Software Reuse: From Cloned Variants M)
to Managed Software Product Lines Shethie

Christoph Seidl, David Wille, and Ina Schaefer

Abstract Many software systems are available in similar, yet different variants
to accommodate specific customer requirements. Even though sophisticated tech-
niques exist to manage this variability, industrial practice mainly is to copy and
modify existing products to create variants in an ad hoc manner. This clone-and-own
practice loses variability information as no explicit connection between the variants
is kept. This causes significant cost in the long term with a large set of variants as
each software system has to be maintained individually. Software product line (SPL)
engineering remedies this problem by allowing to develop and maintain large sets
of software systems as a software family.

In this chapter, we give an overview of variability realization mechanisms in
the state of practice in the industry and the state of the art in SPL engineering.
Furthermore, we describe a procedure for variability mining to retrieve previously
unavailable variability information from a set of cloned variants and to generate
an SPL from cloned variants. Finally, we demonstrate our tool suite DeltaEcore
to manage the resulting SPL and to extend it with new functionality or different
realization artifacts. We illustrate the entire procedure and our tool suite with an
example from the automotive industry.

1 Introduction

Modern software exists in many similar variants that realize slightly different
functionality to accommodate specific customer requirements. For example, the
automotive industry allows customers of their cars to freely decide whether an
optional alarm system should be included or whether the power windows should
be manual or automatic. The selected configuration impacts the software required

C. Seidl (24) - D. Wille - I. Schaefer

Technische Universitit Braunschweig, Institute of Software Engineering and Automotive
Informatics, Braunschweig, Germany

e-mail: c.seidl@tu-braunschweig.de; d.wille@tu-braunschweig.de;

i.schaefer @tu-braunschweig.de

© Springer Nature Switzerland AG 2019 77
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_5&domain=pdf
mailto:c.seidl@tu-braunschweig.de
mailto:d.wille@tu-braunschweig.de
mailto:i.schaefer@tu-braunschweig.de
https://doi.org/10.1007/978-3-030-12157-0_5

78 C. Seidl et al.

to operate the car as significant parts of the program logic may differ. Program
logic may be specified by source code or, on a more abstract level, by design
models such as function block diagrams (FBDs) [19], MATLAB/Simulink! models,
or Rational Rhapsody® statecharts. In consequence, variability stemming from
different configuration options has to be manifested in various realization artifacts
by what is called a variability realization mechanism to reflect the differences in
program logic.

Variability realization mechanisms used in practice, such as copying and modi-
fying specific software systems through clone-and-own, are readily available and do
not require additional tools or changes in development process and/or management
structure. However, in the long run and with a growing number of variants, these
approaches do not support sustainable managed software reuse (see Sect.3.1).
Software product lines (SPLs) [29] offer concepts and facilities for managed
software reuse by treating a set of closely related systems as software family.
However, there is a gap between the state of practice used in industry and the state
of the art for managed software reuse of SPLs in academia with regard to variability
realization mechanisms. Furthermore, manually adopting an SPL approach for a
grown set of cloned software variants entails significant effort and cost [24].

To remedy these problems, in this chapter, we first give an extensive overview
of both the state of practice and the state of the art in variability realization
mechanisms. We then describe a procedure we devised to transition from the grown
structure of cloned variants to managed reuse of SPLs that analyzes the cloned
variants and generates the artifacts for an SPL largely automatically. Finally, we
demonstrate our tool suite DeltaEcore to realize the described transition procedure
for practical application in order to significantly reduce effort and cost of adopting
a managed reuse strategy for grown systems with many variants.

Due to their relevance for industrial practice, we specifically focus on variability
realization mechanisms and an associated reverse engineering procedure. To retrieve
high-level variability information, such as conceptual features, from related product
variants, other approaches exist [30]: Feature location techniques analyze natural-
language requirements documents [46], product maps describing the software’s
composition [32, 39], or existing model-based products [50, 51]. However, these
approaches do not consider fine-grained variability within realization artifacts or do
not generate an SPL as we do.

The structure of this chapter is as follows: Sect. 2 provides an overview of SPL
terminology and introduces a running example from the automotive domain. Sec-
tion 3 explains and contrasts the state of practice and the state of the art in variability
realization mechanisms. Section 4 describes our procedure to transition from grown
software systems with multiple variants to managed reuse by first analyzing the
individual clones and then generating an SPL from the realization artifacts and the

Thttp://www.mathworks.com/products/simulink/.
Zhttps://www.ibm.com/us-en/marketplace/rational-rhapsody/.

http://www.mathworks.com/products/simulink/
https://www.ibm.com/us-en/marketplace/rational-rhapsody/

Software Reuse: From Cloned Variants to Managed Software Product Lines 79

collected information. Section 5 introduces our tool suite DeltaEcore used to create
and maintain an SPL. Finally, Sect. 6 closes with a conclusion.

2 Background

In the following section, we provide background on software product lines and
provide a running example to illustrate concepts and techniques throughout the
chapter.

2.1 Software Product Lines

A software product line (SPL) [8, 29, 43] is an approach for managed reuse where a
set of closely related software systems is perceived as a software family consisting
of commonalities and variabilities. Commonalities constitute the functionality
contained in all systems of the software family, and variabilities constitute the
functionality that sets apart the individual software systems. Individual software
systems of the software family are created by combining the commonalities with
a selection of the variabilities. However, not all combinations of variabilities
are necessarily valid as technical or economical concerns may prohibit certain
combinations.

In an SPL, commonalities and variabilities of artifacts as well as the rules
governing potential combinations of variabilities are represented on different levels
of abstraction. In the problem space [9], variabilities are represented on a mere
conceptual level with no regard to their technical realization, for example, as
names with a description of functionality that can be used to communicate with
nontechnical stakeholders, such as customers or management. In the solution
space [9], variabilities are represented with their effect on realization artifacts, for
example, source code or models. Figure 1 depicts an overview of the essential
constituents of an SPL and their relations.

Software Product Line

Variability — Variability Realization

Model Realization Artifacts

uonnjos

Fig. 1 Overview of the essential constituents of a software product line

80 C. Seidl et al.

The main constituent of the problem space is a variability model, which
governs the valid combinations of variabilities by providing configuration rules.
Various notations for variability models exist, such as feature models [9, 20],
decision models [28], orthogonal variability models (OVMs) [29], and variability
specifications (VSpecs) of the Common Variability Language (CVL) [16]. Despite
the wide variety of available notations, feature models are by far the most commonly
used in industrial practice [5] so that we elaborate on this notation.

A feature model is a hierarchical decomposition of a variable software system
into features. A feature is a user visible functionality that, usually, is configurable,
that is, may be selected or deselected [6]. Features may be mandatory, so that
they have to be selected, or optional, so that they may be deselected. The root
feature is implicitly considered mandatory. Furthermore, features may be grouped
into alternative groups, so that exactly one of the contained features has to be
selected, or or groups, so that at least one of the contained features has to be selected.
Configuration constraints for a feature only apply if their respective parent feature
is selected. For a concrete example of a feature model, see Fig.2 in Sect.2.2 for
our running example. A configuration defined on the feature model is a selection of
features that satisfies all configuration constraints.

The solution space constitutes the realization of all possible software systems of
the software family. Realization artifacts may be of a wide variety of languages:
Source code in different programming languages may specify program logic.
Implementation models, such as statecharts, may define program flow on a higher
level of abstraction. Design models, such as class diagrams or component diagrams,
may represent parts of the architecture. Documentation material, such as user and
developer manuals, may provide information for employing or extending software
systems. The selection of variabilities as part of a configuration may have an
effect on each of these artifacts as, depending on the choice of variabilities, certain
functionality may be present in or missing from the software system. This yields the
need to change the design, implementation, and documentation of the respective
software system. To perform the respective changes, SPLs employ a variability
realization mechanism, which takes as input a configuration from a variability model
to then collect, adapt, and assemble relevant parts of realization artifacts.

BCS
Human Machine Interface Door System Security
Status LED | Power Window Exterior Mirror| Remote Control Key Central Locking System | Alarm System
Legend:
Finger Protection| | Mode | | Electric | Heatable @ Mandatory
/\\ & Optional
/\ Alternative
Automatic Manual Abstract
1 Concrete

"Remote Control Key" = "Central Locking System"

Fig. 2 Excerpt from the BCS feature model

Software Reuse: From Cloned Variants to Managed Software Product Lines 81

The procedure of transforming a configuration into a variant of the SPL is
referred to as variant derivation. A variant® or product of the SPL is the software
system associated with a specific conceptual configuration. The variant derivation
procedure differs greatly depending on the concrete type of variability realization
mechanism employed by the SPL, which we cover in detail in Sect. 3.

2.2 Running Example Automotive Body Comfort System

To illustrate our techniques, we use a running example from an automotive body
comfort system (BCS) SPL [27] along with its realization as statecharts, which
comprises functionalities such as (automatic) power windows and exterior mirror
control. In Fig. 2, we show an excerpt of the feature model for the BCS where the
full SPL comprises 27 features and 11,616 valid product variants. The depicted
feature model comprises different parts of the functionality that are common to all
product variants, such as the car’s exterior mirror orthe human machine
interface. In addition, different optional features exist representing additional
functionality, such as electric or heatable exterior mirrors as well as a
central locking system (CLS).

Individual features may be implemented differently depending on the selection of
other features. For example, the CLS feature exists in alternative implementations
depending on different power window (PW) modes. In Fig.3, we show two
statechart implementations of the CLS feature consisting of the c1s_unlock and
cls lock states with corresponding transitions.

The ManPW variant (cf. Fig.3a) is employed with a manual power window,
whereas the Aut oPW variant (cf. Fig. 3b) is used with an automatic power window.

In terms of implementation, the main difference between the two variants is
that, during a transition from cls_unlock to cls_lock, the ManPW variant is
only disabled (i.e., pw_enabled=false)when the window is closed completely
(i.e., pw_pos==1). Otherwise, it is still possible to manually close the window.
However, the AutoPW variant is disabled independent of the position of the
window, which is automatically closed by generating a corresponding command
(i.e., GEN (pw_but up)). We use these variants of the CLS in the remainder of
this chapter to illustrate different variability realization mechanisms as well as our
variability mining and SPL generation techniques.

3Note that some publications [29] use a different definition of the term variant to describe one
concrete option for a specific variation point, for example, a specific value for a configurable
parameter.

82 C. Seidl et al.

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

key_pos_lock[pw_pos != 1]/cls_locked=true; l

‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;

a)
‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;
key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);
b)

Fig. 3 Two statechart variants associated with the CLS feature. (a) ManPW variant of the central
locking system (CLS). (b) AutoPW variant of the central locking system (CLS)

3 Variability Realization Mechanisms

Different techniques exist to represent changes associated with conceptual features
in realization artifacts, such as source code or models. In the following, we describe
the state of practice of variability realization in industry and survey the state of the
art by explaining in detail different variability realization mechanisms from SPL
engineering.

3.1 State of Practice in Variability Realization

In industrial practice, a couple of ad hoc variability realization mechanisms or
existing language constructs and modularization concepts (not originally intended
to capture variability) are used to encode variability. In the following, we summarize
the most widely applied techniques for variability realization in the solution space,
while the survey by Berger et al. [5] focuses on variability modeling in the problem
space.

¢ Clone-and-Own (or copy-paste-modify) [12, 21]: Developers copy existing
models or source code of product variants and modify the respective artifacts
until a new variant is obtained. This new variant is then stored under a new name
and can be deployed in the same way as existing variants. This process can be
repeated for each variant to be developed. The advantage of this approach is that
it is very lightweight and saves development effort in the short term. No special

Software Reuse: From Cloned Variants to Managed Software Product Lines 83

modeling notation or tool support is required. However, with an increasing
number of variants, the variability in the set of cloned variants becomes difficult
to manage as each software system has to be maintained in isolation. In particular,
for debugging and maintenance, undocumented variability becomes an obstacle.

* Conditional Compilation [26]: In programming languages, conditional compi-
lation techniques allow deriving the implementation for a specific code variant
during compilation by appropriately selecting values for preprocessor macros.
Conditional compilation is most prominently used within C/C++ where code
blocks can be enclosed in #ifdef directives that are omitted for compilation
if the corresponding constant is set to false. Conditional compilation is a widely
used approach within the programming language community and offers very
flexible means to obtain custom-tailored code for specific variants. However,
it leads to code fragmentation and scattering of variability which is difficult to
maintain and debug.

e Variability Encoding [44]: Variability in models or source code is encoded by
standard programming/modeling language constructs that are originally intended
for choice within the control flow during execution. For instance, in programming
languages, variability can be encoded using if statements where the if condition
is a configuration parameter, such as a specific feature. In MATLAB/Simulink,
switch-case statements or variant subsystem blocks are used to capture variabil-
ity [45]. While variability encoding does not require specific language or tool
support to express variability, it is limited to expressing variability in software
behavior (in contrast to variability in its structure), and the binding of variability
is shifted to runtime which means that the complete code base has to be deployed
in all cases which may be disadvantageous for resource-constrained devices or
for protecting intellectual property. Additionally, choices due to variability and
choices due to program behavior are mixed, which violates the separation of
concerns principle and hinders maintenance and debugging.

* Parametrization: Variability of a system is captured by setting specific param-
eter values for system variables. Parametrization in the automotive domain is,
for example, used in characteristic curves or maps, such as for engine control,
set during calibration phases. Alternatively, electronic control units (ECUs)
incorporate a set of behavioral variants that can be configured by parametrization.
After the car is readily built, a parametrization string is entered such that the
software variant matches the built variant of the car. This requires that all possible
variants are already encoded within the ECU. The parametrization strings are
often kept in spreadsheets, which complicates analyses such as finding out
if the software for a specific car variant is configurable at all. Furthermore,
configuration errors may only be detected during system execution, which
significantly complicates debugging.

e Components and Plug-In Frameworks [41]: Variability on the architectural
level can be represented by component or plug-in frameworks. Variants can
be obtained by composing different component variants from a component
library or by using different plug-ins in plug-in frameworks such as Eclipse.
The advantage of component libraries and frameworks is that variability is

84 C. Seidl et al.

modularly encapsulated within components. However, variability is subject to
the granularity of the components. Hence, fine-grained variability in behavior or
structure cannot be captured. Instead, for each (even only fine-grained) change
due to variability, a new variant of a component is needed which leads to
redundancy and replicated code in the component/plug-in library.

3.2 State of the Art in Variability Realization Mechanisms

Despite ad hoc variability realization mechanisms used in industrial practice and
their individual shortcomings, variability realization mechanisms of SPLs support
managed reuse. These variability realization mechanisms can be distinguished into
three principle groups: annotative, compositional, and transformational [34]. In the
following sections, we elaborate on each type.

3.2.1 Annotative Variability Realization Mechanisms

Annotative variability realization mechanisms® [22, 34] utilize annotations to denote
parts of the realization artifact that belong to a particular feature. As a consequence,
with annotative variability realization mechanisms, a single artifact contains all
possible variations of one realization asset affected by variability, often referred to
as a 150% model. For example, a C++ class may contain multiple definitions of a
method with the same signature (similar name of the method with same number and
type of parameters and return value) with different bodies for individual features,
where each definition is wrapped in a preprocessor statement (#ifdef) that only
enables the respective method when a particular feature is selected. Hence, when
used in a disciplined manner, the aforementioned conditional compilation as well as
variability encoding may be viewed as annotative variability realization mechanisms
(see Sect. 3.1).

For annotative variability realization mechanisms, the connection between a
conceptual variability model and the annotations is established through naming
conventions, for example, features of a feature model may have the same name
as presence variables of annotations. During variant derivation, the presence of
elements from the variability model is then resolved to Boolean values for anno-
tations. The realization artifacts are reduced from a 150% model to an artifact of the
intended variant by removing those annotated parts of the realization artifact whose
conditions in the annotations are not satisfied. The result is a variant containing only
the intended functionality. Figure 4 depicts an example of an annotative variability
realization mechanism where the two variants of Fig. 2 are represented as a 150%
model and the Aut oPW variant with automatic power window is derived as example.

4 Annotative variability realization mechanisms are also referred to as subtractive or negative.

Software Reuse: From Cloned Variants to Managed Software Product Lines 85

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;
ManPW l

key_pos_lock[pw_pos != 1]/cls_locked=true;
ManPW

‘ key_pos_unlock/cls_locked=false; T

pw_enabled=true;

AutoPW

key_pos_lock/cls_locked=true; pw_enabled=false;
GEN(pw_but_up);

a)

‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

b)

Fig. 4 Example of an annotative variability realization mechanism. (a) 150% model. (b) Variant
derivation by removing parts of the 150% model

Annotative variability realization mechanisms pose certain requirements to be
applicable: If annotations are internal to realization artifacts, constructs for adequate
annotation have to either be included in the realization language (e.g., if statements)
or in another embeddable language (e.g., the C++ preprocessor). Furthermore, if
annotations are external to realization artifacts (e.g., through a specific annotation
model), elements need to be referenceable from outside of the realization artifact.
Finally, the specification of the 150% model requires full knowledge of all possible
variations at design time.

A variety of tools for managing SPLs is based on an annotative variability realiza-
tion mechanism: BigLever’s Gears® [25] and pure-system’s pure::variants® [7] are
industrial tools for managing SPLs. FeatureIDE’ [42], Clafer [3], and FeatureMap-
per® [17] are tools for managing SPLs stemming from academia.

Shttp://biglever.com/solution/product.html.
Shttp://pure-systems.com/Products.html.
7http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide.
8http://clafer.org.

“http://featuremapper.org.

http://biglever.com/solution/product.html
http://pure-systems.com/Products.html
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide
http://clafer.org
http://featuremapper.org

86 C. Seidl et al.

‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

a)
: ‘ key_pos_unlock/cls_locked=false; A
! pw_enabled=true; i
N [1
key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);
b)

Fig. 5 Example of a compositional variability realization mechanism. (a) Core model and two
units of composition. (b) Variant derivation by adding units of composition to the core model

3.2.2 Compositional Variability Realization Mechanisms

Compositional variability realization mechanisms'? [4, 22, 34] represent a variable
software system as a common core model and multiple units of composition. The
core model comprises the realization of functionality common to all variants. The
units of composition contain the realization of individual configuration options,
usually on the granularity level of a single feature, but it is principally possible to
define finer-grained units of composition. During variant derivation, relevant units
of composition are collected and combined with the core model to form a variant
containing valid realization artifacts. Figure 5 depicts an example of a compositional
variability realization mechanism where the two variants of Fig. 2 are represented as
a common core model with two units of composition and the Aut oPW variant with
automatic power window is derived as example.

It is possible that, in isolation, neither the core model nor the individual units
of composition are valid artifacts with regard to the syntax of the language in

10Compositional variability realization mechanisms are also referred to as additive or positive.

Software Reuse: From Cloned Variants to Managed Software Product Lines 87

which they are specified as they may define partial and incomplete information.
For example, a statechart may define a core model only containing the states where
the units of composition contain various transitions that will connect the states in
different variants.

Compositional variability realization mechanisms require certain conditions: The
functionality affected by variability has to be accessible for modification through
composition, which makes certain structures of realization artifacts more favorable.
For example, in source code, it may be complicated to replace fragments of
methods through composition so that smaller methods are beneficial for compo-
sition. Furthermore, a component-based software architecture [41] or a plug-in
framework allows for easier alignment of features with units of composition but
poses restrictions on the architecture (see Sect. 3.1).

Compositional variability realization mechanisms do not necessarily have to
know all possible variation in advance as new units of composition may be added
later on. However, in contrast to 150% models of annotative variability realization
mechanisms, which store all variations of a realization artifact in a single element,
the (possibly many) units of composition of compositional variability realization
mechanisms lead to an increased scattering, which may increase maintenance effort.

Compositional variability realization mechanisms are used in different
approaches and tools: feature-oriented programming (FOP) [4] -captures
modifications to artifacts resulting from a different feature in a feature module. A
feature module uses superimposition to express changes to a realization artifact by
either adding new or overriding parts of existing realization artifacts or, potentially,
utilizing the previous content. As an example, a feature module for a C++ class
may provide an alternative implementation for an existing method and, as part of
the new implementation, call the previous definition of the method. During variant
derivation, the features selected in a configuration are resolved to the respective
feature modules via name matching, which are then used to compose the core
model of the SPL with the units of composition. FOP is implemented in various
tools, such as the AHEAD Tool Suite!! [4] or FeatureHouse!? [2]. Furthermore,
FeatureIDE [42] may be configured to use a compositional variability realization
mechanism.

Aspect-oriented programming (AOP) [23] may be perceived as a compositional
variability realization mechanism when employed within an SPL. An aspect
captures (potentially cross-cutting) concerns of a software system as additions to
various significant locations of the targeted realization artifact called join points.
Individual features may be realized as aspects that are then combined with the core
model of the SPL by weaving the additions of relevant aspects into the respective
join points. AOP is utilized for the realization of variability in SPLs in various
different approaches [1, 13, 15].

1 1http://cs.utexas.edu/~schwartz/ATS/fopdocs.
2http://infosun.fim.uni-passau.de/spl/apel/fh.

http://cs.utexas.edu/~schwartz/ATS/fopdocs
http://infosun.fim.uni-passau.de/spl/apel/fh

88 C. Seidl et al.

3.2.3 Transformational Variability Realization Mechanisms

Transformational variability realization mechanisms represent variabilities as trans-
formations that restructure a base variant of an SPL to a specific target variant
that constitutes the functionality associated with the selected features of one
particular configuration. Sequences of calls to transformation operations may be
grouped into transformation modules if they have a sufficiently high level of
cohesion. A transformation module may realize variability of an entire feature
or parts thereof. Transformations may have different complexity: On an atomic
level, transformations may be perceived as addition, modification, and removal
of elements of the addressed realization artifact. On a more complex level, these
atomic operations may be synthesized to form compound operations, for example,
to remove an element and all depending references.

During variant derivation, the base variant is copied and relevant transformation
modules are collected and sequentially applied to transform the base variant to
the intended target variant. In the process of transformation, newly required func-
tionality is added, and functionality of the base variant that is rendered redundant
due to the selected configuration is removed. Figure 6 depicts an example of a
transformational variability realization mechanism where the ManPW variant with
the manual power window of Fig. 2 is used as base variant with transformations to
create additional variants and the Aut oPW variant with automatic power window is
derived as example.

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

key_pos_lock[pw_pos != 1]/cls_locked=true; l

‘ keylpos_unlock/cls_locked=fa|se;
pw_enabled=true;

a)

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

b)

Fig. 6 Example of a transformational variability realization mechanism. (a) Base variant. (b)
Variant derivation by adding, modifying, and removing elements

Software Reuse: From Cloned Variants to Managed Software Product Lines 89

The base variant of an SPL may, in principal, be selected arbitrarily from the
set of products. However, the choice of the base variant greatly influences the
number of transformations to create the other variants and, thus, the complexity
of the SPL. Hence, a number of considerations may influence which product is
selected as base variant of the SPL depending on the intended use: Selecting the
product most commonly purchased by customers aligns with business practices
when functionality of other products is viewed as deviation from the common
product. Selecting the product created first aligns with the development process as
subsequent changes may directly be represented as delta modules. Selecting the
product with the most features aligns with product configuration where undesired
functionality may be deselected.

There are multiple approaches that can be perceived as transformational variabil-
ity realization mechanisms if applied in the context of an SPL: Model transformation
may be employed as transformational variability realization mechanism if all
realization artifacts can be perceived as models, for example, as instances of meta-
models (see Sect. 4). In this case, model transformation operations are employed to
alter realization artifacts of the SPL. Model transformation operations may either be
provided as general purpose transformation operations [35, 38] that are agnostic of
the realization language or as domain-specific transformation operations [31] that
are tailored to the respective realization language.

The Common Variability Language (CVL) [16] is an attempt at adding standard-
ized variability to arbitrary modeling notations by overlaying variability information
over realization assets of a software family. CVL provides a set of standard
operations to manipulate realization assets of a software family in order to manifest
changes associated with variability so that it can be regarded as providing a
transformational variability realization mechanism. For example, the approach
allows binding variability at one variation point, for example, by choice from a
fixed set of options or by setting the value of a variable. Variant derivation facilities
may be employed to manifest the effects of changes associated with variability in
implementation artifacts.

Delta modeling [33] is the most prominent transformational variability realiza-
tion mechanism for SPLs. In delta modeling, transformations are performed by
invoking specific delta operations. Delta operations are provided by a delta lan-
guage, which is a domain-specific variability language tied to the source language
employed by realization artifacts it modifies, for example, DeltaStateCharts for
statecharts. The delta language allows fine-grained control over which operations
are available for realizing variability while, at the same time, allowing complex
transformation operations specific to the source language of the artifacts that should
be modified.

Delta modules encapsulate sequences of calls to delta operations with particu-
larly strong cohesion, for example, because they realize a particular feature. Usually,
multiple delta modules are required to realize a specific variant of an SPL. The order
in which the delta modules are applied may influence the created variant. Hence,
not necessarily all application orders of delta modules are valid as, for example,
an element cannot be modified before it was added. To express these restrictions,

90 C. Seidl et al.

application-order constraints may be specified, which state that a specific delta
module can only be applied after another delta module was applied.

During variant derivation, first, the relevant delta modules are collected. This
may be a manual selection of delta modules by a user of the SPL, or, if the SPL also
employs a feature model, the selection of features of a configuration may be resolved
to the set of associated delta modules. Then, the application-order constraints of
delta modules are evaluated and used as input to a topological sorting algorithm,
which creates one valid sequence of application. Finally, the base variant of the SPL
is copied and the transformations are applied sequentially in the order determined
for the delta modules to create the intended target variant of the SPL.

Transformational variability realization mechanisms have both as input and
output a valid variant of the SPL. This is in contrast to annotative and compositional
variability realization mechanisms, which depend on a specific software family
representation as input with either a 150% model or a core model, which both
potentially are not considered valid realization artifacts with regard to syntax
and static semantics of the realization language. Hence, transformational vari-
ability realization mechanisms have various benefits: For one, provided that the
configuration knowledge is sound, both the input and output of transformational
variability realization mechanisms may be inspected with standard tools that depend
on valid syntax and static semantics of the respective artifacts. In addition, the
variability realization process of creating variants by starting out with one concrete
software system and transforming it aligns closely with the common practice of
companies to first develop an individual software solution on request and, later on,
to transform it into an SPL with multiple products to sell off the shelf. Moreover,
using transformations is flexible as not necessarily all features have to be known in
advance and new features can be added seamlessly later on.

Finally, delta modeling as transformational realization mechanism can emulate
the behavior of both annotative and compositional variability realization mecha-
nisms when restricting the delta operations employed in delta modules to only
remove or add elements, respectively. This well-formedness property is referred to
as monotonicity of delta modules [10], and there are procedures to transform any
delta-oriented SPL to a monotonous form [11]. Due to these beneficial properties,
we employ delta modeling for our work and the explanations in the remainder of
this chapter.

4 From Cloned Variants to Managed Software Product Lines

In this section, we explain a procedure to migrate from cloned variants in grown
systems to managed reuse in SPLs. The presented approach is applicable to models
of different block-based modeling languages, such as MATLAB/Simulink models,
FBDs, and statecharts [18, 47, 49].

A common way to describe the notation of a modeling language is through a
metamodel [14, 40]. In a metamodel, metaclasses describe the elements of the mod-

Software Reuse: From Cloned Variants to Managed Software Product Lines 91

eling language, metareferences the relations of these elements, and metaattributes
the properties of each element. Concrete artifacts of the modeling language are
then perceived as instances of the metamodel. The Eclipse Modeling Framework
(EMF) provides Ecore as a notation to specify metamodels and offers a wide variety
of tools on that basis: With Xtext!3 or EMFText,!* models can be specified in a
textual language, for example, source code. With GEE,!> GME!° or Graphiti,17 it
is possible to create visual editors so that models can be specified in a graphical
language, for example, statecharts. With these tools, it is possible to perceive any
realization language (e.g., the language for statecharts) as a metamodel and its
artifacts (e.g., concrete statecharts) as models instantiating the metamodel. This has
the benefit that artifacts may be defined in different representations and may stem
from different sources but can still be handled uniformly as models of an explicitly
defined metamodel. Predefined metamodels, grammars, and parsers exist for many
popular languages to treat their source code as instances of Ecore models, such
as JaMoPP!3 for Java or sreML'® for C/C++. In addition, it is possible to define
metamodels for further languages.

In Fig. 7, we show the metamodel for statecharts we utilize for the BCS running
example. The metaclasses State and Transition represent the respective
elements of the statechart notation, where elements of both are uniquely identified
by the value of the metaattribute id. States may carry a name and transitions
may specify events upon whose occurrence they prompt certain act ions if the
respective guards are satisfied. Metareferences define potential compositions of
the respective elements. A StateChart consists of a number of states, where
the initialState is designated by the specialized class InitialState.
Furthermore, a state contains multiple t ransitions of which each references a
sourceStateand a targetState. Additionally, a state may be a compound in
the sense that it may contain further states and, indirectly, transitions that define its
behavior. Depending on the number of elements instances may reference, metaref-
erences may be distinguished into single-valued references (e.g., initialState
of StateChart) and multivalued references (e.g., states of StateChart),
which is of relevance for our approach. The remaining elements of the metamodel
in Fig. 7 capture variability as will be explained in Sect. 4.1. Finally, the metamodel
URI is the unique identifier of the metamodel which can be utilized to retrieve
the metamodel from a central registry, for example, when checking models for
conformance with the respective metamodel. For the BCS running example, the
metamodel URI is http://www.tu-braunschweig.de/isf/states.

Bhttp://eclipse.org/Xtext.
4http://emftext.org/.
Dhttp://eclipse.org/gef.
16http://eclipse.org/modeling/gmp.
Thttp://eclipse.org/graphiti.
8http://jamopp.org/index.php/JaMoPP.
http://www.srcml.org/.

http://eclipse.org/Xtext
http://emftext.org/
http://eclipse.org/gef
http://eclipse.org/modeling/gmp
http://eclipse.org/graphiti
http://jamopp.org/index.php/JaMoPP
http://www.srcml.org/

92 C. Seidl et al.

1 AlternativeValueEntry] [L1 VariableElement]
= key : EString &% containingVariants : EString
= value : EString = variability : EString

[0..*] alternativeValues

[0.1] subStates

[0..*] transitions ‘
&l Transition [1..1] sourceState H state]
7 id : EString % id : EString
events : EString [1..1] targetState 5 name : EString

|
= guards : EString
= actions : EString

€ J € J

g [0..*] states
- StateChart]0)

5 id : EString J¢ [1..1] initialState

1 InitialState

~—1 _J

L .

Fig. 7 Metamodel for the statechart notation used in the running example

Due to the benefits of employing metamodels, we heavily utilize model-based
development. However, we do not require users of our mining and generation
technology to use it as well because the model-based character is completely
transparent and required inputs may be provided in textual languages. In Sect. 4.1,
we explain how a set of cloned model variants can automatically be analyzed
to extract variability information (i.e., common and varying parts between the
variants). In Sect. 4.2, we show how to generate delta modules of a delta-oriented
SPL from the cloned variants.

4.1 Mining Variability from Cloned Variants

To support transition from a set of cloned model variants to a managed reuse
strategy, it is essential to identify variability relations between the variants. In Fig. §,
we show our family mining process, an approach to semiautomatically reverse-
engineer variability information from a set of block-based model variants [18, 47,
49]. The approach relies on metamodeling techniques and first translates the input
models in an instance of a metamodel specifically tailored to the modeling language

Software Reuse: From Cloned Variants to Managed Software Product Lines 93

Input for the First Merging
k‘ First Input
Base Model
l

Input
Cloned Model
—) - IZH - m .

Resuk
Compare T 150% Model as Input 150% Model
Model(s)

Fig. 8 Workflow for variability mining from cloned model variants

employed to realize variants, for example, for statecharts, the metamodel of Fig. 7.
Furthermore, we created metamodels capable of handling MATLAB/Simulink mod-
els and FBDs [18, 47, 49]. The family mining algorithm consists of the following
three phases. During the Compare Phase (cf. Sect.4.1.1), models are compared
and possible relations are identified. In the Match Phase, unambiguous one-to-one
relations are selected from these comparisons. In the Merge Phase, the resulting
relations are used to create a /50% model.

In the metamodel for statecharts presented in Fig.7, we provide classes
VariableElement and AlternativeValueEntry to store the determined
variability information: In VariableElement, we allow to store the identified
variability for compared elements (i.e., whether they are contained in all
compared variants or represent variability only present in certain variants). In
addition, we store the model variants containing the corresponding elements. In
AlternativeValueEntry, we allow to define mappings from model names to
alternative values (e.g., when we identify state names with minor deviations in two
compared variants).

The following sections explain each of the steps for mining variability from
cloned variants in details.

4.1.1 Compare Phase

Our family mining approach is realized in a pairwise manner and, thus, iteratively
compares two models at a time. The algorithm starts comparing the models by
selecting a base model (e.g., the smallest variant) and regards all remaining models
as compare models. Next, the algorithm compares the selected base model with one
of the compare models by analyzing the dataflow in the model. For our running
example, we compare the two statechart implementation variants of the CLS feature
(cf. Fig. 3). Starting from the start elements on the highest hierarchy level where data
is introduced to the model or where the execution is started (i.e., the c1ls_unlock
initial states from the variants with manual and automatic central locking system
in Fig. 3), the algorithm separates the currently analyzed model hierarchy for both
models into stages. These stages are created by analyzing the dataflow and contain
only elements that are separated by the same number of edges (e.g., transitions in

94 C. Seidl et al.

statecharts) compared to the start elements. For instance, the compare algorithm
creates stage SO with state c1s_unlock and stage S1 with state cls_lock for
both compared variants in Fig. 3. Depending on the employed modeling language,
not only the analyzed model nodes (e.g., states for statecharts) are relevant but their
connecting edges (e.g., transitions for statecharts) contain additional information
worth considering during comparison. For example, as transitions in statecharts
contain important execution information, they should be analyzed during family
mining. Thus, two additional stages are created for both variants from Fig.3
containing the outgoing transitions from the states c1s_unlock and cls_lock,
respectively.

Next, each stage from the base model is compared with its counterpart from
the compare model by iterating and inspecting all possible combinations of the
contained elements. For each comparison between two model elements, a so-called
compare element is created storing the compared elements together with a similarity
value calculated according to a user-defined metric [48, 49]. Such a metric allows
to assign different weights to the properties of compared elements and, thus, allows
to rank their influence on the model functionality. For instance, when comparing
two transitions from Fig. 3, we could assign a higher weight to actions triggered
by the transitions than to their events (i.e., the events triggering the transition’s
execution) and guards (i.e., conditions that have to be fulfilled in order to execute the
transition) because actions trigger new events and the execution of other transitions.
Consequently, these actions have a high influence on the semantics of a particular
statechart. As the metric is adjustable to different settings, users can easily modify
the weights to different needs. During the comparison of two elements, the similarity
value is calculated by summing up the metric’s weights according to the elements’
similarity. To allow comparison of the calculated similarity values, we normalize the
metric’s values to the interval [0..1]. A concrete example for such a metric can be
found in [48]. In cases where no counterpart exists for the comparison of elements in
a stage, we create comparisons with null, which indicates that the respective element
is optional as it is not present in some of the variants.

Our procedure natively supports comparison of hierarchical models by recur-
sively starting the algorithm when comparing two hierarchical elements (e.g., two
hierarchical states in statecharts or two subsystems in MATLAB/Simulink) [49].
Using this approach, we are able to calculate the overall similarity value of
compared hierarchical elements by averaging the similarity value of their sub-
elements.

4.1.2 Match Phase

The resulting list of compare elements might contain ambiguous relations between
the compared model elements, because, during the comparison of stages, multi-
ple combinations with the same model element might be created. For instance,
during the comparison of the stages containing the transitions going from the
cls unlock state to the cls_ lock state, the algorithm creates two compare

Software Reuse: From Cloned Variants to Managed Software Product Lines 95

elements. Both elements contain the corresponding transition from Fig. 3b compar-
ing it with both possible variants from Fig. 3a.

As these ambiguous relations hinder to identify distinct one-to-one variability
relations between the compared model elements, the algorithm traverses the list of
all possible compare elements. For each contained compare element, it identifies all
other compare elements sharing at least one of the compared elements (i.e., the
element from the base model or the compare model). Afterward, the algorithm
identifies a distinct match for these compare elements by selecting the compare
element with the highest similarity value. All ruled-out compare elements are
deleted and the algorithm continues until no unmatched elements are left. Thus, in
our example, the algorithm matches the transition between the states c1s_unlock
and cls_lock in Fig.3b with the transition containing the pw_pos==1 guard
in Fig.3a because they have a higher similarity compared to the other possible
transition containing the pw_pos!=1 guard (i.e., a higher number of statements
match). In case the algorithm cannot identify distinct relations for a compare
element, it first sorts the conflicting elements to the end of the list. Using this
approach, the algorithm tries to implicitly solve ambiguous relations automatically
by first matching other elements. However, in some cases user intervention may be
necessary to resolve the conflict. Elements that were ruled out completely from all
compare elements (i.e., they have no matching partner) are regarded as optional
elements and are added to the final list of matches in compare elements. For
example, the ruled-out transition between the states c1s_unlockand cls_lock
in Fig.3a has to be added as such an optional compare element to not lose
information contained in the compared variants.

4.1.3 Merge Phase

The resulting list of distinctively matched compare elements can now be used to
create a 150% model storing all implementation artifacts from the compared variants
together with their identified variability (i.e., how the elements are related and
in which models they are contained). The algorithm processes the list of distinct
matches and creates the 150% model by merging the compare elements with a
copy of the base model. For the merging process, we define the following mapping

function to classify variability of compared elements:
similarity >=0.95 mandatory
rel(A, B) = (0 < similarity < 0.95 alternative) @))]

similarity =0 optional

This mapping function is adjustable to user preferences and defines default thresh-
olds that were identified during an impact analysis of differing properties in
compared elements with additional interviews on how similar these elements are
regarded according to domain experts [48, 49]. The threshold of 95% categorizes
two compared elements as mandatory (i.e., they are regarded as equal). However,

96 C. Seidl et al.

we allow minor deviations between the elements because of the 5% interval up to
100% equality. For example, this allows us to regard elements as mandatory despite
minor differences in their names. Mandatory elements do not have to be merged into
the 150% model as they are already contained in the base model copy. However, we
have to annotate differing values for the properties where they are not equal (e.g., the
changed name). Otherwise, we lose information when creating the 150% model.
Compare elements with a similarity value of 0% are regarded as optional (i.e., they
are only contained in some of the variants) as they have no counterpart. Depending
on whether the element was already contained in the base model copy, we have to
copy the corresponding elements to the 150% model. All elements with a similarity
value between the mandatory and optional threshold are regarded as alternatives
(i.e., all variants contain exactly one of the possible alternative elements). Here,
only the element that was not contained previously in the base model copy has to
be copied to the 150% model. For all elements in the 150% model, we compare
the model containing the corresponding element and explicitly store the variability
identified according to the thresholds in Eq. 1. The resulting 150% model is used as
an input for the iterative comparison with the next model.

In Fig. 9, we present the 150% model for our running example. As we can see,
the algorithm correctly identified and annotated the models containing the different
transitions (i.e., either the ManPW variant or the Aut oPW variant). For readability
reasons, we neglected the explicit variability annotations in Fig. 9. However, the
algorithm correctly identifies that the annotated transition from the Aut oPW variant
is an alternative to the annotated transition with the pw_pos==1 guard from the
ManPW variant. The remaining annotated transition with the pw_pos!=1 guard is
identified as an optional element. All elements without annotations are regarded as
mandatory as they are contained in both variants.

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

ManPW

key_pos_lock[pw_pos != 1]/cls_locked=true; l

ManPW
‘ key_pos_unlock/cls_locked=false; T

pw_enabled=true;
AutoPW

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

Fig. 9 Part of the 150% model showing the variability of the compared CLS variants

Software Reuse: From Cloned Variants to Managed Software Product Lines 97

Cloned Model 150% Model Delta

Variants Module e 4 ° ° @ e

Generation

Delta
Language [4
D Generation Delta Language
& Variability Mining A Delta M
‘r LTI TTETT) 2 Ih —) Ope.l‘? r *
Identification

Delta Modules

Fig. 10 Workflow for the generation of a delta-oriented SPL consisting of a delta language and
multiple delta modules

4.2 Generating a Delta-Oriented Software Product Line

After creating a 150% model, we are now able to generate an SPL for managed
reuse. In particular, we generate a delta-oriented SPL consisting of a delta language
tailored specifically to the modeling language used to realize implementation
artifacts and a set of delta modules using this delta language to specify the
transformations to create the original set of variants from the base variant. Figure 10
depicts the workflow for SPL generation.

The workflow consists of three steps. First, the algorithm decides on which
transformation operations are required by processing annotations of the 150% model
(cf. Sect.4.2.1). Then, the algorithm uses these operations to generate a delta
language for the modeling language of the inspected variants (cf. Sect. 4.2.2).20
Finally, using this delta language, delta modules are generated that describe the
transformations from the base variant to all of the initially analyzed variants
(cf. Sect. 4.2.3).

4.2.1 Delta Operation Identification

As we apply delta modeling, we intend to transform a base variant (BV) to a target
variant (TV). Our process allows users to freely select any variant contained in
the input 150% model as BV. To determine appropriate delta operation calls for
transformation to the respective TV, we have to decide for each element from the
generated 150% model whether it has to be added, removed, or modified by calling
the respective delta operation.

To identify appropriate operations to call, we use a decision process: The
algorithm analyzes the annotations in the 150% model to identify in which variants
the currently considered element is contained. In case it is not contained in BV
and TV or it is contained in both variants but is regarded as identical, the process
decides to not generate a delta operation. Two elements are regarded as identical

20To be exact, the algorithm generates a delta dialect, which can be used to generate the delta
language (cf. Sect. 5).

98 C. Seidl et al.

Table 1 Decisions for Fig. 9 with BV=ManPW and TV=Aut oPW

Element Decision process
.. R lin BV R inTV
Transition 4 Decide —— !in BV —— Add
.. R lin BV R inTV
Source state for transition 4 Decide —— !in BV —— Set
in BV Iy
e N m B PNLLCy .
Transition 3 Decide — in Bv &1 Nothing
.. , in BV lin TV
Source state for transition 2 Decide —— in BV —— Unset
.. , in BY lin TV
Transition 2 Decide —— in BV —— Remove

if the family mining process marked them as mandatory without any alternative
properties (e.g., for elements with minor name differences). In all other cases, we
have to generate a delta operation for the transformation between both variants. If
the analyzed element is only contained in BV and does not have an annotation for
TV, it has to be unset/removed to generate the final variant. Similarly, the element
has to be set/added when it is only contained in TV and not in BV. For elements
that are contained in both variants but are not similar, the original element has to be
modified.

In Table 1, we present the identification of delta operation calls for the 150%
model in Fig.9 with BV=ManPW (i.e., the variant in Fig.3a) and TV=AutoPW
(i.e., the variant in Fig. 3b). For space reasons, we limit the table to demonstrate an
example for each type of identified delta operation (i.e., add, set, remove, unset, and
nothing). However, for complete transformations, all elements have to be analyzed
by the delta operation identification process. To allow easier reasoning on the
decisions in Table 1, we have numbered the transitions of Fig. 9 consecutively from
top (i.e., the transition with the pw_pos==1 guard) to bottom (i.e., the transition
with the Aut oPW annotation). As we can see, the algorithm identifies correctly that
transition 4 is not contained in ManPW and has to be added during a transformation
to AutoPW. Similarly, transition 2 has to be removed as it is not contained in
AutoPW. In addition, the algorithm identifies that the source states for transition
4 and 2 have to be set and unset, respectively. These operations are required to
update the corresponding references because of the metamodel structure used to
store the statechart variants in Fig. 7 (i.e., the sourceState reference is used to
store the corresponding state). For transition 3, the delta operation identification
process correctly determines that the element does not have to be transformed as it
is contained in both variants.

At present, we analyze atomic differences and identify atomic delta operations
that modify a single value or reference. However, in the future we plan on
identifying semantically richer delta operations by utilizing domain knowledge
or knowledge of the semantics of the realization language, for example, a delta
operation for statecharts that can remove a state as well as all its incoming and
outgoing transitions to preserve well-formedness of the statechart.

Software Reuse: From Cloned Variants to Managed Software Product Lines 99

4.2.2 Delta Language Generation

Using the described decision process, it is possible to determine which delta
operations have to be called to perform the transformations to retrieve target variants
TVs for all inspected cloned variants from the selected base variant BV. Depending
on the selected BV, different delta languages are generated as only delta operations
are considered that are needed to transform BV to the analyzed TVs. For example,
when generating a delta language for the comparison of BV=ManPW with another
TV that only contains additional states and transitions, no remove operation for
transitions is generated. For each decision returned by the algorithm, we generate a
corresponding delta operation and store it in a set to prevent generation of redundant
operations. For instance, in our running example, this prevents the generation of
multiple delta operations to add transitions to states.

In Listing 1, we present an excerpt from the delta language generated for the
150% model in Fig.9 with BVv=ManPW and TV=AutoPW. The excerpt contains
the delta operations generated for the decisions in Table 1. This delta language
was generated with our tool suite DeltaEcore (cf. Sect.5) using information on
the required type of delta operation, the transformed reference or attribute, and
the containing class. The automatically generated names describe the functionality
of the corresponding operation in a unique and descriptive way but they may be
changed manually without impacting further generation (cf. Sect. 4.2.3)

4.2.3 Delta Module Generation

Using the generated delta language, it is now possible to define delta modules that
contain transformations from one variant to another. Our algorithm automatically
generates appropriate delta modules for the variability identified using the family
mining algorithm (cf. Sect. 4.1). To start the delta module generation, our algorithm
expects the selected BV and TVs from the 150% model generated during family

1 deltaDialect

2 configuration:

3 metaModel: <http://www.tu-braunschweig.de/isf/states>;
4

5 deltaOperations:

6 addOperation addTransitionToTransitionsOfState(

7 Transition value, State [transitions] element) ;

8 setOperation setSourceStateOfTransition(State value,

9 Transition [sourceState] element) ;
10 removeOperation removeTransitionFromTransitionsOfState(
11 Transition value, State [transitions] element) ;
12 unsetOperation unsetSourceStateOfTransition/(
13 Transition [sourceState] element) ;
14 /] ...
15 }

Listing 1 Excerpt from the delta language generated for the running example

100 C. Seidl et al.

mining as well as a delta language providing operations to transform to the inspected
variants. The used delta language could either be generated automatically using the
approach described in Sect. 4.2.2 or could be specified manually.

Using the selected BV, the algorithm analyzes the decision of each element from
the currently considered TV to identify the appropriate delta operation to apply. For
this procedure, the adequate delta operation is determined from the provided delta
language by looking up its type (e.g., set, modify) and the metamodel element it
addresses as parameter. First, the number of possible delta operations to apply is
reduced by filtering out all delta operations whose type does not conform with the
decision. For example, the set decision in Table 1 reduces the number of possible
operations for the delta language in Listing 1 to exactly one remaining element
(i.e., the setSourceStateOfTransition operation). Then, the algorithm
compares the references or attributes transformed by the remaining delta operations
and the modified types with the needed transformation according to the generated
decision (i.e., in our example setting the sourceState reference in the Transition
class). Only after these additional checks, a corresponding delta operation call is
generated to realize the needed transformation. It is worth noting that determining
the respective delta operation to call is independent of the name of the operation so
that the latter may be chosen freely before generation.

All generated delta operation calls for a transformation from a selected BV to a
TV are stored in delta modules. In case of add operation calls, the corresponding
constructor calls to create the element to be added are generated automatically and
are also stored in the delta modules. In Listing 2, we show an excerpt for the delta
module to transform BV=ManPW to TV=AutoPW. The excerpt contains all delta
operation calls with corresponding constructor calls for the decisions from Table 1
(cf. Sect. 5.2).

Using the generated delta modules, it is now possible to derive variants from
the defined BV that correspond to all originally inspected cloned variants. In the
following Sect. 5, we explain our implementation of the tool suite DeltaEcore, which
is used for the generation process and which allows automatic variant derivation
from the specified delta modules.

1 delta "CLS-ManPW->CLS-AutoPwW"

2 dialect <http://www.tu-braunschweig.de/isf/states>

3 modifies <CLS-ManPW.statecharts {

4 unsetSourceStateOfTransition(<trans3>) ;

5 removeTransitionFromTransitionsOfState(<trans3>,

6 <cls_unlocks>) ;

7 Transition t = new Transition(id: "transl",

8 events: "key pos lock", actions: "cls locked = true;

9 pw_enabled = false; GEN(pw_but_up);");
10 addTransitionToTransitionsOfState(t, <unlocks>);
11 setSourceStateOfTransition(<unlock>, <transls);
12 /] ...
13}

Listing 2 Excerpt from the delta module generated for the running example

Software Reuse: From Cloned Variants to Managed Software Product Lines 101
5 Realization as Tool Suite DeltaEcore

DeltaEcore®! [36, 37] is a tool suite for variability management using the trans-
formational variability realization mechanism delta modeling. It employs a model-
based development process, which allows the tool suite to be tailored to specific
implementation languages with low effort. DeltaEcore has three major application
areas: delta language creation to adapt the tool suite to work with specific realization
languages, software product line definition to apply a managed reuse strategy to a
family of related software systems, and variant derivation to generate individual
software products from the software product line.?” Figure 11 provides an overview
and the following sections elaborate on each of these application areas in detail.

5.1 Delta Language Creation

Before creating an SPL with DeltaEcore, suitable delta languages for all source
languages used for the implementation have to be created, for example, a delta
language for statecharts. A delta language provides dedicated operations to alter
artifacts of the source language and, thereby, governs the level of control to these
artifacts, for example, by providing operations to change the transitions of a state
but not its id.

DeltaEcore assumes source languages to be available as an Ecore-based meta-
model where the source language’s elements are represented as metaclasses with
references and attributes, which is feasible for both textual and graphical languages.
For example, the statechart notation used throughout the running example is defined
by the metamodel depicted in Fig. 7.

A delta language in DeltaEcore consists of two parts: the common base delta
language and a delta dialect. The common base delta language is agnostic of the
source language and defines language constructs shared by all delta languages,
such as the definition of variables or requiring other delta modules. A delta
dialect is specific to a source language as it references elements of the source
language’s metamodel to define delta operations for the respective source language.
When specifying a delta module to alter an artifact of a specific source language,
DeltaEcore combines the common base delta language with the respective delta
dialect to provide an appropriate delta language.

The common base delta language is provided entirely by DeltaEcore. However,
the delta dialect has to be defined once for each source language, for example, a

2Ihttp://deltaecore.org.

221n this chapter, we focus on functionality of DeltaEcore regarding delta modeling. In addition,
DeltaEcore also allows for a seamless integration of feature models, provides a graphical editor
and configurator, supports integrated management of SPL evolution, and may be interfaced with
other tools, such as FeatureIDE [42].

http://deltaecore.org

C. Seidl et al.

102

Suropour v)[op JI0j seare uonesrjdde Jofew s 0100FeI[2 JO MAIAIAQ [T SI

juenep 19bue)
{(dnTIng"md)N3TD ‘@sjej=pajqeus md
‘ana3=paxoo| sp /20|~ sod A3y

h ‘ann=pajqeus”md
‘3s|ey=pax0o| sp/rojun—sod A3y *

jueLiep aseq

U.._._uunw_nmcwlza
‘as|ey=pay00| sp/pojun—sod A3y 4

0ol s —

q ‘ana3=paxo| sP/[T =i sod~md]}d0| sod"Aay

‘as|ey=pajqeus”md
‘anu3=pax20| s|p/[T == sod~md]yo0| sod"Aay

uoneuwlojsuel|
{(dnTIng"md)N3TD ‘esjey=pajqeus” md
‘anay=pay0| sp/oo| sod~Aay

e
‘ana=pajqeus~md

DeltaEcore

SaINpo B3Rq

QOO0 0O
Q00000
000000

sabenbue elaq

sabenbue 22.nos

-E-_ —
- -— syeydaIelS

SHeyD3eISeyRq

uoneALIdQ JUeLiep

uoniuyaq
aulq PNpo.id 31emypyos

uoneas)
abenbue ejj2a

Software Reuse: From Cloned Variants to Managed Software Product Lines 103

delta dialect for statecharts by specifying the signatures of the delta operations that
should be provided. As the principle nature of altering implementation artifacts in
delta modules is similar even across different languages, DeltaEcore provides seven
types of standard delta operations:

» Set and unset operations alter values of single-valued references, such as the
reference initialState of StateChart, by supplying a new value or
resetting the reference to its default value, respectively.

* Add and remove operations alter values of multivalued references, such as the
reference states of StateChart, by adding or removing a value to the set
of values, respectively. Insert operations alter values of multivalued references
with ordered values by adding a value to the ordered set of values at a specific
position.

* Modify operations alter values of attributes, such as the attribute name of State,
by supplying a new value, which, in contrast to altering values of references, is
guaranteed to be free of side effects.

* Detach operations remove an element from its container so that it can be deleted
from the model upon save if no other references to the element exist.>>

Due to their uniform definition, the standard delta operations of DeltaEcore have
defined semantics in terms of how they affect the artifacts of the source language.
In addition to standard delta operations, it is also possible to supply custom delta
operations with user-defined semantics, for example, to realize complex operations
specific to the source language, such as removing a state along with all its incoming
and outgoing transitions. As an example, we have already presented the delta dialect
for the statechart notation used throughout the chapter in Listing 1 in Sect. 4.2.2.

A delta dialect may be defined in multiple ways: First, it may be defined entirely
manually. Second, it may be generated by DeltaEcore by analyzing the structure
of the source language’s metamodel for suitable delta operations [36]. Third, it
may be generated as part of mining variability of cloned variants as presented in
Sect. 4.2.2 for statecharts. Furthermore, combinations of these approaches are also
possible so that a generated delta dialect may be refined manually to supply specific
user-defined operations. In combination with the common base delta language, the
definition of a delta dialect suffices to create a delta language tailored to a specific
source language.

23We refrained from defining a delete operation due to its potentially cross-cutting effects when
resetting all references to the deleted element. However, a delete operation can be supplied
manually with minimal effort if suitable for the source language.

104 C. Seidl et al.
5.2 Software Product Line Definition

To apply a managed reuse strategy to a family of related software systems,
DeltaEcore supports the definition of an SPL based on delta modeling. For this
purpose, one of the products of the family of software systems is designated as base
variant, and all other variants are described in terms of transformations realizing the
differences of the implementation artifacts to those of the base variant, which are
captured in delta modules.

A delta module modifies a realization artifact (e.g., a statechart) through a
sequence of calls to delta operations to add, modify, and remove elements. In
DeltaEcore, the delta operations available for altering a realization artifact are
provided by the delta dialect as part of the delta language for the respective source
language (e.g., the delta dialect for statecharts).

As an example, we have already presented a delta module in Listing 2 in
Sect.4.2.3. In line 2, the delta dialect for the source language of the artifact to be
altered is set by providing the URI of the language’s metamodel, which DeltaEcore
resolves to the appropriate delta dialect. In line 3, the statechart realizing the manual
power window, which serves as base variant, is referenced to be modified by the
delta module. In lines 4-12, a sequence of calls to delta operations alters the
statechart to contain functionality related to the automatic power window.

To create complex variants, multiple delta modules may be used where each one
encapsulates strongly coherent changes, for example, to realize one feature of the
SPL. However, delta modules may not be completely independent of one another,
for example, when one delta module alters an element that is created by another
delta module. For this purpose, DeltaEcore allows for delta modules to specify delta
module dependencies, which state that a delta module requires another delta module
to be applied before its transformations can be invoked.

DeltaEcore also allows for specifying application-order constraints, which state
that a certain delta module may only be applied after another delta module was
applied. In contrast to delta module dependencies, application-order constraints
do not entail that the referenced delta module is inevitably necessary so that
application-order constraints are only evaluated should both delta modules be
selected explicitly.

The set of all delta modules and their application-order constraints comprise the
SPL, which allows for managed reuse and creation of individual products through
variant derivation.

5.3 Variant Derivation

To create a concrete software product of the SPL defined in DeltaEcore, a variant
derivation has to be performed. For this purpose, a set of delta modules has to be
selected, which is then applied in a suitable order to transform a base variant to a
target variant containing the intended functionality.

Software Reuse: From Cloned Variants to Managed Software Product Lines 105

The initial set of delta modules is supplied by a user through selecting those
delta modules that are associated with the functionality for the software product that
differs from the base variant, for example, to enable the automatic power window.2*
DeltaEcore automatically completes the initial set of delta modules by adding all
(transitively) required delta modules.

To ensure deterministic variant derivation, a valid application sequence for the
relevant delta modules has to be determined. For this purpose, DeltaEcore performs
a topological sorting, which takes into account delta module dependencies as well
as application-order constraints posed upon those delta modules to determine an
application sequence that satisfies all constraints.

DeltaEcore then copies the base variant of the SPL and applies the delta modules
in the determined sequence to perform the transformations described by calls to
delta operations within each delta module. The result is the target variant of the SPL
containing the functionality of the intended software product. In DeltaEcore, the
variant derivation procedure is fully automated so that users of the SPL only need to
supply the initial set of delta modules intended to create a specific software product.
Furthermore, it is also principally possible to use delta modules to perform changes
specific to individual customers, for example, to customize a previously generated
variant.

With the capacities of DeltaEcore for delta language creation, software product
line definition, and variant derivation, it is possible to develop a set of closely related
software systems as delta-oriented SPL. Combined with the variability mining and
SPL generation approaches we presented in Sect. 4, it is possible to seamlessly
migrate from the industrial practice of clone-and-own to a managed reuse strategy
using an SPL.

6 Conclusion

In this chapter, we have demonstrated an approach for seamless transition from the
industrial practice of creating software variants through clone-and-own to a man-
aged reuse strategy with a delta-oriented SPL. We first reviewed the state of practice
and state of the art in variability realization mechanisms. We then introduced our
procedure for variability mining from variants created through clone-and-own to
retrieve previously unavailable variability information. We demonstrated how our
procedure generates a delta-oriented SPL from the mined variability information.
With the resulting delta-oriented SPL, it is possible to maintain and create a large
set of variants from a single set of managed variable artifacts.

In the future, we plan on incorporating domain knowledge to generate seman-
tically richer delta operations to be used within the generated delta language and

241f a feature model is supplied, it is further possible to select a configuration from the feature
model and have DeltaEcore resolve the selected features to the respective associated delta modules.

106 C. Seidl et al.

associated delta modules. Furthermore, we will also investigate how to generate an
initial feature model to be used with the delta modules to also represent the problem
space of the SPL in order to further increase usefulness for the industry.

References

—

10.

11.

12.

13.

14.

. Alves V, Matos P, Cole L, Vasconcelos A, Borba P, Ramalho G (2007) Extracting and evolving

code in product lines with aspect-oriented programming. In: Transactions on aspect-oriented
software development IV. Springer, Berlin, pp 117-142

. Apel S, Kistner C (2009) An overview of feature-oriented software development. J Object

Technol 8(5):49-84

.Bak K, Czarnecki K, Wasowski A (2011) Feature and meta-models in Clafer: mixed,

specialized, and coupled. In: Proceedings of the international conference on software language
engineering (SLE), SLE "11. Springer, Berlin, pp 102-122

Batory D (2004) Feature-oriented programming and the AHEAD tool suite. In: Proceedings of
the international conference on software engineering (ICSE), ICSE ’04. IEEE, Piscataway, pp
702-703

. Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wasowski A (2013) A survey

of variability modeling in industrial practice. In: Proceedings of the international workshop on
variability modeling in software-intensive systems (VaMoS), VaMoS ’13. ACM, New York, pp
7:1-7:8

. Berger T, Lettner D, Rubin J, Griinbacher P, Silva A, Becker M, Chechik M, Czarnecki K

(2015) What is a feature?: a qualitative study of features in industrial software product lines.
In: Proceedings of the international software product line conference (SPLC), SPLC ’15. ACM,
New York, pp 16-25

. Beuche D (2012) Modeling and building software product lines with pure::variants. In:

Proceedings of the international software product line conference (SPLC), SPLC ’12. ACM,
New York, pp 255-255

. Clements PC, Northrop LM (2001) Software product lines: practices and patterns. Addison-

Wesley, Boston

. Czarnecki K, Eisenecker UW (2000) Generative programming: methods, tools, and applica-

tions. Addison-Wesley, Boston

Damiani F, Lienhardt M (2016) On type checking delta-oriented product lines. In: Proceedings
of the international conference on integrated formal methods (iFM), iFM ’16. Springer, Berlin,
pp 47-62

Damiani F, Lienhardt M (2016) Refactoring delta oriented product lines to enforce guidelines
for efficient type-checking. In: Proceedings of the international symposium on leveraging
applications of formal methods, verification and validation (ISoLA), ISoLA’16. Springer,
Berlin

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory
study of cloning in industrial software product lines. In: Proceedings of the European confer-
ence on software maintenance and reengineering (CSMR), CSMR ’13. IEEE, Piscataway, pp
25-34

Figueiredo E, Cacho N, Sant’Anna C, Monteiro M, Kulesza U, Garcia A, Soares S, Ferrari
F, Khan S, Dantas F (2008) Evolving software product lines with aspects. In: Proceedings of
the international conference on software engineering (ICSE), ICSE *08. IEEE, Piscataway, pp
261-270

Greenfield J, Short K (2003) Software factories: assembling applications with patterns, models,
frameworks and tools. In: Proceedings of the international conference on object-oriented
programming, systems, languages and applications (OOPSLA), OOPSLA ’03. ACM, New
York, pp 16-27

Software Reuse: From Cloned Variants to Managed Software Product Lines 107

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Groher I, Voelter M (2009) Aspect-oriented model-driven software product line engineering.
In: Transactions on aspect-oriented software development VI. Springer, Berlin, pp 111-152
Haugen @, Mgller-Pedersen B, Oldevik J, Olsen GK, Svendsen A (2008) Adding standardized
variability to domain specific languages. In: Proceedings of the international software product
line conference (SPLC), SPLC ’08. IEEE, Piscataway, pp 139-148

Heidenreich F, Kopcsek J, Wende C (2008) FeatureMapper: mapping features to models. In:
Proceedings of the international conference on software engineering (ICSE), ICSE *08. ACM,
New York

Holthusen S, Wille D, Legat C, Beddig S, Schaefer I, Vogel-Heuser B (2014) Family model
mining for function block diagrams in automation software. In: Proceedings of the international
workshop on reverse variability engineering (REVE), SPLC *14. ACM, New York, pp 36-43
International Electrotechnical Commission (2009) Programmable logic controllers — part 3:
programming languages. I[EC61131-3 Standard

Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain anal-
ysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Carnegie-Mellon University
Software Engineering Institute

Kapser C, Godfrey MW (2006) “Cloning Considered Harmful” considered harmful. In:
Proceedings of the working conference on reverse engineering (WCRE), WCRE *06. IEEE,
Piscataway, pp 19-28

Kistner C, Apel S, Kuhlemann M (2008) Granularity in software product lines. In: Proceedings
of the international conference on software engineering (ICSE), ICSE *08. ACM, New York,
pp 311-320

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J (1997)
Aspect-oriented programming. ECOOP *97. Springer, Berlin

Krueger C (2002) Variation management for software production lines. In: Software product
lines. Springer, Berlin, pp 37-48

Krueger CW (2008) The Biglever software gears unified software product line engineering
framework. In: Proceedings of the international software product line conference (SPLC),
SPLC *08. IEEE, Piscataway, pp 353-353

Liebig J, Apel S, Lengauer C, Kistner C, Schulze M (2010) An analysis of the variability
in forty preprocessor-based software product lines. In: Proceedings of the international
conference on software engineering (ICSE). ACM, New York, pp 105-114

Lity S, Lachmann R, Lochau M, Schaefer I (2012) Delta-oriented software product line test
models — the body comfort system case study. Tech. Rep. 2012-07, Technische Universitit
Braunschweig, Braunschweig

Muthig D, Atkinson C (2002) Model-driven product line architectures. In: Software product
lines. Springer, Berlin, pp 110-129

Pohl K, Bockle G, van der Linden FJ (2005) Software product line engineering: foundations,
principles and techniques. Springer, Berlin

Rubin J, Chechik M (2013) A survey of feature location techniques. In: Domain engineering:
product lines, languages, and conceptual models. Springer, Berlin, pp 29-58

Rumpe B, Weisemoller I (2011) A domain specific transformation language. In: Proceedings
of the international workshop on models and evolution (ME), ME "11

Ryssel U, Ploennigs J, Kabitzsch K (2011) Extraction of feature models from formal contexts.
In: Proceedings of the international software product line conference (SPLC), SPLC ’11. ACM,
New York, pp 4:1-4:8

Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of
software product lines. In: Software product lines: going beyond. Lecture notes in computer
science, vol 6287. Springer, Berlin, pp 77-91

Schaefer I, Rabiser R, Clarke D, Bettini L, Benavides D, Botterweck G, Pathak A, Trujillo S,
Villela K (2012) Software diversity: state of the art and perspectives. Int J Softw Tools Technol
Transfer 14(5):477-495

Schmidt DC (2006) Model-driven engineering. Computer 39(2):25

108

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SI.

C. Seidl et al.

Seidl C, Schaefer I, ABmann U (2014) DeltaEcore — a model-based delta language generation
framework. In: Modellierung, Modellierung’ 14, pp 81-96

Seidl C, Schaefer I, ABmann U (2014) Integrated management of variability in space and
time in software families. In: Proceedings of the international software product line conference
(SPLC), SPLC ’14. ACM, New York

Sendall S, Kozaczynski W (2003) Model transformation the heart and soul of model-driven
software development. Tech. rep., Microsoft

She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2011) Reverse engineering feature
models. In: Proceedings of the international conference on software engineering (ICSE), ICSE
"11. IEEE, Piscataway, pp 461470

Steinberg D, Budinsky F, Paternostro M, Merks E (2008) Eclipse modeling framework, 2nd
edn. Addison-Wesley, Boston

Szyperski CA (1998) Component software - beyond object-oriented programming. Addison-
Wesley, Boston

Thiim T, Kistner C, Benduhn F, Meinicke J, Saake G, Leich T (2014) FeatureIDE: an
extensible framework for feature-oriented software development. Sci Comput Program 79:70-
85

van der Linden F, Schmid K, Rommes E (2010) Software product lines in action: the best
industrial practice in product line engineering. Springer, Berlin

von Rhein A, Thiim T, Schaefer I, Liebig J, Apel S (2016) Variability encoding: from compile-
time to load-time variability. J Log Algebr Methods Program 85(1):125-145

Weiland J, Manhart P (2014) A classification of modeling variability in Simulink. In: Pro-
ceedings of the international workshop on variability modeling in software-intensive systems
(VaMoS), VaMoS ’14. ACM, New York, pp 7:1-7:8

Weston N, Chitchyan R, Rashid A (2009) A framework for constructing semantically compos-
able feature models from natural language requirements. In: Proceedings of the international
software product line conference (SPLC), SPLC ’09. ACM, New York, pp 211-220

Wille D (2014) Managing lots of models: the FaMine approach. In: Proceedings of the
international symposium on the foundations of software engineering (FSE), FSE ’14. ACM,
New York, pp 817-819

Wille D, Holthusen S, Schulze S, Schaefer I (2013) Interface variability in family model
mining. In: Proceedings of the international workshop on model-driven approaches in software
product line engineering (MAPLE), SPLC ’13. ACM, New York, pp 44-51

Wille D, Schulze S, Seidl C, Schaefer I (2016) Custom-tailored variability mining for
block-based languages. In: Proceedings of the international conference on software analysis,
evolution, and reengineering (SANER), SANER ’16, vol 1. IEEE, Piscataway, pp 271-282
Zhang X, Haugen @, Mgller-Pedersen B (2011) Model comparison to synthesize a model-
driven software product line. In: Proceedings of the international software product line
conference (SPLC), SPLC ’11. IEEE, Piscataway, pp 90-99

Zhang X, Haugen @, Mgller-Pedersen B (2012) Augmenting product lines. In: Proceedings
of the Asia-Pacific software engineering conference (APSEC), vol 1. IEEE, Piscataway, pp
766771

	Software Reuse: From Cloned Variants to Managed Software Product Lines
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.2 Running Example Automotive Body Comfort System

	3 Variability Realization Mechanisms
	3.1 State of Practice in Variability Realization
	3.2 State of the Art in Variability Realization Mechanisms
	3.2.1 Annotative Variability Realization Mechanisms
	3.2.2 Compositional Variability Realization Mechanisms
	3.2.3 Transformational Variability Realization Mechanisms

	4 From Cloned Variants to Managed Software Product Lines
	4.1 Mining Variability from Cloned Variants
	4.1.1 Compare Phase
	4.1.2 Match Phase
	4.1.3 Merge Phase

	4.2 Generating a Delta-Oriented Software Product Line
	4.2.1 Delta Operation Identification
	4.2.2 Delta Language Generation
	4.2.3 Delta Module Generation

	5 Realization as Tool Suite DeltaEcore
	5.1 Delta Language Creation
	5.2 Software Product Line Definition
	5.3 Variant Derivation

	6 Conclusion
	References

