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Abstract The tremendous advances in micro-fabrication technology have brought
numerous applications to the field of micro-scale science and engineering in recent
decades. Microchannels are inseparable part of microfluidic technology which ne-
cessitate knowledge of flow behavior inside microchannels. For gaseous flows, the
mean free path of a gas is comparable with characteristic length of a microchannel
due to the micro-scale dimension of the channel. So, no-slip velocity assumption
on the boundaries of channel is no longer valid, and a slip velocity needs to be
defined. Although rigorous modeling of rarefied flows requires molecular solutions,
researchers proposed use of slip models for applicability of the continuum equations.
In slip-flow regime (i.e. Knudsen numbers up to 0.1), well-known Maxwell’s first-
order slipmodel is applicable. For higherKnudsen numbers, higher-order slipmodels
can be implemented to extend the applicability limit of the continuum equations. In
the present study, Langhaar’s assumptions for entrance region of two-dimensional
microchannels (microtube, slit-channel and concentric annular microchannel) have
been implemented using high-order slip models. Different slip models proposed
in the literature have been used and velocity profile, entrance length and apparent
friction factor have been obtained in integral forms.

Keywords Microchannel flow · High-order slip · Langhaar’s solution

1 Introduction

In recent decades, progresses inmicro-fabrication technology have open up countless
opportunities formany applications as an extension of theoreticalmicro-scale science
by enabling fabrication of micro-scale devices using photolithographic [1], high
precision mechanical machining [1, 2] and laser machining methods [3, 4]. Through
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these progresses, even fabrication of structures composed of tubes with diameters of
nanometers have become possible [5].Microchannels andmicrotubes are inseparable
part of microfluidic devices, and play a crucial role which necessitates fundamental
knowledge of flow behavior at micro-scale for effective and optimal design of these
devices. Many theoretical investigations have been made on the physics of fluid flow
in channels and ducts at micro-scale [6–8].

One important effect at micro-scale is rarefaction. As characteristic length (L) of
flow approaches to the mean-free-path (λ) of the fluid, continuum approach fails to
be valid and fluid flowmodelingmoves from continuum tomolecular modeling. Rar-
efaction is characterized byKnudsen number (Kn = λ/L). Continuumhypothesis ap-
plies for Kn � 10−3. For 10−1 � Kn � 10, the regime is known as transition regime
in which continuum equations fail to model the fluid flow. In this regime, molecular
models such as DSMC and MD, or solutions of Boltzmann Transport Equation is
required. The regime where 10−3 � Kn � 10−1 is slip-flow regime in which con-
tinuum equations need to be modified through velocity-slip and temperature-jump
boundary conditions to take into account molecular interactions of fluid particles
with the solid bodies within the Knudsen layer [6].

Following a non-dimensionalization with a reference length and velocity scale,
the general form of a velocity-slip boundary condition for an isothermal flow can be
written as [8–11]:

Us −Uwall = A1Kn(∂nU )wall + A2Kn2(∂2
nU )wall, (1)

where (∂n) is gradient in the normal direction of the solid boundary, A1 and A2

are the slip-coefficients. Many researchers proposed to employ different coefficients
based on kinetic theory of rarefied gases [9, p. 74]. For a fully-diffuse reflection, pro-
posed coefficients in the literature are tabulated in Table1. The first term is called as
Maxwell’s first-order slip, and inclusion of the second term turns the boundary condi-
tion into a second-order one. Approximation of Boltzmann Transport equation up to
O(Kn) (i.e. first order in Kn) results in compressible form of Navier-Stokes equa-
tions which require only the first-order boundary conditions. Approximations with
higher order terms result in higher order equations such as Burnett and Woods equa-
tions. However, researchers showed that application of the second-order boundary
condition with Navier-Stokes equations [7, 12–15] or first-order Maxwell boundary

Table 1 Coefficients for different slip models

Model A1 A2

First-order Model 1.0 0

Schamberg Model 1.0 –5π/12

Cercignani Model 1.1466 –0.9756

Deissler Model 1.0 –9/8

Hsia Model 1.0 –1/2

Mitsuya Model 1.0 –2/9
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condition with second-order quasi-hydyrodynamic equations [7] may extend ap-
plicability of the slip-flow regime up to Kn ≈ 0.25. The second-order term in the
boundary condition may introduce some numerical difficulties associated with ac-
curate calculation of the high-order derivatives, especially for complex geometries
[9]. Therefore, some studies introduced higher-order accurate boundary conditions
which include only first-order derivatives [16, 17]. Considering diffuse reflections
of gas molecules, Beskok and Karniadakis [16] proposed a general velocity-slip
boundary condition (will be referred as Beskok Model hereafter) as:

Us −Uwall = Kn
1 − bKn

(∂nU )wall (2)

where b is a general slip coefficient. Strictly speaking, parameter b is a function of
Kn . For a general choice, Eq. (2) is first-order in Kn . However, for a specific choice
of the parameter b, the boundary condition can be transformed into a second-order
one. For slip-flow regime, Beskok andKarniadakis [16] derived a condition to ensure
second-order accuracy of (2) as:

b =
(
1

2

∂2
nUo

∂nUo

)
wall

, (3)

where Uo is the velocity-profile corresponding to a no-slip case (i.e. Kn = 0).
For pressure-driven flows in microchannels, on top of rarefaction effect, low-

Mach-number compressibility effect comes into picture due to high viscous resis-
tance leading to a nonlinear streamwise pressure variation [18–20]. That is to say,
the fluid flow requires compressible modeling to be able to observe this non-linear
streamwise pressure. However, considering short microchannels and/or microchan-
nel flow with low inlet/exit pressure ratio, compressibility effect may be negligible,
and the fluid flow can bemodeled as incompressible.Moreover, length-over-diameter
ratio is typically large for microchannels, which implies entrance effects are negligi-
ble. However, the entrance effects may become quite significant for microchannels
and nanotubes with small length-over-diameter ratio and micropores as a part of
larger scale porous structures.

Study of the entrance effects requires solution of a hydrodynamic entrance prob-
lem. The hydrodynamic entrance problem for an incompressible fluid flow was well
studied for macroscale several decades ago [21–24]. Same problem has been re-
cently re-visited for microscale [8, 13, 25, 26] for different geometries. Although
the hydrodynamic entrance problem is not a true boundary layer problem, boundary
layer idealizations, which neglect axial diffusion of momentum and radial pressure
gradient, are reasonable approximations for laminar flow problems in ducts [21, 22,
26]. Strictly speaking, this type of idealization leads to a solutions independent of
Reynolds number (Re) and suitable for high Re flows. To see the whole picture,
full Navier-Stokes equations with presence of axial momentum diffusion and ra-
dial pressure gradient need to be solved for hydrodynamic entrance (i.e. entry flow)
problems. Solution of full Navier-Stokes equations in the entrance region leads to a



192 R. Rasooli and B. Çetin

peculiar behavior. Velocity overshoots with two symmetric velocity maxima off the
centerline was observed both in numerical [25, 27] and experimental [28] studies.
Main reason of this velocity overshoot is result of the sudden velocity change at the
inlet of a channel due to the no-slip boundary condition.The velocity overshoot is
significant especially for strictly uniform velocity inlet which is actually an idealiza-
tion for practical applications. It was observed that the velocity overshoot is much
weaker for irrotational inlet velocity profiles, or for inlet velocity profiles which are
approximated to a uniform one. The overshoot is only significant at the vicinity of
the channel entrance. The zone where this overshoot can be observed is a function
of Re. Therefore, if measurement data is not gathered close to the inlet of a channel,
the velocity overshoot cannot be detected experimentally [29]. One would expect
a weaker velocity overshoot for the flows in a microchannel, since sudden change
of the velocity at the inlet due to no-slip boundary condition also reduces with the
presence of slip-velocity at the channel wall [25].

At macroscale, following boundary layer idealizations, analytical solutions were
derived employing different methods such as matching method (based on pertur-
bation analysis), integral method, linearization methods [30, pp. 68–73]. Matching
and integral method results in discontinuous solutions for the velocity gradients and
pressure distributions. Alternatively, linearization methods yield continuous solu-
tions, but transverse velocity components may not be predicted rigorously. Three
different linearization procedures are possible: (i) Langhaar’s linearization [21], (ii)
Targ’s linearization [30] and (iii) Sparrow’s linearization [22]. The latter two require
solution of an eigenvalue problem which may have some convergence issues espe-
cially for regions close to the inlet. Langhaar’s linearization, on the other hand, offers
an integral type solution with a satisfactory solution at the centerline, in the vicinity
of the inlet and far downstream. At macroscale, Langhaar’s linerization was imple-
mented for the different geometries such as tube [21], annular tube [31], parallel
plate and rectangular ducts [30, 32].

Many researchers devoted great effort on experimental investigations and pro-
posed different techniques and experimental protocols [18, 19, 33, 34], but still
measurement of different flowparameters to understand fluid physics is a challenging
task. At this point, analytical and numerical models serve as a basis for fundamental
understanding of the phenomena despite the fact that they require some empirical in-
put parameters in the form of slip-coefficients. In addition, analytical and numerical
models serve as a fast way to investigate different scenarios. Present note reports an
analytical solution of a 2D incompressible, isothermal flow in a developing region of
a microchannel considered both in cylindrical and cartesian coordinates (see Fig. 1)
based onLanghaar’s linearization. For rarefaction effect, different second-ordermod-
els are included in the analysis. Moreover, the general velocity-slip boundary condi-
tion proposed by Beskok and Karniadakis [16] for which the general slip-coefficient
is evaluated with high accuracy based on a no-slip case, is implemented. Although
second-order methods extend the applicability of the continuum equations, theoret-
ical background of the models is still a debate [14, 15], and an active research field.
The current model is presented with second-order models available in the litera-
ture. In the light of new studies, the coefficients of the slip models may be revised
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(a) Microchannel in cylindrical coordinates (microtube with
a radial coordinate r) and cartesian coordinates (slit-channel
with a transverse coordinate y)
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(b) Concentric annular microchannel

Fig. 1 Schematics of the 2-dimensional microchannel problems

[15, 35] and so does the current analyticalmodel. By nomeans, the authorswould like
to question the validity of the higher order models considered, rather the extension of
Langhaar’s solution including higher order terms is presented in this note to obtain
integral form of the developing velocity profiles inside microchannels. Furthermore,
hydrodynamic entrance length and apparent friction factor which are quantities of
interest for many engineering calculations are also presented based on the results
derived with lineraization. Analytical nature of the model enables a fast evaluation
of the velocity field without any need for calculation of eigenvalues. Furthermore, it
also enables implementation of Beskok general slip-model with high accuracy. The
proposed model may be extended for the exploration of heat transfer problems at the
incompressible limit (which has been studied in the literature [36–39] for microchan-
nels in the combined entrance region without any need for numerical calculation of
the flow field.

2 Mathematical Modeling

2.1 Velocity Profile

Assuming an incompressible fluidwith constant properties, following Prandtl bound-
ary layer idealizations, the equation of motion in the axial direction (x being the axial
direction) together with continuity equation can be written as:

∇ · u = 0, (4)
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u · ∇ux = 1

ρ
∂xp + ν∇2ux, (5)

where u is the velocity field, p is the pressure field, ux is the velocity component
in the axial direction, ρ is the density and ν is the dynamic viscosity. Moreover,
following boundary layer idealization, (i) the diffusive term in the axial direction
can be neglected compared to the components in the transverse direction, (ii) the
transverse velocities within the channel can be assumed to be small compared to the
axial velocity, and (iii) the pressure gradient in the axial direction can be taken as a
function of axial coordinate only [21, 32].

2.1.1 Microtube and Slit-Channel

With the following dimensionless parameters

λ = ux
Um

, η = ul
Um

, q = r

a
, σ = x

ReDh · Dh
, p̃ = p

1/2ρU 2
m

, (6)

where Um is the mean velocity (which is also the uniform inlet velocity), ul is the
velocity in the transverse direction, a is the scale for the channel height (a = R for a
microtube and half of the channel height for a slit-channel) and ReDh is the Re based
on hydraulic diameter, Eqs. (4) and (5) can be non-dimensionalized as:

2k−2 ∂λ

∂σ
+ ReDh

qk
∂

(
ηqk

)
∂q

= 0, (7)

4k−2λ
∂λ

∂σ
+ 2k−2ReDhη

∂λ

∂q
= −22k−5 ∂p̃

∂σ
+ 1

qk
∂

∂q

(
qk

∂λ

∂q

)
, (8)

where k = 0 corresponds to flow in a slit-channel (i.e. 2D problem in cartesian
coordinates) and k = 1 corresponds to the flow in a microtube (i.e. 2D problem in
cylindrical coordinates). Parameter k is defined to derive the velocity profile on a
common ground for both coordinate systems.

Following Langhaar’s linearization [21, 32], the convective terms on the right
hand side can be replaced by (γ2λ), and Eq. (8) can be written as:

1

qk
∂

∂q

(
qk

∂λ

∂q

)
− γ2λ = 22k−5 ∂p̃

∂σ
. (9)

The solution can be expressed as a combination of modified Bessel’s and hyper-
bolic functions as:

λ(γ, q) = A(γ)G1(γq) + B(γ)G2(γq) + C(γ) (10)



An Extended Langhaar’s Solution for Two-Dimensional Entry … 195

where
G1(γq) = k I0(γq) + (1 − k) cosh(γq)

G2(γq) = k I1(γq) + (1 − k) sinh(γq)

C(γ) = −22k−5

γ2

∂p̃

∂σ

(11)

Coefficients A(γ), B(γ) and C(γ) can be obtained using the boundary condition at
the channel wall:

λ(s)(γ) = −22−kA1Kn
∂λ

∂q

∣∣∣
q=1

+ 42−kA2Kn2
∂2λ

∂q2

∣∣∣
q=1

(12)

λ(g)(γ) = −22−k Kn
1 − bKn

∂λ

∂q

∣∣∣
q=1

(13)

where the superscript (s) stands for the second-order slip in generic form, and (g)
stands for the general-slip model (i.e. Beskok Model). The symmetry boundary con-
dition at the centerline together with the continuity equation reads as:

∫ 1

0
qkλdq = 2−k . (14)

Note that, b is a function of (σ) in the entrance region, and reaches a value of
−2.0 at the region far from the entrance (i.e. fully-developed region).

The velocity profile can be obtained as:

λ(γ, q) = α1γ
nG1(γ) + α2G2(γ) − γαn

1G1(γq)

α1γnG1(γ) + (α2 − 2kαn
1)G2(γ)

(15)

where
α1 = (1 − n)γ (1 − 42−kA2γ

2Kn2) + n(1 − bKn),

α2 = (1 − n)γ2 (22−kA1Kn + k4kA2Kn2) + 22−knγ2Kn .
(16)

n = 0 corresponds to a second-order slip, and n = 1 corresponds to a general-slip
model.

The coefficient b can be derived using Eq. (3) as:

b = −2γ
G1(γ)

G2(γ)
+ 2k (17)

To complete the solution, the relation between the parameters γ and σ needs to
be determined. For this purpose, Eq. (8) can be integrated over the cross-section as:
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∫ 1

0

(
4k−2λ

∂λ

∂σ
+ 2k−2ReDhη

∂λ

∂q

)
qkdq = −

∫ 1

0

(
22k−5 ∂p̃

∂σ

)
qkdq

+
∫ 1

0

1

qk
∂

∂q

(
qk

∂λ

∂q

)
qkdq (18)

The first integral can be simplified using continuity equation, Eq. (7), as:

∫ 1

0

(
4k−2λ

∂λ

∂σ
+ 2k−2ReDhη

∂λ

∂q

)
qkdq = 4k−2 d

dσ

∫ 1

0
λ2qkdq (19)

The second integral can be simplified by writing equation of motion for the central
core of the channel:

−
∫ 1

0

(
22k−5 ∂p̃

∂σ

)
qkdq = 22k−5

k + 1

dλ2
0

dσ
− ∂2λ

∂q2

∣∣∣
q=0

, (20)

where the subscript (“0”) refers to the values at the centerline. Introducing two new
functions F and G as:

F(γ) = 2
∫ 1

0
λ2qkdq − λ2

0

k + 1
,

G(γ) = 25−2k

(
∂λ

∂q

∣∣∣
q=1

− ∂2λ

∂q2

∣∣∣
q=0

) (21)

Equation (18) can be written as:

dσ

dγ
= F ′(γ)

G(γ)
. (22)

Functions F(γ) and G(γ) are written in closed form as:

F(γ) = 2

H2

[ S2

k + 1
− 2Sαn

1G2 + 1

2
γ2α2n

1

[
G2
1 − G2

2 + 1 − k

γ
G1G2

)]

− 1

k + 1

(S − γαn
1

H
)2

(23)

G(γ) = 25−2k γ2αn
1(γ − G2)

H (24)

where
S(γ) = γnα1G1 + α2G2

H(γ) = S − 2kαn
1G2

(25)
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By integrating Eq. (22), the relation between σ and γ can be defined as:

σ = −
∫ ∞

γ

F ′(γ̃)

G(γ̃)
d γ̃. (26)

Once the γ value is selected, Eqs. (15) and (26) defines the velocity profile within
the microchannel.
Using Eqs. (7) and (22), the lateral velocity can be obtained as:

η = − 1

4ReDh

G(γ)

F ′
(γ)

∂

∂γ
Q(γ, q) (27)

where the function Q(γ, q) is expressed as:

Q(γ, q) = qS(γ) − 2kαn
1G2(γq)

H(γ)
(28)

2.1.2 Concentric Annular Microchannel

With the following dimensionless parameters

λ = ux
Um

, η = ul
Um

, q = r

R2
, σ = x

Re · R2
, p̃ = p

1/2ρU 2
m

, (29)

where Um is the mean velocity (which is also the uniform inlet velocity), ul is the
velocity in the transverse direction, R1 is the inner radius, R2 is the outer radius and
Re is the Reynolds number based on the outer radius of channel, Eqs. (4) and (5) can
be non-dimensionalized for a concentric annular microchannel as:

∂λ

∂σ
+ Re

q

∂(ηq)

∂q
= 0 (30)

λ
∂λ

∂σ
+ Re η

∂λ

∂q
= −1

2

∂p̃

∂σ
+ 1

q

∂

∂q

(
q
∂λ

∂q

)
(31)

Similarly, by employing Langhaar’s linearization method [21, 32], the left hand side
term (convective term) can be replaced by (γ2λ), and Eq. (31) reads as:

1

q

∂

∂q

(
q
∂λ

∂q

)
− γ2λ = 1

2

∂p̃

∂σ
. (32)

The solution is obtained as a combination of modified Bessel’s functions as:

λ(γ, q) = A(γ)I0(γq) + B(γ)K0(γq) + C(γ) (33)
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Coefficients A(γ), B(γ) and C(γ) can be found using the boundary condition at the
channel wall,

λ(f )(q = 1) = −2Kn
(

∂λ

∂q

)
q=1

, λ(f )(q = m) = 2Kn
(

∂λ

∂q

)
q=m

(34)

λ(g)(q = 1) = −2
Kn

1 − b1Kn

(
∂λ

∂q

)
q=1

, λ(g)(q = m) = 2
Kn

1 − b2Kn

(
∂λ

∂q

)
q=m
(35)

and the continuity equation reads as:

∫ 1

m
qλdq = 1

2
(1 − m2). (36)

where m is the radii ratio of the channel (m = R1/R2). Note that only the first-order
and Beskok model is considered for the concentric tube without loss of generality of
the modeling. Velocity profile can be obtained using Eqs. (33)–(36). To discuss the
second-order effectsClosed form solution of the velocity profile can be found in the
Appendix. The coefficient b can be written both for the inner and outer walls as:

b1 = 2

(
u

′′
x,0

u
′
x,0

)
q=m

, b2 = −2

(
u

′′
x,0

u
′
x,0

)
q=1

(37)

and can be written in closed form as:

b1 = 2γ2m [K0(γ)I0(γm) − I0(γ)K0(γm)]

γm [K0(γ)I1(γm) + I0(γ)K1(γm)] − 1
− 2

m

b2 = 2

{
γ2 [K0(γ)I0(γm) − I0(γ)K0(γm)]

γI1(γ)K0(γm) + γK1(γ)I0(γm) − 1
+ 1

} (38)

Furthermore, the asymptotic values of b1 and b2 in far distance downstream (i.e.
fully-developed region) can be obtained as:

b(fd)

1 = 2
m2(1 + 2 logm) − 1

m
[
1 + m2(2 logm − 1)

]

b(fd)

2 = 2
m2 + 2 logm − 1

m2 − (1 + 2 logm)

(39)

To obtain the relation between parameters σ and γ, the axial momentum equation,
Eq. (31), should be integrated over the cross-section of the channel as:

∫ 1

m

(
λ

∂λ

∂σ
+ Re η

∂λ

∂q

)
qdq =

∫ 1

m

(
− 1

2

∂p̃

∂σ

)
qdq +

∫ 1

m

1

q

∂

∂q

(
q
∂λ

∂q

)
qdq, (40)
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The first integral can be simplified using the continuity equation as:

∫ 1

m

(
λ

∂λ

∂σ
+ Re η

∂λ

∂q

)
qdq = d

dσ

∫ 1

m
λ2qdq, (41)

Assuming the central core of the velocity is not affected by viscous effects, the first
integral at the right hand side can be simplified as:

∫ 1

m

(
− 1

2

∂p̃

∂σ

)
qdq = 1

2

d

dσ

∫ 1

m
λ̄2qdq − 1 − m2

2

(
∂2λ

∂q2

)
q= m+1

2

, (42)

where the bar values refer to the values at the mean radius of the pipe. The last
integral can also be readily evaluated as:

∫ 1

m

1

q

∂

∂q

(
q
∂λ

∂q

)
qdq =

(
∂λ

∂q

)
q=1

− m

(
∂λ

∂q

)
q=m

, (43)

Substituting all these equations in the Eq. (40) and re-arranging results in:

d

dσ

∫ 1

m

(
λ2 − λ̄2

2

)
qdq =

(
∂λ

∂q

)
q=1

− m

(
∂λ

∂q

)
q=m

− 1 − m2

2

(
∂2λ

∂q2

)
q= m+1

2

(44)
Modifying functions F(γ) and G(γ) for a concentric channels as:

F(γ) =
∫ 1

m

(
λ2 − λ̄2

2

)
qdq

G(γ) =
(

∂λ

∂q

)
q=1

− m

(
∂λ

∂q

)
q=m

− 1 − m2

2

(
∂2λ

∂q2

)
q= m+1

2

(45)

Equation (44) can be written in a similar form as:

dσ

dγ
= F ′(γ)

G(γ)
. (46)

Integratio of Eq. (46), the relation between σ and γ can be defined:

σ = −
∫ ∞

γ

F ′(γ̃)

G(γ̃)
d γ̃. (47)

By assigning a value to parameter γ and using Eq. (46), the value of dimensionless
axial coordinate (σ) can be obtained, and finally the velocity profile is known using
closed form solution available in the Appendix.
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2.2 Pressure Drop and Friction Factor

2.2.1 Microtube and Slit-Channel

To evaluate the pressure drop along the channel, Eq. (8) needs to be integrated over
the cross-sectional area as:

− 22k−5

k + 1

∂p̃

∂σ
= 4k−2 d

dσ

∫ 1

0
λ2qkdq − ∂λ

∂q

∣∣∣
q=1

, (48)

and then, integrated in the σ-direction:

�p̃ = 2(k + 1)
∫ 1

0
qkλ2dq − 2 + 25−2k(k + 1)

∫ ∞

γ

∂λ

∂q

∣∣∣
q=1

F ′(γ̃)

G(γ̃)
d γ̃ (49)

One important parameter for the engineering calculations is the Fanning friction
factor and the apparent friction factor. The fanning friction factor can be defined as:

f · ReDh = −23−k

(
∂λ

∂q

)
q=1

, (50)

using the derived velocity profiles, the Fanning friction factor can be written as:

f · ReDh = −γ2αn
1G2(γ)

H(γ)
(51)

The apparent friction factor which considers frictional loss together with the effect
of acceleration in the developing region can be derived as:

fapp · ReDh = �p̃

4σ
(52)

2.2.2 Concentric Annular Microchannel

Equation (31) can be integrated over the cross-sectional area of the channel as:

− 1

4

∂p̃

∂σ
(1 − m2) = d

dσ

∫ 1

m
λ2qdq + m

(
∂λ

∂q

)
q=m

−
(

∂λ

∂q

)
q=1

(53)

Integrating the above equation along the axial direction of channel results in:

�p̃ = 4

1 − m2

∫ 1

m
qλ2dq − 2 − 4

1 − m2

∫ ∞
γ

[
m

(
∂λ

∂q

)
q=m

−
(

∂λ

∂q

)
q=1

]
F

′
(γ̃)

G(γ̃)
d γ̃

(54)
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The Fanning friction factor based on the inner and outer radii can be derived as:

f 1 · Re = − 2

1 − m

(
∂λ

∂q

)
q=m

f 2 · Re = − 2

1 − m

(
∂λ

∂q

)
q=1

(55)

Furthermore, the apparent friction factor can be calculated as:

fapp · ReDh = �p̃

4σ
(56)

where �p̃ is given in Eq. (49).

3 Results and Discussion

The mathematical modeling is coded by the help of theMathematica®. One critical
point in the evaluation is the improper integrals given in Eqs. (26), (47), (49) and (54).
The evaluation of these integrals may be problematic as (σ → ∞). Although these
integrals need be integrated to infinity, it is known that the flow is fully-developed
after a certainσ value.Once the flow is fully-developed, the integrals can be evaluated
without any problem since the fully-developed velocity profile is known.

3.1 Verification of the Model

Centerline velocity which is an important parameter in determination of entrance
length and boundary layers growth is calculated and compared with available data
in the literature for continuum gas flow in Fig. 2 to verify the accuracy of the present
model. For comparison, full solution of Navier-Stokes equation together with con-
tinuity using finite element method based simulation environment COMSOL Multi-
physics®, an analytical method based on eigenvalue expansion [26] and numerical
result based on finite difference method from the literature [30] are included in
Fig. 2. Although not presented, COMSOL model and Liu’s results [30] can predict
the velocity overshoot. However, a linearization is used in the solution of Duan and
Muzychka [26] and their results cannot predict the overshoot. All solutions merge
to the same centerline velocity in the fully-developed limit. COMSOL and Liu’s
results are very close to each other, and the present study and the results by [26]
are on two opposite side of the numerical curves. The discrepancy is in the entrance
region. All the results are within ±3% uncertainty for the calculation of the center-
line velocity regardless of the linearization. A recent experimental data obtained by



202 R. Rasooli and B. Çetin

Fig. 2 Development of centerline velocity for continuum gas flow

Fig. 3 Comparison of
velocity profile in entrance
region with experimental
data for a macrotube

laser doppler velocimetry [29] is also compared against the result of present study
for a macro-scale tube at different axial locations. The experimental data is taken
at the locations above and below the centerline. As seen from the figure, the results
are in good agreement. Following these verifications, it is evident that Langhaar’s
linearization can be implemented for modeling of velocity field within the entrance
region with a reasonable accuracy (Fig. 3).

3.2 Velocity Profile and Entrance Length

3.2.1 Microtube and Slit-Channel

The developing velocity profiles within the entrance region in a microtube and slit-
channel is shown in Fig. 4 for different slip models. At σ = 0 which corresponds to
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Fig. 4 Developing velocity profile within the microchannel

the inlet, a uniform velocity profile is obtained which is an inherent assumption of the
boundary layer idealizations. As σ increases, the boundary layers develop, and at a
certain distance downstream, they merge and fully-developed velocity profile in the
form of a parabola is achieved. In the slip-flow regime, the parabola is more flat than
that of a continuum flow due to the reduction of shear stresses on the solid walls with
increased Kn . Although the fully-developed profiles are similar for different models,
the velocity profiles within the entrance region are quite different at some certain σ
values which leads to quite different pressure drop and friction factor characteristics.
It is also worth to mention that our model cannot capture the velocity overshoot as
expected. Since the sudden change of the velocity at the inlet is less pronounced for
higher rarefaction, the overshoots are expected to be weak.

One parameterwhich is important to characterize the flow in the developing region
is the entrance length,which can be defined as the required distance to downstream for
which the centerline velocity reaches to 99% of the fully-developed value. The effect
of slip velocity and Kn on the entrance length is illustrated in Fig. 5 with different
models. All models except Beskok model predict slower velocity development with
increasing Kn . However, Beskok model predicts a reduction in entrance length after
a certainKn . This behavior can be attributed to the reduced friction on the solid walls
with increased rarefaction (i.e. high Kn). Furthermore, the fully-developed velocity
profile becomes closer to a uniform one increased rarefaction. Therefore, a shorter
entrance length is quite expected.

3.2.2 Concentric Annular Microchannel

The velocity profiles within the entrance region of a concentric annular microchannel
with a radii ratio of m = 0.5 is given Fig. 6 for Kn = 0.01. The cross-sections are
chosen in the vicinity of inlet (σ = 7.4 × 10−5) and at sufficiently far downstream
(σ = 1.7 × 10−2) to ensure fully-developed velocity profile. Since the velocity
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Fig. 5 Variation of entrance length versus Kn for different slip models

Fig. 6 Developing velocity profiles in a concentric annular microchannel (Kn = 0.01, m = 0.5)

gradients are different on the inner and outer walls which results in different slip
velocities and shear stresses, the slip-velocity on the inner and outer walls are dif-
ferent in magnitude. Furthermore, different slip velocities on the solid walls cause
non-symmetrical distribution of velocity profile around the central core. The dis-
crepancy among two different slip models rises in the entrance region of channel
and reduces drastically in the fully-developed region. The non-dimenisonal entrance
length is presented for different slip models and radii ratios m = 0.1, m = 0.5 and
m = 0.8 in Fig. 7. A lower radii ratio is a case close to the microtube, and a higher
radii ratio is a case closer to the slit-channel. As expected, considering the results in
Fig. 5, the entrance length decreases with increasing radii ratio, and the first-order
model predicts a longer entrance region.
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Fig. 7 Variation of entrance
length versus Kn using
different slip models
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3.3 Pressure Drop and Friction Factor

3.3.1 Microtube and Slit-Channel

Pressure drop in the form of an apparent friction factor is shown in Fig. 8 both for
microtube and slit-channel using different slip models and Kn . Apparent friction is
also compared with available data in the literature for continuum gas flow and at
the limit of the slip-flow regime. In continuum gas flow, the present model predicts
apparent friction in good agreement with the data in literature. For Kn = 0.10, the
data of [25], which uses a first-order slip, is also included for microtube and slit-
channel. For slit-channel, the result for a rectangular channel with an aspect ratio of
2.0 is included. The discrepancy between the present model and the data of [25] is
due to the velocity overshoot. That is the reason, the discrepancy exists at the vicinity
of the inlet, and the results converge to the same curve after a certain σ. It can be
also seen that the discrepancy diminishes as Kn increases, and the curves merge at a
location closer to the inlet. The figure also shows a reduction in apparent friction with
increased Kn which can be explained by considering the reduction of shear stresses
on the solid walls. The high-order models deviate from the first-order model as Kn
increases. Moreover, the asymptotic limit of the each curve is different. Again, the
difference in this asymptotic value also increases with increasing Kn . Although the
asymptotic values are close to each other, the apparent friction factor in the entrance
region is quite different for different slip models. The apparent friction factor is more
sensitive to the used slip model for shorter microchannels.
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Fig. 8 Apparent friction factor for different Kn and models

3.3.2 Concentric Annular Microchannel

Variation of apparent friction along the channel for concentric annular microchannel
is illustrated in Fig. 9. Continuum regime (Kn = 0) together with two different Kn
are considered for three different radii ratios. Reduction of the apparent friction
can be observed as Kn number increases. For continuum regime flow (Kn = 0) and
Beskok model, the apparent friction has a monotonic increase by approaching to
inlet; however, the first-order model asymptotically reaches a constant value at the
vicinity of the inlet. Far away from the inlet, all the curves reaches an asymptotic
value which corresponds to the fully-developed value.

Fig. 9 Apparent friction factor for different slip models and Kn
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4 Concluding Remarks

Measurement of different flow parameters to understand fluid physics at micro-scale
is still challenging. Therefore, analytical and numerical models serve as a basis for
fundamental understanding of the phenomena. Present study presents an extended
Langhaar’s solution for the solution of a 2D incompressible, isothermal flow in a
developing region of a microchannel considered both in cylindrical and cartesian co-
ordinates. The analytical model is verified for the flows at macro-scale, and validity
of the certain assumptions have been discussed. The hydrodynamic entrance length
and apparent friction factor which are the quantities of interest for many engineer-
ing calculations are presented. To extend the applicability of the model, different
second-order models together with the general velocity-slip boundary condition are
included in the analysis. Although the applicability of the second-order models used
in this study may be questionable, the present analytical model is a general math-
ematical tool to model the microchannel flows with high-order slip models. The
model can easily be revised by the help of recent findings as long as the general form
of the second-order boundary conditions is implemented. The analytical nature of
the presented model enables the implementation of different slip flow models, and a
fast evaluation of the velocity field which can be extended for the exploration of the
combined entrance heat transfer problems for microchannels.

Appendix: Velocity Profile for Concentric Annular
Microchannel

Velocity profile is expressed as

λ(γ, q) = A(γ)I0(γq) + B(γ)K0(γq) + C(γ) (57)

Using the first-order slip model coefficients A, B and C can be defined as:

A = A(f )
1

A(f )
2

, B = B(f )
1

B(f )
2

, C = C(f )
1

C(f )
2

(58)

Coefficient A can be expressed as:

A(f )
1 = γ(m2 − 1)�1

A(f )
2 = [�1I1(γm) − �2I0(γm) − 2I1(γ)]�1

− [�1K1(γm) − �2K0(γm) − 2K1(γ)]�2

(59)



208 R. Rasooli and B. Çetin

where
�1 = 2γKn(m2 − 1) [K1(γm) + K1(γ)] + K0(γm) − K0(γ)

�2 = 2γKn(m2 − 1) [I1(γm) + I1(γ)] − I0(γm) + I0(γ)

�1 = 2γ2Kn(m2 − 1) + 2m, �2 = γ(m2 − 1)

(60)

Coefficient B can be expressed as:

B(f )
1 = γ(m2 − 1)�2

B(f )
2 = �3I1(γm) + �4I0(γm) + �5I1(γ) + �6I0(γ) − 4/γ

(61)

where

�3 = −�4K1(γ) + �1K0(γ)

�4 = (�5 + 2)K1(γ) − �2K0(γ)

�5 = �4K1(γm) + �3K0(γm)

�6 = �1K1(γm) + �2K0(γm)

�3 =2γ2Kn(m2 − 1) + 2, �4 = 4γKn(m + 1) [γKn(m − 1) + 1] , �5 = �1 − 2m
(62)

Coefficient C can be expressed as:

C(f )
1 = [�5I1(γm) − �2I0(γm)]�7 − [�5I1(γ) − �2I0(γ)]�8

C(f )
2 = −B(f )

2

(63)

where
�7 = 2γKnK1(γ) − K0(γ)

�8 = 2γKnK1(γm) + K0(γm)
(64)

Using general slip model, coefficients A, B and C can also be expressed as:

A = A(g)

1

A(g)

2

, B = B(g)

1

B(g)

2

, C = C(g)

1

C(g)

2

(65)

Coefficient A can be expressed as:

A(g)

1 = (1 − m2)�9

A(g)

2 = {
�6I1(γm) + (m2 − 1)I0(γm) − 2/γ [mI1(γm) + I1(γ)]

}
�9

+ {
�6K1(γm) − (m2 − 1)K0(γm) − 2/γ [mK1(γm) + K1(γ)]

}
�10

(66)
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where

�9 = 2γKn
b1Kn − 1

K1(γm) − K0(γm) + 2γKn
b2Kn − 1

K1(γ) + K0(γ)

�10 = − 2γKn
b1Kn − 1

I1(γm) − I0(γm) − 2γKn
b2Kn − 1

I1(γ) + I0(γ)

�6 = 2γKn(m2 − 1)

b1Kn − 1

(67)

Coefficient B can be expressed as:

B(g)

1 = �5

[
b̃2I1(γm) + b̃1I1(γ)

]
+ �2b̃1b̃2 [I0(γm) + I0(γ)]

B(g)

2 = �11I1(γm) + �12I0(γm) + �13I1(γ) + �14I0(γ) − 4b̃1b̃2/γ
(68)

where

�11 = 2γKn
(
2b̃1m + 2b̃2 − �5

)
K1(γ) + b̃2

(
2b̃1m − �5

)
K0(γ)

�12 = b̃1
(
2b̃2 − �5

)
K1(γ) − �2b̃1b̃2K0(γ)

�13 = −2γKn
(
2b̃1m + 2b̃2 − �5

)
K1(γm) + b̃1

(
2b̃2 − �5

)
K0(γm)

�14 = b̃2
(
2b̃1m − �5

)
K1(γm) + �2b̃1b̃2K0(γm)

b̃1 =b1Kn − 1, b̃2 = b2Kn − 1

(69)

The coefficients b1 and b2 are defined in Eq. (38). Coefficient C can be expressed as:

C(g)

1 =
[
�5I1(γm) + b̃1�2I0(γm)

]
�15 +

[
�5K1(γm) + b̃1�2K0(γm)

]
�16

C(g)

2 = −B(g)

2

(70)

where

�15 = 2γKnK1(γ) + b̃2K0(γ)

�16 = −2γKnI1(γ) + b̃2I0(γ)
(71)

Fully-developed velocity profile using first-order slip model slip model can be
written as:

λ
(f )
fd = Q1

Q2
(72)
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where

Q1 = 2(m − 1)

{
8Kn2(1 − m2) + 2Kn(m3 + 1) − 2Knq2(m + 1) + log

[
qm(m+1)(1−m+4Kn)

mm(1−q2+4Kn)

]}

Q2 = (m2 − 1)
[
8Kn2(m + 2) + m2(1 − 2Kn) − 2Kn

]

+
[
(1 − m)(m2 + 1) + 8Kn(m2 − m + 1)

]
logmm

(73)
and for general slip model, fully-developed velocity can be written as:

λ
(g)

fd = S1

S2
(74)

where

S1 = 2(m2 − 1)
{
log qm

[
b̃1b̃2(m

2 − 1) + 4Kn(b̃1m − b̃2
]

+ logmmb̃2
[
b̃1(q

2 − 1) + 4Kn
]

+ 2Kn
[
b̃1(1 − q2) + b̃2mKn(m2 − q2) + 4Kn(m2 − 1) − m3(m + 1)

] }
(75)

S2 = 8Kn2 logmm
[
b1m

3(mb2 + 1) + b2(1 − b1)
]

− Kn2(m2 − 1)
[
(m2 − 1)(b1b2m + 2b1 − 16) − 2b2m(m2 + 3) + 4b1m

2
]

× Kn
[
2(1 − m5) + 8m2(m − 1) − 8 logmm(1 + m3) + 6m(m3 − 1)

]
+

[
log

(
mm5−m

)
− m(m2 − 1)2

]
[1 − b1b2Kn]

(76)

The coefficients b1 and b2 are defined in Eq. (39), and b̃1 = b1Kn − 1 and b̃2 =
b2Kn − 1.
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