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Abstract. Neural networks improve speech recognition performance
significantly, but their large amount of parameters brings high compu-
tation and memory cost. To work around this problem, we propose an
efficient network compression method based on Singular Value Decom-
position (SVD), Simultaneous Iterative SVD Reconstruction via Loss
Sensitive Update (SISVD-LU). Firstly, we analyse the matrices’ singular
values to learn the sparsity in every single layer and then we apply SVD
on the most sparse layer to factorize the weight matrix into two or more
matrices with least reconstruction errors. Secondly, we reconstruct the
model using our Loss Sensitive Update strategy, which propagates the
error across layers. Finally, we utilize Simultaneous Iterative Compression
method, which factorizes all layers simultaneously and then iteratively
minimize the model size while keeping the accuracy. We evaluate the
proposed approach on the two different LVCSR datasets, AISHELL and
TIMIT. On AISHELL mandarin dataset, we can obtain 50% compres-
sion ratio in single layer while maintaining almost the same accuracy.
When introducing update, our simultaneous iterative compression can
further boost the compression ratio, finally reduce model size by 43%.
Similar experimental results are also obtained on TIMIT. Both results
are gained with slight accuracy loss.

Keywords: Speech recognition - SVD-based compression *
Loss sensitive update + Simultaneous iteration

1 Introduction

In the past few years, we have witnessed a rapid development of deep neural
networks in the field of automatic speech recognition (ASR) [8,14,18,21,22].
However, the large size of neural network models leads to high computation and
memory costs, which also makes it difficult to deploy the models in low resource
devices. Frequently-used solution is to put the models on powerful cloud servers.
But when network-connection is instable, this approach brings high latency, and
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even failure. Thus, neural networks compression for mobile devices attracts more
and more attention.

Recent researches have proposed various methods to compress models, which
can be efficiently executed directly on the embedded devices. Existing methods
for neural network compression can be broadly divided into four categories:
parameter quantization, pruning, knowledge distillation and low rank approxi-
mation.

Parameter quantization attempts to quantize the weights or activations
of networks from 32 bit floating point into lower bit-width representations. With
just two-three bits per parameter, these methods can get pretty good compres-
sion performance [6,12,15,23]. However it requires the algorithm computation-
ally efficient while reducing runtime memory footprint.

Pruning is a forthright way to reduce network complexity. [11] pioneered
the approach of pruning. They trained a full network and removed the neurons
with the zero activations. The work in [20] exploited the sparseness in DNN,
and presented a nice way to reduce the model size. [4] jointly learned weights
and connections, using a hard threshold to remove the least important weights
with small absolute values. Finally, they then fine-tuned to recover its accuracy.
It has successfully pruned the heavy networks without performance loss. But it
still need extra memory usage to index the non-zero value.

Knowledge distillation method first trains a heavier network, as “teacher”
network, then trains a smaller “student” network through knowledge transfer.
First attempts in this direction were made by [2], they investigated the model
complexity- RMSE error. [5] then utilized the predicted probability distribution
of the teacher model as “knowledge”, introducing a more general technique for
distilling the knowledge of a network.

Low-rank approximation is also widely studied [3,17,19]. In recent years,
low-rank tensor approximation methods, e.g. Singular Value Decomposition
(SVD), have been established as a new tool in matrix compression to address
large-scale parameters problem. Reducing parameter dimensions by low-rank
approximation saves storage and reduces time complexity simultaneously.

Our work builds on previous research in the area of low rank decomposition,
called Simultaneous Iterative SVD Reconstruction via Loss Sensitive
Update (SISVD-LU). Initially, a large model trained without constraints is
produced. We conduct the first phase of our method to learn the importance
of each weight matrix in different layers. We keep the essential information
remained (indicated by larger singular values), and surpress less useful ones.
Then, we update the reconstructed network in a optimal procedure so that the
removed information can be compensated. In the end, reconstruction and update
are iteratively performed to further reduce network complexity and keep the
accuracy at a acceptable level.

Our work is different from the previous works in follow aspects:

1. Most methods [3,7,19] approximate a tensor by minimizing the reconstruc-
tion error of the original parameters, while ignoring the accumulate errors.
Our update mechanism emphasizes the ultimate network objective goal by
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applying across-layer loss sensitive update. Furthermore, we iterate the pro-
cess which is different from their methods.

2. Compared with [13], we compress the Time Delay Neural Network (TDNN)
for ASR instead of Convolutional Neural Network (CNN). We also aware
the importance of global loss, but we further explore the case of single-layer
compression, and propose our exclusive update.

3. Prior approaches are usually evaluated on over-parameterized models, such
as AlexNet [10], VGG [16], or very large output full-connection layers. Our
method can get about 50% compression rate while only applied in the rela-
tively small hidden layers.

The rest of this paper is organized as follows. Section 2 details every phase
of our proposed method. Experimental results are presented and discussed in
Sect. 3. In Sect. 4, we summarize our work.

2 Effective SVD-Based Deep Network Compression

Our proposed method, called Simultaneous Iterative SVD Reconstruction via
Loss Sensitive Update (SISVD-LU), including three phases:

2.1 Inner-Layer Reconstruction Using SVD

In our proposed method, a full-trained deep neural network model is firstly
obtained without resource constraints. Then, we decompose the weights matrix
WO between the I-th and (I 4+ 1)-th layers via matrix factorization (MF) to
reduce the parameter size.

We formulate the Matriz Approzimation problem as follow.

W=W+e¢ (1)

as Eq. 1 shows, the weight matrix W is subject to the Additive-Residual model.
Where the weight matrix W) is generalized as W (€ RM*N) with rank r,
e € RM*N js the reconstructed residual matrix. And W is the approximate low-
rank matrix. We can view this procedure as capturing the main patterns of W
while eliminating much of “noise”.

We use Singular Value Decomposition (SVD) to solve this rank minimization
problem. The matrix W has a representation of the form:

wO=vux,v" (2)

where U and V are orthogonal matrices UUT = VVT = I, and X, is a diago-
nal matrix, X, = diag(o1, 09, ...,0.), are called singular values. The size of the
original matrix W® is M x r. The resulting decomposition submatrix U, X,, V
size M X r, r xr, r x N, respectively. Here r denotes the number of the nonzero
singular values.
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It is found that the singular value decreases particularly fast. In many cases,
the sum of top 10% of singular values accounts for more than 99% of the sum
of all singular values [19]. For compression task, a small preserved rank kwill
be chosen. We sort singular values in a descending order and pick the largest
k (k < r) singular vectors in U and V with corresponding eigenvalue in X' to
approximate W.

W= O80T o
=0 (V)T

The approximation of SVD is controlled by the decay along the eigenvalues
in X). This procedure changes the number of parameters from M x N to k x

kx(M+N
(M 4 N). So the Compression Ratio R is defined as R = %

The demonstration of SVD is presented in the right part of Fig. 1.
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Fig. 1. Architecture of SVD-based network reconstruction. Left part is the baseline
TDNN model structure, right part illustrates the process of SVD.

2.2 Across-Layer Loss Sensitive Update

From a across-layer perspective, the inner-layer decomposition causes cumulative
errors and destroys the coupling of the layers. We build the Loss-sensitive Update
recipe.

In a vanilla neural network, the input features are presented as X =
[T1, %9, ..., Tmm], Where x; € R? where m is the number of feature vectors and
d is dimension of a feature vector. After forward propagation, the output of the
[-th layer can be written as:

=1

ygl) = U(z(l)), where zgl) = Z w! =D (4)
j=1

i ij J
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Where w%_l) is the element of weight matrix W=, n(=1 denotes the num-
ber of neurons in the [ — 1 layer. And o(-) is a non-linear transformation called
“activation function”. The commonly used forms of this function are: tanh, sig-

moid or the rectifier linear unit (ReLU) etc. The hidden state and its result
O] ®

after activation are denoted as vectors z;’ and y;’, respectively. Expanding the
expression to Eq. 5.
ygl) — a(w(l_l) c. U(w@)a(w(l)x(l) + b(1)> + b(2)) .. +b(l—1)) (5)

We can see more clearly how the global error accumulated after decomposition.
Most existing reconstruction focus on how to reduce the error of inner-layer
reconstruction, as showed in Eq.6. Here || - || as Frobenius norm. In this way,
the loss of global accuracy is often ignored.

1 . 2
— rin o O _ 0 H
¢ = in 5w =i Q

Single-layer reconstruction weakens the strong associations between layers,
which are built through forward and backward propagation. Hence, we solve the
reconstruction problem for a broader scope, aiming at preserving the global mod-
eling capabilities of networks, such as classification ability or regression ability.
Our loss function is modeled as Eq. 7.

2
Y(l z (lil)X H
min Sy O o) |,

@ p=1) (7)

2
in, 2 % gl otol |

In order to further constrain the complexity of the model, we add the L1-
regularization term to the objective function, inducing model to be sparse. Our
final objective function is Eq. 8.

Ca

2

L = min —HY”) ('™ 1)X)H + W\ (W)

W=D 2

n® pa=1 (8)
s.t. WA(W):)\Z Z ||’II)U||1

i=1 j=1

Then we backpropagate loss using Stochastic Gradient Descent (SGD). Note
that SVD will insert a bottleneck layer in the middle of the original layer. In
backpropagation phase, we keep the structure.

According to the different scopes of global loss backpropagation, we propose
the following methods:

— Scheme 1 Fix the decomposition layers, only update the remaining layers,
we call it Fzxclusive Update.
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Fig. 2. Different update schemes of global loss backpropagation. Here, the rounded
rectangle represents a hidden layer, and the circle represents neuron. The dashed line
indicates that backpropagation does not change the parameters of the specific layers,
and the solid line indicates that backpropagation will update the parameters those
layers.

— Scheme 2 Only update decomposition layers, keep the remaining layers
unchanged, we call it Self Update.
— Scheme 3 Update the whole reconstructed model, we call it Global Update.

The range of error back-propagation is controlled by the learning rate of
each layer. If the learning rate is set to zero, this layer parameter is not updated.
Demonstration of different global loss backpropagation schemes is presented in
Fig. 2.

2.3 Iterative Compression

As previous section summarized, across-layer reconstruction can utilize SVD-
based compression performance to make the neural networks small and fast
enough. Based on the above analysis, we find that iteratively apply inner-layer
decomposition and across-layer reconstruction procedure will bring high com-
pression ratio with low accuracy loss. We perform the iterative compression in
two different ways:

— Layerwise Compression: Conduct network reconstruction after compres-
sion of single layer during every iteration.

— Simultaneous Compression: Compress the whole networks at same time,
and fine-tuning follows iteratively.

The back-propagation of the cumulative errors can retrieve the discriminal
ability damage of models and preserve original relationships across the networks.
Our proposed method reduces network complexity and keep the accuracy in a
acceptable level. Figure 3 describes two iterative compression flows.
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Fig. 3. Two iterative compression approaches: simultaneous compression, layerwise
compression. Layerwise compression will get the bottom state from top step by step.
Simultaneous compression will go to the bottom state directly. Here, the cube represents
the weight matrix, it is decomposed into three smaller matrices by SVD.

3 Experiments

In this section, we evaluate the effectiveness of our approach on two different
LVCSR corpus, AISHELL [1] for Mandarin ASR and TIMIT for English ASR.

3.1 Experimental Setup

Architecture of TDNN. Since speech signal has the temporal dynamics prop-
erty, an acoustic model is required to have the ability to capture the long term
dependencies between acoustic events. In a standard DNN, the initial layer learns
the entire temporal context. Whereas, the TDNN architecture learns in a hierar-
chical structure. Narrow contexts are learnt by low layers and the deeper, layers
learn from a wider temporal context. Hence the higher layers have the ability to
learn wider temporal relationships. The structure of TDNN is depicted in the
left part of Fig. 1.

3.2 Mandarin LVCSR Task on AISHELL

AISHELL corpus is a 170-h Mandarin speech corpus [1]. The corpus includes
training set (150h), development set (10h) and test sets (5h).



42 H. Fu et al.

The input features consist of two parts, including 13-dimensional Mel fre-
quency cepstral coefficients (MFCC) and 3-dimensional pitch features. Mean
normalization and double deltas are applied on the above features before feeding
into the training pipeline. The resulting GMM-HMM model has 2952 senones.
During the training of TDNN-based acoustic models, we input high resolutional
(40-dimensional) MFCC and 3-dimensional pitch features. Audio augmentation
[9] and i-Vector (100-dimensional) based DNN adaptation are applied. Sub-
sampling window is applied on MFCC and pitch features to splice neighboring
frames.

Our baseline system is constructed based on the corresponding recipe. We
used time delay neural network (TDNN) as our baseline. In our experiments,
it contains 6 hidden layers, 850 hidden nodes per layer, using ReLLU as the
activation function. The output layer consisted of 2952 units.

After we obtain a full-trained (train with no resource constraints) deep neural
network model, further reduction of footprint is conducted by an SVD-based
compression.

Rank Selection. We notice that rank selection affects the compression rate as
well as the accuracy. Too high rank will result in insufficient compression, while
too low may make the accuracy recovery difficult or impossible.

To explore the implicit information each layer contains, we apply SVD on
the same layer with different ranks, and different layers with the same rank.

Tables1 and 2 summarizes the experimental results. The first column
describes the setup of the model, and the number in bracket means that how
many singular values we keep after SVD. The third column is the number of
parameters in each model. For example, in the original DNN model the number
of parameters is 315 x 850 + (850 x 850) x 6 + 850 x 2952 ~ 6.78 M. Baseline
GMM model has 100K gaussians in total.

Table 1. Results for SVD reconstruction on the same single layer preserving dif-
ferent ranks in AISHELL task (without fine-tune). Numbers inside brackets represent
the preserved singular values. The digits in the table represent the word error rate
(WER) (%). NoP denotes number of parameters

Acoustic model | test |dev | NoP
6th(128) 10.08 | 8.33 | 0.21M
6th(256) 8.62|7.4 |0.42M
6th(512) 8.49|7.28 | 0.83M

From Table 1, we can see that model size of our original DNN model is nearly
twice as GMM model. We reduce WER at 30% relatively by replacing GMM
model with DNN model. Using different preserved ranks in the same layer lead
to a nonlinear loss of precision.
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Table 2. Results for SVD reconstruction on different layers preserving the same
rank in AISHELL task (without fine-tune)

Acoustic model test | dev Prior NoP | Post NoP
GMM 12.10 |10.40 |- - - ---
TDNN 8.45 | 7.20 |6.78M ---

2nd hidden layer(256) | 9.99 | 8.47 |0.68M 0.41M
3rd hidden layer(256) | 8.87 | 7.62 | 0.68M 0.41M
4th hidden layer(256) | 8.97 | 7.6 |0.68M 0.41M
5th hidden layer(256) | 8.67 | 7.42 | 0.68M 0.41M
6th hidden layer(256) | 8.62 | 7.4 | 0.68M 0.41M
Output layer(256) 14.01 | 13.84 | 2.39M 0.92M

All hidden layers(256)  22.12 | 19.58 6.78M | 3.89M

The following rows in Table2 reveal the effect of the proposed approach.
When we keep only top 50% singular values (the SVD-256 case) on the matrices
of hidden layers, there are slight changes compared with original model. But
when it comes to compress the output layer, keep top 50% singular values will
cause obvious performance reduction. Therefore, different scaled weight matrices
should keep different ranks.

As it were, SVD in the most sparse layer can effectively compress model size,
even without reconstruction update. We can at most gain 50% compression ratio
after applying SVD, while maintaining almost the same accuracy.

Across-Layer Loss Sensitive Update. We conduct several experiments, the
results are described in Table 3. For single layer decomposition, the Self Update
scheme and the Global Update scheme both work good for single-layer (or a small
amount of layers). For multi-layer decomposition, Global Update scheme shows
more advantages. Furthermore, we explore if train for more epoches, the Self
Update can get better results. But it leads to a painful long time consumption,
and doesn’t look better than Global Update case (result: WER on dev set is
7.35%, on test set is 8.61%, re-train for 3 epoch,).

We believe that it is owing that the cumulative losses from SVD can affect
the entire network, Global Update is more reasonable to give reconstructed model
a larger adjustable range. On the other hand, since SVD maintains the princi-
pal components of the original weight matrix, we can take it for a pre-training
procedure.

As a periodic summary, Global Update is suitable for more scenarios.

Iterative Compression. We perform experiments to compare our two iter-
ative compression methods. Here “Aggressive” means directly push model to
a relatively small size and Global Update repeatedly. “Gradual” mode means



44 H. Fu et al.

Table 3. Comparisons of different update schemes after weight matrices reconstruction
in AISHELL task

Acoustic model Fine-tune Scheme | WER
test | dev
TDNN, Baseline --- 8.45 | 7.20

6th Hidden Layer(256) | Exclusive Update | 8.59 |7.36
Self Update 8.49 | 7.31
Global Update 8.55 | 7.36
All Hidden Layers(256) | Exclusive Update | 9.45 |8.08
Self Update 8.37 | 7.22
Global Update | 8.33 7.14

compress to a moderate size first and iterative push to a smaller size, fine-tune
is executed after every iteration. Table 4 shows our comparison results.

Table 4. Comparisons of different iterative compression schemes for combination of
reconstruction and update in AISHELL task

Iterative scheme Mode test | dev
Layerwise compression Input to Output 8.59 | 7.36
Output to Input 8.63 | 7.41

Simultaneous compression | Aggressive(850-128) 8.49 ' 7.31
Gradual(850-512-256-128) | 8.55 | 7.36

From the exhibited results, we found that the Simultaneous Compression
looks better than Layerwise Compression. Moreover, proceeding from input to
output rather that the reverse order produces better results for layerwise com-
pression. “Agressive” mode for Simultaneous compression shows more effective-
ness.

Results. Here we summarize the best result on AISHELL in Table5 with
SISVD-LU.

We get the best result when we factorize all hidden layers with rank 256
and iterative global update. The parameter size of the final compressed model
is 315 x 850 + (850 x 128 + 128 x 850) x 6 + 850 x 2952 ~ 3.89 M, which is 57%
of the original size.

3.3 English LVCSR Task on TIMIT

We demonstrate scalability of the proposed low-rank decomposition on a differ-
ent dataset. So our second task is to train a same-structure TDNN model for
English ASR corpus TIMIT to verify our conclusion is universal.
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Table 5. Experimental results on the Mandarin AISHELL Corpus using our SISVD-
GLU approach

Acoustic model test | dev

TDNN, Baseline --- 8.45 | 7.20

All Hidden Layers(512) Before Iterative Update 8.54 | 7.32
After Iterative Update 8.42 | 7.21

All Hidden Layers(256) | Before Iterative Update |22.12 | 19.58
After Iterative Update| 8.32| 7.12
All Hidden Layers(128) Before Iterative Update | 34.55 | 30.71
After Tterative Update 8.49 | 7.31

The two corpora are significantly different in language and duration. TIMIT
contains a total of 6300 sentences (5.4h), consisting of 10 sentences spoken by
each of 630 speakers from 8 major dialect regions of the United States.

In our experiments, we use 13 dimensional features space maximum likeli-
hood linear regression (fMLLR) features and then concatenate the neighboring 5
frames (11 frames in total) as the input feature. Note that, we don’t use i-Vector
in following experiments. To have a fair comparison, we construct a same TDNN
architecture (number of hidden units and number of layers are the same) as the
one used on last task.

We first train a full-trained model and then perform SISVD-LU. Table 6
shows us the results.

Table 6. Experimental results on the English TIMIT corpus using our SISVD-GLU
approach

Acoustic model test | dev

TDNN, Baseline --- 184 |16.4
All Hidden Layers(512) Before Iterative Update | 18.7 174
After Iterative Update 18.4 |16.9
All Hidden Layers(256) Before Iterative Update | 23.3 214
After Iterative Update 17.8 |16.2
All Hidden Layers(128) | Before Iterative Update |45.2 |41.5
After Iterative Update |17.7 | 16.1

After compression, the accuracy after compression suffers great reduction.
Yet, our iterative global update can recall the loss back. Those results fully
support our method.
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4 Conclusion

In this paper, we have proposed an effective SVD-based compression method.
The loss sensitive update has conducted after SVD reconstruction, and repeat
this combination of two operations. For the single layer, by performing our com-
pression method, we can gain 50% compression ratio after applying SVD while
maintaining almost the same accuracy. For a whole model, our iterative update
procedure can boost the compression ratio, in the same time, without accuracy
loss. We verify our strategies in two very different datasets, TIMIT for English
ASR and AISHELL [1] for Mandarin ASR.

The experimental results support our conclusion. Though we only investigate
the SVD compression method, the outcome of this paper provokes us to gener-
alize our conclusion in other matrix manipulation related methods or combine
it with other compression methods.
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