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Abstract. Development process of combined trajectories, in places of
joining conic arcs, undesirable intermittent effects inevitably arise due
to the second-order non-smoothness. A second order tangency is con-
sidered taking into account the curvature and the equality condition of
the arcs curvature radii to be joined at the conjugation points. A kine-
matic method for determining joints on the basis of a rocker mechanism
is given, which ensures smooth joints.

1 Introduction

The scientific interests of the creation and formation of complex trajectories
locate in the areas of road construction, aviation industry, shipbuilding, textile
production, railway and automobile transport. Combined trajectories are created
in the form of conjugate contours, the shapes of which are given by curves of
different order and mathematically described by analytical equations. The result-
ing form should provide an improvement of the functional properties of objects.
For example, asymmetric planetary vibration exciters with a combined tread-
mill (trajectory) are used to improve the performance of road vibratory rollers.
Similarly, to improve the aerodynamic properties of the aircraft, combined wing
shapes are created, and the smooth geometric shapes of the hull greatly improve
the seaworthiness of the vessel. Currently, to implement a smooth transition
from one arc to another curve arc, methods of patterns, transformations and
second-order curves (conics) are used. These methods provide only smoothness
of the first order. The study of conics is due to their wide application in science
and engineering practice. These curves are the most important components of
the contours of double curvature surfaces. A method of analytic determination
of the transition section is proposed to ensure second-order smoothness (smooth-
ness). Mathematical patterns that determine the smoothness of the transition
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are found. The process of finding the starting and ending points of the docking
is modelled by the movement of the rocker mechanism [1–8].

The contours of the technical product lines are a combination of lines, which
in most cases smoothly passing from one to the other.

A smooth transition of one line to another from a transitional line is called
conjugation.

The following methods are used to identify intermediate curvilinear sections:
(a) template curve, (b) nonlinear transformations, (c) second-order curves. These
methods of constructing the curves are widely used in the design of curvilinear
sections of the trajectories [9–13].

However, all these methods are approximate.
The process of determining the position of the finishing point is proposed

with the condition that the smoothness ratio be simulated by a rocking mech-
anism. With the motion of the rocking rock of the rocking mechanism, the dis-
tances from the conjugate points to the point of intersection of the tangents
change simultaneously, i.e. The changes in the lengths of tangents whose rela-
tions satisfy the smoothness conditions. The proposed method makes it possible
to visually, quickly and effectively determine the position of the finish point on
the circumference and ensure a non-collapsible connection of the conical arcs.
Using the method of determining the position of the conjugate points based on
the kinematics of the rocking mechanism, it is possible to smoothly join the
conical arcs satisfying the conditions of continuity, tangency and equality of cur-
vature and to create on their basis new models of treadmills (trajectories) from
conical arcs that allow eliminating unwanted impact effects.

2 Problem Statement

To implement the second order smoothness between curve arcs, it is proposed
to insert a transition arc, the model of which is a conic arc (transition conic).
The functional purposes of the transition conic are as follows:

– the arc of the transition conic must necessarily pass through the connecting
points A and B;

– at the points of joining A and B the first derivatives must be equal (there are
common tangents at the points of docking);

– at the joining points A and B the radii of curvature should be equal.

The fulfillment of the first two conditions means the smoothness of the con-
nection, and the addition of the third condition to them ensures a smooth con-
nection.

Let the combined trajectory be formed from arcs of a circle x2 + y2 = a2

and an ellipse x2

a2 + y2

b2 = 1. Choose an arbitrary starting point on an elliptical
arc A. We calculate the radius of curvature ρA at this point and draw a tangent
LAτ = 0. It is required to determine the position of the end point B in order to
realize a smooth conjugation of circular and elliptical arcs. Thus, the endpoint B
is not arbitrarily selected and should provide functional purposes. To solve the
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problem of determining the final joining point, it is necessary to determine the
mathematical relationships between the elements of the transition conic at the
points A and B.

3 Mathematical Preliminaries

Take the two points A (xA, yA) and B (xB, yB) on the ellipse (Fig. 1) with the
curvature radii ρA and ρB respectively and draw through them the tangents LAτ

and LBτ with the normals LAn and LBn. Let Aτ , Bτ and An, Bn - points of
intersection of tangents and normals with the axis Ox, points Ax, Bx - points of
the base of perpendiculars, dropped from points A and B on the axis, and Ox,
Ah, Bh and Ad, Bd, are the points of the base of perpendiculars dropped from
the points A, B and the center of the ellipse O tangent to LBτ and LAτ . The
tangents LAτ and LBτ mutually intersect at the point E [23].

By connecting the A, B and E points, we obtain the ΔAEB triangle. A
triangle made up of the tangents LAτ , LBτ , and the chord LAB , and also con-
taining the inside of the arc of the ellipse � AB will be the base triangle. EC
is the median of the base triangle [23].

We denote by, nA = AAn, nB = BBn - are the lengths of the normals LAn

and LBn, τA = AAτ , τB = BBτ - the lengths of the tangents LAτ and LBτ ,
sA = AxAn, sB = BxBn - are the lengths of the subnormals of the points A
and B, mA = AxAτ , mB = BxBτ - are the lengths of the tangent points A
and B, lA = AE, lB = BE- are the lengths of the tangent segments LAτ and
LBτ , prior to their intersection at the point E, dA = OAd, dB = OBd - are the
distances of the center O to the tangents LAτ and LBτ , hA = AAh, hB = BBh

- the distances of the points A and B to the tangents LB and LA, α = ∠BAE,
β = ∠ABE - are the angles between the tangents LAτ , LBτ and the chord AB,
αE = ∠AEC, βE = ∠BEC - are the angles between the tangents LAτ , LBτ and
the median EC [23,24].

Fig. 1. Basic triangle and its elements
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The considered lengths of the segments and the angular quantities will be ele-
ments of the basic triangle and find the connecting ratios between them through
the radius of curvature [23].

From analytic geometry it is known that the radius of curvature of an ellipse is
inversely proportional to the cube of the distance from the center to the tangent
at the corresponding point [23]

ρM =
a2b2

d3M
.

We introduce the coefficient defined as the cubic root of the ratio of the radii
of curvature [23]:

3

√
ρA

ρB
=

dB

dA
= η.

The coefficient η introduced by us is called the coefficient of curvature [23].
Four points: the center of the ellipse O, the points Ad and Bd of the base

of the perpendiculars and the point of E intersection of the tangents are on
the same circle [14]. Consider rectangular triangles ΔOAdE and ΔOBdE, the
vertices of which lie on the intersection circle and apply the sine theorem [23].

Then
sinβE

sinαE
=

dB

dA
= η.

Now consider the triangles ΔACE and ΔBCE, which we get from the basic
triangle by dividing the median EC, i.e. AC = BC, and similarly applying the
sine theorem we obtain [23]

sinβE

sinαE
=

sinβ

sinα
= η.

For a basic triangle, we have [23]

sin β

sin α
=

lA
lB

= η.

From rectangular triangles ΔAAhB and ΔABhB with a common hypotenuse
AB (chord), we get sin β

sinα = hA

hB
= η.

4 Main Results

Statement. If we have two points A and B an ellipse with radii of curvature ρA

and ρB , then the relationship between the corresponding elements of the basic
triangle ΔAEB, made up of the tangents LAτ , LBτ and the chord LAB , is equal
to the smoothness coefficient η [23]:

sinβ

sin α
=

sin βE

sin αE
=

dB

dA
=

lA
lB

=
hA

hB
=

nA

nB
= η (1)

The obtained relations (1), characterizing the properties of the elliptical
treadmill, allow determining the position of the point and constructing a tran-
sition section [23].
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5 Simulation of Connection

The process of finding the position of a point B on a circle that satisfies the
lA
lB

= η relation can be modeled by a link mechanism (Fig. 2) [23].
In the rocking mechanism, the guides AE and BE correspond to the direc-

tions of the tangents LAτ , LBτ , and the stone E represents the point of their
intersection. The movement of the stone leads to a change in the length of the
tangents. Value dA - the distance from the center O to the tangent LAτ , mA - the
distance from the center O to the normal LAn, γ - the varying angle of inclination
of the tangent LBτ , r - the radius of the connected arc of the circle [23].

Fig. 2. Rocking mechanism

The equation of motion of the rock of the wings as a function of the angle
γ [23]:

xE = (mA + r sin γ) − dA − r cos γ

tgγ
.

Similarly, for the point B we have [23]
{

xB = mA + r sin γ
yB = dA − r cos γ

Further, using the dependence lA = ηlB , we obtain the equation for deter-
mining k = tgγ [23]:

mA + r sin γ + r
k
√
1+k2 − dA

k

m2
A + r2 + d2A + 2r

(
mA

k√
1+k2 − dA

1√
1+k2

) = η
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Applying this method, one can find a conic section having two given tangents
at two points with given radii of curvature and passing through the third point
in the form of the Lyming equations [15–19,23]:

F (x, y) = (1 − λ)LAτLBτ
+ λL2

AB = 0.

The third point is found from the condition for determining the engineering
discriminant for a known radius of curvature [23]

f =
1

1 +
√

2l2A
hAρA

.

Using a concrete example, obtaining the equation of a smooth transition
conic is shown. It is needed to find a transition curve connecting lemniskats arcs[
x2 + (y + y0)

2
]

− 2c2
[
x2 − (y + y0)

2
]

= 0 and circumference x2 + y2 = r2,
where y0 = 7, c = 5, r = 6.

Choose a lemniscate on the arc starting point A (6.8; −8.1) the radius of
curvature is equal to ρA = 2c2

3ρ = 2.4195, as well as draw a tangent through it

LAτ = 1.9155x − y − 21.1258 = 0. Smoothness coefficient η = 3

√
ρA

ρB
= 0.7388.

Using the kinematic method we find the angular coefficient between the tangent
ones, conducted through the starting point and the desired finishing point B:

η =
mAk − dA + r

√
1 + k2

dA

√
1 + k2 − r

⇒ k = 2.

Point B defined as a tangency point with a circle B (4.8621; 3.5157) and the
tangent equation at the finish point is: LBτ = −1.383x − y + 10.2399. Chord
equation LAB = −5.994x − y + 32.6589 = 0.

Find the length of the tangent lA = 5.859 and distance hA = 5.238 from the
starting point A up to the tangent LBτ , which are necessary to calculate the
engineering discriminant f = 1

1+

√
2l2

A
hAρA

= 0.333.

The coordinates of the point M through which the smooth transitional conic
passes is determined by

σ =
f

1 − f
= 0.4993

{
xM = xC+σxE

1+σ = 7.0556
yM = yC+σyE

1+σ = −2.498

The coefficient λ in the Lyming equation is calculated by the formula

λ =
LAτLBτ

LAτLBτ − L2
AB

∣∣∣∣x = xM

y = yM

= 0.23035.
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Fig. 3.

Equation of transition conic with continuity, tangency and smoothness con-
ditions

F (x, y) = (1 − λ) (1.9155x − y − 21.1258) (−1.383x − y + 10.2309) +

+λ (−5.994x − y + 32.6589)2 = 0

or

F (x, y) = 27.0768x2 + 10.2088xy + 4.3412y2 − 228.4166x − 28.9158y + 344.4504 = 0.

The desired conic is represented as a displaced rotated ellipse [23]

[(x − a0) cos α + (y − b0) sin α]2

a2
k

+
[−(x − a0) sin α + (y − b0) cos α]2

b2k
= 1 (2)

where ak and bk the semiaxes of the desired conic a0, b0 are the coordinates of
the center of the conic displacement, and α is the angle of rotation of the focal
axis [23].

The movement of the center of the vane of the exciter is described by chang-
ing the distance from the center of the runner to the anchoring point of the
carrier, i.e. polar radius R. Therefore, all the component curves (circle, ellipse
and transition conic) with which we form the roll must be described in polar
coordinates (R, ϕ). The anchoring point of the carrier (the origin) is in the
common geometric center of the circular and elliptical parts of the roll [23].

The components - the circular and elliptical parts - of the roller in polar
coordinates are described by the equations R = a and R = b√

1−e2 cos2 ϕ
, respec-

tively, where a and b are the semiaxes of the given ellipse are, e = a2−b2

a2 the
eccentricity of this ellipse.
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Having made mathematical transformations, from the Cartesian equation (2)
it is possible to obtain the polar equation of the transition conic [23].

Then

R2[1−e2 cos2(ϕ−α)]+2Rq sin(ϕ−α)−p cos(ϕ−α)(1−e2)]+[p2(1−e2)+q2−b2] = 0,

where

p = a0 cos α + b0 sin α, q = a0 sin α − b0 cos α, g = p2(1 − e2) + q2 − b2.

The movement of the center of the slider C will be considered along sections
divided by the joints of the curve arcs. The polar angle ϕ is measured from the
abscissa axis against the clockwise direction (Fig. 3) [23].

1. Section 1 - the arc B0B1. A point B0(x0, 0) is a point of intersection of an arc
of a conic with a positive abscissa, a point B1(x1, y1) is a point of connection
of an arc of a conic with an arc of a circle 0 ≤ x ≤ x1, 0 ≤ y ≤ y1. The polar
angle is 0 ≤ ϕ ≤ ϕ1 [23].

R =
1

1 − e2 cos2(ϕ − α)
{−A cos(ϕ−β)+

√
A2 cos2(ϕ − β) − g[1 − e2 cos2(ϕ − α)]}

where [23]

q sin(ϕ − α) − p(1 − e2) cos(ϕ − α) = A cos(ϕ − β),

A =
√

p2(1 − e2)2 + q2, cos β =
p(1 − e2)

A
, sin β =

q

A
.

2. Section 2 - an arc B1B2. Point B2(x2, y2)- the point of connection of the arc
of a circle with an arc of a conic x2 ≤ x ≤ x1 [23], 0 ≤ y ≤ y2;
The polar angle ϕ1 ≤ ϕ ≤ ϕ2. Equation of motion R = a.

3. Section 3 - the arc B2B3. The point B3(x3, y3) is the point of joining the arc
of the conic with the arc of the ellipse x2 ≤ x ≤ x3, 0 ≤ y ≤ y3; The polar
angle ϕ2 ≤ ϕ ≤ ϕ3 [23].

R =
1

1 − e2 cos2(ϕ + α)
{A cos(ϕ − β) +

√
A2 cos2(ϕ − β) − g[1 − e2 cos2(ϕ + α)]}

4. Section 4 - arc B3B4. Point B4(x4, y4)- the point of connection of the arc of
an ellipse with an arc of a conic x3 ≤ x ≤ x4, 0 ≤ y ≤ y4 [23]; The polar
angle ϕ3 ≤ ϕ ≤ ϕ4.

R =
b√

1 − e2 cos2 ϕ

5. Section 5 - the arc B5B0 is part of the right conic.

The diagram of a smooth change in the polar coordinate R, describing the
movement of the center of the slider of the reclosure on the combined treadmill,
is shown in Figs. 4 and 5 [23].
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Fig. 4. Combined roll

Fig. 5. The diagram of the movement of the center of the runner

6 Conclusion

Thus, the original way of connecting the treadmill of a planetary vibration
exciter, obtained by connecting the arc of an ellipse with a circular arc with
a radius equal to one of the semi-axes, is obtained. Moreover, the connection
point has a common tangent, and does not have a jump along the curvature.
The presented method and analytical dependencies of the smooth connection of
two curves described by different equations allows making a dynamic calcula-
tion of the planetary vibration exciter, the treadmill is described by the intrusion
curves (conic). The result is a smooth connection of treadmill sections, which
ensures that the inertial runner of the planetary exciter moves along it evenly
without drops and jumps at the junction points of various curves.
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