
Parallel Implementation
of Nonparametric Clustering Algorithm

HCA-MS on GPU Using CUDA

S. A. Rylov(B)

Institute of Computational Technologies SB RAS, Novosibirsk, Russia
RylovS@mail.ru

Abstract. The present work explores nonparametric clustering algo-
rithm HCA-MS. The combination of grid-based approach and Mean shift
procedure allows the algorithm to discover arbitrary shaped clusters and
to process large datasets, such as images. Parallel implementation of
the HCA-MS algorithm on NVIDIA GPU using CUDA platform is pre-
sented. Provided experimental results on model data and multispectral
images confirm the efficiency of the considered algorithm and its parallel
implementation. The computation speedup on images was shown to be
about 20x compared to 4 core CPU.

Keywords: Clustering · Nonparametric · Grid-based · Mean shift ·
Image segmentation · GPGPU · CUDA · Parallel computing

1 Introduction

Clustering is the task of grouping a set of objects in such way that objects in
the same group are more similar to each other than to those in other groups
(clusters). Clustering of large datasets is urgent in many applied problems of
data analysis. For example, it is one of the most common approaches to satellite
image segmentation [1]. Generally, a priori information about the probabilistic
characteristics of classes, as well as training samples is often absent. Widely used
clustering algorithms (k-means, ISODATA, EM) are based on the assumption of
Gaussian distribution models and do not always provide required segmentation
quality (especially for high spatial resolution satellite images) [2,3].

In such circumstances, nonparametric clustering methods are more attractive
because of their ability to discover arbitrary shaped clusters [3]. However, high
computational complexity strongly limits its application to large datasets, such
as images. One of the best-known nonparametric mode-seeking algorithms that
are capable of producing accurate results is Mean shift [4] and it has quadratic
time complexity [5].

On the other hand, grid-based methods that divide feature space into a finite
number of cells are also capable of discovering arbitrary shaped clusters and at

c© Springer Nature Switzerland AG 2019
Y. Shokin and Z. Shaimardanov (Eds.): CITech 2018, CCIS 998, pp. 189–196, 2019.
https://doi.org/10.1007/978-3-030-12203-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12203-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-12203-4_19

190 S. A. Rylov

the same time they have high computational efficiency [6]. But their accuracy is
limited by a grid structure [7].

Recently HCA-MS algorithm was proposed by the author to combine the
best qualities of these two approaches [8]. It is based on the grid-based algorithm
HCA with the following Mean shift procedure for clusters’ borders refinement.
The combination of these approaches allows obtaining higher clustering accuracy
in comparison with grid-based approach and higher performance in comparison
with Mean shift.

Today, most personal computers are equipped with graphics cards (GPU),
the performance of which has grown dramatically in the last years. Consequently,
general-purpose computing on graphics processing units (GPGPU) technologies
are actively developing for solving time-consuming non graphics tasks [9].

The present work introduces a parallel implementation of HCA-MS clustering
algorithm on GPU using CUDA platform. Experimental results on model data
and multispectral images confirm the efficiency of the considered algorithm and
its parallel implementation. The computation speedup on images was shown
to be about 20x compared to 4 core CPU, where the parallel version of the
algorithm for CPU was implemented with OpenMP.

2 Nonparametric Clustering Algorithm HCA-MS

This section briefly describes the nonparametric clustering algorithm
HCA-MS [8]. This novel algorithm utilizes grid-based HCA clustering algorithm
with Mean shift procedure, which is applied to the elements of border cells
resulting in the refinement of the clusters’ borders.

The first stage of the HCA-MS is to execute grid-based HCA algorithm,
which was presented in [10] and briefly described below.

Let the set of objects X consist of d-dimensional vectors lying in the feature
space Rd: X = {xi = (x1

i , . . . , x
d
i) ∈ Rd, i = 1, . . . , N}, and bounded by a hyper-

rectangle Ω = [l1, r1] × · · · × [ld, rd]: lj = minxi∈X xj
i , rj = maxxi∈X xj

i . Grid
structure is formed by dividing Ω with hyperplanes xj = (rj − lj) · i/m + lj ,
i = 0, . . . ,m where m is the number of partitions in each dimension. The set
of cells adjacent to B will be denoted by AB . The density DB of the cell B is
defined as the number of elements from the set X belonging to the cell B.

The nonempty cell Bi is directly connected to the nonempty cell Bj (Bi →
Bj) if Bj is the cell with the maximum number that satisfies the conditions
Bj = arg max

Bk∈ABi

DBk
and DBj

� DBi
. The nonempty adjacent cells Bi and Bj

are directly connected (Bi ↔ Bj) if Bi → Bj or Bj → Bi. The nonempty cells
Bi and Bj are connected (Bi ≈ Bj) if there exist k1, . . . , kl such that k1 = i,
kl = j and for all p = 1, . . . , l − 1 we have Bkp

↔ Bkp+1 . The introduced
connectedness relation leads to the natural partition of nonempty cells into the
connectedness components {G1, . . . , GS}. The connected component is defined
as the maximum set of pairwise connected cells. Representative cell Y (G) of the
component G is defined as a cell with the maximum number that satisfies the
condition Y (G) = arg maxB∈G DB .

Parallel Implementation of Nonparametric Clustering Algorithm 191

The determined connectedness components correspond to single-mode clus-
ters, and their representative cells correspond to the density modes of these
clusters.

Next, to construct an hierarchy between components we define the distance
hij between adjacent components Gi and Gj as

hij = min
Pij∈Rij

[
1 − min

Bkt∈Pij

DBkt

/
min

(
DY (Gi),DY (Gj)

)]
,

where Rij = {Pij} is a set of all possible paths between representative cells
Y (Gi) and Y (Gj), Pij = 〈Y (Gi) = Bk1 , . . . , Bkt

, Bkt+1 , . . . , Bkt
= Y (Gj)〉 such

that for all t = 1, . . . , l − 1: (1) Bkt
∈ Gi ∪ Gj ; (2) Bkt

, Bkt+1 are adjacent cells.
After forming a matrix of distances between adjacent components {hij}, the

SLINK (nearest neighbor) algorithm for dendrogram construction is applied to
it. The result of the algorithm is an hierarchical structure built on the set of
connected components.

The HCA algorithm at low computational costs allows distinguishing clus-
ters of complex shape and obtaining hierarchical clustering structure. Moreover,
unlike the other well-known hierarchical algorithms [11], it allows separating
clusters that are intersecting in the feature space. However, accuracy of cluster’s
separation highly depends on the grid structure, which can lead to mistakes,
particularly if the grid parameter m is chosen unsuccessfully.

At the second stage of HCA-MS algorithm, data elements are grouped due
to the cells they belong to, for the following quick access to the list of elements
of an arbitrary cell.

At the third stage , non-empty cells located at the cluster’s borders are
considered. To each element of such cell Mean shift procedure is applied [4],
which iteratively converges to the local density maximum: xk+1 = m(xk), where

m(x) =

N∑
i=1

xi · KEp(x − xi)

N∑
i=1

KEp(x − xi)
.

where the finite Epanechnikov kernel function is used:

KEp

(
x − xi

h

)
=

(
1 − ||x − xi||2

h2

)
· I

(||x − xi|| � h2
)
,

where I(x)—an indicator function.
Smoothing parameter h is set equal to the width of the cell in the grid

structure.
The shift process stops if the considered element moves to the other non-

empty cell. In case the new cell belongs to another cluster the element is moved
to this cluster. The maximum number of Mean shift iterations is limited by the
parameter, which we will set to 3. Experimental studies on model data have
shown that in most cases this parameter value is sufficient [8]. In general, it is
possible to use more sophisticated stopping criteria, but since this is not the
subject of this study, we will not consider them.

192 S. A. Rylov

3 Parallel Implementation of the Clustering Algorithm
HCA-MS with CUDA

CUDA is a powerful parallel computing platform and API model that allows
using NVIDIA GPUs for general purpose processing. Modern GPUs contain
thousands of cores, grouped into blocks under the control of multiprocessors.
The cores of one block perform the same set of instructions, but on different data
elements. Each core contains small number of registers and has quick access to a
limited amount of shared memory within its block (managed cache). In addition,
all the threads (executed on separate cores) can access large amount of global
memory, but random access time to it is slow and takes hundreds of cycles.
Synchronization of threads during execution is possible only within a block.

Parallel implementation of the grid hierarchical HCA algorithm on GPU
using CUDA is described in detail in [12]. By itself, this algorithm has very fast
performance: four-bands images of the size up to 100 megapixels are processed
on CPU within 1 s and on GPU within 0.1 s. Considering HCA-MS algorithm,
its first stage (HCA) computing time is insignificant.

At the second stage, data elements are sorted by the cells and an array of
the first elements indices for each cell is formed. This stage is also not compu-
tationally time consuming, and its execution is performed on CPU.

The use of a weighting table (the number of elements with the same feature
values) can significantly reduce computational cost of processing color images
with common 256 quantization levels. Yet, when processing multispectral satel-
lite images containing more than three spectral bands with radiometric resolu-
tion of 10–14 bits, the efficiency of this approach is diminished. Therefore, in
this particular study we will not use a weighting table.

Finally, the third stage is the one that is time consuming. Mean shift pro-
cessing of the border cells can be done independently from each other, therefore,
parallelization is applicable. On CPU different threads just process different cells.
But, on GPU each cell is processed by its block, where block’s threads process
the elements of the cell in parallel. Let’s consider the processing scheme of a
non-empty cell by a block of threads.

First, the connectedness components of all neighboring cells are read into
the shared memory by the threads, as well as the indices of the first and the
last elements of these cells. If among the neighboring cells no cell belongs to the
different component, which means it is not a border cell, then the block finishes
its work.

Otherwise, the elements of the cell are processed in parallel by the threads.
To execute Mean shift step each thread goes through all the elements from the
adjacent cells to search those in the radius h. Due to the fact that it is impossible
to guarantee that the number of considered elements will not exceed the limited
size of shared memory, data access is made through the global memory.

Yet, to optimize data access, managed cache was successfully utilized. The
elements of each cell are read into the allocated array in shared memory by
fragments of fixed size that is equal to the block size (the number of threads
in the block). After the threads finish processing this part of data, the next

Parallel Implementation of Nonparametric Clustering Algorithm 193

data fragment is uploaded. All block threads upload new data fragment syn-
chronously, even if some threads are not involved in the cell elements processing.
This optimization additionally reduced computation time by 20%.

4 Experimental Results

This section presents the results of experimental studies of HCA-MS algorithm
on model data and images. It was shown that HCA algorithm is capable of
distinguishing clusters of complex shape and produces better results than well-
known clustering algorithms like K-means, EM, DBSCAN, OPTICS, DeLiClu,
SLINK and Mean shift on complex data [12]. The considered issue is the effi-
ciency of the proposed implementation to correct border mistakes caused by the
grid effect. The clustering accuracy of HCA-MS algorithm is compared with the
initial grid-based algorithm HCA and density-based algorithm Mean shift. The
computation time of the proposed CUDA implementation of HCA-MS algorithm
on GPU (GeForce GXT 770, 1536 cores) compared with execution on one and
four cores of the CPU (Intel Core i5, 3.5 GHz) is presented. The parallel version
of the algorithm for CPU was implemented with OpenMP.

Experiment 1. Two-dimensional synthetic dataset containing 3 classes [13] was
clustered. One cluster described by a normal distribution is surrounded by two
clusters in the form of rings (Fig. 1c). Mean shift clustering algorithm cannot
extract multimode clusters in the form of rings in principle. In its turn, HCA
algorithm successfully separates all three clusters, but makes some mistakes when
the grid parameter is selected unsuccessfully: at m = 30 clustering accuracy is
98.21% (Fig. 1a); at m = 42 mistakes are made in 3 points (Fig. 1b); 100%
accuracy is obtained only at m = 46 (Fig. 1c). However, HCA-MS algorithm is
able to correct mistakes caused by the grid effect. As a result, 100% accuracy is
obtained in all three cases: at m = 30, m = 42 and m = 46 (Fig. 1c).

Fig. 1. The results of clustering the model dataset obtained by HCA algorithm at
m = 30 (a), m = 42 (b), m = 46 (c); and the result of HCA-MS with the same
parameter’s values (c).

194 S. A. Rylov

Fig. 2. Clustering results of the model dataset (a) by HCA algorithm (b) and by HCA-
MS algorithm (c) at m = 20.

Experiment 2. The synthetic dataset containing three strongly intersecting
classes with normal distribution [13] is shown in Fig. 2a. Clustering accuracy of
this model by HCA algorithm at m = 20 is 94.93% (Fig. 2b). At this case, the
accuracy can be increased by using finer grid: for example, at m = 40, the accu-
racy is 96%. However, very fine grid can be unacceptable when extracting clus-
ters with complex structure. HCA-MS algorithm demonstrates 96.4% accuracy
at m = 20 (Fig. 2c). While Mean-shift algorithm at most achieves 96.33% accu-
racy at h = 27. At the same time, other density-based algorithms (DBSCAN,
OPTICS, DeLiClu) fail to adequately separate strongly intersecting classes.

Experiment 3. To assess the speedup effect of the GPU implementation, test
data-sets of different size were generated. The data-sets follow uniform distribu-
tion in the limited three-dimensional feature space. HCA-MS algorithm process-
ing time on the test data depending on the number of elements (from 500’000
to 10’000’000) performed on the GPU and one and four cores of the CPU is
presented in Fig. 3a. The obtained speedup of the GPU execution in comparison
with four cores of the CPU is shown in Fig. 3b. The results are presented for the
grid parameter values m = 20 and m = 32, because these values are usually used
for image clustering. Average speedup of the OpenMP parallel implementation
performed on four cores of the CPU is 3.8x compared to the non-parallel version.
The speedup of the proposed CUDA implementation on the GPU in comparison
with OpenMP performance reaches 28x.

Experimental studies have shown that the speedup on GPU depends on cell
density: denser cells are processed more efficiently. This is caused by the fact
that each cell is processed by a block of threads. Therefore, if there is insuffi-
cient number of elements in a cell, then some part of the reserved threads may
be unused. Thus, the speedup on GPU can decrease if the grid parameter m
is increased. On the other hand, the cells are processed independently by the
blocks. Therefore, the speedup directly depends on the number of streaming
multiprocessors (SM). And while the number of cores per SM is almost constant
(192 in Kepler and 128 in Maxwell and Pascal architectures), the number of
SMs is determined by the total number of GPU cores, which provides a direct
dependence of the algorithm CUDA performance on the number of GPU cores.

Parallel Implementation of Nonparametric Clustering Algorithm 195

Experiment 4. The table below shows HCA-MS algorithm time performance
on the GPU and four cores of the CPU on the images of different size at m =
20. In total 40 color photos and multispectral satellite images (WorldView-2
and Landsat-8) of different size [14] were processed. The full table is avable
here [15]. The results showed that the average speedup of the OpenMP parallel
implementation performed on four cores of the CPU is 3.7x compared to the
non-parallel version and it does not fluctuate considerably. The average speedup
of the GPU execution in comparison with four cores of the CPU is 22x at m = 20
and 19x at m = 32 (for the images containing more than 1 million pixels). Time
performance of the algorithm at m = 32 is about 4x faster than at m = 20.
However, it should be noticed that processing time strongly depends on the
data itself, and for different images of the same size it can vary greatly.

Thus, the proposed parallel implementation on the GPU can process large
multispectral images just in few minutes (Table 1).

Table 1. HCA-MS algorithm time performance on the images (in seconds).

Number of
bands

3 3 3 3 4 3 3 4 3 3 4

Image size
(megapixels)

0.3 1.2 4.2 4.2 4.2 5 9 12.5 13.8 25 25

CPU, 4 cores 6.6 93 302 6872 701 1465 1948 2055 18186 16623 11013

GPU 0.5 5.2 10.6 357 33 49 96 115 679 587 510

Speedup 14.4 18.0 28.4 19.2 21.3 29.7 20.3 17.8 26.8 28.3 21.6

Fig. 3. HCA-MS algorithm processing time on the test data depending on the number
of elements N performed on the GPU and one and four cores of the CPU (a); the
speedup of the GPU performance in comparison with 4 cores of the CPU (b).

196 S. A. Rylov

5 Conclusion

Parallel implementation of the nonparametric HCA-MS clustering algorithm on
GPU using CUDA platform is presented. Experimental results on model datasets
showed the ability of the algorithm to correct mistakes caused by the grid effect,
reaching clustering accuracy level of the well-known Mean shift algorithm. The
experiments showed, that the proposed parallel implementation on GPU allows
processing multispectral images 20 times faster than on CPU (4 cores). Thereby,
large multispectral images can be clustered just in few minutes.

References

1. Xie, Y., Sha, Z., Yu, M.: Remote sensing imagery in vegetation mapping: a review.
J. Plant Ecol. 1(1), 9–23 (2008)

2. Zadkarami, M.R., Rowhani, M.: Application of skew-normal in classification of
satellite image. J. Data Sci. 8, 597–606 (2010)

3. Sarmah, S., Bhattacharyya, D.K.: A grid-density based technique for finding clus-
ters in satellite image. Pattern Recogn. Lett. 33(5), 589–604 (2012)

4. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 17(8), 790–799 (1995)

5. Freedman, D., Kisilev, P.: Fast mean shift by compact density representation.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1818–1825. IEEE (2009)

6. Ilango, M.R., Mohan, V.: A survey of grid based clustering algorithms. Int. J. Eng.
Sci. Technol. 2(8), 3441–3446 (2010)

7. Krstinic, D., Skelin, A.K., Slapnicar, I.: Fast two-step histogram-based image seg-
mentation. IET Image Process. 5(1), 63–72 (2011)

8. Rylov, S.A.: Nonparametric clustering algorithm for image segmentation combining
grid-based approach and mean-shift procedure. In: CEUR Workshop Proceedings,
vol. 2033, pp. 150–155 (2017)

9. Choquette, J., Giroux, O., Foley, D.: Volta: performance and programmability.
IEEE Micro 38(2), 42–52 (2018)

10. Pestunov, I.A., Rylov, S.A., Berikov, V.B.: Hierarchical clustering algorithms for
segmentation of multispectral images. Optoelectron. Instrument. Data Process.
51(4), 329–338 (2015)

11. Lu, Y., Wan, Y.: PHA: a fast potential-based hierarchical agglomerative clustering
method. Pattern Recogn. 46(5), 1227–1239 (2013)

12. Rylov, S.A., Pestunov, I.A.: Fast hierarchical clustering of multispectral images
and its implementation on NVIDIA GPU. JPCS 1096, 012039 (2018)

13. Rylov, S.A.: Model datasets. [Electronic resource]. https://drive.google.com/open?
id=0ByK9GtU5ExExRnZwdFNmRHRWdFk. Accessed 20 Apr 2018

14. Image datasets for clustering. [Electronic resource]. https://drive.google.com/
open?id=0ByK9GtU5ExExWXpGRjU5WVFHcDg. Accessed 20 Apr 2018

15. Table: HCA-MS algorithm time performance on the images. [Electronic resource].
https://drive.google.com/file/d/1xA89kC3tixwEUMLaX pfEOTJ-s-Uh0-8/view?
usp=sharing Accessed 14 Oct 2018

https://drive.google.com/open?id=0ByK9GtU5ExExRnZwdFNmRHRWdFk
https://drive.google.com/open?id=0ByK9GtU5ExExRnZwdFNmRHRWdFk
https://drive.google.com/open?id=0ByK9GtU5ExExWXpGRjU5WVFHcDg
https://drive.google.com/open?id=0ByK9GtU5ExExWXpGRjU5WVFHcDg
https://drive.google.com/file/d/1xA89kC3tixwEUMLaX_pfEOTJ-s-Uh0-8/view?usp=sharing
https://drive.google.com/file/d/1xA89kC3tixwEUMLaX_pfEOTJ-s-Uh0-8/view?usp=sharing

	Parallel Implementation of Nonparametric Clustering Algorithm HCA-MS on GPU Using CUDA
	1 Introduction
	2 Nonparametric Clustering Algorithm HCA-MS
	3 Parallel Implementation of the Clustering Algorithm HCA-MS with CUDA
	4 Experimental Results
	5 Conclusion
	References

