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Abstract An exact solution to the problem of a hydromagnetic natural convective
mass transfer flow of an incompressible viscous electrically conducting non-Gray
optically thin fluid past an impulsively started semi-infinite vertical plate with ramped
wall temperature in presence of appreciable radiation, thermal diffusion and uniform
transverse magnetic field is presented. The magnetic Reynolds number is assumed to
be small enough to neglect the induced hydromagnetic effects. Closed form Laplace
Technique is adopted to get the exact solutions of the resultant non-dimensional gov-
erning equations. The influences of thermal radiation, ramped parameter, magnetic
field, thermal diffusion and time on the flow and transport characteristics are studied
graphically.

Keywords Optically thin + Thermal radiation * Thermal diffusion + Natural
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Nomenclature
B Magnetic flux density;
By Strength of the applied magnetic field, Tesla or %;
C Molar species concentration, k{’:fl;
C, Specific heat at constant pressure, kgLK;
Coo Concentration far away from the plate, lﬂgl;
m
Cy Species concentration at the plate, k:l‘fl;
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Mass diffusivity, ri,

Molar thermal diffusivity, ™ k“f“",
Planck function;

Gravitational acceleration vector;
Acceleration due to gravity, s%‘;
Thermal Grashof number;
Solutal Grashof number;
Current density vector;
Absorption coefficient; %
Magnetic parameter;

Pressure, %,

Prandtl number;

Fluid velocity vector;
Radiative heat flux vector;
Radiation heat flux, %,
Radiation parameter;

Ramped parameter;

Schmidt number;

Soret number;

Time, s;

Characteristic time, s;
Temperature, K;

Isothermal temperature, K;

Temperature far away from the plate, K;

Component of fluid velocity, ;
Plate velocity, %;

(x',y',2') Cartesian coordinate system, (m, m, m);

Greek symbols

. .. 1 A
o  Electrical conduct1v1ty, O

Fluid den51ty, =55
Poo Fluid density far away from the plate, I%,
i Coefficient of VlSCOSlty, = or 22 ;
K Thermal conduct1v1ty, ;
m K
B Coefficient of thermal expansion, %;
E Coefficient of solutal expansmn, kr:] ;
ol

v Kinematic viscosity, T;
@, Viscous dissipation of energy per unit volume,
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Subscripts

w  Refers to physical quantities at the plate;
oo Refers to physical quantities far away from the plate;

1 Introduction

MHD is a branch of Physics which is concerned with the motion of electrically
conducting fluids in presence of magnetic field. MHD pumps, MHD generators
and MHD flow meters are some examples of MHD principles. Dynamo and motor
is a classical example of MHD principle. The problems dealing with convection
in hydromagnetic flows have got importance in Geophysics, Astrophysics, Plasma
Physics, Missile technology etc. The MHD principles also find its applications in
medicine and biology. The present form of MHD is based on the pioneer contributions
of several notable authors like Alfven [9], Cowling [10], Shercliff [28], Ferraro and
Plumpton [16] and Crammer and Pai [12].

The natural flow arises in fluid when the change in temperature as well as species
concentration causes density variation leading to the existence of buoyancy forces
acting on the fluid. Free convection or natural convection is a process of heat or mass
transfer in natural flow. The heating of rooms and building by use of radiator is an
example of heat transfer by natural convection. On the other hand, the principles
of mass transfer are relevant to the working of systems such as a home humidifier
and the dispersion of smoke released from a chimney into the environment. The
evaporation of alcohol from a container is an example of mass transfer by natural
convection. Radiation is also a heat transfer process through electromagnetic waves.
Convective flows in presence of radiation are encountered in different industrial
and environment processes. At the high operating temperature, the radiation effect
can be quite significant. Many processes in engineering and industrial areas occur
at high temperatures, and the knowledge of radiation heat transfer becomes very
important for design of pertinent equipment. Heat transfer problems become more
fruitful from the physical point of view when the simultaneous mass transfer effects
on flow are also taken into account. Several authors have carried out model studies
on the problems of free convective hydrodynamic and hydromagnetic flows under
different flow geometries and physical conditions taking into account of thermal
radiation. Some of them are Takhar et al. [35], Mansour [18], Raptis and Perdikis
[25], Mankinde [20], Samad and Rahman [27], Prasad et al. [23], Mbeledogu et al.
[21], Orhan and Ahmet [22], Seth et al. [34], Ahmed [4, 6], Ahmed et al. [5], Ahmed
and Dutta [2, 3]. An analytical solution to the problem of unsteady MHD free-
convection flow with Hall effects of a radiating and heat absorbing fluid past amoving
vertical plate with variable ramped temperature was obtained by Seth et al. [29]. Seth
et al. [30] investigated analytically the problem of heat and mass transfer effects
on unsteady MHD natural convection flow of a chemically reactive and radiating
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fluid through a porous medium past a moving vertical plate with arbitrary ramped
temperature.

In the cases, when both heat and mass transfer occur simultaneously in a moving
fluid, the relations connecting the fluxes and driving potentials are of a more intricate
nature. It is seen that a mass flux can be generated not only by composition gradient
but by temperature gradient as well. The effect concerned with the mass flux under
temperature gradient is termed as the Soret effect. The experimental investigation
of this effect was first performed by renowned Chemist Charles Soret in 1879 and
so this effect is known as the Soret effect in the honour of his name. Soret effect is
concerned with the method of separating havier gas molecules from lighter ones by
ramped temperature gradient over a given volume of a gas containing particles of
different manners. Soret effect is also termed as thermal diffusion effect. Roughly
speaking, thermal diffusion effect deals with the mass flux as a result of temperature
difference. Comprehensive literature on various aspects of thermal diffusion and
diffusion-thermo on different kinds of mass transfer related problems can be found
in Eckert and Drake [15], Kafoussias and Williams [17], Postelnicu [24], Ahmed [4,
6, 8], Ahmed and Sengupta [7].

Laplace transform technique is an integral transform technique. It is generally
used in case of the problems dealing with impulsively started flow. It also finds its
application in case of small Reynolds number flow problems. That is for slow motion
or creeping motion. Solutions obtained under the scheme of Laplace transform are
generally exact or of closed form. Therefore it does not require stability analysis
for checking of validation. Owing to this fact, a good number of researchers have
carried out their research works by adopting this method in different kinds of flow
problems under different physical and geometrical conditions. Some of them are
Ahmed [6], Ahmed et al. [5], Ahmed and Dutta [3], Seth et al. [29-33], Das and Jana
[14], Agarwalla and Ahmed [1], Mahanthesh et al. [19], Das et al. [13] and Shah
et al. [26].

As the present author is aware, no attempt has been made till now to investigate
the problem of natural convective hydromagnetic flow of an electrically conduct-
ing viscous incompressible non-Gray optically thin fluid past an impulsively started
semi-vertical infinite plate with ramped wall temperature in presence of thermal
diffusion, thermal radiation, and uniform transverse magnetic field taking the char-
acteristic time independent of flow properties. Such an attempt has been made in
the present work. It is worthwhile to mention that Equations and Solutions of the
problem in hand in absence of mass transfer effect are consistent to those of the work
of Ahmed and Dutta [3].
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2 Gray and Non-gray Gases

The optimal thickness of a material is defined by

t—log(lo)
= log,| = ).

where I is the original intensity of the beam of light and I is the intensity of light
after passing through the material.

A gas is called optically thin if T « 1 and it is said to be optically thick if
7 > 1. Optical thickness is a dimensionless quantity and it measures the capacity of
a particular material.

A gas is said to be a Gray gas if the optical thickness t of the gas is independent
of the wave number of electromagnetic radiation. Otherwise, the gas is said to be
non-Gray. In general, the commonly found atmospheric gases are non-Gray.

In Cogley’s [11] model, the rate of radiation heat flux ¢, in optically thin non-Gray
gas near equilibrium is specified by

V.4 = 41(T — Tx),

where
r 5
€pr
K dh.
/( WD (8T>
0

3 Inverse Laplace Transforms of Some Special Functions

L L e f(©)) = Hi - a)F(t - a).
1L L*l(e 5y S
W
m L () =,
Iv. L‘l(s lm) = el
V. L‘l(e_fy) =erfc<2fﬁ),
VI L*l(ff;") - 2\/;—% - yerfc(ziﬁ),
VIL L’l(i;ﬁ) = \/;[%(# - éy(6t+y Jerfe %[)
VIIL L*l{e’s‘f — e, y, )_z[(1+ )erfc(%g) ]
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—VsyvE
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-1 —2 :f(éé?nvy9t)
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X yf f )’\/_ >
(2 4[) ’ fc( fﬂ/_
E_ Y\/_ —\f (y\/_ )
*(2 4Jﬁ) T\ V)
eV (P rar) n1(l —4ar)
. L ( 3 )— 1 o(m,a, 1) — T Sada o(n,a,t)
. nt e—(-q2+at).
2a./7 ’

where 1 = %ﬁ, o(m,a,t) = ezﬂmerfc(n +/ar) + e’Z”Eerfc(n — Jat) and
o(n,a,t) = ezn*/aerfc(n + \/E) — e‘zn*/aerfc(n — \/E)

4 Heaviside’s Unit Step Function, Error Function,
and Complementary Error Function

Heaviside’s unit function is defined by

H(t_a):{o,t<a

I,t>a’

The Error function is defined as

erf(t) = %/e_”zdu.
0

The complementary Error function is defined as

T

2 e 2 [ e
erfc(t):l—erf(t):l—ﬁ/e du——/e du.
0
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5 Some Properties of Error Function and Complementary

Error Function

L erf'(0)= %
IL erfc(0) = —%v
III. erf(0) =0,
IV. erfc(0) =1,
V. erf(x)+erf(—x) =0,
VL. erfc(x)+erfc(—x) =2,
VIL. erfc(x) —erfc(—x) = —2erf(x),
VIIL erfc(z) = _jﬁ ,
IX. erf'(z) = 2ﬁ ,
X. erfcd(z)+erfc(—z) = —4\/ge_zz.

6 Mathematical Formulation of the Problem

251

Equations governing the motion of an incompressible, viscous, electrically conduct-
ing radiating fluid in the presence of a uniform transverse magnetic field taking into

account of the effect of thermal diffusion are:
Continuity equation

V.-q=0,
Magnetic field continuity equation
V.-B=0,
Ohm’s law for moving conductor
J=0(E+qxB),

MHD momentum equation with buoyancy force

9
p[a—?/ +(q - V)q} =—Vp+J x B+pgt+p Viq,

D

@)

3)

“4)
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Energy equation

aT 5 J?
pCh| o+ @ VT | =kVT+¢+— =V g, (5)

Species continuity equation

aC ) 2
W+(q«V)C:DMV C+ DyV-T. ©6)

All the physical quantities are defined in the Nomenclature.

Consider a transient natural convective hydromagnetic mass transfer flow of an
incompressible, viscous and electrically conducting optically thin non-Gray fluid
past a semi-infinite vertical plate in the presence of a transverse magnetic field of
uniform strength By. Initially the plate and surrounding fluid were at rest at the same
temperature 7,, with constant concentration Co, at all the points in the fluid. At
time ¢ = 0F, the plate starts to move suddenly in its own plane with speed Uj.
The concentration near the plate rises to C,, and the plate temperature is instantly
raised linearly to T, + (T, — Too)% for 0 < t’ < 1y, and the constant temperature
T, (T, > T) is maintained at t’ > 1.

In order to get the mathematical model of the theoretical problem idealized,
impose the following restrictions:

I. All the fluid properties are constant except the density in the buoyancy force
term.
II. Viscous and Ohmic dissipation of energy are negligible.
III. Magnetic Reynolds number is small enough to neglect the induced magnetic
field in comparison to the applied magnetic field.
IV. Flow is parallel to the plate.
V. Plate is electrically non-conducting.
VI. Radiation heat flux in the direction of the plate is negligible in comparison to
that in the normal direction.
VIL.  No external electric field is applied for which the polarization voltage is neg-
ligible leading to E = 0.

Introduce arectangular Cartesian space-time coordinate system (x’, v, 7, t’) with
X axis along the plate in the upward vertical direction, Y axis normal to the plate
directed into the fluid region and Z axis along the width of the plate. Letq = (u’, 0, O)
denote the fluid velocity and B = (0, By, 0) be the applied magnetic field at the point
(x',y', 2/, 1) in the fluid.

The radiation heat flux vector q, is given by q, = (0, ¢,, 0).

Equation (1) gives (% = 0, which in turn yields,

W = u/(y/’ [/). (7)
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The assumption (VII) and Eq. (3) lead the momentum Eq. (4) to take the form

ou’ 9%u’ ap
— =nu— —pg— — — o B, 8
W uay,z pg— o5 —oByu 8)

and

ad
()—_p

=3y 9)

Equation (9) yields that p is independent of y” and so, along a normal to the plate,
pressure near the plate is the same as that far away from the plate. Based on this fact,
Eq. (8), for the fluid region far away from the plate reduces to

ap
W = —Px8- (10
By eliminating 37” from Egs. (8) and (10), we derive

u’ 3%u' ),
QWZMW'*‘(QOO_F))g_GBOM- (11)

Equation of state according to classical Boussinesq approximation is

Poo = p[1+B(T — Too) + B(C — C)]. (12)
Elimination of p., from Eqgs. (11) and (12) gives

ou’ 9%u’ _ GBgu/
gZUm+gﬁ(T—Too)+gB(C—Coo)— .

13)

The assumption I and Cogley’s [11] assumption lead the Eq. (5) to transform to

C or °r AI(T — Ty) (14)
— =K — — .
pLp ot ay”? e
The species continuity Eq. (6) becomes
aC 92C 0°T
— =Dy—+Dr—. 15
ot M ay/z r ay/Z ( )

The relevant initial and boundary conditions (Ref. 2, 30) to be satisfied by the
Egs. (13), (14) and (15) are

W =0,T=Ts,C=CxVy >0, <0, (16)
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T, —T.
W =UypT=Te+—24,C=C,aty =0,0<1t <t, (17)

fo
uw=U)T=T,C=Cyaty =0,t > 1y, (18)
u —0,T - To,C — Cqx asy — 00,1 > 0. (19)

Now, for the sake of normalization of the flow model, the following non-
dimensional quantities are introduced.

_ _ Lt _ vgB(Tw—Tx) Ugﬁ(Cu —Co) _ Dr(Tw—Tx)
U=y =gt = IO,Gr_— Gm = U3 ,Sr = G
T-Tw 4 _ C—Cx uCp 41v __ oBjv _ v _ Uin
b=g T ¢=¢ o Pr="00= 0 M= "9 Sc= 5, Ra= =~
(20)

In normalized form, the Egs. (13), (14) and (15) reduce to

ou 1 8%u
= — —+ RaGr6 + RaGm¢ — RaMu, 21
3t Ra dy?
86 1 9%
— RaQb, (22)
3t RaPr By

90 1 ¢ Sr 9%

9 ~ Raseay? " Rany @y

The initial and boundary conditions in non-dimensional form are
u=00=0,¢=0 Vy>0,r <0, (24)
u=10=t,¢6=1 aty=0,0<r<1, (25)
u=10=1,¢=1 aty=0,r> 1, (26)
u—0,06—-0,¢é6—>0asy— oo, t>0. 27

7 Method of Solution

On taking Laplace Transforms of the Egs. (21), (22) and (23) and conditions
(24)—(27), the mixed initial and the boundary value problem reduce to a boundary
value problem governed by the equations

d’u

= — (MRa* +sRa)it = —Ra*Grd — Ra*Gm¢, (28)
y
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d*o _
—— — Ra Pr(RaQ +5)0 =0, 29)
dy
d*¢ - d*o
_(1) — RaScd = —SrSc—, (30)
dy? dy?
subject to the conditions
I B | -1
u:;,@:s—z(l—e )cl):—aty:O, 3D
i=0,0=0,¢=0asy— o0o. (32)

The solutions of the Eqs. (28)—(30) subject to the conditions (31) and (32) are as
follows

- 1
0= s_2(1 _ efs)efﬂ/PrRa(RaQﬂ)y’ (33)
(I) — J)le—«/sRaSc_v + (526_ Pr Ru(RaQ+s)y, (34)

—+/Ra(MRa+s)y + e PrRa(RaQ+s)y b—t3e—\/my
for Pr #1,Sc # 1, Pr # Sc

W—Wy + ﬁse—«/my 4 L—%e—\/my
for Pr #1,Sc # 1,Pr = Sc

~VRa(MRa+s)y 4 jioo~V/RaRaQ+s)y | ,;9[%,"

l/_tle

1276

i= ; (35)
for Pr = 1, Pr # Sc
I/—“Oef«/Ra(MRaﬂ)y + L—t“ef\/PrRa(RaQH)y + l/_t12€7 Rasy
forSc =1, Pr # Sc
I/—tnef«/Ra(MRaﬂ)y + L—t14ef»,/Ra(RaQ+s)y + ’21537 Rasy

for Pr=1,Sc=1
where B .
- 1, RaGr ¢ N S - RaG RaG __ RaG
u1:;+ a_rS1+RaGm(Scil_Pr_il)’u2: arS+ amS37 _ SZ mS
S s\ o 1 A(s+RaQ)(lfe’J)
Sl 2(s —a)) (1 —€ )’ S2 — s—a3 |:§ (Pr—Sc)s2(s—ay) |’
. 1 A(H'RHQ)(l 6’4) RaGr RaGm
S5 = ma Pr—Sos’(s—ar) Uy = Q R (Q2 - 03),
~ RaGi RaG _ R G y
iis = —84GSr g + RGm g g = aszQl W(l—e *),
| 1 SrPr(s+RaQ)(1 e'v) SrPr(s+RaQ)(1 e")
0> = s—az [E + s2RaQ Q% - s2RaQ ’
= 1 GrPy RaGm SrSc
M7——+QM+ le"‘mP:;],
- GrP RaGmSrSc pD. 7. — _ RaGm p
U§ = =53 ~ Rato-mse—n I3 49 = —5e—1 P

o
Il

1 _ b 1 1 SrSC(RaQ+s)(lfe’S)
J—z(l—es),Pz——s{' },

s 7 s2Se—D(s—an
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Py SR i = Lo RS, |l + 5|
i = =SS +%,ﬂ12= Gms,, Sy = %4.%’
S :%’MB_""Q oyl ——TZ—%TL
e =—gmli+ QRa(QmM)T3’ s =0T, Ty = 5(1—e™),
=1+ Sr(R“g;;gi 1= (RuQHS)z(lfe"‘)‘

Solving the ordinary 2nd order linear differential equations subject to the con-
ditions (31) and (32) and taking inverse Laplace Transforms of the solutions, the

expressions for temperature 6, concentration ¢ and velocity field u are obtained as
follows

0 =1 — Uy, (36)
+ ¢ — ¢3 for Pr £ Sc
¢:{$1+$i—$zforPriSC’ (37)
iGa,Pr;&l,Sc#l,Pr;&Sc
o=
i:]Ha,Pr;éI,Sc;él,Pr:Sc
o
u = i]u,Przl,Pr;éSc ; (38)
27:1Ku,80=1,Pr7£Sc
a=
i:]La,Przl,Sc:l
a=

where

b1 = Vs, ¢ = 5 [A1 (U3 — W) + A2 (Us — P6) + As(Pr7 — Ps)],

$3 = 52z [A1 (Vo — Wi0) + Ao (W11 — Wi2) + As(Wy — V)], 1 = ¢,

b2 = ,Sé,sé[RaQ(llh —Pg) +Us — Wel, 3 = 32 [RaQ (b1 — ) + Yy — Y2l

RaGr fae
G =VY13,G = Pr—1 [As(P1g — P15) + As(Wi3 — Pie) + Ag(P17 — PYis)],
RaGm
G3 = Se [%9 Scil],
€1 = A7(Y20 — Y21) + As(llfzz —3) + Ag(P13 — Pie) + Ao(P17 — Vrig),
G RaGmA
y=—

(Pr —1)(Pr —Sc) 52

E2=A1n(W20 — V21) + App(P1g — P1s) + Aiz(P13 — Vig) + Aa(P17 — Yig),

Ge — RaGr%_
5 — Pr—l 3
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€3 = As(Prog — U2s) + As(P11 — Y12) + Ag(W1 — U2),

Ge = _;2:?1111 [‘lfzé + ASc 24:|,
§4 = A7(U3 — Ua) + Ag(Vr27 — Wag) + Ag(Us — Wg) + Ajo(U7 — ),
Gy — RaGmA £
(Pr—1)(Pr —Sc) >’
€s = An(V29 — P30) + A2(Wae — W27) + Az (Wi — Ui2) + Aa (U — U2,
Hy =3, Hy = RaGrE&
Pr—1

€6 = Ag(P1a — P1s) + As(Ur13 — Prip) + Ag(W17 — Vis),

RaGm SrSc
H; = (llfw E7>,

Pr— Ra Q
Gm Sr Sc
E7 = C7(V22 — P23) + Cs (V13 — Pi6) + Co(Pr17 — Vig), Hy = TS
Gr Ra
Es = Cro(V14 — V1) + C11(P13 — Vi6) + Cr2(P17 — Yig), Hs = TSe 129,
€9 = As(P2g — Y2s5) + As(U11 — Yi2) + As(Y1 — U2),
H— Gm Ra SrSc
6= 5o (\1’26+ RaQ&O)’
Gm Sr Sc
€10 = C7(V27 — Pg) + Cg(Prs — Pg) + Co(W7 — g), Hy = ——E11,
O(c—-1)
€11 =Ciro(V4 — l!fzs) +Cri(n —Y12) + Cro(Uy — ¥2),
=3, L = Q—M(llfn —g),

Ty = ERL(1g — SrScEp), Jy = minv i
Enn = A7(‘~|f31 — Y32) + Ag(Uan — Ua3) + Ag(Ui3 — Wi6) + At (Y17 — i),

Q i P34),
€13 = B1(Y31 — U32) + Bo(W13 — Wi6) + B3 (W17 — ig),
RaGm SrSc Y9 — W30
Jo =— <§14— 215>,§14= —_,

Sc a3
€15 = A7(llf35 — P3g) + Ag(Pa7 — Wag) + Ag(Us — W) + Ao(U7 — g),
Fo= gt ki ke = Bi(Uy — W) + Ba(ba — Yag) +
By(U33 — Uaa), K1 = V13, K = Ga, K3 = —BaOm [y 5 4 SPrg ],

_ _ - RaGmPrSr
§17 = Bi(Vu1 — Vo) + Bo(Y13 — Yie) + B3 (Y17 — Yis), Ks = T o

€18 = Ba(Pa1 — Ygn) + Bs(ﬂfm —15) + Be(P13 — Vi) + B7 (V17 — Pig),

RaGr SrPr
Ks =— €19, Kg = 1|f45 Ezo ,

Js = —

Pr—1
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€19 = Ag(V2a — Ys) + As(Y11 — Ui2) + As (U1 — U2),
_ _ _ RaGmPrSr
820 = B1(Wa3 — Waa) + Bo(Yas — Wae) + B3(Yag — Vo), K7 = o1 b

€21 = B4(Va9 — Ps0) + Bs(Ya4 — V2s) + Bs(Vrp — Y1) + B7 (P — U2),

Gr Gm Sr
Ly =V3,Ly=— (P17 —ig), L3 =-37 Y3+ —En|,

O—M ORa
€22 = V13 — Vg + RaQ (17 — Pig),
L Oy — i+ Ra QW7 — )]
4= ——=7—"—— —1Vi3 — Vie a 17 — W18)l,
QORa(Q — M)
Ly == [y — si)
ST oMY 34,
L= 20 s+ 0| by = a5 — Wrag + ROy — W)
6= 31 |Vt graon |5 = s 46 + Ra 47 48),
L SIOM [y — s + Ra Qs — Ysa)l, A = SiScPr, B = Pr RaQ
7= ————[U33 — U+ Ra 33 — U34)], A = SrScPr, B = Pr RaQ,
QRa(Q — M)
—B RaQ +a, RaQ +a RaQ
a) = ) 1 = —25 A2 = _—27 3= 2
Pr —Sc aj aj aj
Ra(M — Pr Q) 1 1 RaQ +a
= ————""A1=—5,As = Ay, Ag=——, A1 = 57—,
Pr—1 a; ap ay(a; — a3)
RaQ + a3 RaQ RaQ + a;
Ag= 5———,Ag=—(A7+ Ag), Ao =—""- A1 = 5 ——,
a3(as — ay) ayas aj(a) — az)
RaQ +a; RaQ MRa
Ap=5——— A =—(An+Anp), A = ,az = )
as(ax — ay) aay Sc—1
RaQ + a3 RaQ RaQ +ay
C=—7F—C=-0,C=— . Clo=—F—,Cin =—Cy,
as as as
RaQ _ RaQ - RaQ +a; - RaQ + a3
Cp=-— Lap = A= JAg = — —,
a Sc—1 ai(a; — az) as(az — ay)
_ RaQ RaQ +a
Ag = —(A7+Ag), Ayg = — =———,B,=-B,
apas al
RaQ RaQ Pr - RaQ+d;, - - - RaQ
B3:_ ,dp = ) 1= 2 7B2:_BlvB3:_ )
a 1—Pr d di
di+ RaQ a,+ RaQ RaQ
By=— Bs = — . Bg = —(By+Bs), By = ——,
di(d) — a) ay(ay — dy) diay

V) = f(PrRa, QRa, y,t), ¥ = f(PrRa, QRa,y,t — DH( — 1),
1]}3 = ealtllf(SCRaa a, y, t)a ‘1}4 = ea](til)l'j(SCRaa a, y, r— I)H(t - 1)7
U7 = A(RaSe, v, 1), g = A(RaSc, y, 1 — DH( — 1),
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Ys = erfc(%,/ RatSc>, Y = erfc(%,/ fislc>H(t — 1),

Yo = e Y(Pr Ra, RaQ +ay, y,1),

Yo = e Dy(PrRa, RaQ +ay, y,t — DH(E — 1),

Vi1 = U(PrRa, QRa, y, 1), Y12 = Y(PrRa, QRa, y,t — )H (1 — 1),
V13 = V(Ra, MRa, y,t), 16 = Y(Ra, MRa, y,t — )H(t — 1),

Vs = e Y (Ra, RaM +ay, y, 1),

Yis = e DY (Ra, RaM +a», y,t — DH( — 1),

V17 = f(Ra, MRa, y,t), i3 = f(Ra, MRa,y,t — )H(t — 1),

1
Yo = a—[e‘“’x];(Ra, MRa+asz, y,t) — 1]}13],
3

Pog = ey (Ra, MRa +ay, y, t),

Vo = e Dy(Ra, MRa +ay, y,t — DH(t — 1),
Yoy = e®y(Ra, MRa +as, y, t),

Vo3 = €Dy (Ra, MRa + a3, y,t — DH(t — 1),
Yoy = e Y(PrRa, RaQ +a, y, 1),

Y5 = e?"y(PrRa, RaQ +az, y, NH(t — 1),

1
Y26 = —[e™'W(ScRa, a3, y, 1) — s],

as
Va7 = e Wi(ScRa, a3, y, 1), Uag = e®"DU(ScRa, a3, y, t = DH(t — 1),
U9 = e (Pr Ra, RaQ +ai, y, 1),
Y30 = e “"DY(Pr Ra, RaQ +ay, y, VH(t — 1),
Y31 = " (Ra, MRa +ay, y, 1),
U3 = " "DY(Ra, MRa +ay, y,t — DH(t — 1),

V33 = f(Ra, QRa, y, 1), 34 = f(Ra, QRa, y,t — DH(t — 1),
V35 = e (RaSc, ai, y, 1), U3 = e "Dy (RaSc, ar, y,t — DH( — 1),

V37 = e“"V(Ra, QRa +ay, y, 1),

Usg = """ VY(Ra, QRa+ay, y.t — DH(t — 1),

Y39 = V(Ra, QRa, y, 1), V4o = V(Ra, QRa, y,t — 1)H( — 1),
Ya1 = e (Ra, MRa +d,, y, 1),

Var = e Dy(Ra, MRa +dy, y,t — )H(t — 1),

Va3 = e (Ra, dy, y, 1), Yas = e DY(Ra, dy, y, HH( — 1),
P47 = A(Ra, y, 1), Pug = A(Ra, y,t — DH(t — 1),
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R R
Pys = erfc(%\/ Ta>, Py = erfc(%‘/ %)H(l‘ -1,

Va9 = e Y(Pr Ra, RaQ +d,, y, 1),
Uso = e "Dy (PrRa, RaQ +dy, y, N H(t — 1);

Y, y. 1) = %[eme,fc(g\/; W) +e—ﬁyerfc(§/§— Wﬂ
ey =[5+ 2[5 )eFerse Xﬁn/ﬁ
M Vs 2Ty 2V 7
SE_Y 8 e VTerfe X\/g_m
2 4\ 2V ’

> 2

0,r<1

is the unit step function.
1,t>1

H(t—l):{

8 Rate of Momentum Transfer

The viscous drag per unit area on the plate in the direction of the plate velocity is
quantified by Newton’s law of viscosity as follows

ou’ d
R e (39)
ay y'=0 fo 8_)) y=0

The coefficient of skin friction or the coefficient of the rate of momentum transfer
at the plate is given by

;
— > My, Pr#1,Sc #1,Pr#Sc
a=1
7

Ny, Pr#1,Sc#1,Pr=Sc

a=1

- v :_8_”] = —iPa,Przl,Pr;éSc ;o (40)
M/tO ay y=0 a?l
— 3 Q4,Sc=1,Pr # Sc
(x71
— 3 Sy, Pr=1,Sc=1

e
Il
—_
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where
RaGr
M) =Q;3, M, = Pr—1 [A4(R214 — Q15) + As(Q13 — Qy6) + As(R217 — Q13)],
Me — RaGm G+ _ RaGmA
3T e 1 T pr—se T T T Pr—1)(Pr—S¢) %

N1 = A7(220 — Q1) + Ag(Q220 — Q03) + Ag (8213 — Q216) + A10(£217 — Q13),
M2 = A11(220 — R21) + A12(214 — Q15) + A13(213 — R16) + A14(217 — Q3),

RaGr
Ms = v [A4(S224 — Q25) + A5(211 — Q12) + As(21 — 22)],
Mo = — RO ot [A7(Qs — Q) + Ag(R7 — ag)
6= "o 1|52t pr _go A7 4 8(S227 28
+Ag (25 — Q26) + A1o(£27 — Q3)}1,
My = ARaGmM o ) + A (R — o)
7= T Pr—1)(Pr —sq) A1 (220 30 12(S226 27
+A13(R2 — Q2) + Ag(21 — 22)],
RaGr
Ny =Q;3, N, = Pr_1 [A4(Q14 — Q15) + As(Q13 — Q16) + As(R217 — Q3)],
RaGm SrSc
N; = Qo + {C7(Q0p — Q23) + Cs(R13 — Q16) + Co (217 — Q13)} |,
Pr—1 RaQ
GmSrSc
=TS [C1o(214 — 215) + C11(213 — 216) + C12(217 — QL8]
RaGr
N5 = 5o 1[144(5224 — Qp5) + A5(Q11 — Q12) + As(21 — 22)],
RaGm SrSc
6 = 2 + {C7(Q027 — Q28) + C3(25 — Q) + Co (27 — )} |,
Sc—1 RaQ
GmSrSc
N7 = —————[C10(224 — Q25) + C11(Q11 — Q12) + C12(21 — )],
O(Sc—1)
PL=Qu Py = =2 (@1 — Q)
V=S P = 5 (o 18)5
RaGm - _
5= o 1 [Q210 — ScSr{A7(Q231 — Q32) + Ag(Q22 — 223)
+Ag(Qi3 — Qie) + A10(Q17 — Q) }],
Gm
Py = [B1(8231 — 232) + B2 (213 — Q16) + B3(L217 — Q13)],
(Q —M)(Sc—1)
Gr RaGm| 1 ScSr Qs
Po— _ Q33 — Q34), Ps = — —(QRy9 — Q39) — —— |,
s Q—M( 3 34), Ps Sc—1|:a3( 29 30) Sc—1:|
SrScGm
P = [B1(S237 — Q33) + B2(S239 — L240) + B3(£233 — 234)]1,

Q= M)(Sc—1)
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RaGr
01=Q3,0 = Pr_1 [A4(R214 — Q15) + A5(Q213 — Q16) + As(217 — Q3)],
Gm SrPr | - - _
O3 =—— Qi3+ {B1(Q241 — Qu2) + B2(Qu3 — Qi) + B3(Q17 — Qus) } |
M Pr—1
RaGmPrSr
= —————[B4(Q241 — Q) + B5(Q4 — 2
Q4 Pr_1) [ B4 (241 42) + Bs(Q214 15)
+B6 (213 — Q16) + B7(217 — Q3)],
RaGr
0s = v [A4(224 — Q25) + As(Q11 — Q2) + Ae(R21 — 22)],
Gm SrPr , - - _
Q¢ = V[tas s {B1(Q43 — Qu4) + Ba(Qus — Qug) + B3(Qus — 949)}},
RaGmPrSr
Q7 = ———[B4(S249 — $250) + B5(§224 — 225)
(Pr—1)
+B6 (211 — Q12) + B7(21 — )],
Gr
S1=Q3, 8 =— Q7 — Q13),
1 13, $2 Q—M( 17 18)
Gm Sr
S3=——|Q Q;z — Q R Q7 —Q ,
3 i [ 13+ QRa{ 13 16+ RaQ(Q7 13)}:|
SrGm
S4 = —————[Q3 — Qs+ RaQ(Q17 — Q3)],
YT T QRa(Q - M)
S= —— " Q-
5= m 34),
Gm Sr
Se = — | Q Qus — Que+ R Qu7 — Q s
3 M[ 45 + QRa{ 45 46 + Ra Q(Q47 48)}i|
SIOm oyt RaO(Q — 2a0)]
= - a - .
7= ORa(0 — ) 34 33 34

9 Rate of Heat Transfer

The heat flux ¢* from the plate to the fluid specified by the Fourier law of conduction
is given by

aT T, — Too) 99
. ] G R L)) —} . 1)
y'=0 y=0

q =Kk —
ay’ Upty ay
The coefficient of the rate of heat transfer at the plate in terms of Nusselt number
Nu is expressed as

Uotog* a6
Nu— otd”  _ _ _} — (- ). (42)
K(Tw - TOO) 8y y=0
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10 Rate of Mass Transfer
The mass flux M, at the plate determined by Fick’s law of diffusion is given by

oC Dy(Cy —Cx) 0

M, __DM_i| =_u_¢] (43)
ay’ Uoto Ay Jy—o

The coefficient of the rate of mass transfer at the plate in terms of Sherwood

number is given by

M., Upt 3 —(Ry+ Ry — R3),Pr # Sc
sh— _ Mwbol ¢} _ | R+ Ro— Ry, Prssc )
Dy (Cyp — Coo) ay _(R1+R2_R3),PI‘:SC
where
Ri= Q5. Ry = 5 —[A1(R = Qu) + A2(Qs5 = Qo) + A3(2 — )],
A —_
By = Pr —SC[AI(Q9 — Qo) + A2(Q11 — Q12) + A3(2) — )], Ry = s,
~ SrSc
R = R Q —Q +Q _Q ,
? RaQ[ aQ(S27 — $2g) + 25 — $2]
— SrSc
R = R Qi — )+ —Q ,
} RaQ[ aQ( 2) 11 12]

Q) =¢PrRa, RaQ,t), 2 =¢PrRa, RaQ,t — H)H(t — 1),
Q3 = ¢“'Q(RaSc, ay, t), U = """ VQ(RaSc, ar, t — HH( — 1),

RaSc
e A ( - 1)
Q= / /RaSc(t H(t _,

Qg = “‘tQ(Ra Pr, RaQ +ay, 1),

Qo= """ VQ(Ra Pr, RaQ +ay,t — DH(t — 1),

Q(PrRa, RaQ,1), Q1 = QPrRa, RaQ,t — H)H( — 1),

Qi3 = Q(Ra, RaM, 1), Qe = Q(Ra, RaM,t — )H(t — 1),

Qs = e Q(Ra, RaM +ay, 1), Q15 = ¢?""VQ(Ra, RaM +ay, t — DH(t — 1),

2
I
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Q17 = ¢(Ra, RaM, t), s = ¢(Ra, RaM,t — DVH(t — 1),

1
Qo = —[e‘”’Q(Ra, RaM +ajs,t) — 913],
as

Qo0 = "' Q(Ra, RaM +ay, 1), Q1 = e ""VQ(Ra, RaM +ay,t — DH( — 1),
Qo = ™ Q(Ra, RaM +as, 1), Q3 = e ""VQ(Ra, RaM +as,t — DH(t — 1),
Qs = e Q(PrRa, RaQ +ay, t),

Qs = e VQPrRa, RaQ +ay, t — DH(t — 1),

[
Qg = —[e ¥ Q(ScRa, as, t) — Qs],
as

eale(ScRa’ as, l), 928 — ea3(t_l)Q(SCRCl, az,t — l)H(t - 1)1
Qo9 = "' Q(Pr Ra, RaQ +ay, 1),

Qa0 = """ DQPrRa, RaQ +ay,t — DHH(E — 1),

Q31 = e Q(Ra, RaM +ay, 1), Q3 = ¢ ""VQ(Ra, RaM +a,,t — DH(t — 1),
Q33 = ¢(Ra, RaQ, 1), 24 = ¢(Ra, RaQ,t — )H(t — 1),

Q35 = e""Q(RaSc, ay, 1), Q3 = ¢ ""VQ(RaSc, ay, t — NH(t — 1),

Q37 = "' Q(Ra, RaQ +ay, t), g = ¢“"VQ(Ra, RaQ +ay, t — HH(E — 1),
Q30 = Q(Ra, RaQ, 1), Qo = QURa, RaQ,t — NH( — 1),

Qu = e Q(Ra, RaM +d;, 1), Qp = e ""VQ(Ra, RaM +d,,t — D)H(t — 1),
Quz = e Q(Ra, dy, 1), Qs = e VQ(Ra, dy,t — DH( — 1),

Ra Ra
Qus = —/ —, Queg=—.|——H(@{t - 1),
45 Ve "™ \ (=1 ( )
| Rat [Ra(t — 1
Q= -2 _617948:_2 MH(I—]),
T L

Quo = e Q(Ra Pr, RaQ +d,, 1),
Qso = " VQ(Ra Pr, RaQ +d;,t — DH( — 1),
Qs1 = A7(Q3s — Q36) + Ag (7 — Qo) + Ag(Qs — Q) + A1o(27 — Qs);

sz(z,n,n:—[,/%e—“w Enerf(«/ﬁ)]

pE 1) = —[\/gerf(\/ﬁ) +1/Emerf (V1) + \/?e_“’]'

5%
I
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11 Results and Discussion

Numerical computations for the dimensionless velocity, temperature, concentration,
skin friction, Nusselt number, and Sherwood number have been carried out by assign-
ing some specific values (arbitrarily chosen) to the physical parameters involved like
Soret number Sr, Ramped parameter Ra, radiation parameter O, magnetic parameter
M, solutal Grashof number Gm, thermal Grashof number Gr, Schmidt number Sc
and Prandtl number Pr. Thought the investigation, the values of the Pradtl number
Pr, thermal Grashof number Gr and Schmidt number Sc have been chosen as 0.71,
30, 0.60 respectively as the numerical calculations are concerned. It is worthwhile
to mention that Pr = 0.71 corresponds to air at the temperature of 25 °C and 1
atmospheric pressure and Sc = 0.60 refers to water vapor diffused in dry air. It is
to be noted that in the most of the cases of mass transfer related problems, dry air
is considered as an ideal medium of diffusion (solvent). Because, all most all the
natural gases diffuse in dry air easily. In the present investigation, the fluid is to be
electrically conducting. Dry air is a poor conductor. In contrast, air with moisture is
electrically conducting to a reasonable extent. In the present work, a fluid is required
which is electrically conducting as well as a good solvent. On the basis of this fact,
air is taken as solvent and water vapor as solute. This phenomenon justifies the fact
of taking Pr = 0.71 and Sc = 0.60. Also Gr > 0 presents the externally cool case.
Further both the cases of # < 1 and ¢ > 1 are incorporated in performing the computa-
tions from the exact solutions of the problem under consideration. It is recalled that
t < 1 represents the ramped wall temperature and in contrast ¢ > 1 refers to isothermal
plate.

The concentration profiles for ¢ < 1 and for ¢ > 1 under the influence of Srt, Ra,
Q and normal coordinate y are exhibited in Figs. 1, 2, 3, 4, 5 and 6. These figures
show a comprehensive growth in fluid concentration for increasing the Soret number
Sr and the radiation parameter Q. An interesting observation on the behavior of ¢
under the ramped parameter Ra is marked in Figs. 3 and 4. These two figures depict
that the concentration level of the fluid goes up marginally in a thin layer adjacent to
the plate and thereafter it takes a reverse turn. All the figures uniquely simulate that
the concentration distribution ¢ first increases in a thin layer closed to the wall and
after that it falls asymptotically as y — oo. This is due to the buoyancy force, which
is very much effective near the plate and its influence diminishes in fluid region way
from the plate. As the effects of Sr, Ra and Q on ¢ are concerned, it is immaterial
whether the plate is isothermal or the temperature of the plate is ramped. However
in case of # > 1(isothermal), the asymptotic fall of § — 0 as y — oo is delayed in
comparison to the case of ¢ < 1.

The influences of Ra and Q on the temperature field 6 are displaced in Figs. 7 and
8 for t < 1 and ¢ > 1. These two figures indicate a substantial fall in the temperature
field under the effect of Ra as well as the radiation parameter Q. It is worthwhile
to mention that, in case of Cogley et al. [11]’s model of radiation, radiation acts
like a heat sink. Hence, in the present case, radiation which is similar to heat sink,
absorbs heat from the fluid and as a consequence, the fluid temperature falls under
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Fig. 1 Concentration ¢ versus y for Pr = 0.71, Ra = 10, Sc = 0.6, Q =5,t =0.5
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Fig. 2 Concentration ¢ versus y for Pr = 0.71, Ra =10, Sc =0.6, Q =5,t =2
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Fig. 5 Concentration ¢ versus y for Pr = 0.71, Sr = 10, Sc = 0.6, Ra = 10, t = 0.5
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Fig. 8 Temperature 0 versus y for Pr =0.71, Ra =10,¢t=0.5, t =2
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the radiation effect. This phenomenon establishes the fact that the observation on the
effect of O on 6 is consistent with the physical reality. Further the role of time # on

6 is almost similar to its role on ¢.
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1
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Fig. 9 Velocity u versus y for Gr = 30, Gm =20, Ra =10, Q =5, Sr =10, Sc = 0.6, Pr =
0.71, t =0.5

Figures 9, 10, 11, 12, 13 and 14 present the variation of the velocity field u versus
y under the effects of M, O, Sr for the cases t < 1 and t > 1. A comprehensive fall
in the fluid velocity for increasing the parameter M is marked in Figs. 9 and 10.
It registers the fact that the flow is retarded due to the imposition of the transverse
magnetic field. In real situation, a magnetic body force called Lorentz force gets
generated on interaction of the magnetic field and electrically conducting fluid in
motion. This induced force acts as a resistive force to the flow, which in turn causes
the flow to decelerate. It confirms the consistency of our graphical observation with
the actual physical situation. It is inferred from Figs. 11 and 12 that the thermal
radiation has also some contribution in retarding the fluid motion. Figures 13 and
14 clearly indicate that an increase in the parameter Sr leads the fluid motion to
accelerate to a remarkable extent. All the Figs. 9, 10, 11, 12, 13 and 14 show that the
fluid velocity first increases in a thin layer adjacent to the plate and thereafter it falls
asymptotically as y — oo. It reveals the fact that the buoyancy force is very much
effective near the plate and its influence on the fluid velocity slowly and steadily
gets nullified as moved away from the plate. Like the concentration field ¢ and the
temperature field 6, the asymptotic fall of the fluid velocity gets delayed for ¢ > 1
rather than ¢ < 1. Thus the asymptotic fall of temperature 6 or concentration field ¢
or the velocity field u is faster in case of ramped wall temperature than that of the
isothermal plate temperature.

Figures 15, 16 and 17 demonstrate how the skin friction 7 at the plate is affected
by the magnetic parameter M, Soret number Sr, solutal Grashof number Gm and
time ¢. It is inferred from the Fig. 15 that the shear stress at the plate is diminished for
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Fig. 10 Velocity u versus y for Gr = 30, Gm =20, Ra =10, Q =5,Sr=10, Sc = 0.6, Pr =
0.71, t =2

Fig. 11 Velocity u versus y for Gr = 30, Gm = 20, Ra = 10, M = 4, Sr = 10, Sc =
0.6, Pr=0.71, t =0.5
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Fig. 12 Velocity u versus y for Gr = 30, Gm = 20, Ra = 10, M = 4, Sr = 10, Sc =
0.6, Pr=0.71, t =2
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Fig. 13 Velocity u versus y for Gr = 30, Gm =20, Ra =10, M =4, Q =5, Sc =0.6, Pr=
0.71, t =0.5
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y —

Fig. 14 Velocity u versus y for Gr = 30, Gm =20, Ra =10, M =4, Q =5, Sc =0.6, Pr =
0.71, t =2

increasing M. It reflects the fact that the viscous drag at the plate gets suppressed on
the imposition of the magnetic field. As such strong magnetic field may be applied in
operations for successful inhabitation of the frictional resistance at the plate. The drag
force at the plate due to viscosity seems to be enhanced under the thermal diffusion
effect or buoyancy force (solutal) effect as visualized in Figs. 16 and 17. These two
Figures further predict that the skin friction sharply increases as time progresses in
case of ramped wall temperature (¢ < 1) and it becomes stationary for isothermal
plate (z > 1).

The effects of the ramped parameter Ra and radiation parameter Q on the Nusselt
number Nu are demonstrated in Figs. 18 and 19. It is observed from these two figures
that the rate of heat transfer at the plate rises significantly for increasing the ramped
parameter Ra as well as radiation parameter Q. It leads to conclude that the low
viscosity or high heat absorption raises the heat flux at the plate. The same figures
also register the fact that for + < 1, Nu increases linearly at a very fast rate as ¢
increases and it becomes uniform in case of # > 1.

Figures 20 and 21 depict that an increase in Sr or Ra results in a substantial rise
in the Sherwood number. The two figures uniquely establish that the rate of mass
transfer at the plate falls initially and as the time progresses, it rises up linearly for
t < 1. Like the Nusselt number, the Sherwood number also becomes stationary for
t > 1. It may be concluded from the Figs. 15, 16, 17, 18, 19, 20 and 21 that the
rate of momentum transfer, rate of heat transfer and the rate of mass transfer seem
to be uniform in case of isothermal plate. In contrast, these transport properties get
enhanced almost straight way for ramped wall temperature.
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Fig. 15 Skin friction t versus ¢ for Gr = 30, Gm = 20, Ra = 10, Sr = 10, Sr =10, Q =

5, Sc¢ =0.6, Pr=10.71
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Fig. 16 Skin friction t versus ¢ for Gr = 30, Gm = 20, Ra = 10, M =4, Q =5,Sc = 0.6, Pr =

0.71
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Fig. 17 Skin friction 7 versus ¢ for Gr = 30, Sr = 10, Ra =10, M =4, Q0 =5, Pr =0.71
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Fig. 18 Nusselt number Nu versus 7 for Q = 5, Pr = 0.71
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Fig. 19 Nusselt number Nu versus ¢ for Ra = 10, Pr = 0.71
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Fig. 20 Sherwood number Sh versus ¢ for Q = 5, Sc = 0.6, Ra = 10, Pr = 0.71
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Fig. 21 Sherwood number Sh versus ¢ for Q = 5, Sc = 0.6, Sr = 10, Pr = 0.71

12 Conclusions

The present investigation may be summarized to the following conclusions:

e Drag force at the plate due to viscosity seems to be enhanced under the thermal
diffusion effect or buoyancy force (solutal) effect.

e Skin friction sharply increases as time progresses in case of ramped wall temper-
ature (¢ < 1) and it becomes stationary for isothermal plate (¢ > 1).

e Low viscosity or high heat absorption raises the heat flux at the plate.

e For ¢ < 1, Nu increases linearly at a very fast rate as ¢ increases and it becomes
uniform in case of # > 1.

e An increase in Sr or Ra results in a substantial rise in rate of mass transfer at the
plate.

e Rate of mass transfer at the plate falls initially and as the time progresses, it rises
up linearly for 7 < 1.

13 Future Scope

This chapter deals with the study of an impulsively started convective flow problem.
The mathematical model of the problem is idealized to a considerable extent on
imposition of some physically realistic constraints. A set of closed form solutions
of the resultant governing equations are obtained by adopting the Laplace transform
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technique. There is wide scope of reinvestigation of the same problem numerically
by reducing the number of constraints. In this regard, Crank-Nicolson type implicit
finite difference scheme may be suggested.
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