Requirements Engineering)
for Automotive Embedded Systems Shethie

Miroslaw Staron

Abstract Requirements engineering is both a phase of software development
lifecycle and a subdomain of software engineering. In general, “requirements" is
defined as the description of the functionality of software under design and its
properties (functional and nonfunctional requirements). Requirements are often
perceived as textual documentation. However, in automotive software engineering,
requirements can have multiple forms—starting from the short textual descriptions
of functionality to fully executable model-based specifications.

In this chapter, we overview the notion of a requirement in general, and describe
the types of requirements used when designing automotive software systems. We
use the V-model, prescribed by the ISO 26262 safety standard, which describes
the way in which software is designed in the automotive domain. We consider the
different types of requirements used in these phases.

1 Introduction

Contemporary cars, trucks, buses, and even bikes have software—some as much
as 1 GB of onboard binary code excluding maps, music, and other downloadable
data. As the history of software dates back to the 1970s with the first onboard
Electronic Control Units (ECUs) in an engine, we could observe an enormous
growth of software. Up until the end of the 1990s, the amount of onboard code was
measured in megabytes, and only a few ECUs were present in the car. However, in
the last decade, this amount has grown to over 130 ECUs per car and as much as the
aforementioned 1 GB of code.

Moreover, software is included in more safety-critical areas, such as collision
avoidance by breaking, automatic parking, or autonomous driving. Therefore, we
need to enhance our expertise in working with software as one of the primary

M. Staron (°<)
Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden
e-mail: Miroslaw.Staron @cse.gu.se

© Springer Nature Switzerland AG 2019 11
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_2&domain=pdf
mailto:Miroslaw.Staron@cse.gu.se
https://doi.org/10.1007/978-3-030-12157-0_2

12 M. Staron

development entities alongside mechanics and electronics. In this chapter, we focus
on one of these areas—requirements engineering. We contribute by providing prac-
tical examples of how to efficiently utilize requirements engineering for automotive
systems.

The area of requirements engineering is one of the disciplines in vehicle
development on the one hand, and, on the other hand, it is a subdomain of software
engineering and one of the initial phases of software development lifecycle. It
deals with the methods, tools, and techniques for eliciting, specifying, documenting,
prioritizing, and quality assuring the requirements. The requirements themselves
are very important in enhancing the quality of software in various ways as quality
is defined as “The degree to which software fulfills the user requirements, implicit
expectations and professional standards.” [16].

Requirements is often defined as (/) a condition or capability needed by a
user to solve a problem or achieve an objective; (2) a condition or capability
that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed documents; and (3) a
documented representation of a condition or capability as in (1) or (2) [16]. This
definition stresses the link between the user of the system and the system itself,
which is important for a number of reasons:

» Testability of the system—it should be clear how a requirement should be tested,
for example, what is the usage scenario realized by the requirement.

* Traceability of the functionality to design—it should be possible to trace which
parts of the software construction realize the requirement in order to provide
safety argumentation and enable impact/change management.

* Traceability of the project progress—it should be possible to get an overview
of which requirements have already been implemented and which are still to be
implemented in the project.

It is a very technical definition for something that is intuitively well known—a
requirement is a way of communicating what we, the users, want in our dream car.
In this sense, it seems that the discipline of requirements engineering is simple. In
practice, working with requirements is very complex as the ideas that we, users,
have need to be translated to one of the millions of components of the car and its
software. So, let us see how the automotive companies work with our requirements
or dreams.

We discuss software requirements engineering because the automotive industry
has recognized the need to shift its innovation from the mechanical parts of the
car to its electronics and software. The majority of us, the customers, buy cars
today because they are fast (sporty), safe, or comfortable. In many cases, these
properties are realized by adjusting the software that steers parts of the modern
cars. For example, we can have the same car with a software package that makes it
extremely sporty—Ilook at the Tesla’s “Insane” acceleration package or the Volvo’s
Polestar performance package. These are just the two challenges which lead to two
very important trends in automotive software requirements engineering:

Requirements Engineering for Automotive Embedded Systems 13

1. Growing amount of software in contemporary cars—as the innovation is driven
by software, the amount of software and its complexity grows exponentially. For
example, the amount of software in the 1990s was a few megabytes of binary
code (e.g., Volvo S80) and today reaches over one gigabyte excluding maps and
other user data (e.g., Volvo XC90 of 2016).

2. Safety requirements posed by standards such as ISO 26262—as the software
steers more parts of the car, there is a larger probability that it can interfere with
our driving and cause accidents, and therefore, it has to be safety-assured just
like the software in airplanes or trains. The contemporary standard for functional
safety (ISO/IEC 26262, Road Vehicles—Functional Safety) prescribes methods
and processes to specify, design, and verify/validate the software.

Automotive software requirements engineering needs rigid processes for han-
dling the construction of the software in the car and therefore is much different
from the other types of software requirements engineering, such as telecom or web
design.

This chapter explores the theory of requirements engineering in automotive
development by examining two types of requirements—textual specifications and
models used as requirements. It also helps us to explore the evolution of require-
ments engineering in automotive software development to finally draw on the
current trends and challenges for the future.

2 Requirements and Requirements Engineering

Requirements engineering in the automotive sector is increasingly about the soft-
ware, since software is the source of innovations in the dramatically increasing
tempo of changes. According to Houdek [15] and the report on the innovation in the
car industry [8], the number of functions in an average car grows much faster than
the number of devices, with the number of systematic innovations growing faster
than the individual innovations. Systematic innovations are systems of software
functions rather than individual functions. Therefore, the discipline of requirements
engineering is more about engineering than it is about innovation.

The volume of an automotive requirement specification is in the range of 100000
pages for a new car model according to Houdek based on his study at Mercedes-
Benz [15], with ca. 400 documents of 250 pages each at the lowest specification
level (component specifications), which are sent over to a large number of suppliers
(usually over 100 suppliers, one for each ECU in the car).

Weber and Weisbrod [42] expounded the complexity and size of requirement
specifications in the automotive domain based on their experiences from Daim-
lerChrysler. Their large software development projects can have as many as 160
engineers working on a single requirement specification and producing over 3 GB
of requirements data. Weber and Weisbrod describe the process of requirements
engineering in the following way: “Textual requirements are only part of the

14 M. Staron

game—automotive development is too complex for text alone to manage.” This
quote reflects the -state-of-the-art practice of requirements engineering—that the
requirements form only one part of the construction database. However, let us look
at how the requirements are specified in the automotive domain. Similar challenges
of linking requirements to other parts of the construction database can be also found
in our previous studies in [23].

3 Types of Requirements in Automotive Software
Development

When designing software for a car, designers (who are often referred to as
constructors) gradually break down the requirements from the car level to the
component level. They also gradually refine them from textual requirements to
models of behavior of the software. This gradual refinement is caused by the fact that
the requirements have to be sent to Tier 1 suppliers for development and therefore
should be as detailed as possible to enable their validation. Figure 1 presents the
main phases of software development for automotive systems, roughly based on the
software development process model prescribed by ISO/IEC 26262 Systems and
Software Safety—Functional Safety standard [17].

In the figure, we also make a distinction between the responsibilities of original
equipment manufacturers (OEMs) (vehicle manufactures) and their suppliers. This
distinction is important as it is often the phase where the handshaking between
the suppliers and the OEMs takes place, and therefore the requirements are used
during the contract negotiations. In this context, a detailed, unambiguous, and
correct requirement specification prevents potentially unnecessary costs related to

~ S

Ir_ Requirements / |\ Customer test :I
Function design | | Functional test I
/—\‘. r N
| Systemdesign | | System test |
M 00 OEMs
------- | Component design | Component test [oresrerermsrerarnerraees
' % Suppliers

b ¢
| Implementation |
p

~

Fig. 1 V-shaped model of software development process in automotive software development

Requirements Engineering for Automotive Embedded Systems 15

the changes in requirements caused by miscommunication between the OEMs and
suppliers.
In the automotive domain, we have a number of tiers of suppliers:

e Tier 1—suppliers working directly with OEMs, usually delivering complete
software and hardware subsystems and ECUs to the OEMs.

e Tier 2—suppliers working with Tier 1 suppliers, delivering parts of the sub-
products that are then delivered by Tier 1 suppliers to the OEMs; Tier 2 suppliers
usually do not work directly with OEMs, which makes it even more important
for the requirements to be detailed so that they can be correctly broken down by
Tier 1 suppliers for Tier 2.

e Tier 3—suppliers working with Tier 2 suppliers, similar to Tier 2 suppliers
working with Tier 1 suppliers.

In this section, we describe these different types of requirements, which can be
found in these phases.

3.1 Textual Requirements

AUTOSAR is a great source of inspiration for research in automotive software
development, and therefore let us look at the requirements in this standard—it
appears that they are mostly textual. An example of a requirement specified in this
format, for a feature of keyless entry, is presented in Fig. 2.

The structure of the requirement is quite typical for requirements in general—it
contains the description, rationale, and use cases. So far, we do not see anything
specific. Nevertheless, if we look at the sheer size of such a specification—over

REQ-1: Keyless vehicle entry

Type Valid

Description It should be able to open the car with an RFID key or a mobile
phone

Rationale The majority of our competitors have a RFID sensors in the car

that open and start the car based on the proximity of the
designated driver who has the RFID sender (e.g. a card).

To stay ahead of the competition, we need to provide the key
as a mobile phone app for iOS and Android phones.

Use case Keyless start-up

Dependencies REQ-11: RFID implementation

Supporting material | ---

Fig. 2 An example of a textual requirement, specified in a format used by AUTOSAR require-
ments

16 M. Staron

1000 pages—we can see that we might be at loggerheads, so let us discuss the kind
of issues we can discover.

Why: The textual requirements are used when describing high-level properties of
cars. These types of requirements are mostly used in two phases—the requirements
phase when the specification of the car’s functionality at a high level takes place
and at the component design phase where large software requirement specification
documents are sent to suppliers for development (although the textual requirements
are often complemented by model-based requirements).

How: Specifying this kind of requirements rarely happens from scratch. Textual
requirements are often specified based on models (e.g., UML domain models) and
are intended to describe details of the innerworking of software systems. They
are often linked to verification methods describing how the requirement should
be verified—for example, describing the test procedure for validation that the
requirement is implemented correctly. Quite often, it is the suppliers who do the
verification as many requirements demand specific test equipment to test their
implementation. If this is the case, the OEMs choose a subset of requirements and
verify them to check the correctness of the verification procedure from their side.

What: The text for the requirement is specified in the format given in Fig.2—
tables with text. This format is effective for specific details, but ineffective when we
want to communicate overviews and provide the context for the requirements. For
this, we need other types of formats—use cases or models.

3.2 Use Cases

In software engineering, the golden standard to specify requirements is to adopt the
use cases as defined by Jacobson together with this objectory methodology in the
1990s [18]. The use cases describe a course of interaction between an actor and the
system under specification, for example, as shown in Fig. 3 where the actor interacts
with the car in the use case “Keyless start/up.” The corresponding diagram (called
the use case diagram in UML) is used to present which interactions (use cases) exist
and how many actors are included in these interactions.

In the automotive industry, this kind of requirements specification is the most
common when describing functions of vehicles and their dependency. It is used to
describe how the actors (drivers or other cars) interact with the designed vehicle
(the system) in order to realize a specific use case. This kind of specification is often
described using the sequence diagrams of UML, and we can see an example of such
a specification in Fig. 4.

Fig. 3 An example use case
specification with one use
case Keyless start/up

Requirements Engineering for Automotive Embedded Systems 17

MyCar:System
driver:Actor
approach()
isValidDriver = checkValidity()

—
[isValidDriver] openDoors()
[isValidDriver] startEngine()

—

Fig. 4 An example specification of a use case utilizing the message sequence charts/sequence
diagrams

Why: The use case specifications provide a high-level overview of the function-
ality of the designed system, such as a car, and therefore are very useful in the early
phases of vehicle development. Usually, these early phases are functional design
(use case diagrams) and the beginning of system design (use case specifications).

How: Using high-level descriptions of product properties, functional designers
break down these properties into usage scenarios. These usage scenarios provide
a possibility to identify which of the functions (use cases) are of value to the
customers and which are too cumbersome.

What: These kinds of specifications consist of three parts—(1) the use case
diagram, (2) the use case specification utilizing the sequence diagram, and (3) the
textual specification of a use case detailing the steps of the interaction applying a
somewhat structured natural language.

3.3 Model-Based Requirements

One method to provide more context to the requirements is to express them as
models. This kind of representation can be done in two types of formalisms—UML-
like models and Simulink models. In Fig. 5, we present an excerpt of a Simulink
model for an ABS system from [32, 33, 37].

18 M. Staron

__ [sldemo_wheelspeed_absbrake
= |Input
Desired WheelSpeed Ww;
relative Tire Torque
slip
A Wheel Speed
i yout
' Vs
mu-slip Weight 1 Vehicle speed
friction curve s _» (angular)
1
Vehicle Sq
speed
Stopping distance
i f(u) |l
slp | |
Relative Slip

Fig. 5 An example Simulink model that can be used as a requirement to describe how to
implement the ABS system

The model shows how to implement the ABS, but the most important property is
that the model shows how the algorithm should behave and therefore how it should
be verified.

Why: Using models as requirements has been recognized by practitioners, and in
an automotive software project, up to 23% of the models are used as requirements
according to our previous studies [26] and [25]. According to the same study,
up to 13% of the effort is spent in the software project to design these kinds of
requirements.

How: The simulation models used for requirements engineering are often used
as part of the process of system design and function design where the software and
system designers develop algorithms that describe how functions in modern cars
are to be realized. These models can be automatically translated to C/C++ code
using code generation, but it is rather uncommon. Hence, these models describe the
entire functions that are often partitioned into different domains and spread over
multiple components. Quite often, these kinds of requirements are translated into
textual specifications as shown in the previous subsection.

What: The models are expressed using Simulink or a variation of statechart such
as Statemate or Petri nets. These simulation models detail the functions described in
the use cases by adding the system view of the interaction—the blocks and signals.
The blocks and signals represent the realization of the functionality in a car and are
focused on one function only. These models are often used as specifications, which
are then detailed and often used to generate the source code automatically.

Requirements Engineering for Automotive Embedded Systems 19
3.4 Requirements as Models

With the introduction of SysML, the models became more expressive than they were
when modeled with UML. SysML introduced the notion of requirements diagram,
as shown in Fig. 6.

Why: Considering the requirements as first-class entities in models provides the
possibility to link them to construction elements of the design [39]. These links
provide the possibility to trace requirements to implementation details and therefore
speed up modifications.

How: The requirements and their rationale are modeled boxes and lines, just like
any other modeling element in SysML. The requirements diagram is one of the most
flexible diagrams in SysML, where we can place all kinds of structural elements.

What: The requirements capture the functions and properties of the products.
They are linked to rationales and design intentions to increase awareness of the
design and implementation constructs in the context.

«Rationale»

Market analysis shows that
we need to be faster than our
competitors in the same
segment

%1 Max acceleration compared to competition

«Requirement» -
= Maximum acceleration L o «Trace»

id=1.1 o
text=The vehicle should
accelerate from 0- 100
km/h in less than 6.2 M-~ «Satisfy»

seconds under normal i

weather conditions. = CEE R

- &t Provide power

«DeriveReqt» ~ -
Derived system requirement

«TestCase»
: Testing max acceleration

SO~
'
i+
.12
®
<

1
«Requirement»
E Engine power

id=1.1.1

text=The minimum
engine power should be
200 hp

Fig. 6 An example SysML requirement model

20 M. Staron
4 Measuring Requirements and Requirement Specifications

Industry grade requirement specifications are significantly large—tens of thousands
of requirements. Therefore, software engineers use quantitative assessments to
understand the complexity and quality of software requirements.

Honig [14] provides a number of rudimentary measures for requirement specifi-
cations':

* Requirement correctness—Is the individual requirement properly defining a gen-
uine system function and need? In some cases, the measure may be determined
by a formal system requirement verification process.

* Requirement unambiguity—Is the requirement clear and understandable to the
expected users of the document? Are multiple, different interpretations of the
requirement by different readers unlikely?

* Requirement completeness—Does this single atomic requirement include every-
thing necessary to fully understand the desired function? Are all realizable
types of input data, events, system environment covered? Are all terms used
understandable or included in the glossary?

* Requirement verifiability—How adequately can this requirement be tested? Is it
perfectly clear what test(s) are needed to confirm the requirement is met? Is it
clear what should be considered a failure of a test of this requirement?

* Requirement modifiability—Is the individual requirement written so as to be easy
to update, change, and eliminate in the future as system needs evolve?

* Requirement atomicity—Is the requirement all one, individual, atomic require-
ment, including limits, constraints, and all details of the functionality?

* Requirements completeness—Is the set of atomic requirements complete and
providing a full definition of all necessary functionality for the entire system
(or the current portion being reviewed)?

* Requirements consistency—Is the set of atomic requirements internally consis-
tent, with no contradictions, no duplication between individual requirements?

* Requirements importance ranking—The set of atomic requirements are indi-
vidually assigned to suitable importance categories (e.g., Essential, Desirable,
Optional/Frill) and the assignment of values is appropriate.

* Requirements traceability—Are the individual atomic requirements uniquely
identified with unchanging numbers? Are other existing documents or deliver-
ables linked to individual requirements appropriately (e.g., use cases related to
atomic requirements)?

* Requirements purity—Is the document free from system design and project
schedule, staffing, etc.?

* Requirements count—Current number of individually identified and numbered
atomic requirements.

The definitions of the measures are quoted directly from the paper.

Requirements Engineering for Automotive Embedded Systems 21

The abovementioned set of measures shows the major shortcoming of the
requirement assessment practices—they are based on manual assessments. How-
ever, some studies show that requirements can be quantified automatically in a
meaningful way. This quantification can be done based on the semantical analysis
of the meaning of requirements (majority of the research), but it can also be
approximated with the search-based techniques.

For example, Antinyan and Staron [2, 3] identified the following measures to be
significant for assessing the complexity of requirements:

e Number of conjunctions

* Number of vague phrases

¢ Number of references

¢ Number of referenced documents
¢ Number of words

These measures can be combined into a requirement quality index. The index
provides designers with the possibility to rank their requirements and improve their
quality.

S How All These Requirements Come Together

All these types of requirements need to come together somehow; hence, we have
the process and the infrastructure for requirements engineering. Let us start with the
infrastructure—usually named the design or construction database. In the light of
the work of Weber and Weisbrod [42], it is called the common information model.
Figure 7 presents the way in which this design database is used. The construction
database contains all elements of the design of the electrical system of the vehicle—
components, electronic control units, systems, controllers, etc. The structure of such
a database is hierarchical and reflects the structure of the vehicle. Each of the
elements in the database has a set of requirements linked to them. The requirements
are also linked to one another to show how they are broken down. Such a database
grows over time and is version controlled as different versions of the same elements
can be used in different vehicles (e.g., different year models of the same car or
different cars).

An example of such a system is described by Chen et al. [6] and has been
developed by the company Systemite, which specializes in the databases for designs.
Such a database structures all the elements of the construction of the integrated
electronics of the vehicle and links all artifacts to the construction elements. An
example of a construction element is the engine’s electronic control unit, and all the
functions that use this control unit are linked to it.

Such a database usually has a number of views that show the required set
of details—functional view, architectural view, topological view, and software
components’ view. Each view provides the corresponding entry point and shows
the relevant elements, but the database is always in a consistent state where all the
links are valid.

22 M. Staron

— Detailed design %%
@@ Architectural '\ , models
D\ EEe

> " Test
specifications

Requirement Sy
specifications

Design and

construction
database
_/
} Ty
Implementation Component Test plans
plans specifications

Fig. 7 Design database

The database is used to generate construction specifications for different actors.
For each supplier who delivers an ECU, the database generates the set of all
requirements that are linked to the ECU and all models that describe the behavior of
the ECU. Sometimes, depending on the situation, the documentation contains even
the simulation models for the functions that are to be included in the ECU.

6 Current Trends of Software Requirements Engineering
in the Automotive Domain

Based on the observations of the evolution of the automotive embedded software,
we could observe a number of trends in requirements engineering. In this section,
we describe these trends.

Agility in Specification Development Agile software development has been used
in many domains outside the automotive domain, and now there is evidence that
it is used increasingly in the automotive domain. In particular at the lower part of
the V-model, the suppliers work more agile with their requirements engineering
and software development [22]. We can also observe these trends scaling up to
the complete vehicle development [11] and [20]. With this increased adoption of
Agile principles, we can foresee increased ability to specify requirements along
software development, especially as the trends in automotive electronics are that we

Requirements Engineering for Automotive Embedded Systems 23

use increasingly more commodity (or off-the-shelf) components. AUTOSAR also
prescribes standardized approach to development, which eases the use of iterative
development principles as the development of electronics/hardware is decoupled
from the development of functions/software.

Increased Focus on Traceability Increased amount of software in cars and
their increased presence in safety systems lead to stricter processes for keeping
track of requirements for safety-critical systems. ISO 26262 (Road Vehicles—
Functional Safety) is one example of this. In the automotive domain, this means
that the increased complexity of software modules [34] leads to more fine-grained
traceability management. One of the enablers of this increased traceability is the
increased integration between tools and tool chaining [5] and [4].

Increased Focus on Non-functional Properties The increased use of software
for active safety systems calls for the increased focus on non-functional properties
of software. The increased traffic on communication buses within the car and the
increased capacity of the communication buses call for more synchronization and
verification. The safety analyses such as control path monitoring, safety bits, and
data complexity control are just a few examples [38]. As the focus of requirements
engineering research in the automotive domain was mainly (or implicitly) on the
functional requirements, we foresee increased growth of research and emphasis on
the non-functional requirements.

Increased Focus on Security Requirements A dedicated group of requirements
is the security requirements. As our cars are increasingly connected, they are prone
to hacker attacks [35] and [43]. The recent demonstration of the possibility to steer
a Jeep Wrangler vehicle off-road showed that the threat is real and related to the
safety of cars and transport systems. We therefore perceive that the ability to prevent
attacks will be of focus for the automotive software development increasingly more
in the coming decade.

7 Further Reading

This chapter provides an overview of the techniques used for requirements engineer-
ing in the automotive domain, and interested readers are encouraged to dive deeper
into the topic. We provide a number of interesting entry points to more research in
requirements engineering for automotive software systems.

Ott et al. [28] and [29] present a study on requirements engineering at Mercedes-
Benz where they classified over 5800 requirement review protocols to their quality
model. Their results showed that textual requirements (or natural language require-
ments as they are called in the publication) are prone to problems such as
inconsistency, incompleteness, or ambiguity—with about 70% of the defects in
requirements falling into these categories. In the light of this article, we can see
the need for complementing the textual requirements with more context provided
by use case models, user stories, and use cases.

24 M. Staron

Torner et al. [40] presented a similar study but of the requirements at Volvo Cars
Group. In contrast to the study of Ott et al. [28], these authors studied the use case
specifications and not the textual requirements. The results, however, are similar as
the main types of defects are missing elements (correctness in Ott et al.’s model)
and incorrect linguistics (ambiguity in Ott et al.’s model).

Eliasson et al. [12] described further experiences from Volvo Cars Group where
they explored challenges with requirements engineering at large in a mecha-
tronics development organization. Their findings showed that there is a lot of
communication in parallel to the requirement specification. The stakeholders in the
requirement specification frequently mentioned the need to have a good network in
order to specify the requirements correctly. This indicates the challenges described
previously in this chapter that the requirements need more context than it is usually
provided in just the specification (especially the textual specification).

Mabhally et al. [20] identified requirements to be the main barriers and enablers
of moving toward Agile mechatronics organizations. Although today OEMs try to
move toward fast development of mechatronics and reduce the cycle time by using
Agile software development approaches, the challenges are that we do not know
upfront whether a requirement needs the development of electronics or it is only a
software requirement. According to Mahally et al., this kind of problem needs to
be solved, and based on the prediction of Houdek [15], issues of this kind might be
coming to an end as device development flattens out and most of the requirements
will be software requirements. Similar challenges were presented by Pernstal et
al. [31] who found that requirements engineering is one of the top improvement
areas for the automotive OEMs. The ability to communicate via requirements was
also an important part.

At Audi, Allmann et al. [1] presented the challenges in the requirements
communication on the boundary between the OEMs and their suppliers. They have
identified the needs for better communication and the challenges of communicating
through textual representations. They recognized the needs for tighter partnerships
as there is an inherent deficiency in communicating through requirements—
transferring knowledge through an intermediate medium. Therefore, they rec-
ommend to integrate systems to minimize the knowledge loss via transfer of
documents.

Siegl et al. [36] presented a method for formalizing requirement specifications
using Time Usage Model and applied it successfully to a requirement specification
from one of the German OEMs. The evaluation study showed an increased test
coverage and increased quality of the requirement specification.

At BMW, Hardt et al. [13] demonstrated the use of formalized domain engineer-
ing models in order to reason about the dependencies between requirements in the
presence of variants. Their approach provided a simplistic, yet powerful, formalism,
and its strength was the industrial applicability.

A study of the functional architecture of a car project at BMW and the
requirements linked to the functions by Vogelsanag and Fuhrmann [41] showed that
85% of the functions are dependent on one another and that these dependencies
caused a significant amount of problems in software projects. This study shows

Requirements Engineering for Automotive Embedded Systems 25

the complexity of the functional decomposition of the vehicle’s design and the
complexity of its description.

At Bosch, Langenfeld et al. [19] the longitudinal study of a 5-year project
showed that 61% of the defects in requirements come from the incompleteness or
incorrectness of the requirement specifications.

One of interesting trends in requirements engineering is the automatization of
tasks of requirement engineers. One of such tasks is the discovery of non-functional
requirements. This task is based on reading the specifications of functional require-
ments and identifying phrases that should be transformed into non-functional
requirements. A study on the automation of this task has been conducted by Cleland-
Huang et al. [7]. The study showed that the automated classification of requirements
could be as good as 90%, but at this stage it cannot replace the manual classifiers.

7.1 Requirements Specification Languages

A model for requirements traceability [10] DARWIN4Req has been proposed to
address the challenges related to the ability to follow the requirements’ lifecycle.
The model allows to link requirements expressed in different formalities (e.g., UML,
SySML) and link them to one another. However, to the best of our knowledge, the
model and the tool have not been adopted on a wider scale yet.

EAST-ADL [9] is an architecture specification language, which contains the
elements to capture requirements and link them to the architectural design. The
approach is similar to SySML but with the difference that there is no dedicated
requirement specification diagram. EAST-ADL has been demonstrated to work in
industry; however, it is not a standard for automotive OEMs yet. Mahmud [21]
presented a language ReSA that complements the EAST-ADL modeling language
with the possibility to analyze and validate requirements (e.g., basic consistency
checks).

For the non-functional requirements in the domain of safety, Peraldi-Frati and
Albinet [30] have proposed another extension of the EAST-ADL language that
allows for increased traceability of requirements and their linking to the non-
functional properties of the designed embedded software (e.g., safety).

Mellegard and Staron [24] and [27] conducted an empirical study on the
impact of using hierarchical graphical requirement specification on the quality
of change impact assessment. For the purpose, they designed a requirements’
specification language based on the existing formalism—Requirements Abstraction
Model. The results showed that the graphical overview of the dependencies between
requirements introduces a significant improvement.

26 M. Staron
8 Conclusions

Correct, unambiguous, and consistent requirement specifications are the founda-
tions of high-quality software, in general, and in automotive embedded systems, in
particular. In this chapter, we introduced the most common types of requirements
used in this domain and provided their main strengths.

Based on the current state of evolution of the automotive software, we could
observe three trends in the requirements engineering for the automotive embedded
systems—(1) agility in requirement specification, (2) increased focus on non-
functional requirements, and (3) increased focus on security as a domain for
requirements. Toward the end of this chapter, we also provided an overview of the
requirements practices in some of the vehicle manufacturers (Mercedes-Benz, Audi,
BMW, and Volvo) based on the published experiences from these companies. We
have also pointed out a number of directions for further reading for the interested.

In our future work, we plan to make a review of the requirements engineering
practices in the main automotive OEMs and identify their commonalities and
differences.

References

—

. Allmann C, Winkler L, Kolzow T, et al (2006) The requirements engineering gap in the oem-
supplier relationship. J Univers Knowl Manag 1(2):103-111

2. Antinyan V, Staron M (2017) Proactive reviews of textual requirements. In: IEEE 24th
international conference on Software Analysis, Evolution and Reengineering (SANER), 2017.
IEEE, Piscataway, pp 541-545

3. Antinyan V, Staron M (2017) Rendex: a method for automated reviews of textual requirements.
J Syst Softw 131:63-77

4. Armengaud E, Biehl M, Bourrouilh Q, Breunig M, Farfeleder S, Hein C, Oertel M, Wallner
A, Zoier M (2012) Integrated tool chain for improving traceability during the development of
automotive systems. In: Proceedings of the 2012 embedded real time software and systems
conference

5. Biehl M, DelJiu C, Torngren M (2010) Integrating safety analysis into the model-based
development toolchain of automotive embedded systems. In: ACM sigplan notices, vol 45.
ACM, New York, pp 125-132

6. Chen D, Torngren M, Shi J, Gerard S, Lonn H, Servat D, Stromberg M, Arzen KE (2006)
Model integration in the development of embedded control systems-a characterization of
current research efforts. In: 2006 IEEE international conference on control applications,
computer aided control system design. IEEE, Piscataway, pp 1187-1193

7. Cleland-Huang J, Settimi R, Zou X, Solc P (2007) Automated classification of non-functional
requirements. Requir Eng 12(2):103-120

8. Dannenberg J, Burgard J (2015) Car innovation: a comprehensive study on innovation in the
automotive industry. Oliver Wyman Automotive, New York

9. Debruyne V, Simonot-Lion F, Trinquet Y (2005) East-adlan architecture description language.

In: Architecture description languages. Springer, New York, pp 181-195

Requirements Engineering for Automotive Embedded Systems 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Dubois H, Peraldi-Frati MA, Lakhal F (2010) A model for requirements traceability in a
heterogeneous model-based design process: application to automotive embedded systems. In:
2010 15th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, Piscataway, pp 233-242

Eliasson U, Heldal R, Lantz J, Berger C (2014) Agile model-driven engineering in mecha-
tronic systems-an industrial case study. In: Model-driven engineering languages and systems.
Springer, Cham, pp 433-449

Eliasson U, Heldal R, Knauss E, Pelliccione P (2015) The need of complementing plan-driven
requirements engineering with emerging communication: experiences from volvo car group.
In: 2015 IEEE international Requirements Engineering conference (RE). IEEE, Piscataway,
pp 372-381

Hardt M, Mackenthun R, Bielefeld J (2002) Integrating ECUs in vehicles-requirements
engineering in series development. In: 2002 IEEE international Requirements Engineering
conference (RE). IEEE, Piscataway, pp 227-236

Honig WL (2016) Requirements metrics - definitions of a working list of possible metrics
for requirements quality. Retrieved from Loyola eCommons, Computer Science: Faculty
Publications and Other Works

Houdek F (2013) Managing large scale specification projects. In: 19th international working
conference on Requirements Engineering Foundations for Software Quality, REFSQ 2013,
Essen, Germany, 8-11 April 2013

IEEE (1990) IEEE standard glossary of software engineering terminology (IEEE std 610.12-
1990). IEEE Computer Society, Los Alamitos

ISO I (2011) 26262-road vehicles-functional safety. International Standard ISO/FDIS 26262
Jacobson I, Booch G, Rumbaugh J (1997) The objectory software development process.
Addison Wesley, Boston. ISBN: 0-201-57169-2

Langenfeld V, Post A, Podelski A (2016) Requirements defects over a project lifetime: an
empirical analysis of defect data from a 5-year automotive project at Bosch. In: Requirements
engineering: foundation for software quality. Springer, Cham, pp 145-160

Mahally MM, Staron M, Bosch J (2015) Barriers and enablers for shortening software
development lead-time in mechatronics organizations: a case study. In: Proceedings of the 2015
10th joint meeting on foundations of software engineering. ACM, New York, pp 1006—-1009
Mahmud N, Seceleanu C, Ljungkrantz O (2015) Resa: an ontology-based requirement
specification language tailored to automotive systems. In: 10th IEEE international Symposium
on Industrial Embedded Systems (SIES), 2015. IEEE, Piscataway, pp 1-10

Manhart P, Schneider K (2004) Breaking the ice for agile development of embedded software:
an industry experience report. In: Proceedings of the 26th international conference on software
engineering. IEEE Computer Society, Washington, pp 378-386

Mellegéard N, Staron M (2008) Methodology for requirements engineering in model-based
projects for reactive automotive software. In: 18th ECOOP doctoral symposium and PhD
student workshop, p 23

Mellegérd N, Staron M (2009) A domain specific modelling language for specifying and
visualizing requirements. In: The first international workshop on domain engineering, DE@
CAISE, Amsterdam

Mellegérd N, Staron M (2010) Characterizing model usage in embedded software engineering:
a case study. In: Proceedings of the fourth European conference on software architecture:
companion volume. ACM, New York, pp 245-252

Mellegérd N, Staron M (2010) Distribution of effort among software development artefacts: an
initial case study. In: Enterprise, business-process and information systems modeling. Springer,
Berlin, pp 234-246

Mellegard N, Staron M (2010) Improving efficiency of change impact assessment using
graphical requirement specifications: an experiment. In: Product-focused software process
improvement. Springer, Berlin, pp 336-350

28

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Staron

Ott D (2012) Defects in natural language requirement specifications at mercedes-benz: an
investigation using a combination of legacy data and expert opinion. In: 2012 20th IEEE
international Requirements Engineering conference (RE). IEEE, Piscataway, pp 291-296

Ott D (2013) Automatic requirement categorization of large natural language specifications
at mercedes-benz for review improvements. In: Requirements engineering: foundation for
software quality. Springer, Berlin, pp 50-64

Peraldi-Frati MA, Albinet A (2010) Requirement traceability in safety critical systems. In:
Proceedings of the Ist workshop on critical automotive applications: robustness & safety.
ACM, New York, pp 11-14

Pernstal J, Gorschek T, Feldt R, Florén D (2013) Software process improvement in inter-
departmental development of software-intensive automotive systems—a case study. In: Product-
focused software process improvement. Springer, Berlin, pp 93-107

Rana R, Staron M, Berger C, Hansson J, Nilsson M, Torner F (2013) Improving fault injection
in automotive model based development using fault bypass modeling. In: GI-Jahrestagung.
Chalmers University of Technology, Gothenburg, pp 2577-2591

Rana R, Staron M, Mellegard N, Berger C, Hansson J, Nilsson M, Térner F (2013) Evaluation
of standard reliability growth models in the context of automotive software systems. In:
Product-focused software process improvement. Springer, Berlin, pp 324-329

Rana R, Staron M, Berger C, Hansson J, Nilsson M, Torner F (2013) Increasing efficiency of
ISO 26262 verification and validation by combining fault injection and mutation testing with
model based development. In: ICSOFT 2013, pp 251-257

Sagstetter F, Lukasiewycz M, Steinhorst S, Wolf M, Bouard A, Harris WR, Jha S, Peyrin
T, Poschmann A, Chakraborty S (2013) Security challenges in automotive hardware/software
architecture design. In: Proceedings of the conference on design, automation and test in Europe,
EDA consortium, pp 458-463

Siegl S, Russer M, Hielscher KS (2015) Partitioning the requirements of embedded systems
by input/output dependency analysis for compositional creation of parallel test models. In: 9th
annual IEEE international Systems Conference (SysCon), 2015. IEEE, Piscataway, pp 96-102
SimulinkDemo (2012) Modeling an anti-lock braking system. The MathWorks, Inc, Natick.
Copyright 2005-2010

Sinha P (2011) Architectural design and reliability analysis of a fail-operational brake-by-wire
system from iso 26262 perspectives. Reliab Eng Syst Saf 96(10), 1349-1359

Staron M (2017) Automotive software architectures: an introduction. Springer, Cham

Torer F, Ivarsson M, Pettersson F, Ohman P (2006) Defects in automotive use cases.
In: Proceedings of the 2006 ACM/IEEE international symposium on empirical software
engineering. ACM, New York, pp 115-123

Vogelsanag A, Fuhrmann S (2013) Why feature dependencies challenge the requirements
engineering of automotive systems: an empirical study. In: 2013 21st IEEE international
Requirements Engineering conference (RE). IEEE, Piscataway, pp 267-272

Weber M, Weisbrod J (2002) Requirements engineering in automotive development-
experiences and challenges. In: 2002 IEEE international Requirements Engineering conference
(RE). IEEE, Piscataway, pp 331-340

Wright A (2011) Hacking cars. Commun ACM 54(11):18-19

	Requirements Engineering for Automotive Embedded Systems
	1 Introduction
	2 Requirements and Requirements Engineering
	3 Types of Requirements in Automotive Software Development
	3.1 Textual Requirements
	3.2 Use Cases
	3.3 Model-Based Requirements
	3.4 Requirements as Models

	4 Measuring Requirements and Requirement Specifications
	5 How All These Requirements Come Together
	6 Current Trends of Software Requirements Engineering in the Automotive Domain
	7 Further Reading
	7.1 Requirements Specification Languages

	8 Conclusions
	References

