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Abstract. The motivation for the research was the challenges faced
in developing the robotic microplasma spraying technology for applying
coatings from biocompatible materials onto medical implants of com-
plex shape. Our task is to provide microplasmatron movement according
to the complex trajectory during the surface treatment by microplasma
and to solve the problem of choosing the speed of the microplasma-
tron movement, so as not to cause melting of the coating. The aim of
this work was to elaborate mathematical modeling of temperature fields
in two-layer heat absorbers: coating-substrate depending on the veloc-
ity of microplasmatron with a constant power density. A mathematical
model has been developed for the distribution of temperature in two-
layer absorbers when heated by a moving source and the heat equation
with nonlinear coefficients has been solved by numerical methods.

Keywords: Heat equation · Two-layer metal heat absorbers ·
Computer simulation

1 Introduction

The multi-purpose methods of Thermal Coating have recently become popular
all over the world [1,2]. One of the major methods of gas-thermal deposition
of coatings is plasma spraying. The micro plasma spraying (MPS) method is
characterized by a small diameter of a spraying spot (1 ... 8 mm) and low (up to
2 kW) power of plasma, which results in low flow of heat into the substrate [3–5].
These characteristics are very attractive for the deposition of coatings with high
accuracy, in particular for applying biocompatible coatings in the manufacture
of medical implants.

However, the treatment of surfaces of complex shape can be difficult for
the implementation of the thermal spraying technology and requires automated
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manipulations of the plasma source and/or the substrate along with robotic
control for appropriate surface treatment [1,2].

At present, robot manipulators are widely used in metallurgical indus-
try, automotive industry and mechanical engineering, allowing automating the
plasma processing. However, they are used only for large-scale production,
because every transition to a new product requires complex calibration pro-
cedures to achieve compliance with the model set in the robot previously. Thus,
the problem of automatic code generation of a robot program for the model
specified by means of CAD is in the limelight of researchers and developers of
robotic systems [6–8].

The main prerequisites for the development of the research were the analysis
of technical difficulties arising from the industrial robot exploitation for coat-
ing by plasma jets, and the desire to expand the scope of tasks solved by the
exploitation of an industrial robot. The authors of this paper have carried out a
work in the field of application of automated plasma methods of biocompatible
or protective coating deposition, described in our paper [9] and protected by
certificates of intellectual property [10,11]. One of the main challenges of the
robotic technology of microplasma spraying is the choice of modifying irradia-
tion with a microplasma jet in order to set a certain speed of movement of a
robot manipulator with a plasma source along the treated surface. Successful
deposition of biocompatible coatings with sustained characteristics on parts of
complex shape, which are endoprostheses, requires steady travelling with spec-
ified speed and power density of the plasma source along the sprayed surface
of the product. In order to choose the desired modes of microplasma surface
treatment, we need assumptions about the temperature fields that form during
irradiation, because it is the temperature that determines the phase transitions
in the coatings. The purpose of this study is to develop a mathematical model for
the distribution of temperature fields in two-layer absorbers (coating/substrate)
under modifying microplasma irradiation of coatings from biocompatible metals
(Titanium or Tantalum).

2 Results and Discussion

2.1 Brief Description of the Developed Mathematical Model

We have considered the problem of heating a sample, which is a metal plate
(substrate) with the deposited on its surface by a moving axisymmetric heat
source coating layer (Fig. 1). The choice of material and layer thicknesses of the
absorbers were based on the previously developed scheme of the structure of
the protective powder coating applied by a plasma jet on the steel substrate
described in [12,13].

The task of heating a plate by a moving flat heat source comes down to the
solution of a boundary value problem for a differential equation of heat conduc-
tivity. As thermal characteristics of metals, such as thermal conductivity and
specific heat, highly depend on temperature, and in processes of radiation treat-
ment of coatings, temperature difference between various points of the sample
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Fig. 1. Moving flat heat source, where 1-coat; 2-substrate; XYZ - moving Cartesian
coordinate system.

can exceed 1000K (flash-off of a surface of the sample at maintaining the tem-
perature of end faces of a plate close to room), adequate mathematical model
of thermal processes at radiation treatment of coatings is a non-linear heat con-
duction equation considering dependence of thermal characteristics of material
on temperature.

2.2 Non-linear Heat Conduction Equation. Kirchhoff
Transformation

The heat conduction equation for the homogeneous environment whose ther-
mal characteristics depend on temperature in case of lack of sources of heat
distributed in the environment, is:

div(k(T )∇(T )) = c(T )ρ(T )
∂T

∂t
. (1)

In the Eq. (1) T (x, y, z, t) a dynamic field of temperatures taken in an
absolute scale (degrees Kelvin), k(T) - function of dependence of a thermal
conductivity of substance on temperature, c(T) function of dependence of specific
heat of substance on temperature, ρ(T ) - function of dependence of density of
substance on temperature. Further on, we will use a differential equation (5)
that the Eq. (1) turns into after Kirchhoff transformation [14].

ϑ(x, y, z, t) =
∫ T (x,y,z,t)

T0

k(τ)dτ (2)

For the sake of convenience, we believe value of the T0 parameter equal to
environment temperature. As at any moment t temperature T (P, t) in the arbi-
trariest point P meets condition T (P, t) ≥ T0, taking into account nonnegativity
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of the function k(T) we can claim that for display T (x, y, z, t) → ϑ(x, y, z, t), set
by formula (2) exists the inverse display, i.e. there is a T = T (ϑ).

The remarkable property of Kirchhoff’s transformation that

∇ϑ = k(T ) · ∇T (3)

and, as a result
div(k(T ) · ∇T ) =� ϑ (4)

Taking into account these identities, the differential equation of heat conduc-
tivity (1) turns into a differential equation (5) for function ϑ

� ϑ = Q(ϑ) · ∂ϑ

∂t
(5)

where

Q(ϑ) =
c(T (ϑ)) · ρ(T (ϑ))

k(T (ϑ))
(6)

To apply transformation of Kirchhoff to the solution of boundary value prob-
lems of the theory of heat conductivity, it is necessary to reformulate the bound-
ary conditions set for function T , in boundary conditions for function ϑ. Further
on we will believe that the boundary value problem is formulated for the given
area of space Ω, and a symbol ∂Ω will be designated as an area border. Let’s
consider separately cases of boundary conditions of the 1st and 2nd sort.

(A) The boundary conditions of the 1st sort set by the Eq. (7)

ϑin(M, t) = ϑ(Tin(M, t)) (7)
where Tin(M, t) the function setting distribution of temperatures on area border.
As it has been shown above, there is a uniquely determinated function ϑ(T ). Let’s
define on area border Ω function ϑin

ϑin(M, t) = ϑ(Tin(M, t)) (8)
Then a boundary condition (6) for function T (x, y, z, t) will l turn into a

boundary condition (9) for function ϑ(x, y, z, t).

ϑ|∂Ω = ϑin(M, t) (9)
(B) The boundary conditions of the 2nd sort set by the Eq. (10)

− (k(T ) · ∂T

∂−→n )
∂Ω

= P (M, t) (10)

where function P (M, t) describes the surface density of power of the heat sources
affecting the area border. Owing to equality (2), the boundary condition for
function ϑ looks like (11).

−(
∂ϑ

∂−→n )
∂Ω

= P (M, t) (11)

The Eq. (5) in comparison with the Eq. (1) has much simpler structure allow-
ing using well developed potential theory methods for the decision in some cases.
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2.3 The Limiting Stationary State When Heating a Plate by
Moving a Flat Heat Source. Differential Equation of the
Limiting Steady-State

Let’s introduce a concept of the limiting steady-state when heating a body by
moving heat source. For this purpose we will consider the task given below
about heating the semi-infinite body by moving heat source. The obtained results
hereafter naturally extend multilayer plates of the terminating sizes

Let axes X and Y of a Cartesian coordinate system lie on the surface of the
homogeneous semi-infinite body, with thermal characteristics of k(T ), c(T ), and
density ρ(T ). Axis Z is sent to the body depth (at such choice of a frame, the
semi-infinite body represents area of space set by inequality z ≥ 0). Let’s assume
that in an initial instant of t = 0 the flat source of heat moving with constant
speed −→v = v ·−→i , where v - the speed module, and

−→
i - a coordinate basis vector

of collinear axes X begins to act on a surface of sample. Let us assume that
the source of heat has an axial symmetry, and in an initial instant axis Z of a
Cartesian coordinate system coincides with a source axis. Let us note that the
assumption of a axial symmetry of the heat source is insignificant at a conclusion
of a differential equation of the limiting steady-state, and it is introduced, first,
for simplification, secondly, as the case that is most often found in practice. Let
the surface power density of a source be described by the P (r) function where r
distance to a source. In that case, a dynamic temperature profile of T (x, y, z, t)
in a semi-infinite body will satisfy a differential equation (1) and a regional
condition (12) on the sample surface (z=0 plane), the initial conditions (13) and
a condition (14)

− (k(T ) · ∂T

∂−→n )
z=0

= P (
√

(x − ϑ · t)2 + y2 + z2) (12)

T (x, y, z, 0) = T0 (13)

∀x, y, t lim
z→∞ T (x, y, z, t) = T0 (14)

Let us turn into the relative frame Cartesian coordinate system moving with a
speed of v, with axes of X∗, Y ∗, Z∗ parallel to axes X,Y,Z of the above described
fixed frame. Coordinates of a point x∗, y∗, z∗ in a relative frame of logical coordi-
nates are connected with coordinates x, y, z of the same point in the fixed frame
(15), (16) and (17).

x = x∗ + ϑ · t (15)

y = y∗ (16)

z = z∗ (17)

Let T ∗(x∗, y∗, z∗, t) the function describing a temperature field in a relative
frame of coordinates. Using differentiation rules and coordinate transformation
formulas (15), (16) and (17) we will obtain
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∂T

∂x
=

∂T ∗

∂x∗ (18)

∂T

∂y
=

∂T ∗

∂y∗ (19)

∂T

∂z
=

∂T ∗

∂z∗ (20)

∂T

∂t
=

∂T ∗

∂t∗
− ϑ

∂T ∗

∂x∗ (21)

Thus, the differential equation (1) turns into a differential equation (22) for
the function T ∗:

∂

∂x∗ (k · ∂T ∗

∂x∗ ) +
∂

∂y∗ (k · ∂T ∗

∂y∗ ) +
∂

∂z∗ (k · ∂T ∗

∂z∗ ) = c · p · (
∂T ∗

∂t
− ϑ

∂T ∗

∂x∗ ) (22)

The Eq. (22) can be considered a special case of the equation of Fourier Ostro-
gradsky for the moving environment [9]:

div(k · ∇T ) + qv = p · c · DT

dt
(23)

In the Eq. (23) qv - apparent density of sources of heat, and a DT
dt symbol des-

ignates the substantive derivative T determined by a formula (24)

DT

dt
=

∂T

∂t
+ (∇T,−→v ) (24)

It is logical to assume that when the travel time of source is aiming to infinity, in
the frame traveling together with a source, the quasistationary temperature pro-
file will be observed, in other words, we can put in the Eq. (23) ∂T ∗

∂t∗ = 0. We will
name this mode the limiting steady state, described by differential equation (25).

∂

∂x∗ (k · ∂T ∗

∂x∗ ) +
∂

∂y∗ (k · ∂T ∗

∂y∗ ) +
∂

∂z∗ (k · ∂T ∗

∂z∗ ) + ϑ · (c · ρ

k
) · (k · (∂T ∗

∂x∗ )) = 0 (25)

Applying transformation of Kirchhoff to this equation, we will obtain

� ϑ + v · Q(ϑ) · ∂ϑ

∂x
= 0 (26)

2.4 Heating of Semi-infinite Body by Moving Flat Heat Source

This section is devoted to the description of the numerical method of task solu-
tion of heating a half-space by a moving heat source. It should be noted that this
task solution allows finding rather precise estimates of a temperature schedule
in the field of border of a substrate coating.
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First of all, we will formulate a boundary value problem for function ϑ(x, y, z)
representing transformation of Kirchhoff of a temperature field T (x, y, z), in a
coordinate system. As it has been shown above, function ϑ(x, y, z) o satisfy a
differential equation (23) in the z ≥ 0

∇ϑ + v · Q(ϑ) · ∂ϑ

∂x
= 0 (27)

At boundary conditions (28) and (29):

(
∂ϑ

∂z
)z=0 = −P (x, y) (28)

lim
z→∞ ϑ(x, y, z) = ϑ0 (29)

If (29) a constant ϑ0 - transformation of Kirchhoff of environment tempera-
ture T0.

This boundary value problem can be reduced to a non-linear integral equation
for the numerical solution n which would make it possible to develop the iterative
method which enters the group of methods of the fixed point of the squeezing
operator finding. As well as in many cases of application of iterative methods, in
the case considered by us the choice of an initial approximation influences the
speed of calculations. For initial approximation finding, we used a method of a
linearization of a differential equation (27). It should be noted that in many cases
solution of the linearized equation (27) can serve an appropriate approximation
of solutions of initial non-linear equation (27).

For further consideration it is handier to use an invariant form of the equa-
tion (27)

� ϑ + ∇ · (F (ϑ) · −→v ) = 0 (30)

where F (ϑ) is the antiderivative of the function Q(ϑ)

dF (ϑ)
dϑ

= Q(ϑ) (31)

Certainly, the F (ϑ) function is determined within the arbitraries additive con-
stant. For the sake of convenience we will assume

F (ϑ) =
∫ ϑ

ϑ0

Q(ϑ)dϑ (32)

To show equivalence of the Eqs. (30) and (27) we will consider expression
∇ · (F (ϑ) · −→v ) (divergence of a field of vectors F (ϑ) · −→v ):

∇ · (F (ϑ) · −→v ) = (∇F,−→v ) + F · (∇ · −→v ) (33)

as

∇F (ϑ) =
dF (ϑ)

dϑ
· ∇ϑ (34)
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and divergence of a constant field of vectors −→v (x, y, z) = (v, 0, 0) equals to zero,
∇ · −→v = 0

∇ · (F (ϑ) · −→v ) =
dF (ϑ)

dϑ
· (∇ϑ,−→v ) (35)

Whence it follows that taking into account (31) we obtain

∇ · (F (ϑ) · −→v ) = v · Q(ϑ) · ∂ϑ

∂x
(36)

Let’s look for a scalar field ϑ in the form of superposition of fields ϕ and η

ϑ(x, y, z) = ϕ(x, y, z) + η(x, y, z) (37)

where a scalar field ϕ(x, y, z) satisfies the equation of Laplace (38)

� ϕ = 0 (38)

and the boundary condition (39):

(
∂ϕ

∂z
)z=0 = P (x, y) (39)

The boundary condition (39) forms the boundary value problem 3 for the
Laplace equation (38).

Thus, we obtain the following boundary-value problem for the function
η(x, y, z):

To find function η(x, y, z) defined in a half-space z ≥ 0 and satisfying in it a
differential equation (40)

� η = −∇ · (F (ϕ + η) · −→v ) (40)

and boundary condition(41) on border of area:

(
∂η

∂z
)z=0 = 0 (41)

Below we will show how the boundary value problem given above can be
reduced to an integral equation for function η(x, y, z).

Let’s consider the following boundary value problem for a Poisson equation:
Let function f(x, y, z) satisfies in field of z ≥ 0 a Poisson equation (42):

� f = ρ (42)

where ρ(x, y, z) the given function on a border (plane z = 0) boundary condition
(43):

(
∂f

∂z
)z=0 = 0 (43)

As the solution of this boundary value problem serves function (44)
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f(x, y, z) =
∫ ∫ ∫

G(x′, y′, z′, x, y, z) · ρ(x′, y′, z′) · dx′dy′dz′ (44)

Where G(x′, y′, z′, x, y, z) the Green function of this boundary value problem
determined by formulas (44) and (45)

G(x′, y′, z′, x, y, z) =
1

4 · π
· (

1
r(x′, y′, z′, x, y, z)

+
1

r(x′, y′, z′, x, y,−z)
) (45)

r(x′, y′, z′, x, y, z) =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 (46)

Note: If we use physical interpretation of a Poisson equation in which function
f(x, y, z) describes a stationary temperature field, and the function ρ(x, y, z)
is related to the heat density distribution function p(x, y, z) the ratio and the
coefficient of thermal conductivity of the environment λ by the relation (47),

ρ(x, y, z) =
1
λ

· ρ(x, y, z) (47)

Then a design of a Green’s function of the above described boundary value
problem can be considered as natural generalization of a method of images.

Thus, the boundary value problem (1) for a differential equation (47) comes
down to a non-linear integral equation

η(x, y, z) = −
∫ ∫ ∫

(∇ · (F (η + ϕ) · −→v )) · G(x′, y′, z′, x, y, z)dx′dy′dz′ (48)

In the last equation the nabla operator represents a symbolic vector

∇ = (
∂

∂x′ ,
∂

∂y′ ,
∂

∂z′ ) (49)

And the factor ∇ · (F (η + ϕ) · −→v ) in expanded form registers as

∇ · (F (η(x′, y′, z′) + ϕ(x′, y′, z′)) · −→v ) (50)

Further we suppose that there is a rectangular parallelepiped Ω, (defined as
M(x, y, z) � Ω if xmax ≥ x ≥ −xmax, ymax ≥ y ≥ −ymax and 0 ≥ z ≥ zmax,
such, that F · (η(x, y, z) + ϕ(x, y, z)) = 0 at any point A(x, y, z) lying outside
this area.

Let’s transform a right member of the Eq. (48), integrating piecemeal

(∇ · (F (η + ϕ) · −→v )) · G = ∇ · ((F (η + ϕ) · G)) · −→v − F (η + ϕ) · (∇G,−→v )) (51)

According to the theorem of Gauss − Ostrogradsky

∫ ∫ ∫
Ω

∇· ((F (η +ϕ) ·G) · −→v )dx′dy′dz′ =
∫ ∫

D

F (η +ϕ) ·G · (−→n ,−→v )dS (52)
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where −→n - a vector of a normal to a surface of border D of the area Ω.
On the plane z = 0 vector −→n = (0, 0, 1) is orthogonal to −→v vector, i.e., on

sides of a parallelepiped D not lying in the plane z = 0 F (η + ϕ) = 0.
Thus,

∫ ∫ ∫
Ω

∇ · ((F (η + ϕ) · G) · −→v )dx′dy′dz′ = 0 (53)

and taking into account (50) we obtain

η(x, y, z) =
∫ ∫ ∫

Ω

F (η + ϕ) · (∇G,−→v )dx′dy′dz′ (54)

The problem of finding the solution of a non-linear integral equation (54)
can be interpreted as a problem of finding the fixed point of display f(x, y, z) →
Kf(x, y, z), where action of the non-linear operator K is defined by expres-
sion (55)

Kf(x, y, z) =
∫ ∫ ∫

Ω

F (η(x′, y′, z′) + ϕ(x′, y′, z′)) · (∇G,−→v )dx′dy′dz′ (55)

We make a hypothesis, that display (55) is the squeezing display, i.e. we
assume that there is a constant d < 1, such that ∀f1, f2 ∈ U is carried out
inequality:

‖ Kf1 − Kf2 ‖< d· ‖ f1 − f2 ‖ (56)

At the same time we designate a symbol U metric space of the square inte-
grable functions defined in the area Ω, with a reference metrics:

‖ f ‖=
∫ ∫ ∫

Ω

f2dxdydz (57)

It is known that for the squeezing operator K, the repetitive process deter-
mined by the equations looks like (58)

fk = Kfk−1 (58)

meets to the fixed point of operator K at any initial approximation of f0.

3 Conclusion

A mathematical model for the distribution of temperature fields in two-layer
absorbers with modifying microplasma irradiation of metallic coatings has been
developed and the numerical method for calculating temperature fields in the
coating/substrate’s system heating by a moving heat source has been designed.
Kirchhoff’s transformation was applied when solving a nonlinear heat equation
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by numerical methods. Based on the calculations of the temperature fields, cer-
tain speeds of movement of the robot arm with a microplasma source and cer-
tain power densities of the plasma source, i.e., microplasma surface treatment
modes were recommended in order to ensure the desired temperature distribu-
tion in the coating/substrate’s system. Coatings from biocompatible materials
deposited by the microplasma according to recommended modes onto steel and
titanium substrates have been obtained. It is shown that the robotic microplasma
spraying method allows applying a wide range of biocompatible materials:
Co-based powders, Titanium or Tantalum wires onto medical implants. Thus,
the applied value of the developed mathematical model and numerical methods
for solving problems of robotic microplasma spraying of biocompatible coatings
on endoprostheses has been shown. The results of the research are of signifi-
cance for a wide range of researchers developing numerical methods for solving
nonlinear equations.
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