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Abstract In recent times, the number of features within a modern-day premium
automobile has significantly increased. The majority of them are realized by
software, leading to more than 1,000,000 LOC ranging from keeping the vehicle
on the track to displaying a movie for rear seat entertainment. The majority of
software modules need to be executed on embedded systems, some of them fulfilling
mission-critical task, where a failure might lead to a fatal accident. Software
development within the automotive industry is different from other industries or
open source, as there are more restrictions upon development guidelines and rather
strict testing definitions to meet the quality and reliability requirements or even
ensure traceability on defect liability. To meet these requirements, various tools and
processes have been integrated into the development process, delivering document
metadata which can be used for further insights, for example, Software Fault
Prediction (SFP).

1 When Reading This Chapter

This chapter represents a short introduction to current tools and development
procedures used within the automotive (software) industry. It is a compilation of
multiple antecedent publications. Some parts will be extended by knowledge of
practitioners to give insights into common processes. As the author is related to
one Original Equipment Manufacturer (OEM), some results might be influenced.
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2 A Short Introduction upon Software within Cars

A modern-day premium car, for example, the 2018 Audi A8 [6], if fully equipped,
can contain more than a 100 Electronic Control Units (ECUs), 14 networks and
up to 2 SIM cards, and multiple kilometers of cable (compare Fig. 1). According
to Charette [13], the software within a modern-day premium car might claim
up to 1,000,000 Lines Of Code (LOC). Software modules need to fulfill various
tasks ranging from simple comfort features, for example, controlling the stepper
motor within an electric seat, up to complex tasks like a predictive chassis. Some
features only require a single ECU with a low-power processor, for example,
remote garage door control, while others might require a powerful processor
with multiple cores and a Graphics Processing Unit (GPU) to encode multimedia
content for entertainment. Some features require multiple sensor values connected
to different ECUs and influence more than one actuator or even require online
and map data, for example, the dynamic matrix headlights (see [6]). The majority
of software components need to run under embedded conditions and deliver their
result within real time, for example, power steering; others can operate on soft
real time, for example, navigation systems. Some features need to meet rather
strict development guidelines like Motor Industry Software Reliability Association
(MISRA) or need to satisfy safety requirements as Automotive Safety Integrity
Level (ASIL). Therefore, one can see a car as a heterogeneous network of
multiple distributed computers running a high number of software functions, either

Fig. 1 The cabling topology of the 2018 Audi A8; note the actual ECUs are not shown
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stand-alone, distributed asynchronous, or synchronous, which represents a highly
complex system.

Some modern-day features might only be realized by software. Most of the
required actuators and sensors are already within the car to fulfill various functional-
ities. Central software components might use these to realize enhanced or additional
features, for example, Start/Stop automatic. In this SoftWare Component (SWC)
case, it needs to read back the battery capacity level, the climate control state, if the
driver is steady on the break, etc. If all these conditions are met, the system instructs
the engine control ECU to switch off the engine. Even more complex systems,
for example, Advanced Driver Assistance Systems (ADAS), require information
from multiple sensors, perform calculation upon more than one ECU, and may
control several actuators which sum up to highly complex systems. To visualize
this, we are using the Adaptive Cruise Control (ACC) as an example. The system
consists of two main sensors, a radar and a camera. Both deliver object information
(position, distance, speed, etc.) regarding vehicles ahead of the ego car. Those object
information will be calculated on the ECU connected to the sensor; the ego car’s
motion will be acquired on the Inertial Measurement Unit (IMU) (which is already
a part of the car as Electronic Stability Control (ESC) requires precise acceleration
information to fulfill its task). The SWC realizing the ACC might be hosted on
another ECU, or included on one of the sensors’ ECU. It needs to be connected
via a bus (CAN, FlexRay) network. This software will calculate acceleration and
deceleration upon the driver’s presets (distance to vehicle ahead, driving profile,
etc.) and send the values to break and engine control ECU. Those components
decide upon actual speed and requested (de)acceleration if the engines carrier gas
(in case of an Electriv Vehicle (EV) maybe recuperation abilities) is enough or
if the break system needs to act. Further details have been released by Duba and
Bock [14]; a visualization can be seen in Fig. 2.

Some software are used to compensate mechanical deficits; for example, adding
ESC1 to the 1997 Mercedes A-Class after failing the Elk Test to enhance the car’s
stability.

These trends lead to an increasing amount of software being indispensable
parts of the car. Raising the amount of software might cause the number of
software-related bugs to increase too. Figure 3 shows vehicle recalls extracted from
the NHTSA database [27]. This database is publicly available and contains all
defects which lead to an official recall by the NHTSA on US roads. Similar to
Altinger et al. [2], we query the up-to-date database grouping by vehicle models
and model years. A software-related recall is counted if the defect or the repair
description contains “software,” “update,” or “program.”

One can see that a huge number of vehicles need to be recalled due to software
issues. This data is only valid for the USA. The graph uses the term “model year”
as a base, meaning the year where the car (or a sub release) has been introduced to
the market. This is not necessarily the year where the car has been manufactured or

1Nowadays ESC is mandatory by law in EU since 11/2014.
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Fig. 3 The software caused recall statistics based on an NHTSA recall database query, [27]. The
sale data is originated by Ward’s Auto [32]. The graph has been generated using the same settings
as Altinger et al. [2]

sold nor the year when the recall has been filed. At high peak, this data shows more
recalls than sales which might be caused by vehicles affected by multiple recalls
during their lifetime.

Fixing a software bug will be performed by updating the software. If a recall is
filed, an OEM needs to pay for contacting the driver, an engineer at a workshop to
update the software, maybe a rental car for the customer, etc. There might be lower
costs upon using Over The Air (OTA) updates. However, the OEM needs to ensure
that all affected vehicles would install the updates. Multiplied with the number of
effected vehicles, easily one recall can sum up to millions of euros to fix a simple
software bug (compare Capers [12]). This leads even to a high economic interest to
prevent bugs in the field and invest a rather high share from the vehicle development
costs into testing.

There are no official numbers on the development costs, but Shea [30] did
interview John Wolkonowicz, a senior auto analyst for North America at IHS
Global, claiming development costs between one (setting up on existing model)
and six (new model, new platform, new engines, etc.) billion USD. Broy et al. [11]
analyze the development costs for a vehicle electronic system at 300 million EUR,
estimating two thirds of this being software development costs.

Developing software to be used within cars is subjected to various restric-
tions. Coding standards, as the 2004 MISRA-C [23], modeling guidelines as the
MAAB [20], limit the usage of programming language features, such as no pointers
or no dynamic memory usage or no unlimited depth of function calls, etc. A
recent study by Altinger et al. [4] demonstrated the effectiveness of such standard
upon preventing common programming bugs. Furthermore, standards like ISO
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Table 1 Operators’ overview from three automotive projects

Preprocessor Flow control Data type Mathematical Logic/comp.

% Operator % Operator % Type % Type % Type

19.41 #define 8.92 break 1.48 int 54.97 + 8.66 !
15.36 #ifndef 6.79 case 96.32 static 13.75 − 3.00 ! =
65.24 #include 2.13 default 0.72 struct 1.47 % 7.05 &

29.24 else 1.48 unsigned 21.85 * 13.06 &&

0.47 for 7.96 / 49.30 =
49.46 if 9.08 ==
0.72 return 2.05 |

2.14 switch 4.89 ||

0.02 while 0.84 >=
0.12 ? 0.15 <=

0.75 <

0.80 >

0.32 ∼
0.03 ^

26262 [17] demand various testing methods addictive to the risk of failure. The
ASIL rating represents a software failure impact upon human lives. If a systems
failure puts human life in danger, it will be rated ASIL D. This level strongly
recommends formal verification of the program code. Even in less critical systems,
the norm demands testing goals, for example, branch/statement coverage upon test
cases. A good overview has been presented by Reactis software [28].

Altinger et al. [4] performed a study on three different automotive software
projects, analyzing the usage of operators within those three projects. Table 1 shows
an overall summary. All these projects use C as a programming language, limited
by the MISRA 2004 coding guidelines. Table 1 demonstrates a strong tendency of
using decision-based code elements (if/else, logic operators, etc.) and no usage of
pointers or dynamic memory in the three automotive software projects. The whole
software has been developed using model-driven approaches realized with Matlab
Simulink and TargetLink to generate the actual C code. The workflow is presented
within Fig. 6. A more detailed description on the development process has been
presented by Altinger et al. [3].

3 Development Process and Available Documents

The VW corporation employed 45,742 people within their Research and Develop-
ment (RD) according to their annual fiscal report [31]. This amount of engineers
working together demands clear development processes and descriptions to handle
such huge projects as developing a car. Figure 6 shows an exemplary development
process used by three projects we did analyze. A core component is a clear
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separation between requirements, development, and testing which is realized by
using different specialized tools working together with an adopted toolchain as
presented by Kiffe et al. [19]. They present their work on linking different tools from
various vendors called ENPROVE. This toolchain enables exporting requirements
written in DOORS into a Matlab Simulink model. Thus the engineer designing the
model can trace if subsystems accord to requirements.

Altinger et al. [2] performed a questionnaire survey receiving 68 responds
from Series Development (SD), Pre Development (PD), and Research (Re). The
authors presented IBM DOORS as the most common tool to write specifications.
Further, they presented a typical work split between dedicated engineers writing
specifications and test cases and developers realizing the software. Within their
work, they presented Mathworks Matlab Simulink as the most common tool to
design models and generate code.

Figure 2 shows the W-development model as a test-enhanced extension to the
well-known V-model as presented by Jin-Hua et al. [18]. One can clearly see a
related testing stage to every definition and implementation stage. As defined by the
MISRA 2004 standard, every module needs to pass code review stages, which are a
core part of the W model (Fig. 4).

Bock et al. [10] present the results from a study on various tools used during
different development stages. The authors are presenting a rather good overview and
short introduction to all tools they present. Their ranking is based on a questionnaire
survey asking whether a tool is in use or a tool/method is familiar, targeting
engineers working at SD, PD, and Re. Their work developed a taxonomy to guide
engineers on the selection of new tools and methods.

Altinger et al. [2] draft commonly used tools for automotive software engineer-
ing. Themajority of requirements and specifications are written using IBMDOORS.
An engineer exports the related subset to his software module and establishes a
link between the DOORS database and a Matlab Simulink model. As stated in
Altinger et al. [2], software specifier, developer, and tester are dedicated personnel.
Thus, another engineer exports the test requirements and generates test cases
associated with Software in the Loop (SiL), Hardware in the Loop (HiL), etc.
Following this process, every tool will get updates if requirements change. Scripting
interfaces are used to ensure requirements are linked with code parts.

In contrast to classic software development, there is a strict milestone plan for
every SWC. Figure 5 visualizes them. The automotive industry is dominated by
Start Of Production (SOP), which means there is a fixed date where every module,
no matter if mechanical, electrical, or software, has to be available to be fit into the
new produced model.

Software development has derived various sub-milestones:

• Interface freeze – all software interfaces (including network messages on the
CAN and FlexRay), similar to an Application Programming Interface (API), have
to be defined and are not allowed to be changed afterward.

• Feature freeze – all functionality has to be defined and implemented; rapid
prototypes are still allowed; code optimization might not be completed.
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Fig. 5 Sample of software milestones within the automotive domain

• 100 % software – all implementation shall be done; only bug fixes are allowed
after this point.

• SOP – Version 1.0 which will be shipped with the first customer cars.

4 Tool Usage

Altinger et al. [2] and Bock et al. [10] yield a list of well-established tools to
specify requirements and to perform software tests. Common to both studies, Matlab
Simulink is the dominating programming environment.

As outlined by Altinger et al. [3], there exists a wide range of tools supporting
the development process. Figure 6 presents their interaction. During the analysis of
projects, the following tools served:

• IBM DOORS: writes and traces requirements.
• Matlab Simulink: develops models and performs basic tests during develop-

ment.
• dSpace TargetLink: generates C code based on the Simulink models.
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Fig. 6 Development workflow, adopted from Altinger et al. [3]

• PTC Integrity: revision system to store each development artifact (model files,
configurations, etc.). This tool offers an Integrated Ticketing System (ITS) to
handle bug reports and their fixes.

• Target Compiler: a compiler specific to the ECUs platform.
• Testing: various scripting interfaces using standard automotive tools such as

Vector CanOe or CanAp or ADTF, . . .

Further and more detailed tool and test strategies are presented by Müller et al. [24].
ISO 26262 requires tools to be qualified before being used for various levels

of ASIL-rated software. The EntwicklungsProzess Verbesserung, German: Devel-
opment Process Improvement (EnProVe) process as described by Kiffe et al. [19]
performs such tool qualifications. In addition, this process develops scripting
interfaces between the qualified tools to enable automation.

5 Testing Approaches

Traditional testing approaches two decades ago lead to setting up a test car and
perform various road tests on a dedicated test track; if the car passes all of them,
the phase is over. Modern-day cars consist of a huge amount of components which
need to be tested separately. Common approaches are in the loop tests, such HiL,
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SiL, Model in the Loop (MiL), etc. As Bergmann et al. [7] state, real test drive will
decrease, virtual test drives will increase.

A recent survey by Altinger et al. [2] presents the work distribution upon
engineers when developing car software. There is a dedicated group designing test
cases which might be executed on HiL or even real test drives. Even within early
states of software development, a test case is linked to every stage (compare Jin-
Hua et al. [18]) leading to the W-development process (see Fig. 4).

Within computer games, for example, “Need for Speed,” one can drive a
virtual car on digital reconstructed race tracks. Virtual Test Drive (VTD) (see
Dupuis et al. [15]) takes this idea into realistic road simulation. This system uses
a simulated world to generate the test stimuli. Based on road network, a car can
drive along a virtual street, and other cars might be simulated based on driver
model descriptions. The rendering engine can generate an image to be fed into
a camera which will generate test input for computer vision algorithm. Sensor
model descriptions might extract raw values, for example, LIght Detection And
Ranging (LIDAR), based on the virtual world. Nentwig et al. [26] performed
analysis upon performance of generated images for lane mark detection considering
weather influences. Within their study, they compare generated data with real
measurements. Using these toolsets, one might be able to define test cases using
real-world assumptions and generate the stimuli for every ECU on a test bench.
Müller et al. [24] use this method but extend the data generation. Within their
work, they use VTD to calculate sensor input data, for example, video data which
is captured by the car’s ADAS camera using a video screen. Similar processes are
used to generate input data for ultrasonic sensors or even radar. Thus, the complete
system can be considered as an HiL.

SiL or MiL tests might be performed with stimuli defined within the test cases,
but as systems get more complex, they cannot be tested independently. To cover
more aggregated scenarios, one can use, for example, “Virtuelle Probefahrt 2.0.”
This method is a mixture between real hardware operated on HiL benches and
simulated stimuli (sensors, road network, etc.). An in-depth explanation has been
given by Miegler et al. [21]. Standardized interfaces to exchange modules, for
example, a driver model or road networks, are mandatory. The system is capable of
replacing/mixing stimuli with either simulated data (using, e.g., VTD) or recorded
real drive data (e.g., captured at road test drives). The modular architecture enables
engineers to replace sensor models with different simulation approximations. Using
an HiL test bed, the simulated data can be fed into a real ECU or even a network of
ECU.

Rather new technologies, such as Vehicle in the Loop (ViL), are using a real
vehicle but virtual environment to perform initial test without harming real vehicles.
This means a human driver might sit within a real car driving along an empty road.
The driver will have to wear virtual reality glasses where he can see the simulated
traffic. The simulation will generate sensor inputs to be fed into a System Under
Test (SUT) or capture them by real objects on the road. The system will be able
to generate real force feedback (via injecting the real vehicle systems) and record
the driver’s reaction. ADAS development can benefit due to early test chance.
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According to Bock et al. [8], the ViL method is usable. Within their work, they
performed user study with 36 persons followed by later work [9] where they verified
the virtualization assumptions stating that ViL is able to generate realistic driving
impressions within a very early stage of development.

Miegler et al. [22] present a new HiL approach where they use existing ECU
and real-time rapid prototyping systems to integrate unavailable ECU; for example,
vehicle dynamics might be computed on an HiL, and environmental data, for
example, traffic participants, is simulated on a PC. Overall, scenario control is part
of the simulation; Reset/Replay is possible. Rapid prototypingmodules are possible
using Automotive Data and Time-Triggered Framework (ADTF) and VTD, where
ADTF ensures the connectivity to HiL systems and VTD realizes the environment
simulation.

6 Software Fault Prediction (SFP): A New Idea
to Be Integrated

As presented in Sect. 2, automotive software development follows restrictive set-
tings in terms of coding guidelines and, for example, commit policies. As outlined
by Altinger et al. [3], it is possible to gain advantages. The basic idea in brief is
as follows: use code measurements (LOC, cyclomatic complexity by McCabe, etc.
as analyzed by Herbold et al. [16]) for every commit; extract bug reports from the
ITS and derive a ground truth for bug and fault-free commits; use this data to train
a machine learning algorithm, for example, Support Vector Machine (SVM), Näive
Bayes (NB), and Random Forest (RF); repeat the measurement step at the time
of commit and use the trained machine learning system to derive a probability
if the actual commit contains a bug. Figure 7 presents the involved tools and
process steps to perform such measurements. Further details and sample projects
with measurements are outlined by Altinger et al. [3]. The dataset is publicly
available by Altinger [1]; further datasets, including industry grade, are outlined
by Sayyad et al. [29].

Altinger et al. [3] could demonstrate a rather high true positive hit rate on
fault predictions at more than 90%. They conclude that their data is better than
others, for example, Zimmermann et al. [33], on an open source projects; and
Nagappan et al. [25], on commercial software, as the changes between commits
are smaller and the nature of generated code from model-driven development
approaches results within more homogeneous code structure compared to text-based
software developers. Further, they could rely on the data in the ITS, as there were
policies to enforce correct commit logs by every single developer. Thus, the quality
of the measured data is much higher than, for example, on Zimmermann et al.’s [33]
analysis on the open source tool Eclipse, which suffers from no clear differentiation
between feature commit and a bug fix or needs to deal with blank commit messages.
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Fig. 7 Workflow to extract metric values for dataset; adopted from Altinger et al. [3]

Due to a low bug rate, as there are only 2.6–15% samples in the bug class,
Altinger’s [1] datasets suffer from imbalanced class distribution. To overcome this,
Altinger et al. [5] suggest to use over- and undersampling to enhance predictive
performance. They succeed in showcasing an improved performance using an NB.
They state when using up- or downsampling, one has to choose between precision
(all reported faults are true bugs) and recall (finding all bugs), both of which cannot
be increased at the same time.

The obvious idea, to use a trained prediction model from one project to another,
for example, at an early stage where there are too few metric data to train, does
not seem to perform well. Altinger et al. [3] performed a cross-project prediction
including well-known metric transfer methods but could not archive a prediction
performance above the random hit rate. These findings are in line with other industry
data as presented by Zimmermann et al. [34].

This method seems to be a promising extension to the W-development process
(see Fig. 5), as it could be an early indicator to define the various software tests.
As known from Altinger et al. [2], test engineers need to spend free testing budget
based on their experience; thus, SFP might aid in these decisions. As of the more
s̈tatisticn̈ature, SFP cannot replace a full test suite.
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