when compared with the ideal scaling.
The GTC speed up from CPU-only to GPU + CPU is over 20 at 928 Summit nodes,
leading to an unprecedented speed of one trillion particle pushes in 2 s wall-clock time.
Furthermore, GTC performance on each Summit GPU is about 8 times faster than each
Titan GPU. Finally, as part of the Summit acceptance benchmark simulations, pre-
liminary results of GTC running on 4576 Summit nodes (by Dr. Wayne Joubert of
OLCF) show good scaling and similar performance, as shown in Fig. 7. The impres-
sive GTC performance on Summit would enable integrated simulation of multiple
physical processes.
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Table 3. Wall-clock time for one trillion particle pushes in the GTC weak scaling test on
Summit.

Summit nodes 16 64 256 512 928

GPU + CPU 58.43 15.37 4.99 2.92 2.00
CPU only 2167.56 525.98 150.45 71.53 41.76

Fig. 6. Wall-clock time for one trillion particle pushes in the GTC weak scaling test on Summit.

Fig. 7. Phase-II weak scaling of GTC on Summit, with the number of nodes ranging from 32
nodes to 4576 nodes (almost the whole machine). Total particle number are increased by
increasing the number of particles per node.
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7 Conclusion

We have successfully restructured the current production version of gyrokinetic tor-
oidal code (GTC) to a more modularized format with unified routines for all particle
species, including thermal ions, thermal electrons, fast ions and fast electrons. This is
followed by the optimizations using OpenACC directives to enable the GPU acceler-
ations, which is also relatively friendly for fusion physics researchers and students.
Other techniques have also been introduced to boost the performance to a higher level,
which includes the binning technique where particle data storage is optimized for
access. Hypre and Amgx have been adopted as alternatives to the PETSc field solver,
which make the code benefit from the accelerations of many core CPUs (Hypre) and
GPUs (AmgX).

Realistic profiles and parameters from fusion experiments have been used in GTC
benchmarks to provide insights into technical interests and scientific significance. The
strong and weak scaling studies have been performed and the overall speedup is about
2–3 times with a very good scalability on the whole Titan; and on SummitDev it shows
an overall speedup of about 34 times. The real physics tests on Summit machine have
also been conducted to tackle the self-consistent energetic particle physics in fusion
plasmas, especially for ITER. These tests showed impressive scaling properties that
reaches roughly 50% efficiency on 928 nodes which is 20% of total nodes of Summit.
The GPU + CPU speed up from purely CPU is over 20 times, leading to an
unprecedented speed.
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Abstract. Achieving performance portability for high-performance
computing (HPC) applications in scientific fields has become an increas-
ingly important initiative due to large differences in emerging super-
computer architectures. Here we test some key kernels from molecular
dynamics (MD) to determine whether the use of the OpenACC directive-
based programming model when applied to these kernels can result in
performance within an acceptable range for these types of programs in
the HPC setting. We find that for easily parallelizable kernels, perfor-
mance on the GPU remains within this range. On the CPU, OpenACC-
parallelized pairwise distance kernels would not meet the performance
standards required, when using AMD Opteron “Interlagos” processors,
but with IBM Power 9 processors, performance remains within an
acceptable range for small batch sizes. These kernels provide a test
for achieving performance portability with compiler directives for prob-
lems with memory-intensive components as are often found in scientific
applications.

Keywords: Performance portability · OpenACC ·
Compiler directives · Pairwise distance · Molecular simulation

1 Introduction

Software development productivity is reduced when sections of high-performing
programs must be frequently rewritten in low-level languages for new super-
computer architectures. This is not only a consequence of increased labor costs,
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but also because the code can become more error-prone due to shortened life-
times, multiple authors, and the inherent difficulty of programming close to
machine-level [23,55,68,77]. Because of such considerations, creating perfor-
mance portable applications has become an important effort in scientific com-
puting [47,51], and is recognized as a significant software design goal by both
the U.S. Department of Energy (DOE) [1,47,51] and the National Science Foun-
dation (NSF) [15].

Classical molecular dynamics (MD) simulation is a popular tool for a number
of fields within the physical and chemical sciences [30,69] and has been success-
fully implemented in the high-performance computing (HPC) setting by several
developers [19,25,26,36,46,61,62,67,73]. The associated reports pay testimony
to the extensive effort involved in porting these programs to different HPC plat-
forms in order to meet increasingly rising standards. A variety of non-portable
components are employed in leadership MD programs that allow for cutting-edge
performance to be obtained. Some of the most performance-enhancing elements
for per-node speedup include the CUDA C language (and CUDA API) for GPU-
based acceleration, and architecture-specific SIMD intrinsic functions along with
threading for the CPU portions [2–4,19,62,66,73]. CUDA C and the CUDA API,
for example, are currently usable only with NVIDIA GPUs, so sections of code
written in CUDA will have to be rewritten or translated for use on a different
GPU-vendor’s product; AMD GPUs, for instance, have recently been shown to
be competitive to NVIDIA GPUs [35,75]. For optimal performance on CPU-
portions of heterogeneous architectures, architecture-specific SIMD instructions
implemented with either intrinsic functions or vector instructions are often found
to be essential in leadership MD programs [58]: without the use of SIMD, a
majority of the processor’s capacity may be unused by a program, and many
compilers are not effective in auto-vectorizing code [40], but highly optimized
SIMD instructions are architecture-specific and require a considerable effort.
This amount of effort may not be optimal or even permissible for a domain
scientist, as it will detract from time spent in scientific pursuits. Nevertheless,
scientific computing needs can often be very niche-specific and thus commercial
applications may not provide an adequate computational solution [57]. Modern
science has advanced to a level that some amount of computing is required for
both the theoretical and experimental branches: while computational science has
become recognized as the “third pillar” of science by national agencies such as
the NSF [13], current trends indicate that it is now essential to the functioning
of the other two [76]. It is thus of great importance that scientific computing ini-
tiatives have accessible programming tools to produce efficient code that can be
easily ported to a number of HPC architectures, and that the machine-level back
ends are re-targeted and optimized by system or API developers, while main-
taining a consistent, unified front-end interface for the computational scientist
to use.

High level, compiler-directive based programing models such as OpenACC
and OpenMP have the potential to be used as a tool to create more per-
formance portable code [16,17]. Results of such attempts have been mixed,
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however [28,31,47,48,51,56]. The creation of a dedicated portable program
should provide the most optimal results [55,68]. Accordingly, here we test the
possibility of creating a portable MD application starting with key kernels of the
basic algorithm, and acceleration using OpenACC, to assess whether the result-
ing performance of these kernels is within an acceptable range to be used as part
of HPC-based MD programs. This effort provides tests of the performance of
OpenACC on kernels that involve non-negligible memory operations, and large
memory transfers to the GPU, characteristic of many scientific applications. The
kernels also represent calculations important to other types of computational
work such as classification and data analysis.

2 Background

2.1 Performance Portability

To quantify portability, an index has been proposed, the degree of portability
(DP):

DP = 1 − (CP /CR) (1)

where CP is the cost to port and CR is the cost to rewrite the program [54].
Thus, a completely portable application has an index of one, and a positive
index indicates that porting is more profitable. There are several types of porta-
bility; binary portability is the ability of the compiled code to run on a different
machine, and source portability is the ability of the source code to be compiled
on a different machine and then executed [54,55,68]. Here, costs can include
development time and personnel compensations, as well as error production,
reductions in efficiency or functionality, and even less tangible costs such as
worker stress or loss of resources for other projects. For the HPC context, we
can say that an application is performance portable if it is not only source-
portable to a variety of HPC architectures using the Linux operating system
and commonly provided compilers, but also that its performance remains in an
acceptable range to be usable by domain scientists for competitive research. To
avoid the ambiguity in the phrase “acceptable range,” Pennycook and coworkers
proposed the following metric for PP [45,60]:

PP (a, p,H) =

{ |H|
∑

i∈H
1

ei(a,p)
if a is supported∀i ∈ H

0 otherwise,
(2)

where |H| is the cardinality of the set H of all systems used to test the application
a, p are the parameters used in a, and ei is the efficiency of the application
on each system i ∈ H. Efficiency, here, can be the ratio of performance of the
given application to either the best-observed performance, or the peak theoretical
hardware performance [60].

Use of a high-level programming interface with a re-targetable back end that
is standardized and supported by a number of both commercial and open-source
initiatives has been found to be a critical element of portable application design
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[54,55]. OpenACC [16] was first developed to provide a high-level program-
ming model for GPU programming, and now has been extended to multi-core
machines. Conversely, OpenMP [17], once specific to CPU-based threading, has
now been extended to the GPU. Both of these APIs offer compiler-directive-
based interfaces with which to wrap sections of code for parallelization; they
both appear in a similar format to the syntax used by OpenMP, which has now
become familiar to many programmers of all levels. These two APIs are sup-
ported by a number of commercial hardware and compiler developers, and in
addition, by the GNU project [18].

2.2 Molecular Dynamics

In molecular dynamics, a system, represented by atomistic units, is propagated in
time based on some calculated forces using a numerical integration of Newton’s
equations of motion. The simulation cannot proceed with the next step until
the previous one is completed; furthermore, a very small time-step is required to
keep the simulation from sustaining unacceptable drifts in energy, as compared
to experimental timescales that the simulation may be modeling [69]. Therefore,
minimization of time per step is highly important. Several open-source, highly
parallel classical MD programs exist that can scale to over thousands of nodes
of a supercomputer and are heavily used internationally for molecular research.
These programs are able to perform a time step in less than two milliseconds for
systems of hundreds of thousands of atoms, or in seconds for systems of hundreds
of millions of atoms [19,36,46,62,67,73].

The classical molecular dynamics algorithm involves three main components:
the integration step, the calculation of bonded forces, of pairwise short-range
non-bonded (SNF) forces, and the calculation of long-range forces. The integra-
tion step is generally the quickest part of the calculation, and as it has some
memory-intensive aspects, is often calculated using the CPU, in implementa-
tions using heterogeneous architectures. The long-range forces calculation, in
most implementations, involves an Ewald-sum, and requires Fourier transforms.
The SNFs consist of the Lennard-Jones interaction, and short-range electro-
static forces. The Lennard-Jones interaction is an empirical function created to
approximate the dispersive, or van der Waals forces, which in reality are purely
quantum effects. The functional forms for these two additive forces are:

FLJ(rij) =
[
12

(σ12
ij

r13ij

) − 6
(σ6

ij

r7ij

)]rij
rij

, (3)

FC(rij) =
1

4πε0

qiqj
r2ij

rij
rij

. (4)

Here FLJ(rij) is the Lennard-Jones force on atom i due to atom j, with rij
being the vector connecting atom i to atom j. σ is a parameter that depends on
the atom type of both interacting atoms, and FC(rij) is the analogous Coulomb
force, with qn being the point-charge value assigned to atom n, and ε0 the per-
mittivity of free space; both are functions of the inter-atomic distance [5,69].
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Fig. 1. Schematic of the interaction neighbors for cell-cell interactions involved in the
spatial decomposition in the molecular dynamics algorithm. The central box (orange),
interacts with itself, and with its 26 immediate neighbors, creating a total of 27 inter-
actions for each cell in the grid, if in a periodic system, or a range of interactions
from 8–27 if in a non-periodic system. Boxes are exploded outward for visualization
purposes, but sides are touching in the actual grid. (Color figure online)

The Lennard-Jones and short-range electrostatic forces rapidly decay to zero
outside of a radius of about 10–14 angstroms. This creates an excellent mech-
anism for reducing the total calculation by imposing a distance-based radial
cutoff on each atom, outside of which no interactions are considered. Algorithmi-
cally, the SNF calculation usually consists of a spatial decomposition, or domain

Fig. 2. Sparsity plot of distance matrix of all cell-cell distances, with all distances
outside of radial cut-off of 10 angstroms set to zeros (and colored white), for a solvated
system of 30,000 atoms (small protein), and all distances within the cut-off in blue. The
number of cells in each direction is 6, resulting in a total of 46,656 cell-cell distances.
4096 of these are actually calculated in a non-periodic MD simulation due to the cut-off
scheme. (Color figure online)
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decomposition, of the system, into a three-dimensional grid of cells, followed
by a binning of the atoms into their associated cells with some sort of sorting
procedure. After this the pairwise forces on each atom can be calculated and
summed [58,65]. These forces, as can be seen from their equations, depend on
the pairwise distances between an atom and all other atoms within the radial
cut-off. If the spatial decomposition is performed so that the cells’ dimensions
are close to the LJ cut-off distance, then only the interacting cell-cell pairs need
to be searched for interacting atoms, for each cell [65]. In the periodic regime,
all cells have 26 neighbors, and distances of all atoms within the central cell
must be calculated as well, resulting in 27 cell-cell interactions that must be
calculated for each cell in the grid of the domain decomposition. Figure 1 shows
a central cell and its interacting cell neighbors. Figure 2 shows a sparsity plot of
the distance matrix for all cell-cell interactions in the system, with those having
distances greater than the cut-off set to zero and colored white, and interacting
cells colored blue. As can be seen, the cut-off creates a banded structure to the
matrix, and reduces the number of cell-cell calculations by about 90%.

3 Portability Goals: Timings and Architectures

HPC MD developers have continuously pushed for increasingly shorter per-time-
step execution rates. Currently, GROMACS [19] and NAMD [73] exhibit highly
competitive timings per time-step. For 21 M atoms, NAMD attained about 5 ms
per time-step and for a 224 M atom system, about 40 ms per time-step using 4096
nodes, according to published benchmarks [6,63]. In 2015 GROMACS reported
a sub-millisecond time-step for a 80,000 atom system using only 32 nodes, with
Intel E5-2680v2 processors with 20 CPU cores and 2 K20X NVIDIA GPUs, and
1.7 ms per step for a 2 M atom system using 512 nodes of the same processor type
but without GPU [46]; thus performance on a multi-core machine can actually
exceed that of a GPU-enabled supercomputer for MD. Using GROMACS 5.1.3
on OLCF Titan, a Cray XK7 with AMD Interlagos CPUs and one NVIDIA
K20X GPU per node we obtained a 1.2 ms time-step for a 1.1 M atom system
using 1024 nodes. This level of performance has been attained and is expected
on many-core, multi-core, and GPU-containing HPC systems.

We test some key kernels from a MD calculation to see if parallelization with
OpenACC can be performed while remaining under 7 ms/time-step for a system
under 20 M atoms, or 55 ms/time-step for a system of about 220 M atoms, after
domain decomposition. On a single node, the total times for the kernels must
be well below these numbers while at the same time the job size on the node
must be large enough so that the total domain decomposition would not use
more that about 2000 nodes for a smaller system, and 4000 nodes for a larger
system. Common domain decomposition for MD programs involves computing
the SNFs acting on about 15 K atoms on a single node. For around 15 K atoms,
there are about 3,000 cell-cell interactions, so what we aim for is a total kernel
time under 6 ms for about 3,000 cell-cell interactions, or 50 ms for about 12,000
cell-cell interactions, which leaves time for communication and other less time-
consuming portions of the calculation, and corresponds to an 80% efficiency score
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compared to NAMD, and if maintained for all architectures tested, would result
in a minimum of 80% performance portability score in (2). We test whether
this performance can be maintained using the same source code, on nodes with
multi-core CPUs and on heterogeneous nodes containing a GPU.

4 Designing the Kernels

4.1 The Programming Model and Its Portable Subset

C enjoys native support on a variety of machines and is familiar to most pro-
grammers, furthermore, C++ functionality has been added for some compilers
[32], but can be problematic [56]. We try to use only the portable subset of C
and OpenACC. For C/C++, this means avoiding structures and classes, and
programming elements that are difficult to parallelize with directives. While
OpenMP provides SIMD constructs that enable machine-specific elements to be
added to a parallel region, OpenACC does not contain syntax for such explicit
targeting [29,43,51,59]. Additionally, it has been found that OpenACC thread-
ing on the CPU can be poor if the optimal organization of a particular kernel is
not used, and that this re-organization for the CPU can decrease performance
on the GPU [28]. We would like for parallel regions to not have to be rearranged
with different constructs to obtain adequate performance on different architec-
tures. We tried to use the simplest layouts as an initial test, with the hope that
the design and modularity of the application could provide a large portion of the
parallel performance gain. Although the format of directive-based parallelization
with OpenMP and OpenACC initially seem similar, unfortunately the two APIs
differ enough in how they must be used to obtain adequate parallelization, that
they cannot be exchanged using simple macros. In many cases, different sec-
tions of nested loops require different arrangement of parallel clauses, and in
some cases, the code region must be re-arranged when switching between APIs
[64,74,78]. There are initiatives that are aimed at performing an automated
translation from one to the other; this is a positive development as currently
only several compilers support each interface [74]. To facilitate such a transla-
tion it will also be advantageous to use the simplest syntax for each parallel
region.

4.2 Modular Format and Kernels

To create a modular format that can facilitate portability, deconstruction of the
MD algorithm into its subtasks was performed. To simplify the algorithm we
avoid the use of non-rectangular cells for the domain decomposition. Several
highly optimized algorithms have been published that focused on the use of cells
of varying complexity, [19,24]; these types of algorithms require more time to
code, understand, and test, and thus are not a practical choice for a dedicated
portability effort. We chose a rectangular grid, and once the grid is created, the
location of each atom can very easily be calculated using a reduction over its
three position coordinates. A one-digit address can be uniquely determined.
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We focus on several computational modules that are repeated every time
step. The creation of the cell-grid, based on the minimum and maximum values
of the atomic positions along each dimension, and the cut-off radius given, is an
example of a procedure that only needs to be calculated one time for a constant-
volume simulation. This is also true for the creation of the interaction list for
the cell-cell interactions. The first module that is repeated is “atom-binning.”
Involved in this task is the assignment of each atom to its corresponding cell,
referred to here as the “cell-assign” procedure. Additional steps involve counting
the number of atoms in each cell, and the filling of a data structure representing
each cell with the appropriate atoms’ coordinates, either with a gathering of all
atoms belonging to it, or with a halo-exchange type operation after an initial
sorting. Cell-assignment is a completely parallel task that is trivial to distribute
and requires no redesign from an analogous serial algorithm. For the rest of
the parallel binning algorithm, however, it is impossible to simply parallelize
the counting and the permutation-array steps with a directive added to a serial
implementation: the concept of counting and all-prefix-sums are dependent on
the sequential programmatic progression. This is an excellent example of how
the use of OpenACC in a näıve way to speed-up a serial algorithm can fail
completely. An algorithm’s serial version may require a complete restructuring
in a parallel programming model.

Another module we tested is the squared pairwise-distance calculation. This
module comprises a large portion of the force computation in MD, which is the
largest bottleneck [27,38]. The decay of the force functions, however, makes the
cut-off approximation both accurate and very computationally important; the
cell-based spatial decomposition makes excellent use of this [65]. The large, cell-
cell pairwise distances calculation (the pairwise distance of each atom in each
cell with all other atoms in interacting cells) has a complexity of O(N), where N
is the total number of atoms being modeled, however the prefactor is very large.
To obtain the pairwise distances, an element-wise square root must be applied.

The pairwise distance calculation is also important for numerous applications
in statistics and data science. A pairwise-distance calculation over a large num-
ber of multi-dimensional observations is central to clustering algorithms such as
k-means and some kernel methods [21,41,49,70,71]. Therefore an analysis of
the potential for performance portability of a massively parallel distance matrix
calculator is of interest in its own right [20,49].

Many MD programs also employ an atomic neighbor-list, which not updated
every time step under the assumption that the atoms will not move considerably
each step. This reduces the number of times the pairwise distances within the cell
interactions are calculated, thus it reduces the prefactor in the O(N) complexity.
However, this procedure incurs some launch overhead, memory access, and com-
munication costs: potential inefficiency of many small data-structure-accessing
steps, increased bookkeeping requirements in the code, and the requirement to
“batch” the calculations by hand on the GPU for efficiency, lead to increases in
code complexity and thus potential error-generation, and decreases in portabil-
ity. We did not address the neighbor-list calculation in this study.
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5 Binning Module (Neighbor-List Updates): Bin-Assign,
Bin-Count, and Bin Sorting

5.1 Bin-Assign, Bin-Count

Listing 1.1 shows a serial version of the bin-assign and bin-counting procedures.
The most efficient method, in serial, is to use a one-dimensional array of atoms’
bin IDs, and an accompanying array that keeps track of how many atoms in
each bin. In a serial implementation, this bin-count can be accomplished in the
same for-loop as the bin-assign.
1

2 /∗ a f t e r determining the number o f b ins based on the t o t a l system s i z e
and the cu to f f , a l l o c a t e the array that keeps t rack o f how many

atoms are in each bin : ∗/
3 bin count=( i n t ∗ c a l l o c ( numbins∗ s i z e o f ( i n t ) ) ;
4 // binning procedure :
5 f o r (b = 0 ; b < num atoms ; b++) {
6 // read each atom ’ s 3 coo rd ina t e s and c a l c u l a t e the value o f the 3−

d i g i t
7 // address :
8 temp [ 0 ] = f l o o r ( ( coords [ b ] [ 0 ] / range [0] − kbinx )∗num divx ) ;
9 temp [ 1 ] = f l o o r ( ( coords [ b ] [ 1 ] / range [1] − kbiny )∗num divy ) ;

10 temp [ 2 ] = f l o o r ( ( coords [ b ] [ 2 ] / range [2] − kbinz )∗num divz ) ;
11 // f i nd the 1−d i g i t address o f the atom
12 n= num divy∗num divz ∗( temp [ 0 ] )+num divz ∗( temp [ 1 ] ) +(temp [ 2 ] ) ;
13 // ente r the 1−d i g i t address in to that atom ’ s index in the b i n i d s

array :
14 b i n i d s [ b ] = n ;
15 // update the count in that bin ’ s index in the b in count array :
16 bin count [ n]= bin count [ n ]+1;
17 }
18 /∗ The va r i ab l e b i n i d s i s a one−dimens iona l array the l ength o f the

number the t o t a l number o f atoms . Each element o f b ins conta in s
the s i ng l e −i n t e g e r bin ID o f the atom with correspond ing array
index , and the va r i ab l e coords i s a two−dimens ional array
a l l o c a t e d at the i n i t i a l i z a t i o n o f the program , conta in ing the x ,
y , and z components o f each atom ’ s coo rd ina t e s . The va r i ab l e
b in count i s a t a l l y o f the number o f e lements in each bin . ∗/
Listing 1.1. Code snippet of a serial version of bin-assign/bin-count

For a parallel version, “counting” is ill-defined, and this seemingly trivial
computation in serial, becomes a more difficult task in parallel. The serial version
of the gathering step is also relatively trivial. Listing 1.2 shows a version of this
type of nested solution in a serial implementation.
1 count = 0 ;
2 f o r (b=0; b<numbins ; b++) {
3 f o r ( c=0; c<num atoms ; c++) {
4 i f ( b i n i d s [ c]==b){
5 ga the r a r ray [ count ]=c ;
6 count++;
7 }
8 }
9 }

Listing 1.2. Code snippet of a serial version of the gathering array generation

Since the bin-assign procedure is independent for each atom, it is easily par-
allelizable. The requirements simply involve using a single OpenACC directive
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to parallelize the serial version. Listing 1.3 shows the implementation of its par-
allelization using an OpenACC parallel loop pragma. It is further possible to
potentially optimize this section using different OpenACC options, however,
with just this simple addition, using the PGI compiler, OpenACC generates
an implicit copy out of bin ids, an implicit copy in of coords and range. For
500,000 atoms, this section of the binning algorithm required 115µs (0.115 ms),
and for 30,000 atoms, 11µs (0.011 ms), using one node of Titan with the GPU.
Although the use of gangs, workers, and other data distribution keywords pro-
vided by OpenACC are defined for particular divisions of tasks, the actual perfor-
mance of these various methods to create compiler-written code for a particular
HPC architecture is highly system dependent. We found for the above kernel,
that these additional constructs did not improve performance. The most general
pragma, the “kernels” directive, allows the API to determine what regions of the
section can be parallelized, and to distribute these regions appropriately. A less
general option is the parallel “loop” region, which specifically tells the compiler
to parallelize the loop.
1 #pragma acc p a r a l l e l loop p r i va t e ( temp)
2 f o r (b = 0 ; b < num atoms ; b++) {
3 // read each atom ’ s 3 coo rd ina t e s and c a l c u l a t e the value o f the 3−

d i g i t
4 // address :
5 temp [ 0 ] = f l o o r ( ( coords [ b ] [ 0 ] / range [0] − kbinx )∗num divx ) ;
6 temp [ 1 ] = f l o o r ( ( coords [ b ] [ 1 ] / range [1] − kbiny )∗num divy ) ;
7 temp [ 2 ] = f l o o r ( ( coords [ b ] [ 2 ] / range [2] − kbinz )∗num divz ) ;
8 // f i nd the 1−d i g i t address o f the atom
9 b i n i d s [ b]= num divy∗num divz ∗( temp [ 0 ] )+num divz ∗( temp [ 1 ] ) +(temp [ 2 ] ) ;

10 }
Listing 1.3. Code snippet of a simple OpenAcc parallelization of bin-assign

Manual Task Division for Bin-Assign Together with OpenACC
Pragmas. We also tested how some amount of manual splitting of the bin-
assignment tasks would affect the speed-up. We separated the atoms into 5 evenly
distributed blocks, and added OpenACC loops around both the blocks, and the
inner bin-assign. Interestingly, this resulted in a 3−5 × speed-up, depending
on the number of atoms. However, the speed-up may be system- and data-size-
dependent, and it may be a difficult task to optimize this manual splitting by
future users of the application.

5.2 Parallel Algorithm Design for Bin Count and Gather

The bin count and gather operations are classical examples of more difficult prob-
lems in parallel computing. For this reason, for a portable application, these mod-
ules may be better handled with optimized routines from libraries rather than
OpenACC. Furthermore, the optimal programmatic solution may vary greatly
between architectures. Details are provided below.
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Bin Count. Parallelization of the bin-count procedure can be approached in
several ways. This is ultimately a histogramming task. One can use an atomic-
add for the bin-count array variable, which can be kept in a shared location in
memory. These types of operations are supported by OpenACC’s more advanced
directive options. Alternately, one can create a type of merge-count, so that the
bin-ID array is split into subarrays, each is counted in serial by parallel gangs,
and the results are merged. It is also possible that for various architectures,
there will be a different optimal solution for this step. Thus this is an example of
a region of code that may require encapsulation and increased documentation,
as well as several kernels to be used for specific systems, or the potential for
exchanging with an optimized library. A high performing histogram routine, for
instance, could be employed in this section [53], as can a parallel prefix-sum
routine [39].

Gather. In order to gather all atomic coordinates belonging to a cell (bin)
into a single data structure for passing to the pairwise distance calculation, the
use of masks, or an efficient parallel scan algorithm can be used. This process
involves a (fuzzy) sorting and somewhat complicated data movement patterns.
The optimal solution can require a significant amount of effort and may vary
greatly based on the architecture targeted, and thus is the type of procedure
that could also be replaced with a call to hardware-specific libraries, that would
each provide an optimized solution for a specific architecture. One possibility is
to exploit sorting procedures provided by HPC libraries such as Thrust [7]. This
again is a region that must be encapsulated and well-documented, because it
may involve machine-specific solutions [33].
1 f o r (b=0; b<num batch ; b++){
2 /∗ rows=dim , columns=obs . ∗/
3 f o r ( i = 0 ; i < num coords n ; i++) {
4 f o r ( j = 0 ; j < num coords m ; j++) {
5 f o r ( k = 0 ; k < 3 ; k++)
6 {
7 temp = batchA [ b ] [ k + 3 ∗ i ] − batchB [ b ] [ k + 3 ∗ j ] ;
8 y [ k ] = temp ∗ temp ;
9 }

10 temp = y [ 0 ] ;
11 f o r ( k = 0 ; k < 2 ; k++)
12 {
13 temp += y [ k + 1 ] ;
14 }
15 batchC [ b ] [ i + num coords n ∗ j ] = temp ;
16 }
17 }
18 }
Listing 1.4. Code snippet of serial version of the squared pairwise distance calculation

After the initial gathering of atoms into their respective cell arrays, future
gathering operations can be accomplished with a data exchange routine common
in the halo-exchange algorithms used in stencil computations [22,37]. This takes
advantage of the fact that atoms do not move large amounts over short time
periods, and thus many atoms may not change cells for many time steps. There-
fore the number of exchangers will be small. However, this approach involves
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communication expense and more complicated data movement patterns. Alter-
nately, larger groups of atoms in neighboring cells can again be sorted by bin
ID using a fast sorting algorithm that is most efficient on heavily presorted data
[42,44,72]. For smaller systems where data is located on a single node, it may
be faster to resort all atoms than to perform numerous communication and data
exchange operations. Ultimately, the optimal choice of algorithm may also be
hardware specific, and thus it is possible that the most performance portable
solution for this module is a call to an HPC library.

6 The Squared Pairwise Distance Calculation:
Performance, Portability, and Effort

In this section we examine the performance portability of an OpenACC imple-
mentation of the calculation of the squared pairwise distance matrix for all atoms
in sets of two interacting cells. This calculation does not suffer from the types of
algorithmic complexities that the bin count and gather modules do; it is a more
easily parallelizable routine much like the bin assign module. For this module,
in addition to the use of OpenACC for parallelization on the GPU and on the
CPU, we also created two alternate implementations, one using a CUDA kernel,
to compare performance of the directive-based implementation, and one com-
pletely using routines from newly emerging batched versions of accelerator-based
Basic Linear Algebra Subprograms (BLAS) [12] libraries.

The BLAS version is a pedagogical example of a solution that is not only
portable, but actually requires the least amount of parallel programming expe-
rience: it allows the user to perform the calculation without any knowledge of
accelerator programming or even any experience with compiler directives. Thus
the effort and skill required to port this version would be minimal. While batched
versions of BLAS standard routines are not technically part of the standard,
there is a growing need for these types of routines and they are available in
many scientific libraries.

Listing 1.4 shows the serial version of such a calculation. The variables batchA
and batchB are batched collections of atoms in interacting cells, batchC is an
array of respective distance matrices for each cell pair from in batchA and
batchB, and num cells is the number of cells in each batch. There is a loop
over the three dimensions in order to provide generality: for use in data anal-
ysis the dimension may be very large and parallelization of the loop may be
necessary.

We tested single node, single GPU and CPU-only implementations, imple-
menting parallelization with OpenACC, CUDA and cuBLAS using OLCF Titan,
a Cray XK7 with 16-core AMD Opteron “Interlagos” CPUs and NVIDIA Kepler
(K20X) GPUS, and OLCF Summit, a system containing 42 IBM POWER9
CPUs and 6 NVIDIA Volta (V100) GPUs per node, with 4 SMT hardware
threads per CPU core [8].
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1 #pragma acc data copyin (A[ 0 : 3 ∗ num batch∗num coords n ] ) , copyin (B[ 0 : 3 ∗
num batch∗num coords m ] )

2

3 pa i rw i s e batched (A, B, C, num coords n , num coords m , num batch ) ;
4

5 void pa i rw i s e batched ( double A[ ] , double B [ ] , double C [ ] , i n t ldX , i n t
ldY , i n t num batch ){

6 #pragma acc data pre sent (A) , pre sent (B) , pre sent (C)
7 #pragma acc k e rn e l s
8 #pragma acc loop independent
9 f o r ( i n t b=0; b<num batch ; b++)

10 {
11 double y [ 3 ] ;
12 double temp ;
13 /∗ rows=dim , columns=obs . ∗/
14 #pragma acc loop independent
15 f o r ( i n t i = 0 ; i < ldX ; i++) {
16 #pragma acc loop independent
17 f o r ( i n t j = 0 ; j < ldY ; j++) {
18 #pragma acc loop seq
19 f o r ( i n t k = 0 ; k < 3 ; k++)
20 {
21 double temp = A[ b∗3∗ ldX + k + 3 ∗ i ] − B[ b∗3∗ ldY + k + 3 ∗

j ] ;
22 y [ k ] = temp ∗ temp ;
23 }
24 temp = y [ 0 ] ;
25 #pragma acc loop seq
26 f o r ( i n t k = 0 ; k < 2 ; k++)
27 {
28 temp += y [ k + 1 ] ;
29 }
30 C[ b∗ ldX∗ ldY + i + ldX ∗ j ] = temp ;
31 }
32 }
33 }
34 }
Listing 1.5. Code snippet of a simple OpenACC parallelization of the squared pairwise
distance calculation

6.1 Use of OpenACC for the Squared Distance Calculation: GPU

The GPU-based OpenACC version was created by adding a data region, an acc
kernels region, and three acc loop independent regions around the serial
pairwise distance function shown in Listing 1.4. The two dimensional array was
also flattened. Listing 1.5 shows this implementation. While there may be further
work to be done in determining the optimal OpenACC clauses to use for this
calculation, for the scheme shown in Listing 1.5, results were surprisingly good.
On both Titan and Summit, a reasonable number of batches could be processed
in under 10 ms, and on Summit, all cell-cell interactions for a system the size
of a small protein (about 6000 batches) could be processed on a single GPU in
under 10 ms. Figure 3A shows timings for increasing batch sizes using one node
and one GPU of each machine. These results are within the acceptable range we
determined for an MD step, although for smaller systems the upper limit on the
time-per-step greatly constrains the amount of batches that can be offloaded to
a single node, resulting in the use of only a small percent of the peak FLOPs
available on the GPU (Fig. 4A). With no such constraint, it would be possible to
perform significantly more pairwise distance calculations per node in a relatively
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Fig. 3. Comparison of performance (time in ms), for CUDA and OpenACC versions
of the GPU-based all-pairwise squared distances calculation on OLCF Titan (K20X)
and Summit (V100), over increasing batch sizes. A: using OpenACC distance kernel.
B: using CUDA distance kernel.

rapid amount of time based on how much the two tested GPUs’ global memories
can hold.

For larger systems, it may be advantageous to use more batches per node,
and maximize the percentage of peak FLOPs used, as the amount of allowed time
per time step for larger systems by current standard is higher. For a system of
about 80,000 atoms, as in the GROMACS benchmark discussed in Sect. 3, using
about 1024 batches per node, the distance calculation can be completed for all
interacting atoms in under 10 ms using less than 8 nodes. Using 32 nodes, as used
in the benchmark, this calculation can be completed in under 0.5 ms on Summit.
Of course there are some additional calculations to be performed, i.e. the square
root and the application of the force functions to the distances, to complete
the SNF routine, however, these involve fewer FLOPs and no further memory
transfers. The possibility of using OpenACC on GPUs within a performance-
portable HPC MD application is not excluded by these initial benchmarks.

6.2 Comparison to CUDA Kernel

Figure 3B shows timings for the CUDA implementation of this calculation on
Titan and Summit, and Fig. 4B-C shows speedup over the OpenACC version.
Figure 5 shows memory transfer times.
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Fig. 4. A. Comparison of performance by GFLOPS for CUDA and OpenACC versions
of the GPU-based all-pairwise squared distances calculation on OLCF Titan (K20X)
and Summit (V100), over increasing batch size. B: speedup (×) of CUDA kernel over
OpenACC kernel distance kernel on Summit, for total runtime and memory transfer
time. C: speedup of CUDA kernel over OpenACC kernel distance kernel on Titan.

Fig. 5. Comparison of memory transfer time for CUDA versions (and BLAS version) of
the GPU-based all-pairwise squared distances calculation on (a) OLCF Titan (K20X)
and (b) Summit (V100), for different batch sizes. Inset: speedup (×) for Summit versus
Titan
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6.3 OpenACC on the CPU

We tested the parallelization of the kernel using OpenACC for CPU-based
threading with the ta = multicore compiler flag, using the identical code. There
are some algorithms that can be performed faster on the CPU, with OpenMP
threading, than on the GPU with OpenACC or CUDA [9,46,64]. To get maxi-
mum performance on the CPU one must use threading, alignment, and vectoriza-
tion [40], OpenACC has no functionality for intrinsic-function level specification.
It also has no option for treating thread affinity. OpenACC seems to be less useful
for creating truly performant CPU-based kernels than GPU version, for kernels
like the distance calculation. Memory transfer time was sub-microsecond, and
is not reported. Figure 6 shows kernel runtimes for varying batch sizes and scal-
ing data on Summit and Titan. For smaller batch sizes, times can be within an
acceptable range for Summit, but not Titan. Furthermore, the small batch size
limit reduces the number of cell-cell interactions to those in an equivalent system
of about 20,000 atoms. Therefore, we see that performance of OpenACC, even
on new supercomputer cores, is barely within the lowest limit for performance
portability.

6.4 Comparison to a Purely BLAS-Based Algorithm: Lowest
Programming Knowledge Required

A well-known algorithm for the pairwise distance calculation can be implemented
completely with subroutines from BLAS libraries. Surprisingly, although this
algorithm involves slightly more total flops and a significant amount of memory
operations than the direct method, it has been considered in the past as a fast
way to implement the distance calculation on the CPU, if using threaded sci-
entific libraries like Intel’s MKL [49]. Matrix operations such as matrix-matrix
multiplication are included in most high-performing scientific libraries provided
by system manufacturers, and have also become benchmarks for measuring the
performance of these systems. Thus they are competitively implemented in a
highly optimized manner. The algorithm for the BLAS-based distance matrix
calculation is shown in Algorithm1.

The BLAS-based algorithm would probably be used on a single large matrix,
in data analysis. Here we explored the potential of using such an algorithm on
the GPU with a more recently developed massively-parallel extension of matrix-
matrix multiplication (MM), the batched MM routines, to compare performance
to our other two versions. While as-yet not a standard BLAS routine, a batched
version of MM for many small matrices exits in both the NVIDIA-provided
cuBLAS library [10], and Intel MKL for multicore architectures and the KNL
[14]. Furthermore, an version of a batched MM routine is provided by Magma,
[11] an open-source effort that creates accelerated BLAS routines for a num-
ber of architectures. There is a growing possibility that batched BLAS routines
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Fig. 6. Performance and scaling (time in ms) of OpenACC threading on the CPU,
Summit and Titan, for all-pairwise squared distances calculation. Left: performance.
Right: scaling plot for 1024 cell-cell interactions (batch number 1024).

will enter into the standard, as they arise naturally when large problems are
decomposed on parallel platforms [34].

The BLAS method creates a floor for the amount of programming skill and
effort required for an accelerated squared pairwise distance calculation. With
this version programmer would not need to have any experience in any pro-
gramming languages other than C/C++ or FORTRAN, not even the use of
compiler directives. However, this algorithm works best for large matrices that
are closer-to-square in shape, unlike our coordinate arrays.

Algorithm 1. Pairwise squared distance calculation using matrix operations,
adapted form Li et al., 2011 [49]

1: load matrices A and B and allocate memory for matrix C
2: A has dimension N by 3, B has dimension M by 3, and C has dimension N by

M
3: note: (·) denotes elementwise multiplication
4: v1 = (A ·A)[1, 1, 1]T

5: v2 = (B ·B)[1, 1, 1]T

6: P1 = [v1,v1, ...,v1] (dimension N by M)
7: P2 = [v2,v2, ...,v2]

T (dimension N by M)
8: P3 = ABT (dimension N by M)
9: D2 = (P1 + P2 − 2P3), where D2 is the matrix of squared distances

10: pairwise distance matrix can be recovered from D2 by element-wise square-root

We implemented this algorithm using cuBLAS, the CUDA-based BLAS
library provided by NVIDIA. Using matrices of size 200 by 3, we tested this
implementation on a single GPU of Titan and Summit. Matrices A and B in
our situation are the 3-D coordinates for atoms in two interacting cells. In order
to perform lines 6 and 7 with BLAS routines, one can use the dger routine (outer
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product) of v1 or v2 with a vector of ones of length N. However, cuBLAS does
not provide a batched version of dger, and thus we used batched MM again with
input “matrices” v1 or v2 and a vector of ones. The element-wise multiplication
is available in MKL as a Hadamard product, but not in cuBLAS, thus lines 4
and 5 were performed on the CPU and not included in timings. Because of this,
we found that on the GPU, this algorithm cannot be performed completely with
cuBLAS functions. Even without these first two components of the calculation,
the performance of this method on the GPU compared to that of OpenACC or
CUDA-C is much lower. Figures 7 and 8 show timings and comparison to the
CUDA kernel. This (partial) version’s performance is quite poor, but better than
the OpenACC-threaded CPU version. Despite optimized BLAS routines on the
GPU provided by NVIDIA, the memory operations swamp the performance in
comparison to the CUDA-C and the GPU-based OpenACC versions.

Fig. 7. Comparison of performance of BLAS version, all-pairwise squared distances
calculation, on the GPU, using OLCF Titan (K20X) versus Summit (V100).

Fig. 8. Left: comparison of performance (time, ms) of BLAS versus CUDA version of
all-pairwise squared distances calculation, using one GPU on Summit. Right: speedup
(×) of CUDA version on Summit vs. cuBLAS-batched version on Summit.
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7 Programming Effort

It is difficult to measure worker effort, especially when skill levels of workers may
differ. Some papers report that CUDA requires more effort than OpenACC, even
for workers familiar with both APIs [50,52,56]. However, different compilers each
may implement a particular directive instruction differently, and variable per-
formance may require alternate constructs to be used to parallelize a particular
section of code, leading to some level of trial and error in each port. This lack
of a defined outcome increases potentials for performance portability, as there
are more possibilities that optimal performance will be obtained by using dif-
ferent constructs and different compilers, but can be frustrating for the user,
and increased experience may not increase the ease of this process. Therefore,
we cannot say that the use of OpenACC requires significantly less total worker
effort than use of CUDA-C for small kernels. On the other hand, the amount
effort required for OpenACC parallelization is not large, and the result is far
more portable than CUDA-C after the first implementation has been created.
It is also possible that the effort required for OpenACC is less than for some
alternative portable solutions, such as OpenCL [52]. The use of cuBLAS-batched
indeed required the minimum amount of programming skill, however, creating
the kernel involved more programming steps than the addition of a directive to
a serial kernel, and more testing to make sure the result was correct. On the
other hand, after the initial implementation is created, it should be able to be
used without any changes except for linking to a different library and any small
changes to the call syntax.

8 Conclusions

We have found that portable kernels that remain within an acceptable perfor-
mance range can be created for calculations representing bottleneck regions in
MD. Using OpenACC, we found that while performance on the GPU was closer
to the performance of CUDA kernels, on the CPU, performance of threaded ker-
nels was much lower, and on older CPUs such as the AMD Bulldozers, would
not provide acceptable performance. However, on the Power 9 processors, CPU
performance remained within the low range of acceptability for smaller job sizes.
Future work can compare the performance of these kernels when using OpenMP
both on the CPU and the GPU. It is possible that the need for some amount
SIMD-level instructions could be required for better performance on the CPU,
and can also be tested in future work with OpenMP SIMD constructs.

Testing key kernels in scientific applications in this way creates examples
of directive-based parallelization that include memory-limited calculations and
difficult-to-parallelize algorithms, and expose routines that may perform in a
less-than-efficient way. These examples, in turn, give the API developers test
problems that may be outside of their usual testing routines, and thus help to
maintain the cycle of collaboration between computational scientists and API
developers that is seen as a requirement for the creation of portable, high-level
interfaces for applications.
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Challenges presented by the designing of HPC-portable applications using
compiler directives include difficulties in the creation of parallel versions from
serial routines, and can reveal the need for the use of high-performance libraries
created for each particular architecture by specialists for certain encapsulated
sections, instead of using the directives in those regions. It is possible that
through the use of carefully designed modules and functions, together with
directive-based programming models such as OpenACC, acceptable performance
for some tasks can be achieved relatively easily. This can allow for a unified, per-
formance portable interface for applications.

A Artifact Description Appendix: Using Compiler Directives for
Performance Portability in Scientific Computing: Kernels from
Molecular Simulation

A.1 Abstract

This appendix details the run environments, compilers used, and compile line
arguments for the four tested methods details in the text. Note that hardware
access is limited to OLCF users.

A.2 Description

Check-list (artifact meta information)

– Algorithm: Select kernels used in molecular dynamics
– Compilation: See compliers and commands below
– Binary: C++/CUDA or C++/OpenACC
– Run-time environment: Modules displayed below
– Hardware: OLCF Titan and Summit as described in main text
– Run-time state: Summit used SMT=1 for CPU threading. Run
commands below

– Execution: Run commands below, BLAS routines were called using
standard calls to the cuBLAS library

– Publicly available?: All kernels are provided in the text and
appendix

All kernels used are listed in the main text, except the CUDA kernel. This
is provided below:
1 template<typename T, i n t BS>
2 g l o b a l void
3 d i s t a n c e k e r n e l (T∗∗ A data , T∗∗ B data , T∗∗ C data , i n t lda )
4 {
5 i n t r ow s t r i d e = lda ;
6 i n t row = blockIdx . x∗BS+threadIdx . x ;
7 i n t c o l = blockIdx . y∗BS+threadIdx . y ;
8 s h a r e d T ∗A, ∗B, ∗C;
9 i f ( threadIdx . x+threadIdx . y==0)

10 {
11 A = A data [ b lockIdx . z ] ;
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12 B = B data [ b lockIdx . z ] ;
13 C = C data [ b lockIdx . z ] ;
14 }
15 sync th r ead s ( ) ;
16 i f ( ( row < lda ) && ( co l < lda ) )
17 {
18 T elementSum = (T) 0 . 0 ;
19 #pragma un r o l l
20 f o r ( i n t i =0; i <3; i++)
21 {
22 T d i f f = A[ i ∗ r ow s t r i d e+row ] − B[ i ∗ r ow s t r i d e+co l ] ;
23 elementSum += d i f f ∗ d i f f ;
24 }
25 C[ co l ∗ r ow s t r i d e + row ] = elementSum ;
26 }
27 }
28 void
29 cuda d i s tance ( double ∗∗ A data , double ∗∗ B data , double ∗∗ C data ,
30 i n t lda , i n t numBatches )
31 {
32 const i n t BS = 16 ;
33 i n t NB = ( lda+BS−1)/BS ;
34 dim3 dimBlock (BS ,BS) ;
35 dim3 dimGrid (NB,NB, numBatches ) ;
36 d i s t an c e k e rn e l<double ,BS><<<dimGrid , dimBlock>>>
37 ( ( double ∗∗)A data , ( double ∗∗) B data , ( double ∗∗)C data , lda ) ;
38 }

Listing 1.6. CUDA version of batched pairwise distance calculation

Software Dependencies. Below are the modules, compilers, and run com-
mands used.
1 CUDA/BLAS ON SUMMIT, MODULES:
2 gcc / 5 . 4 . 0 cuda /9 . 1 . 8 5
3 CUDA/BLAS TITAN MODULES:
4 gcc / 6 . 3 . 0 cuda too l k i t /9 . 1 . 8 5 3 .10 −1.0502. d f1cc54 . 3 . 1
5

6 Compiler c a l l s
7 CPP = g++
8 CPPFLAGS = −Wall −O3
9 NVCC = nvcc

10 NVCCFLAGS = −arch=sm 35 −Dre s t r i c t= r e s t r i c t −DNO CUDA MAIN −O3
11

12 OPENACC, GPU VERSION:
13 COMPILER = pgc++
14 COMP FLAGS = −acc −ta=nv id ia : cc35 −Minfo=ac c e l −mp
15 #rep l a c e with Summit ve r s i on nv id ia : cc70
16

17 SUMMIT EXECUTION:
18 j s run −−r s p e r h o s t ${NPPNODE} −−nrs ${NP} −ELD LIBRARY PATH −c7 −g1

. / matrix mul batched > benchmark .SUMMIT. job
19 j s run −−r s p e r h o s t ${NPPNODE} −−nrs ${NP} −ELD LIBRARY PATH −c7 −g1

. / d i r e c tD i s t 3 > ACC benchmark .SUMMIT. job
20 }
21

22 Compiler output , Titan :
23 make pa i rw i s e batched . o
24 make [ 1 ] : Enter ing d i r e c t o r y
25 pgc++ −acc −ta=nv id ia : cc35 −Minfo=ac c e l −mp −c pa i rw i s e batched . cpp −o

pa i rw i s e batched . o
26 pa i rw i s e batched ( double ∗ , double ∗ , double ∗ , int , int , i n t ) :
27 4 , Generating pre sent (D [ : ] ,Y [ : ] ,X [ : ] )
28 9 , Loop i s p a r a l l e l i z a b l e
29 CUDA shared memory used f o r y
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30 15 , Loop i s p a r a l l e l i z a b l e
31 17 , Loop i s p a r a l l e l i z a b l e
32 Acce l e ra to r ke rne l generated
33 Generating Tesla code
34 9 , #pragma acc loop gang /∗ blockIdx . z ∗/
35 15 , #pragma acc loop gang , vec tor (128) /∗ blockIdx . x

threadIdx . x ∗/
36 17 , #pragma acc loop gang /∗ blockIdx . y ∗/
37 19 , #pragma acc loop seq
38 26 , #pragma acc loop seq
39 19 , Complex loop c a r r i e d dependence o f X−>,y ,Y−> prevents

p a r a l l e l i z a t i o n
40 make [ 1 ] : Leaving d i r e c t o r y ‘/ auto f s /nccs−svm1 home1/ andreas / source s /

D2Calc/AT/ACC’
41 pgc++ −acc −ta=nv id ia : cc35 −Minfo=ac c e l −mp −o d i r e c tD i s t 3 d i r e c tD i s t 3

. cpp pa i rw i s e batched . o
42 d i r e c tD i s t 3 . cpp :
43 main :
44 43 , Generating copy (D[ : batch count ∗40000 ] )
45 61 , Generating copyin (T [ : batch count ∗600 ] ,U [ : batch count ∗600 ] )
46 73 , Generating copyin (U [ : batch count ∗600 ] ,T [ : batch count ∗600 ] )
47

48 Compiler output , Summit : I d e n t i c a l
49

50 OPENACC, CPU VERSION:
51 COMPILER = pgc++
52 COMP FLAGS = −acc −ta=mul t i co re −Minfo=ac c e l −mp

Listing 1.7. Compile and run information
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Abstract. This paper presents three ideas that focus on improving the
execution of high-level parallel code in GPUs. The first addresses pro-
grams that include multiple parallel blocks within a single region of GPU
code. A proposed compiler transformation can split such regions into
multiple, leading to the launching of multiple kernels, one for each par-
allel region. Advantages include the opportunity to tailor grid geometry
of each kernel to the parallel region that it executes and the elimination
of the overheads imposed by a code-generation scheme meant to handle
multiple nested parallel regions. Second, is a code transformation that
sets up a pipeline of kernel execution and asynchronous data transfer.
This transformation enables the overlap of communication and computa-
tion. Intricate technical details that are required for this transformation
are described. The third idea is that the selection of a grid geometry for
the execution of a parallel region must balance the GPU occupancy with
the potential saturation of the memory throughput in the GPU. Adding
this additional parameter to the geometry selection heuristic can often
yield better performance at lower occupancy levels.

1 Introduction

Open Multi-Processing (OpenMP) is a widely used parallel programming model
that enables offloading of computation to accelerator devices such as GPUs [3].
A natural way for an experienced OpenMP CPU programmer to write OpenMP
GPU code is to offload to an accelerator sections of code that contain various
parallelism-specifying constructs, that are often adjacent. However, this pro-
gramming style generally leads to unnecessary overheads that are not apparent
to programmers unfamiliar with GPU programming and mapping of high-level
OpenMP code to GPUs. Experienced GPU Programmers will instead create a
common device data environment and operate on data by invoking separate ker-
nels for each required parallel operation. This technique results in more efficient
code and often reduces the overall amount of host-device data transfer, as our
work will demonstrate. The main goal of this investigation is to deliver better
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performance for the code written by experienced OpenMP programmers that
are not necessarily GPU programming experts.

When an OpenMP target region contains a combination of parallel and
serial work to be executed in a GPU, the compiler must map these computa-
tions to the GPU’s native Single Instruction, Multiple Thread (SIMT) program-
ming model. One approach is through a technique called warp1 specialization [2].
When specializing warps, the compiler designates one warp as the master warp
and all others as a pool of worker warps. In the Clang-YKT compiler OpenMP
4 implementation, the master warp is responsible both for executing serial code
and for organization and synchronization of parallel sections [6,7]. The synchro-
nization between parallel and serial work is implemented through named warp
barriers and an emulated stack in GPU global memory for the worker warps to
access the master threads state.

Figure 1 is an example of OpenMP 4 code. The pragma in line 1 establishes
that the following region of code will run on the default target accelerator—
assumed to be a GPU in this work, and ensures that the data specified in map
clauses is transferred to and from the GPU, respective to the (to, from) spec-
ifiers. The pragmas in lines 2 and 6 establish the associated work as parallel
within the enclosing target region. There is an implicit synchronization point at
the end of each parallel region.

1 #pragma omp target teams map(to: B[:S]) map(tofrom: A[:S], C[:S]) {

2 #pragma omp distribute parallel for

3 for () {

4 ... // Parallel work involving A and B
5 }

6 #pragma omp distribute parallel for

7 for () {

8 ... //Parallel work involving B and C
9 }

10 }

Fig. 1. Example OpenMP GPU code with multiple parallel loops in a target region.

Warp specialization introduces substantial overhead because the master and
worker warps must synchronize execution when parallel region execution starts
and finishes. Even when there is no sequential code between parallel regions,
synchronization is required between the completion of one parallel region and
the start of another.

The Clang-YKT compiler performs a transformation called elision that
removes the warp specialization code, the master-thread stack emulation and
the synchronization code, thus eliminating unnecessary overhead [7]. To be can-
didate for elision, a target region must contain only one parallel loop and this loop
1 CUDA terminology is used in this paper.
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must not contain calls to the OpenMP runtime. A research question posed by
our work is: what would be the performance effect of transforming an OpenMP
4 target region that contains multiple parallel regions, with or without serial
code, into multiple target regions, each with a single parallel region. The goal is
to enable the compiler to perform the elision transformation. Special care must
be taken to avoid increasing the amount of data transfer between the host and
device memory.

This paper explores two additional transformation opportunities, both appli-
cable to any OpenMP code where parallel loops are isolated into their own target
regions. The first is the overlapping of data transfer and GPU kernel execution
for multiple adjacent target regions. The target regions are wrapped in a com-
mon device data environment and through memory-use analysis, a compiler can
determine which data is and is not needed until or after a certain point. The sec-
ond opportunity is to overlap computation with data-transfer by pipelining the
loop within a single-loop parallel region in a fashion similar to iterative modulo
scheduling [16]. The loop iteration space can be divided into multiple tiles, each
resulting in a separate kernel launch, execution of which happens asynchronously
with the data transfer for the next tile.

Finally, this target region format allows for better selection of grid geometry
tailored to the contained parallel loop. Grid geometry is the number of Cooper-
ative Thread Arrays (CTAs), also known as thread blocks, and the number of
threads per CTA that the GPU uses. Grid geometry strongly affects the overall
occupancy of the GPU. Tailoring this selection to a specific parallel region can
have a significant effect on the performance of that region. However, a single
grid geometry must be selected for an entire target region. Therefore, multiple
parallel regions in the same target region cannot have individually specialized
geometry for each parallel region.

In the remainder of this paper, Sect. 2 describes how kernel splitting enables
the elision of runtime calls and barrier synchronization. Section 3 presents a sam-
ple code to demonstrate how kernel splitting is performed. Section 4 describes
the implementation of asynchronous memory transfers and presents a study of
their performance implications. Section 5 explains how these transfers can be
used to establish a pipeline between computation and data transfers. Section 6
shows that custom grid geometry must take into consideration the potential sat-
uration of memory bandwidth in the GPU. Section 7 presents the performance
study that can be used to predict the potential benefits of the proposed trans-
formations. Section 8 discusses other approaches to use asynchronous transfers
and to adjust GPU occupancy to improve performance.

2 Background on Warp Specialization and Elision

GPUs’ reliance on a SIMT execution model has a multitude of implications on
how compilers generate GPU code from OpenMP. Where possible, parallel con-
structs must be mapped to a data-parallel structure in order to achieve good
performance and efficiently utilize the hardware. However, full breadth of the
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OpenMP specification must be supported by a compliant compiler implemen-
tation. Thus, the GPU code generator must be able to handle a multitude of
constructs that contain both serial and parallel code that may be nested or
adjacent within a target region.

The compiler used in this work employs a cooperative threading model that
utilizes the technique of warp specialization to generate data-parallel GPU code
from parallel OpenMP regions [7]. Parallel work is performed by a collection of
worker warps and coordinated by a single master warp (selected to be the last
warp in a CTA). The coordination between warps is done through the use of a
CTA-level synchronization primitive that allows for named barriers that apply
to a compiler-specified number of warps to participate in the barrier (bar.sync
$0 $1). When the master encounters a parallel region, it activates the required
number of worker warps and suspends its own execution.

While necessary to support the full breadth of possible OpenMP constructs
that can occur in target regions, as well as serial code sections and sibling parallel
regions, warp specialization code-generation scheme incurs a significant amount
of runtime overhead that can be avoided in select special cases. Not all kernels
require the full machinery of the cooperative code-generation scheme. For target
regions that are comprised solely of a single parallel loop with no nested OpenMP
constructs, and no serial code, the compiler optimizes the generated code by
eliding the warp specialization and runtime-managed sections of the code. This
optimization results in dramatically simpler generated data-parallel code that
eliminates the mentioned overheads.

Elision of the cooperative code-generation scheme and its incurred synchro-
nization points is enabled by target region splitting. Jacob et al. describe how
this elision is handled automatically by the Clang-YKT compiler, and present
a performance study of elision [7]. Code that is transformed with the splitting
method shown in Fig. 2 creates separate target regions that are likely to satisfy
all of the above conditions for elision.

3 Fission of Multiple-Parallel-Region Target Regions

When a target region is separated into two target regions, as shown in Fig. 2, each
target region is then executed as a separate kernel on the GPU and therefore data
transferred for the first region is no longer present for the second region to utilize
as is the case when both exist in a single-target region. Figure 2 shows how the
single-target region spanning lines 1-10 in Fig. 1 can be split into two separate
target regions, one spanning lines 2-5 and the other lines 6-9. The parallel region
directives (lines 2 and 6 of Fig. 1) are combined with the target directives (lines
2 and 6 of Fig. 2), transforming each parallel region into a stand-alone target
construct. To avoid extra data transfers, the newly formed target regions are
enclosed in a common device data environment containing all the implicit and
explicit mappings of data from the original single-target region. Only the data
items specified in the data environment persist in GPU global memory across
multiple target regions. The motivation for this transformation to be performed
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by a compiler is further reinforced by the design of the kernels OpenACC
construct [1]. kernels construct definition states: “The compiler will split the
code in the kernels region into a sequence of accelerator kernels”, as deemed
appropriate by the implementation. This design makes a strong argument for
implementing the proposed transformation at the OpenMP level to further the
efforts towards performance portability.

1 #pragma omp target data map(to: B[:S]) map(tofrom: A[:S], C[:S]) {

2 #pragma omp target teams distribute parallel for

3 for () {

4 ... // Parallel work involving A and B
5 }

6 #pragma omp target teams distribute parallel for

7 for () {

8 ... //Parallel work involving B and C
9 }

10 }

Fig. 2. Example OpenMP code following kernel splitting.

Furthermore, with a common device data environment, it is possible to over-
lap memory transfers with computation by analyzing when each data element
is needed or produced. In our hand-implemented prototype for the transforma-
tion the OpenMP target update directive is used for these transfers, with the
additional nowait clause added to allow for asynchronous memory transfers.

Safety measures must be taken when performing target fission, mainly to
handle the presence of serial sections within the original single-target region.
One concern to address is the possibility of variables being declared for the
scope of the original single-target region. These variables reside in GPU memory
and exist for the duration of the target region that is their scope, as a result the
compiler must ensure that splitting does not interfere with any usages of them.
One approach, if possible, is to move the variable declaration onto the CPU
and map it to the common device data environment with an alloc map clause.
Additional care must be taken to then mark such variables as teams private, to
replicate the semantics of original code. Another approach is to limit the fission
transformation such that all code from the declaration of the variable to its final
usage resides within a single target region, though this can prevent elision.

A mitigating factor for this concern is that any such interfering declaration
within the original single-target region scope must reside in a serial region at the
target region scope. Variables declared inside parallel regions are assumed to be
thread-local and expire when the parallel code block goes out of scope.

Another safety concern is that of serial code operating on data objects that
are modified by previous parallel regions or are utilized by later parallel regions.
The compiler must ensure that an updated variable is used by both the serial
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code and any later parallel regions on the GPU as would be the case with a
single-target region wherein all code operates on the same GPU memory. One
solution is to place serial code segments on the GPU in their own target regions.
A drawback is paying the cost of additional kernel launch to execute serial code.
An alternative approach is to execute the serial code on the CPU, with compiler
analysis ensuring that any data object used in parallel regions are transferred to
and from the device as needed for correctness. These transfers can become costly
if they occur frequently, but in some cases run time can be improved significantly
by executing serial code on the CPU.

Therefore the kernel splitting method should be applied with caution when
the original single-target region has serial code or target region scoped local
variables. Such scenarios did not appear in any of the benchmarks tested and
likely do not represent a large portion of OpenMP code that can benefit from
splitting.

4 Overlapping Data Transfer and Split Kernel Execution

Overlapping data transfer with computation can be an effective strategy to
increase performance. Opportunities to benefit from asynchronous data trans-
fers may arise from the splitting of a multi-parallel-region target into multiple
single-parallel region targets. To enable the pipelining of data transfers and com-
putation, the compiler must determine the first point of use of data and also when
the computation of results is completed and the data is no longer used in the
target. After such analysis, a schedule can be created for the pipelining with the
overlapping effectively hiding the memory transfer time.

Figures 3 and 4 illustrate how this pipelining, enabled by asynchronous mem-
ory transfers, can reduce the overall execution time. In this example, if the run-
time of the two kernels are long enough, this transformation results in the costs
of the asynchronous memory transfers being entirely hidden.

Kernel
Initialization

Allocate
GPU

Memory

Transfer 1st
Kernel Data

Transfer 2nd
Kernel Data

Execute
1st Kernel

Execute
2nd Kernel

Return
1st Kernel
Results

Return
2nd Kernel
Results

Fig. 3. Two kernel GPU code structure before asynchronous memory transfer.

Execution of asynchronous memory transfers and their synchronization with
kernel execution can be specified manually by a programmer, using two OpenMP
4.5 clauses: depend and nowait. An OpenMP command with a depend clause
with an out attribute must finish before any command with a depend clause
with an in attribute with the same value. The nowait clause states that the
specified OpenMP task can be run asynchronously with other tasks, thus allow-
ing the update memory transfer to occur while a target region is executing. The
combination of these clauses allows for the construction of GPU code that has
asynchronous memory transfers to and from the GPU while also maintaining
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correct computation through clearly established task dependence relations by
which these asynchronous transfers must finish.

Figure 5 is an example of split target region code with asynchronous memory
transfers within a common device data environment. In this example the data
element C is not needed until the target region at line 9, thus its mapping in the
target data region in line 2 is only to return to the host after all work finishes.
The transfer to the GPU for C instead begins on line 3 where it is declared
asynchronous by the nowait clause. With the pair of depend clauses in lines 3
and 9 ensuring the transfer must be completed before any computation on the
target region in line 9 can begin. Furthermore the array A can be transferred
back to the host memory asynchronously as it is not used in the second target
region. Thus the memory transfer of A back to the host is moved to line 8, after
the first target region computation and it is declared to be asynchronous.

Kernel
Initialization

Allocate
GPU

Memory

Transfer 1st
Kernel Data

Execute
1st Kernel

Transfer 2nd
Kernel Data

Execute
2nd Kernel

Return
1st Kernel
Results

Return
2nd Kernel
Results

Fig. 4. Two kernel GPU code structure with asynchronous memory transfer.

As per vendor specification, asynchronous memory transfers require that the
transferred data be page-locked i.e. pinned on the host. A pinned page cannot
be swapped out to disk and enables DMA transfers via the memory controller,
bypassing the CPU. To enable asynchronous transfers, the pinning must be done
through the CUDA API to allocate/free pinned memory or to pin pre-allocated
heap memory. The invocation of these API functions and the actual pinning
of the memory introduce additional overheads but also leads to faster memory
transfers. Memory capacity constraints of the target device are not affected by
the transformed kernel. The amount of data required to be present on the device
at a given time is reduced in the best case, and is left unaffected in the worst.

We use the cudaHostRegister API to pin user-allocated memory in our
experiments. The main trade-off to consider when implementing kernel asyn-
chronous data transfers is to offset the overhead of pinning memory through
faster transfers enabled by pinned memory and overlapping transfer with com-
putation. Pinning memory also has the effect of reducing the overall memory
available on the host for other processes, which can possibly stifle host compu-
tation. An important factor to consider when pinning memory is the operating
system’s default page size. We have found that pinning the same amount of
memory was up to 10× faster on a POWER8 host with 64 KB pages than on a
x86 Haswell host with 4 KB pages.

A synthetic experiment to illustrate the balancing of the costs and benefits
of asynchronous memory transfer was designed with three simple GPU kernels
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1 int a;

2 #pragma omp targe data map(to: A[:S], B[:S]) map(from: C[:S]) {

3 #pragma omp target update to(C[:S]) depend(out: a) nowait

4 #pragma omp target teams distribute parallel for

5 for () {

6 ... // Parallel work involving A and B
7 }

8 #pragma omp target update from(A[:S]) nowait

9 #pragma omp target teams distribute parallel for depend(in: a)

10 for () {

11 ... //Parallel work involving B and C
12 }

13 }

Fig. 5. The split OpenMP GPU code with asynchronous memory transfers.

(k1, k2, k3) that execute within a shared data environment; k2 modifies one
data object from the CPU whose results must be returned, the object is not
used by the first or third kernel. Thus, asynchronous transfer is possible both
to transfer this data object to the GPU and back to the CPU. Furthermore, k1
and k3 both have enough computation to fully hide the asynchronous memory
transfers. The experiment’s results with a varying size of the object modified
by k2 are shown in Fig. 6. The baseline version uses unpinned memory and
synchronous transfers. Four versions using pinned memory were constructed for
comparison: (1) sync transfers; (2) async to/sync from; (3) sync to/async from;
(4) async to/async from. The run time measured includes the time needed to
allocate and free memory. The graph outlines the speedup ratio in total execution
time for each of the four pinned memory versions compared to the baseline
version. The horizontal axis shows both the size of the object transferred and
the baseline run time measured in seconds. The results show that as the size of
the transferred object increases, the additional cost of pinning memory becomes
less relevant. For larger objects, even though simply pinning the memory pages
yields performance gains, asynchronous memory transfers produce additional
benefits.

5 Pipelining Data Transfer and Parallel Loop Execution

A more ambitious code transformation that utilizes the faster transfer to/from
pinned memory and asynchronous communication and computation consists of
breaking a singular parallel loop into multiple loops. Known as tiling in com-
piler literature, this transformation produces multiple sub-loops (tiles) which
are then placed in separate target regions. After this transformation the data
transfer required for the original loop may be split into several asynchronous
data transfers for data elements required by the respective tiles. Ideally, each
tile should use different, contiguous, large chunks of data. The goal is to overlap
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Fig. 6. Speedup of the four versions pinning memory over the baseline version.

the transfer with computation. In the evaluation prototype OpenMP depend
clauses are used to ensure that each data transfer is finished before the corre-
sponding tile executes. Transmission of tile results back to the host can also be
added to this pipeline. Pipelining can greatly improve the run-time performance
of programs with large data transfers, when the execution time of the split loop
is long enough to compensate for the overhead of setting up data transfers and
pinning memory.

Figure 7 illustrates how the execution of a parallel region can be pipelined
to overlap memory transfers with computation. The single parallel-loop GPU
kernel is split into four tiles which allows the memory transfers required for
the latter three tiles to be hidden underneath the previous tiles’ execution with
asynchronous transfers. Furthermore if the execution of the tiles are long enough
to cover the runtime of the memory transfers then the total cost of the transfers
may be as low as 1/4 of the original cost.

Kernel
Initialization

Allocate
GPU

Memory

Transfer
Tile 1 data

Execute
Tile 1

Transfer
Tile 2 data

Execute
Tile 2

Transfer
Tile 3 data

Execute
Tile 3

Transfer
Tile 4 data

Execute
Tile 4

Return
Kernel
Results

Fig. 7. A GPU parallel regions structure after being broken up into 4 tiles.

The Polybench benchmark ATAX is a good candidate to benefit from this
transformation. The original benchmark’s first parallel region, shown in Fig. 8,
has the majority of its runtime dependent on the memory transfer of the data
object A to the GPU in line 1. Figure 9 shows the code after the loop is divided
into four tiles and the transfer of A split into four OpenMP target update
calls. The first call in line 2 is not asynchronous as it must be done before
the first tile execution starts. The remaining three transfers in line 6 are asyn-
chronous and start before the preceding tile execution to overlap communication
and computation. The depend clauses in the asynchronous transfers are needed
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to synchronize the end of the data transmission with the execution of the cor-
responding tile. Figure 9 shows a proof-of-concept manually implemented code
change. A sufficiently-capable compiler should be able to apply a similar code
transformation when equipped with memory access-pattern analysis to be able
to separate tile data chunks, among other code safety analyses.

1 #pragma omp target teams distribute parallel for map(to: A[:NX*NY], x

[ :NY]) map(from: tmp[:NX]) {

2 for(int i = 0; i < NX; i++) {

3 tmp[i] = 0;

4 for(int j = 0; j < NY; j++)

5 tmp[i] = tmp[i] + A[i*NY+j] * x[j];

6 }

7 }

Fig. 8. First parallel region in ATAX before pipelining.

1 int S[4];

2 #pragma omp target update to(A[0:(NX/4)*NY])

3 for(int s = 0; s < 4; s++)

4 {

5 if (s < 3)

6 #pragma omp target update to(A[((s+1)*NX/4)*NY:((s+2)*NX/4)*NY])

depend(out: S[s+1]) nowait

7 #pragma omp target teams distribute parallel for depend(in: S[s])

8 for(int i = (s*NX/4); i < ((s+1)*NX/4); i++) {

9 tmp[i] = 0;

10 for(int j = 0; j < NY; j++)

11 tmp[i] = tmp[i] + A[i*NY+j] * x[j];

12 }

13 }

Fig. 9. ATAX region after being broken up into four tiles for pipelining.

6 Custom Grid Geometry

A grid geometry defines the number of CTAs and the number of threads per CTA
assigned to execute a GPU kernel. A typical GPU has a number of Streaming
Multiprocessor (SM) cores that can each issue instructions for two groups of 32
threads (warps) in each cycle. An SM can maintain the state of thousands of
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threads in-flight, and thus can context switch execution from a warp waiting on
data accesses to other warps in order to hide memory-access latency.

Each SM has a fixed-size register file, giving each CTA a register budget.
At any given time the number of CTAs that can be scheduled is limited by the
size of the register file. Similarly, each SM has a fixed amount of shared memory
which is shared by all CTAs running on the SM. Thus, the number of CTAs
simultaneously executing on an SM is also constrained by the individual CTA’s
shared memory use. Additional CTAs that cannot be scheduled due to these
and other hardware resource limitations are queued for later execution. GPU
occupancy is the percentage of available GPU threads that are used by a given
kernel.

Some parallel regions with relatively low parallelism perform better when not
using all available threads. A compiler can analyze parallel loops in a target
region to select the most performant grid geometry. However, a single grid geom-
etry has to be selected for an entire target region leading to a compromise that
performs relatively well for all the loop nests in the region. Grid geometry spe-
cialized to each individual parallel loop, made possible by target region fission,
can lead to significant performance improvements.

Lloyd et al. propose a compiler heuristic, based on static analysis and runtime
loop tripcount data, for the selection of a grid geometry calculated by the amount
of parallelism in each loop nest [13]. The heuristic takes into account the usage
of registers and shared memory for each thread and CTA as it seeks to maximize
the GPU occupancy. However, maximizing occupancy can often lead to far worse
performance because it leads to saturation of other hardware resource, such as
the memory subsystem in heavily memory-bound codes. An example of this effect
occurs in the SYRK benchmark shown in Fig. 10. At a tripcount of 4000 the best
performance is achieved around 25% occupancy which is close to the Clang-YKT
default of roughly 28.6% (128 CTAs on this GPU). For this case the heuristic
proposed by Lloyd makes a poor choice of geometry because in seeking to max-
imize occupancy it does not consider memory-bandwidth saturation. Maximum
occupancy produces a Unified Cache throughput of 19.742 GB/s compared to
a throughput of 183.001 GB/s at the optimal occupancy of 25%; moreover, the
observed Global Load Throughput of 751.8 GB/s at optimal occupancy versus
81.5 GB/s at maximal, and the respective Global Store Throughput is 91.5 and
9.9 GB/s. These metrics support the intuition that memory bus saturation can
severely limit performance at high occupancy.

This exception to the grid geometry formula led to the formulation of an
improved grid-geometry selection strategy for the cases where the optimal occu-
pancy is lower than the maximum. These cases fall into the broad category of
parallel regions with a high amount of parallelism exposed by the program (high
parallel-loop tripcounts) and result from memory-bandwidth saturation due to a
large number of memory requests. The results of this performance study allows
for the classification of these cases of massively parallel memory-bound kernels
into two subcategories:
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Fig. 10. Runtime results by occupancy of SYRK at tripcount 4000.

Uncoalesced Kernels are highly memory-bound due to uncoalesced mem-
ory accesses in large tripcount parallel loops. Uncoalesced memory accesses being
loads and stores to global memory where data locations accessed by adjacent
threads in a warp are not grouped together closely enough, hence the warp
must perform several memory accesses to satisfy all the threads in a warp. This
subcategory includes the benchmarks SYRK with tripcount of 1000 or higher
and COVAR with tripcounts of 12000 or higher. SYRK falls into this subcategory
due to the two high tripcount outer loops of its longest running parallel region
being collapsed for high parallelism and an innermost loop containing an unco-
alesced memory access which is performed sequentially by each thread. COVAR
has a similar structure except without a collapse of the two outer loops and two
uncoalesced memory accesses instead of one inside the inner loop. A close exam-
ination of the execution of the SYRK benchmark in the Nvidia Visual Profiler,
reveals that the best performance is observed when the ratio between attempted
memory transaction count and the memory throughput is the lowest—when the
most data is transferred with the fewest requests. The grid geometry affects this
ratio because more warps generate more requests when memory accesses are not
coalesced.

The SYRK performance study shown in Fig. 10 indicates that there is an
opportunity to improve the grid-geometry selection by taking into consider-
ation memory-bandwidth saturation. In a supplementary performance study
we altered the ratio of requests/memory throughput in SYRK by adding and
removing dummy uncoalesced memory accesses. This study yielded a pattern
of optimal occupancy halving roughly when the number of uncoalesced memory
accesses double. This insight can be used to predict the optimal occupancy for
a parallel region. To analyze this pattern further a synthetic experiment was
designed in which a more generalized program similar to SYRK was created con-
sisting of a simple summation of the rows of k different N×N matrices to produce
a single matrix. The summation statement is performed within a triple-nested
loop with each tripcount being 5000 and the summation involves exclusively
uncoalesced memory accesses (row-major matrix accesses). The experiment was
then performed with different numbers of uncoalesced memory accesses to find
the optimal occupancy for each. The results of the experiment in Table 1 show
the similar optimal occupancy pattern that was found in the study of SYRK, indi-
cating a general pattern. This study and experiment indicates that the heuristic
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for grid-geometry selection introduced by Lloyd et al. should be augmented to
account for memory-request saturation [13].

Table 1. Optimal occupancy for a massively parallel memory-bound kernel at varying
numbers of uncoalesced memory accesses with tripcount 5000.

Number of
accesses

1 2 3 4 5 6 7 8 9 10

Optimal
occupancy

25% 12.5% 6.3% 6.3% 6.3% 6.3% 6.3% 4.0% 4.0% 3.1%

Coalesced Kernels have high memory utilization because of parallel loops
with very large tripcounts and several memory accesses. Coalesced memory
accesses are the opposite of uncoalesced and require only one access to bring
over all data required by a warp of threads. This category includes the bench-
marks FDTD-2D and LUD at high tripcounts. Lower occupancy results in better
performance but the effect is less significant as shown in the results for the
experiment study of FDTD-2D in Fig. 11. This category should also be taken into
consideration in an augmented version of the grid-geometry-selection heuristic.
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Fig. 11. Runtime results by occupancy of FDTD-2D at tripcount 15000.

7 Estimating Potential Benefits of Transformations

The goal of this experimental evaluation is to estimate the potential performance
benefits of the proposed transformations to inform a design-team’s decision to
include them in a compiler. The results in this section are based on manually-
implemented modifications to programs in the Polybench and Rodinia bench-
mark suites [4,5]. Both suites have an initial OpenMP 4.0 implementation. Before
performing the experiments, we modified some programs in both suites to fully
utilize the GPU parallelism hierarchy with teams and distribute constructs.
This experimental study uses benchmarks that contain parallel regions where
the three transformations described in the paper can be applied. SPEC ACCEL
benchmarks, while available to us for experimentation, contain few to none such
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cases. Therefore, they do not make a good case for the transformation described
in this work due to their already-extensive usage of target data data-sharing
environments.

All performance results reported are the average of ten runs of the program
under the same conditions. Measurement variances were monitored and stayed
below 1% of the average and are not reported. Two exceptions are in the exe-
cution of SYRK and COVAR that saw up to 5% variance from the average because
of the effects of memory saturation. Correctness of every transformation was
verified using the benchmarks’ output verification mechanisms.

This experimental study uses an x86 host equipped with an Intel i7-4770
processor, 32 GiB of RAM and an NVIDIA Titan X Pascal GPU with 28 SMs
and 12 GiB of on-board memory that is attached via the PCIe bus. The clock
rate is locked at 80% of the nominal clock rate for the GPU to prevent variance
in performance due to frequency scaling2. Additional experiments are performed
using an IBM POWER8 (8335-GTB) host with an Nvidia P100 GPU with 60
SMs that is attached via NVLINK.

7.1 Combining Kernel Splitting with Elision Improves Performance

The effect of the transformation on performance is studied on 2MM, 3MM, FDTD-2D,
SYRK, COVAR, ATAX, MVT and BICG applications from the Polybench benchmark
suite and SRAD and LUD from the Rodinia benchmark suite. All benchmarks
chosen can be logically written with a singular target region by a naive GPU
OpenMP programmer. The experimental evaluation of the kernel-splitting tech-
nique includes seven different versions of each benchmark outlined in Table 2.
Custom grid geometry was calculated using the heuristic by Lloyd et al. with
the additional pattern for massively parallel memory-bound uncoalesced kernels
described in Sect. 6 utilized for relevant cases [13].

Table 2. The experimental evaluation versions for the splitting method.

Version Kernel splitting Elision Custom grid geometry

Baseline

K �
KE � �
KEG � � �

Figure 12 displays the speedup over the baseline for each benchmark and each
version shown in Table 2. Asynchronous transfer is not applicable (N/A) to the
SRAD, FDTD-2D and LUD benchmarks as they all lack memory transfers that could
be performed asynchronously. In the baseline, serial code is executed between
2 Dynamic frequency scaling makes achieving consitent, reproducible results very chal-

lenging due to high variance and increased effects of device warm-up.
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any two parallel regions and the state of the master thread is propagated to all
worker threads. Kernel splitting removes the serial code and workers’ update.
LUD has few worker threads because of its low level of parallelism, thus there is
little benefit to the elimination of worker updating and the cost of launching a
second kernel makes LUD slower after splitting (version K). LUD’s target region
is executed within a loop, which amplifies the cost of the extra kernel launch. In
contrast, FDTD-2D and SRAD have far higher levels of parallelism which leads to
more expensive workers’ state update. Thus they benefit the most from kernel
splitting.

Benchmark Base Time K KE KEG

2MM 36.6s 1.00 0.85 1.22
3MM 54.8s 1.00 0.85 1.22
FDTD-2D 11.8s 1.03 1.23 1.37
SYRK 40.9s 1.00 0.92 1.04
COVAR 54.9s 1.00 1.04 1.04
ATAX 0.16s 1.01 1.03 1.03
MVT 0.16s 1.01 1.00 1.02
BICG 0.16s 1.00 1.01 1.01
SRAD 8.90s 1.04 1.45 1.48
LUD 38.1s 0.91 1.57 1.57

Fig. 12. The speedup ratio over the baseline for each experiment evaluation of the
applicable Polybench and Rodinia benchmarks run at a tripcount set to 9600. SRAD

executes on a 512by512 image with the encompassing iteration loop performed 9600
times. LUD operates on a 9600by9600 matrix.

Benefits from adding elision to splitting (version KE) vary, with 2MM, 3MM
and SYRK performing poorly because the runtime’s default strategy selects an
inefficient grid geometry. The removal of the warp specialization and sequential
code overhead makes the memory bus saturation issue more relevant leading to
the lower performance. In SYRK the main issue is that the default occupancy is
too high. In 2MM and 3MM the number of threads is too low to exploit all available
parallelism. FDTD-2D, SRAD, and LUD benefit greatly from elision because they
contain a large number of kernel calls, accumulating the reduction in overhead
of the elided kernels over time. Moreover, the amount of parallelism and the
compute-bound nature of the kernels in these benchmarks suit the compiler’s
default grid geometry selection strategy.

Asynchronous memory transfer (version KA) by itself produces either neg-
ligible benefits or performance degradation. The degradation for ATAX, MVT and
BICG results from the small size of data objects making the cost of pinning the
data for transfer far greater then any hidden transfer cost and the short length
of the benchmarks emphasizes this.

In general, significant performance improvements are achieved by the kernel-
splitting technique combined with elision for the given benchmarks. Furthermore,
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any poor performance can be mitigated by additional procedures such as tuning
grid geometry that are only available once the splitting technique is applied.

7.2 Elision Amplifies Benefits of Custom Grid Geometry

SYRK and COVAR are the benchmarks most affected by the grid-geometry selec-
tion. Both are highly memory-bound because they contain frequently executed
uncoalesced memory accesses (SYRK has one, and COVAR has two) and as a result
they both have lower than maximum optimal occupancies that produce large
performance improvements. COVAR only has a lower than maximum optimal
occupancy at higher tripcounts as it lacks the high parallelism of SYRK. These
benchmarks’ optimal occupancies decrease as the number of memory accesses rise
with higher tripcounts, the optimal percentages following the optimal-occupancy
trend outlined in Table 1.

Further experimental evaluation of SYRK and COVAR at multiple tripcounts
for both a base unsplit version and a KEG version illustrates the effects of vary-
ing the grid geometry. The optimal occupancy, determined by the grid geometry,
changes with the amount of parallelism for both benchmarks. For SYRK the opti-
mal occupancy is 25% at lower tripcounts and 18.75% at higher tripcounts,
while for COVAR the optimal is the default heuristic presented by Lloyd et al.
that has the occupancy slowly grow towards the maximum for lower tripcounts
when parallelism is low, with higher tripcounts having an optimal occupancy of
12.5% [13]. To illustrate this shift of optimal occupancy the experimental results
shown in Fig. 13 present the speedups of the two benchmarks’ KEG version over
the baseline for both of their optimal occupancies. The large improvement for
SYRK at tripcount 3000 matches a similar effect in other programs with collapsed
parallel loops that is caused by a sufficiently high parallelism. This performance
is due to a combination of a GPU code that was simplified by elision and low
impact of memory bus saturation because of still relatively low parallelism.

SYRK(25) SYRK(18.75) COVAR(Heuristic) COVAR(12.5)
0.75

1
1.25
1.5

1.75
2

Benchmark

Sp
ee
du

p
R
at
io

3000 6000 9600 12000 15000 20000

Fig. 13. Speedup over the baseline for the KEG version of the two benchmarks at their
two improved occupancies with varying tripcounts. Heuristic refers to that by Lloyd et
al. [13]

2MM, 3MM and FDTD-2D present slight performance degradation when only
custom grid geometry is applied (version KG) as with all three benchmarks the
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custom grid geometry is set to achieve full occupancy of the GPU SM’s. With
elision this is optimal but without elision additional warps are added on top of the
full occupancy for the master warps in each CTA. As a result the executed kernels
request more warps then can be active on the GPU concurrently, thus additional
scheduling of the warps is performed by the GPU to ensure all warps execute.
This scheduling causes overhead that result in worse performance for the three
benchmarks compared to when only kernel-splitting is applied. In comparison
significant performance improvements for SRAD with version KG come from the
high amount of computation compared to memory accesses in the program which
take advantage of increased GPU occupancy from the heuristic.

The improvements brought by custom grid geometry (version KG) are ampli-
fied when combined with elision (version KEG) because the simplified execution
for elided code better utilizes an optimized number of CTAs in terms of memory
utilization and computation ability. Thus, the version KEG produces the best
performance through this amplification of the benefits of elision and custom grid
geometry.

Finally asynchronous transfers do not interact with grid geometry in any
meaningful way, as such the KEGA results are only presented for completeness.

7.3 Pipelining Improves Performance for High Trip Counts

The pipelining transformation requires that a parallel region be broken into
sub-loops that process separate data chunks of sufficiently large size to justify
the pipeline. Thus only the Polybench benchmarks ATAX, GESUMMV and GEMM are
suitable for pipelining. Memory transfers to/from the GPU are dominant for the
execution time for ATAX and GESUMMV resulting in significant improvements from
pipelining. These improvements increase with the number of iterations as the
additional computation amortizes the cost of pinning memory pages. Pipelining
transfers plays a minor role in GEMM because kernel execution is dominant, instead
the restructuring of computation caused by splitting the kernel in four improves
performance. Each of the four resulting kernels have a quarter of the parallelism
of the original kernel and thus a higher number of loop iterations can be executed
before memory bandwidth saturation requires reduction in occupancy. A similar
effect occurs for ATAX and GESUMMV but due to the dominant memory transfers
the effect on performance is minimal.

For the experimental evaluation of kernel pipelining on the benchmarks ATAX,
GESUMMV and GEMM, the baseline is a KE version of the benchmarks with non-
pinned memory for all data objects. This baseline is compared to a version
that has data transfer pipelined into four tiles with all pipelined data objects
pinned. Both versions utilize the default Clang-YKT grid geometry formula.
The evaluation is run on two machines: the Intel i7-4770 described above and a
POWER8 host with a P100 GPU. The results in Fig. 14 show significant improve-
ments in performance with kernel pipelining for sufficiently large tripcounts. The
POWER8 speedup is far larger because it uses 64 KB pages compared to the 4 KB
pages in the Intel i7. The larger page size greatly reduces the cost of pinning
memory. GEMM sees significant performance improvement because each individual
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Fig. 14. Speedup over the baseline with the kernel pipelining method on applicable
Polybench benchmarks at varying tripcounts. GEMM is missing sizes due to time
constraints.

tile processes a smaller chunk of data, thus allowing for higher utilization of the
device without hitting the memory subsystem saturation performance barrier.
In comparison, the benefits for ATAX and GESUMMV emerge from hiding trans-
fer cost. At lower tripcounts the transformation degrades performance because
there is not enough parallelism in the tiles to utilize as many GPU SMs, and the
overhead of pinning memory and initializing additional kernels is not overcome.

In a second version of the experiment, on the x86 machine, the optimal occu-
pancy at every tripcount for each kernel is applied to remove the influence of
memory saturation. For GESUMMV and GEMM the optimal is 12.5% occupancy for
the baseline and the Clang-YKT default formula for the pipelined version. While
ATAX has an optimal occupancy of 18.75% for the baseline and the default for-
mula for the pipelined version. Figure 15 shows this experiment’s results with
significantly better performance for the baseline that lowers the speedup from
the pipelined version. However the pipelining still shows benefits due to pipelined
memory transfers and later memory saturation at higher tripcounts of the bench-
marks.
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Fig. 15. Speedup over the baseline for the kernel pipelining method on an Intel i7
machine at varying tripcounts with optimal occupancy applied to all kernels.
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8 Related Work

Asynchronous transfers are used for BigKernel, by Mokhtari et al., which
breaks up a kernel into smaller kernels and pipelines memory transfer in a sim-
ilar fashion to our kernel pipelining process [14]. BigKernel is a coding frame-
work wherein a memory transfer that would be too large for the available GPU
memory is partitioned into segments which are then transferred onto the GPU
as needed. The data segments are laid out by BigKernel in host memory by
analyzing the GPU kernel and organizing all data items that are used into a
prefetch buffer in the order of their access by the GPU threads, creating more
coalesced memory accesses in the GPU as memory accessed at the same time
is placed beside each other. As with our pipelining method these transfers are
performed asynchronously and are overlapped with unrelated kernel computa-
tion. However, BigKernel requires a programmer to specify different GPU calls
as opposed to the compiler transformation that we propose. Furthermore, BigK-
ernel focuses on very large data and thus its design requires double the original
number of threads for a kernel, with half the threads utilized for calculating
prefetch addresses. These additional overheads are not present in our method.

A common approach to pipeline GPU execution uses double buffering.
Komoda et al. present a OpenCL library that optimize CPU-GPU commu-
nication by overlapping computation and memory transfers based on simple
program-descriptions written by the programmer [10]. Komoda’s work is limited
to pipelining memory transfers with existing GPU kernels, and requires pro-
grammer specification. Our approach, in contrast, creates multiple kernels out
of a single description of a GPU program (a single target region) to enable
pipelining.

GPU occupancy is the focus of Kayıran et al.’s DYNCTA, a dynamic
solution similar to ours that accounts for memory saturation by reducing occu-
pancy [8]. DYNCTA analyzes each GPU SM’s utilization and memory latency
during execution and adjusts the occupancy within the SM to avoid memory-
bandwidth saturation by keeping occupancy lower than the maximum. Changing
the defined grid geometry for a kernel is impossible, as a result occupancy adjust-
ment is achieved by assigning additional CTAs to a SM that have already been
allocated to the kernel at the start of execution. Once assigned to an SM a CTA
cannot be removed, as a result adjustment is performed by prioritizing or depri-
oritizing CTAs. A prioritized CTA has any available warps executed before a
deprioritized CTA’s warps, as a result with memory intensive programs wherein
all warps stall on memory accesses the deprioritized CTAs will eventually be
utilized after all prioritized warps stall. Performance is improved by having the
occupancy just below the threshold where memory saturation causes negative
effects, ensuring the SM remains utilized while avoiding the punishing effects of
memory saturation. Analysis is recorded in two hardware counters within each
SM, that record how long each SM has been under utilized and how the often
the SM has stalled due to memory access waiting. Sethia et al. describe a sim-
ilar approach with Equalizer, a heuristic that dynamically adjusts the number
of CTAs based on four hardware counters [18]. Lee et al. propose a slightly
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different strategy with “Lazy CTA Scheduling” (LCS) wherein the workload of
an initial prioritized CTA is calculated by a hardware performance counter and
that data is used to calculate an improved number of CTAs for each SM [11]. In
contrast, our grid geometry proposal is based on a simple hybrid analysis with
a low runtime cost and is suitable for simple GPU kernels, which represent the
majority of benchmarks we have tested. The benefits of a simple heuristic app-
roach over heavyweight dynamic mechanisms, as outlined by Lloyd et al. allow
for a practical deployment in a production system, even if it does sacrifice some
optimality [13].

Sethia et al. present the Mascar system, which approaches memory satura-
tion by prioritizing the accesses of a single warp instead of a round robin app-
roach [17]. The single warp starts computation earlier to help hide the latency
of other accesses, with the scheduler additionally prioritizing warps with com-
putation over memory-accessing warps when memory saturation is detected. A
queue for failed L1 cache access attempts is also added to the GPU hardware,
holding the accesses for later execution, it prevents warps from saturating the
cache controller with repeated access requests so that other warps can attempt
their accesses. Mascar requires hardware design and warp scheduling changes. In
contrast, our custom grid geometry based on static analysis is far less intrusive.

Other dynamic approaches include Oh et al.’s APRES, a predictive warp
scheduler that prioritizes the scheduling of groups of warps with likely cache
hits [15]. Kim et al. suggest an additional P-mode for warps waiting on long
memory accesses wherein later instructions that are independent of the long
accesses are pre-executed while any dependent operations are skipped [9]. Lee
et al.’s CAWA reduces the disparity in execution time between warps by pro-
viding the slower running warps with more time to execute and a reserved area
of the L1 cache [12]. All these approaches have additional run time costs when
compared to a static analysis and compile-time selection of custom grid geom-
etry and re-distribution of work across multiple kernels enabled by pipelining.
Furthermore, warp scheduling approaches and custom grid geometries are com-
plimentary and can be combined.

9 Conclusion

This paper puts forward the idea of splitting a singular OpenMP target region of
GPU code with multiple parallel regions into multiple target regions each with
a singular parallel region. The experimental evaluation using Polybench and
Rodinia benchmarks indicates that there can be non-trivial performance gains
from implementing this idea in future compilers targeting OpenMP 4.x. Addi-
tionally the evaluation indicates that combining kernel splitting with synchro-
nization elision and support for asynchronous memory transfers (with OpenMP
4.5) would lead to even more significant performance.

The study of grid geometry indicates that there is scope to improve exist-
ing grid-geometry selection strategy by considering the saturation of the GPU
memory bandwidth due to uncoalesced memory accesses or to data-intensive
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parallel loop nests. This problem was recognized before with both dynamic run-
time solutions and hardware changes proposed. However, the solution proposed
here based on static analysis and compiler action is simpler, effective, and has
lower overhead.

This paper also studies the performance effect of pipelining memory transfers
with kernel execution when there is sufficient data. Both kernel splitting and loop
tiling can be used to enable pipelining. The results indicate that the performance
gains can be significant especially in machines with larger page sizes such as the
POWER architecture.
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A Artifact Description Appendix: OpenMP Target
Offloading: Splitting GPU Kernels, Pipelining
Communication and Computation, and Selecting
Better Grid Geometries

A.1 Abstract

This artifact contains the code for our experimental evaluations of the kernel
splitting and kernel pipelining methods with instructions to run the benchmark
versions to replicate all experimental results from Sect. 7.

A.2 Description

Check-List

– Program: C code, Python3 code
– Compilation: Prototype of Clang-YKT compiler used
– Transformations: Kernel-Splitting, Kernel-Pipelining
– Hardware: Intel i7-4770 with Nvidia Titan X Pascal, IBM POWER8 (8335-

GTB) with Nvidia P100 GPU
– Software: x86: Ubuntu 18.04 LTS, Cuda V9.1.85; POWER: RHEL Server

7.3, Cuda V9.2.88
– Experiment workflow: Install Clang-YKT prototype then run the pro-

vided benchmarks with the given script
– Publicly available?: Yes
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How Software Can Be Obtained. Our prototype of the Clang-YKT compiler
is available on Github, with our benchmark versions used for all experiments
included.

The original Clang-YKT compiler can be found at:
https://github.com/clang-ykt/clang

With the commit hash: 49d8020e03f898ea31212f6c565001e067f67d4f

Hardware Dependencies. An Intel i7-4770 machine with an Nvidia Titan X
Pascal GPU was used for almost all experimentation and for similar results an
equivalent machine must be utilized. This is especially true for the experiments
on occupancy as our optimal occupancies are tied to the Nvidia Titan X Pascal
GPU. An additional IBM POWER8 (8335-GTB) host with an Nvidia P100 GPU
was used with kernel-pipelining for experimenting with different page sizes and
to replicate those results a similar machine must be utilized.

Software Dependencies. A prototype of the Clang-YKT compiler from
Github was utilized for compilation of OpenMP code though any compiler that
supports OpenMP 4 can be used to run the kernel-splitting and kernel-pipelining
benchmark versions.

Datasets. Experiments for each benchmark require only inputting the given
tripcount desired for each, with only SRAD requiring an additional pgm image.

A.3 Installation

Clone the Clang-YKT prototype repository (includes all testing files):
$ git clone https://github.com/uasys/openmp-split
Then install the compiler with the following commands:
$ mkdir -p $build

# 60 stands for GPU compute capability

$ cmake DCMAKE BUILD TYPE=RELEASE DCMAKE INSTALL PREFIX=$CLANGYKT DIR

DLLVM ENABLE BACKTRACES=ON DLLVM ENABLE WERROR=OFF DBUILD SHARED LIBS=OFF

DLLVM ENABLE RTTI=ON DOPENMP ENABLE LIBOMPTARGET=ON DCMAKE C FLAGS=’-

DOPENMP NVPTX COMPUTE CAPABILITY=60’

DCMAKE CXX FLAGS=’DOPENMP NVPTX COMPUTE CAPABILITY=60’

DLIBOMPTARGET NVPTX COMPUTE CAPABILITY=60

DCLANG OPENMP NVPTX DEFAULT ARCH=sm 60

DLIBOMPTARGET NVPTX ENABLE BCLIB=true -G Ninja $LLVM BASE

$ ninja -j4; ninja install

After installation the GPU clock rate must be locked at 80% of the nominal
clock rate of the GPU to prevent any variation in performance due to frequency
scaling when performing the experiments.
To lock the Nvidia Titan X Pascal input:
nvidia-smi -pm 1
nvidia-smi -application-clocks=4513,1240

https://github.com/clang-ykt/clang
https://github.com/uasys/openmp-split
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A.4 Experiment Workflow

Experimentation is performed by executing the runTest.py file in the given
transformations folder with the chosen benchmark’s name and the tripcount to
run it at. Benchmarks for kernel-splitting and those for kernel-pipelining are held
in separate folders.

A.5 Evaluation and Expected Results

The script above will produce a printout once all runs are complete that con-
tains the average run time of each version with the percentage variance and the
speedup ratio relative to the baseline.

A.6 Experiment Customization

Adjusting grid geometry can be done by editing the BLOCKS macro values in the
benchmark files with a postfix including G which indicate versions with custom
grid geometry.

A.7 Notes

None.
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Abstract. In recent years, the HPC landscape has shifted away from
traditional multi-core CPU systems to energy-efficient architectures, such
as many-core CPUs and accelerators like GPUs, to achieve high perfor-
mance. The goal of performance portability is to enable developers to
rapidly produce applications which can run efficiently on a variety of
these architectures, with little to no architecture specific code adoptions
required. We implement a key kernel from a material science applica-
tion using OpenMP 3.0, OpenMP 4.5, OpenACC, and CUDA on Intel
architectures, Xeon and Xeon Phi, and NVIDIA GPUs, P100 and V100.
We will compare the performance of the OpenMP 4.5 implementation
with that of the more architecture-specific implementations, examine the
performance of the OpenMP 4.5 implementation on CPUs after back-
porting, and share our experience optimizing large reduction loops, as
well as discuss the latest compiler status for OpenMP 4.5 and OpenACC.

Keywords: OpenMP 3.0 · OpenMP 4.5 · OpenACC · CUDA ·
Parallel programming models · P100 · V100 · Xeon Phi · Haswell

1 Introduction

The TOP500 list [1] is dominated by systems that employ accelerators and
energy-efficient architectures in order to reach their quoted performance num-
bers. This trend is expected to continue and intensify on the road to exascale, and
has increased the emphasis on “X” in “MPI + X”, where “X” is an on-node pro-
gramming framework, which allows for code parallelization over threads and/or
vector lanes of a CPU and an accelerator. While “MPI” has established itself
as the preferred choice for distributed programming by many, there is not yet a
consensus choice for the on-node programming model. There are several options
for “X” and they can be loosely categorized into the following.

1. Directive based approaches such as OpenMP, and OpenACC.
2. Architecture specific approaches such as POSIX Threads (pthreads), and

CUDA.
3. Abstraction layers of data/task parallelism such as Intel Thread Building

Blocks (TBB), OpenCL, Kokkos [2], and Raja [3].
c© Springer Nature Switzerland AG 2019
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Architecture specific programming models usually require significant code
changes and development efforts. The approach of using an abstraction layer
for data/task parallelism on the other hand can add an extra dependency to
the code. These models also commonly only support C/C++. In this paper, we
focus on the viability of directive based on-node programming models, OpenMP
in particular, with performance portability in mind.

OpenMP has been a prevailing programming model for years, especially for
first time HPC programmers. Its ease of use and support from major compiler
vendors has aided in its adoption as the first step in the parallelization of a
sequential code. With version 4.0/4.5, the OpenMP standard has been extended
to include support for accelerators. This means that one of the widely used
programming models can now support parallelization over heterogeneous archi-
tectures via a single framework. That said, the implementation of OpenMP 4.5
by compiler vendors is still at an early stage, which we will have a close look at
in this paper.

We investigate porting a relatively simple material science kernel that
has been optimized on CPUs using OpenMP 3.0 [7]. We then implement it
using OpenMP 4.5 [8] on the GPUs. We will compare the performance of the
OpenMP 4.5 implementation with that of its OpenACC [9] counterpart, in terms
of their kernel generation capabilities such as registers used and data moved,
when different grid and thread dimensions are configured. We will discuss the
challenges we faced when implementing the kernel with these frameworks and the
techniques we used to improve the performance of each implementation. After
an examination of our GPU implementations, we will discuss the performance
of the GPU code back on the CPUs and provide an analysis of how portable and
more specifically, performance portable it is.

Overall, this paper is structured around the discussions of

1. The optimization strategies for writing OpenMP 3.0/4.5 codes on CPU
2. Early experiences of OpenMP 4.5 on GPUs compared to other options
3. The portability of OpenMP 4.5 codes back on CPU,

with a goal that is two-fold:

1. To demonstrate that a single code can run across multiple (CPU and GPU)
architectures using OpenMP 4.5, and

2. To demonstrate that such a code can give an acceptable level of performance
compared to the optimized architecture-specific implementations.

The platforms we run on are: the Cori supercomputer [15] at the National
Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley
National Laboratory (LBNL), for its Intel Haswell and Xeon Phi (Knights Land-
ing (KNL)) architectures, and the Summit supercomputer [16] and the Summit-
dev testbed at the Oak Ridge Leadership Computing Facility (OLCF), Oak
Ridge National Laboratory (ORNL), for their NVIDIA P100 and V100 GPUs,
as well as Power CPUs. At the time of writing, xlc and xlc++ from IBM, gcc
and clang/llvm are the primary compilers which support GPU offloading via
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OpenMP 4.5 directives on these systems, and we have experimented with all
the available compilers. For OpenACC, the compilers we used are from PGI,
the pgc and pgc++ compilers. The rest of the paper is organized as follows,
Sect. 2 presents a basic introduction of the kernel and the application from which
the kernel was extracted. In the same Section, from Subsect. 2.2, we present a
baseline CPU implementation of the kernel which we will use as a reference for
our GPU implementation. Section 3 presents our GPU implementations. In this
Section, we will present our experiences with OpenMP4.5 directives and their
effective use to optimize performance on a GPU. We compare our OpenMP
implementation for GPUs with OpenACC and CUDA. In Sect. 4 we discuss our
efforts in porting the GPU implementations back to the CPU. In Sect. 6, we talk
about our final conclusions and plans for the future.

2 The GPP Kernel and Its Baseline CPU Implementation

In this section, we will introduce the General Plasmon Pole (GPP) kernel [6],
which is a mini-application representing a single MPI rank’s work extracted
from a material science code BerkeleyGW [4,5]. BerkeleyGW itself can be used
to compute the excited state properties of complex materials and its main com-
putational bottlenecks are FFTs, dense linear algebra and large reductions, out
of which, large reductions can take up 30% of the whole runtime for certain
common execution paths. GPP represents the node level work of one of these
reductions, and if optimized, can bring significant benefit to the performance of
the whole code.

2.1 GPP Kernel

The GPP kernel computes the electron self-energy using the General Plasmon
Pole approximation. Listing 1.1 shows the most basic pseudo code of this kernel
in C++.

Listing 1.1. GPP pseudo code

1 for(X){ // X = 512

2 for(N){ // N = 32768/20

3 for(M){ // M = 32768

4 for(int iw = 0; iw < 3; ++iw){

5 Some computation
6 output[iw] += ...

7 }

8 }

9 }

10 }

The code was originally written in FORTRAN and employs OpenMP for on-
node parallelization. However, in order to apply a large variety of performance
portable programming approaches, we created a C++ port for the kernel.
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The main computational work in the kernel is to perform a series of tensor-
contraction-like operations (involving a non-trivial series of multiply, add and
divide instructions) for a number of pre-computed complex double-precision
arrays, and eventually reduce them to a small 3 × 3 matrix. The code uses a
double-complex number as its primary data type. The problem discussed in this
paper consists of 512 electrons and 32768 plane wave basis vectors and corre-
sponds to a medium sized molecule such as Chlorophyll or a small piece of a
surface. This choice of size leads to the following characteristics for the kernel:

1. The overall memory footprint is around 2 GB.
2. The first and second loop are closely nested and can be collapsed, with a resul-

tant trip count of O(800K), which could be a target for thread parallelization
on the CPUs or threadblock distribution on the GPUs.

3. The third loop has a fairly large trip count too and can be vectorized on the
CPUs or parallelized with the threads within a threadblock on the GPUs.

4. The innermost loop has a small, fixed trip count and can be unrolled to
facilitate SIMD/SIMT parallelization.

Despite the apparent simplicity, this kernel has a set of very interesting char-
acteristics. For example, the reduction over a series of double-complex arrays
that involves multiply add and divide instructions, which are left out of the
paper to simplify the discussion. Also, the innermost iw loop has significant
data-reuse potential whose dimension is problem size dependent (fixed as 3 for
our purposes in this paper). For typical calculations, this leads to an arithmetic
intensity of the kernel which is between 1–10, which implies that the kernel has
to be optimized for both memory locality as well as thread and vectororization
efficiency.

2.2 Baseline CPU Implementation

The shared memory parallel programming framework OpenMP [7] is a very
attractive option for incremental parallelization of codes due to its ease of use
and extensive support from compilers. To explicitly address parallelism on hard-
ware of contemporary CPUs, the least version required is OpenMP 3.0, which
supports common parallelization paradigms such as vectorization and code trans-
formation features such as loop collapsing, but not the offloading features as in
OpenMP 4.x.

Listing 1.2 shows our initial implementation of GPP on CPUs, using OpenMP
3.0, where we spread the “X” loop over threads and “M” loop over SIMD vector
lanes. As written, vectorization is automatic by the Intel compiler, without any
use of a pragma because the compiler chooses to fully unroll the inermost iw
loop. In the general case it is necessary to insert an omp simd pragma outside
the M loop. To represent a complex number, we built an in-house customized
complex class that mimics the thrust-complex class available in the CUDA [17]
framework.

Complex number reduction is not supported by OpenMP in C/C++ (but it
is in Fortran). To work around this, we divide the output array into two separate
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data structures, output re[3] and output im[3], for their respective real and
imaginary components, and apply reduction to these data structures. We could
potentially have utilized a user defined reduction but experienced performance
issues from certain compilers in the past. In cases where compilers do not support
array reduction, we split the arrays into 6 real-number reductions.

Listing 1.2. GPP + OpenMP 3.0 for CPU

1 #pragma omp parallel for

2 reduction(+:output re[0:3], output im[0:3])

3 for(X){

4 for(N){

5 for(M){

6 for(int iw = 0; iw < 3; ++iw){

7 // Compute and Store in local variables

8 }

9 }

10 for(int iw = 0; iw < 3; ++iw){

11 output_re[iw] += ...

12 output_im[iw] += ...

13 }

14 }

15 }

We execute the code in Listing 1.2 on IBM Power 8 [12], Power 9 [13] and on
Intel Haswell [11] and Xeon Phi [10] architectures. As shown in Fig. 1, there is
a significant performance difference on the Power processors and Intel architec-
tures. While Power-9 performance is not the focus of this paper, we are inves-
tigating the performance gap with Haswell. Our Xeon- Phi timings for GPP
is approximately 2.5 s and we use this number as a reference benchmark when
porting the application to GPUs.

3 GPU Implementations of the GPP Kernel

A GPU consists of thousands of cores and they can be abstracted into two
layers of parallelization from a programmer’s point of view, thread blocks and
threads. Thread blocks can form a 1D, 2D or 3D grid, each consisting of the same
number of threads within the block. From a hardware perspective, the threads in
a thread blocks are also grouped into warps of 32 threads, all executing the same
instruction at any time (Volta supports independent thread scheduling). Several
warps constitute a thread block, several thread blocks are assigned to a streaming
multiprocessor (SM), and several tens of SMs make up the whole GPU card.
Given the massive parallelism available, it is the programmer’s responsibility
to match the appropriate data or task parallelism in the code onto the thread
blocks or threads within a block on the hardware, in order to take full advantage
of the compute power of the card.

We will investigate three programming models on the GPU in this section,
OpenMP 4.5, OpenACC and CUDA, with a focus on OpenMP 4.5. We will lay
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Fig. 1. Performance of GPP on multicores

out the compilation configurations and implementation details of GPP using
these models, and will also compare them on aspects such as code generation
capability, ease of use, compiler support, and code performance.

3.1 Implementation Groundwork

In this subsection we describe the settings and software used for compiling and
running the GPP kernel. On the Summitdev system only gcc and xl compilers
support accelerator offloading via OpenMP 4.5 (recent versions of clang were
not tested), and the compilation flags used for these compilers are shown in
Listing 1.3, Listing 1.4 and Listing ?? respectively.

Listing 1.3. Compile flags for gcc for OpenMP offloading

1 CXXFLAGS = -g -O3 -std=c++11 -fopenmp

2 CXXFLAGS += -foffload=nvptx -none

3 LINKFLAGS = -fopenmp -foffload=nvptx -none

Listing 1.4. Compile flags for xlc for OpenMP offloading

1 CXXFLAGS=-O3 -std=gnu ++11 -g -qsmp=noauto:omp

2 CXXFLAGS+=-qoffload #offload target regions to a GPU

3 CXXFLAGS+=-Xptxas -v #generate report , a CUDA flag

4 LINKFLAGS +=-qsmp=noauto #disable auto parallelization

5 LINKFLAGS +=-qsmp=omp -qoffload
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In our experiments, we observed that the performance of kernels generated by
gcc compiler was considerably worse than that of the xl compilers. Therefore,
if not otherwise stated, we will use xl/20180223-beta and xl/20180502 on
Summitdev and Summit respectively for all OpenMP 4.5 enabled GPU offloading
experiments in this paper. For OpenACC offloading, we employed version 18.4
of the pgi compiler available on Cori, SummitDev and Summit machines. pgi
compile flags for Summitdev and Summit are shown in Listing 1.5.

Listing 1.5. Compile flags for pgi for OpenACC offloading

1 CXXFLAGS = -fast -std=c++11 --gnu_extensions -Munroll

2 CXXFLAGS += -acc -ta=tesla:cc70 #CUDA kernels for V100

3 #CXXFLAGS += -acc -ta=tesla:cc60 #CUDA kernels for P100

4 CXXFLAGS += -Minfo=accel #generate report

5 LINKFLAGS = -acc -ta=tesla:cc70

6 #LINKFLAGS = -acc -ta=tesla:cc60

3.2 OpenMP 4.5

In order to map the GPP kernel efficiently to the GPU, we need to exploit the
different levels of hardware parallelism described above. More precisely, we want
to distribute the X, N and M loops across threadblocks and threads within a block
in a way that it takes the maximum advantage of the available GPU resources.

In our initial experiments, as a naive CPU parallel programmer, we followed
the idea of distributing X loop of Listing 1.1 across threadblocks and the N, M
loops across threads within a threadblock. This is shown in Listing 1.6.

Listing 1.6. GPP with OpenMP 4.5 directives

1 #pragma omp target teams distribute

2 map(to:..) map(from:output re[0:3],output im[0:3])

3 for(X){

4 #pragma omp parallel for

5 for(N){

6 for(M){

7 for(int iw = 0; iw < 3; ++iw){

8 //Store in local variables

9 }

10 }

11 for(int iw = 0; iw < 3; ++iw){

12 #pragma omp atomic

13 output_re[iw] += ...

14 #pragma omp atomic

15 output_im[iw] += ...

16 }

17 }

18 }

The target directive on line 1 offloads the code block that follows the directive
onto the accelerator. The teams distribute directives divide the loop iterations
into teams and distribute them among the threadblocks. The parallel for
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on line 4 will distribute the loop among the threads within a threadblock. We
inline all function calls from inside the kernel region to avoid additional overhead
caused by kernel calls from the device. Array reductions are not supported inside
target regions by the xl compilers and therefore we resorted to our atomic
update approach. We furthermore need to manage the data accessed inside the
target region. This information is passed to the framework via the map clauses
and their use is shown in Listing 1.6:

– map(to:input[0:N]) - copy the values in the data structure to the device at
the start of the target region.

– map(tofrom:input-output[0:N]) - copy the values in the data structure
to-and-from the device

– map(from:output[0:N]) - copy the values in the data structure from the
device at the end of the target region

– map(alloc:input[0:N]) - A corresponding storage space for input is created
on the device

– map(delete:input[0:N]) - Delete the allocated data on the device

Our initial implementation shown in Listing 1.6 did not make the optimal
use of available resources. It generated a kernel with 1280 threadblocks and
354 threads per block. Even though the X loop has only 512 iteration space,
xl implementation of OpenMP 4.5 directives generated approximately twice
the necessary threadblocks. The xl compilers distributed the N loop following
the parallel for directive among the threads of a threadblock. Based on the
iteration space and assuming all iterations take similar runtime, every thread
would execute 4 iterations of the N loop and in every iteration the M loop is exe-
cuted sequentially. This implies that the 3rd loop which has an iteration space
of O(33K) are not parallelized. After experimentation with different combina-
tions of work distribution Listing 1.7 shows our best implementation (without
replacing atomic) of GPP.

Listing 1.7. Optimized GPP with OpenMP 4.5 with atomic

1 #pragma omp target enter data map(alloc:input[0:X]))

2 #pragma omp target teams distribute parallel for collapse(2)

3 map(tofrom:output re[0:3], output im[0:3])

4 for(X){

5 for(N){

6 for(M){

7 for(int iw = 0; iw < 3; ++iw){

8 //Store in local variables

9 }

10 }

11 #pragma omp atomic

12 output_re* += ...

13 #pragma omp atomic

14 output_im* += ...

15 }

16 #pragma omp target exit data map(delete:input[0:X]))

17 }



A Case Study for Performance Portability Using OpenMP 4.5 83

OpenMP provides clauses (alloc) to allocate data on the device. As mentioned
in Sect. 2, the memory usage of GPP is approximately 2 GB and hence we can
allocate all the necessary data on the device. The use of this clause improved the
performance of the kernel by 10%, however, the total runtime of the application
remained constant. This implies that prior to the usage of alloc clause, the
kernel time evaluated also included the time taken for data transfers.

In Listing 1.7, we collapse the outer two loops and distribute the resulting
iterations among threadblocks and threads within a block. This generates 6552
threadblocks and 128 threads per block. Even in this case all the iterations
in the M loop are run sequentially by each thread. Distributing them among
threads for parallelization increases the number of atomic updates relative to
the loop iteration space i.e., O(33K). The benefits of parallelizing the M loop
are overshadowed by the overhead incurred due to atomic updates which are
necessary to maintain correctness.

To avoid the use of atomic and take advantage of parallelizing the M loop, we
assign scalar variables to each of the three real and three imaginary components
of output and pass them into the reduction clause. This optimization gave us
a performance boost of 3×. output re* and output im* in Listing 1.8 represent
these variables.

Listing 1.8. GPP + OpenMP 4.5 with reduction for GPU

1 #pragma omp target enter data map(alloc:input[0:X])

2 #pragma omp target teams distribute parallel for collapse(2)

3 reduction(+:output re*, output im*)

4 for(X){

5 for(N){

6 #pragma omp parallel for

7 reduction(+:output re*, output im*)

8 for(M){

9 for(int iw = 0; iw < 3; ++iw){

10 //Store in local variables

11 }

12

13 output_re* += ...

14 output_im* += ...

15 }

16

17 }

18 #pragma omp target exit data map(delete:input[0:X])

19 }

Listing 1.8 shows the pseudo code for our most optimized implementation of
GPP via OpenMP 4.5 directives. In this code we collapse the outer two loops,
i.e., X and N and distribute them over threadblocks while the M loop is paral-
lelized over the threads in a thread block. Since the values are updated inside the
M loop we have a reduction clause with the teams distribute and parallel
for directives. Unlike Listing 1.6 where output re and output im are passed to
the map(from:...) clause, variables passed into the reduction clause need not
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be passed in any other clauses in the same directive. Listing 1.8 generates 1280
threadblocks and 512 threads per block. OpenMP 4.5 also provides clauses to
control the grid and thread dimension generated by the framework. A program-
mer can use num teams and thread limit clauses to inform the framework about
the number of threadblocks and threads per block with which the CUDA kernel
should be launched. In our case we realized that the default kernel dimensions
chosen by the compiler were optimal. Figure 2 shows the performance comparison
between atomic and reduction on P100 and V100. Both the implementations
use different parallelization techniques as shown in Listings 1.7 and 1.8 respec-
tively. This implies that the use of atomic or reduction with xl compilers to
maintain correctness might lead to different optimal parallelization strategies on
a GPU.
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Fig. 2. atomic vs. reduction clauses for OpenMP 4.5 directives on P100 GPU.

xl vs gcc Implementation of OpenMP 4.5. Although, in the discussion
above and for the rest of the paper, we focus on xl implementation of OpenMP
4.5, we were also successful in porting GPP with gcc compiler using the accel-
erator directives. In this section we present three major differences between the
compiler implementations of OpenMP 4.5 directives that complicated the use
of OpenMP 4.5 when targetting a code that is intended to support multiple
compilers.

1. simd in the case of xl compilers is optional but mandatory for gcc to make
use of all the threads in a warp.
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2. The use of map clauses is mandatory for xl compilers. Every memory location
accessed inside target region has to pass through one of the directionality
clauses. In case of gcc, this condition is not enforced.

3. In practice it has been our observation that dynamic allocation of data struc-
tures inside the target directives fail with the xl compilers. This constraint
is not applicable to gcc compilers.

3.3 OpenACC

Similar to OpenMP 4.5, OpenACC has its own directives to distribute loops
across the threads of a GPU. OpenACC directives for work distribution across
GPU threadblock and threads are gang and vector respectively.

The experiences gained in OpenMP offloading experiments helped us in tun-
ing the OpenACC implementations. The best performance of GPP with Ope-
nACC directives was achieved with the reduction implementation of OpenACC,
similar to OpenMP 4.5 as shown in Listing 1.9.

Listing 1.9. GPP + OpenACC for GPU

1 #pragma enter data create(input[0:X]))

2 #pragma acc parallel loop gang collapse(2)

3 present(input[0:X]))

4 reduction(+:output re*, output im*)

5 for(X){

6 for(N){

7 #pragma acc loop vector\

8 #reduction (+: output_re*, output_im *)

9 for(M){

10 for(int iw = 0; iw < 3; ++iw){

11 //Store in local variables

12 }

13 }

14 output_re* += ...

15 output_im* += ...

16 }

17 #pragma exit data delete(input[0:X])

18 }

In Listing 1.9, the directives in line 2 collapse the X and N loop and distribute
them among the threadblocks, while the directives in line 7 distribute the M loop
among the threads in a threadblock.

The reduction versions of OpenACC and OpenMP 4.5 give equivalent per-
formance. However the pgi compiler generates 65535 threadblocks and 128
threads per block for this parallelization which is significantly different than
the 1280 threadblocks and 512 threads per block generated by the xl compiler
in response to the OpenMP offload directives. Section 3.5 discusses the reasons
for similar performance with different kernel configuration in greater detail.

The optimal atomic version with OpenACC occurs when we distribute the
X loop among the threadblocks and N loop among the threads per block. For
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this version the compiler generated a kernel with 512 threadblocks and 128
threads per block and its performance is 2× faster than the atomic version of
OpenMP 4.5. However, when we back-ported these changes to the xl implemen-
tations of OpenMP 4.5, we were unable to replicate the performance.

Line 1 and line 15 of Listing 1.9. are the data allocation directives of Ope-
nACC. The present directive in line 3 informs the compiler that the data passed
to this clause is available on the device. Otherwise copyin and copyout clauses
are necessary to map the necessary data on-to the device. During our OpenACC
implementation, we learned that the pgi compiler does not copy the data on to
the device when encountered with the data create directives. The actual copy
occurs when the corresponding data is encountered inside the kernel. In order
to overcome this issue, we initialized the data on the device to guarantee its
availability during kernel launch. This optimization was performed in order to
avoid the inclusion of memory transfer time in kernel computation timing.

Figure 3 shows the comparison of atomic versus reduction versions of GPP
on both the GPU architectures. The atomic version in the case of OpenACC is
only 5% slower than the reduction version which is significantly lower than the
difference between similar implementations of OpenMP 4.5.

3.4 CUDA

CUDA [17] is an extension of the C and C++ programming language, developed
by NVIDIA to offload parallel kernels onto a GPU. We implemented 2 versions
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Fig. 3. atomic versus reduction in OpenACC on P100 and V100
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of CUDA implementations for GPP which mimic the atomic and reduction
versions of the OpenMP 4.5 implementation. In version 1, we implement a sin-
gle dimension grid with the X loop being distributed across the threadblocks
and N loop between the threads of a threadblock. In version 2 we generate a
two dimensional grid. The 1st dimension is the outermost X loop and 2nd dimen-
sion is the N loop. The innermost M loop is distributed among the threads of a
threadblock. Both the kernel launch parameters are shown in Listing 1.10.

Listing 1.10. Kernel parameters for CUDA version 1 and version 2

1 dim3 numBlocks(X,1,1);

2 dim3 numThreadsPerBlock (64,1,1);

3

4 // Version 2

5 dim3 numBlocks(X,N,1);

6 dim3 numThreadsPerBlock (32,1,1);

7

8 // Kernel Launch

9 gpp_Kernel <<<numBlocks , numThreadsPerBlock >>> (...);

We launch the kernels with 64 and 32 threads per threadblock for version 1 and
version 2 respectively. In our experiments these proved to be the ideal kernel
launch parameters for the respective versions. We use the atomcAdd routine in
CUDA to maintain correctness of our updates.

While version 1 gave similar performance as the corresponding OpenACC
atomic implementation, version 2 was approximately 2× faster compared to ver-
sion 1. But as shown in Fig. 3, the difference between the atomic and reduction
implementations of OpenACC was only 5%. This shows that the benefits of
CUDA version 2 implementation were unavailable in the corresponding Ope-
nACC or the OpenMP 4.5 versions which give similar performance.

3.5 Performance Comparison Among GPU Implementations

In this section we perform a detailed comparison among the available GPU
implementations. We specifically focus on the differences between OpenMP 4.5
and OpenACC implementations of GPP and also the difference between compiler
based implementations and architecture specific CUDA implementation.

OpenMP 4.5 vs OpenACC. As mentioned earlier our optimized OpenMP
and OpenACC implementations have the same parallelization strategies. Table 1
presents a comparison of the kernels generated by both these versions. Collapsing
of X and N loops generates O(800K) iterations that can be distributed across the
available threadblocks. From the details presented in Table 1, we observe that
even though OpenACC generates 50× more threadblocks (and 4x fewer threads
per block) than OpenMP, both the frameworks give us approximately the same
runtime. Volta has 80 SMs at the hardware level on which the threadblocks
can be scheduled. This implies that any kernel that generates more than 80
threadblocks has the additional threadblocks in the virtual space until their
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execution is scheduled on an SM. Hence having 50× more threadblocks might
not translate into huge performance gains for the OpenACC implementation.
Also having higher number of threads will lead to lower number of registers
that can be allocated per thread which might effect the performance of the
application.

Table 1. OpenACC vs OpenMP 4.5 kernel configuration on V100 reduction version

V100 Runtime Grid-dim Thread-dim Registers

OpenACC(pgi/18.4) 1.24 s (65535,1,1) (128,1,1) 136

OpenMP(xlc/20180502) 1.25 s (1280,1,1) (512,1,1) 114

A summary of the hardware metrics and their comparison is shown in Table 2.
While dram-utilization and warp-efficiency in both the implementations are sim-
ilar, OpenMP has a 30% higher global-hit-rate, i.e., hit rate for global load and
store in L1 cache and a somewhat higher occupancy, i.e., the ratio of active
warps to the maximum number of warps per cycle. We expect on OpenACC the
latency of the misses is effectively hidden by the additional overall threads avail-
able and there is a high enough arithmetic intensity to avoid saturating memory
bandwidth. This implies that while both the versions give similar performance,
their use of hardware resources are significantly different.

GPP Performance on Contemporary GPUs. In this section we perform
a general comparison among all the available GPU implementations of the ker-
nel. The horizontal dash line in Fig. 4 represents the performance of GPP on
Xeon Phi against which we compare our GPU implementations. As observed the
Fig. 4, apart from the OpenMP 4.5 version on P100, all other implementations
perform better than OpenMP 3.0 implementation on Xeon Phi. OpenMP 4.5
in particular, shows a drastic improvement in its performance relative to other
implementations on Volta compared to Pascal. The main reason for this is the
use of a new compiler on the Summit machine, which is unavailable on Sum-
mitdev. This shows the importance of compiler maturity in generating optimal
CUDA kernels via the offload directives.

An important observation in Fig. 4 is the approximately 2× difference
between P100 and V100 performance. We also want to assert that the code
implementations were consistent for every framework on both the GPUs. Further
investigation is required but we are initially attributing the faster performance

Table 2. OpenACC vs OpenMP 4.5 kernel configuration on V100 reduction version

V100 Dram-utilization Global-hit-rate Warp-efficiency Occupancy

OpenACC(pgi/18.4) 8 (high) 54.05% 99.92% 0.19

OpenMP(xlc/20180502) 7 (high) 84.6 99.86% 0.27
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Fig. 4. Performance on P100 and V100

on Volta GPU to the following: (1) Compared to Pascal, Volta has a bigger
and faster L1 cache; (2) global atomic is 2× faster, which may be important for
reductions in GPP; (3) lower instruction latency.

As mentioned in Sect. 3.4, our CUDA version 2 implementation of GPP is
similar to the reduction version of OpenMP and OpenACC, however its runtime
is approximately 2× faster. The reason for this is the order in which the X and Y
dimensions of the grid are assigned by OpenMP and OpenACC implementations.
The optimized CUDA implementation, i.e., the version 2, assigns the N-loop to
Y dimension and X-loop to X dimension of the grid, as shown in Listing 1.10.
Both the xl and clang implementations of OpenMP and pgi implementation of
OpenACC assign the X dimension of the grid to the innermost loop during a
collapse. Hence in an effort to make OpenMP and OpenACC implementations
more similar to the optimized CUDA implementation, we swapped the outer two
loops as shown in Listing 1.11.

The code change that is shown in Listing 1.11 gave a 2× benefit in the
performance in case of OpenMP. Similar change to the OpenACC implemen-
tation, improved it’s performance by 30%. These results are shown in Fig. 5.
Unfortunately we could not test out final optimization’s on P100 since the
compiler versions used for the OpenMP implementations on Summitdev are
no longer available. As shown in Fig. 5, Summit also has a clang compiler
which supports OpenMP offloading. From the results shown in Fig. 5, we can
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observe that we have an optimized GPP implementation for GPUs with OpenMP
offloading whose performance is similar to the corresponding optimized CUDA
implementation.

Listing 1.11. GPP + OpenMP 4.5 with reduction for GPU

1 #pragma omp target enter data map(alloc:input[0:X])

2 #pragma omp target teams distribute parallel for collapse(2)

3 reduction(+:output re*, output im*)

4 for(N){

5 for(X){

6 #pragma omp parallel for

7 reduction(+:output re*, output im*)

8 for(M){

9 for(int iw = 0; iw < 3; ++iw){

10 //Store in local variables

11 }

12

13 output_re* += ...

14 output_im* += ...

15 }

16

17 }

18 #pragma omp target exit data map(delete:input[0:X])

19 }
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4 Porting GPU Implementations Back to CPU

As mentioned in Introduction of this paper, our aim is to evaluate the status of
the current programming frameworks and their ability to create a single code
implementation that can be executed across architectures. In this section we
discuss the performance of OpenMP and OpenACC GPU implementations on
CPUs, especially Intel’s Haswell and Xeon Phi.

4.1 OpenACC

Initially, pgi compilers were unable to parallelize GPP loops annotated with
OpenACC directives on CPUs. The compiler appeared to assume dependencies
between variables declared inside the loops which should technically be con-
sidered thread-private. The pgi compiler as a part of its aggressive optimiza-
tion hoists variables declared inside the loop. This implies that the OpenACC
directives would annotate these variables as shared, if stated otherwise, and pre-
vent the parallelization of these loops. To avoid these problems, we declared the
said variables outside the loops and marked them private to avoid dependency
assumptions by the compiler.

Even after the said changes, pgi compiler was unable to vectorize the code
for CPUs. Hence OpenACC implementation on CPUs for GPP is 4× slower than
the OpenMP implementation.

4.2 OpenMP 4.5

For the compilation of OpenMP 4.5 on Haswell and Xeon Phi, we used the
intel/18.0.1.163 compiler on the Cori machine. Listing 1.12, shows the flags
used in order to compile the code on CPUs.

Listing 1.12. Intel flags for OpenMP 4.5

1 CXXFLAGS=-O3 -std=c++11 -qopenmp -qopt -report =5

2 CXXFLAGS+=-qopenmp -offload=host #For offloading

3 #CXXFLAGS+=-xCORE -AVX2 #For Haswell

4 CXXFLAGS+=-xMIC -AVX512 #For Xeon Phi

5 LINKFLAGS=-qopenmp

6 LINKFLAGS +=-qopenmp -offload=mic #For Xeon Phi

Intel compiler, when encountered the with the target teams directive of
OpenMP 4.5 on a CPU, generates a single team and assigns all the threads
available to the team. Hence when the corresponding parallel for is encoun-
tered, the loop following the directive is parallelized among the available threads.
In case of our best OpenMP 4.5 reduction implementation, this translates to
the outermost X and N being collapsed and run sequentially, while the innermost
M loop is distributed among the threads. In the case of GPP, this interpreta-
tion of OpenMP offload directives lead to a “portable” but not “performance
portable” code since such a parallelization increases the GPP runtime by 25×
compared to the optimized OpenMP 3.0 implementation. In order to optimize
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GPP with OpenMP 4.5 on CPUs, we modified the implementation by moving
the parallel for directives on X loop as shown in Listing 1.13.

Listing 1.13. GPP + OpenMP 4.5 on CPU

1 #pragma omp target teams distribute parallel for

2 reduction(+:output re*, output im*)

3 for(X){

4 for(N){

5 for(M){

6 for(iw = 0; iw < 3; ++iw)

7 {//Store in local variables}

8 }

9 output_re* += ...

10 output_im* += ...

11 }

12 }

This creates a team of 272 or 64 threads for Xeon Phi or Haswell and distributes
the X loop across the available threads. This is similar to the OpenMP 3.0 imple-
mentation of GPP.

Figure 6 shows a comparison of executing optimal GPU and CPU implemen-
tations with OpenMP 4.5 directives on Xeon Phi and Volta. As can be observed
the performance of CPU optimized OpenMP 4.5 implementation is similar to the
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optimized OpenMP 3.0 runtime. However, on GPU the implementation is 5×
slower than the optimized OpenMP 4.5 implementation for GPUs. Conversely,
the optimized GPU implementation with OpenMP 4.5 is 25× slower than the
optimized implementation on Xeon Phi. This experiment shows that the assump-
tion by the intel compilers where they equate the threads on a CPU and threads
in a GPU’s threadblock did not result in a “performance portable” code in the
case of GPP.

5 Related Work

Since OpenMP 4.5 began gaining traction with compilers, there have been a
number studies performed in the community to compare its performance and cost
of implementation to other GPU programming models. Our effort is intended
to be complimentary to these published works, represent a specific case-study of
importance to the Material Science community and document a snapshot of the
current state of support under rapid OpenMP 4.5 development and optimization
over the past few years.

One of the early works to evaluate OpenMP 4.0 on Xeon Phi and GPUs is
published in [20]. In this they chose a kernel representative of regular workloads
on Titan and attempt to port it across widely used HPC architectures such
as CPU, CPU+accelerator and self hosted coprocessor using OpenMP 4.0. In
[19], the authors evaluate and analyze OpenMP 4.X benchmarks on Power8
and NVIDIA Tesla K80 platform. They perform an analysis of hand written
CUDA code and the automatic GPU code generated using IBM xl compilers
and clang/LLVM compilers from high level OpenMP 4.x programs. Our work
differs from the paper in two major areas: (1) The kernel we ported is more
complicated and uses a template class to represent a complex number, and; (2)
We back-port the GPU implementations of OpenMP 4.5 onto CPUs.

In [18], the authors evaluate the “state of the art” for achieving performance
portability using compiler directives. The paper performs an in-depth analysis
of the how OpenMP 4.0 model performs on K20X GPU and in Xeon Phi archi-
tectures for commonly used kernel such as “daxpy” and “dgemm”. However
unlike this paper, they do not discuss the kernel configurations generated by the
frameworks and their impact on the various parallel-loops inside the kernel.

6 Summary and Future Work

In this paper, we presented an analysis on the effort needed to port a kernel onto
CPUs and GPUs using OpenMP in comparison to other approaches with focus
on OpenACC.

We were successful in porting our best implementation of OpenMP 4.5 onto
CPUs with some important changes to the implementation. The performance
of this version is equivalent to our best OpenMP 3.0 version. But, an exactly
unchanged OpenMP 4.5 version optimized for GPUs is ill-suited for CPU exe-
cution.
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In the future we want to evaluate the practical amount of work required to
port kernels which exceed the memory space that can be allocated on the device.
Although there are plans to include UVM support from OpenMP 5 version, the
xlc compilers allow passing of device pointers to the framework.
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Abstract. Accelerator programming today requires the programmer to
specify what data to place in device memory, and what code to run on
the accelerator device. When programming with OpenACC, directives
and clauses are used to tell the compiler what data to copy to and from
the device, and what code to compile for and run on the device. In par-
ticular, the programmer inserts directives around code regions, typically
loops, to identify compute constructs to be compiled for and run on the
device. If the compute construct calls a procedure, that procedure also
needs to be marked for device compilation, as does any routine called in
that procedure, and so on transitively. In addition, the marking needs
to include the kind of parallelism that is exploited within the procedure,
or within routines called by the procedure. When using separate com-
pilation, the marking where the procedure is defined must be replicated
in any file where it is called. This causes much frustration when first
porting existing programs to GPU programming using OpenACC.

This paper presents an approach to partially automate this process.
The approach relies on interprocedural analysis (IPA) to analyze Ope-
nACC regions and procedure definitions, and to propagate the necessary
information forward and backward across procedure calls spanning all
the linked files, generating the required accelerator code through recom-
pilation at link time. This approach can also perform correctness checks
to prevent compilation or runtime errors. This method is implemented
in the PGI OpenACC compiler.

Keywords: Automatic directive propagation ·
Interprocedural analysis (IPA) · OpenACC · GPU Computing

1 Introduction

Accelerator programming has been used for at least forty years. Accelerators
are typically optimized for certain common program structures, often without
the ability to run a whole program or to support a full operating system. They
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are used when the program can be sped up by offloading the bulk of the com-
putation to the accelerator, leaving the main program on the CPU to handle
input/output and interaction with a user. Programming a typical accelerator-
enabled machine requires the programmer to identify when to allocate space in
device memory, when to copy data to and from system memory, and when to
launch a computation on the device.

While early accelerators came with a set of preprogrammed libraries and pro-
cedures, current accelerators allow users to write their own programs. To do so,
the user must identify what parts of the program need to be compiled for and
run on the accelerator. One approach is to use a language or language exten-
sions, such as CUDA C++ [8,11] or CUDA Fortran [15] for NVIDIA GPUs.
With CUDA C++ or Fortran, the programmer explicitly allocates device mem-
ory, explicitly copies data between host and device, and explicitly launches ker-
nels, which are specially written procedures that run in parallel on the GPU.
OpenCL [13] is a similar programming model supported on a variety of devices,
including GPUs.

The OpenACC Application Programming Interface (API) [2,9,12] is another
parallel programming model that supports offloading parallel computations to
accelerators, including NVIDIA and AMD GPUs. OpenACC uses directives in
C++, C, and Fortran programs, similar to OpenMP [14], to tell the compiler
what data to copy between system and device memory, and to mark the regions
of code, typically loops, to run in parallel on the device. OpenACC has proved
popular because it doesn’t require a wholesale rewrite of the program, though
many programs need restructuring to expose enough parallelism to fully exploit
a GPU. OpenACC programs have three levels of parallelism, gang, worker, and
vector. At the most coarse level, gang parallelism is used for fully parallel loops
that need no synchronization or barriers beyond atomic operations and reduc-
tions; for GPU execution, iterations of a gang parallel loop can be mapped to
CUDA thread blocks or OpenCL work groups. Within a gang, worker paral-
lelism is used for parallel loops where the iterations may need to coordinate
or synchronize; for GPU execution, iterations of a worker parallel loop can be
mapped to groups of threads with a CUDA thread block (such as a warp), or
groups of work items in an OpenCL work group. Within a worker, vector paral-
lelism is used for SIMD operations or parallelism which is synchronous or mostly
synchronous, and which is sensitive to memory strides; for GPU execution, itera-
tions of a vector parallel loop are typically mapped to the threadIdx.x dimension
of a CUDA thread block or dimension 0 of an OpenCL work group, to benefit
from contiguous memory references. OpenACC programs can also be recompiled
for host or multicore parallel execution, with gang and/or worker loops compiled
for execution across the cores, and vector loops compiled for SIMD execution.

As more nontrivial programs were ported to GPUs using OpenACC, it
became obvious that there needed to be a way to compile and run whole pro-
cedures on the device. Moreover, because of the way OpenACC parallelism on
GPUs is commonly implemented, when there are parallel loops in the called
procedure, both the caller and callee must know what level of parallelism is used



OpenACC Routine Directive Propagation Using Interprocedural Analysis 101

in the called procedure. There were three options available for implementing
this. One way would be to compile all procedures for GPU execution, just as all
procedures are compiled for the host CPU. While this may become viable in the
future, there are many operations that current GPUs just do not support, such as
direct I/O, host memory management, and so on. Also, the compiler wouldn’t
necessarily know the level of parallelism used in a procedure that appears in
another file.

Another way would be to have the compiler determine which procedures are
called within a compute construct and compile those for the device as well. Tran-
sitively, the compiler would need to find all procedures called from any of those
procedures and generate device code, and so on. This is straightforward for C or
C++ within a single file, and in fact the PGI C++ compiler already implements
this, though it doesn’t propagate the level of parallelism in the procedure to the
call site. This is a bit more problematic for Fortran, since Fortran doesn’t have
the concept of file scope, but that could be worked around.

A third way, and the way selected in OpenACC (and in the OpenMP 4.0
and 4.5 target directives) because it depends least on compiler technology, is to
have the programmer mark the procedures needed on the device, along with the
level of parallelism used within those procedures. This solution requires the most
work from programmers, and has been the source of much frustration at various
GPU Hackathons1 when beginning users start to add OpenACC directives to an
existing program. In OpenACC, the programmer must insert a routine directive
for each procedure that must be compiled for the GPU where that procedure is
defined. A procedure so marked is called a device routine, since it can be called
on the device. If it is called from a different file, the programmer must insert a
matching routine directive in that file (or in an appropriate header file). Fortran
modules simplify this somewhat, since the necessary routine information is
propagated through the normal Fortran module mechanism.

In current implementations, if a procedure call appears in an OpenACC com-
pute construct or routine compiled for the device with no appropriate routine
directive for that procedure, the compiler can either issue an error message, or
assume that device code for that procedure will be provided. The latter case can
result in a link-time error, if the procedure was not compiled for the device, and
can result in a run-time error, if the level of parallelism assumed at the call site
does not match the level of parallel expected in the called procedure.

The PGI compilers currently provide the most complete and mature imple-
mentation of OpenACC. They also support a comprehensive and extensible ver-
sion of interprocedural analysis (IPA), or whole program optimization. In the
PGI implementation, the compiler saves a both a brief program summary and
complete recompile information in the generated object file. At link time, a fast
interprocedural analyzer is invoked, which reads all the available program sum-
mary information. For files and libraries not built with the summary informa-
tion, such as system libraries, IPA reads the symbol table from the object files
or libraries. The summary information and symbol tables allow IPA to build

1 https://www.olcf.ornl.gov/training-event/2017-gpu-hackathons/.

https://www.olcf.ornl.gov/training-event/2017-gpu-hackathons/
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a complete call graph and propagate information both forward and backward
through the graph. Files containing procedures that would benefit from IPA
optimizations are then recompiled before the linker is invoked.

For this work, we explored using the PGI IPA facility to ease OpenACC
programming, by adding or propagating OpenACC routine directives through-
out an application at link time. This can detect and insert missing routine
directives at call sites or at routine definitions, or detect errors when existing
routine directives don’t match. The IPA step then recompiles the files which
contain either call sites or called procedures where new routine directives are
inserted.

The remainder of the paper is organized as follows. Section 2 describes the
OpenACC routine directive and the clauses. Section 3 describes our implemen-
tation. Section 4 describes cases where our implementation benefits OpenACC
programmers. Section 5 summarizes our work and the benefits for the OpenACC
programmers.

2 OpenACC Routine Directive

When a procedure call is encountered in an OpenACC compute region, the callee
might be defined in the same C or C++ file or the same Fortran module, or might
be (explicitly or implicitly) declared with a prototype or Fortran interface block.
For each such callee procedure, to avoid compile-time and link-time errors, the
user needs to tell the compiler to generate both host and accelerator code. This is
done with the OpenACC routine directive. For C and C++, a routine directive
should appear immediately before the definition of the function or its prototype.
For Fortran, the routine directive should appear in the specification part of the
subprogram or its interface block. Alternatively, a routine directive can specify
a procedure name, and can then appear anywhere in a C or C++ file that a
function prototype is allowed or in a Fortran specification part of a subprogram.

A routine directive has a list of clauses, including one required clause to
specify the level of parallelism used in the routine. One of the following clauses
must appear on any routine directive:

– gang clause, if the routine has a gang-parallel loop, or calls a routine with a
gang-parallel loop.

– worker clause, if the routine has a worker -parallel loop, or calls a routine
with a worker -parallel loop.

– vector clause, if the routine has a vector -parallel loop, or calls a routine
vector a vector -parallel loop.

– seq clause, if the routine has no parallel loops and calls no routines with
parallel loops.

There are other clauses (bind, device type and nohost), but they are not
related to this paper’s contribution.

For procedures that are defined in one source file and called in a compute
construct in other files, a routine directive must appear in the file where the
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#pragma acc routine seq

extern float externfunc1( float );

...
void test( float* x, int n) {

#pragma acc parallel loop copy(x[0:n])

for( int i = 0; i < n; ++i )

x[i] = externfunc1(x[i]);

}

(a) main.c

#pragma acc routine seq

float externfunc2( float* x ){
return x%2;

}
...

#pragma acc routine seq

float externfunc1( float* x ){
return externfunc2(x) + 1;

}

(b) external.c

Fig. 1. Function call for an external function inside a parallel loop of a OpenACC
C program

procedure is defined, and another routine directive with the same level-of-
parallelism clause must be included in each source file where the function is
called. This requires training and additional programming effort for beginning
OpenACC programmers, and can require significant effort and attention from
users when porting, maintaining, and updating large applications to OpenACC.
We intend to ease these restrictions in this work.

An example of how a OpenACC programmer must mark all the declarations
and the definition for the function being called inside a parallel region in shown
in Fig. 1. In the example, the parallel construct defined in the test function in
main.c calls an external function called externfunc1 defined in external.c. The
declaration for externfunc1 in main.c is marked with the OpenACC routine
directive with the seq clause. The same OpenACC directive is also marked for
the function in external.c where it is defined. Not doing so will lead to link
time error, since the accelerator code for externfunc1 would not be generated
during compilation. In addition to this, externfunc1 calls another function called
externfunc2 which needs to be marked with the routine directive as well and
must be marked before its usage in externfunc1. If this function is not marked
with routine directive then compiler will generate a compile time error at the
call site, since it appears in the same file as the call site.
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3 Implementation of Automatic Routine Directive
Propagation

This section describes our implementation of OpenACC routine propagation
using the PGI compiler Interprocedural Analysis (IPA) feature. The PGI IPA
feature is described briefly in Sect. 3.1. Section 3.2 describes the modifications
to the initial compile step, and in particular what information is gathered for
IPA. The following subsections describe how IPA navigates the call graphs to
determine what routine directives need to be added, and then what functions or
files need to be recompiled. The final subsection briefly describes the recompile
step.

3.1 PGI Interprocedural Analysis

The PGI IPA feature is based on the whole program analysis work done by
researchers at Rice University [1,3–7,10]. It is divided into three distinct parts:
the initial compile step, the link-time interprocedural analysis, and the recompile
step, when necessary.

When compiling a file with the PGI compilers and IPA enabled (with the
-Mipa flag), the compiler adds one additional analysis phase early in the compile
sequence. This is the IPA summary phase, which saves a concise summary of each
procedure and all the global variables in the program. The summary contains
information such as:

– all procedures called, including indirect procedure calls, along with the argu-
ments to those procedures

– what variables or procedures have had their addresses taken
– assignments to global variables or reference arguments
– loops in the procedure
– an estimate of the size and complexity of the procedure

This phase also saves recompile information, which includes the program inter-
mediate representation as well as information such as the compiler flags used to
build the object file, so the routines in this file can be recompiled without the
source files or can be inlined into procedures in other files.

Unlike almost all other compilers with interprocedural analysis or whole pro-
gram optimization, the PGI compiler then continues to produce a valid object
file. That object file would obviously not be optimized with IPA, but otherwise
is a valid object file that can be saved in an object library or linked without IPA.
The IPA summary and recompile information is appended in special sections of
the object file. This means that an object file compiled with IPA enabled can be
linked with or without IPA. When linked without IPA, the generated program
will not benefit from IPA, since it will be using the non-IPA-optimized object
file, but there are no drawbacks.

The interprocedural analysis occurs at link time. When linking with IPA
enabled, the PGI interprocedural analyzer is invoked before the linker itself.
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The analyzer opens all the object files on the link line, looking for the IPA
summary information saved there. It also opens object libraries, just like the
linker, satisfying unresolved external references and looking for IPA summary
information in the library objects.

For object files that don’t have IPA summary information, the analyzer reads
the object file symbol table and assumes worst case information. Any symbol
defined in a worst-case object file that is called from another object file is assumed
to be a procedure. Any symbol defined in a worst-case object file that is not called
from another object is assumed to be a global variable. Any variable symbol
referenced in a worst-case object file is assumed to be read and written, and to
have its address taken, in any procedure defined in that object. Any procedure
symbol referenced in a worst-case object file is assumed to be called from any
procedure defined in that file.

The analyzer then builds a complete call graph, using the mechanism
described by Cooper and Kennedy [6], along with the argument binding graph.
The call graph nodes are the procedures, and edges represent the procedure
caller to callee relationship. The argument binding graph nodes are variables,
constants, and procedure dummy arguments, and the edges represent when a
variable, constant, or a dummy argument is passed as a value or reference actual
argument at a call site to a dummy argument. These are the main data struc-
tures used in the analyzer. Most IPA analyses requires one or a few traversals of
these graphs, either forward or backward, to propagate information across the
edges and make decisions about what optimizations may be performed.

When the analysis is complete, the IPA step decides what functions (and
hence what files) to recompile. Because of the structures used, the PGI compiler
will recompile whole object files. The analyzer reinvokes the compiler on those
files, using the generated IPA information, to generate optimized object files.
When all these recompilations are complete, the analyzer then invokes the system
linker, substituting optimized object files on the link line, or adding optimized
object files for any that were extracted from libraries.

There are a few engineering details to make the recompile step more efficient.
When recompiling files at link time, IPA can do several recompiles at a time,
much like make -j. Also, the optimized object files are not generally deleted,
but saved with a .oo suffix. The interprocedural information that was used to
optimize that file is appended as a special section to the optimized object. If the
same program is rebuilt in that directory, and IPA sees an existing optimized
object for a file, it will compare the dates for the original and optimized object
file, and the interprocedural information that was used to generate the existing
optimized object to the interprocedural information that it just generated. If the
optimized object is stale (the original object file is newer), or the interprocedural
information has changed, then the optimized object must be rebuilt.

3.2 Initial Compile Summary Information and Error Suppression

This subsection describes how we augmented the IPA summary information
collection step for routine propagation. First, if a procedure was compiled for
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the device with an acc routine directive, the information for that directive is
added to the summary information. Second, the summary information for a pro-
cedure calls includes whether it appears in an OpenACC compute construct or
a procedure marked by a routine directive. Third, any information from acc
routine directives for called procedures is also added to the summary informa-
tion. Fourth, information about global variables is extended to include whether
that variable appears in an acc declare directive.

Normally, a procedure call to a routine in an OpenACC compute construct or
device routine that does not have appropriate acc routine information results
in a compiler error message. Since our new method will implicitly generate or
propagate the routine information at link time, we suppress these errors for
the initial compile step. As mentioned in the previous subsection, the PGI IPA
initial compile phase produces a complete object file. In this case, however, the
object file cannot be complete, since the compiler can’t determine what level of
parallelism should be used for procedures without routine information. This is
the most significant change in the compile workflow. If a user builds a program
with this optimization enabled but then links without IPA, the program will fail
to link.

3.3 Propagating acc routine Information with IPA

There are five small modifications to the interprocedural analysis to support acc
routine propagation. These are all done with a single depth-first pass through
the call graph. Indirect procedure calls (through a function pointer) are not
handled. See the discussion on limitations in Sect. 5.

First, a procedure call in an OpenACC compute construct or in a device
routine was so annotated in the summary information. This allows IPA to check
whether the callee was already marked as a device routine. If not, IPA will mark it
as an implicit device routine and recurse to any of its callees. Second, if the callee
was marked as a device routine but the file containing the caller did not have that
routine information, IPA will propagate that information to the callee. Third, if
the callee is marked as a device routine with one parallelism level, but the caller
had an acc routine directive for that routine with a different parallelism level,
IPA will generate a fatal error message. Fourth, IPA will assign a parallelism
level for any implicit device routine. Normally, IPA will treat any implicit device
routine as acc routine seq. However, if this routine calls another routine with
a higher parallelism level (gang > worker > vector > seq), the implicit device
routine is assigned the highest parallelism level of all routines called.

During the call graph traversal, IPA checks for several types of errors, and
issues fatal error messages if any are found. IPA checks that the call site is at
the proper level of parallelism for the callee. For instance, a call within a gang-
parallel loop cannot be made to a routine gang procedure, because gang-level
parallelism was already exploited at the call site. IPA also checks that explicit acc
routine information at each call site and procedure definition match. Finally,
IPA checks that any global variable referenced in an implicit device routine
has appeared in an acc declare directive. IPA can’t implicitly insert an acc
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declare directive without also inserting data movement to keep the host and
device copies of the global variable coherent, and that’s a problem that we don’t
know how to solve at this point. However, it can and does propagate the acc
declare from the definition site to any file where it is referenced in an OpenACC
construct or a device routine.

3.4 Recompile Step

Assuming no errors were detected, IPA finishes by determining whether any
new interprocedural information can be used to optimize any function in each
object file. Implicit OpenACC routine information is one such type of informa-
tion. As mentioned earlier, interprocedural optimizations are usually optional,
as the existing initial compile generates a complete object file. In this case, the
recompile is required, since the initial compile was made with inadequate infor-
mation. IPA will create a description of the implicit acc routine information
along with any other interprocedural optimization information, and reinvoke the
compiler to reprocess any object file that needs to be recompiled. This might
be because the object file contains a procedure that needs to be compiled with
a new implicit acc routine directive for the device, or because the object file
contains an OpenACC compute construct or device routine that calls some other
procedure for which no routine information was available in the initial compile.
The recompile then generates an optimized object file, which is then used in the
final link.

4 Examples

In this section, we use C code snippets to show how OpenACC routine propa-
gation benefits programmers.

4.1 Propagating acc routine seq as Default

This example shows implicit device routine generation. The original code is
shown in Fig. 2. The parallel region in function test1 in file main1.c calls func-
tion func1a in file func1.c. Further, func1a calls func1b in that same source file.
In this case the programmer omits the explicit acc routine directive from the
func1a prototype in main1.c as well as from the definitions of func1a and func1b
in func1.c. IPA recognizes the call to func1a in the compute construct in test1
and marks it by default as a device routine. It then marks func1b as a device
routine because it is called in func1a. Since func1b has no further calls, IPA
will by default mark it as acc routine seq. Since func1a only calls one seq
routine, it is marked the same way. Here, both source files are recompiled with
the implicit routine directive information in both files.
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extern float func1a( float );

...
void test1( float* x, int n){

#pragma acc parallel loop copy(x[0:n])

for( int i = 0; i < n; ++i )

x[i] = func1a(x[i]);

}

(a) main1.c

float func1b( float* x ){
return x%2;

}
...

float func1a( float* x ){
return func1b(x) + 1;

}

(b) func1.c

Fig. 2. Implicit acc routine generation.

4.2 Propagating routine Type Across Files

Here we present two examples of IPA propagation of acc routine level of paral-
lelism. The first example propagates the level of parallelism from the procedure
definition to the call sites; the sample code is shown in Fig. 3. The programmer
has inserted an acc routine directive with the gang clause for the function
definition of func2a in func21.c. IPA propagates this annotation to the function
prototype in main2.c. Similarly, the programmer has inserted an acc routine
directive with the worker clause for the function definition of func2b in func22.c.
IPA propagates this to its prototype in func21.c. In this case, IPA only needs to
recompile the two files main2.c and func21.c, because no new information was
propagated to func22.c.

The second example propagates the level of parallelism from a prototype
declaration to the function definition; the sample code is shown in Fig. 4. Here
the prototype of func3a in main3.c is annotated with acc routine vector. IPA
propagates this annotation to the definition of func3a in func3.c. Since func3b
has no annotation, IPA adds the default acc routine seq directive. Only func3.c
is recompiled, since main3.c has no new information.

4.3 Detecting routine Level of Parallelism Mismatch Across Files

This example shows error detection of mismatched level of parallelism between
a prototype at the call site and the definition in another file, or between two
prototypes in different files; the sample code is in Fig. 5. Here the programmer
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extern float func2a( float );

...
void test2( float* x, int n){

#pragma acc parallel loop copy(x[0:n])

for( int i = 0; i < n; ++i )

x[i] = func2a(x[i]);

}

(a) main2.c

extern float func2b( float );

...
#pragma acc routine gang

float func2a( float* x ){
return func2b(x) + 1;

}

(b) func21.c

#pragma acc routine worker

float func2b( float* x ){
return x%2;

}

(c) func22.c

Fig. 3. Propagating level of parallelism from function definition to call sites.

has marked the declaration of func4a in main4.c as acc routine gang, but
marked its definition in func4.c as acc routine vector. This could have led to
incorrect execution and wrong output on execution. IPA detects this mismatch
and generates an error identifying the inconsistency.

4.4 Detecting Unannotated Global Variable Usage

One additional feature of the implementation is described here in Fig. 6. In this
case the function func5a is called from a parallel region in function test5. The
programmer has omitted the acc routine annotation for function func5a, but
IPA detects this and marks it by default as acc routine seq. But function
func5a accesses the global variable glob y. Since this global variable does not
appear in a acc declare directive, it cannot be accessed from the device. IPA
detects this and generates an appropriate error message. Without this feature,
the error would have been produced in later stage where this file was being
recompiled.
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#pragma acc routine vector

float func3a( float );

...
void test3( float* x, int n){

#pragma acc parallel loop copy(x[0:n])

for( int i = 0; i < n; ++i )

x[i] = func3a(x[i]);

}

(a) main3.c

float func3b( float* x ){
return x%2;

}
...

float func3a( float* x ){
return func3b(x) + 1;

}

(b) func3.c

Fig. 4. Propagating routine type from a declaration to the definition.

#pragma acc routine gang

extern float func4a( float );

...
void test4( float* x, int n){

#pragma acc parallel loop copy(x[0:n])

for( int i = 0; i < n; ++i )

x[i] = func4a(x[i]);

}

(a) main4.c

#pragma acc routine vector

float func4a( float* x ){
return x++;

}

(b) func4.c

Fig. 5. routine type mismatch between the definition and the declarations.

5 Summary

OpenACC requires that routines to be called on an accelerator device be anno-
tated, so the compiler will know to generate device code for calls to them. The
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int glob_y = 100;

...
float func5a( float* x ){

return x*glob_y + x;

}
...

void test5( float* x, int n){
#pragma acc parallel loop copy(x[0:n])

for( int i = 0; i < n; ++i )

x[i] = func5a(x[i]);

}

(a) main5.c

Fig. 6. Global variable inside accelerator code without declare directive.

directive annotation must also declare the level of parallelism used in that pro-
cedure, so the correct code can be made at the call site. The current OpenMP
target directive set has an equivalent requirement. This is a cause of much frus-
tration when porting programs, particularly for C++ programs where many calls
are made to templated functions that appear in system header files that users
can’t modify. The specific problem for C++ programs is handled by the PGI
compiler in the C++ front end, by transitively marking any unannotated proce-
dure that can be called from an OpenACC compute construct with acc routine
seq. The same mechanism could be applied to C or Fortran programs as well.
However, while extremely useful, it does not address the problem of inserting
these directives when the caller and callee appear in separate files.

This paper describes a semiautomatic approach to detecting and generating
implicit device routine annotations across files, using interprocedural analysis.
For simple procedures, IPA will mark these for single thread execution with
the seq level of parallelism. For procedures that contain parallel loops, the user
has to mark only the procedure definition with the appropriate level of paral-
lelism, and IPA will propagate that to all call sites. IPA can also detect common
errors, such as an invalid call site, mismatched directives for the same routine,
or global variable use in an implicit device routine. While our implementation
is designed for OpenACC, it could be applied equally for an OpenMP compiler
that implements target offload to an accelerator device.

Our implementation is a straightforward addition to the flexible interproce-
dural analysis and optimization feature in the PGI compilers. Similar enhance-
ments could be added to any compiler that implements whole program or inter-
procedural analysis. The major change to the PGI IPA framework is that with
this feature enabled, interprocedural analysis and optimization at link time
becomes required, since without the link-time propagation of the routine infor-
mation, the device code will not link successfully.
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There are limitations to the general procedure and limitations in our specific
implementation. The implementation is based on traversal of the call graph.
Indirect calls through procedure pointers generally will generate an imprecise
call graph, and would require that either all possible target procedures be made
available on the device, or that the user explicitly limit the set of target pro-
cedures. Our IPA implementation does not propagate information for indirect
calls at this time.

Even though a programmer may not include the routine directive for a
procedure, he or she may add loop directive for loops inside the routine. The
loop directive annotations could be used to guide the level of parallelism to use
for implicit device routines. Even without explicit loop directives, the compiler
may be able to determine that a loop in a procedure could be safely executed
in parallel. If such a procedure were called at sites where such parallelism could
be exploited, an implementation could implicitly add a level of parallelism other
than seq. Neither of these features is included in our implementation.

We are also exploring other situations where IPA can be used to shift work
from the programmer to the compiler. One instance, specific to the PGI compiler
for NVIDIA GPUs, has to do with using CUDA Managed Memory for allocatable
data. The PGI compiler supports a -ta=tesla:managed option, which compiles
the OpenACC compute constructs for execution on NVIDIA Tesla GPUs, and
also replaces all dynamic memory allocation to use CUDA managed memory.
Managed memory will be automatically migrated or paged between host and
device memories, and thus reduces the need for OpenACC data directives and
simplifies the job for the programmer. However, managed memory allocation and
deallocation is relatively expensive. Currently, the managed suboption replaces
all dynamic memory allocation. We are exploring whether we could use IPA
to only replace the dynamic allocation for data that gets used in OpenACC
compute constructs, using the cheaper system memory allocation for data that
is only used on the host CPU.

Our IPA currently allows the compiler to automatically choose which pro-
cedures to inline, even across files. Inlining is especially beneficial for NVIDIA
GPUs; the overhead of maintaining the call stack and the information lost at
procedure boundaries is relatively more costly for a GPU. We are exploring opti-
mizing the inlining decisions to prioritize inlining of procedures called in a device
compute construct.

We are also exploring whether we can use IPA to find more errors at com-
pile time. For instance, if a compute construct includes a present clause for
some data structure, IPA might be used to determine whether there are calls to
the procedure contains the compute construct where the data structure is not
present, and to issue a compile-time warning or error, avoiding the need to trace
this error at runtime.

Finally, we are working with the OpenACC committee to explore whether
it is useful to compile multiple versions of a procedure, each with a different
level of parallelism. For instance, a SAXPY procedure might be called in several
different contexts. If called within a vector loop, the procedure must be compiled
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to run on a single thread in routine seq mode. However, if called in a gang
loop, it could be compiled to run in parallel in routine worker or routine
vector mode. We have seen at least one production application where such a
feature would be useful. If that feature is added to OpenACC, then the routine
propagation procedure would be modified to detect this situation and propagate
the information appropriately.
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Abstract. Line segment intersection is one of the elementary operations
in computational geometry. Complex problems in Geographic Informa-
tion Systems (GIS) like finding map overlays or spatial joins using polyg-
onal data require solving segment intersections. Plane sweep paradigm
is used for finding geometric intersection in an efficient manner. How-
ever, it is difficult to parallelize due to its in-order processing of spatial
events. We present a new fine-grained parallel algorithm for geometric
intersection and its CPU and GPU implementation using OpenMP and
OpenACC. To the best of our knowledge, this is the first work demon-
strating an effective parallelization of plane sweep on GPUs.

We chose compiler directive based approach for implementation
because of its simplicity to parallelize sequential code. Using Nvidia Tesla
P100 GPU, our implementation achieves around 40X speedup for line
segment intersection problem on 40K and 80K data sets compared to
sequential CGAL library.

Keywords: Plane sweep · Line segment intersection ·
Directive based programming · OpenMP · OpenACC

1 Introduction

Scalable spatial computation on high performance computing (HPC) environ-
ment has been a long-standing challenge in computational geometry. Spatial
analysis using two shapefiles (4 GB) takes around ten minutes to complete using
state-of-the art desktop ArcGIS software [15]. Harnessing the massive parallelism
of graphics accelerators helps to satisfy the time-critical nature of applications
involving spatial computation. Directives-based parallelization provides an easy-
to-use mechanism to develop parallel code that can potentially reduce execution
time. Many computational geometry algorithms exhibit irregular computation
and memory access patterns. As such, parallel algorithms need to be carefully
designed to effectively run on a GPU architecture.

Geometric intersection is a class of problems involving operations on shapes
represented as line segments, rectangles (MBR), and polygons. The operations
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can be cross, overlap, contains, union, etc. Domains like Geographic Information
Systems (GIS), VLSI CAD/CAM, spatial databases, etc. use geometric inter-
section as an elementary operation in their data analysis toolbox. Public and
private sector agencies rely on spatial data analysis and spatial data mining to
gain insights and produce an actionable plan [14]. We are experimenting with the
line segment intersection problem because it is one of the most basic problems
in spatial computing and all other operations for bigger problems like polygon
overlay or polygon clipping depends on results from it. The line segment inter-
section problem basically asks two questions - “are the line segments intersecting
or not?” and if they are intersecting “what are the points of intersection?” The
first one is called intersection detection problem and the second one is called
intersection reporting problem. In this paper, we present an algorithmic solution
for the latter.

Plane sweep is a fundamental technique to reduce O(n2) segment to segment
pair-wise computation into O(nlogn) work, impacting a class of geometric prob-
lems akin to the effectiveness of FFT-based algorithms. Effective parallelization
of the plane-sweep algorithm will lead to a breakthrough by enabling accelera-
tion of computational geometry algorithms that rely on plane-sweep for efficient
implementation. Examples include trapezoidal decomposition, construction of
the Voronoi diagram, Delaunay triangulation, etc.

To the best of our knowledge, this is the first work on parallelizing plane
sweep algorithm for geometric intersection problem on a GPU. The efficiency
of plane sweep comes from its ability to restrict the search space to the imme-
diate neighborhood of the sweepline. We have abstracted the neighbor finding
algorithm using directive based reduction operations. In sequential implementa-
tions, neighbor finding algorithm is implemented using a self-balancing binary
search tree which is not suitable for GPU architecture. Our multi-core and many-
core implementation uses directives-based programming approach to leverage
the device-specific hardware parallelism with the help of a compiler. As such
the resulting code is easy to maintain and modify. With appropriate pragmas
defined by OpenMP and OpenACC, the same source code will work for a CPU
as well as a GPU.

In short, the paper presents the following research contributions

1. Fine-grained Parallel Algorithm for Plane Sweep based intersection problem.
2. Directives-based implementation with reduction-based approach to find

neighbors in the sweeplines.
3. Performance results using OpenACC and OpenMP and comparison with

sequential CGAL library. We report upto 27x speedup with OpenMP and
49x speedup with OpenACC for 80K line segments.

The rest of the paper is structured as follows. Section 2 presents a general
technical background and related works to this paper. Section 3 describes our
parallel algorithm. Section 4 provides details on OpenMP and OpenACC imple-
mentations. Section 5 provides experimental results. Conclusion and future work
is presented in Sect. 6. Acknowledgements are in the last section.
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2 Background and Related Work

There are different approaches for finding geometric intersections. In addition
to the simple brute force method, there is a filter and refine method that uses a
heuristic to avoid unnecessary intersection computations. For a larger dataset,
filter and refine strategy is preferred over brute force. Plane sweep method works
best if the dataset can fit in memory. However, the plane sweep algorithm is not
amenable to parallelization due to the in-order sequential processing of events
stored in a binary tree and a priority queue data structure. In the existing
literature, the focus of parallel algorithms in theoretical computational geometry
has been in improving the asymptotic time bounds. However, on the practical
side, there has been only a few attempts to parallelize plane sweep on multi-cores.
Moreover, those algorithms are not suitable to fine-grained SIMD parallelism in
GPUs. This has led to the parallelization of brute force algorithms with O(n2)
complexity and parallelization of techniques like grid partitioning on GPUs. The
brute force algorithm that involves processing all segments against each other
is obviously embarrassingly parallel and has been implemented on GPU, but its
quadratic time complexity cannot compete even with the sequential plane sweep
for large data sets. The uniform grid technique does not perform well for skewed
data sets where segments span an arbitrary number of grid cells. Limitations in
the existing work is our motivation behind this work.

In the remaining subsections, we have provided background information
about segment intersection problem, different strategies used to solve the prob-
lem, existing work on the parallelization in this area and directive based pro-
gramming.

2.1 Segment Intersection Problem

Finding line intersection in computers is not as simple as solving two mathe-
matical equations. First of all, it has to do with how the lines are stored in the
computer – not in the y = mx + c format, but rather as two endpoints like (x1,
y1, x2, y2). One reason for not storing lines in a equation format is because
most of the lines in computer applications are finite in nature, and need to have
a clear start and end points. Complex geometries like triangle, quadrilateral or
any n-vertices polygon are further stored as a bunch of points. For example a
quadrilateral would be stored like (x1, y1, x2, y2, x3, y3, x4, y4) and each sequen-
tial pair of points would form the vertices of that polygon. So, whenever we do
geometric operations using computers, we need to be aware of the datatypes
used to store the geometries, and use algorithms that can leverage them.

For non-finite lines, any two lines that are not parallel or collinear in 2D space
would eventually intersect. This is however not the case here since all the lines
we have are finite. So given two line segments we would first need to do a series
of calculation to ascertain whether they intersect or not. Since they are finite
lines, we can solve their mathematical equations to find the point of intersection
only if they intersect.
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In this way we can solve the segment intersection for two lines but what
if we are given a collection of line segments and are asked to find out which
of these segments intersect among themselves and what are the intersection
vertices. Since most complex geometries are stored as a collection of vertices
which results in a collection of line segments, segment intersection detection and
reporting the list of vertices of intersection are some of the most commonly solved
problems in many geometric operations. Geometric operations like finding the
map overlays and geometric unions all rely at their core on the results from the
segment intersection problem. Faster and more efficient approaches in segment
intersection will enable us to solve a wide variety of geometric operations faster
and in a more efficient manner.

2.2 Naive Brute Force Approach

Like with any computational problem, the easiest approach is foremost the brute
force approach. Algorithm1 describes the brute force approach to find segment
intersection among multiple lines.

Algorithm 1. Naive Brute Force
1: Load all lines to L
2: for each line l1 in L do
3: for each line l2 in L do
4: Test for intersection between l1 and l2
5: if intersections exists then
6: calculate intersection point
7: store it in results
8: end if
9: end for

10: end for

The brute force approach works very well compared to other algorithms for
the worst case scenario where all segments intersect among themselves. For N
line segments, its time complexity is O(N2). This is the reason we have paral-
lelized this algorithm here. However, if the intersections are sparse, then there
are heuristics and sophisticated algorithms available. The first method is to use
filter and refine heuristic which we have employed for joining two polygon layers
where the line segments are taken from polygons in a layer. The second method
is to apply Plane Sweep algorithm.

Filter and Refine Approach: Let us consider a geospatial operation where we
have to overlay a dataset consisting of N county boundaries (polygons) on top
of another dataset consisting of M lakes from USA in a Geographic Information
System (GIS) to produce a third dataset consisting of all the polygons from both
datasets. This operation requires O(NM) pairs of polygon intersections in the
worst case. However, not all county boundaries overlap with all lake boundaries.
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Fig. 1. Polygon intersection using filter and refine approach

This observation lends itself to filter and refine strategy where using spatial data
structure like Rectangle tree (R-tree) built using bounding box approximation
(MBR) of the actual boundaries, we prune the number of cross layer polygon
intersections [1]. We have employed this approach while handling real spatial
data. Figure 1 shows the workflow for joining two real-world datasets. The output
consists of counties with lakes. The compute-intensive part here is the refine
phase. Our directive based parallelization is used in the refine phase only.

2.3 Plane Sweep Algorithm

Plane sweep is an efficient algorithmic approach used in finding geometric inter-
sections. Its time complexity is O((N + K) log N) where N is the number of
line segments and K is the number of intersections found. In the worst case, K
is O(N2), which makes it an O(N2 log N) algorithm. Parallelization of plane
sweep algorithm will impact many computational geometry algorithms that rely
on plane-sweep for efficient implementation e.g. spatial join, polygon overlay,
voronoi diagram, etc. The Bentley-Ottmann algorithm is a plane sweep algo-
rithm, that given a collection of lines, can find out whether there are intersect-
ing lines or not [5]. Computational geometry libraries typically use plane sweep
algorithm in their implementations.

Algorithm 2 describes plane sweep using a vertical sweepline. The procedures
for HandleStartEvent, HandleEndEvent and HandleIntersectionEvent used in
Algorithm 2 are given in Algorithms 4, 5, 6 respectively. For simplicity in pre-
sentation, following assumptions are made in Algorithm2:

1. No segment is parallel to the vertical sweeplines.
2. No intersection occurs at endpoints.
3. No more than two segments intersect in the same point.
4. No overlapping segments.
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Algorithm 2. Plane Sweep
1: Load all lines to L
2: Initialize a priority queue (PQ) for sweeplines which retrieves items based on the

y-position of the item
3: Insert all start and end points from L to PQ
4: Initialize a sweepline
5: While PQ is not empty:

If the nextItem is startevent:
The segment is added to the sweepline
HandleStartEvent(AddedSegment)

If the nextItem is endevent:
The segment is removed from the sweepline
HandleEndEvent(RemovedSegment)

If the nextItem is intersection-event:
[Note that there will be two contributing lines at intersection point.
Let these two lines be l1 and l2.]

HandleIntersectionEvent(l1,l2)
Record the intersecting pairs

The segments that do not adhere to our assumptions in our dataset are called
degenerate cases.

2.4 Existing Work on Parallelizing Segment Intersection Algorithms

Methods for finding intersections can be categorized into two classes: (i) algo-
rithms which rely on a partitioning of the underlying space, and (ii) algorithms
exploiting a spatial order defined on the segments. Plane sweep algorithm and
theoretical algorithms developed around 80’s and 90’s fall under the second cat-
egory [3,7,8]. These theoretical PRAM algorithms attain near-optimal poly-
logarithmic time complexity [3,7,17]. These algorithms focus on improving the
asymptotic time bounds and are not practical for implementation purposes.
These parallel algorithms are harder to implement because of their usage of
complex tree-based data structures like parallel segment tree and hierarchical
plane-sweep tree (array of trees) [4]. Moreover, tree-based algorithms may not
be suitable for memory coalescing and vectorization on a GPU.

Multi-core and many-core implementation work in literature fall under the
first category where the input space is partitioned for spatial data locality. The
basic idea is to process different cells in parallel among threads. Based on the data
distribution, existing parallel implementations of geometric intersection algo-
rithm use uniform or adaptive grid to do domain decomposition of the input
space and data [2,4,6]. Ideal grid dimension for optimal run-time is hard to
determine as it depends not only on spatial data distribution, but also on hard-
ware characteristics of the target device. Moreover, the approach of dividing the
underlying space has the unfortunate consequence of effectively increasing the
size of the input dataset. For instance, if an input line segment spans multiple
grid cells, then the segment is simply replicated in each cell. Hence, the problem
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size increases considerably for finer grid resolutions. In addition to redundant
computations for replicated data, in GPU with limited global memory, mem-
ory allocation for intermediate data structure to store replicated data is not
space-efficient. Plane sweep does not suffer from this problem because it is an
event-based algorithm.

The brute force algorithm that involves processing all line segments against
each other is obviously embarrassingly parallel and has been implemented on
GPU [11], but its quadratic time complexity cannot compete even with the
sequential plane sweep for large data sets. Our current work is motivated by the
limitations of the existing approaches which cannot guarantee efficient treatment
of all possible input configurations.

Parallel algorithm developed by McKenney et al. and their OpenMP imple-
mentation is targeted towards multi-core CPUs and it is not fine-grained
to exploit the SIMT parallelism in GPUs [9,10,12]. Contrary to the above-
mentioned parallel algorithm, our algorithm is targeted to GPU and achieves
higher speedup. In the context of massively parallel GPU platform, we have
sacrificed algorithmic optimality by not using logarithmic data structures like
priority queue, self-balancing binary tree and segment tree. Our approach is
geared towards exploiting the concurrency available in the sequential plane sweep
algorithm by adding a preprocessing step that removes the dependency among
successive events.

2.5 OpenMP and OpenACC

When using compiler directives, we need to take care of data dependencies and
race conditions among threads. OpenMP provides critical sections to avoid race
conditions. Programmers need to remove any inter-thread dependencies from the
program.

Parallelizing code for GPUs has significant differences because GPUs are sep-
arate physical devices with their numerous cores and their own separate physical
memory. So, we need to first copy the spatial data from CPU to GPU to do any
data processing on a GPU. Here, the CPU is regarded as the host and the GPU
is regarded as the device. After processing on GPU is finished, we need to again
copy back all the results from the GPU to the CPU. In GPU processing, this
transfer of memory has overheads and these overheads can be large if we do
multiple transfers or if the amount of memory moved is large. Also, each sin-
gle GPU has its own physical memory limitations and if we have a very large
dataset, then we might have to copy it to multiple GPUs or do data processing
in chunks. Furthermore, the functions written for the host may not work in the
GPUs and will require writing new routines. Any library modules loaded on the
host device is also not available on a GPU device.

The way we achieve parallelization with OpenACC is by doing loop paral-
lelization. In this approach each iteration of the loop can run in parallel. This
can only be done if the loops have no inter-loop dependencies. Another app-
roach we use is called vectorization. In the implementation process, we have to
remove any inter-loop dependencies so that the loops can run in parallel without
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any side-effects. Side-effects are encountered if the threads try to write-write or
write-read at the same memory location resulting in race conditions.

3 Parallel Plane Sweep Algorithm

We have taken the vertical sweep version of the Bentley-Ottmann algorithm
and modified it. Instead of handling event points strictly in the increasing y-
order as they are encountered in bottom-up vertical sweep, we process all the
startpoints first, then all the endpoints and at last we keep on processing until
there aren’t any unprocessed intersection points left. During processing of each
intersection event, multiple new intersection events can be found. So, the last
phase of processing intersection events is iterative. Hence, the sequence of event
processing is different than sequential algorithm.

Algorithm 3 describes our modified version of plane sweep using a vertical
sweepline. Figure 2 shows the startevent processing for a vertical bottom up
sweep. Algorithm 3 also has the same simplifying assumptions like Algorithm2.
Step 2, step 3 and the for-loop in step 4 of Algorithm3 can be parallelized using
directives.

Algorithm 3. Modified Plane Sweep Algorithm
1: Load all lines to L
2: For each line l1 in L:

Create a start-sweepline (SSL) at the lower point of l1
For each line l2 in L:

If l2 crosses SSL:
update left and right neighbors

HandleStartEvent(l1)
3: For each line l1 in L:

Create an end-sweepline (ESL) at the upper point of l1
For each line l2 in L:

If l2 crosses ESL:
update left and right neighbors

HandleEndEvent(l1)
4: While intersection events is not empty, for each intersection event:

Create an intersection-sweepline (ISL) at the intersection point
For each line l in L:

If l crosses ISL:
update left and right neighbors

// let l1 and l2 are the lines at intersection event
HandleIntersectionEvent(l1, l2)

5: During intersection events, we record the intersecting pairs

Algorithm 3 describes a fine-grained approach where each event point can be
independently processed. Existing work for plane sweep focuses on coarse-grained
parallelization on multi-core CPUs only. Sequential Bentley-Ottmann algorithm
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Algorithm 4. StartEvent Processing
1: procedure HandleStartEvent(l1)

Intersection is checked between
l1 and its left neighbor
l1 and its right neighbor

If any intersection is found
update intersection events

2: end procedure

Algorithm 5. EndEvent Processing
1: procedure HandleEndEvent(l1)

Intersection is checked between
the left and right neighbors of l1

If intersection is found
update intersection events

2: end procedure

Algorithm 6. IntersectionEvent Processing
1: procedure HandleIntersectionEvent(l1,l2)

Intersection is checked between
the left neighbor of the intersection point and l1
the right neighbor of the intersection point and l1
the left neighbor of the intersection point and l2
the right neighbor of the intersection point and l2

if any intersection is found
update intersection events

2: end procedure

Fig. 2. Vertical plane sweep. Vertical plane sweep showing sweeplines (dotted lines)
corresponding to starting event points only. P1 to P4 are the intersection vertices found
by processing start event points only. L1, L2 and L3 are the active line segments on
the third sweepline from the bottom. Event processing of starting point of L3 requires
finding its immediate neighbor (L2) and checking doesIntersect (L2, L3) which results
in finding P2 as an intersection vertex.
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processes the event points as they are encountered while doing a vertical/hori-
zontal sweep. Our parallel plane sweep relaxes the strict increasing order of event
processing. Start and End point events can be processed in any order. As shown
in step 4 of Algorithm 3, intersection event point processing happens after start
and end point events are processed. An implementation of this algorithm either
needs more memory to store line segments intersecting the sweepline or needs
to compute them dynamically thereby performing more work. However, this is
a necessary overhead required to eliminate the sequential dependency inherent
in the original Bentley-Ottmann algorithm or its implementation. As we point
out in the results section, our OpenMP and OpenACC implementations perform
better than the existing work.

Degree of Concurrency: The amount of concurrency available to the algo-
rithm is limited by Step 4 due to the fact that intersection events produce more
intersection events dynamically. Hence, it results in a dependency graph where
computation on each level generates a new level. The critical path length of the
graph denoted by l is 0 < l <

(
n
2

)
where n is the input size. In general, l is less

than the number of intersection points k. However, if l is comparable to k, then
the Step 4 may not benefit from parallelization.

3.1 Algorithm Correctness

The novelty in this parallel algorithm is our observation that any order of con-
current events processing will produce the same results as done sequentially, pro-
vided that we schedule intersection event handling in the last phase. In a parallel
implementation, this can be achieved at the expense of extra memory require-
ment to store the line segments per sweepline or extra computations to dynami-
cally find out those line segments. This observation lends itself to directive based
parallel programming because now we can add parallel for loop pragma in Steps
2, 3 and 4 so that we can leverage multi-core CPUs and many-core GPUs. The
proof that any sweepline event needs to only consider its immediate neighbors for
intersection detection is guaranteed to hold as shown by the original algorithm.

Bentley-Ottmann algorithm executes sequentially, processing each sweepline
in an increasing priority order with an invariant that all the intersection points
below the current sweepline has been found. However, since we process each
sweepline in parallel, this will no longer be the case. The invariant in our parallel
algorithm is that all line segments crossing a sweepline needs to be known a priori
before doing neighborhood computation. As we can see, this is an embarrassingly
parallel step.

Finally, we can show that Algorithm 3 terminates after finding all intersec-
tions. Whenever start-events are encountered they can add atmost two intersec-
tion events. End-events can add atmost one intersection event and intersection
events can add atmost 4 intersection events. Because of the order in which the
algorithm processes the sweeplines, all the intersection points below the current
sweepline will have been found and processed. The number of iterations for Step
2 and Step 3 can be statically determined and it is linear in the number of inputs.
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However, the number of iterations in Step 4 is dynamic and can be quadratic.
Intersection events produce new intersection events. However, even in the worst
case with

(
n
2

)
intersection points generated in Step 4, the algorithm is bound to

terminate.

3.2 Algorithmic Analysis

Time Complexity. For each of the N lines there will be two sweeplines, and
each sweepline will have to iterate over all N lines to check if they intersect or
not. So this results in 2N2 comparison steps, and then each intersection event
will also produce a sweepline and if there are K intersection points this results
in K * N steps so the total is 2N2 + K ∗ N steps. Assuming that K � N , the
time-complexity of this algorithm is O(N2).

Space Complexity. Since there will be 2N sweeplines for N lines and for each
K intersection events there will be K sweeplines. The extra memory requirement
will be O(N +K) and assuming K � N , the space-complexity of the algorithm
is O(N).

4 Directive-Based Implementation Details

Although steps 2, 3 and 4 of Algorithm3 could run concurrently, we implemented
it in such a way that each of the sweeplines within each step is processed in
parallel. Also, in step 4 the intersection events are handled in batch for the ease
of implementation. Furthermore, we had to make changes to the sequential code
so that it could be parallelized with directives. In the sequential algorithm, the
segments overlapping with a sweepline are usually stored in a data structure
like BST. However, when each of the sweeplines are needed to be processed in
parallel, using a data structure like the BST is not feasible so we need to apply
different techniques to achieve this. In OpenMP, we can find neighbors by sorting
lines in each sweepline and processing them on individual threads. Implementing
the same sorting based approach is again not feasible in OpenACC because we
cannot use the sorting libraries that are supported in OpenMP. So, we used
a reduction-based approach supported by the reduction operators provided by
OpenACC to achieve this without having to sort the lines in each sweepline.

Listing 1.1. Data structure for point

struct Point {
var x , y ;
Point ( var x , var y ) ;

}
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Listing 1.2. Data structure for line

struct Line {
Point p1 , p2 ;
var m, c ;

Line ( Point p1 , Point p2 ) {
m = (( p2 . y − p1 . y ) / ( p2 . x − p1 . x ) ) ;
c = (p1 . y ) − m∗( p1 . x ) ;

}
} ;

Listing 1.3. Routine for intersection point

#pragma acc rou t in e
Point i n t e r s e c t i o nPo i n t ( Line l1 , Line l 2 ) {

var x = ( l 2 . c − l 1 . c )/ ( l 1 .m − l 2 .m) ;
var y = l1 .m∗x + l1 . c ;
return Point (x , y ) ;

}
Listing 1 shows the spatial data structures used in our implementations. The
keyword var in the listing is meant to be a placeholder for any numeric datatype.

Finding neighboring line segments corresponding to each event efficiently is
a key step in parallelizing plane sweep algorithm. In general, each sweepline has
a small subset of the input line segments crossing it in an arbitrary order. The
size of this subset varies across sweeplines. Finding neighbors per event would
amount to sorting these subsets that are already present in global memory indi-
vidually, which is not as efficient as global sorting of the overall input. Hence, we
have devised an algorithm to solve this problem using directive based reduction
operation. A reduction is necessary to avoid race conditions.

Algorithm 7 explains how neighbors are found using OpenACC. Each hori-
zontal sweepline has a x-location around which the neighbors are to be found. If
it is a sweepline corresponding to a startpoint or endpoint then the x-coordinate
of that point will be the x-location. For a sweepline corresponding to an intersec-
tion point, the x-coordinate of the intersection point will be the x-location. To
find the horizontal neighbors for the x-location, we need the x-coordinate of the
intersection point between each of the input lines and the horizontal sweepline.
Then a maxloc reduction is performed on all such intersection points that are
to the left of the x-location and a minloc reduction is performed on all such
intersection points that are to the right of the x-location to find the indices of
previous and next neighbors respectively. A maxloc reduction finds the index
of the maximum value and a minloc reduction finds the index of the minimum
value. OpenACC doesn’t directly support the maxloc and minloc operators so
a workaround was implemented. The workaround includes casting the data and
index combined to a larger numeric data structure for which max and min reduc-
tions are available and extracting the index from reduction results.
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Figure 3 shows an example for finding two neighbors for an event with
x-location as 25. The numbers shown in boxes are the x-coordinates of the
intersection points of individual line segments with a sweepline (SL). We first
find the index of the neighbors and then use the index to find the actual
neighbors.

Algorithm 7. Reduction-based Neighbor Finding
1: Let SL be the sweepline
2: Let x be the x-coordinate in SL around which neighbors are needed
3: L ← all lines
4: prev ← MIN , nxt ← MAX
5: for each line l in L do-parallel reduction(maxloc:prev, minloc:nxt)
6: if intersects(l,SL) then
7: h ← intersectionPt(l,SL)
8: if h < x then
9: prev = h

10: end if
11: if h > x then
12: nxt = h
13: end if
14: end if
15: end for

Polygon Intersection Using Filter and Refine Approach: As discussed
earlier, joining two polygon layers to produce third layer as output requires a
filter phase where we find pairs of overlapping polygons from the two input layers.
The filter phase is data-intensive in nature and it is carried out in CPU. The next
refine phase carries out pair-wise polygon intersection. Typically, on a dataset of
a few gigabytes, there can be thousands to millions of such polygon pairs where
a polygon intersection routine can be invoked to process an individual pair.
First, we create a spatial index (R-tree) using minimum bounding rectangles
(MBRs) of polygons of one layer and then perform R-tree queries using MBRs
of another layer to find overlapping cross-layer polygons. We first tried a fine-
grained parallelization scheme with a pair of overlapping polygons as an OpenMP
task. But this approach did not perform well due to significantly large number of
tasks. A coarse-grained approach where a task is a pair consisting of a polygon
from one layer and a list of overlapping polygons from another layer performed
better. These tasks are independent and processed in parallel by OpenMP due
to typically large number of tasks to keep the multi-cores busy.

We used sequential Geometry Opensource (GEOS) library for R-tree con-
struction, MBR querying and polygon intersection functions. Here, intersection
function uses sequential plane-sweep algorithm to find segment intersections.
We tried naive all-to-all segment intersection algorithm with OpenMP but it is
slower than plane sweep based implementation. Our OpenMP implementation
is based on thread-safe C API provided by GEOS. We have used the Prepared-
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Fig. 3. Reduction-based neighbor finding. Here the dotted lines are the parallel threads
and we find the left and right neighbor to the given x-cord (25) on the sweepline and
their corresponding indices. p and n are thread local variables that are initialized
as MIN and MAX respectively. As the threads execute concurrently their value gets
independently updated based on Algorithm 7.

Geometry class which is an optimized version of Geometry class designed for
filter-and-refine use cases.

Hybrid CPU-GPU Parallelization: Only the refine phase is suitable for GPU
parallelization because it involves millions of segment intersections tests for large
datasets. Creating intersection graph to identify overlapping polygons is carried
out on CPU. The intersection graph is copied to the GPU using OpenACC data
directives. The segment intersection algorithm used in OpenACC is the brute
force algorithm. We cannot simply add pragmas to GEOS code. This is due
to the fact that OpenACC is not designed to run sophisticated plane sweep
algorithm efficiently. For efficiency, the code needs to be vectorized by the PGI
compiler and allow Single Instruction Multiple Thread (SIMT) parallelization.
Directive-based loop parallelism using OpenACC parallel for construct is used.
The segment intersection computation for the tasks generated by filter phase
are carried out in three nested loops. Outermost loop iterates over all the tasks.
Two inner for loops carry out naive all-to-all edge intersection tests for a polygon
pair.
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5 Experimental Results

5.1 Experimental Setup

Our code was run on the following 3 machines:

– Everest cluster at Marquette university: This machine was used to run the
OpenMP codes and contained the Intel Xeon E5 CPU v4 E5-2695 with 18
cores and 45 MB cache and base frequency of 2.10 GHz.

– Bridges cluster at the Pittsburgh Supercomputing Center: A single GPU node
of this cluster was used which contained the NVIDIA Tesla P100 containing
3584 cuda cores and GPU memory of 12 GB.

– Our sequential GEOS and OpenMP code was run on 2.6 GHz Intel Xeon
E5-2660v3 processor with 20 cores in the NCSA ROGER Supercomputer.
We carried out the GPU experiments using OpenACC on Nvidia Tesla P100
GPU which has 16 GB of main memory and 3, 584 CUDA cores operating
at 1480 MHz frequency. This GPU provides 5.3 TFLOPS of double precision
floating point calculations. Version 3.4.2 of GEOS library was used1.

Dataset Descriptions: We have used artificially generated and real spatial
datasets for performance evaluation.

Generated Dataset: Random lines were generated for performance measurement
and collecting timing information. Datasets vary in the number of lines gener-
ated. Sparsity of data was controlled during data set generation to have about
only 10% of intersections. Table 1 shows the datasets we generated and used and
the number of intersections in each dataset. The datasets are sparsely distributed
and number of intersections are only about 10% of the number of lines in the
dataset. Figure 4 depicts a randomly generated set of sparse lines.

Real-World Spatial Datasets: As real-world spatial data, we selected polygonal
data from Geographic Information System (GIS) domain2,3 [13]. The details of
the datasets are provided in Table 2.

Table 1. Dataset and corresponding number of intersections

Lines Intersections

10k 1095

20k 2068

40k 4078

80k 8062

1 https://trac.osgeo.org/geos/.
2 http://www.naturalearthdata.com.
3 http://resources.arcgis.com.

https://trac.osgeo.org/geos/
http://www.naturalearthdata.com
http://resources.arcgis.com
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Fig. 4. Randomly generated sparse lines

Table 2. Description of real-world datasets.

Dataset Polygons Edges Size

1 Urban areas 11K 1,153K 20 MB

2 State provinces 4K 1,332K 50 MB

3 Sports areas 1,783K 20,692K 590 MB

4 Postal code areas 170K 65,269K 1.4 GB

5 Water bodies 463K 24,201K 520 MB

6 Block boundaries 219K 60,046K 1.3 GB

5.2 Performance of Brute Force Parallel Algorithm

Using Generated Dataset: Table 3 shows execution time comparison of
CGAL, sequential brute-force (BF-Seq) and OpenACC augmented brute-force
(BF-ACC) implementations.

Key takeaway from the Table 3 is that CGAL performs significantly better
than our naive code for sparse set of lines in sequential and the increase in
sequential time is not linear with the increase in data size. OpenACC however
drastically beats the sequential performance especially for larger data sizes.

Table 3. Execution time by CGAL, naive Sequential vs OpenACC on sparse lines

Lines CGAL BF-Seq BF-ACC

10k 3.96 s 8.19 s 0.6 s

20k 9.64 s 35.52 s 1.52 s

40k 17.23 s 143.94 s 5.02 s

80k 36.45 s 204.94 s 6.73 s
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Using Real Polygonal Dataset: Here the line segments are taken from the
polygons. The polygon intersection tests are distributed among CPU threads in
static, dynamic and guided load-balancing modes supported by OpenMP. Table 4
shows the execution time for polygon intersection operation using three real-
world shapefiles listed in Table 2. The performance of GEOS-OpenMP depends
on number of threads, chunk size and thread scheduling. We varied these parame-
ters to get the best performance for comparison with GEOS. For the largest data
set, chunk size as 100 and dynamic loop scheduling yielded the best speedup for
20 threads. We see better performance using real datasets as well when compared
to optimized opensource GIS library.

For polygonal data, OpenACC version is about two to five times faster than
OpenMP version even though it is running brute force algorithm for the refine
phase. The timing includes data transfer time. When compared to the sequential
library, it is four to eight times faster.

Table 4. Performance comparison of polygon intersection operation using sequential
and parallel methods on real-world datasets.

Dataset Running time (s)

Sequential Parallel

GEOS OpenMP OpenACC

Urban-States 5.77 2.63 1.21

USA-Blocks-Water 148.04 83.10 34.69

Sports-Postal-Areas 267.34 173.51 31.82

5.3 Performance of Parallel Plane Sweep Algorithm

Table 5 shows the scalability of parallel plane sweep algorithm using OpenMP
on Intel Xeon E5. Table 6 is comparison of CGAL and parallel plane sweep (PS-
ACC). Key takeaway from the Table 6 is that for the given size of datasets the
parallel plane sweep in OpenACC drastically beats the sequential performance
of CGAL or the other sequential method as shown in Table 3.

Table 5. Parallel plane sweep on sparse lines with OpenMP

Lines 1p 2p 4p 8p 16p 32p

10k 1.9 s 1.22 s 0.65 s 0.37 s 0.21 s 0.13 s

20k 5.76 s 3.24 s 1.78 s 1.08 s 0.66 s 0.37 s

40k 20.98 s 11.01 s 5.77 s 3.3 s 2.03 s 1.14 s

80k 82.96 s 42.3 s 21.44 s 12.18 s 6.91 s 3.78 s
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Table 6. CGAL vs OpenACC parallel plane sweep on sparse lines

Lines CGAL PS-ACC

10k 3.96 s 0.33 s

20k 9.64 s 0.34 s

40k 17.23 s 0.41 s

80k 36.45 s 0.74 s

Table 7. Speedup with OpenACC when compared to CGAL for different datasets

10K 20K 40K 80K

BF-ACC 6.6 6.34 3.43 5.42

PS-ACC 12 28.35 42.02 49.26

5.4 Speedup and Efficiency Comparisons

Table 7 shows the speedup gained when comparing CGAL with the OpenACC
implementation of the brute force (BF-ACC) and plane sweep approaches (PS-
ACC) on NVIDIA Tesla P100. Figure 5 shows the time taken for computing
intersection on sparse lines in comparison to OpenACC based implementations
with CGAL and sequential brute force. The results with directives are promising
because even the brute force approach gives around a 5x speedup for 80K lines.
Moreover, our parallel implementation of plane sweep gives a 49x speedup.

Figure 6 shows the speedup with varying number of threads and it validates
the parallelization of the parallel plane sweep approach. The speedup is consis-
tent with the increase in the number of threads. Figure 7 shows the efficiency
(speedup/threads) for the previous speedup graph. As we can see in the figure,

Fig. 5. Time comparison for CGAL, sequential brute-force, OpenACC augmented
brute-force and plane sweep on sparse lines
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Fig. 6. Speedups for the parallel plane sweep with varying OpenMP threads on sparse
lines

Fig. 7. Efficiency of the parallel plane sweep with varying OpenMP threads on sparse
lines

the efficiency is higher for larger datasets. There is diminishing return as the
number of threads increase due to the decrease in the amount of work available
per thread.

Also, doing a phase-wise comparison of the OpenACC plane sweep code
showed that most of the time was consumed in the start event processing (around
90% for datasets smaller than 80K and about 70% for the 80K dataset). Most of
the remaining time was consumed by end event processing with negligible time
spent on intersection events. The variation in time is due to the fact that the
number of intersections found by different events is not the same. Moreover, start
event processing has to do twice the amount of work in comparison to end event
processing as mentioned in Algorithms 4 and 5. There are fewer intersection
point events in comparison to the endpoint events.
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6 Conclusion and Future Work

In this work, we presented a fine-grained parallel algorithm targeted to GPU
architecture for a non-trivial computational geometry code. We also presented
an efficient implementation using OpenACC directives that leverages GPU par-
allelism. This has resulted in an order of magnitude speedup compared to the
sequential implementations. We have also shown our compiler directives based
parallelization method using real polygonal data. We are planning to integrate
the present work with our MPI-GIS software so that we can handle larger
datasets and utilize multiple GPUs [16].

Compiler directives prove to be a promising avenue to explore in the future
for parallelizing other spatial computations as well. Although in this paper we
have not handled the degenerate cases for plane sweep algorithm, they can be
dealt with the same way we would deal with degenerate cases in the sequential
plane sweep approach. Degenerate cases arise due to the assumptions that we
had made in the plansweep algorithm. However, it remains one of our future
work to explore parallel and directive based methods to handle such cases.
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Appendix A Artifact Description Appendix

A.1 Description

Check-List (Artifact Meta Information)

– Algorithm:
All algorithms are mentioned and described in the paper itself and can be
referred to in Algorithms 1 and 3.

– Program:
The Computational Geometry Algorithms Library (CGAL) and Geometry
Engine Open Source (GEOS) were external libraries that were used.

– Compilation:
Compilations were done using the g++ compiler and pgc++ compilers.
for OpenACC: pgc++ -acc -ta=tesla:cc60 -o prog prog.cpp
for OpenMP: g++ -fopenmp -o prog prog.cpp
for CGAL: g++ -lcgal -o prog prog.cpp
for GEOS: g++ -lgeos -o prog prog.cpp

– Hardware:
Description of the machines used to run code can be found in Sect. 5.1 for
further information.

– Publicly available:
CGAL, GEOS, OpenMP, OpenACC, gcc and pgcc are all publicly available.
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How Software Can Be Obtained (if Available). All of the software and
code we used to build up our experiments were freely and publicly available.
However, our code implementation can be found in the website: https://www.
mscs.mu.edu/∼satish/mpiaccgis.html.

Hardware Dependencies. To be able to get the most out of OpenMP, a
multicore CPU would be needed. And to be able to run OpenACC kernels a
GPU would be needed.

Software Dependencies. CGAL, GEOS, OpenMP and OpenACC libraries
must be installed. Compilers like gcc and pgcc are also needed.

Datasets. Real world spatial data were used and datasets containing ran-
dom lines were generated. Please refer to Sect. 5.1 for more information. Gener-
ated datasets are also posted in the website: https://www.mscs.mu.edu/∼satish/
mpiaccgis.html, however they can be generated on your own.

A.2 Installation

1. Configure the multicore CPUs and GPU to run on your system
2. Install the necessary libraries
3. Download or generate the necessary datasets
4. Download the code
5. Check that the datasets are in the proper directory pointed by the code, if

not then fix it
6. Compile the code
7. Execute the compiled executable
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