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Preface

The DLPR workshop was formerly known as the International Workshop on Deep
Learning for Pattern Recognition. This workshop was first held in conjunction with the
23rd International Conference on Pattern Recognition (ICPR 2016). The second
workshop was held in conjunction with ICPR 2018, and was jointly organized with the
Workshop on Face and Facial Expression Recognition from Real World Videos
(FFER). The purpose of this workshop is to bring together researchers who are working
on developing deep learning and pattern recognition to report or exchange their pro-
gress in deep learning for pattern recognition. The reviewing was single-blind, and
about 20 external expert reviewers from the community were invited to help with
specific papers. Each paper was reviewed by at least three reviewers. To come to a final
consensus on the papers for the program and these proceedings, an online meeting was
held where each paper was discussed. Finally, the committee selected seven papers
from nine submissions, covering various topics in pattern recognition including
histopathological images, action recognition, scene text detection, speech recognition,
object classification, presentation attack detection, and driver drowsiness detection. All
papers were presented as oral papers. Moreover, there were two invited keynotes and
more than 40 researchers attended this workshop.

We would like to express our gratitude to all our colleagues for submitting papers to
the DLPR and FFER workshops, and all the reviewers for their contribution.
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Convolutional Neural Network-Based
Classification of Histopathological Images

Affected by Data Imbalance

Micha�l Koziarski(B), Bogdan Kwolek, and Bogus�law Cyganek

Department of Electronics, AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

michal.koziarski@agh.edu.pl

Abstract. In this paper we experimentally evaluated the impact of
data imbalance on the convolutional neural networks performance in
the histopathological image recognition task. We conducted our analysis
on the Breast Cancer Histopathological Database. We considered four
phenomena associated with data imbalance: how does it affect classifica-
tion performance, what strategies of preventing imbalance are suitable
for histopathological data, how presence of imbalance affects the value
of new observations, and whether sampling training data from a bal-
anced distribution during data acquisition is beneficial if test data will
remain imbalanced. The most important findings of our experimental
analysis are the following: while high imbalance significantly affects the
performance, for some of the metrics small imbalance. Sampling train-
ing data from a balanced distribution had a decremental effect, and we
achieved a better performance applying a dedicated strategy of dealing
with imbalance. Finally, not all of the traditional strategies of dealing
with imbalance translate well to the histopathological image recognition
setting.

Keywords: Convolutional neural network · Data imbalance ·
Histopathological image classification

1 Introduction

Due to the recent algorithmic advances, as well as a growing amount of data
and computational resources, machine learning is becoming increasingly suit-
able option for the task of histopathological data processing. In particular, deep
learning methods are becoming dominant technique in the field [4]. A significant
amount of work has been done by the scientific community on the problem of
using deep learning algorithms in the histopathological image recognition task.
However, despite that, a little attention has been given to the issue of data imbal-
ance in the histopathological setting, or more generally in the image recognition
task. Data imbalance [9] can be defined as a situation, in which the number of
observations from one of the classes (majority class) is higher than the number
c© Springer Nature Switzerland AG 2019
X. Bai et al. (Eds.): FFER 2018/DLPR 2018, LNCS 11264, pp. 1–11, 2019.
https://doi.org/10.1007/978-3-030-12177-8_1
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of observations from another class (minority class). Most of the existing machine
learning algorithms assume a balanced data distribution, and perform poorly in
an imbalanced setting, biasing predictions towards the majority class. Notably,
data imbalance can be observed in various existing histopathological benchmark
datasets, such as Breast Cancer Histopathological Database (BreakHis) [14].
It is, however, unclear to what extent data imbalance affects the performance
of deep learning algorithms in the histopathological image recognition task, or
what techniques of dealing with data imbalance are suitable in such setting.
In a recent study Pulgar et al. [12] evaluate the impact of data imbalance on
the performance of convolutional neural networks in the traffic sign recognition
task. They conclude that data imbalance negatively affects the performance of
neural networks. They do not, however, consider using any strategies of dealing
with data imbalance. In another study by Buda et al. [1] the authors also eval-
uate the impact of data imbalance on the performance of convolutional neural
networks, this time evaluating some of the existing strategies of dealing with
imbalance. However, neither of the mentioned papers uses the histopathological
data. Furthermore, in this study we consider additional questions related to the
issue of data imbalance, namely the value of new observations in the imbalanced
data setting and the choice of strategy of dealing with imbalance. Finally, it
is worth mentioning a study by Lusa [11], in which the author experimentally
evaluates the performance of one of the most prevalent strategies of dealing with
data imbalance, SMOTE [2], on a high-dimensional data. Based on that study,
SMOTE is not suitable for dealing with a high-dimensional data, such as images.
It is not clear whether other strategies of dealing with imbalance translate well
into the histopathological image setting.

In this paper we extend on the previous research, in particular focusing on
the problem of histopathological image recognition. We experimentally evaluate
various trends associated with data imbalance. First of all, we test to what extent
data imbalance influences the classification performance. Secondly, we evaluate
various strategies of dealing with data imbalance. Thirdly, we measure how data
imbalance influences the value of new data. Finally, we test the hypothesis that
artificially balancing the training distribution during data can be beneficial for
performance, even if the test distribution is imbalanced.

2 Experimental Study

2.1 Set-Up

Dataset. We conducted our experiments on the Breast Cancer Histopatholog-
ical Database (BreakHis) [14]. It contained 7909 microscopic images of breast
tumor tissue, extracted using magnification factors 40X, 100X, 200X and 400X,
with approximately 2000 images per magnification factor. Each image had the
dimensionality of 700 × 460 pixels and an associated binary label, indicating
whether the sample was benign or malignant. At each magnification factor the
data was randomly divided into 5 folds, with approximately 70% of the samples
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(a) 100X (b) 200X (c) 400X

Fig. 1. Sample images from BreakHis dataset at different magnification factors.

reserved for training, and 30% for testing. In our experiments we reused the
random partitioning provided by the authors of the BreakHis dataset (Fig. 1).

By default, BreakHis dataset displayed the imbalance of approximately 2.0,
with the malignant samples belonging to the majority class. During our experi-
ments we performed undersampling of the data up to the point of achieving the
desired imbalance ratio (IR). We considered IRs ∈ {1.0, 2.0, . . . , 10.0}. Impor-
tantly, for each IR we used the same total number of samples, that is 676 training
and 336 test images. It was the maximum amount of data allowing us to produce
every considered IR. We decided to keep the same total number of samples for
each IR, as opposed to decreasing the number of samples from the minority class
and keeping the size of the majority class constant. It allowed us to avoid the
issue of decreasing amount of data, which could be another factor affecting the
classification performance.

Classification. For the classification we used the architecture of a convolutional
neural network described in [13]. It consisted of 3 convolutional layers with filter
size 5 × 5 and pooling size 3 × 3. The first layer used 32 channels and max
pooling, the second layer used 32 channels and average pooling, and the third
layer used 64 channels and average pooling. Afterwards, the network used two
fully convolutional layers consisting of 64 and 2 channels, respectively. Each layer
except the last used ReLU activation function.

For the training we used stochastic gradient descent with learning rate equal
to 0.000001, momentum equal to 0.9, weight decay equal to 0.001 and batch
size equal to 1. We used cross entropy as a loss function. Training lasted for
40000 iterations. During the training we augmented the images with a random
horizontal flip and a random rotation by a multiple of 90◦.

Prior to feeding the image to the network its size was reduced to 350 ×
230. Additionally, a global per-channel mean was subtracted from every image.
The network was supplied with a 64 × 64 image patches. During training they
were selected randomly from the image. During evaluation multiple patches were
extracted from the underlying image with a stride of 32, as well as a set of all
of their possible augmentations. The individual patch predictions were averaged
to obtain the final prediction for the whole image.

Strategies of Dealing with Imbalance. Various approaches to dealing with
data imbalance have been proposed in the literature. They can be divided into
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inbuilt mechanisms, which adjust the behavior of existing classifiers to better
accommodate for data imbalance, and resampling strategies, in which either
some of the majority samples are omitted (undersampling) or new minority
samples are created (oversampling) to achieve a balanced training data distribu-
tion. In total, we evaluated 8 different strategies of dealing with data imbalance.
Weighted loss (W. Loss), a strategy of assigning a weight associated with misclas-
sification of an object based on its class. Specifically, we used a heuristic described
in [3], and assigned the class weight as wi = exp(−ri), with ri indicating the
ratio of class i in the training data. Batch balancing (B. Balance), a strategy of
randomly selecting an equal number of minority and majority samples for every
batch. The batch size was increased to 2 in case of batch balancing strategy.
Random oversampling (ROS), a technique of randomly duplicating some of the
minority samples up to the point of achieving class balance. SMOTE [2], an app-
roach in which instead of duplicating existing objects, a synthetic minority obser-
vations are produced. In this method new observations are generated by inter-
polating between original observations. CCR [8], an oversampling strategy that
uses smaller local translations instead of interpolating between possibly far-away
observations. In addition to oversampling, this method translates the existing
majority observations to increase their distance from minority class boundary.
RBO [7], another translation-based synthetic oversampling technique, that addi-
tionally considers the position of majority objects in process of oversampling.
Random undersampling (RUS), a technique of randomly selecting only a subset
of majority observations. And the Neighborhood Cleaning Rule (NCL) [10], a
guided undersampling strategy, in which neighborhood-based approach is used
to guide the process of data cleaning.

Evaluation. Since classification accuracy is not an appropriate metric to assess
the classification performance in the imbalanced data setting, throughout the
conducted experimental study we use five additional metrics: precision, recall,
geometric mean (G-mean), F-measure and AUC. More detailed discussion on
the choice of performance metrics can be found in [5] and [6].

2.2 The Impact of Data Imbalance on the Classification
Performance

The goal of the first experiment was evaluating to what extent data imbalance
affects the classification performance. To this end we undersampled the original
BreakHis dataset up to the point of achieving the desired imbalance ratio (IR),
at the same time keeping the total number of observations from both classes
constant. We considered IR ∈ {1.0, 2.0, . . . , 10.0}. Results of this part of the
experimental study, averaged over all folds and magnification factors, were pre-
sented in Fig. 2. As can be seen, the accuracy is not an appropriate performance
metric in the imbalanced data setting: it increases steadily with IR, despite the
accompanying decrease in both precision and recall. On the other hand, all of
the remaining measures indicate a significant drop in performance, especially
for higher values of IR. For instance, for the balanced distributions we observed
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(a) accuracy (b) precision (c) recall

(d) F-measure (e) AUC (f) G-mean

Fig. 2. The impact of data imbalance ratio (IR) on the average values of various
performance metrics.

average value of F-measure above 0.8, whereas for the IR = 10.0 it drops below
0.5, despite the total number of observations being the same. This indicates that
data imbalance has a significant impact on the classifiers behavior and a notice-
able decrease in performance can be expected for higher IR. It should be noted
that for low values of IR, that is 2 and 3, we actually observed better preci-
sion, AUC and G-mean than for the balanced data distribution. This behavior
may suggest that depending on our optimization criterion, slight data imbalance
can actually be beneficial for the performance of the model. In the case of the
histopathological data, especially if the majority class consists of the images of
malignant tissue.

2.3 The Evaluation of Strategies of Dealing with Data Imbalance

The goal of the second experiment was comparing various strategies of deal-
ing with data imbalance and assessing which, and under what conditions, lead
to the best performance. In this experiment we considered the values of IR
∈ {2.0, 3.0, . . . , 10.0}, and grouped the imbalance into four categories: low (2.0–
4.0), medium (5.0–7.0), high (8.0–10.0) and any (2.0–10.0). For each category
the results were averaged over the corresponding values of IR. We considered the
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strategies described in Sect. 2.1, as well as the baseline case, in which no strategy
was applied. To assess the statistical significance of the results we performed a
Friedman ranking test with a Shaffer post-hoc analysis at the significance level
α = 0.05. The results were presented in Table 1. As can be seen, there was no
single method that achieved best performance on all levels of imbalance and for
all of the performance measures. In general, CCR, RBO, RUS and NCL methods
achieved the highest rank in at least one of the settings. For low imbalance levels
NCL achieved the best performance for all three combined metrics: F-measure,
AUC and G-mean. However, in none of the cases did it achieve a statistically sig-
nificantly better results than the baseline. For higher levels of imbalance RBO
achieved the best rank in most cases, with statistically significant differences.
While most of the approaches led to an improvement in performance compared
to the baseline at least in some settings, two methods, weighted loss and SMOTE,
achieved a noticeably worse performance than the other strategies.

2.4 The Value of New Data in the Presence of Data Imbalance

The goal of the third experiment was evaluating to what extent increasing the
amount of training data improves the performance for various levels of imbalance.
We considered the total number of training observations ∈ {100, 200, . . . , 600},
and IR ∈ {2.0, 4.0, 6.0}. In addition to the baseline case, in which no strategy of
dealing with imbalance was employed, we used two best-performing resampling
techniques: NCL and RBO. The average values of the combined performance
measures were presented in Fig. 3. As can be seen, in the baseline case data
imbalance decreases the value of new observations. For the case of IR = 6.0, even
after increasing the number of training samples six times, we did not achieve the
same performance as the one observed for IR = 4.0, for any of the considered
metrics. In other words, even when we used more training data from both minor-
ity and majority distributions, due to the inherent data imbalance we achieved
a worse performance. To a smaller extent this trend is visible also between IR
= 2.0 and IR = 4.0, especially when F-measure is considered. Using one of the
resampling techniques prior to classification partially reduced this trend: in this
case, after increasing the number of samples we were able to outperform the case
with 100 training samples.

2.5 The Strategy of Balancing Training Distribution During Data
Acquisition

In the previous experiments, while adjusting the imbalance ratio we modified
both training and test data distributions. However, when dealing with real data
we do not have an option of adjusting test distribution. Still, in some cases
we can influence the imbalance of training data: for instance, in the case of
histopathological images we can have at our disposal a larger quantity of unan-
notated images, and the main cost is associated with the annotation process.
We can, therefore, select the images designed for annotation so that their dis-
tribution is balanced. The goal of the final experiment was evaluating whether
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(a) F-measure, baseline (b) AUC, baseline (c) G-mean, baseline

(d) F-measure, NCL (e) AUC, NCL (f) G-mean, NCL

(g) F-measure, RBO (h) AUC, RBO (i) G-mean, RBO

Fig. 3. The impact of the number of training observations on average values of various
performance metrics, either on the original data (top row), after undersampling with
NCL (middle row) or oversampling with RBO (bottom row).

such data acquisition strategy is beneficial for the classification performance. To
this end we evaluated two variants: the baseline case, in which both training
and test data distribution were imbalanced with IR ∈ {2.0, 3.0, . . . , 10.0}, and
the balanced case, in which only test distribution was imbalanced and training
data consisted of an equal number of samples from both classes. We presented
the results of this experiment in Fig. 4. For reference, we also included the per-
formance observed on data balanced with NCL and RBO. As can be seen, for
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(a) F-measure, IR 2-4 (b) AUC, IR 2-4 (c) G-mean, IR 2-4

(d) F-measure, IR 5-7 (e) AUC, IR 5-7 (f) G-mean, IR 5-7

(g) F-measure, IR 8-10 (h) AUC, IR 8-10 (i) G-mean, IR 8-10

Fig. 4. Average values of various performance metrics. Baseline case, in which both
training and test data was imbalanced, was compared with the case in which only test
data was imbalanced. Performance for NCL and RBO was also included for reference.

low values of IR we actually observed a worse performance after balancing the
training data according to all of the combined performance metrics. This trend
was most noticeable for F-measure. Furthermore, the observed F-measure was
also higher in the baseline case for higher IR. On the other hand, balancing
training data improved the AUC and G-mean for medium and high levels of
imbalance. In all of the cases, using the original, imbalanced training data dis-
tribution and balancing it with one of the considered resampling strategies led
to an improvement in performance.
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3 Conclusions

In this paper we experimentally evaluated the impact of data imbalance on
the classification performance of convolutional neural network in breast can-
cer histopathological image recognition task. We conducted our analysis on the
Breast Cancer Histopathological Database (BreakHis) [14]. The main findings
of our experiments are the following:

– Medium and high data imbalance levels have a significant negative impact on
the classification performance, irregardless of the chosen performance mea-
sure. However, for some of the considered measures, at low level of imbalance
we observed an improved performance, which may suggest that small data
imbalance can actually be beneficial in a specific settings. Especially the latter
finding should be further confirmed on additional benchmark datasets.

– Some of the popular strategies of dealing with data imbalance, namely using
weighted loss and oversampling data with SMOTE, significantly underper-
formed in the conducted experiments. Techniques that achieved the best
results were NCL and RBO resampling algorithms. This leads us to a conclu-
sion that developing a novel strategies of handling data imbalance, designed
specifically for dealing with images, might be necessary to achieve a satisfac-
tory performance in the histopathological image recognition task.

– Data imbalance negatively impacts the value of additional training data. Even
when more data from both minority and majority class was used, due to
data imbalance we were unable to achieve a performance observed for lower
imbalance ratios. This can be partially mitigated by using an appropriate
strategy of handling data imbalance.

– Depending on data imbalance ratio and the metric used to measure clas-
sification performance, balancing training data during acquisition can have
a negative impact on the performance when compared to sampling training
data with the same imbalance ratio as test data. In all of the considered
cases, applying resampling on imbalanced data was preferable approach to
balancing data during acquisition.

Since the conducted analysis based on a single benchmark dataset, further
research should be focused on extending it to additional databases. Further-
more, a limited number of already proposed strategies dedicated to dealing with
image imbalance should be included in the method comparison. Design of a novel
methods is also likely necessary to be able to achieve a satisfactory performance.
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7. Koziarski, M., Krawczyk, B., Woźniak, M.: Radial-based approach to imbalanced
data oversampling. In: Mart́ınez de Pisón, F.J., Urraca, R., Quintián, H., Corchado,
E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 318–327. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59650-1 27
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Three-Stream Convolution Networks
After Background Subtraction

for Action Recognition
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Abstract. Action recognition has vital significance for computer vision.
Recently, deep learning has made breakthrough progress in action recognition.
However, as two important branches of deep learning, Two-Stream relies on
optical flow with complex computation and 3D convolution network is difficult
for training. In this paper, we propose a novel Three-Stream Convolution net-
works after feature extraction for action recognition. For feature, we introduce
three input features: RGB images, background subtraction feature with low
complexity and historical contour feature. In order to optimize the discrim-
inability of long-term actions, the historical contour feature is superimposed by
background subtraction feature. For network structure, we present a convolution
network stream for each feature input: RGB net, background subtraction
sequence net and historical contour net. Finally, we merge three streams into one
network with automatic network learning mechanism for action recognition to
obtain a better recognition performance. We conduct experiments on two large
main action recognition datasets UCF-101 and HMDB-51. Comparing the
mainstream methods, the results verify the accuracy and high efficiency of our
framework.

Keywords: Three-Stream � Background subtraction � Action recognition �
Fusion network � Convolution

1 Introduction

Action recognition, is a crucial and challenging task in the field of video analysis which
has significant timing correlation. However, the performance will drop significantly
under background noise. Therefore, how to focus on the action itself and extract effective
timing features become the key to the research of action recognition. Recently, CNN has
achieved excellent performance on many applications in computer vision, including
action recognition. Currently, mainstream deep CNN for action recognition is based on
the two frameworks: Two Stream framework [1] and 3D convolution network [2]
framework. Two Stream framework fuses original RGB images and dense optical flow
sequence images with two networks, while 3D convolution network framework expands
the dimensions of original convolution network so that it can capture the timing related
feature. However, the extraction of dense optical flow need complex computation. In

© Springer Nature Switzerland AG 2019
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addition, 3D convolution network is difficult to train owing to its large amount of
parameters and cannot capture the discriminability of long-term sequence (Fig. 1).

In this paper, we propose Three-Stream Convolution networks after background
subtraction for action recognition. At present, optical flow is the main description
method of motion feature and the apparent invariance of the action target. However, it
is limited by its slow speed of extraction. In order to extract better action discriminant
feature, we introduce the background subtraction feature, which is the binarization
feature obtained from original images and has the fast extraction speed and motion
description. In addition, the background subtraction feature introduces the attention
mechanism to focus more on the action itself without the background interference. For
some long-term action, short time feature is difficult to describe. We set different
sampling time intervals for whole image sequence and superimpose long-term back-
ground subtraction feature into historical contour image which can capture the long-
term action. Then, we take the original RGB image, the image sequence after the
background subtraction and the historical contour image as input, and train three
streams to learn three different features. Finally, we merge the three streams into one
fusion network with automatic network learning mechanism for action recognition,
which is an end-to-end network. Our entire framework significantly improves the speed
of feature extraction.

The main contribution of our proposed framework is that we have explored the
feature description for action. We introduce background subtraction feature as input to
the CNN which it significantly improves the feature extraction speed of the framework.

Background 
Substrac on

Historical 
outline

RGB Nets

Subs Series Nets

Historical outline Nets Fusion Nets

Class 
Score

Fig. 1. Three-Stream convolution networks after background subtraction includes three streams:
RGB net (with original RGB images), background subtraction sequence net (with background
subtraction feature sequence) and historical contour net (with historical contour feature images).
Fusion net fuses 3 streams’ information in the end to obtain a better performance. (Color figure
online)
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Meanwhile, we utilize the time interval sampling method to superimpose the back-
ground subtraction feature into a historical contour image, optimizing the discriminate
action. In addition, we merge three streams into one fusion end-to-end framework for
action recognition. We conducted extensive experiments on HMDB-51 dataset [3] and
UCF-101 dataset [4], and the results show the effectiveness of our Three-Stream
convolution networks in action recognition. Comparing the current main methods, our
proposed framework balances the computation and the recognition performance. The
feature extraction of our proposed framework has lower computational complexity.

The rest of the paper is organized as follows. In Sect. 2, we summarize the related
work. Section 3 describes our proposed framework. The implementation details,
experimental results and their analysis are presented in Sect. 4. Finally, conclusions are
drawn in Sect. 5.

2 Related Work

There are a large number of research in action recognition with deep convolution
network recently. Current works of deep learning mainly consist of two aspects: feature
extraction and network model.

2.1 Feature Extraction

In action recognition, the works on the input mainly includes RGB images inputs and
video sequence. There are a large amount of works focusing on hand-engineered
feature, which can capture the appearance and motion information from frames in
videos, such as HOG3D [5], SIFT3D [6], HOF [7], ESURF [8], MBH [9], IDTs [10],
and so on. The input format of the spatial stream is usually a single RGB image or a
multi-frame RGB sequence. However, the multi-frame RGB sequence contains a large
number of redundant frames. In order to reduce the number of spatial input channels, a
large number of works focus on the method of selecting images before input, such as
Key Volume Mining Deep Framework [11]. In addition, the adascan framework [12]
raises the accuracy of classification by extracting key frames in the video and it selects
key frames automatically during convolution layers or pooling layers in the convolu-
tion network. For the temporal inputs, the main works focus on the improvement of the
optical flow feature. Flownet [13] and Hidden Two-Stream [14] both learn the optical
flow feature with the network, which is designed to improve the quality of the optical
flow and reduce the extraction time of the optical flow. However, whether the optical
flow feature is the optimal motion auxiliary feature is uncertain and it needs complex
computation. How to train the better motion feature instead of the optical flow feature
is one of the next trends, which is exactly what our work explored.

2.2 Network Model

In deep learning, the convolution network is introduced into the action to extract
features. It is mainly divided into two main network frameworks: Two-Stream CNN
network [1] and 3D convolution network [2]. The Two-Stream CNN network is
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designed as two parts. One part deals with RGB images and the other deals with optical
flow feature. Then, two streams obtain joint training and classification. The improved
work based on Two-Stream network mainly focuses on the selection of key frames [11,
15] and the deeper convolution network [16]. In addition, some work [17] focus on the
study of different fusion between networks in two stream to obtain the better fusion
result. 3D convolution network is another major mainstream method in deep learning.
Although the current 3D convolution network’s accuracy does not exceed Two-Stream
framework, it is much faster and it is an end to end training framework. 3D convolution
is based on two dimensional convolution network and introduces description of timing
variability. The work of 3D convolution mainly focuses on the improvement of net-
work structure. I3D [18] from DeepID introduces the 3D convolution network that is
based on Inception-V1 [19]. T3D [20] proposes 3D dense net and TTL layer which
uses different scales of convolution to capture the feature. P3D [21] improves the 3D
Resnet to obtain an extreme deep network, which improved the discriminability of
action. These work is all based on large datasets, which need a large number of
computing and storage resource of computer. By contrast, our proposed framework is
easier for training.

3 Our Method

In this Section, we will introduce the details of our proposed Three-Stream convolution
network, which mainly includes the feature extraction and Three-Stream network
model.

3.1 Feature Extraction

Our feature extraction method is based on background subtraction. First, we convert the
original video into an RGB image sequence. Secondly, we utilize background sub-
traction of the RGB sequence to obtain the background subtraction feature sequence, as
shown in Fig. 2. Thirdly, a historical contour image is obtained by sampling and
superimposing the background subtraction feature sequence.

We use the background modeling method based on mixed Gaussian model [22] to
complete background subtraction. There is still a certain degree of noise in the pro-
cessed image obtained by background subtraction. In order to remove the influence of
noise, we expand the denoising process to the image after background subtraction.

In action recognition, multi-frame RGB images are taken as input to push the
network learn inter-frame changes through the information in different times. The
convolution network has excellent feature extraction capability for the spatial texture
features of the still image, but it is difficult to directly extract the feature of the
combination of time series and space from multi frame images. The background
subtraction feature removes effectively background interference and unrelated texture
features which can effectively learn inter frame changing information and it preserves
the motion information and contour information of the action target (as shown in
Fig. 3). Background subtraction will reduce the difficulty of learning the network
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timing feature. The background extraction feature is fast and does not consume much
time in our whole framework.

Since the input to the convolutional network is fixed, continuous short-time frames
inputs are difficult to describe the discrimination of long-term actions. It is difficult to
obtain significant recognition results simply by increasing the number of input frames.
Therefore, in order to better describe the inter-class relationships of long-term actions,
we sampled the original background subtraction sequence according to the time
interval. Then we calculate the maximum value of the pixel at each position for each
frame of image pixels to obtain the historical contour image feature. Finally, we
binarized the historical contour image to obtain a more concise description.

We superimpose background subtraction features into historical contour feature
which assists in adding long-term actions discriminability. Meanwhile, since the his-
torical contour image can be superimposed by any number of frames, the convolution

Background 
substrac on

Origin RGB images Background substrac on feature

Fig. 2. Background subtraction. The images processed with background subtraction only keep
the information related to the action target. The right column shows changes in histogram.

Fig. 3. Examples of UCF-101 dataset with background subtraction. (playing violin, typing and
tenis swing).
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network can learn any long-scale information so that the performance of long-term
scale action recognition can be further optimized. The specific framework of super-
imposing is shown in Fig. 4.

Based on the analysis and processing mentioned above, we propose three kinds of
feature to learn, namely: original RGB images, background subtraction feature and
historical contour image. Therefore, our framework covers the original RGB infor-
mation, action motion information and long-term scale contour information.

3.2 Three-Sream Convolution

Our proposed Three-Stream convolution network improves the structure of Two-
Stream convolutional network [1]. Our network structure is divided into four parts:
RGB net, background subtraction sequence net, historical contour net and Fusion net,
as shown in Fig. 5.

The input of RGB net is randomly selected from the image sequence. The design of
network is based on the residual structure [23]. The first two layers are convolution of
kernel 3 * 3, and the rest part is composed of res-block. RGB net mainly extracts the
texture and appearance feature from the RGB image. The input of the background
subtraction net is background subtraction feature according to the time order. The main
structure of the network is the same as RGB net. The background subtraction sequence
net mainly learns the motion feature of action and contour feature of the action target.
The historical contour net’s input is the historical contour image. Due to the small
number of historical contour images, the recognition network is smaller than other
streams. The historical contour net mainly learns the contour feature of long-term scale
action for improving the performance. Fusion net merge three streams into one network
to obtain the classification scores.

superposi on

Historical contour feature

···

Time interval

Fig. 4. Historical contour image sampling framework. Background subtraction features are
superimposed into historical contour image.
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There are two methods for fusion: average fusion and network fusion. We define
the feature map from streams as IS w; h; cð Þ. Here w and h is the width and height of the
feature map, and c is the channels of the feature map. The s is one stream of the three
streams. We use fully connected layer to obtain the classification scores. We learn the
mapping from the feature extracted by stream to classification scores f, and classifi-
cation scores can be described as:

cls ¼ f IS w; h; cð Þ½ � ð1Þ

For average fusion, each stream has the same weight, so the fusion can be
described as:

Clave ¼
X3

s¼1

Xn

i¼1

cls ið Þ ð2Þ

where n denotes the classes of recognition. Setting value manually cannot obtain the
best performance, so we utilize the automatic network learning mechanism. Therefore,
we concatenate the feature extracted from the three streams and input into the fully
connected network, which can be described as:

Clf Nð Þ ¼ f I1 w; h; cð Þ; I2 w; h; cð Þ; I3 w; h; cð Þ½ � ð3Þ

Therefore, we merge three streams into one fusion network and it completes the
end-to-end action recognition framework. We conducted extensive experiments to test
the effectiveness of our network in action recognition.

···

Fusion Net

Class 
score

11 layers 34 layers 50 layers 101 layers

1x1, 64

3x3, 64

1x1, 256

+

3*3(resblock)

Three-Stream Convolution networks 

RGB 

Background 
Substrac on

Historical
contour

3*3*64 3*3(resblock)

···
3*3(resblock)3*3*64

···
3*3(resblock)3*3*64

Fig. 5. Three-Stream convolution networks includes three streams: RGB net (with original RGB
images), background subtraction sequence net (with background subtraction feature sequence)
and historical contour net (with historical contour image). Fusion nets fuses 3 streams’
information in the end to extract the discrimination more effectively. We test four scales deep
networks, which are 11, 34, 50, 101. The right is the bottleneck structure [23].
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4 Experiments

In this section, we first describe the evaluation data set and implementation details of our
framework. Then we compare the performance with the current state-of-the-art methods.

4.1 Datasets and Implementation Details

We conduct experiments and methods evaluation on two large action recognition
datasets UCF-101 [4] and HMDB-51 [3], which are the mainstream datasets in the field
of video action recognition. With 13320 videos from 101 action categories, UCF101
gives the largest diversity in terms of actions and with the presence of large variations in
camera motion, object appearance and pose, object scale, viewpoint, cluttered back-
ground, illumination conditions, etc., it is the most challenging data set to date. HMDB-
51 is collected from various sources, mostly from movies, and a small proportion from
public databases such as the Prelinger archive, YouTube and Google videos. The dataset
contains 6849 clips divided into 51 action categories, each containing a minimum of 101
clips. First, we convert the original video set into images sequence. Then, we further
transform images into a background subtraction feature images and historical contour
image. The evaluation protocol [3] is the same for both datasets: the organizers provide
three splits into training and test data, and the performance is measured by the mean
classification accuracy across the splits. In addition, the server we used for the experi-
ment is equipped with two Titan X GPUs and a E5-2620 CPU.

4.2 Experiments of Feature Extraction

We test the performance of proposed extracted feature inputted to the convolution
network in different layers, as shown in Table 1. In experiments, we select a random
RGB image for each video and related background subtraction feature images as inputs
for our proposed framework.

As the number of layer increases, the recognition performance significantly improves.
The results indicate that the performance of the RGB and background subtraction feature

Table 1. Evaluation results of RGB and RGB with background subtraction feature (B.
Subtraction+RGB). Trained and tested on UCF-101. All models are trained from scratch.

Method Network Top1 Top5

RGB Resnet18 70.71% 91.41%
RGB Resnet34 74.94% 91.67%
RGB Resnet50 76.13% 93.81%
RGB Resnet101 78.48% 94.50%
B.Substraction+RGB Resnet18 79.65% 94.45%
B.Substraction+RGB Resnet34 81.39% 95.29%
B.Substraction+RGB Resnet50 82.24% 95.98%
B.Substraction+RGB Resnet101 84.56% 96.83%
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in action recognition is significantly improved comparing with the original RGB, which
verifies effectiveness of the background subtraction feature in our framework.

We further compare the extraction speed of the background subtraction feature and
the optical flow feature. We use Mog2 [22] background subtraction algorithm and
compare the speed with Flownet [13] and other methods of optical flow, as shown in
Table 2. For matrix computation, the computing speed of GPU is much faster than
CPU. Table 2 shows that the extraction speed of the optical flow in GPU is much lower
than that of the background subtraction algorithm in CPU, which verifies the advan-
tages of our proposed framework in the input feature extraction speed.

There are a large number of redundant frames in the action video list which does
not benefit the results and increase the burden of operation. Therefore, when super-
imposing the background subtraction feature into historical contour image, we sample
the background subtraction feature sequence according to the time. And we set different
time interval for optimal sampling strategy when generating the historical contour
image, as shown in Fig. 6. We evaluate four time intervals of 5, 10, 15, and 20.

Different time intervals determine the sparseness of the generated historical contour
image which intuitively indicates the continuity of the description by increasing time
interval gradually. Too large time intervals will lose the key information of the action,

Table 2. The comparison of the extraction speed (Background subtraction and optical flow
methods)

Method CPU (fps) GPU (fps)

B.Substraction 167 –

Flownet [13] – 1.12
Epicflow [24] 0.063 –

Deepflow [25] 0.058 –

EPPM [26] – 5
LDOF [27] 0.015 0.4

5

Background 
substrac on

10 15 20

Fig. 6. Different time intervals of 5, 10, 15, and 20. Examples of UCF-101 dataset with
historical contour feature. (playing violin, typing and tennis swing)
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while too small time intervals cannot improve the performance, as shown in Table 3.
For action recognition, selecting the appropriate time interval can maximize the
recognition performance.

In experiments, different time intervals mean that the corresponding frames are
skipped during the superposition. The result of experiment shows that when time interval
is 15, the performance of our proposed framework is the more effective. Therefore, we
set time interval to 15 in next experiments for better recognition performance. It can be
seen from Table 3 there is a small improvement in performance. We believe that there
should be more improvement if the dataset contains more long-term data.

4.3 Evaluation of Three-Stream

We train RGB net, background subtraction sequence net and historical contour net as
three streams, then merge three streams into one network. The results of our com-
parison with state-of-the-art methods are shown in Table 4.

Table 3. Evaluation results of our Three-Stream framework. Trained and tested on ucf-101 split
1. All models are trained from scratch.

Method Network Interval UCF-101

Three Stream Resnet101 5 84.46%
Three Stream Resnet101 10 84.58%
Three Stream Resnet101 15 84.92%
Three Stream Resnet101 20 84.74%
Three Stream Resnet18 15 80.01%
Three Stream Resnet34 15 81.99%
Three Stream Resnet50 15 82.80%

Table 4. Evaluation results of our proposed framework on UCF-101 and HMDB. All models
are trained from scratch.

Method UCF-101 HMDB

C3D [2] 82.30% –

Conv Fusion [28] 82.60% 56.80%
DT+MVSV [29] 83.5 55.90%
Idt+FV [10] 85.90% 57.20%
Conv Pooling [30] 82.60% 47.10%
Spatial Stream-Resnet [31] 82.30% 43.40%
Two-Stream CNN (101) 87.76% 58.00%
Hidden Two-Stream [14] 88.70% 58.90%
3D-ResNet [16] 84.21% 57.33%
(Ours)Three-Stream-18 80.01% 52.57%
(Ours)Three-Stream-34 81.99% 53.36%
(Ours)Three-Stream-50 82.80% 55.58%
(Ours)Three-Stream-101 84.92% 56.51%
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Here we can see from Table 4 that we obtain the performance similar to Two-
Stream (RGB+Optical Flow) with different layers of the network. Based on these
results, our proposed framework balances the computation and the recognition per-
formance. The feature extraction of our framework has lower computational com-
plexity with the close the recognition performance.

5 Conclusion

In this paper, we propose Three-Stream Convolution networks after background sub-
traction for action recognition. Three kinds of extracted features are inputted in our
framework: original RGB images, background subtraction feature and historical con-
tour image. Then we merge RGB net, background subtraction sequence net and his-
torical contour net into one network automatically learning the fusion feature to obtain
a better recognition performance. Therefore, our framework covers the original RGB
information, action motion information and long-term scale contour information. The
feature extraction of our proposed framework has lower computational complexity
comparing with the current methods. We conduct experiments on two large main action
recognition datasets UCF-101 and HMDB-51 and the results verify the accuracy and
high efficiency of our framework. We will explore more effective framework in action
recognition in the future.
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Abstract. In this work, we propose a simple yet powerful method that
yields effective text detection in natural scenes. We present a Text Local-
ization Neural Network, which detects text in scene images with one
forward propagation and a standard non-maximum suppression subse-
quently. In order to eliminate few scene background mistaken by Text
Localization Neural Network, we propose a Text Verification Model based
on the encoder-decoder network. Thus, precision of text detection can
be further improved by recognizing text in our candidate text regions.
We have evaluated the proposed method for text detection on our own
constructed horizontal text detection dataset. Compared with previous
approaches, our method achieves a highest recall rate of 0.784 and com-
petitive precision rate in text detection.

Keywords: Text detection · SSD · Encoder-decoder network

1 Introduction

Text detection, usually as a first step in text reading systems, which aims at
localize text regions with bounding boxes of words, play a critical role in the
whole procedure of text information extraction and understanding. Although
there are some OCR systems for documental texts, detecting text in natural
scenes is still a challenge due to complex background, various font sizes and
colors, etc.

While text in natural scenes can be regarded as a kind of specific target, we
propose in this work a novel method for natural scene text detection. Our method
is based on Single Shot MultiBox Detector (SSD) [1] and encoder-decoder net-
work, the whole procedure of our text detection method is illustrated in Fig. 1.

We present Text Localization Neural Network based on SSD, which is
designed for initial text candidates localization with single forward pass as well
as a standard Non-Maximum Suppression. We also propose a Text Verification
Model based on encoder-decoder network, which further improve the precision
of text detection by eliminating background of initial detection results.

c© Springer Nature Switzerland AG 2019
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Fig. 1. Overview for our text detection procedure. Whole procedure mainly takes two
steps: 1. Initial text detection with Text Localization Neural Network. 2. Eliminating
background regions with Text Verification Model.

Specifically, we construct a text detection dataset taken by camera in natural
scenes and from RCTW [2] dataset. Experiments show the proposed method
achieves a highest recall rate of 0.784 and competitive precision rate compared
with other approaches.

In summary, the contributions of this paper are three-folds: (1) We propose
a Text Localization Neural Network based on SSD, which may better suit the
problem of scene text detection. (2) We design a Text Verification Model based
on encoder-decoder network, precision improvement can be made by making use
of text recognition results to eliminate background regions. (3) We test the effec-
tiveness of our method by conducting experiments on our scene text detection
dataset.

2 Related Work

Detecting text in natural scenes has been a hot research topic in the field
of computer vision, and plenty of excellent works and effective strategies has
been proposed. Previous works on text detection mainly seek text instances
with sliding-window [3–5] or connected component extraction [6–9] techniques.
Sliding-window based methods detect text by looking over all possible regions
of text, which may achieve considerable recall rate at the cost of heavy compu-
tations. Connected component extraction based methods may extract candidate
text with much lower computation cost firstly, post-processing steps of candi-
dates filtering are unavoidable. Stroke Width Transform (SWT) [6] and Max-
imally Stable Extremal Regions (MSER) [9] are two representable algorithms
with leading performance in ICDAR 2011 [10] and ICDAR 2013 [11]. Yao et al.
[8] seek candidate text with the help of SWT, and design a multi-oriented text
detection algorithm combined with region color and shape features. Sun et al.
[12] proposed color enhancement extremal regions based on MSER for candidate
text generation.

Deep learning technologies have advanced performance of text detection in
the past years. A technique similar to text detection is general object detec-
tion. Owing to rapid development of deep object detection networks, horizontal
scene text detection can be realized based on those networks. Huang et al. [13]
firstly seek candidate text via MSER, CNN is then used to classify text/non-text
regions. Based on Faster R-CNN [14], DeepText [15] proposed Inception-RPN
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Fig. 2. Structure of Text Localization Neural Network. The network is a 28-layer fully
convolutional network, one part is a 13-layer base network inherited from VGG-16,
another part is composed of 15 extra convolution layers. Six extra Text Detection Layers
are responsible for prediction of scene text. Green rectangular boxes are examples of
size increasing default text bounding boxes among different feature layers. (Color figure
online)

and made further optimization to adapt text detection. Tian et al. [16] designed
a network called Connectionist Text Proposal Network (CTPN), which com-
bined CNN and LSTM to detect text line by predicting a sequence of fine-scale
text components. Inspired by YOLO [17], Gupta et al. [18] proposed a fully con-
volutional regression network, which made predictions through a single forward
pass. On the other hand, text detection can be treated as a image segmentation
task. Zhang et al. [19] made use of FCN for multi-oriented text detection. EAST
[20] devised a deep FCN-based pipeline that directly completed the word or line
level prediction.

Our work is mainly inspired by recent work [1]. Similar to SSD, we utilize
multiple feature layers for text detection. We introduce Text Detection Layers
and two improved strategies for better long text line detection. Also, we present
a Text Verification Model based on encoder-decoder network, experiments show
that recognitions of initial detection results can help refine final results of text
detection.

3 Methodology

In this section, we will present our network structure and details of proposed
method. The key component of the proposed method is Text Localization Neural
Network for initial text detection, also, Text Verification Model is proposed for
eliminating incorrectly localized text regions.
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3.1 Text Localization Neural Network

Network Design. Structure of our Text Localization Neural Network is illus-
trated in Fig. 2. The proposed network is a 28-layer fully convolutional network
including two parts, one part is a 13-layer base network keeping conv 1 to conv5 3
in VGG-16 [21], and the last two fully connected layers in VGG-16 are replaced
with conv6 and conv7 respectively in Fig. 2. The other part are 15 extra layers,
including 9 extra convolutional layers and 6 Text Detection Layers.

Text Detection Layers. Similar to original SSD model, Text Detection Layers
make use of multiple feature maps for prediction. In every location of a feature
map cell, Text Detection Layers output offsets of a default text bounding box
to its matched ground truth boxes. Also, Text Detection Layers are able to out-
put text/non-text confidence of the corresponding area. Text Detection Layers
output a 6 dimensional vector for a default text bounding box.

Larger Aspect Ratios. As in [1], to handle different object scales, SSD imposes
different aspect ratios for the default boxes, and denotes them as ar ={
1, 2, 3, 1

2 , 1
3

}
. However, different from the general object, the horizontal scene

text especially Chinese text, tends to have more scales with larger aspect ratios.
Therefore, we retain 3 aspect rations (1, 2, 3) of the original ar, and also define
4 more aspect rations (5, 7, 9, 10) which obtained from the experiment, i.e.
ar = {1, 2, 3, 5, 7, 9, 10}. In each location of a feature map cell, our Text Local-
ization Neural Network produces text/non-text presence confidence and four
offsets, resulting in a 84-d vector. Larger aspect ratio of our default text bound-
ing boxes are illustrated in Fig. 3.

Fig. 3. Examples of default text bounding boxes in a 4 × 4 feature map cell. Default
boxes locate at the center of a feature map cell. Note that for simplicity, only aspect
ratios 1 and 7 are plotted.

Default Boxes with Vertical Offsets. In case of some dense text areas in natural
scene images, we make offsets to default text bounding boxes in feature map
cell. We make offsets about half of the height of each feature map cell in vertical
direction, and more ground truth text boxes can be matched by producing more
default text bounding boxes via this simple improvement. The effectiveness of
vertical offsets is depicted in Fig. 4.
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Fig. 4. Vertical offsets of default text bounding boxes on 3 × 3 feature map cell.
Through vertical offsets, yellow text bounding boxes can be produced, and more text
areas are able to be covered. (Color figure online)

Loss Function. Our loss function for initial text detection uses the form of
multi-task loss [1], which is defined as:

L (x, c, l, g) =
1
N

(Lconf (x, c) + αLloc(x, l, g)) (1)

where N is matched numbers of default text bounding boxes to ground-truth
boxes, α is the weight term, x marks whether a default text bounding box i
matches a ground-truth box j. Lconf is 2-softmax loss produced by classifying
text/non-text regions. Lloc is regression loss generated by a default box regressing
to corresponding ground-truth boxes.

3.2 Text Verification Model

Overview. We proposed Text Verification Model to eliminate incorrect initial
detection results. Our text verification model is based on encoder-decoder net-
work, which further makes use of text recognition results to refine detection.

Fig. 5. Architecture of Text Verification Model. The model is composed of encoder
network and decoder network.
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Architecture of Text Verification Model is depicted in Fig. 5. The encoder net-
work is composed of CNN and BiGRU network, therefore text image features
with rich context information can be encoded. The decoder network makes use
of encoded features to perform recognition, therefore non-text regions can be
eliminated.

Encoder Network. Our encoder network is composed of CNN Model and
BiGRU network. A CNN model is used to extract image features. To better
learn the dependencies and relationships between characters in input image,
we then apply BiGRU to encode these features. The input image has a size of
100 × 32, we then adopt the same CNN architecture as in Convolution Recurrent
Neural Network (CRNN) [22] to acquire a feature sequence of length 25. The
hidden unit has a size of 512 in BiGRU, therefore the encoded feature sequence
includes 25 feature vectors of size 1024.

Decoder Network. We adopt GRU network with attention mechanism [23] to
decode the sequential features into words.

Firstly, encode features at all steps from the output of encoder BiGRU are fed
into decoder GRU. As for decoder GRU, the ground-truth word label is adopted
as input during training. At each time step, we use the same attention function
as in [24] to make decoder GRU more focused on current input. Output space
takes 3775 common Chinese characters into account, also ‘#’ character is used
for background regions, and a special END token is used. That’s to say, output
space has a size of 3777. At test time, the token with the highest probability in
previous output is selected as the input token at next step.

4 Experiments

In this paper, our proposed method focuses on the horizontal scene text espe-
cially Chinese text. Therefore, the datasets such as ICDAR 2003, ICDAR 2013
and SVT, which mainly contain images with English texts, are not applicable
for our experiment. In this section, we evaluate the proposed method on our
text detection dataset, which is composed of the scene images by mobile phone
shooting and some horizontal scene text images in RCTW 2017 (ICDAR 2017
Competition on Read Chinese Text in the Wild), containing 9k training images
and 3k test images. The evaluation protocol are Precision, Recall and F-Measure.

4.1 Effectiveness of Text Localization Neural Network

To perform initial text detection in a fast and elegant way, we design Text
Detection Layers based on SSD model, which are able to predict text in single
forward pass and a standard non-maximum suppression. Besides, we add larger
aspect ratios for default text bounding boxes and make vertical offsets of them
to better cover scene text in images.
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Fig. 6. Qualitative results of Text Localization Neural Network on our dataset. Green
solid boxes are detected scene text. Red dashed boxes are ignored scene text. (Color
figure online)

Comparison with SSD. Table 1 compares results of our Text Localization
Neural Network and SSD. In terms of precision, recall and F-Measure, Text
Localization Neural Network outperforms SSD by a large margin.

Table 1. Performance comparisons with SSD

Model Precision Recall F-Measure

SSD 75.9 56.8 65.0

Text Localization Neural Network 80.5 78.4 79.4

Example Results. Figure 6 shows some qualitative results on our dataset. As
can be seen, Text Localization Neural Network can handle horizontal scene text
especially dense and long text well.

4.2 Effectiveness of Text Verification Model

Table 2 shows evaluation results after adopting Text Verification Model. After
eliminating False Positive (FP) detections, our detection precision raises by 3.1%.
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Table 2. Performance comparisons after applying Text Verification Model

Model Precision Recall F-Measure

Text Localization Neural Network 80.5 78.4 79.4

Text Localization Neural Network + Text Verification Model 83.0 78.4 80.6

4.3 Comparison with Other Methods

Table 3 lists and compares the results of the proposed method and other state-
of-the-art methods. As we can see, our method achieves the highest recall rate
of 0.784, while only slightly lower in precision than CTPN [16]. Overall, our
proposed method in scene text detection has a good performance.

Table 3. Performance comparisons with some of the state-of-the-art methods

Method Precision Recall F-Measure

CNN + MSERS (Huang et al. [13]) 80.7 67.9 73.7

CTPN (Tian et al. [16]) 84.3 77.8 80.9

Multi-oriented FCN (Zhang et al. [19]) 80.7 74.6 77.5

FCRN (Gupta et al. [18]) 82.9 72.2 77.2

Our method 83.0 78.4 80.6

5 Conclusion

We have presented an effective method for natural scene text detection based
on SSD and encoder-decoder network. We make improvement on SSD to bet-
ter handle horizontal text detection, especially long text in natural scenes. We
also proposed an encoder-decoder network and make use of recognition results
to refine detection results. Comprehensive evaluations and results on our con-
structed dataset well demonstrate the effectiveness of our proposed method.

For future works, one potential direction is extending the proposed model
considering the deformation of text to handle multi-oriented texts from the pixel
level. Furthermore, scene texts with multiple orientations, fonts and colors can
be better detected.

Acknowledgments. This research was partially supported by National science and
technology support plan (2013BAH65F04), Natural Science Foundation of Guangdong
Province (No. 2015A030313210) and Science and Technology Program of Guangzhou
(Grant No.: 201604010061, 201707010141).



Scene Text Detection Method 33

References

1. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

2. Shi, B., et al.: ICDAR2017 competition on reading Chinese text in the wild
(RCTW-17) (2017)

3. Kim, K.I., Jung, K., Kim, J.H.: Texture-based approach for text detection in images
using support vector machines and continuously adaptive mean shift algorithm.
IEEE Trans. Pattern Anal. Mach. Intell. 25, 1631–1639 (2003)

4. Phan, T.Q., Shivakumara, P., Tan, C.L.: A Laplacian method for video text detec-
tion. In: 10th International Conference on Document Analysis and Recognition,
ICDAR 2009, pp. 66–70 (2009)

5. Wang, K., Belongie, S.: Word spotting in the wild. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 591–604. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15549-9 43

6. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke
width transform. In: Computer Vision and Pattern Recognition, CVPR, pp. 2963–
2970 (2010)

7. Chowdhury, A.R., Bhattacharya, U., Parui, S.K.: Scene text detection using sparse
stroke information and MLP. In: 21st International Conference on Pattern Recog-
nition, ICPR, pp. 294–297 (2012)

8. Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in
natural images. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, pp. 1083–1090 (2012)

9. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from
maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)

10. Shahab, A., Shafait, F., Dengel, A.: Robust reading competition challenge 2: read-
ing text in scene images. In: IEEE International Conference on Document Analysis
and Recognition, pp. 1491–1496 (2011)

11. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: IEEE Interna-
tional Conference on Document Analysis and Recognition, pp. 1484–1493 (2013)

12. Sun, L., Huo, Q., Jia, W., Chen, K.: Robust text detection in natural scene images
by generalized color-enhanced contrasting extremal region and neural networks. In:
IEEE 22nd International Conference on Pattern Recognition, ICPR, pp. 2715–2720
(2014)

13. Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural
network induced MSER trees. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8692, pp. 497–511. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10593-2 33

14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39, 1137–1149 (2017)

15. Zhong, Z., Jin, L., Zhang, S., Feng, Z.: DeepText: a unified framework for text
proposal generation and text detection in natural images, pp. 1–18. arXiv preprint
arXiv:1605.07314 (2015)

16. Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with
connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46484-8 4

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-642-15549-9_43
https://doi.org/10.1007/978-3-319-10593-2_33
https://doi.org/10.1007/978-3-319-10593-2_33
http://arxiv.org/abs/1605.07314
https://doi.org/10.1007/978-3-319-46484-8_4
https://doi.org/10.1007/978-3-319-46484-8_4


34 C. Luo and X. Gao

17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-
time object detection. In: Computer Vision and Pattern Recognition, pp. 779–788
(2016)

18. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2315–2324 (2016)

19. Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W., Bai, X.: Multi-oriented text
detection with fully convolutional networks. In: Computer Vision and Pattern
Recognition, pp. 4159–4167 (2016)

20. Zhou, X., et al.: EAST: an efficient and accurate scene text detector, pp. 2642–2651
(2017)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Computer Science (2014)

22. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 39, 2298–2304 (2017)

23. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. Computer Science (2015)

24. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Computer Science (2014)



Effective SVD-Based Deep Network
Compression for Automatic Speech

Recognition

Hao Fu1(B) , Yue Ming1, Yibo Jiang2, and Chunxiao Fan1

1 Beijing University of Posts and Telecommunications, Beijing, China
{fuhao2013,yming,eetxwl}@bupt.edu.cn

2 Ningbo Xitang Technologies Inc., Ningbo, China
jiangybtt@163.com

Abstract. Neural networks improve speech recognition performance
significantly, but their large amount of parameters brings high compu-
tation and memory cost. To work around this problem, we propose an
efficient network compression method based on Singular Value Decom-
position (SVD), Simultaneous Iterative SVD Reconstruction via Loss
Sensitive Update (SISVD-LU). Firstly, we analyse the matrices’ singular
values to learn the sparsity in every single layer and then we apply SVD
on the most sparse layer to factorize the weight matrix into two or more
matrices with least reconstruction errors. Secondly, we reconstruct the
model using our Loss Sensitive Update strategy, which propagates the
error across layers. Finally, we utilize Simultaneous Iterative Compression
method, which factorizes all layers simultaneously and then iteratively
minimize the model size while keeping the accuracy. We evaluate the
proposed approach on the two different LVCSR datasets, AISHELL and
TIMIT. On AISHELL mandarin dataset, we can obtain 50% compres-
sion ratio in single layer while maintaining almost the same accuracy.
When introducing update, our simultaneous iterative compression can
further boost the compression ratio, finally reduce model size by 43%.
Similar experimental results are also obtained on TIMIT. Both results
are gained with slight accuracy loss.

Keywords: Speech recognition · SVD-based compression ·
Loss sensitive update · Simultaneous iteration

1 Introduction

In the past few years, we have witnessed a rapid development of deep neural
networks in the field of automatic speech recognition (ASR) [8,14,18,21,22].
However, the large size of neural network models leads to high computation and
memory costs, which also makes it difficult to deploy the models in low resource
devices. Frequently-used solution is to put the models on powerful cloud servers.
But when network-connection is instable, this approach brings high latency, and
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even failure. Thus, neural networks compression for mobile devices attracts more
and more attention.

Recent researches have proposed various methods to compress models, which
can be efficiently executed directly on the embedded devices. Existing methods
for neural network compression can be broadly divided into four categories:
parameter quantization, pruning, knowledge distillation and low rank approxi-
mation.

Parameter quantization attempts to quantize the weights or activations
of networks from 32 bit floating point into lower bit-width representations. With
just two-three bits per parameter, these methods can get pretty good compres-
sion performance [6,12,15,23]. However it requires the algorithm computation-
ally efficient while reducing runtime memory footprint.

Pruning is a forthright way to reduce network complexity. [11] pioneered
the approach of pruning. They trained a full network and removed the neurons
with the zero activations. The work in [20] exploited the sparseness in DNN,
and presented a nice way to reduce the model size. [4] jointly learned weights
and connections, using a hard threshold to remove the least important weights
with small absolute values. Finally, they then fine-tuned to recover its accuracy.
It has successfully pruned the heavy networks without performance loss. But it
still need extra memory usage to index the non-zero value.

Knowledge distillation method first trains a heavier network, as “teacher”
network, then trains a smaller “student” network through knowledge transfer.
First attempts in this direction were made by [2], they investigated the model
complexity- RMSE error. [5] then utilized the predicted probability distribution
of the teacher model as “knowledge”, introducing a more general technique for
distilling the knowledge of a network.

Low-rank approximation is also widely studied [3,17,19]. In recent years,
low-rank tensor approximation methods, e.g. Singular Value Decomposition
(SVD), have been established as a new tool in matrix compression to address
large-scale parameters problem. Reducing parameter dimensions by low-rank
approximation saves storage and reduces time complexity simultaneously.

Our work builds on previous research in the area of low rank decomposition,
called Simultaneous Iterative SVD Reconstruction via Loss Sensitive
Update (SISVD-LU). Initially, a large model trained without constraints is
produced. We conduct the first phase of our method to learn the importance
of each weight matrix in different layers. We keep the essential information
remained (indicated by larger singular values), and surpress less useful ones.
Then, we update the reconstructed network in a optimal procedure so that the
removed information can be compensated. In the end, reconstruction and update
are iteratively performed to further reduce network complexity and keep the
accuracy at a acceptable level.

Our work is different from the previous works in follow aspects:

1. Most methods [3,7,19] approximate a tensor by minimizing the reconstruc-
tion error of the original parameters, while ignoring the accumulate errors.
Our update mechanism emphasizes the ultimate network objective goal by
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applying across-layer loss sensitive update. Furthermore, we iterate the pro-
cess which is different from their methods.

2. Compared with [13], we compress the Time Delay Neural Network (TDNN)
for ASR instead of Convolutional Neural Network (CNN). We also aware
the importance of global loss, but we further explore the case of single-layer
compression, and propose our exclusive update.

3. Prior approaches are usually evaluated on over-parameterized models, such
as AlexNet [10], VGG [16], or very large output full-connection layers. Our
method can get about 50% compression rate while only applied in the rela-
tively small hidden layers.

The rest of this paper is organized as follows. Section 2 details every phase
of our proposed method. Experimental results are presented and discussed in
Sect. 3. In Sect. 4, we summarize our work.

2 Effective SVD-Based Deep Network Compression

Our proposed method, called Simultaneous Iterative SVD Reconstruction via
Loss Sensitive Update (SISVD-LU), including three phases:

2.1 Inner-Layer Reconstruction Using SVD

In our proposed method, a full-trained deep neural network model is firstly
obtained without resource constraints. Then, we decompose the weights matrix
W (l) between the l-th and (l + 1)-th layers via matrix factorization (MF) to
reduce the parameter size.

We formulate the Matrix Approximation problem as follow.

W = Ŵ + ε (1)

as Eq. 1 shows, the weight matrix W is subject to the Additive-Residual model.
Where the weight matrix W (l) is generalized as W (∈ R

M×N ) with rank r,
ε ∈ R

M×N is the reconstructed residual matrix. And Ŵ is the approximate low-
rank matrix. We can view this procedure as capturing the main patterns of W
while eliminating much of “noise”.

We use Singular Value Decomposition (SVD) to solve this rank minimization
problem. The matrix W (l) has a representation of the form:

W (l) = UΣrV
� (2)

where U and V are orthogonal matrices UUT = V V T = I, and Σr is a diago-
nal matrix, Σr = diag(σ1, σ2, ..., σr), are called singular values. The size of the
original matrix W (l) is M × r. The resulting decomposition submatrix U , Σr, V
size M × r, r × r, r × N , respectively. Here r denotes the number of the nonzero
singular values.
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It is found that the singular value decreases particularly fast. In many cases,
the sum of top 10% of singular values accounts for more than 99% of the sum
of all singular values [19]. For compression task, a small preserved rank kwill
be chosen. We sort singular values in a descending order and pick the largest
k (k � r) singular vectors in U and V with corresponding eigenvalue in Σ to
approximate W.

Ŵ = ÛΣ̂kV̂ �

= ÛΣ̂
1
2 · (V̂ Σ̂

1
2 )� (3)

The approximation of SVD is controlled by the decay along the eigenvalues
in Σk. This procedure changes the number of parameters from M × N to k ×
(M + N). So the Compression Ratio R is defined as R =

k × (M + N)
M × N

.

The demonstration of SVD is presented in the right part of Fig. 1.

Time Delay Neural Networks
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Fig. 1. Architecture of SVD-based network reconstruction. Left part is the baseline
TDNN model structure, right part illustrates the process of SVD.

2.2 Across-Layer Loss Sensitive Update

From a across-layer perspective, the inner-layer decomposition causes cumulative
errors and destroys the coupling of the layers. We build the Loss-sensitive Update
recipe.

In a vanilla neural network, the input features are presented as X =
[x1, x2, ..., xm], where xi ∈ R

d, where m is the number of feature vectors and
d is dimension of a feature vector. After forward propagation, the output of the
l-th layer can be written as:

y
(l)
i = σ(z(l)i ), where z

(l)
i =

n(l−1)∑

j=1

w
(l−1)
ij x

(l−1)
j (4)
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Where w
(l−1)
ij is the element of weight matrix W (l−1). n(l−1) denotes the num-

ber of neurons in the l − 1 layer. And σ(·) is a non-linear transformation called
“activation function”. The commonly used forms of this function are: tanh, sig-
moid or the rectifier linear unit (ReLU) etc. The hidden state and its result
after activation are denoted as vectors z

(l)
i and y

(l)
i , respectively. Expanding the

expression to Eq. 5.

y(l)
i = σ(w(l−1) · · · σ(w(2)σ(w(1)x(1) + b(1)) + b(2)) · · · +b(l−1)) (5)

We can see more clearly how the global error accumulated after decomposition.
Most existing reconstruction focus on how to reduce the error of inner-layer
reconstruction, as showed in Eq. 6. Here || · ||F as Frobenius norm. In this way,
the loss of global accuracy is often ignored.

C1 = min
Ŵ

(l)

1
2

∥∥∥W (l) − Ŵ
(l)

∥∥∥
2

F
(6)

Single-layer reconstruction weakens the strong associations between layers,
which are built through forward and backward propagation. Hence, we solve the
reconstruction problem for a broader scope, aiming at preserving the global mod-
eling capabilities of networks, such as classification ability or regression ability.
Our loss function is modeled as Eq. 7.

C2 = min
Ŵ

(l−1)

1
2

∥∥∥Y (l) − σ(Ŵ
(l−1)

X)
∥∥∥
2

F

= min
ŵij

(l−1)

n(l)∑

i=1

n(l−1)∑

j=1

1
2

∥∥∥y
(l)
i − σ(ŵ(l−1)

ij xj)
∥∥∥
2

2

(7)

In order to further constrain the complexity of the model, we add the L1-
regularization term to the objective function, inducing model to be sparse. Our
final objective function is Eq. 8.

L = min
Ŵ

(l−1)

1
2

∥∥∥Y (l) − σ(Ŵ
(l−1)

X)
∥∥∥
2

F
+ Ψλ(Ŵ )

s.t. Ψλ(Ŵ ) = λ

n(l)∑

i=1

n(l−1)∑

j=1

||ŵij ||1
(8)

Then we backpropagate loss using Stochastic Gradient Descent (SGD). Note
that SVD will insert a bottleneck layer in the middle of the original layer. In
backpropagation phase, we keep the structure.

According to the different scopes of global loss backpropagation, we propose
the following methods:

– Scheme 1 Fix the decomposition layers, only update the remaining layers,
we call it Exclusive Update.
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Self Update Exclusive Update Global Update

Global Loss Global Loss Global Loss

SVD

Fig. 2. Different update schemes of global loss backpropagation. Here, the rounded
rectangle represents a hidden layer, and the circle represents neuron. The dashed line
indicates that backpropagation does not change the parameters of the specific layers,
and the solid line indicates that backpropagation will update the parameters those
layers.

– Scheme 2 Only update decomposition layers, keep the remaining layers
unchanged, we call it Self Update.

– Scheme 3 Update the whole reconstructed model, we call it Global Update.

The range of error back-propagation is controlled by the learning rate of
each layer. If the learning rate is set to zero, this layer parameter is not updated.
Demonstration of different global loss backpropagation schemes is presented in
Fig. 2.

2.3 Iterative Compression

As previous section summarized, across-layer reconstruction can utilize SVD-
based compression performance to make the neural networks small and fast
enough. Based on the above analysis, we find that iteratively apply inner-layer
decomposition and across-layer reconstruction procedure will bring high com-
pression ratio with low accuracy loss. We perform the iterative compression in
two different ways:

– Layerwise Compression : Conduct network reconstruction after compres-
sion of single layer during every iteration.

– Simultaneous Compression : Compress the whole networks at same time,
and fine-tuning follows iteratively.

The back-propagation of the cumulative errors can retrieve the discriminal
ability damage of models and preserve original relationships across the networks.
Our proposed method reduces network complexity and keep the accuracy in a
acceptable level. Figure 3 describes two iterative compression flows.
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Fig. 3. Two iterative compression approaches: simultaneous compression, layerwise
compression. Layerwise compression will get the bottom state from top step by step.
Simultaneous compression will go to the bottom state directly. Here, the cube represents
the weight matrix, it is decomposed into three smaller matrices by SVD.

3 Experiments

In this section, we evaluate the effectiveness of our approach on two different
LVCSR corpus, AISHELL [1] for Mandarin ASR and TIMIT for English ASR.

3.1 Experimental Setup

Architecture of TDNN. Since speech signal has the temporal dynamics prop-
erty, an acoustic model is required to have the ability to capture the long term
dependencies between acoustic events. In a standard DNN, the initial layer learns
the entire temporal context. Whereas, the TDNN architecture learns in a hierar-
chical structure. Narrow contexts are learnt by low layers and the deeper, layers
learn from a wider temporal context. Hence the higher layers have the ability to
learn wider temporal relationships. The structure of TDNN is depicted in the
left part of Fig. 1.

3.2 Mandarin LVCSR Task on AISHELL

AISHELL corpus is a 170-h Mandarin speech corpus [1]. The corpus includes
training set (150 h), development set (10 h) and test sets (5 h).
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The input features consist of two parts, including 13-dimensional Mel fre-
quency cepstral coefficients (MFCC) and 3-dimensional pitch features. Mean
normalization and double deltas are applied on the above features before feeding
into the training pipeline. The resulting GMM-HMM model has 2952 senones.
During the training of TDNN-based acoustic models, we input high resolutional
(40-dimensional) MFCC and 3-dimensional pitch features. Audio augmentation
[9] and i-Vector (100-dimensional) based DNN adaptation are applied. Sub-
sampling window is applied on MFCC and pitch features to splice neighboring
frames.

Our baseline system is constructed based on the corresponding recipe. We
used time delay neural network (TDNN) as our baseline. In our experiments,
it contains 6 hidden layers, 850 hidden nodes per layer, using ReLU as the
activation function. The output layer consisted of 2952 units.

After we obtain a full-trained (train with no resource constraints) deep neural
network model, further reduction of footprint is conducted by an SVD-based
compression.

Rank Selection. We notice that rank selection affects the compression rate as
well as the accuracy. Too high rank will result in insufficient compression, while
too low may make the accuracy recovery difficult or impossible.

To explore the implicit information each layer contains, we apply SVD on
the same layer with different ranks, and different layers with the same rank.

Tables 1 and 2 summarizes the experimental results. The first column
describes the setup of the model, and the number in bracket means that how
many singular values we keep after SVD. The third column is the number of
parameters in each model. For example, in the original DNN model the number
of parameters is 315 × 850 + (850 × 850) × 6 + 850 × 2952 ≈ 6.78M . Baseline
GMM model has 100K gaussians in total.

Table 1. Results for SVD reconstruction on the same single layer preserving dif-
ferent ranks in AISHELL task (without fine-tune). Numbers inside brackets represent
the preserved singular values. The digits in the table represent the word error rate
(WER) (%). NoP denotes number of parameters

Acoustic model test dev NoP

6th(128) 10.08 8.33 0.21M

6th(256) 8.62 7.4 0.42M

6th(512) 8.49 7.28 0.83M

From Table 1, we can see that model size of our original DNN model is nearly
twice as GMM model. We reduce WER at 30% relatively by replacing GMM
model with DNN model. Using different preserved ranks in the same layer lead
to a nonlinear loss of precision.
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Table 2. Results for SVD reconstruction on different layers preserving the same
rank in AISHELL task (without fine-tune)

Acoustic model test dev Prior NoP Post NoP

GMM 12.10 10.40 - - - - - -

TDNN 8.45 7.20 6.78M - - -

2nd hidden layer(256) 9.99 8.47 0.68M 0.41M

3rd hidden layer(256) 8.87 7.62 0.68M 0.41M

4th hidden layer(256) 8.97 7.6 0.68M 0.41M

5th hidden layer(256) 8.67 7.42 0.68M 0.41M

6th hidden layer(256) 8.62 7.4 0.68M 0.41M

Output layer(256) 14.01 13.84 2.39M 0.92M

All hidden layers(256) 22.12 19.58 6.78M 3.89M

The following rows in Table 2 reveal the effect of the proposed approach.
When we keep only top 50% singular values (the SVD-256 case) on the matrices
of hidden layers, there are slight changes compared with original model. But
when it comes to compress the output layer, keep top 50% singular values will
cause obvious performance reduction. Therefore, different scaled weight matrices
should keep different ranks.

As it were, SVD in the most sparse layer can effectively compress model size,
even without reconstruction update. We can at most gain 50% compression ratio
after applying SVD, while maintaining almost the same accuracy.

Across-Layer Loss Sensitive Update. We conduct several experiments, the
results are described in Table 3. For single layer decomposition, the Self Update
scheme and the Global Update scheme both work good for single-layer (or a small
amount of layers). For multi-layer decomposition, Global Update scheme shows
more advantages. Furthermore, we explore if train for more epoches, the Self
Update can get better results. But it leads to a painful long time consumption,
and doesn’t look better than Global Update case (result: WER on dev set is
7.35%, on test set is 8.61%, re-train for 3 epoch,).

We believe that it is owing that the cumulative losses from SVD can affect
the entire network, Global Update is more reasonable to give reconstructed model
a larger adjustable range. On the other hand, since SVD maintains the princi-
pal components of the original weight matrix, we can take it for a pre-training
procedure.

As a periodic summary, Global Update is suitable for more scenarios.

Iterative Compression. We perform experiments to compare our two iter-
ative compression methods. Here “Aggressive” means directly push model to
a relatively small size and Global Update repeatedly. “Gradual” mode means
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Table 3. Comparisons of different update schemes after weight matrices reconstruction
in AISHELL task

Acoustic model Fine-tune Scheme WER

test dev

TDNN, Baseline - - - 8.45 7.20

6th Hidden Layer(256) Exclusive Update 8.59 7.36

Self Update 8.49 7.31

Global Update 8.55 7.36

All Hidden Layers(256) Exclusive Update 9.45 8.08

Self Update 8.37 7.22

Global Update 8.33 7.14

compress to a moderate size first and iterative push to a smaller size, fine-tune
is executed after every iteration. Table 4 shows our comparison results.

Table 4. Comparisons of different iterative compression schemes for combination of
reconstruction and update in AISHELL task

Iterative scheme Mode test dev

Layerwise compression Input to Output 8.59 7.36

Output to Input 8.63 7.41

Simultaneous compression Aggressive(850-128) 8.49 7.31

Gradual(850-512-256-128) 8.55 7.36

From the exhibited results, we found that the Simultaneous Compression
looks better than Layerwise Compression. Moreover, proceeding from input to
output rather that the reverse order produces better results for layerwise com-
pression. “Agressive” mode for Simultaneous compression shows more effective-
ness.

Results. Here we summarize the best result on AISHELL in Table 5 with
SISVD-LU.

We get the best result when we factorize all hidden layers with rank 256
and iterative global update. The parameter size of the final compressed model
is 315 × 850 + (850 × 128 + 128 × 850) × 6 + 850 × 2952 ≈ 3.89M , which is 57%
of the original size.

3.3 English LVCSR Task on TIMIT

We demonstrate scalability of the proposed low-rank decomposition on a differ-
ent dataset. So our second task is to train a same-structure TDNN model for
English ASR corpus TIMIT to verify our conclusion is universal.
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Table 5. Experimental results on the Mandarin AISHELL Corpus using our SISVD-
GLU approach

Acoustic model test dev

TDNN, Baseline - - - 8.45 7.20

All Hidden Layers(512) Before Iterative Update 8.54 7.32

After Iterative Update 8.42 7.21

All Hidden Layers(256) Before Iterative Update 22.12 19.58

After Iterative Update 8.32 7.12

All Hidden Layers(128) Before Iterative Update 34.55 30.71

After Iterative Update 8.49 7.31

The two corpora are significantly different in language and duration. TIMIT
contains a total of 6300 sentences (5.4 h), consisting of 10 sentences spoken by
each of 630 speakers from 8 major dialect regions of the United States.

In our experiments, we use 13 dimensional features space maximum likeli-
hood linear regression (fMLLR) features and then concatenate the neighboring 5
frames (11 frames in total) as the input feature. Note that, we don’t use i-Vector
in following experiments. To have a fair comparison, we construct a same TDNN
architecture (number of hidden units and number of layers are the same) as the
one used on last task.

We first train a full-trained model and then perform SISVD-LU. Table 6
shows us the results.

Table 6. Experimental results on the English TIMIT corpus using our SISVD-GLU
approach

Acoustic model test dev

TDNN, Baseline - - - 18.4 16.4

All Hidden Layers(512) Before Iterative Update 18.7 17.4

After Iterative Update 18.4 16.9

All Hidden Layers(256) Before Iterative Update 23.3 21.4

After Iterative Update 17.8 16.2

All Hidden Layers(128) Before Iterative Update 45.2 41.5

After Iterative Update 17.7 16.1

After compression, the accuracy after compression suffers great reduction.
Yet, our iterative global update can recall the loss back. Those results fully
support our method.
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4 Conclusion

In this paper, we have proposed an effective SVD-based compression method.
The loss sensitive update has conducted after SVD reconstruction, and repeat
this combination of two operations. For the single layer, by performing our com-
pression method, we can gain 50% compression ratio after applying SVD while
maintaining almost the same accuracy. For a whole model, our iterative update
procedure can boost the compression ratio, in the same time, without accuracy
loss. We verify our strategies in two very different datasets, TIMIT for English
ASR and AISHELL [1] for Mandarin ASR.

The experimental results support our conclusion. Though we only investigate
the SVD compression method, the outcome of this paper provokes us to gener-
alize our conclusion in other matrix manipulation related methods or combine
it with other compression methods.
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Abstract. Deploying a neural network model on a low-power embedded
platform is a challenging task. In this paper, we present our study on the
efficacy of aggregated residual transformation (defined in ResNeXt that
secured 2nd place in the ILSVRC 2016 classification task) for lightweight
deep networks. The major contributions to this paper include (i) evalua-
tion of group convolution, (ii) study on the impact of skip connection and
various width for lightweight deep network. Our extensive experiments
on different topologies show that employing aggregated convolution oper-
ation followed by point-wise convolution degrades the accuracy signifi-
cantly. Furthermore as per our study, skip connections are not a suitable
candidate for smaller networks and width is an important attribute to
magnify the accuracy. Our embedded friendly networks are tested on
ImageNet 2012 dataset where 3D convolution is a better alternative to
aggregated convolution because of the 10% improvement in classification
accuracy.

Keywords: Object classification · Convolutional Neural Network ·
Group convolution · Efficient networks

1 Introduction

In spite of the rapid increase in computational power of embedded systems,
deploying state-of-the-art Convolution Neural Network (CNN) architectures
remains to be a challenge. In some industrial applications, there are power and
cost constraints which mandates smaller embedded processors. Thus it is impor-
tant to design efficient models which fit the computational budget of the system.
Recently, this area of research has grown significantly and there are many papers
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which demonstrate large improvements in runtime at a small reduction in accu-
racy. An overview of efficient design techniques was provided in [1] and guidelines
for design of small networks is listed in [2].

Most of the research in the CNN community focus on accuracy at the cost
of increased computational complexity. It is important to consider the latter as
well and a multi-objective metric is necessary. A good attempt was made in
[3] to compare the accuracy of networks normalized to complexity is presented.
Figure 1 reproduced from this paper illustrates that there is large variability
in the effective capacity of different networks. An accuracy/performance trade-
off was studied in [4] for comparison of object detection meta-architectures like
Faster R-CNN, R-FCN and SSD.

Group convolution is an important efficient design technique which was dis-
cussed in [1] in more detail. Although it was originally used in AlexNet in 2012,
it wasn’t adopted in the recent popular networks like VGG16 or ResNet. More
recently, it was used in ResNeXt demonstrating a significant improvement in
efficiency. This has motivated the authors to explore this design technique fur-
ther in a more systematic way and provide benchmarks in particular for lighter
CNN networks.

Fig. 1. Illustration of large disparity in the efficiency of networks measured by an
accuracy metric normalized to number of parameters. Figure is reproduced from [3].

The rest of the paper is structured as follows. Section 1.1 provides a list
of important research questions which we address in this paper with respect
to grouped convolutions. Section 2 discusses related work with respect to effi-
cient design techniques for CNN topologies. Section 3 provides implementation
details of our experiments and Sect. 4 discusses the experimental results in detail.
Finally, Sect. 5 summarizes the paper and provides potential future directions.

1.1 Research Questions Addressed in This Study

The effectiveness of various machine learning algorithms for vision related prob-
lems has been discussed in literature for quite a long time. Over the past few
years, deep learning based techniques have received significant thrust due to their
unparalleled performance. Unequivocally, one of the major application areas of
such techniques is computer vision. Among various tasks under computer vision,
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we considered object classification as our main area of study with respect to very
popular aggregated residual transformation. Our findings towards this study
answer the questions below:

Does aggregated residual transformation work well for lightweight deep
networks too? Well, surprisingly aggregated or group convolution fails to
demonstrate its efficacy with lightweight deep networks. We witnessed that a
lightweight deep network that mimicked group convolution could not outperform
the same network without group convolution. The degree of this failure can be
measured in terms of the difference of accuracies which is 10% as furnished in
Table 1 which is non-trivial.

Do skip connections with aggregated convolution have any impact for
lightweight deep networks? Interestingly we found that any lightweight deep net-
works comprising of skip connections with group convolution do not have much
impact. Our set of experiments shown in Table 2 reveal that a lightweight deep
network with skip connections outperforms the same network without skip con-
nections by only 1% in classification task. Such small increase in accuracy does
not make skip connections a reasonable candidate to be considered for embedded
platform as it increases memory bandwidth.

Does drastic growth of the width in certain convolution layers have notable
impact while incorporating aggregated convolution? Definitely yes. We experi-
mented with two very lightweight residual networks where both have the same
number of group convolutions but one network has incremental growth and the
other one has drastic growth in number of channels. We observed a jump of more
than 6% with the network having drastic growth. This is demonstrated through
result in Table 3 but due to its computational cost to allow such drastic growth
especially in embedded platform remains an open question to the community. To
keep the computational cost affordable, the idea of drastic growth in channels
can be perceived at a later stage of the network as the feature space will be
comparatively less.

How does the width of the network play an influential role even without
aggregated convolution and skip connection? We see significant impact in terms
of accuracy as the wider network is the clear winner. We designed two very
lightweight multi-layer networks where one network has double width per convo-
lution layer in comparison to the other network. On ImageNet validation dataset,
we experienced the wider network to be ahead with more than 8% margin as
furnished in Table 4. Hence, the idea of having wider network can be assimilated
if the objective is to classify objects aggressively with shallower networks though
memory consumption and runtime should be considered with lesser priority for
such case.

2 Related Work

Study on designing suitable classifiers for classification task can be found in
literature dated back in 80s. Recognition of handwritten zip code [5] is one
such kind of a problem. Over the time, the direction of research in the field of
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pattern recognition and machine learning has changed exceptionally. Few years
ago, feature engineering approach where handcrafted features such as SIFT [6],
HOG [7] were believed to be the best discriminative representation were used
with machine learning classifiers. Later, researchers found an absolutely different
dimension that is network engineering to outperform the performance of classical
machine learning techniques. Thus deep learning came into the scene.

It became very easy to learn large invariant features from large-scale dataset
such as ImageNet [8] that consists of 1000 classes of total 1.28 million training
images. Krizhevsky et al. presented a convolutional neural network that was
distributed over two GPUs as the hardware resource was limited. Performing
convolution in distributed fashion has now become popular to mimic not due to
hardware limitation but to amplify the accuracy along with reduced model size.
Lin et al. [9] furnished “Network-in-Network” concept where a single neuron
was modified to act as an independent network. VGG-nets [10] is the first very
deep neural network that showed its encouraging performance. This architecture
is basically comprising of many convolutional layers that are stacked one after
another of same shape. VGG-16 and VGG-19 are mainly two variants of VGG-
nets. The idea to construct a deeper network with repetitive blocks of same
size was perceived in ResNet [11]. He et al. also presented the notion of skip
connection in the same network. This kind of approach has been proved to be
robust. Many variants of ResNet are available and often seen to be customized
as task specific.

Xie et al. [12] inherited the concept of residual block and introduced aggre-
gated residual transformation within each block. This transformation is also
known as group convolution. Instead of performing 3D convolution over many
number of channels together, it is better to perform same convolution operation
with limited number of channels in parallel and later do point-wise convolu-
tion to blend the features across channels. This approach has been exhibited to
be reasonably cost effective and helpful to magnify the performance of ResNet.
Inception network [13] is another approach to bring down the computational
cost with large margin. The core idea of inception network is to conduct con-
volution operation with different set of kernel size on same set of features and
concatenate all the feature maps to the next layer. Due to the presence of mul-
tiple kernel size within the same layer, this network is able to capture features
of all categories from each inception module and this technique can be imbibed
within the residual block as well.

Though above discussed deep networks perform unarguably well but lately
some research in parallel on a different dimension started with convolutional
neural network. Basically how these fancy features can be accommodated on
embedded platform. SqueezeNet [14] is definitely one among many such attempts
that brought down the number of hyperparameters and model size ridiculously.
ShuffleNet [15] is another notable effort that made the deep neural network to
become lightweight for handheld devices. Our present study is concentrated to
evaluate the influence of recent commonly used features for lightweight network.



52 A. Das et al.

3 Implementation Details

Our models are implemented using publicly Caffe framework [16] developed
by Berkeley AI Research (BAIR)/The Berkeley Vision and Learning Center
(BVLC). Our training strategy mostly follows [12]. ImageNet 2012 dataset [8]
has been used to train and test our models. In order to do scale augmentation,
each image is randomly sampled as 256 × 256 using its shorter stride. Resized
images are further randomly cropped as 224 × 224 along with its horizontal flip
into consideration. No other pre-processing is performed except per pixel based
mean subtraction as mentioned in [8] on the extracted patches. We reduced the
problem space at various convolutions layers using sub-sampling or pooling layer.
This helped to reduce the number of hyper-parameters significantly. Batch nor-
malization [17] is adopted at each layer after performing convolution operation
and before using ReLU as activation. We performed training batch-wise along
with SGD optimizer where size of each batch is 32 on a single GPU. Though
Adam [18] could be an alternative of SGD for faster convergence. Weights ini-
tialization of our all models happened randomly as we trained our network from
scratch. We followed the strategy explained in [19]. Regarding other network con-
figuration, weight decay and momentum were set to 0.0001 and 0.9 respectively
and we maintained the same hyper-parameters across all models. We started
training with initial learning rate as 0.1 and employed standard polynomial
decay strategy to decrease this value over 350K iterations. To implement group
convolution, we used parameter “group” that is supported in Caffe. We did not
use dropout [20] in our models. For all experiments, we used NVIDIA Titan X
12G GPU with 24 GB RAM.

In testing phase, we resize the image to 224 × 224 and didn’t take horizontal
flip. However, per channel mean subtraction is done as per standard mean for
R, G, and B channels available for ImageNet database [8].

4 Experimental Study

We performed our set of experiments on ImageNet classification dataset [8] that
consists of 1000 classes. As our intention is to evaluate the efficacy of aggregated
or group convolution for lightweight deep networks, we proceed with a brief
overview of the technique its background. As mentioned in [12], the idea of group
convolution was first used in AlexNet architecture [8]. However, the purpose was
not to enhance the performance, rather Krizhevsky et al. tried to implement
the network over two GPUs. So that two sets of convolution operations can be
performed in parallel and later the convolved feature maps can be merged using
fully connected layers. This approach was followed back in 2012 as the GPU
had limited capacity. However, Xie et al. [12] made the first attempt to use this
concept to boost up the accuracy with much deeper network. They referred to
the number of groups as cardinality and it is considered as a new dimension
to the deep neural network. Later in 2017, this idea was perceived as shuffling
the channels after performing group convolution to blend the features across
groups [15].
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In neural networks, a single neuron receives input from multiple channels and
a simple transformation namely inner product of neuron inputs and its weights
is performed:

N∑

i=1

xi ∗ wi (1)

where x is a set of input channels to a single neuron. Hence x = [x1, x2, x3, ..., xN ]
and likewise a set of filters’ weights will be there of same dimension. Here,
subscript denotes the channel. This simple transformation can be replaced by a
more generic function where each element can be considered as a mini-network.
The transformation is designed in such a way that the network expands along
a new dimension, it was defined as cardinality and the concept is known as
“Network-in-Neuron”. Instead of number of channels, if Eq. (1) can be expanded
in number of groups where each group will have a certain number of channels
then we can conceptualize about a new aggregated transformation as explained
in [12]. Figure 2 shows two different networks. The network at the left is a basic
residual like block where X is the input and output depth that is number of
channels. In between the input and the output, there are three convolution layers
where convolution with a kernel size of 1 × 1 is used to increase or decrease the
number of channels. It is also used to blend the features across channels and
convolution with a kernel size of 3×3. However, kernel size for feature extraction
can be changed as needed. The function defined below shows the factor by which
the increment of channel is performed.

f : X → X∗,X ∈ R
H∗W∗D,X∗ ∈ R

H′∗W ′∗D′
(2)

f ′ : X∗ → X∗,X∗ ∈ R
H′∗W ′∗D′

,X∗ ∈ R
H′′∗W ′′∗D′′

(3)

where X and X∗ are input and output of transformation function f . H, W ,
D are the height, width and depth of X and H ′, W ′, D′ are the height, width
and depth of X∗. Transformation function f ′ is used to extract features keeping
depth or number of channels constant. To decrease the number of channels,
generally D′ = D/r where r is an integer value which is ideally a factor of 4
. Same rule in reverse order has to be followed while increasing the number of
channels as it will be required in the third convolution layer as shown in Fig. 1.
It is to be noted that f , f ′ and reverse of f will be the same across groups. It is
demonstrated as in [12], with increasing number of groups the accuracy is more
likely to improve with reduced model size.

4.1 Aggregated vs. 3D Convolution

As discussed in previous section, aggregated residual transformation has seen
to be superior in terms of performance than normal 3D convolution. While this
study is purely concentrated on deep networks, it was interesting to study it in
a non-deep network. The experimental results revealed some compelling facts to
think on having such features on a lightweight embedded friendly network. It is
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Table 1. Comparison study: aggregated vs. 3D convolution

Type of layer/block Output ResNeXt-12 ResNeXt-12 without group

convolution

Conv. 112 × 112 (5× 5, 32)/2 (5× 5, 32)/2

Pool. 56 × 56 (2× 2 max pool)/2 (2× 2 max pool)/2

BSC 56× 56 (3× 3, 32, C = 4), (1× 1, 32) (3× 3, 32), (1× 1, 32)

BIC 28× 28 (3× 3, 64, C = 16)/2, (1× 1, 64),

IC: (1× 1, 64)/2

(3× 3, 64)/2, (1× 1, 64),

IC: (1× 1, 64)/2

BIC 14× 14 (3× 3, 128, C = 32)/2, (1× 1,

128), IC: (1× 1, 128)/2

(3× 3, 128)/2, (1× 1,

128)/2, IC: (1× 1, 128)/2

BIC 7× 7 (3× 3, 256, C = 64)/2, (1× 1,

256), IC: (1× 1, 256)/2

(3× 3, 256)/2, (1× 1, 256),

IC: (1× 1, 256)/2

1× 1 Global average pool1000-d fc,

softmax

Global average pool1000-d

fc, softmax

#params. 402.73k 788.65k

TOP-1 accuracy 37.72 48.59

Table 2. Comparison study: group convolution with skip vs. non-skip connections

Type of layer/block Group convolution
with skip connection

Group convolution
without skip connection

Conv. (5× 5, 64)/2,
(O = 112× 112)

(5× 5, 64)/2,
(O = 112× 112)

Pool. (2× 2 max pool)/2,
(O = 56× 56)

(2× 2 max pool)/2,
(O = 56× 56)

BSC (5× 5, 64), (5× 5, 64,
C = 4), (O = 56× 56)

(5× 5, 64), (5× 5, 64,
C = 4), (O = 56× 56)

BIC (5× 5, 64)/2, (5× 5, 64,
C = 4), IC: (1× 1, 64)/2,
(O = 28× 28)

(5× 5, 128)/2,
(O = 28× 28) (5× 5, 128,
C = 4) (O = 28× 28)

BIC (5× 5, 128)/2, (5× 5, 128,
C = 4), IC: (1× 1, 128)/2,
(O = 14× 14)

(5× 5, 128)/2,
(O = 14× 14) (5× 5, 128,
C = 4) (O=14× 14)

BIC (5× 5, 256)/2, (5× 5, 256,
C = 4), IC: (1× 1, 256)/2,
(O = 7× 7)

(5× 5, 256)/2,
(O = 7× 7), (5× 5, 256,
C = 4), (O = 7× 7)

Global average pool1000-d
fc, softmax, O = 1× 1

Global average pool1000-d
fc, softmax, O = 1× 1

#params. 2.1M 2.44M

TOP-1 accuracy 57.4619 58.606
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Table 3. Comparison study: group convolution with deeper vs. wider network of similar
depth

Type of layer/block Output Group convolution
with deeper network

Group convolution
with wider network
of similar depth

Conv. 112× 112 (5× 5, 32)/2 (5× 5, 32)/2

Pool. 56× 56 (2× 2 max pool)/2 (2× 2 max pool)/2

BSC 56× 56 (5× 5, 32)(5× 5, 32, C = 4) (5× 5, 32)(5× 5, 32,
C = 4)

BIC 28× 28 (5× 5, 32)/2, (5× 5, 32,
C = 4)(1× 1, 64)

(5× 5, 32)/2, (5× 5,
32, C = 4)(1× 1, 64)

IC: (1× 1, 64)/2 IC: (1× 1, 64)/2

BIC 14× 14 (5× 5, 64)/2, (5× 5, 64,
C = 8) (1× 1, 256)

(5× 5, 128)/2,
(5× 5, 128, C = 8)
(1× 1, 256)

IC: (1× 1, 128)/2 IC: (1× 1, 256)/2

BIC 7× 7 (5× 5, 128)/2, (5× 5, 128,
C = 16) (1× 1, 256)

(5× 5, 256)/2, (5× 5,
256, C = 16) (1× 1,
512)

IC: (1× 1, 256)/2 IC: (1× 1, 512)/2

1× 1 Global average pool1000-d
fc, softmax

Global average
pool1000-d fc,
softmax

#params. 1.75M 6.04M

TOP-1 accuracy 52.718 59.4601

Table 4. Comparison study: incremental vs. wider network of similar depth

Type of layer/block Output Deeper network

with incremental growth

Deeper network

with double growth

Conv. 112× 112 (5× 5, 32)/2 (5× 5, 64)/2

Pool. 56× 56 (2× 2 max pool)/2 (2× 2 max pool)/2

Conv. 56× 56 (5× 5, 32) (5× 5, 32) (5× 5, 64) (5× 5, 64)

Conv. 28× 28 (5× 5, 64)/2, (5× 5, 64) (5× 5, 128)/2, (5× 5, 128)

Conv. 14× 14 (5× 5, 128)/2, (5× 5, 128) (5× 5, 256)/2, (5× 5, 256)

Conv. 7× 7 (5× 5, 256)/2, (5× 5, 256) (5× 5, 512)/2, (5× 5, 512)

1× 1 Global average pool1000-d

fc, softmax

Global average pool1000-d

fc, softmax

#params. 3.51M 13.53M

TOP-1 accuracy 57.42 65.5301



56 A. Das et al.

Fig. 2. Residual block with (1) 3D convolution (left) and (2) aggregated convolution
(right)

to be noted that we performed group convolution at all layers except the 1 × 1
convolution layers.

We adopted two modularized 12 layers residual networks. Just to see the
efficacy of group convolution, we added this feature in only one network. In
the model, we have two types of residual networks. One type of residual block
contains two consecutive convolution layers and other type has only skip con-
nections. Later both meet at the same point to sum up the features and have
non-linearity through ReLU. We refer to this block as ‘Block of Static Channel’
(BSC). In another kind of residual block, two consecutive convolution layers are
used where network width will be increased. In order to match such increment
in channel, another convolution (denoted as IC in Table 1) will be added in the
parallel skip connection. In the same way, both connections will meet at the
same point to sum up the features and have non-linearity through ReLU. We
call this block ‘Block of Incremental Channel’ (BIC). Figure 3 clearly shows the
difference between BSC (left) and BIC (right) type of network.

In Table 1, “(” and “)” denote the start and end of a layer. Within each
set of these brackets kernel size, number of output channels, number of groups,
type of pooling are mentioned. Stride is represented as “/2”. ResNeXt-12 refers
to a residual network that includes one BSC and repetitive BIC blocks. Group
convolution (denoted by “C” in Table 1) is used mainly in BIC blocks. The
other network at the right side shares similar network architecture but it does
not use group convolution. From Table 1, it is clear that even though aggregated
transformation reduces hyper-parameters in large scale but definitely it is not a
suitable candidate to have in lightweight network.

4.2 Group Convolution with Skip vs. Non-skip Connection

Skip connection has been in heavy use since it was introduced in ResNet [11].
Various studies on the impact of skip connection in larger network are well
documented. However, we could not find any literature that experimented on
this type of connection in lightweight deep network. It became a matter of our
utmost interest to see how group convolution is effective for smaller networks
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Fig. 3. Two types of residual block (1) block of static channel (left) and (2) block of
incremental channel (right)

with and without skip connections. We considered this experiment to be very
important as skip connections on embedded platform make the network heavy as
it requires more memory and it makes the network considerably slow. When we
introduce skip connections in the network, the feature maps to be retrieved later
for feature summation will be saved in a storage space. When the feature maps
need to be retrieved, then DMA (Direct Memory Access) will try to copy the
data in the cache memory which is generally very small. If the size of the data is
larger and can not be accommodated in cache then DMA will keep on copying
data partially to cache memory and process the same. Hence, more channels
will make the DMA to perform the above mentioned rolling buffer operation
quite a number of times. So this approach will ultimately result in having higher
inference time and we are not left with any workaround for such a problem.
Table 2 demonstrates the network configuration of two networks that use group
convolution but one uses skip and other non-skip connections.

We presented two near similar networks, one with skip connections and other
without skip connections. We maintained the same notations that we used in
Table 1. We introduced a new notation “O” that refers to the output dimen-
sion. For the network without skip connections, the output dimension is men-
tioned after each layer in the table. The results from both networks are indeed
intriguing.
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4.3 Group Convolution with Incremental vs. Drastic Growth
in Width

Constructing a deeper network while preventing overfitting is a topic of dis-
cussion in the research community. Techniques to deepen a network has been
studied extensively [11,12,21,22]. In order to go deeper, we need to make sure
we have adequate data, reasonable feature space and that the network converges
without overfitting. The set of experiments that we have presented till now, have
feature space of size 7 × 7 at the last convolution layer. With even small filters
it is meaningless to make the architecture go deeper. So instead of going deeper
we plan to go wider with a drastic change in width. So we experimented with
two networks of similar depth but with different width. Topology details of these
two networks are furnished in Table 3.

We demonstrated the efficacy of dramatic increment of number of channels
with group convolution. We maintained the same notations as in Tables 1 and
2. The result of this experiment certainly helps to understand about the impact
of a less experimented dimension that is width in lightweight deep network. It
is now clear that if we can not go deeper then to boost the performance, going
wider is an option. Though it is unarguably true that the network will become
more expensive, it is balanced by the impressive gain in accuracy.

4.4 3D Convolution with Incremental vs. Double Growth in Width

In continuation with the last experiment, it was fascinating to have an insight
on the drastic growth in width of a relatively smaller network. The result reveals
that there is good benefit on having such growth in the network while imbibing
group convolution and skip connections. So it became our further interest to see
instead of having dramatic growth in width how the network performs if the
width is just doubled from the original network without using group convolution
and skip connection. To have an understanding about the impact after such a
change in the network, we experimented with two different convolution neural
networks of similar depth. In one network, the growth in width is gradual but
in the other one the width is just double per layer than in the first network.
Network details along with results are provided in Table 4. The results clearly
indicate that making a smaller network wider has an advantage over relatively
a thin network.

5 Conclusion

In this work, we provided a detailed study of group convolution technique for
smaller networks suitable for embedded systems. We constructed several net-
works to systematically study the effect of width, depth, skip connection for
group convolution networks. We share our study to show that design techniques
suitable for deeper networks may not apply to shallower networks. Our exper-
iments on the lightweight networks can be summarized as follows: (1) group
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convolution was found to significantly worse than the regular 3D convolution,
(2) skip connections provided only a small improvement in accuracy in shal-
lower networks and (3) increasing the width of the network produces significant
improvement in accuracy. In future work, we plan to encode all the various
parameterizations into a meta-architecture where the optimal configuration can
be explored via meta-learning instead of manual configuration and experimen-
tation.
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Abstract. How to extract effective features of fatigue in images and
videos is important for many applications. This paper introduces a face
image descriptor that can be used for discriminating driver fatigue in
static frames. In this method, first, each facial image in the sequence is
represented by a pyramid whose levels are divided into non-overlapping
blocks of the same size, and hybrid image descriptor are employed to
extract features in all blocks. Then the obtained descriptor is filtered
out using feature selection. Finally, non-linear Support Vector Machines
is applied to predict the drowsiness state of the subject in the image.
The proposed method was tested on the public dataset NTH Drowsy
Driver Detection (NTHUDDD). This dataset includes a wide range of
human subjects of different genders, poses, and illuminations in real-
life fatigue conditions. Experimental results show the effectiveness of the
proposed method. These results show that the proposed hand-crafted
feature compare favorably with several approaches based on the use of
deep Convolutional Neural Nets.

Keywords: Drowsiness detection · Hand-crafted features ·
Deep features · Supervised classification

1 Introduction

Three categories of methods can be deployed in order to detect driver fatigue [1–
3]. The first category groups all methods that are based on some physiological
information like electrocardiogram (ECG), electroencephalogram (EEG), and
blood pressure [4]. The second category groups methods that identify the driver
status from interaction with the vehicle, including driver’s grip force on the
steering wheel, speed, acceleration, and braking. The third category relies on
the use of computer vision techniques in order te identify the driver’s status
via the deployment of cameras and optical sensors [5–8]. The first category can
give high recognition accuracy but is not easy to be adopted by drivers as it
is intrusive to measure the breathing and heart rates and the brain activity.
The second category can be non-intrusive but it is subject to many limitations,
including vehicle type, driver experience and external conditions. On the other
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https://doi.org/10.1007/978-3-030-12177-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12177-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-12177-8_6


62 F. Dornaika et al.

hand, the computer vision technology is non-invasive and is merely based on the
driver behavior. This technology becomes more and more practical.

In recent drowsy driver detection systems, the main work focuses on using
limited visual cues (often just one). However, human drowsiness is a complicated
mechanism. Many existing works for vision-based driver fatigue detection focus
only on attributes of eyes or mouth [5,9–11]. It is assumed that drowsiness
state corresponds to rapid and constant blinking, nodding or head swinging,
and frequent yawning. Thus, the extracted features could not well encode the
state of driver drowsiness. These approaches are entirely depending on a good
and accurate location of the eyes and mouth, which can be very challenging in
the real-life driving condition. The simplest method to predict drowsiness level
is to set a threshold on extracted drowsiness-related symptoms. In the system
presented in [12], the percentage of eyelid closure (PERCLOS) in a time window
has shown to provide meaningful message of drowsiness. Teyeb et al. [13] showed
that when the head inclination angle exceeds a certain value and duration, the
level of alertness of the driver is lowered. In [10], yawning is detected based on
the rate of change of the mouth contour and is determined as the only sign of
drowsiness. This approach may encounter false-alarms when the required visual
cues cannot be distinguished from the similar motions, e.g. talking or laughing.
In [14], the authors developed a gaze zone detection algorithm based on features
learnt using a convolutional neural network. Based on these features, support
vector machine (SVM) is used to estimate driver gaze zone. In addition to the
mentioned works, some researchers consider the texture dynamics [15–19].

In this paper, we propose a hand-crafted face descriptor that exploits different
scales and different image regions of the face. For each level and for each image
region, a compact and hybrid texture descriptor is applied. This is given by the
covariance description over a set of raw features (image derivatives, Local Binary
Patterns, etc.). The face descriptor is given by the concatenation of all regions.
Figure 1 illustrates the flowchart of our proposed scheme.

The paper is organized as follows. Section 2 presents the adopted 2D face
alignment. Section 3 describes the proposed descriptor. Section 4 illustrates
experimental results obtained with the public dataset NTH Drowsy Driver
Detection. Section 5 concludes the paper.

2 Face Alignment

Face alignment is one of the most important stages in face image analysis. In
our work, the eyes of each face are detected using the Ensemble of Regression
Trees (ERT) algorithm [20] which is a robust and very efficient algorithm for
facial landmarks localization.

Once we have the 2D positions of the two eyes, we use them to compensate for
the in-plane rotation of the face. To this end, within the detected face region, the
positions of right and left eyes are located as (Rx, Ry) and (Lx, Ly), respectively.
Then, the angle of in-plane rotation is calculated by θ = artan(Ry−Ly

Rx−Lx
), and the

input face region is rotated by the that angle.
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Fig. 1. A schematic representation of data flow for drowsiness detection in individual
video frames.

After rotation correction, we use a global scale for the face image, this scale
normalizes the inter-ocular distance to a fixed value l. The latter sets the scale
of the face in the obtained image. After performing the rotation and rescaling,
the face region should be cropped (aligned face). To this end, a bounding box
is centered on the new eyes location (on the transformed face image) and then
stretched to the left and to the right by k0 · l, and to top by k1 · l and to bottom
by k2 · l. Finally, in our case, k0, k1, k2 and l are chosen such that the final face
image has a size of 250 × 250 pixels. Figure 2 illustrates the 2D alignment of a
given face.

3 Proposed Face Feature

3.1 Covariance Descriptor

The original covariance descriptor is a statistic based feature proposed by [21]
for generic object detection and texture classification tasks. Instead of using
histograms, they compute the covariance matrices among the color channels and
gradient images. Compared with other descriptors, the covariance descriptor lies
in a very low-dimensional space, and gives a natural way of fusing multiples
types of features as long as they can be presented spatially. Thus, this descriptor
can benefit from any progress made in image feature extraction. In addition,
this descriptor lends itself nicely to efficient implementation whenever the image
regions are rectangular by exploiting the integral image concept as it is described
in [21].

Since its introduction the covariance descriptor has not received much atten-
tion by researchers despite its ability to incorporate a large number of exist-
ing and recent texture features. This motivates us to propose an extension of
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(a) Original frame.

(b) Aligned and cropped face.

Fig. 2. Face alignment and cropping associated with one original face image in the
public dataset NTH Drowsy Driver Detection (NTHUDDD).

this descriptor that includes two new aspects. First, we compute the covari-
ance matrices using texture descriptors such as Local Binary Pattern and Local
Phase Quantization images. Second, we exploit this covariance descriptor using a
Pyramid-Multi Level (PML) face representation which allows a multi-level multi
scale feature extraction. The PML representation will be described in the next
section.

3.2 Proposed Pyramid Multi-level Descriptor

The PML Descriptor (PMLD) adopts an explicit pyramid representation gener-
ated from the original aligned face image. This pyramid characterizes the image
at different scales. At each level, the image is divided in an appropriate number of
square blocks (sub-images). The descriptor of each block is then extracted. The
PMLD relies on the concatenation of the multi-block representation performed
at each level.

In the sequel, we define the �-PML Descriptor. For simplification of the model
formalization, we consider the case of square images. The methods can easily be
generalized to rectangular images (Fig. 3).

Let f be an image of size N × N . Let P be its pyramid representation with
� levels, P = {P1, · · · , P�} [22]. The size of the images Pi should meet the
following. Each level Pi is represented by a partition of square blocks of size
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Fig. 3. A schematic representation of the covariance descriptor. The input face image
is represented by a set of d texture and color features that will be fused in the final
covariance descriptor.

N
� × N

� , Pi = {Bi,1, · · · , Bi,ni
}, where ni = i2. Given a value �, we pose b = N

� .
Thus, the size of square blocks at all levels is b × b. We point out that P� is f
and P1 = B1,1 (coarsest resolution).

The pyramid representation of an image f by � levels is the sequence L1, . . .,
L� such that:

Li = {Bi,1, . . . , Bi,ni
} where i = 1, . . . , �

At each level, the local features of each block are described by the covariance
descriptor presented in the previous section. Concretely, the PML Descriptor at
the level i (i = 1, . . . , �) is given by:

COV(Li) = COV(Bi,1) ‖ · · · ‖ COV(Bi,ni
)

where ‖ denotes the concatenation operator. Therefore, we define the PML
Descriptor using � levels of the pyramid representation as follows:

�-PMLD(f) = COV(L1) ‖ . . . ‖ COV(L�)

We can observe that the total number of blocks in a pyramid of depth �

is
∑�

i=1 i2 = �(�+1)(2�+1)
6 . Hence, �-PMLD is composed of d(d+1)

2
�(�+1)(2�+1)

6

elements, since the number of elements of COV descriptor is d (d+1)
2 .

Figure 4 illustrates the principle of the 3-PMLD associated with an aligned
face image.

3.3 Feature Selection

The obtained face descriptor may contain some spurious or redundant features
that can hinder the discrimination of the final classifier. Thus, before learning
a classifier a feature selection approach is invoked in order to select the most
relevant features. We use Fisher scoring of the features in order to extract the
most relevant and discriminative features of the PML-based descriptors. Fisher
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Fig. 4. Pyramid Multi-Level (PML) covariance descriptor for a pyramid of three levels.
At each level i the image is divided into i2 blocks resulting to a total number of blocks
given by B =

∑�
i=1 i2 = � (� + 1)(2� + 1)/6. For each block a regional multi-block

covariance descriptor (fi) is extracted and finally the PML-based feature descriptor is
obtained by concatenating all regional descriptors (f = {f1, f2, . . . , fB}).

method is a supervised feature selection method which uses class labels to iden-
tify features with best discriminant ability. Let z ∈ R

D denote the PML descrip-
tor associated with a face image. The Fisher score of the rth feature is given
by:

Fr =
N1 (μr,1 − μr)

2 + N2 (μr,2 − μr)
2

N1 σ2
r,1 + N2 σ2

r,2

r = 1, . . . , D (1)

where N1 and N2 are respectively the number of positive and negative images.
μr,1 and σ2

r,1 refer to the mean and variance of the rth feature of the positive
class, and μr,2 and σ2

r,2 refer to the mean and variance of the rth feature of the
negative class. μr refers to the global mean of the rth feature. Here the positive
class refers to the drowsy state while the negative class refers to the non drowsy
state.

The output of the feature selection is a vector of real scores that can gives a
ranking of the attributes composing the PML covariance descriptor. From this
obtained ordering, several feature subsets can be chosen by setting a cutoff for
the selected features. In our work, we have adopted threshold-based criterion.
In fact, we have analyzed different cutoff values ranging from 10 to 90% of the
relevant features. Once the selection is fixed, it is applied on both the training
and test sets. In our work, the pyramid level is set to five, and the number of
low level image features is 19.
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4 Experimental Setup

4.1 Dataset

Despite the importance of research in a practical drowsy driver detection sys-
tem, most research have used relatively limited datasets. The generalization of
different approaches to drowsy driver detection analysis remains unknown. In
the absence of performance evaluation on a common public dataset, the com-
parative strength and weakness of different approaches is difficult to determine.
Furthermore, most of the proposed approaches have drawbacks due to impracti-
cal reasons or do not provide sufficient discrimination to capture the uncertain-
ties. Moreover, most of the existing methods do not evaluate the robustness of
their system against subjects from different ethnicities, races, genders, various
illumination conditions and partial occlusion (e.g. glasses, sun-glasses and facial
hair).

In our study, the public dataset NTH Drowsy Driver Detection (NTHUDDD)
[23] is used. This video dataset contains 36 subjects including different people,
both genders, different ethnicities, which is in five situations as shown in Fig. 5.
Each situation contains at least two behaviors about drowsy states, such as slow
blinking, nodding, and yawning as shown in Fig. 6.

Fig. 5. Example frames of different situations (night wearing glasses, night bareface,
wearing glasses, wearing sunglasses, bareface) and same behavior (drowsy state) from
5 video clips [23].

Fig. 6. Example frames of same situation (night bareface) and different behaviors (mix-
ing drowsy and non-drowsy state) from one video clip [23].

The total dataset consists of train dataset, evaluation dataset, and test
dataset. The train dataset consists of 360 video clips (722, 223 frames) of 18
subjects. The evaluation dataset consists of 20 video clips (173, 259 frames) of
4 subjects and test dataset consists of 70 clips (736, 132 frames) of 14 sub-
jects. During training and evaluation, each frame is binary labeled: drowsy or
nondrowsy.
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The ground-truth label for test dataset is not publicly available yet. The
dataset includes different physical attributes including variety in skin tone,
fatigue, facial structure, clothes and hair styles. The videos are in 640 × 480
pixels, 30 frames per second AVI format without audio.

5 Experimental Results

We compare the proposed approach with the following deep neural nets [23]:

– 8-layered AlexNet: This net consists of 5 convolution layers and 3 fully con-
nected layers which has 60 million parameters and 650,000 neurons, and this
model is trained with 1.2 million images for 1000 categories classification This
net is fine tuned using the training images of (NTHUDDD) dataset.

– VGG-Face: The VGG-FaceNet is trained to learn facial feature related to
drowsiness which is robust to genders, ethnicity, hair style and various acces-
sories adornment.

– FlowImageNet: This net takes dense optical flow image that is extracted from
consecutive image sequences and is trained to learn behavior features related
to drowsiness such as facial and head movements.

These three networks are independently fine-tunned for multi-class drowsi-
ness classification given the following four classes: non-drowsiness, drowsiness
with eye blinking, nodding, and yawning. Two different fusion strategies were
considered: independently-averaged architecture (IAA) and feature-fused archi-
tecture (FFA). During IAA, the probability distributions of each network output
for multi-class classification are integrated, and average probabilities are used to
determine the driver drowsiness. During FFA, the three networks are also inte-
grated such that their FC7 layer features are concatenated, and based on this
concatenated feature, input images are classified into one of four classes using
SVM.

The proposed method aims to classify each frame in videos based on feature
representation learning. Due to the lack of ground truth label of test dataset, we
substituted evaluation dataset for test data. The adopted protocol is similar to
the one depicted in [23]. In particular, in order to simplify the training process,
the training video sequences are sub-sampled by a factor of ten.

Table 1. Success rate (%) over the evaluation set of the Drowsy Driver Detection
(NTHUDDD) 2016 dataset. The number of testing frames is 177,259.

Situation\
method

Alexnet VGGFaceNet FlowImageNet LRCN [19] DDD-FFA

[23]

DDD-IA

[23]

PML-COV

Bareface 70.42 63.87 56.33 68.75 79.41 69.83 82.34

Glasses 61.63 70.53 61.61 61.73 74.10 75.93 73.81

Sunglasses 70.20 57.00 67.57 71.47 61.89 69.86 74.68

Night-bareface 64.69 73.75 66.82 57.39 70.27 74.93 79.35

Night-glasses 62.70 74.10 55.17 55.63 68.37 74.77 69.29

Average 65.93 67.85 61.50 62.99 70.81 73.06 75.90
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Table 1 summarizes the detection rate over the evaluation set using different
approaches.

As it can be seen, the proposed approach outperformed all individual deep
CNNs. In three situations the proposed methods outperformed the fusion scheme
DDD-IA. In the two situations Glasses and Night-glasses the proposed scheme
was outperformed by DDD-IA. The presence of glasses seem to be a perturbing
factor in the proposed method.

Table 2. Confusion matrices obtained with the proposed descriptor. Each confusion
matrix corresponds to a given situation.

Bareface

Predicted Ground-truth

Drowsy Non Drowsy

Drowsy 18858 2111

Non Drowsy 5106 14780

Glasses

Predicted Ground-truth

Drowsy Non Drowsy

Drowsy 14018 4779

Non Drowsy 4361 11741

Sunglasses

Predicted Ground-truth

Drowsy Non Drowsy

Drowsy 9176 2528

Non Drowsy 4613 11893

Night-bareface

Predicted Ground-truth

Drowsy Non Drowsy

Drowsy 14027 2709

Non Drowsy 2913 7582

Night-glasses

Predicted Ground-truth

Drowsy Non Drowsy

Drowsy 10996 7993

Non Drowsy 2744 11185

Table 2 illustrates the obtained confusion matrices associated with the five
situations. Except for the Sunglass situation, detecting the drowsiness seems to
be more accurate than detecting the opposite state.
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Fig. 7. Performance as a function of the selected features using Fisher scores.

Figure 7 illustrates the performance of our scheme as a function of the
retained features after Fisher ranking. We can note that Principal Component
Analysis (PCA) was applied on the raw COV descriptor before performing fea-
ture ranking.

6 Conclusion

Drowsiness detection is a key issue of a system for a vision-based driver fatigue
monitoring. One of the main problems is how to extract and select effective
features from face images. In this paper, multi-scale and multi-block features
are used to extract fatigue features from the whole face, overcoming the defect
of losing some important fatigue features when retrieving features from eyes or
mouth only. Experimental results show that the proposed method can be equal
or superior to several approaches that are based on deep Convolutional Neural
Nets.

Experimental results show that the proposed face descriptor has a 75.90%
detection accuracy on NTHU-drowsy driver detection benchmark dataset.
Future work envisions the use of dynamic descriptors.
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Abstract. In this paper we study face Presentation Attack Detection
(PAD) against realistic 3D mask and high quality photo attacks in
dynamic scenarios. We perform a comparison between a new pulse-based
PAD approach based on a combination of a skin detector and a chromi-
nance method, and the system used in our previous works (based on
Blind Source Separation techniques, BSS). We also propose and study
heuristical and statistical approaches for performing continuous PAD
with low latency and false non-match rate. Results are reported using
the 3D Mask Attack Database (3DMAD), and a self-collected dataset
called BiDA Heart Rate Database (BiDA HR) including different video
durations, resolutions, frame rates and attack artifacts. Several conclu-
sions can be drawn from this work: (1) chrominance and BSS methods
perform similarly under the controlled and favorable conditions found in
3DMAD and BiDA HR, (2) combining pulse information extracted from
short-time sequences (e.g. 3 s) can be discriminant enough for performing
the PAD task, (3) a high increase in PAD performance can be achieved
with simple PAD score combination, and (4) the statistical method for
continuous PAD outperforms the simple PAD score combination but it
needs more data for building the statistical models.

Keywords: Face Presentation Attack Detection · Liveness detection ·
Continuous authentication

1 Introduction

Nowadays, face is one of the most extended biometric traits along with iris and
fingerprint. The causes of this spread are the inherent properties of face-based
systems: samples can be acquired at a distance, passively, continuously, and
using legacy hardware. Faces also contain highly discriminant features in order
to achieve high accuracy rates when performing the recognition and verification
tasks. Other significant reason of this spread is the deployment of biometrics
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broadly for the first time. Face-based systems are now present in numerous sce-
narios like medical applications, video-surveillance, mobile devices, e-commerce,
etc.

Because of those reasons, attacks to face recognition systems are now more
than ever, an important security issue. Among all the types of attacks, presen-
tation attacks consist in showing an artifact to the sensor (e.g. a camera) for
trying to disguise the attacker as a genuine user of the biometric system [10].

Presentation Attack Detection (PAD) techniques deal with these type of
attacks. Even though high detection results can be obtained with these methods,
the same PAD techniques may not be useful against all types of artifacts [14].
One of the most harsh menaces existing today are Mask Attacks, in which the
presentation attack artifact is a 3D mask of a genuine user’s face [6]. In these
attacks, most PAD techniques successful against photo and video attacks, e.g.
texture and depth based, become useless for high quality masks, because their
similar properties (geometry, color, shape) to their real counterparts.

More recently, remote PhotoPlethysmoGraphy (rPPG) techniques [17], con-
stisting in analysing videos for extracting the user’s pulse signal, have been
employed to analyze video sequences, proving to be an effective countermeasure
against 3D mask attacks [12]. However, in order to achieve a robust estimation
of the pulse signal, published approaches that use this method need long video
sequences, good light conditions, are sensitive to failures in the face detection
module, and also dependent to different acquisition sensors.

Current approaches like [18] perform a short-time approach to rPPG, more
adequate to variable scenarios, in which the user or attacking conditions can
change in the middle of the video sequence. In particular, in continuous scenarios
where the attacker can enter at any time in a video stream, short-time approaches
to PAD permit low latency PAD decisions. In this case holistic approaches are
unable to give a continuous estimation of pulse and/or presentation attack prob-
ability, or PAD decisions with low latency. In addition, a short-time analysis of
the rPPG signal also allows a better subsequent processing of the rPPG signals
toward an overall more robust long-term estimation of the pulse.

Classic authentication schemes, in which users are authenticated employing
an initial login stage, are able to stop unauthorized access attempts, but they are
still unable of avoiding session “hijacking”. In these attacks, a genuine user has
been correctly authenticated and accepted by the PAD module, but after that,
an attacker may be able to get control of his session. This problem is specially
relevant in the field of mobile authentication, where the portability of the devices
makes easier their theft or loss.

Continuous Authentication has emerged in biometrics to deal with the men-
tioned security problems in mobile devices and personal computers. These tech-
niques consist in monitoring the user in a continuous way for verifying that the
current user is the same who made the initial login, ideally in a transparent
manner. For accomplishing this objective, biometrics such as the face [16] or the
touch interaction [7] can be captured continuously without the user being aware.
Our proposed approach for PAD follows the same continuous strategy, but in
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Fig. 1. Proposed scheme for Continuous Presentation Attack Detection (PAD). The
authentication starts with a classic login (e.g. password, token or even a biometric
trait), which may include or not PAD. If the login is successful, the continuous PAD
loop starts working, generating PAD scores from the face video stream and deciding
if a Presentation Attack has started or not. In the same loop we may also want to
check also if the user is still the same (in gray), in a kind of Active Authentication
scheme [16].

our case checking for PAD instead of identity. Please note that both identity
and PAD can be incorporated in the loop, in a kind of continuous PAD and
authentication scheme (see Fig. 1).

During a session hijacking, the attacker may be able to perform harmful
actions, such as deleting or copying sensitive information, or installing a back-
door for granting future access to the compromised system. The latency of a
continuous authentication method has the same level of criticalness than the
accuracy rates, so a balance between usability and security must be achieved.

In this paper we: (1) present an algorithm based on rPPG for pulse detection
applied to face Presentation Attack Detection (PAD); (2) study the performance
of rPPG video-based continuous PAD, both in an existing benchmark (3DMAD)
and a new dataset; and (3) test pulse-based continuous PAD in a scenario in
which the attacking conditions vary over time.

The rest of this paper is organized as follows: Sect. 2 summarizes related
works in rPPG and continuous authentication. Section 3 describes the proposed
system. Section 4 describes the employed databases and the experimental proto-
col. Section 5 shows the results obtained. Finally, concluding remarks are drawn
in Sect. 6.

2 Related Works

2.1 Remote Photoplethysmography

Photoplethysmography (PPG) [1] is a low-cost and noninvasive technique for
measuring the cardiovascular Blood Volume Pulse (BVP) through variations
in transmitted or reflected light. PPG can also be used to predict many vital
health parameters such as blood pressure, heart rate (HR), hemoglobin and
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blood glucose level. Remote PPG (rPPG) consists in applying PPG techniques
to video sequences. These techniques look for changes in the color of the user’s
face that are caused by changes in the concentration of oxygen in the blood.

Related to our work, Poh et al. [17] measured HR from videos captured with
a web-cam. They tracked the user’s face and performed ICA to the RGB signal to
separate the BVP chrominance signal from the other illumination variations and
noise. On the other hand, the CHROM method [5] performs a linear combination
of the spectrum bands to map the PPG signals to a space in which they are more
robust to artifacts and noise.

Other works like [19] localize and track the information of certain facial
regions instead of the entire face as there exist some zones that present higher
variations in their color due to the pulsations. In [15] they use a special sensor
that has the capability to capture other two additional bands in the visible
spectrum, since they have empirically proved to carry robustly the blood volume
change information.

Regarding face PAD, when rPPG techniques are employed to estimate the
pulse signal from a video sequence, the obtained result is highly different between
the cases in which the recording contains a real face, and the cases with an
attacking artifact (e.g. photos, videos, masks) [12].

Most research in this area employ self-collected datasets not publicly avail-
able. We decided to use 3DMAD as is one of the few public 3D mask PAD public
datasets. It contains RGB videos of genuine users and of 3D mask attacks. We
also employed a self-collected supplementary dataset in order to have larger RGB
videos compared to the ones from 3DMAD. Larger recordings are necessary to
measure the performance of continuous PAD techniques along time.

2.2 Continuous Authentication

A continuous authentication loop (see Fig. 1) can be added to any existing one-
shot authentication system to improve its security. The most basic approach is
based on using a single score in the authentication loop over time. The system
generates a single score (i.e., N = 1 in Fig. 1) each T seconds and decides if there
is another user (or a presentation attack) based on that single authentication
(or PAD) score.

The next level of complexity consist in combining several scores (i.e., N > 1)
using different types of logic. The first approximation is based on calculating
the arithmetic mean of several consecutive scores and taking a decision based
on that combination. The combination can be done in a more complex way, for
example considering that the confidence in the presence of the user decays when
the time since the last authentication increases, with a function that decreases
with time. On the other hand, not all the video frames have the same quality,
for example due to occlusions, movement, blur, etc. Confidence functions can be
built taking into account the quality level of the extracted signals [2]. However,
these heuristic methods are very specific to each scenario, and do not have high
generalization capabilities.
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One can also use statistical methods for integrating multiple authentication
or PAD scores in the continuous loop of Fig. 1, by using gallery information
to build models (typically real faces and attacks models for continuous PAD).
Once the models are trained, the scores (single or multiple) that are extracted
in the real environment are compared to the models in order to take a deci-
sion. A relevant work in this line is Quickest Change Detection (QCD). This
technique has been employed successfully in mobile active authentication [7,16]
using multimodal data (i.e. face videos and touchscreen interaction).

Fig. 2. Architecture of the proposed module for continuous pulse-based face presen-
tation attack detection (PAD Score Computation in Fig. 1). Given a facial video (N
segments of T seconds each, with a time overlap α), the face is detected and rPPG-
related features are extracted from the ROI in order to obtain an individual PAD
score of each considered video segment(of T seconds). Then, the considered video seg-
ment generates an individual PAD score considering a database of real faces and mask
attacks using a SVM. Finally the individual PAD scores are combined to derive the
final fused PAD score corresponding to the full input Video Sequence.

3 Proposed Approach

The main purpose of the continuous PAD module proposed in Fig. 1 consists
in deciding if a video sequence contains images of real faces or images of pre-
sentation attacks. The architecture of this module is further detailed in Fig. 2.
The first part is the rPPG signal extractor that obtains the pulse signal from
the recordings. Once the rPPG signal is extracted from the video sequences,
the second stage computes a set of features in order to distinguish between real
faces and face attacks. The third step is a trained classifier that generates a score
for each video sequence. The fourth and last stage integrates individual scores
generated each T seconds, to form a final fused PAD Score each N individual
scores.

3.1 rPPG Signal Extraction

The video sequences are generated from the input video stream by considering T
seconds (with or without time overlap). The window length T allows to process
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larger or shorter pieces of the videos, having thus varying resolution in the final
decision.

The rPPG signal generation is divided into two modules: skin detection and
rPPG signal extraction:

Skin Detection. In the majority of the literature systems, the first stage con-
sists in a face detection module (e.g. using the Viola-Jones algorithm) followed
by ROI extraction. This stage selects one or several parts of the face that are
assumed to contain robust information of the pulse signal. We applied this app-
roach in our recent related work [11] and we have seen that it has several limi-
tations such as: little robustness to movements, it can be difficult to implement,
and it has a high computational load. Due to all these drawbacks, in this work
we decided to apply the skin detector presented in [13] for getting our ROI. It
transforms the video frames from the RGB color space to the YCrCb space.
Their authors selected this color space as it has shown to have high discrimi-
nant properties for skin color modelling. The Y channel contains information of
brightness while the Cr and Cb channels contain information about the differ-
ences between colors. A deeper description of the algorithm can be found in [13].
This algorithm skips a high number of pixels assuming that their values do not
change within a small neighborhood. This approach reduce the CPU overload
significantly making it suitable for real time video processing. Finally this algo-
rithm does not depend of a face detection module, so it is more robust to user’s
movements.

rPPG Signal Extraction. Once the skin pixels have been located (see Fig. 3(c)
and (d) for examples), the next stage consists in extracting the rPPG signal from
each considered segment (of T seconds). First, the raw values of the pulse signal
are computed as the average intensity of the skin pixels. This calculation is made
for each frame of the segment and for each the three color channels: Red, Green
and Blue. The outputs are three rPPG sequences, one for each color channel.
These raw rPPG signals contain not only the light variations produced by the
blood volume changes, but also variations due to the external illumination and
other noise sources. To reduce those undesired factors, in [11] we processed each
channel as follows: a detrending filter for reducing the slow non-pulsating changes
in the rPPG signal, a moving-average filter for eliminating random noise, and a
band-pass filter for magnifying the frequency bands related to the usual pulse
values. In this present work we decided to use the CHROM algorithm [5], which
performs a linear combination of the three individual color channels into only one
signal, robust to noise and external interferences [5]. This method also performs
a frequency analysis of the signal for magnifying the bands related to a expected
human pulse (between 0.6 Hz and 4 Hz).

3.2 Feature Extraction

In our previous work [11], used for reference, we decided to use the features
from [12], where the authors transformed the signal from the spatial domain to
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the frequency domain using the FFT, and after that they estimated its Power
Spectral Density (PSD) distribution. Two features were extracted from each
color band: the maximum power response P , and the ratio R between P and the
total power in the 0.6–4 Hz frequency range.

For this work we decided to complement these two features P and R with
other discriminant features that can give us more information about the rPPG
signal in the time domain, following [4]. That work processed data from 3D
accelerometer sensors, but their analysis is extrapolable to our rPPG signals.
The final selected features can be seen in Table 1.

Table 1. Time and frequency features extracted from the postprocessed rPPG signal
after applying the CHROM algorithm [5].

Domain Feature Description

Time Zero crossing rate Number of times the signal crossed the zero value

Maximum/minimum Quotient between the temporal maximum and
minimum

Frequency P Maximum power response

R Quotient of P and the total power in the
0.6–4 Hz frequency range

Mean Mean value of the signal

Spectral centroid Mean value of each frequency component
multiplied by its magnitude

Nmax/N Sum of the N biggest values of the frequency
signal divided by N

LF Energy Sum of the energy between 0 Hz and 4 Hz

HF Energy Sum of the energy between 2 Hz and 4 Hz

3.3 Classification

The last block of the presentation attack detection system is the classifier. Like
in our reference work [11] we use Support Vector Machines (SVMs) as classifiers,
in the present case considering the 9-dimensional features from Table 1 as input,
and two classes as output: genuine face or face attack. Similar to related works
[8], we use the signed distance to the separating surface obtained in the SVM
training as output score of the Classifier in Fig. 2.

3.4 Integration of Individual Scores

In our experimental study we compare 4 different methods for the final stage in
Fig. 2. The target of this stage is detecting the attacks as quick as possible (low
Average Detection Delay, ADD), but trying to maintain a low value of real faces
incorrectly detected as attacks (low False Non-Match Rate, FNMR). A deeper
explanation of these terms can be found in [16].
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Single Score. The first alternative only uses one input score for generating the
fused PAD score (i.e., N = 1).

Mean Score. Individual PAD scores are averaged (applicable for N > 1).

Confidence-Based Combination. A weighted sum of input scores is applied.
The first way explored to define the weights consists in a time decay function.
This function considers older samples as less reliable than the newer ones, since
as time passes the conditions are high likely to have changed. The more recent
scores will have a bigger weight. The second way is based in a rPPG quality
measure [2]. In this work we decided to calculate a SNR value from each rPPG
signal. In order to do that, we consider a perfect rPPG signal as sinusoidal, and
all the other frequencies different to the one most relevant are considered as
noise. The scores with a higher SNR will have a bigger weight when computing
the sum.

Quickest Change Detection. QCD is a statistical method that first estimates
match and non-match distributions of the scores, and then tries to detect the
moment in which the new scores change from one distribution to the other. This
type of approach needs prior data in order to build the match and non-match
distributions. Some variants of QCD also require to know the probability of
intrusion in advance, so we decided to implement the MiniMax QCD (MQCD)
algorithm from [16], which only needs the score distributions.

4 Databases and Experimental Protocol

4.1 Databases

We use two different databases in order to compare results. The first is a public
dataset named 3D Mask Attack Database (3DMAD) from the Idiap Research
Institute [6]. We decided to use 3DMAD to enable direct comparison with related
studies, primarily with our reference work [11]. The second database is a self-
collected dataset named BiDA HR (BiDA Heart Rate database). It has been
captured with the goal of complementing existing databases like 3DMAD, which
have several limitations such as low resolution, few spectrum bands and short
duration.

The 3D Mask Attack Database (3DMAD) [6] contains frontal-view record-
ings of 17 different users acquired using Microsoft Kinect. The dataset is com-
posed by 3 different sessions, two with genuine accesses and one with 3D mask
presentation attacks. Each session contains 5 videos of 10 s, captured at 30 frames
per second, with a resolution of 640× 480 pixels. The length of the videos is one
important limitation of this database, as it would be desirable to have longer
video sequences in order to study continuous authentication and continuous PAD
methods.
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Fig. 3. Datasets: 3DMAD (top) and BiDA HR (bottom). From left to right: (a) gen-
uine access attempt, (b) presentation attack. We also show the outputs from the skin
detection algorithm in (c) and (d) from a genuine access and a presentation attack
respectively.

The BiDA Heart Rate Database (BiDA HR) is a self collected dataset
captured at the facilities of our research group at Universidad Autonoma de
Madrid, in order to avoid the limitations from existent public databases. BiDA
HR contains RGB, frontal-view, controlled, 60 s recordings of 10 different users,
captured at 25 frames per second with 1920 × 1080 resolution (FullHD). It is
a preliminary database and it has not been released yet. We are now captur-
ing more samples to build a larger dataset. At its current state, the BiDA HR
database is composed by 2 different sessions, one with real accesses and other
with photo attacks. The artifacts of the attack attempts are HQ color printings
of the faces (see Fig. 3). This way we are able to measure the performance of
face PAD based on pulse detection with other type of easy-to-create spoofing
artifacts different than 3D masks (the case in 3DMAD).

4.2 Experimental Protocol

From each rPPG signal we extracted the 9-dimensional feature vector described
in Table 1. For classification in Fig. 2 we used Support Vector Machines with
linear kernels and Cost parameter C = 1000 similarly to [11,12].

Two experiments are conducted: first we emulate the results in our previous
work [11]. This experiment does not try to show the performance of continuous
authentication but it tries to compare the performances of both core rPPG
algorithms. The second experiment consists in obtaining performance measures
when using the proposed methods for continuous PAD presented in Sect. 3.4.

The experimental protocol is the same for both databases (3DMAD and
BiDA HR). First of all, the whole dataset is divided into genuine samples and
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presentation attack samples. Then, for the first experiment, in order to train and
test the classifier, we use a Leave-One-Out Cross-Validation (LOOCV) protocol:
for each subject in the database, we use all his feature vectors for testing a SVM
model that has been trained with all the samples from the remaining users. The
metric used to report results is the Equal Error Rate (EER in %). EER refers
to the value where the Impostor Attack Presentation Match Rate (IAPMR,
percentage of presentation attacks classified as real) and the False Non-Match
Rate (FNMR, percentage of real faces classified as fake) are equal1.

Results are obtained for several temporal window sizes: from 1 to 10 s in
the case of 3DMAD, and also for 20, 40 and 60 s in the case of BiDA HR.
For each temporal size T of the video segments, and considering a single video
segment (i.e., N = 1 in Fig. 2), the EER has been calculated independently for
all the subjects (each one of the LOOCV iterations). The individual results are
then averaged to produce a single performance (mean and standard deviation of
EER).

For the case of the continuous PAD experiments, we consider N > 1 in Fig. 2.
In this case a PAD decision will be generated with a Delay of D = N×T seconds
(video segments are not overlapped in time in our experiments).

Additionally, the QCD algorithm also needs prior data in order to build the
match and non-match distributions. To compute those models, we use all data
from 2 random users in each LOOCV iteration, who are left out of the LOOCV
training and testing. In this case, additionally to the average EER rate, we have
also computed an ADD-FNMR curve for varying temporal windows D. This
curve is useful for showing the balance between the security and the usability of
the continuous PAD approach proposed in Fig. 1.

Finally, for a deeper understanding of the QCD performance, we have also
included some examples of the evolution of the fused PAD score during an exam-
ple attack attempt. As the databases do not contain videos combining real faces
and attacks, we have built videos concatenating a real access and an attack of
the same user.

5 Results

5.1 Comparison with Reference Work

Table 2 shows the results of the comparison between the reference rPPG pipeline
from [11] and the current work. Highlighted in bold are the best EER results
for each value of the video length T . As can be seen in the table, none of the
systems is absolutely better than the other in terms of performance. In general,
the present system achieves lower EER rates than [11] when working with larger

1 As error measures we have mentioned IAPMR and FNMR as defined and discussed
by Galbally et al. [9]. Modifying the Decision Threshold until those error rates are
equal we obtain the Presentation Attack Equal Error Rate, PAEER, defined and
discussed in [9]. Here we follow [9] using PAEER to evaluate the presentation attacks,
but calling it as EER for simplicity.



82 J. Hernandez-Ortega et al.

values of T (>5 s), but the differences in the error rates are low. If the databases
contained less controlled conditions: more head motion, light changes, blur, etc.,
then we would expect more benefits from the skin detection and the CHROM
algorithm proposed now, as they have shown to perform more robustly than [11]
under these type of conditions.

Table 2. Comparison between the proposed rPPG face PAD and [11] on 3DMAD
and BiDA HR databases. The study has been performed changing the length T of the
video sequences analyzed. Values in %. Lower values for each window length T are
highlighted in bold.

3DMAD Length T [s] 1 2 3 4 5 6 7 8 9 10

[11]
Mean EER [%] 42.8 45.0 37.8 40.7 33.1 29.7 25 26.1 24.1 22.1
Std EER [%] 5.0 5.9 8.6 9.8 10.8 18.1 14.5 15.2 11.9 10.3

Present Work
Mean EER [%] 44.7 42.2 37.3 46.1 46.1 28.8 26.1 25.8 22.3 18.8
Std EER [%] 4.1 6.7 8.5 5.9 5.45 11.8 13.1 12.2 12.3 13.4

BiDA HR Length T [s] 1 2 5 10 20 30 40 50 60

[11]
Mean EER [%] 46.9 45.7 42.1 40.1 40.0 40.0 36.6 30.0 25.0
Std EER [%] 3.9 5.1 9.5 9.6 14.0 21.1 20.5 25.8 26.3

Present work
Mean EER [%] 48.5 46.5 43.1 38.6 38.9 31.2 30.8 32.5 26.2
Std EER [%] 2.4 2.7 6.3 11.3 10.1 15.6 18.4 22.9 23.1

Comparing the EER results obtained with 3DMAD data with those obtained
with BiDA HR, there is a gap between performances, achieving lower rates in
the case of 3DMAD. As we discussed in [11], this seems to be due to the lower
frame rate of BiDA HR.

5.2 Continuous PAD

PAD Score Integration. Figure 4 shows the PAD mean score combination
from Sect. 3.4 on both databases. In that figure, the x axis corresponds to the
values of D = N ×T , the delay for releasing the PAD decision (see Fig. 2), while
the different curves represent the performances obtained with different temporal
resolution T . It can be seen that, in general, the lowest EER (i.e., best PAD
performance) is not obtained when using large T , but intermediate values (e.g.
T = 3 s). With even shorter values of T (1 s or 2 s) the amount of available scores
within each decision window will be higher, but the reliability of each individual
score will be lower (as can be seen in Table 2). On the other hand, the individual
scores obtained with large values of T are the most reliable, but in this case
there will be little data to combine within each decision window of size D.

The reader can notice that the EER obtained for specific D and T may be
higher than the results showed in Table 2 for equivalent values (note that T in
Table 2 should be compared to D in Fig. 4). For example, this is the case of
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Fig. 4. Mean score combination of individual PAD scores, generated in temporal win-
dows of varying duration on 3DMAD (left) and BiDA HR (right) databases. The x axis
corresponds to the value of D = N × T , the decision delay, while the different curves
represent the performances obtained with different sizes of the temporal resolution T ,
and N is the number of individual PAD scores being combined.

T = 1 and D = 10 in Fig. 4 vs T = 10 in Table 2. While the classic approach
(without the continuous loop in Fig. 1) is able to achieve a EER value of 18.8% at
the 3DMAD database, the continuous PAD is only able of getting around 35%.
However, the proposed continuous approach provides higher temporal resolution
(decisions each second) and it is also able to improve the ongoing decisions by
considering both old data and new one. The classic approach is only able to give
one decision and only after the full 10 s have passed (high latency).

The best results from the 3 heuristic PAD methods compared (mean score,
time based combination, and SNR-based combination) are obtained with the
arithmetic mean. The SNR-based combination has failed to distinguish the sam-
ples with more quality from each recording. We think that modeling the pulse
signal as a sinusoidal is not capturing appropriately the nature of a high qual-
ity pulse signal. With more accurate models it might be possible to achieve
lower error rates using this approach. Finally, the temporal confidence fails to
achieve lower EER rates than the other methods, and we think this is mainly
caused by the limitations of the employed databases. This confidence measure
is designed to deal with variable scenarios in which the conditions (attack/non
attack) change within the same video. However these databases only contain
recordings of attacks and real attempts performed separately. If this method
was applied to a more realistic scenario, the results might be better than the
ones obtained with the other two heuristic methods.

Quickest Change Detection (QCD). Figure 5 shows the ADD-FNMR curves
obtained with the QCD algorithm for the 3DMAD and BiDA HR databases.
The different pairs of values of ADD and FNMR have been computed vary-
ing the decision threshold for each temporal segment T . The results from both
databases show the same properties. In these curves, the best choice of ADD-
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Fig. 5. Average Presentation Attack Detection Delay (ADD) vs False Non-Match Rate
(FNMR) obtained on the 3DMAD (left) and BiDA HR (right) databases, for different
temporal segments T .

FNMR depends of the real application of the system. Generally, a lower area
under the curve is an indicator of a better performance. As can be seen in Fig. 4,
the best results (as a balance of usability and security) are obtained with medium
values of T , as it provides a good balance between the reliability of the scores and
a low latency. When working with large values of T it is impossible to achieve
low ADDs because of the inherent latency due to the analyzed temporal seg-
ments, of duration T . This limitation does not exist when working with small T ,
but these approaches are unable to obtain FNMR values as low as the obtained
with a bigger T , due to the smaller reliability of the individual PAD scores being
fused.

Fig. 6. Temporal evolution of the fused PAD scores (QCD) in a variable attack scenario.
The attacker puts on the mask inside the example video. Results using data from
3DMAD (left) and BiDA HR (right) are shown.
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Finally, Fig. 6 shows an example of the evolution of the liveness scores
obtained with the MQCD algorithm. In this scenario we wanted to simulate
a real situation in which the attacker puts on the mask inside the video, so we
have concatenated two different videos from the same user (a real access and an
attack attempt). The higher the scores the higher the estimated probability of
a presentation attack. Thanks to the MQCD and its low latency approach, the
PAD score is able to evolve over the video, and can be compared to a threshold
to detect the intrusion with low latency.

6 Conclusions and Future Work

In this paper, we have studied face Presentation Attack Detection (PAD) based
on remote PhothoPlethysmoGraphy (rPPG) or, in other words, video-based
heart rate estimation. We have extracted pulse information from facial videos
from two different databases: 3DMAD and BiDA HR. These databases contain
videos with different resolutions, frame rates, durations, and spoofing artifacts.

We have compared the performance of a new rPPG system based on a com-
bination of a skin detector and a chrominance method, and the system used in
our previous work [11], which was based on Blind Source Separation techniques.
Even though the chrominance-based system is more robust to variable light con-
ditions, blur, and other factors, in this work both systems perform in a similar
way due to the controlled conditions found in 3DMAD and BiDA HR.

We have also analyzed several approaches for low-latency continuous PAD.
The first approach combines individual PAD scores with simple rules obtained
from consecutive small video segments. The arithmetic mean of consecutive
scores outperforms SNR-based and temporal-based score combination functions.
The second approximation to continuous PAD uses a Quickest Change Detection
algorithm (MQCD) for getting a balance between low attack detection delays
(ADD) and low false positive rates (FNMR). Best results were obtained by gener-
ating individual PAD scores from video segments of around 3 s. We also discussed
a possible time-variant attack scenario in which the attacker puts on the mask
in the middle of the video. In this scenario, the advantages of a short-time rPPG
analysis can be fully exploited.

Future work includes: (1) Improving the baseline system for getting lower
EER with short videos (e.g. using video magnification techniques [3]). (2) Cap-
turing a larger database with a higher number of users, more variate spoofing
artifacts, and also more challenging conditions (like ambient illumination, blur,
occlusions, etc.). (3) Accomplishing a more in depth study of the performance
when changing spatial and temporal resolution of videos. And (4) developing
more robust quality metrics in rPPG [2] for score combination in continuous
PAD and continuous authentication [8].
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anti-spoofing by detecting pulse from face videos. In: International Conference on
Pattern Recognition (ICPR), pp. 4244–4249. IEEE (2016)

13. Mahmoud, T.M., et al.: A new fast skin color detection technique. World Acad.
Sci. Eng. Technol. 43, 501–505 (2008)

14. Marcel, S., Nixon, M.S., Fierrez, J., Evans, N.: Handbook of Biometric Anti-
Spoofing, 2nd edn. Springer, Heidelberg (2019)

15. McDuff, D., Gontarek, S., Picard, R.W.: Improvements in remote cardiopulmonary
measurement using a five band digital camera. IEEE Trans. Biomed. Eng. 61(10),
2593–2601 (2014)

16. Perera, P., Patel, V.M.: Efficient and low latency detection of intruders in mobile
active authentication. IEEE Trans. Inf. Forensics Secur. 13(6), 1392–1405 (2018)

17. Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multipa-
rameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng.
58(1), 7–11 (2011)

18. Rapczynski, M., Werner, P., Al-Hamadi, A.: Continuous low latency heart rate
estimation from painful faces in real time. In: International Conference on Pattern
Recognition (ICPR), pp. 1165–1170 (2016)

19. Tasli, H.E., Gudi, A., den Uyl, M.: Remote PPG based vital sign measurement
using adaptive facial regions. In: Proceedings of IEEE International Conference on
Image Processing (ICIP), pp. 1410–1414 (2014)



Author Index

Arganda-Carreras, I. 61

Boulay, Thomas 48

Cyganek, Bogusław 1

Das, Arindam 48
Dornaika, F. 61

Fan, Chunxiao 35
Fierrez, Julian 72
Fu, Hao 35

Gao, Xue 25
Gonzalez-Sosa, Ester 72

Hernandez, M. 61
Hernandez-Ortega, Javier 72

Jiang, Yibo 35

Khattar, F. 61
Koziarski, Michał 1
Kwolek, Bogdan 1

Li, Chao 12
Luo, Cong 25

Ming, Yue 12, 35
Morales, Aythami 72

Ou, Shiping 48

Reta, J. 61
Ruichek, Y. 61

Yogamani, Senthil 48


	Preface
	Organization
	Contents
	Convolutional Neural Network-Based Classification of Histopathological Images Affected by Data Imbalance
	1 Introduction
	2 Experimental Study
	2.1 Set-Up
	2.2 The Impact of Data Imbalance on the Classification Performance
	2.3 The Evaluation of Strategies of Dealing with Data Imbalance
	2.4 The Value of New Data in the Presence of Data Imbalance
	2.5 The Strategy of Balancing Training Distribution During Data Acquisition

	3 Conclusions
	References

	Three-Stream Convolution Networks After Background Subtraction for Action Recognition
	Abstract
	1 Introduction
	2 Related Work
	2.1 Feature Extraction
	2.2 Network Model

	3 Our Method
	3.1 Feature Extraction
	3.2 Three-Sream Convolution

	4 Experiments
	4.1 Datasets and Implementation Details
	4.2 Experiments of Feature Extraction
	4.3 Evaluation of Three-Stream

	5 Conclusion
	Acknowledgment
	References

	Scene Text Detection with a SSD and Encoder-Decoder Network Based Method
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Text Localization Neural Network
	3.2 Text Verification Model

	4 Experiments
	4.1 Effectiveness of Text Localization Neural Network
	4.2 Effectiveness of Text Verification Model
	4.3 Comparison with Other Methods

	5 Conclusion
	References

	Effective SVD-Based Deep Network Compression for Automatic Speech Recognition
	1 Introduction
	2 Effective SVD-Based Deep Network Compression
	2.1 Inner-Layer Reconstruction Using SVD
	2.2 Across-Layer Loss Sensitive Update
	2.3 Iterative Compression

	3 Experiments
	3.1 Experimental Setup
	3.2 Mandarin LVCSR Task on AISHELL
	3.3 English LVCSR Task on TIMIT

	4 Conclusion
	References

	Evaluation of Group Convolution in Lightweight Deep Networks for Object Classification
	1 Introduction
	1.1 Research Questions Addressed in This Study

	2 Related Work
	3 Implementation Details
	4 Experimental Study
	4.1 Aggregated vs. 3D Convolution
	4.2 Group Convolution with Skip vs. Non-skip Connection
	4.3 Group Convolution with Incremental vs. Drastic Growth in Width
	4.4 3D Convolution with Incremental vs. Double Growth in Width

	5 Conclusion
	References

	Image-Based Driver Drowsiness Detection
	1 Introduction
	2 Face Alignment
	3 Proposed Face Feature
	3.1 Covariance Descriptor
	3.2 Proposed Pyramid Multi-level Descriptor
	3.3 Feature Selection

	4 Experimental Setup
	4.1 Dataset

	5 Experimental Results
	6 Conclusion
	References

	Continuous Presentation Attack Detection in Face Biometrics Based on Heart Rate
	1 Introduction
	2 Related Works
	2.1 Remote Photoplethysmography
	2.2 Continuous Authentication

	3 Proposed Approach
	3.1 rPPG Signal Extraction
	3.2 Feature Extraction
	3.3 Classification
	3.4 Integration of Individual Scores

	4 Databases and Experimental Protocol
	4.1 Databases
	4.2 Experimental Protocol

	5 Results
	5.1 Comparison with Reference Work
	5.2 Continuous PAD

	6 Conclusions and Future Work
	References

	Author Index



