Yanja Dajsuren - Mark van den Brand
Editors

Automotive
Systems and
Software
Engineering

State of the Art and Future Trends

@ Springer

Automotive Systems and Software Engineering

Yanja Dajsuren * Mark van den Brand
Editors

Automotive Systems and
Software Engineering

State of the Art and Future Trends

@ Springer

Editors

Yanja Dajsuren Mark van den Brand

Eindhoven University of Technology Eindhoven University of Technology
Eindhoven, The Netherlands Eindhoven, The Netherlands

ISBN 978-3-030-12156-3 ISBN 978-3-030-12157-0 (eBook)

https://doi.org/10.1007/978-3-030-12157-0

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-12157-0

Preface

Software is “conquering” the world. There is hardly any piece of equipment that
does not have software in it. This is certainly true for the automotive domain. The
amount of software has grown from a few lines of code in the 1970s to millions of
lines of code in modern cars. This trend is estimated to continue in the next years
given all the innovations in electric/hybrid cars, autonomous cars, and connected
cars. Software is clearly an innovation engine in the automotive domain, it has led
to safer and more efficient vehicles on one hand and more comfort on the other
hand. There are also challenges related to the infiltration of software in vehicles,
such as security, robustness, and trust. Unfortunately, software has also led to many
recalls over the last years, and, recently, software was misused to meet emission
regulations, the Dieselgate affair. The automotive industry is moving from the
mechanical engineering domain to system/software engineering field, including the
role of software as the glue to connect components and to provide functionality.
The Eindhoven University of Technology started in 2008 with a master pro-
gram Automotive Technology, an interdisciplinary master program of various
departments among other Mechanical Engineering, Electrical Engineering, and
Mathematics and Computer Science. In the discussions on the curriculum, the
importance of software was pointed out and a few software-related courses, real-
time architecture, and software and system engineering were introduced. A few
years later, a master’s program on Automotive System Design leading to the
degree of Professional Doctorate in Engineering (PDEng) was launched and in
2014 a bachelor’s program on automotive started. This means that the Eindhoven
University of Technology offers an entire curriculum on automotive and automotive
software engineering as an important ingredient. Of course, apart from such educa-
tional programs, the university is involved in numerous research projects related to
automotive and to automotive software engineering, for instance, the project Hybrid
Innovations for Trucks (HIT) with DAF Trucks and other automotive suppliers and
FP7/OPENCOSS (Open Platform for EvolutioNary Certification Of Safety-critical
Systems), a large-scale integrated project with a consortium of seventeen companies
from nine countries. These research projects have highlighted the importance of
software in the automotive domain; furthermore, they were the key enablers for

vi Preface

building up automotive software engineering expertise. The research projects have
resulted in PhD theses in the area of quality of software architecture (see Chapter
“Defining Architecture Framework for Automotive Systems”), modeling of func-
tional safety standards (see Chapter “Safety-Driven Development and ISO 26262”),
and an integrated design methodology of automotive software architectures and
functional safety.

Based on these observations we thought that it was a good time to work on a book
with an overview of the state of the art in automotive software development, from
both an academic and an industrial point of view. The original idea for this book was
to transform the PhD thesis of Yanja Dajsuren (editor of this book) into a text book.
Later we decided to invite other authors to contribute to the book to broaden its
scope. We composed a list of possible authors both from industry and academia
following the book structure and we started inviting them. Although everybody
reacted enthusiastically, obtaining contributions from the industrial authors was a
challenge; projects have always had priority over papers. This is less of an issue
in the academic world. Therefore, we had to drop a couple of chapters from the
industrial authors to avoid further delay in publication.

The intended audience for the book are, on one hand, researchers from academia
who are interested in learning the fundamental challenges related to software in
automotive engineering, for instance, to security and safety. On the other hand, it
is for practitioners who need an insight into the state-of-the-art developments in
the area of research within academia. Although the book is not written as lectures
notes, it can be used in advanced (post-)master’s courses on software and system
engineering. The book contains multiple interesting case studies that can be used
for student projects.

The sixteen chapters cover all the important aspects of the field. Chapter “Auto-
motive Software Engineering: Past, Present, and Future” discusses the evolution of
automotive software engineering and future trends based on the past, present, and
future of our research group. Chapter “Requirements Engineering for Automotive
Embedded Systems” presents the notion of a requirement in general and describes
the types of requirements used when designing automotive software systems.
Chapters “Status Report on Automotive Software Development” and ‘“‘State-of-
the-Art Tools and Methods Used in the Automotive Industry” provide explore
state-of-the-art methods in software development and testing from an industrial
perspective and discuss the current challenges in the development process. The
provided information can be used for optimal planning of development processes
for future automotive systems and for further insights. Chapters “Software Reuse:
From Cloned Variants to Managed Software Product Lines” and “Variability
Identification and Representation for Automotive Simulink Models” present the
novel tool-suites to enable software reuse in different granularities point of view.
Chapter “Defining Architecture Framework for Automotive Systems” proposes an
architecture framework for the automotive systems to facilitate the architecture-
driven development process. Chapter “The RACE Project: An Informatics-Driven
Greenfield Approach to Future E/E-Architectures for Cars” presents the results
of the RACE project, which aims to redefine the architecture of future cars from

Preface vii

an information processing point of view. Chapter “Development of ISO 11783:
Virtual Terminal and Monitoring System for Agricultural Vehicles” summarizes
the challenges of implementing modules such as sprayer and GPS using ISOBUS
and proposes a format for implementing a virtual terminal for agricultural vehicles.
Safety is one of the most important quality attribute of a vehicle that needs special
attention in all the stages of the life cycle of a vehicle. In Chapter “Safety-Driven
Development and ISO 26262” some of the most important aspects of functional
safety from the perspective of ISO 26262 are discussed, namely, safety manage-
ment, development process, architecture design, and safety assurance. Chapter
“Introduction to Cooperative Intelligent Transportation Systems” introduces the
overall system architecture and standards of European-wide Cooperative Intelligent
Transportation/Transport Systems (C-ITS). This chapter is an introduction to the
next three chapters that take three different perspectives on C-ITS, namely, intra-
vehicle, inter-vehicle, and country-wide. The focus of this chapter lies on one hand
on the architecture of C-ITS solutions and on the other hand on security and privacy
of C-ITS. The final two chapters present a high level automotive trend watching on
the analysis of electric and autonomous driving cars and market trends in ICT and
Internet disrupting the transport sector.

Eindhoven, The Netherlands Yanja Dajsuren
Mark van den Brand

Acknowledgments

Editing this book has been a great journey for us. We would like to express our
gratitude to the following people, each of whom has contributed in a valuable way
to the completion of this book.

Firstly, we would like to express our gratitude to the authors who took up the
challenge besides their busy schedules. The authors shared challenges facing the
automotive software engineering field and shared their vision for future research
and development directions. We especially want to thank our contributors from
the industry who worked extra hours to make this feasible and were very open
and flexible toward feedback and comments from reviewers. Sometimes they
would manage to spend time revising a chapter even with important deadlines for
their projects. The authors from academy are also appreciated for their patience
and collaboration for making this book editing process feasible. Each chapter is
reviewed by an expert from industry and academy and underwent several revisions.
All the authors were also involved in reviewing each others’ works as well.

We also want to thank the publisher Arjen Sevenster (Atlantis Press), who first
discussed the book opportunity in this field and motivated us for starting this project.
Sharing the state of the art while discussing the challenges, research opportunities,
and future trends will hopefully encourage more collaboration among researchers
and practitioners in this field. The research and development opportunities are
enormous. We hope the ever-changing automotive software engineering field will
be joined by more and more researchers and engineers to advance it further.

Finally, we thank our editor at Springer, Ralf Gerstner, for making this book
possible to be published in Springer and for his support and guidance during the
editing process.

ix

Contents

Partl Introduction

Automotive Software Engineering: Past, Present, and Future.............. 3
Yanja Dajsuren and Mark van den Brand

PartII Automotive Software Development

Requirements Engineering for Automotive Embedded Systems............ 11
Miroslaw Staron

Status Report on Automotive Software Development........................ 29
Florian Bock, Christoph Sippl, Sebastian Siegl, and Reinhard German
State-of-the-Art Tools and Methods Used in the Automotive Industry 59
Harald Altinger

PartIII Automotive Software Reuse

Software Reuse: From Cloned Variants to Managed Software
Product Lines.............oooiiiiiiiiii 77
Christoph Seidl, David Wille, and Ina Schaefer

Variability Identification and Representation for Automotive

Simulink Models 109
Manar H. Alalfi, Eric J. Rapos, Andrew Stevenson, Matthew Stephan,

Thomas R. Dean, and James R. Cordy

Defining Architecture Framework for Automotive Systems 141
Yanja Dajsuren
Part IV E/E Architecture and Safety

The RACE Project: An Informatics-Driven Greenfield Approach
to Future E/E Architectures for Cars........................ooiii 171
Alois Knoll, Christian Buckl, Karl-Josef Kuhn, and Gernot Spiegelberg

xi

xii

Development of ISO 11783 Compliant Agricultural Systems:

Experience Report

Enkhbaatar Tumenjargal, Enkhbat Batbayar, Sodbileg Tsogt-Ochir,
Munkhtamir Oyumaa, Woon Chul Ham, and Kil To Chong

Safety-Driven Development and ISO 26262.................cccovvviiinnnn.

Yaping Luo, Arash Khabbaz Saberi, and Mark van den Brand

Part V C-ITS and Security

Introduction to Cooperative Intelligent Transportation Systems...........

Johan Lukkien

In-Vehicle Networks and Security.................ccoooiiiiiiiiiiiiiii

Timo van Roermund

Security for V2 X ...

Marc Klaassen and Tomasz Szuprycinski

Intelligent Transportation System Infrastructure and Software

Challenges.coiuiiii i e

Horst Wieker, Jonas Vogt, and Manuel Fuenfrocken

Part VI Future Trends
Future Trends in Electric Vehicles Enabled by Internet

Connectivity, Solar, and Battery Technology...........................ooi.

Ben Rutten and Roy Cobbenhagen

Autonomous Vehicles: State of the Art, Future Trends, and Challenges...

Piergiuseppe Mallozzi, Patrizio Pelliccione, Alessia Knauss,
Christian Berger, and Nassar Mohammadiha

Contents

347

Part I
Introduction

Automotive Software Engineering: Past,)
Present, and Future s

Yanja Dajsuren and Mark van den Brand

Abstract This book presents state-of-the-art technologies and future trends of
automotive systems and software engineering. Fifteen chapters cover all important
aspects of the field, such as automotive software architectures, software process
and quality, safety and security, autonomous and cooperative driving vehicle
technology, and intelligent transportation systems. Additionally, the development
of and challenges provided by future vehicles such as solar and fully electric
cars are discussed. This book provides challenges facing the automotive software
engineering field and discusses future research directions.

1 Introduction

The amount of software found in vehicles has increased rapidly. The first lines
of code in a vehicle were introduced in the 1970s; nowadays, having over 100
million lines of code is nothing extraordinary when talking about premium cars.
An increasing amount of functionality is realized in software, and software is the
main innovator in the automotive industry today.

Automotive systems can be categorized into vehicle-centric functional domains
(including powertrain control, chassis control, and active/passive safety systems)
and passenger-centric functional domains (covering multimedia/telematics, body/-
comfort, and Human-Machine Interface). From these domains, powertrain, connec-
tivity, active safety, and assisted driving are considered major areas of potential
innovation. The amount of software will increase because of future innovations
as well; think of adaptive cruise control, lane keeping, etc., which all leads to
the ultimate goal of autonomous driving. The ever-increasing amount of software
to enable innovation in vehicle-centric functional domains requires even more
attention in order to assess and improve the quality of automotive software. This

Y. Dajsuren - M. van den Brand ()
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: y.dajsuren@tue.nl; m.g.j.v.d.brand @tue.nl

© Springer Nature Switzerland AG 2019 3
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_1&domain=pdf
mailto:y.dajsuren@tue.nl
mailto:m.g.j.v.d.brand@tue.nl
https://doi.org/10.1007/978-3-030-12157-0_1

4 Y. Dajsuren and M. van den Brand

is because software-driven innovations can come with software defects and failures
and be vulnerable to hacker attacks. This can be observed by the enormous amounts
of recalls lately; quite a few are software related.

Arguably, safety is one of the most important quality attributes of a vehicle that
needs special attention during all the stages of the life cycle of a vehicle. Failures
in software may be costly because of recalls, and may even be life threatening.
The failure or malfunctioning of an automotive system may result in serious
injuries or death of people. A number of functional safety standards have been
developed for safety-critical systems; the ISO26262 standard is the functional safety
standard for the automotive domain, geared toward passenger cars. A new version
of the ISO26262 standard will cover trucks, buses, and motorcycles as well. The
automotive industry is starting to apply these safety standards as guidelines for
development projects. However, compliance with these standards is still very costly
and time consuming due to huge amount of manual work. In chapter “Safety-Driven
Development and ISO 26262,” the most important aspects of functional safety from
1S026262 perspective are discussed.

2 Evolution of Automotive Software Engineering

The current method of building a vehicle is by integrating components developed
and built by suppliers. The specifications of these components are defined by
Original Equipment Manufacturers (OEMs) or car manufacturers, but the actual
construction of the components is done by suppliers. Often the components
come with their own Electronic Control Units (ECUs) and software stack. These
individual software stacks add up to the huge amount of software in a modern
vehicle.

This way of working has a few advantages; among others, it leads to a
clear separation of concerns. Integration and communication are performed via a
Controller Area Network (CAN) bus or FlexRay. This is the basis for a decentralized
architecture. Components interacting with each other have to exchange messages via
well-defined protocols. Adding or removing functionality boils down to connecting
or disconnecting components from the CAN bus or FlexRay. The components can be
designed in an isolated way as long as strict alignment with the interface protocols
is respected. This way of developing leads to an explosion of ECUs and their
corresponding software stacks.

The introduction of AUTOSAR (AUTomotive Open System ARchitecture)
standard has led to a different way of working. AUTOSAR provides a generic
layered architecture that shields the basic infrastructure of ECUs and provides
a rather high-level interface to develop functionality. AUTOSAR takes care of
mapping functionality to the available ECUs. AUTOSAR provides a basic software
layer consisting of standardized software modules (mostly) without any specific
functionality but offers services to implement the functional part of the application
software. AUTOSAR provides a runtime environment (RTE), a middleware that

Automotive Software Engineering: Past, Present, and Future 5

shields off a network of ECUs and takes care of the information exchange between
the application software components and between the basic software layer and the
applications. The application layer consists of application software components that
interact with the runtime environment. This leads in principle to less ECUs and
a better balance of functionality over ECUs. The adoption of AUTOSAR by the
automotive industry is a fact, and suppliers have to provide functional components
based on AUTOSAR standard.

Although AUTOSAR is a major step in separating applications from the com-
puting infrastructure, there is still room for improvement. There is an increasing
need for computing power, especially in hybrid cars and cars with advanced driver
support. The question is whether this computing power can be provided by a
collection of ECUs or whether the introduction of general purpose hardware in the
form of central processing units (CPUs) and graphics processing units (GPUs) is a
better and sustainable development. A similar development happened to consumer
electronics; dedicated hardware was replaced by general-purpose hardware, and
functionality was realized in software instead of application-specific hardware. The
introduction of general purpose hardware in the automotive domain will lead to a
complete design philosophy. This will lead to a centralized automotive architecture
with a few high-performance multicore processors and a vast collection of sensors
and actuators connected to the central processing units. This design will impose
severe constraints on the overall functional safety of the system.

In the last 6 years, we have been doing research in automotive software
engineering. We have investigated how to evaluate the quality of automotive
software architectures. Software in the automotive domain is mainly developed
in Matlab/Simulink and more recently SysML; from the developed models, C
code is generated. Of course, some functionality is developed directly in C. We
have used general software quality metrics frameworks to establish the quality of
Matlab/Simulink and SysML models [2] and automotive software architectures
in general [1, 3]. In the area of functional safety, we have applied model-driven
techniques to support functional safety development process and safety assur-
ance. We have done research on how to apply 1SO26262 for functional safety
improvement [10]. Furthermore, we have developed a meta-model for the ISO26262
standard, generated based on this meta-model tooling for safety case construction
and assessment [5—8].

In this book, we are not only shedding light on our research results, but we also
want to share the current state of and the challenges and future trends in automotive
software engineering based on the views of other researchers and practitioners.
Chapter “Requirements Engineering for Automotive Embedded Software Systems”
reviews the general notion of a requirement and describes the types of require-
ments used in designing automotive software systems. Chapter “Status Report on
Automotive Software Development” illustrates the current challenges in automotive
software development, gives an overview of the current development methods and
tools, and shares the future directions on domain-specific languages and scenario-
based virtual validation methods based on industrial projects.

6 Y. Dajsuren and M. van den Brand
3 C-ITS

Cooperative-Intelligent Transport! Systems (C-ITS) aim to facilitate cooperative,
connected, and automated mobility. The C-ITS domain is composed of widely
spread systems like traffic management systems, traffic light controllers, and vehicle
onboard units. Such complex and heterogeneous systems have independent uses
but demand a strategy to facilitate their convergence. In recent years, there has
been great progress in the field of C-ITS in increasing energy efficiency and safety
for specific transport modes. Several projects have been successfully carried out
to define ITS architectures depending on the needs that the project wanted to
cover or the technology that was being used. In parallel, car manufacturers and
automotive suppliers are redefining efficient software development methods to
support cooperative and autonomous driving cars such as Adaptive AUTOSAR.
There is a need to bring together researchers and practitioners in the field of C-
ITS and automotive software engineering in order to merge and harmonize the
solutions proposed by both fields. This will enable harmonized solutions for a
flexible integration of and interaction between C-ITS and automotive services.

The European Parliament in its directive 2010/40/EU defines Intelligent Trans-
port Systems (ITS) as “systems in which information and communication technolo-
gies are applied in the field of road transport, including infrastructure, vehicles and
users, and in traffic management and mobility management, as well as for interfaces
with other modes of transport.” ITS can be further described as systems that aim
to make transportation safe and economical by combining data from vehicles and
other sensors on the roadway with weather information.

It began during the 1990s [9] with projects in:

* the US named Intelligent Vehicle Highway System [4]
* various countries in Europe with the program Prometheus [12]
* Japan with a research committee Road/Automobile Communication System [11]

C-ITS enables communication between ITS systems by allowing road users and
traffic managers to share information for the purpose of improving traffic safety and
driver comfort and reducing traffic congestion. This interaction is where the term
cooperative comes from. In this scenario, the vehicles can act as sensors as well.
The C-ITS domain covers not only the field of software and systems engineering
but also traffic engineering, civil engineering, and information technology, which
require a unified architecture for the C-ITS domain. In Europe, many initiatives are
taking place to advance C-ITS by aiming for a fully safe and efficient road transport
without casualties and serious injuries on European roads.

Chapter “Introduction to Cooperative Intelligent Transportation Systems” and
the chapters on C-ITS introduce the overall system architecture and standards of
country-wide C-ITS systems and security from in-vehicle and V2X perspectives.

IThroughout this book we use Transportation and Transport interchangeably.

Automotive Software Engineering: Past, Present, and Future 7

The focus lies on architecture and on security and privacy, protecting assets, safety,
and functionality.

4 Towards Autonomous and Cooperative Driving

In a few years’ time, autonomous and cooperative cars will become a reality.
Developments such as Google-car, the autopilot functionality of Tesla, and Uber
self-driving cars have accelerated the development of autonomous driving. The
OEM-ers are introducing more and more advanced driving assistance systems
(ADAS), which can be interpreted as paving the road to full autonomous driving.
Further development of autonomous driving will involve further development of
C-ITS systems. An autonomous car without a C-ITS support is a “blind car”
because it has to “feel” its environment. Integration with to advanced C-ITS
systems will support autonomous cars. This development can only be realized
through standardization on both sides, meaning standardization in the car itself
and standardization of C-ITS. Other challenges related to supporting autonomous
cars via C-ITS are scalability, robustness, security, etc. These challenges have to be
addressed before a large-scale introduction of autonomous driving can be done.

References

1. Dajsuren Y, van den Brand M, Serebrenik A, Huisman R (2012) Automotive adls: a study
on enforcing consistency through multiple architectural levels. In: Proceedings of the 8th
international ACM SIGSOFT conference on quality of software architectures, QoSA ’12.
ACM, New York, NY

2. Dajsuren Y, van den Brand MGJ, Serebrenik A, Roubtsov SA (2013) Simulink models are
also software: modularity assessment. In: Proceedings of the 9th international ACM SIGSOFT
conference on quality of software architectures, QoSA 2013, part of Comparch ’13 federated
events on component-based software engineering and software architecture, Vancouver, BC,
17-21 June 2013, pp 99-106

3. Dajsuren Y, Gerpheide CM, Serebrenik A, Wijs A, Vasilescu B, van den Brand, MGJ (2014)
Formalizing correspondence rules for automotive architecture views. In: Proceedings of the
10th international ACM SIGSOFT conference on quality of software architectures, QoSA’14
(part of CompArch 2014), Marcq-en-Baroeul, Lille, 30 June—04 July 2014, pp 129-138

4. Heermann PD, Caskey DL (1995) Intelligent vehicle highway system: advanced public
transportation systems. Math Comput Model 22(4-7):445-453

5. Luo Y, van den Brand M (2016) Metrics design for safety assessment. Inf Softw Technol
73:151-163

6. Luo Y, van den Brand M, Engelen L, Favaro JM, Klabbers M, Sartori G (2013) Extracting
models from ISO 26262 for reusable safety assurance. In: Safe and secure software reuse -
Proceedings of the 13th international conference on software reuse, ICSR 2013, Pisa, 18-20
June 2013, pp 192-207

7. Luo Y, van den Brand M, Engelen L, Klabbers M (2014) From conceptual models to safety
assurance. In: Conceptual modeling - Proceedings of the 33rd international conference, ER
2014, Atlanta, GA, 27-29 October 2014, pp 195-208

10.

11.

12.

Y. Dajsuren and M. van den Brand

. Luo Y, van den Brand M, Engelen L, Klabbers M (2015) A modeling approach to support

safety assurance in the automotive domain. In: Progress in systems engineering. Springer,
Cham, pp 339-345

. Osério AL, Afsarmanesh H, Camarinha-Matos LM (2010) Towards a reference architecture for

a collaborative intelligent transport system infrastructure. In: Working conference on virtual
enterprises. Springer, Berlin, pp 469477

Saberi AK, Luo Y, Cichosz FP, van den Brand M, Jansen S (2015) An approach for functional
safety improvement of an existing automotive system. In: 9th annual IEEE international
systems conference (SysCon), pp 277-282

Takada K, Tanaka Y, Igarashi A, Fujita D (1989) Road/automobile communication system
(RACS) and its economic effect. In: Vehicle navigation and information systems conference.
Conference record. IEEE, Toronto, pp A15-A21

Williams, M (1988) Prometheus-the European research programme for optimising the road
transport system in Europe. In: IEE colloquium on driver information. IET, London, p 1

Part 11
Automotive Software Development

Requirements Engineering)
for Automotive Embedded Systems ik

Miroslaw Staron

Abstract Requirements engineering is both a phase of software development
lifecycle and a subdomain of software engineering. In general, “requirements" is
defined as the description of the functionality of software under design and its
properties (functional and nonfunctional requirements). Requirements are often
perceived as textual documentation. However, in automotive software engineering,
requirements can have multiple forms—starting from the short textual descriptions
of functionality to fully executable model-based specifications.

In this chapter, we overview the notion of a requirement in general, and describe
the types of requirements used when designing automotive software systems. We
use the V-model, prescribed by the ISO 26262 safety standard, which describes
the way in which software is designed in the automotive domain. We consider the
different types of requirements used in these phases.

1 Introduction

Contemporary cars, trucks, buses, and even bikes have software—some as much
as 1 GB of onboard binary code excluding maps, music, and other downloadable
data. As the history of software dates back to the 1970s with the first onboard
Electronic Control Units (ECUs) in an engine, we could observe an enormous
growth of software. Up until the end of the 1990s, the amount of onboard code was
measured in megabytes, and only a few ECUs were present in the car. However, in
the last decade, this amount has grown to over 130 ECUs per car and as much as the
aforementioned 1 GB of code.

Moreover, software is included in more safety-critical areas, such as collision
avoidance by breaking, automatic parking, or autonomous driving. Therefore, we
need to enhance our expertise in working with software as one of the primary

M. Staron (°<)
Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden
e-mail: Miroslaw.Staron @cse.gu.se

© Springer Nature Switzerland AG 2019 11
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_2&domain=pdf
mailto:Miroslaw.Staron@cse.gu.se
https://doi.org/10.1007/978-3-030-12157-0_2

12 M. Staron

development entities alongside mechanics and electronics. In this chapter, we focus
on one of these areas—requirements engineering. We contribute by providing prac-
tical examples of how to efficiently utilize requirements engineering for automotive
systems.

The area of requirements engineering is one of the disciplines in vehicle
development on the one hand, and, on the other hand, it is a subdomain of software
engineering and one of the initial phases of software development lifecycle. It
deals with the methods, tools, and techniques for eliciting, specifying, documenting,
prioritizing, and quality assuring the requirements. The requirements themselves
are very important in enhancing the quality of software in various ways as quality
is defined as “The degree to which software fulfills the user requirements, implicit
expectations and professional standards.” [16].

Requirements is often defined as (/) a condition or capability needed by a
user to solve a problem or achieve an objective; (2) a condition or capability
that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed documents; and (3) a
documented representation of a condition or capability as in (1) or (2) [16]. This
definition stresses the link between the user of the system and the system itself,
which is important for a number of reasons:

» Testability of the system—it should be clear how a requirement should be tested,
for example, what is the usage scenario realized by the requirement.

* Traceability of the functionality to design—it should be possible to trace which
parts of the software construction realize the requirement in order to provide
safety argumentation and enable impact/change management.

* Traceability of the project progress—it should be possible to get an overview
of which requirements have already been implemented and which are still to be
implemented in the project.

It is a very technical definition for something that is intuitively well known—a
requirement is a way of communicating what we, the users, want in our dream car.
In this sense, it seems that the discipline of requirements engineering is simple. In
practice, working with requirements is very complex as the ideas that we, users,
have need to be translated to one of the millions of components of the car and its
software. So, let us see how the automotive companies work with our requirements
or dreams.

We discuss software requirements engineering because the automotive industry
has recognized the need to shift its innovation from the mechanical parts of the
car to its electronics and software. The majority of us, the customers, buy cars
today because they are fast (sporty), safe, or comfortable. In many cases, these
properties are realized by adjusting the software that steers parts of the modern
cars. For example, we can have the same car with a software package that makes it
extremely sporty—Ilook at the Tesla’s “Insane” acceleration package or the Volvo’s
Polestar performance package. These are just the two challenges which lead to two
very important trends in automotive software requirements engineering:

Requirements Engineering for Automotive Embedded Systems 13

1. Growing amount of software in contemporary cars—as the innovation is driven
by software, the amount of software and its complexity grows exponentially. For
example, the amount of software in the 1990s was a few megabytes of binary
code (e.g., Volvo S80) and today reaches over one gigabyte excluding maps and
other user data (e.g., Volvo XC90 of 2016).

2. Safety requirements posed by standards such as ISO 26262—as the software
steers more parts of the car, there is a larger probability that it can interfere with
our driving and cause accidents, and therefore, it has to be safety-assured just
like the software in airplanes or trains. The contemporary standard for functional
safety (ISO/IEC 26262, Road Vehicles—Functional Safety) prescribes methods
and processes to specify, design, and verify/validate the software.

Automotive software requirements engineering needs rigid processes for han-
dling the construction of the software in the car and therefore is much different
from the other types of software requirements engineering, such as telecom or web
design.

This chapter explores the theory of requirements engineering in automotive
development by examining two types of requirements—textual specifications and
models used as requirements. It also helps us to explore the evolution of require-
ments engineering in automotive software development to finally draw on the
current trends and challenges for the future.

2 Requirements and Requirements Engineering

Requirements engineering in the automotive sector is increasingly about the soft-
ware, since software is the source of innovations in the dramatically increasing
tempo of changes. According to Houdek [15] and the report on the innovation in the
car industry [8], the number of functions in an average car grows much faster than
the number of devices, with the number of systematic innovations growing faster
than the individual innovations. Systematic innovations are systems of software
functions rather than individual functions. Therefore, the discipline of requirements
engineering is more about engineering than it is about innovation.

The volume of an automotive requirement specification is in the range of 100000
pages for a new car model according to Houdek based on his study at Mercedes-
Benz [15], with ca. 400 documents of 250 pages each at the lowest specification
level (component specifications), which are sent over to a large number of suppliers
(usually over 100 suppliers, one for each ECU in the car).

Weber and Weisbrod [42] expounded the complexity and size of requirement
specifications in the automotive domain based on their experiences from Daim-
lerChrysler. Their large software development projects can have as many as 160
engineers working on a single requirement specification and producing over 3 GB
of requirements data. Weber and Weisbrod describe the process of requirements
engineering in the following way: “Textual requirements are only part of the

14 M. Staron

game—automotive development is too complex for text alone to manage.” This
quote reflects the -state-of-the-art practice of requirements engineering—that the
requirements form only one part of the construction database. However, let us look
at how the requirements are specified in the automotive domain. Similar challenges
of linking requirements to other parts of the construction database can be also found
in our previous studies in [23].

3 Types of Requirements in Automotive Software
Development

When designing software for a car, designers (who are often referred to as
constructors) gradually break down the requirements from the car level to the
component level. They also gradually refine them from textual requirements to
models of behavior of the software. This gradual refinement is caused by the fact that
the requirements have to be sent to Tier 1 suppliers for development and therefore
should be as detailed as possible to enable their validation. Figure 1 presents the
main phases of software development for automotive systems, roughly based on the
software development process model prescribed by ISO/IEC 26262 Systems and
Software Safety—Functional Safety standard [17].

In the figure, we also make a distinction between the responsibilities of original
equipment manufacturers (OEMs) (vehicle manufactures) and their suppliers. This
distinction is important as it is often the phase where the handshaking between
the suppliers and the OEMs takes place, and therefore the requirements are used
during the contract negotiations. In this context, a detailed, unambiguous, and
correct requirement specification prevents potentially unnecessary costs related to

~ S

Ir_ Requirements / |\ Customer test :I
Function design | | Functional test I
/—\‘. r N
| Systemdesign | | System test |
M 00 OEMs
------- | Component design | Component test [oresrerermsrerarnerraees
' % Suppliers

b ¢
| Implementation |
p

~

Fig. 1 V-shaped model of software development process in automotive software development

Requirements Engineering for Automotive Embedded Systems 15

the changes in requirements caused by miscommunication between the OEMs and
suppliers.
In the automotive domain, we have a number of tiers of suppliers:

e Tier 1—suppliers working directly with OEMs, usually delivering complete
software and hardware subsystems and ECUs to the OEMs.

e Tier 2—suppliers working with Tier 1 suppliers, delivering parts of the sub-
products that are then delivered by Tier 1 suppliers to the OEMs; Tier 2 suppliers
usually do not work directly with OEMs, which makes it even more important
for the requirements to be detailed so that they can be correctly broken down by
Tier 1 suppliers for Tier 2.

e Tier 3—suppliers working with Tier 2 suppliers, similar to Tier 2 suppliers
working with Tier 1 suppliers.

In this section, we describe these different types of requirements, which can be
found in these phases.

3.1 Textual Requirements

AUTOSAR is a great source of inspiration for research in automotive software
development, and therefore let us look at the requirements in this standard—it
appears that they are mostly textual. An example of a requirement specified in this
format, for a feature of keyless entry, is presented in Fig. 2.

The structure of the requirement is quite typical for requirements in general—it
contains the description, rationale, and use cases. So far, we do not see anything
specific. Nevertheless, if we look at the sheer size of such a specification—over

REQ-1: Keyless vehicle entry

Type Valid

Description It should be able to open the car with an RFID key or a mobile
phone

Rationale The majority of our competitors have a RFID sensors in the car

that open and start the car based on the proximity of the
designated driver who has the RFID sender (e.g. a card).

To stay ahead of the competition, we need to provide the key
as a mobile phone app for iOS and Android phones.

Use case Keyless start-up

Dependencies REQ-11: RFID implementation

Supporting material | ---

Fig. 2 An example of a textual requirement, specified in a format used by AUTOSAR require-
ments

16 M. Staron

1000 pages—we can see that we might be at loggerheads, so let us discuss the kind
of issues we can discover.

Why: The textual requirements are used when describing high-level properties of
cars. These types of requirements are mostly used in two phases—the requirements
phase when the specification of the car’s functionality at a high level takes place
and at the component design phase where large software requirement specification
documents are sent to suppliers for development (although the textual requirements
are often complemented by model-based requirements).

How: Specifying this kind of requirements rarely happens from scratch. Textual
requirements are often specified based on models (e.g., UML domain models) and
are intended to describe details of the innerworking of software systems. They
are often linked to verification methods describing how the requirement should
be verified—for example, describing the test procedure for validation that the
requirement is implemented correctly. Quite often, it is the suppliers who do the
verification as many requirements demand specific test equipment to test their
implementation. If this is the case, the OEMs choose a subset of requirements and
verify them to check the correctness of the verification procedure from their side.

What: The text for the requirement is specified in the format given in Fig.2—
tables with text. This format is effective for specific details, but ineffective when we
want to communicate overviews and provide the context for the requirements. For
this, we need other types of formats—use cases or models.

3.2 Use Cases

In software engineering, the golden standard to specify requirements is to adopt the
use cases as defined by Jacobson together with this objectory methodology in the
1990s [18]. The use cases describe a course of interaction between an actor and the
system under specification, for example, as shown in Fig. 3 where the actor interacts
with the car in the use case “Keyless start/up.” The corresponding diagram (called
the use case diagram in UML) is used to present which interactions (use cases) exist
and how many actors are included in these interactions.

In the automotive industry, this kind of requirements specification is the most
common when describing functions of vehicles and their dependency. It is used to
describe how the actors (drivers or other cars) interact with the designed vehicle
(the system) in order to realize a specific use case. This kind of specification is often
described using the sequence diagrams of UML, and we can see an example of such
a specification in Fig. 4.

Fig. 3 An example use case
specification with one use
case Keyless start/up

Requirements Engineering for Automotive Embedded Systems 17

MyCar:System
driver:Actor
approach()
isValidDriver = checkValidity()

—
[isValidDriver] openDoors()
[isValidDriver] startEngine()

—

Fig. 4 An example specification of a use case utilizing the message sequence charts/sequence
diagrams

Why: The use case specifications provide a high-level overview of the function-
ality of the designed system, such as a car, and therefore are very useful in the early
phases of vehicle development. Usually, these early phases are functional design
(use case diagrams) and the beginning of system design (use case specifications).

How: Using high-level descriptions of product properties, functional designers
break down these properties into usage scenarios. These usage scenarios provide
a possibility to identify which of the functions (use cases) are of value to the
customers and which are too cumbersome.

What: These kinds of specifications consist of three parts—(1) the use case
diagram, (2) the use case specification utilizing the sequence diagram, and (3) the
textual specification of a use case detailing the steps of the interaction applying a
somewhat structured natural language.

3.3 Model-Based Requirements

One method to provide more context to the requirements is to express them as
models. This kind of representation can be done in two types of formalisms—UML-
like models and Simulink models. In Fig. 5, we present an excerpt of a Simulink
model for an ABS system from [32, 33, 37].

18 M. Staron

__ [sldemo_wheelspeed_absbrake
= |Input
Desired WheelSpeed Ww;
relative Tire Torque
slip
A Wheel Speed
i yout
' Vs
mu-slip Weight 1 Vehicle speed
friction curve s _» (angular)
1
Vehicle Sq
speed
Stopping distance
i f(u) |l
slp | |
Relative Slip

Fig. 5 An example Simulink model that can be used as a requirement to describe how to
implement the ABS system

The model shows how to implement the ABS, but the most important property is
that the model shows how the algorithm should behave and therefore how it should
be verified.

Why: Using models as requirements has been recognized by practitioners, and in
an automotive software project, up to 23% of the models are used as requirements
according to our previous studies [26] and [25]. According to the same study,
up to 13% of the effort is spent in the software project to design these kinds of
requirements.

How: The simulation models used for requirements engineering are often used
as part of the process of system design and function design where the software and
system designers develop algorithms that describe how functions in modern cars
are to be realized. These models can be automatically translated to C/C++ code
using code generation, but it is rather uncommon. Hence, these models describe the
entire functions that are often partitioned into different domains and spread over
multiple components. Quite often, these kinds of requirements are translated into
textual specifications as shown in the previous subsection.

What: The models are expressed using Simulink or a variation of statechart such
as Statemate or Petri nets. These simulation models detail the functions described in
the use cases by adding the system view of the interaction—the blocks and signals.
The blocks and signals represent the realization of the functionality in a car and are
focused on one function only. These models are often used as specifications, which
are then detailed and often used to generate the source code automatically.

Requirements Engineering for Automotive Embedded Systems 19
3.4 Requirements as Models

With the introduction of SysML, the models became more expressive than they were
when modeled with UML. SysML introduced the notion of requirements diagram,
as shown in Fig. 6.

Why: Considering the requirements as first-class entities in models provides the
possibility to link them to construction elements of the design [39]. These links
provide the possibility to trace requirements to implementation details and therefore
speed up modifications.

How: The requirements and their rationale are modeled boxes and lines, just like
any other modeling element in SysML. The requirements diagram is one of the most
flexible diagrams in SysML, where we can place all kinds of structural elements.

What: The requirements capture the functions and properties of the products.
They are linked to rationales and design intentions to increase awareness of the
design and implementation constructs in the context.

«Rationale»

Market analysis shows that
we need to be faster than our
competitors in the same
segment

%1 Max acceleration compared to competition

«Requirement» -
= Maximum acceleration L o «Trace»

id=1.1 o
text=The vehicle should
accelerate from 0- 100
km/h in less than 6.2 M-~ «Satisfy»

seconds under normal i

weather conditions. = CEE R

- €&t Provide power

«DeriveReqt» ~ -
Derived system requirement

«TestCase»
: Testing max acceleration

SO~
'
i+
.12
®
<

1
«Requirement»
E Engine power

id=1.1.1

text=The minimum
engine power should be
200 hp

Fig. 6 An example SysML requirement model

20 M. Staron
4 Measuring Requirements and Requirement Specifications

Industry grade requirement specifications are significantly large—tens of thousands
of requirements. Therefore, software engineers use quantitative assessments to
understand the complexity and quality of software requirements.

Honig [14] provides a number of rudimentary measures for requirement specifi-
cations':

* Requirement correctness—Is the individual requirement properly defining a gen-
uine system function and need? In some cases, the measure may be determined
by a formal system requirement verification process.

* Requirement unambiguity—Is the requirement clear and understandable to the
expected users of the document? Are multiple, different interpretations of the
requirement by different readers unlikely?

* Requirement completeness—Does this single atomic requirement include every-
thing necessary to fully understand the desired function? Are all realizable
types of input data, events, system environment covered? Are all terms used
understandable or included in the glossary?

* Requirement verifiability—How adequately can this requirement be tested? Is it
perfectly clear what test(s) are needed to confirm the requirement is met? Is it
clear what should be considered a failure of a test of this requirement?

* Requirement modifiability—Is the individual requirement written so as to be easy
to update, change, and eliminate in the future as system needs evolve?

* Requirement atomicity—Is the requirement all one, individual, atomic require-
ment, including limits, constraints, and all details of the functionality?

* Requirements completeness—Is the set of atomic requirements complete and
providing a full definition of all necessary functionality for the entire system
(or the current portion being reviewed)?

* Requirements consistency—Is the set of atomic requirements internally consis-
tent, with no contradictions, no duplication between individual requirements?

* Requirements importance ranking—The set of atomic requirements are indi-
vidually assigned to suitable importance categories (e.g., Essential, Desirable,
Optional/Frill) and the assignment of values is appropriate.

* Requirements traceability—Are the individual atomic requirements uniquely
identified with unchanging numbers? Are other existing documents or deliver-
ables linked to individual requirements appropriately (e.g., use cases related to
atomic requirements)?

* Requirements purity—Is the document free from system design and project
schedule, staffing, etc.?

* Requirements count—Current number of individually identified and numbered
atomic requirements.

The definitions of the measures are quoted directly from the paper.

Requirements Engineering for Automotive Embedded Systems 21

The abovementioned set of measures shows the major shortcoming of the
requirement assessment practices—they are based on manual assessments. How-
ever, some studies show that requirements can be quantified automatically in a
meaningful way. This quantification can be done based on the semantical analysis
of the meaning of requirements (majority of the research), but it can also be
approximated with the search-based techniques.

For example, Antinyan and Staron [2, 3] identified the following measures to be
significant for assessing the complexity of requirements:

e Number of conjunctions

* Number of vague phrases

¢ Number of references

¢ Number of referenced documents
¢ Number of words

These measures can be combined into a requirement quality index. The index
provides designers with the possibility to rank their requirements and improve their
quality.

S How All These Requirements Come Together

All these types of requirements need to come together somehow; hence, we have
the process and the infrastructure for requirements engineering. Let us start with the
infrastructure—usually named the design or construction database. In the light of
the work of Weber and Weisbrod [42], it is called the common information model.
Figure 7 presents the way in which this design database is used. The construction
database contains all elements of the design of the electrical system of the vehicle—
components, electronic control units, systems, controllers, etc. The structure of such
a database is hierarchical and reflects the structure of the vehicle. Each of the
elements in the database has a set of requirements linked to them. The requirements
are also linked to one another to show how they are broken down. Such a database
grows over time and is version controlled as different versions of the same elements
can be used in different vehicles (e.g., different year models of the same car or
different cars).

An example of such a system is described by Chen et al. [6] and has been
developed by the company Systemite, which specializes in the databases for designs.
Such a database structures all the elements of the construction of the integrated
electronics of the vehicle and links all artifacts to the construction elements. An
example of a construction element is the engine’s electronic control unit, and all the
functions that use this control unit are linked to it.

Such a database usually has a number of views that show the required set
of details—functional view, architectural view, topological view, and software
components’ view. Each view provides the corresponding entry point and shows
the relevant elements, but the database is always in a consistent state where all the
links are valid.

22 M. Staron

— Detailed design %%
@@ Architectural '\ , models
D\ EEe

> " Test
specifications

Requirement Sy
specifications

Design and

construction
database
_/
} Ty
Implementation Component Test plans
plans specifications

Fig. 7 Design database

The database is used to generate construction specifications for different actors.
For each supplier who delivers an ECU, the database generates the set of all
requirements that are linked to the ECU and all models that describe the behavior of
the ECU. Sometimes, depending on the situation, the documentation contains even
the simulation models for the functions that are to be included in the ECU.

6 Current Trends of Software Requirements Engineering
in the Automotive Domain

Based on the observations of the evolution of the automotive embedded software,
we could observe a number of trends in requirements engineering. In this section,
we describe these trends.

Agility in Specification Development Agile software development has been used
in many domains outside the automotive domain, and now there is evidence that
it is used increasingly in the automotive domain. In particular at the lower part of
the V-model, the suppliers work more agile with their requirements engineering
and software development [22]. We can also observe these trends scaling up to
the complete vehicle development [11] and [20]. With this increased adoption of
Agile principles, we can foresee increased ability to specify requirements along
software development, especially as the trends in automotive electronics are that we

Requirements Engineering for Automotive Embedded Systems 23

use increasingly more commodity (or off-the-shelf) components. AUTOSAR also
prescribes standardized approach to development, which eases the use of iterative
development principles as the development of electronics/hardware is decoupled
from the development of functions/software.

Increased Focus on Traceability Increased amount of software in cars and
their increased presence in safety systems lead to stricter processes for keeping
track of requirements for safety-critical systems. ISO 26262 (Road Vehicles—
Functional Safety) is one example of this. In the automotive domain, this means
that the increased complexity of software modules [34] leads to more fine-grained
traceability management. One of the enablers of this increased traceability is the
increased integration between tools and tool chaining [5] and [4].

Increased Focus on Non-functional Properties The increased use of software
for active safety systems calls for the increased focus on non-functional properties
of software. The increased traffic on communication buses within the car and the
increased capacity of the communication buses call for more synchronization and
verification. The safety analyses such as control path monitoring, safety bits, and
data complexity control are just a few examples [38]. As the focus of requirements
engineering research in the automotive domain was mainly (or implicitly) on the
functional requirements, we foresee increased growth of research and emphasis on
the non-functional requirements.

Increased Focus on Security Requirements A dedicated group of requirements
is the security requirements. As our cars are increasingly connected, they are prone
to hacker attacks [35] and [43]. The recent demonstration of the possibility to steer
a Jeep Wrangler vehicle off-road showed that the threat is real and related to the
safety of cars and transport systems. We therefore perceive that the ability to prevent
attacks will be of focus for the automotive software development increasingly more
in the coming decade.

7 Further Reading

This chapter provides an overview of the techniques used for requirements engineer-
ing in the automotive domain, and interested readers are encouraged to dive deeper
into the topic. We provide a number of interesting entry points to more research in
requirements engineering for automotive software systems.

Ott et al. [28] and [29] present a study on requirements engineering at Mercedes-
Benz where they classified over 5800 requirement review protocols to their quality
model. Their results showed that textual requirements (or natural language require-
ments as they are called in the publication) are prone to problems such as
inconsistency, incompleteness, or ambiguity—with about 70% of the defects in
requirements falling into these categories. In the light of this article, we can see
the need for complementing the textual requirements with more context provided
by use case models, user stories, and use cases.

24 M. Staron

Torner et al. [40] presented a similar study but of the requirements at Volvo Cars
Group. In contrast to the study of Ott et al. [28], these authors studied the use case
specifications and not the textual requirements. The results, however, are similar as
the main types of defects are missing elements (correctness in Ott et al.’s model)
and incorrect linguistics (ambiguity in Ott et al.’s model).

Eliasson et al. [12] described further experiences from Volvo Cars Group where
they explored challenges with requirements engineering at large in a mecha-
tronics development organization. Their findings showed that there is a lot of
communication in parallel to the requirement specification. The stakeholders in the
requirement specification frequently mentioned the need to have a good network in
order to specify the requirements correctly. This indicates the challenges described
previously in this chapter that the requirements need more context than it is usually
provided in just the specification (especially the textual specification).

Mabhally et al. [20] identified requirements to be the main barriers and enablers
of moving toward Agile mechatronics organizations. Although today OEMs try to
move toward fast development of mechatronics and reduce the cycle time by using
Agile software development approaches, the challenges are that we do not know
upfront whether a requirement needs the development of electronics or it is only a
software requirement. According to Mahally et al., this kind of problem needs to
be solved, and based on the prediction of Houdek [15], issues of this kind might be
coming to an end as device development flattens out and most of the requirements
will be software requirements. Similar challenges were presented by Pernstal et
al. [31] who found that requirements engineering is one of the top improvement
areas for the automotive OEMs. The ability to communicate via requirements was
also an important part.

At Audi, Allmann et al. [1] presented the challenges in the requirements
communication on the boundary between the OEMs and their suppliers. They have
identified the needs for better communication and the challenges of communicating
through textual representations. They recognized the needs for tighter partnerships
as there is an inherent deficiency in communicating through requirements—
transferring knowledge through an intermediate medium. Therefore, they rec-
ommend to integrate systems to minimize the knowledge loss via transfer of
documents.

Siegl et al. [36] presented a method for formalizing requirement specifications
using Time Usage Model and applied it successfully to a requirement specification
from one of the German OEMs. The evaluation study showed an increased test
coverage and increased quality of the requirement specification.

At BMW, Hardt et al. [13] demonstrated the use of formalized domain engineer-
ing models in order to reason about the dependencies between requirements in the
presence of variants. Their approach provided a simplistic, yet powerful, formalism,
and its strength was the industrial applicability.

A study of the functional architecture of a car project at BMW and the
requirements linked to the functions by Vogelsanag and Fuhrmann [41] showed that
85% of the functions are dependent on one another and that these dependencies
caused a significant amount of problems in software projects. This study shows

Requirements Engineering for Automotive Embedded Systems 25

the complexity of the functional decomposition of the vehicle’s design and the
complexity of its description.

At Bosch, Langenfeld et al. [19] the longitudinal study of a 5-year project
showed that 61% of the defects in requirements come from the incompleteness or
incorrectness of the requirement specifications.

One of interesting trends in requirements engineering is the automatization of
tasks of requirement engineers. One of such tasks is the discovery of non-functional
requirements. This task is based on reading the specifications of functional require-
ments and identifying phrases that should be transformed into non-functional
requirements. A study on the automation of this task has been conducted by Cleland-
Huang et al. [7]. The study showed that the automated classification of requirements
could be as good as 90%, but at this stage it cannot replace the manual classifiers.

7.1 Requirements Specification Languages

A model for requirements traceability [10] DARWIN4Req has been proposed to
address the challenges related to the ability to follow the requirements’ lifecycle.
The model allows to link requirements expressed in different formalities (e.g., UML,
SySML) and link them to one another. However, to the best of our knowledge, the
model and the tool have not been adopted on a wider scale yet.

EAST-ADL [9] is an architecture specification language, which contains the
elements to capture requirements and link them to the architectural design. The
approach is similar to SySML but with the difference that there is no dedicated
requirement specification diagram. EAST-ADL has been demonstrated to work in
industry; however, it is not a standard for automotive OEMs yet. Mahmud [21]
presented a language ReSA that complements the EAST-ADL modeling language
with the possibility to analyze and validate requirements (e.g., basic consistency
checks).

For the non-functional requirements in the domain of safety, Peraldi-Frati and
Albinet [30] have proposed another extension of the EAST-ADL language that
allows for increased traceability of requirements and their linking to the non-
functional properties of the designed embedded software (e.g., safety).

Mellegard and Staron [24] and [27] conducted an empirical study on the
impact of using hierarchical graphical requirement specification on the quality
of change impact assessment. For the purpose, they designed a requirements’
specification language based on the existing formalism—Requirements Abstraction
Model. The results showed that the graphical overview of the dependencies between
requirements introduces a significant improvement.

26 M. Staron
8 Conclusions

Correct, unambiguous, and consistent requirement specifications are the founda-
tions of high-quality software, in general, and in automotive embedded systems, in
particular. In this chapter, we introduced the most common types of requirements
used in this domain and provided their main strengths.

Based on the current state of evolution of the automotive software, we could
observe three trends in the requirements engineering for the automotive embedded
systems—(1) agility in requirement specification, (2) increased focus on non-
functional requirements, and (3) increased focus on security as a domain for
requirements. Toward the end of this chapter, we also provided an overview of the
requirements practices in some of the vehicle manufacturers (Mercedes-Benz, Audi,
BMW, and Volvo) based on the published experiences from these companies. We
have also pointed out a number of directions for further reading for the interested.

In our future work, we plan to make a review of the requirements engineering
practices in the main automotive OEMs and identify their commonalities and
differences.

References

—

. Allmann C, Winkler L, Kolzow T, et al (2006) The requirements engineering gap in the oem-
supplier relationship. J Univers Knowl Manag 1(2):103-111

2. Antinyan V, Staron M (2017) Proactive reviews of textual requirements. In: IEEE 24th
international conference on Software Analysis, Evolution and Reengineering (SANER), 2017.
IEEE, Piscataway, pp 541-545

3. Antinyan V, Staron M (2017) Rendex: a method for automated reviews of textual requirements.
J Syst Softw 131:63-77

4. Armengaud E, Biehl M, Bourrouilh Q, Breunig M, Farfeleder S, Hein C, Oertel M, Wallner
A, Zoier M (2012) Integrated tool chain for improving traceability during the development of
automotive systems. In: Proceedings of the 2012 embedded real time software and systems
conference

5. Biehl M, DelJiu C, Torngren M (2010) Integrating safety analysis into the model-based
development toolchain of automotive embedded systems. In: ACM sigplan notices, vol 45.
ACM, New York, pp 125-132

6. Chen D, Torngren M, Shi J, Gerard S, Lonn H, Servat D, Stromberg M, Arzen KE (2006)
Model integration in the development of embedded control systems-a characterization of
current research efforts. In: 2006 IEEE international conference on control applications,
computer aided control system design. IEEE, Piscataway, pp 1187-1193

7. Cleland-Huang J, Settimi R, Zou X, Solc P (2007) Automated classification of non-functional
requirements. Requir Eng 12(2):103-120

8. Dannenberg J, Burgard J (2015) Car innovation: a comprehensive study on innovation in the
automotive industry. Oliver Wyman Automotive, New York

9. Debruyne V, Simonot-Lion F, Trinquet Y (2005) East-adlan architecture description language.

In: Architecture description languages. Springer, New York, pp 181-195

Requirements Engineering for Automotive Embedded Systems 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Dubois H, Peraldi-Frati MA, Lakhal F (2010) A model for requirements traceability in a
heterogeneous model-based design process: application to automotive embedded systems. In:
2010 15th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, Piscataway, pp 233-242

Eliasson U, Heldal R, Lantz J, Berger C (2014) Agile model-driven engineering in mecha-
tronic systems-an industrial case study. In: Model-driven engineering languages and systems.
Springer, Cham, pp 433-449

Eliasson U, Heldal R, Knauss E, Pelliccione P (2015) The need of complementing plan-driven
requirements engineering with emerging communication: experiences from volvo car group.
In: 2015 IEEE international Requirements Engineering conference (RE). IEEE, Piscataway,
pp 372-381

Hardt M, Mackenthun R, Bielefeld J (2002) Integrating ECUs in vehicles-requirements
engineering in series development. In: 2002 IEEE international Requirements Engineering
conference (RE). IEEE, Piscataway, pp 227-236

Honig WL (2016) Requirements metrics - definitions of a working list of possible metrics
for requirements quality. Retrieved from Loyola eCommons, Computer Science: Faculty
Publications and Other Works

Houdek F (2013) Managing large scale specification projects. In: 19th international working
conference on Requirements Engineering Foundations for Software Quality, REFSQ 2013,
Essen, Germany, 8-11 April 2013

IEEE (1990) IEEE standard glossary of software engineering terminology (IEEE std 610.12-
1990). IEEE Computer Society, Los Alamitos

ISO I (2011) 26262-road vehicles-functional safety. International Standard ISO/FDIS 26262
Jacobson I, Booch G, Rumbaugh J (1997) The objectory software development process.
Addison Wesley, Boston. ISBN: 0-201-57169-2

Langenfeld V, Post A, Podelski A (2016) Requirements defects over a project lifetime: an
empirical analysis of defect data from a 5-year automotive project at Bosch. In: Requirements
engineering: foundation for software quality. Springer, Cham, pp 145-160

Mahally MM, Staron M, Bosch J (2015) Barriers and enablers for shortening software
development lead-time in mechatronics organizations: a case study. In: Proceedings of the 2015
10th joint meeting on foundations of software engineering. ACM, New York, pp 1006—-1009
Mahmud N, Seceleanu C, Ljungkrantz O (2015) Resa: an ontology-based requirement
specification language tailored to automotive systems. In: 10th IEEE international Symposium
on Industrial Embedded Systems (SIES), 2015. IEEE, Piscataway, pp 1-10

Manhart P, Schneider K (2004) Breaking the ice for agile development of embedded software:
an industry experience report. In: Proceedings of the 26th international conference on software
engineering. IEEE Computer Society, Washington, pp 378-386

Mellegéard N, Staron M (2008) Methodology for requirements engineering in model-based
projects for reactive automotive software. In: 18th ECOOP doctoral symposium and PhD
student workshop, p 23

Mellegérd N, Staron M (2009) A domain specific modelling language for specifying and
visualizing requirements. In: The first international workshop on domain engineering, DE@
CAISE, Amsterdam

Mellegérd N, Staron M (2010) Characterizing model usage in embedded software engineering:
a case study. In: Proceedings of the fourth European conference on software architecture:
companion volume. ACM, New York, pp 245-252

Mellegérd N, Staron M (2010) Distribution of effort among software development artefacts: an
initial case study. In: Enterprise, business-process and information systems modeling. Springer,
Berlin, pp 234-246

Mellegard N, Staron M (2010) Improving efficiency of change impact assessment using
graphical requirement specifications: an experiment. In: Product-focused software process
improvement. Springer, Berlin, pp 336-350

28

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Staron

Ott D (2012) Defects in natural language requirement specifications at mercedes-benz: an
investigation using a combination of legacy data and expert opinion. In: 2012 20th IEEE
international Requirements Engineering conference (RE). IEEE, Piscataway, pp 291-296

Ott D (2013) Automatic requirement categorization of large natural language specifications
at mercedes-benz for review improvements. In: Requirements engineering: foundation for
software quality. Springer, Berlin, pp 50-64

Peraldi-Frati MA, Albinet A (2010) Requirement traceability in safety critical systems. In:
Proceedings of the Ist workshop on critical automotive applications: robustness & safety.
ACM, New York, pp 11-14

Pernstal J, Gorschek T, Feldt R, Florén D (2013) Software process improvement in inter-
departmental development of software-intensive automotive systems—a case study. In: Product-
focused software process improvement. Springer, Berlin, pp 93-107

Rana R, Staron M, Berger C, Hansson J, Nilsson M, Torner F (2013) Improving fault injection
in automotive model based development using fault bypass modeling. In: GI-Jahrestagung.
Chalmers University of Technology, Gothenburg, pp 2577-2591

Rana R, Staron M, Mellegard N, Berger C, Hansson J, Nilsson M, Térner F (2013) Evaluation
of standard reliability growth models in the context of automotive software systems. In:
Product-focused software process improvement. Springer, Berlin, pp 324-329

Rana R, Staron M, Berger C, Hansson J, Nilsson M, Torner F (2013) Increasing efficiency of
ISO 26262 verification and validation by combining fault injection and mutation testing with
model based development. In: ICSOFT 2013, pp 251-257

Sagstetter F, Lukasiewycz M, Steinhorst S, Wolf M, Bouard A, Harris WR, Jha S, Peyrin
T, Poschmann A, Chakraborty S (2013) Security challenges in automotive hardware/software
architecture design. In: Proceedings of the conference on design, automation and test in Europe,
EDA consortium, pp 458-463

Siegl S, Russer M, Hielscher KS (2015) Partitioning the requirements of embedded systems
by input/output dependency analysis for compositional creation of parallel test models. In: 9th
annual IEEE international Systems Conference (SysCon), 2015. IEEE, Piscataway, pp 96-102
SimulinkDemo (2012) Modeling an anti-lock braking system. The MathWorks, Inc, Natick.
Copyright 2005-2010

Sinha P (2011) Architectural design and reliability analysis of a fail-operational brake-by-wire
system from iso 26262 perspectives. Reliab Eng Syst Saf 96(10), 1349-1359

Staron M (2017) Automotive software architectures: an introduction. Springer, Cham

Torer F, Ivarsson M, Pettersson F, Ohman P (2006) Defects in automotive use cases.
In: Proceedings of the 2006 ACM/IEEE international symposium on empirical software
engineering. ACM, New York, pp 115-123

Vogelsanag A, Fuhrmann S (2013) Why feature dependencies challenge the requirements
engineering of automotive systems: an empirical study. In: 2013 21st IEEE international
Requirements Engineering conference (RE). IEEE, Piscataway, pp 267-272

Weber M, Weisbrod J (2002) Requirements engineering in automotive development-
experiences and challenges. In: 2002 IEEE international Requirements Engineering conference
(RE). IEEE, Piscataway, pp 331-340

Wright A (2011) Hacking cars. Commun ACM 54(11):18-19

Status Report on Automotive Software m)
Development St

Florian Bock, Christoph Sippl, Sebastian Siegl, and Reinhard German

Abstract Due to rapid changes in the development of modern automotive sys-
tems, the involved development methods, processes, and toolchains are constantly
changed, modified, and improved to be able to handle the increasing complexity
of the development procedure. In this chapter, the main current challenges in the
development itself as well as in the modification of the implied processes are
summarized, and both a textual and a graphical overview of the main currently
involved tools are given. The provided information can be used for optimal planning
of development processes for future automotive systems.

1 Introduction

The automotive domain and, therefore, the development of modern vehicles are
becoming increasingly complex with each development iteration, each new model
series, and each evolutionary technological step. This is due to different reasons,
which are worth being looked at in more detail. From our point of view, the main
reasons are:

* Hardware complexity: During the last decades, the capabilities of hardware
in modern vehicles have vastly increased. For example, environment-detecting
sensors, such as radio detection and ranging (RADAR [40]) and light detection
and ranging (LIDAR [32]), gained much more attention and a higher distribution
rate within the last few years. On the one hand, this offers many new possibilities
to recognize the environment but on the other hand requires a much more

F. Bock (<) - R. German

Department of Computer Science 7, Friedrich-Alexander-University Erlangen-Nuremberg,
Erlangen, Germany

e-mail: florian.inifau.bock @fau.de; german@informatik.uni-erlangen.de

C. Sippl - S. Siegl
AUDI AG, Ingolstadt, Germany
e-mail: christoph.sippl @audi.de; sebastian.siegl @audi.de

© Springer Nature Switzerland AG 2019 29
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_3&domain=pdf
mailto:florian.inifau.bock@fau.de
mailto:german@informatik.uni-erlangen.de
mailto:christoph.sippl@audi.de
mailto:sebastian.siegl@audi.de
https://doi.org/10.1007/978-3-030-12157-0_3

30 F. Bock et al.

detailed interpretation of the gathered data and a more efficient analysis of the
dramatically increased amount of collected data. Generally speaking, the ongoing
developments offer possibilities for new functionalities and improvements, but
also lead to challenges and open issues when applying such enhancements.

* The focus of the development efforts switches from initially mainly mechanical
and electronic inventions and technologies to more computer science- and
software-related topics. Information technology undergoes the biggest gain in
importance (estimated 400% per iteration according to [4]). This trend introduces
many already addressed issues from the software engineering domain to the
automotive development processes.

» Customer expectations are vastly increasing due to tight competition between
the manufacturers, cross-domain interrelations such as the comparison with
development cycles in the mobile device domain, and recognizable marketing
efforts of the manufacturers.

* Global mega trends like digitalization, sustainability, and urbanization affect the
automotive domain and its products. With the advance of technologies, comput-
ing power, and intense research efforts, the electrification of connected vehicles
or the development of automated vehicles becomes possible. Especially, vehicle
networks and automated driving functions have complex requirements, which
have to be considered. Therefore, new development processes and methods are
required to overcome the growing complexity of future vehicles.

Besides these reasons, many other topics have influence on the current situation
in automotive software engineering, but the resulting motivation of the domain is
quite clear: the need for more efficient and effective development methods to face
the upcoming problems and challenges.

From a historical point of view, the development of automobiles started with
exclusively mechanical topics. The introduction of the first complex control units
during the 1980s concurrently led to the emergence of electronic challenges. The
deployed software amount was quite low and restricted to the embedded software
from separate units. The interconnection of different units was rudimentary. There-
fore, the development methods used were based in the mechanical engineering
domain and focused on hardware aspects. Manually created specification documents
defined the systems to develop. The engineer in charge then constructed the
control unit by hand and wrote the required code in a machine-oriented low-level
programming language.

The introduction of more complex control units was accompanied by the launch
of new and more sophisticated programming languages, for example, C++ or Java.
As a result, the software and hardware complexity and, therefore, the number of
involved engineers increased. The communication between the different control
units and the communication between the engaged engineers became increasingly
complex, especially due to manual system design and implementation. The amount
of code could no longer be maintained manually without unrealistic personnel costs.
Therefore, the established development methods were improved and extended with
in-house and external approaches. For example, the specification documents were

Status Report on Automotive Software Development 31

no longer created as simple text documents, but stored in a database such as IBM
Rational DOORS' and further enriched with additional artifacts like diagrams or
code fragments. This allows adding traceability information, which is required to
satisfy established quality and standardization requirements.

This extension of the established methods has come to a crucial point: the
current automotive systems are becoming so complex that a mere extension
and improvement of the established methods is not sufficient anymore. Instead,
completely new approaches are required and are taken into account, for example,
from other domains or out of research. A popular example of this process is the
introduction of the Unified Modeling Language (UML)* and the Systems Modeling
Language (SysML)? as foreign modeling languages in the automotive development
context.

The following sections give an overview of the current situation by listing recent
challenges in the development process in detail, summing up information about
currently used development tools and toolchains, classifying those in a previously
published taxonomy, and giving an outlook over upcoming innovations and new
features.

2 Recent Challenges in Automotive Software Engineering

Due to the previously described changing situation in the automotive domain, many
challenges are still present or have appeared in the past years. The sophisticated
development cycles and the expectations of the customers are hard to satisfy if no
solutions for these challenges are found. In the following, different types of existing
challenges, grouped by their context, are given. Wherever possible, a rating from
the current point of view is added.

2.1 Virtual Development and Validation

Virtual methods for development and validation became more popular and feasible
over the last few years. This is due to a number of reasons: decreasing development
cycles, test and validation at early stages of development, complexity of functions
and systems, cost reduction, and additional issues. Nonetheless, virtual development
and validation methods and related tools are still in their early stages. To get
qualified feedback and identify open challenges in developing future vehicles, Bock
et al. [8] conducted a survey by addressing experts of the automotive domain. One

Thttps://www.ibm.com/de-de/marketplace/requirements-management [Accessed: 21-Sept-2018].
2http://www. uml.org [Accessed: 21-Sept-2018].
3https://sysml.org [Accessed: 21-Sept-2018].

https://www.ibm.com/de-de/marketplace/requirements-management
http://www.uml.org
https://sysml.org

32 F. Bock et al.

survey finding in the field of fully automated driving is that 77.4% of experts
assess tools and methods for developing self-driving vehicles as not sufficient.
Software challenges are named as main topic, whereas environmental interpretation
and decision-making are rated as major tasks. Especially for such topics, adequate
virtual development and validation methods are needed.

A sufficient virtual development and validation process is dependent on the tools
deployed. Many different approaches and tools try to address virtual development
and validation methods, but no common framework, which covers all target needs,
is known. Hence, linking existing tools to a holistic, distributed development and
testing framework may enable interdepartmental coordination throughout all devel-
opment phases, as departments are often working with own solutions. Interdivisional
work often fails due to missing common toolchains and standardized processes.
Moreover, continuous development over the whole V-model [9] can only be achieved
with great effort and costs.

As solution for automotive applications, the so-called Functional Engineering
Platform (FEP) can be named. FEP is a continuous approach to functional engineer-
ing and testing [36]. This includes the possibility for development throughout all
phases and departments by providing common models. Besides that, FEP provides
a generic communication interface called FEP Library to link various development
and simulation tools. Hence, FEP is not a runtime environment which executes
simulations; it enables communication through participating tools. To enable co-
simulations, FEP includes a synchronization mechanism. Furthermore, FEP allows
to integrate hardware components like real control units, as in later development
phases hardware-in-the-loop simulations must be conducted. A similar approach
was already used in the aerospace industry with Avionics Development System 2G
(ADS2)* for the development of airplanes.

Besides linking various tools to a holistic, distributed development framework,
further challenges exist during the development phases. With rising complexity
of vehicle functions, it is becoming more and more important to represent the
complexity of the real world in the virtual environment. Conducting tests with
advanced driver-assistance systems (ADAS) or automated driving vehicles at a
certain point of the development process in the virtual environment is safer than
in the real world, especially when it comes to use cases, where vehicles have
to interact and respond to further road participants (i.e., third-party vehicles or
pedestrians). Thus, participating tools need sufficient, realistic, and complex models
for simulation. This includes physical models like sensor models, meta-models for
communication (i.e., propagation phenomena of radio waves), environment models
(i.e., road network, road surface, weather models, etc.), and behavior models (i.e.,
models for traffic, pedestrians, cyclists, etc.).

“https://techsat.com/technology-and-products/ads2/ [Accessed: 21-Sept-2018].

https://techsat.com/technology-and-products/ads2/

Status Report on Automotive Software Development 33
2.2 New Development Techniques

Besides new tools and methods for virtual development, new development tech-
niques are coming in. Above all, applied artificial intelligence (Al) (i.e., pattern
recognition and machine learning, etc.) is one of the most important and com-
paratively new techniques. Al is used in various fields of automotive development
processes and in different vehicle functions. As Al improves the development and
opens up new avenues for complex vehicle functions, it is difficult to validate
decision algorithms at the same time. Beyond that, if Al techniques are not only used
for the development of vehicles but are implemented in vehicles to perform certain
functions like automated driving, the error-free operation can—if at all—be proven
with great difficulty. The question therefore arises, how functions can be tested when
it comes to vehicle functions that are critical according to the Automotive Safety
Integrity Level (ASIL) [24], as the ISO 26262 norm [24] dictates test methods for
ASIL functions. This includes that ASIL-critical functions have to be testable with
finite state machines (FSMs) [26].

2.3 Feasible Development Methods

Nowadays, used development methods are not suitable for future vehicle systems,
as function- and model-driven development methods can only be applied partly for
developing ADAS and automated driving functions. With growing complexity of
driving functions, requirements can only be described in an abstract way. Existing
data for deriving requirements, like accident research databases, do not include
all relevant situations for automated driving. Missing ground truth data for all
relevant situations, which automated vehicles must be able to handle, complicate the
formulation and derivation of requirements and, thus, also of test cases. Therefore,
new development methods need to be developed to address the complexity of future
driving functions and to overcome the challenge of deriving requirements and test
cases. Scenario-based development and test methods are gaining importance and
might be one way to cover these challenges.

2.4 Validation and Release Process

ADAS and automated driving functions perform on the basis of a high amount
of information. These information include high-definition maps, precise position
localization, and knowledge about the environment recorded by onboard sensors or
shared through vehicle-to-everything (V2X) communication. Testing these highly
connected systems is very challenging and time-consuming, as the complexity
constantly increases. Theoretically, the error-free execution of such vehicle systems

34 F. Bock et al.

must be proven for every situation, which might occur [30]. Testing and validating
ADAS automated driving systems solely through real test drives is economically not
feasible [39]. Therefore, new concepts for deriving and performing test cases must
be found. Scenario-based and virtual validation methods may address the challenges
in testing future vehicle systems.

Besides that, a quality criterion for automated driving functions must be found
[41]. Then, the question “How safe is safe enough” [27] must be answered to
establish a generally accepted release process and related tools. These topics are
addressed, inter alia, by the research projects PEGASUS? or Enable-S3.°

2.5 Cyber Security

Highly connected vehicles require a high amount of data to perform automated
driving or provide further customer services. Additionally, driving data are used
to improve vehicle functions and help to develop new systems. Therefore, pieces of
recorded driving data may be sent to a back-end system. This implies challenges in
the field of data security and privacy. When sending driving data, it is necessary to
ensure that the data cannot be accessed by unauthorized persons. Data which are
sent over wireless communication technologies have to be encrypted by end-to-end
encryption, and vehicles must have sufficient localization privacy techniques, so that
no third party can locate and retrace the highly connected vehicles [18].

Also, interfaces for reading out the vehicle’s memory must have an adequate
access protection. Besides the safe storage and encryption of the data, unauthorized
remote control has to be prevented. As present vehicles are already highly connected
and various control units interact, the system is vulnerable through different weak
points. If an attacker gets access to the vehicle bus system, control over safety-
critical functions such as steering or braking could be achieved. Hence, it is a
challenging issue that vehicles are well protected by suitable security mechanisms
[37]. As attackers adjust and improve their approaches constantly, it may be nec-
essary that the installed security mechanisms in the vehicle are updated frequently.
Functional safety and security are strongly related; however, the ISO 26262 norm
does not address security issues.

Shttp://www.pegasus-projekt.info [Accessed: 21-Sept-2018].
Shttps://www.enable-s3.eu/domains/automotive/ [Accessed: 21-Sept-2018].

http://www.pegasus-projekt.info
https://www.enable-s3.eu/domains/automotive/

Status Report on Automotive Software Development 35
3 Related Work

For the three topics discussed in this chapter—development methods, classification
taxonomy, and open challenges in the domain—different publications are already
available. A non-exhaustive representative excerpt is summarized and rated below.

Ali et al. [1] propose a taxonomy for computer-based critiquing systems which
uses both textual categorization scheme and graphical visualization, which allows a
fast comparison of different tools. The involved categories are strictly tailored to the
given domain.

Azuma et al. [2] evaluate the usage of the Bloom’s taxonomy for software
engineering approaches, which uses six levels of intellectual behaviors. The authors
extend this base pattern by adding a second dimension: the categorization of
knowledge areas. As a result, a classification of different tools according to the
user’s knowledge is possible.

Babar and Gorton [3] compare different software architecture analysis methods
by using 17 evaluation questions grouped in four categories as comparison taxon-
omy.

Blum [6] uses a two-dimensional classification scheme with the distinction
between product-oriented and problem-oriented and between conceptual and formal
methods.

Broy et al. [10] describe an approach for a seamless model-based development
process in the automotive domain. For this, the general process with its challenges
and open topics is discussed. Furthermore, typical tools from the domain are
mentioned and put in the right context.

Delgado et al. [15] propose a taxonomy for runtime software fault-monitoring
approaches, which uses a classification scheme with three layers. The four top
categories are derived from specific domain-related criteria such as event handler.
Different tools are summarized and rated with regard to each relevant subcategory.
As a result, the tools are comparable with limitation to specific domain.

Di Natale et al. [16] give a general overview of used development methods in the
automotive domain and existing open challenges.

Guo and Jones [21] compare two different example toolchains containing various
tools from the automotive domain. The included tools are described and their
relevance and usage with regard to development processes are explained. Therefore,
the authors give an overview of typical development approaches in the automotive
domain.

Kornecki and Zalewski [28] propose a taxonomy for the evaluation of software
development methods for safety-critical real-time systems. Three different types of
tool evaluation are applied: meta-, macro-, and micro-evaluation. The taxonomy is
based on the different contexts, in which the tools are utilized, and on the usage
of several comparison criteria. In the course of this, typical development processes
with their corresponding tools are described.

Tyndale [38] reviews several tools from the knowledge management domain
and classified them by using a suggested tool categorization scheme. This scheme

36 E. Bock et al.

is based on several other publications with their individual taxonomies. Further a
distinction between New Tool and Old Tool is applied to introduce more structure to
the categorization scheme.

With regard to the three mentioned topics, it can be said that:

e A taxonomy is proposed in [1-3, 6, 15, 28, 38]. Although all approaches are
applicable in principle, the lack of focus on the automotive domain hampers
a direct adoption. Additionally, only [1] offers a graphical visualization as
requested in Sect. 5.

¢ Common development methods are described in [10, 15, 16,21, 28]. As discussed
in Sect. 4, the used tools differ depending on the development context, which
is why the results from these publications cannot be generalized. Instead, an
individual inspection is necessary for our context.

* Open challenges and research topics are evaluated in [10, 16]. Although partly
matching to our description in Sect. 2, challenges change through time, so they
have to be reassessed over and over.

Because the published taxonomies cannot be adapted for our context, the devel-
opment tool descriptions are insufficient and the open challenge list is outdated;
each of the topics is reevaluated in this work.

4 Common Tools and Toolchains

In the automotive domain, several tools and toolchains have been established
during the last decades. The used tools differ from company to company and from
department to department. A general inter-company overview is difficult due to the
strict confidentiality policy of most of the involved legal entities. In many cases,
neither the used tools, nor the applied modifications or specific configurations are
made public. As a trade-off, in the following, the mainly used tools and toolchains
from our point of view are summarized and subsequently classified in a taxonomy.
Some of these methods are applicable or have their roots in other domains, but
the focus of each description is the automotive domain. Because the new field
of automated driving functions introduced a complete set of new methods and
approaches to the domain, the special area of traffic and environment simulation
is additionally considered. The information of the subsections already have been
published partly in [7].

4.1 Function Development and Simulation

The first group of methods and tools of the automotive domain, which should
be summarized and reviewed, is the group that covers all aspects from function
development and simulation. This list is specifically tailored from the authors’ point

Status Report on Automotive Software Development 37

Application Layer

AUTOSAR Runtime Environment (RTE)

Services Layer

Complex

ECU Abstraction Layer D

Microcontroller Abstraction Layer

Microcontroller

Fig. 1 AUTOSAR overview (based on [20])

of view. The individual list in a concrete project may differ. Nevertheless, the given
representatives are established and commonly used.

4.1.1 Automotive Open System Architecture

General Information The Automotive Open System Architecture (AUTOSAR)’
[20] is a software architecture standard widely used in the automotive domain
and developed by the AUTOSAR development partnership. Its main focus is the
design, implementation, and realization of automotive systems. For this, a layered
software architecture is used (cf. Fig. 1). All software artifacts, which are necessary
for the target system, are located at the application layer. Each artifact consists
of so-called software components (SWCs), which include the algorithms (which
are further enclosed in runnables) as well as the wrapper code for the function
itself. As workaround for projects with a great amount of plain code, this code can
also be encapsulated in such runnables and be used in an AUTOSAR environment.
All information of the AUTOSAR artifacts use a well-defined XML scheme as
data format, which simplifies the exchange and version tracking of the created
models. Tests or test strategies are not specified. Recently, the original AUTOSAR
standard was enhanced to adaptive AUTOSAR [19], which is especially useful for
the development of automated driving functions.

http://www.autosar.org [Accessed: 21-Sept-2018].

http://www.autosar.org

38 F. Bock et al.

Domain Application AUTOSAR is widely spread in the automotive domain;
methods based on it such as EAST-ADL are already advancing fast, and therefore
the acceptance and presence will increase further.

Rating As AUTOSAR does not include an implementation, a third-party tool (e.g.,
IBM Rational Rhapsody) is required to be able to create real projects. In return,
the popularity of AUTOSAR simplifies model sharing among different development
teams and lowers the average initial learning effort.

4.1.2 Automotive Data and Time-Triggered Framework

General Information The software modeling framework that was originally
designed for the development of driver-assistance systems is the Automotive Data
and Time-Triggered Framework (ADTF).® TInitially, such driving functions were
created by hand in the form of plain source code. Various modeling tools were
introduced to manage the complexity of the development, but the technical back-
ground with the information about sensor data, interfaces, and physical conditions
sustained. Therefore, a form of presentation based on this was consequential, and so
the models created in ADTF use so-called filters with the corresponding inputs and
outputs (e.g., signals) extracted from various data sources, such as a controller area
network (CAN) [23] and camera data, as main elements. The filters are displayed as
graphical elements, and the interaction between the different objects are modeled
as lanes. All data sources can be used simultaneously and synchronized. This
allows real-time data playback and offers visualization features, which are the basis
for a simulation of the created models and a subsequent evaluation, especially
with respect to timing constraints. All these aspects ensure the congruency of the
simulation and the behavior of the real system.

Domain Application ADTF was initially developed in the automotive domain
in Germany in 2011. The focus on driver-assistance systems with their related
sensor data and the corresponding system design is mainly appropriate for this
domain, although similar possibly related domains such as the avionic sector
can also profit from the included concepts by adding some required extensions
or modifications. ADTF includes architecture steps as straightforward process
definition, an implementation in the form of a tool and the possibility to generate
code for the target system. Testing is limited to short manual tests. For the model
creation, a graphical domain-specific language (DSL) is used.

Rating Although fairly new in the domain, ADTF has already been established
as development tool across several automotive companies and the related suppliers
[8]. In fact, a quite high familiarity of the respondents with ADTF and a utilization
rate of 50% can be stated [8]. This, in conjunction with the specific design for the

8https://automotive.elektrobit.com/products/eb-assist/adtf/ [Accessed: 21-Sept-2018].

https://automotive.elektrobit.com/products/eb-assist/adtf/

Status Report on Automotive Software Development 39

implementation of driver-assistance systems, states ADTF as an appropriate solution
for automotive development, although the absence of a detailed process definition
and the insufficient testing possibilities are drawbacks.

4.1.3 Electronics Architecture and Software Technology-Architecture
Description Language

General Information The Electronics Architecture and Software Technology-
Architecture Description Language (EAST-ADL) [5] is developed and supported by
the EAST-ADL Association. As foundation, AUTOSAR is used, although additional
concepts such as nonfunctional requirements, vehicle features, and functional/hard-
ware architecture details are covered. For model creation, a four-level abstraction
system is used (cf. Fig. 2). The initially created rough vehicle model describes the
system in an abstract way but is further enriched during the development. Finally, a
high detailed AUTOSAR model is accomplished, which can then be used to create
the target code.

Domain Application EAST-ADL has been specifically designed for the automotive
domain, which is stated by the vehicle-based development layers. Although some
of the used development processes are based either partly or largely on EAST-ADL,
an explicit usage of the language is rather uncommon, particularly because of its
missing implementation.

Rating As no realization of the language in the form of a tool is included, the
process can hardly be used directly. Nonetheless, due to the fact that EAST-ADL

System Model Extensions

Vehicle Level
Technical Feature Model

= Analysis Level . i i
= Functional Analysis Architecture
oy
= S IIE]
= = B
2| | | Design Level . . . HENE)
é Functional Design Architecture l g g E g
.g Hardware Design Architecture 5 = §
Implementation Level . . .
AUTOSAR AUTOSAR AUTOSAR
Application SW Basic SW HW
Data exchange .
cal
over ports ‘ Allocation

Fig. 2 EAST-ADL overview (based on [5])

40 F. Bock et al.

was initially designed for the automotive domain, no explicit modifications have to
be applied to use it in the domain.

4.1.4 MATLAB/Simulink and TargetLink

General Information MathWorks MATLAB is a numerical computing framework
designed to handle complex mathematical problems and to calculate and display the
corresponding results. As extension to this base framework, Simulink® is a graphical
data flow modeling language that offers the possibility to create system models and
the corresponding software models. For this, so-called blocks (functional entities)
are used with links in the form of associations. All model items (e.g., bus-, mux-
/demux-, or gain-blocks) are taken out of a predefined block library, whose elements
are leaned on concepts of electrical circuits and electronic control unit design, so
to speak on hardware aspects. Testing, verification, and validation methods are
included. The models created in Simulink are used to generate source code for
the target system by using dSPACE TargetLink.'” This tool is focused on code
generation and involves various verification and validation techniques to guarantee
the reliability of the generated code [13].

Domain Application In the current automotive development projects, the MAT-
LAB/Simulink/TargetLink toolchain is widely used for system design, implementa-
tion, and code generation. This is due to historical reasons. The toolchain has already
been used for several decades; therefore, the majority of the engineers are familiar
with it [8]. Nevertheless, upcoming projects such as driver-assistance systems for
self-driving vehicles have reached a complexity that is hardly manageable with this
toolchain, and therefore, alternative options are investigated.

Rating Although the toolchain is one of the major software engineering frame-
works currently used in the automotive domain and offers a great variety of
modeling possibilities, no lines of action are included. Additionally, it lacks the
possibility to design the system architecture or to create, add, and manage require-
ments at an abstract level. Because of its origin in the embedded programming
sector and its usage of hardware-related modeling entities, the toolchain is well
suitable for hardware-depended projects, but poorly suited for high-level projects
or, for example, entertainment system projects.

9http://www.mathworks.com/produ(:ts/si mulink/ [Accessed: 21-Sept-2018].
10http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm [Accessed: 21-Sept-2018].

http://www.mathworks.com/products/simulink/
http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm

Status Report on Automotive Software Development 41

l Change Request I

Harmony for Systems Engineering

Requirement
Analysis

.

System Functional
Analysis

System Acceptance

(Sub-)System
Integration & Test

Design Synthesis

swW
Analysis & Design

Stakeholder
Requirements

Model / Requirements Repository

Module Integration
& Test

SW Implementation & Unit
Test

Harmony for Embedded RT Development

Fig. 3 IBM rational harmony process (based on [22])

4.1.5 Rational Rhapsody/Harmony

General Information /BM Rational Rhapsody is a UML modeling tool that
supports all types of UML diagrams with the corresponding elements and provides
simulation features and code generation techniques. It can be extended with
additional profiles such as a Systems Modeling Language (SysML)'" profile and has
predefined interfaces to other tools (e.g., IBM Rational DOORS). Because it does
not include lines of action, IBM Rational Harmony [22] is natively included. It is an
iterative software modeling process based on the V-model [9], a generic profile that
extends Rhapsody with additional wizards, modeling possibilities, and a consistent
modeling process. Harmony is divided into two separate subsequent sections (cf.
Fig.3). The first section (Harmony for Systems Engineering) uses SysML for the
creation, definition, and design of the system architecture. For this, use cases and
the related requirements are either manually created or imported from external
data sources. Afterward, activity and state diagrams are modeled by hand, and
sequence diagrams can be generated automatically. With the help of these artifacts,
the system behavior can be simulated and therefore tested and validated. After
further refinement and enrichment procedures, the final model functions as handover
artifact to the second part of the Harmony process: Harmony for Embedded RT

http://www.sysml.org [Accessed: 21-Sept-2018].

http://www.sysml.org

42 F. Bock et al.

Development. Here, the information from the SysML model are transferred into a
UML model containing the architecture of the target software. After this step, the
final target code is generated, which can be both simulated and run on the target
device parallely to ensure the reliability and the consistency of the system. To
increase the usability, semiautomatic wizards assist with all the different modeling
steps.

Domain Application Although not specifically designed for the use in the auto-
motive domain, the tool and process have become quite common in the domain over
the last years. The creation of the target code solely out of graphical models differs
distinctly from the common hand-coding process, which requires a certain extent of
familiarization for each engineer.

Rating The required initial learning expense for new engineers and the higher
amount of modeling effort at the first steps of a new project model are compensated
by the consistent process through all levels of development and by the easier
validation and testing due to simulation and code generation features.

4.1.6 Safety-Critical Application Design Environment

General Information Esterel Safety-Critical Application Design Environment
(SCADE)'? is a software development framework initially designed in the avionics
industry. It consists of four separate tools. One of these tools is the SCADE Suite,
which is focused on model-based software development. For the creation of the
graphical models, a formal, synchronous, and data flow-oriented domain-specific
language [11] is included and used. All development phases are covered, from the
initial specification until the conclusive acceptance test. For this, validation and
verification methods are provided to guarantee consistency of the created models.
Code generation techniques are used to automatically generate the target code out of
the designed models. As guidance through the development process, so-called lines
of action are included.

Domain Application Although initially developed for the avionics industry, the
SCADE Suite is designed modularly enough to be adapted for the automotive
domain. Because both domains share many aspects and requirements such as reli-
ability, constraints, and sensor-data-based functions, SCADE has been introduced
to the automotive industry several years ago and became increasingly prominent
recently.

Rating The stricter requirements in the avionics industry ensure a high reliability
of the created models and the involved development process. Therefore, the
requirements of the automotive domain should be easily met. Nevertheless, many
modifications are still pending or currently ongoing, so that the SCADE Suite can be

2http://www.esterel-technologies.com/products/scade-suite/ [Accessed: 21-Sept-2018].

http://www.esterel-technologies.com/products/scade-suite/

Status Report on Automotive Software Development 43

used throughout the complete development process. Additionally, the interworking
with and the interface to other established tools are not yet sufficient, and a complete
switch of the automotive development process to SCADE as a single development
tool is not likely in the near future.

4.1.7 Simulation and Test of Anything

General Information Simulation and Test of Anything (SimTAny) [34, 35] (for-
merly known as VeriTAS [17]) is a framework that provides the fest-driven agile
simulation (TAS) process and an implementation in the form of a toolchain based
on Eclipse'? and the related UML modeling environment Papyrus.'* According to
the process, the system and the usage model are semiautomatically derived from the
requirements in the form of individual UML models (see Fig.4). A corresponding
simulation model is automatically generated from the system model and test cases
are automatically derived from the usage model. Both the simulation and the
test cases can be executed and therefore allow a mutual validation. A separate
implementation of the system or hardware is not necessary. A surrounding process
and lines of action are part of SimTAny. All these aspects allow to identify and
find errors or inconsistencies in the involved models as early as possible in the
development process.

Domain Application SimTAny has its origin in the academics and research domain,
so no specific focus on the automotive domain was implied initially. Nevertheless,
the process is easily adaptable and was introduced several years ago into the
first automotive projects, which resulted in an increasing prominence due to the
simulation capabilities and the use of the already well-established framework
Eclipse.

Rating The creation of new requirements by hand is possible, but it is not the
specific focus of SimTAny, which is why the import of existing requirements is
advised. The main emphasis is the system simulation without the use of dedicated
production code. Therefore, this method is not suitable for code generation and has
some flaws regarding the abstract system specification, which is compensated by the
valuable simulation possibilities.

Bhttps://eclipse.org/ [Accessed: 21-Sept-2018].
4https://eclipse.org/papyrus/ [Accessed: 21-Sept-2018].

https://eclipse.org/
https://eclipse.org/papyrus/

FE. Bock et al.

44

[s€] motarao duyjuis § 814

wwet lzwn a1t wrern [eroziwand ~
anirg o s g s P 3NON HeRgpULLOEIL [A)
or SEEE womonIRLoTIaL (A —
S5 nurTl Qe w05Tl o1 I PlRWLO S SEE AL (A -
i — = i
= e - 990 3NN SONRRRIIIPENDISAL [A] ¢
I.Ilﬂ..l.. g 990 INOM 4 A e
L S e DI asesa) . : 3 =
. ey = i St ey o
- =408% R R I 1
" Apismmgiess
1591 S

L A |

Rugruns s
sishjeuy TR uonenwIs

uonewlojsuel) . Buiapo
L e 1w h| e o L} L

Ajnqeades) o e

= [

e

_ [0 a4 321 e, 2 | ary
e

emay :
L s
L b
Atriyetonc gy _ | ol |
liosinwonns g L
angea o : e 329_:
& e

i e
oy gy
w0
) ?«nmn_
LT

8- | S iampdon ()| pRrndmey | o [sdge

Status Report on Automotive Software Development 45
4.2 Traffic Simulation

Increasing traffic, especially in urban environment, new concepts for future mobility
in public and private transport, the increasing number of available driver-assistance
systems, as well as research and development activities for automated driving
vehicles require a vast amount of simulation activities with different scopes.
There already exists a large amount of studies and publications dealing with
traffic modeling, traffic flow optimization, transportation planning, modeling and
simulation of shared spaces, etc. Various simulation and modeling frameworks
are available and used in the automotive domain, in research, and in academics.
They are utilized to develop and evaluate new concepts for mobility, conducting
studies on different use cases or validating new business models or products
through all development stages. For example, [31] depicts a literature review on
traffic flow simulators, [29] reviews existing traffic simulation frameworks, [33]
and [12] compare different simulation frameworks, and [14] discusses advantages
and disadvantages of driving simulation. Additional topics like driving simulation,
traffic modeling and simulation, transportation planning, and virtual development
and testing of transportation systems are handled and investigated separately.

In the following, we give an overview of the traffic simulation frameworks
Aimsun Next, SUMO, Vissim, and Viswalk. Additionally, we give a brief presentation
of VID and CarMaker, which represent tools for driving simulation for virtual
vehicle function development and testing. In our point of view, these are the most
familiar and widely used tools, but the list is not intended to be exhaustive.

4.2.1 Aimsun Next

General Information The commercial traffic modeling and simulation software
Aimsun Next" is designed for processing mesoscopic, microscopic, and hybrid
traffic simulations. The main use cases of Aimsun Next are the evaluation of traffic
flow and traffic guidance, such as the analysis of a given infrastructure design,
an environmental impact analysis, an evaluation of travel demand management
strategies, a signal control optimization, and a safety analysis. Additionally, Aimsun
Next allows the evaluation of intelligent transportation systems, diverse toll and
road pricing scopes, and further tasks. As it is a hybrid simulation framework, large
areas can be simulated, while it is possible to consider smaller areas in more detail
at the same time. In microscopic areas, Legion for Aimsun'® enables pedestrian
simulation within the framework. Aimsun Next includes modeling, simulation,
and analysis in a single environment and provides an intuitive user interface.
Besides simultaneous 2D/3D views and graphical outputs for the visualization, this

https://www.aimsun.com/aimsun-next/ [Accessed: 21-Sept-2018].

16http://www.legion.com/legion-for-aimsun- %E2%80%93- vehicle-pedestrian- simulation
[Accessed: 21-Sept-2018].

https://www.aimsun.com/aimsun-next/
http://www.legion.com/legion-for-aimsun-%E2%80%93-vehicle-pedestrian-simulation

46 E. Bock et al.

framework provides Python scripting for automation and evaluation and comes with
a Python or C++-based application programming interface (API) for including
intelligent transportation systems. The Aimsun Next microSDK allows users to
overwrite behavior models and implement own solutions and to create entirely new
applications or plug-ins with separate menus and dialogues, based on the industrial
standard C++.

Domain Application Aimsun Next is mainly used for case studies dealing with
traffic optimization and infrastructure design. In the automotive domain, it can be
used for business modeling such as shared mobility with autonomous vehicles.

Rating Widely used by public and academic institutions, simulation frameworks
like Aimsun Next are becoming increasingly important for the automotive domain
for modeling future mobility. Aimsun Next provides an API that supports common
programming languages and a microSDK; thus, it can be adapted to fit own
requirements.

4.2.2 Simulation of Urban MOMbility

General Information Simulation of Urban MObility (SUMO)'” is an open source
project, mainly developed by the Institute of Transportation Systems at the Ger-
man Aerospace Center with various extensions provided by external parties. It
is a framework and platform for microscopic and inter- and multimodal traffic
flow simulation. It helps perform space-continuous microscopic traffic scenario
simulations. Every single vehicle is simulated individually and has its own route.
As a free tool, SUMO can be extended with own algorithms. Since 2001, SUMO
has evolved into a full-featured suite of traffic modeling utilities, which includes
several different aspects. For simulating V2X communication, the discrete event
simulation package OMNeT++'® for simulating computer networks and distributed
systems was extended by Veins,'® an open source vehicular network simulation
framework. Veins includes a suite of realistic vehicular network simulation models.
These models are executed by OMNeT++ while interacting with SUMO. For the
bidirectionally coupled simulation of traffic flow and network traffic, the simulators
are connected using a transmission control protocol (TCP) socket and a standardized
protocol named traffic control interface (TraClI).

Domain Application SUMO addresses microscopic simulation of vehicles, pedes-
trians, traffic lights, and public transport. It is efficiently usable for traffic flow
optimization. Linked with OMNeT++ and Veins, it is applicable for realistic
vehicular network simulations and is widely spread in the scientific community.

7http://sumo.dlr.de/ [Accessed: 21-Sept-2018].
18https://omnetpp.org/ [Accessed: 21-Sept-2018].
19http://veins.car2x.org/ [Accessed: 21-Sept-2018].

http://sumo.dlr.de/
https://omnetpp.org/
http://veins.car2x.org/

Status Report on Automotive Software Development 47

Rating As an open source project implemented in C++ and supporting various
formats for road description, there is a strong community enhancing SUMO. The
framework comes with a large suite of applications, documentations, manuals,
tutorials, and examples. A larger set of publications have already been published
in this context (e.g., at the SUMO User Conference).

4.2.3 Vissim and Viswalk

General Information PTV Group provides a suite for traffic modeling and sim-
ulation that includes both the tools: Vissim and Viswalk. Vissim® is the global
leader on the market of commercial microscopic simulation frameworks and comes
with a powerful graphical user interface for scenarios and map editors. Vissim
includes motorized private transport, freight transport, rail transport, pedestrians,
and cyclists. For microscopic pedestrian flow simulation, Viswalk®!' covers scenarios
for routing and traffic jam analysis, waiting time analysis, capacity and concept
planning of buildings, and concepts for evacuation scenarios of buildings and
major events. With the help of Vissim, Viswalk simulates pedestrians in multimodal
environments. Vissim comes with various interfaces to integrate existing networks
and models of other PTV modules. It is also possible to import further strategic
traffic models, to integrate external signal controlling, or to transfer emission data
for getting detailed analysis using simulation. Vissim includes a large graphical user
interface including 2D and 3D visualization.

Domain Application Common uses of Vissim are the optimization of routes, the
simulation of virtual scenarios, and the modeling of city networks. Hence, it is used
for traffic, transport, and mobility optimization. Vissim also supports integrating
Viswalk, so microscopic traffic simulations in urban environment can be realized.
Application for the automotive domain is business modeling, but also testing vehicle
systems in virtual environment is conceivable, whereby simulation resolution is not
capable for simulating vehicle dynamics. Thus, a suitable driving simulation has to
be available.

Rating Due to the large software suite that PTV provides, as well as the fact that
data exchange is possible between participating simulators, Vissim and Viswalk are
powerful tools for various applications such as traffic analysis, business modeling
for future mobility, and cross-functional applications like autonomous driving in
shared space for planning parking garages. However, it is not possible to simulate
vehicle dynamics, so adjustments and linking to other tools have to be realized to
test automated driving functions.

20http://vision-traffic.ptvgroup.com/de/produkte/ptv-vissim/ [Accessed: 21-Sept-2018].
2l http://vision-traffic.ptvgroup.com/de/produkte/ptv-viswalk/ [Accessed: 21-Sept-2018].

http://vision-traffic.ptvgroup.com/de/produkte/ptv-vissim/
http://vision-traffic.ptvgroup.com/de/produkte/ptv-viswalk/

48 F. Bock et al.

4.2.4 Virtual Test Drive

General Information VIRES Virtual Test Drive (VID)*? is a submicroscopic
environment-sensitive behavior driving simulation. VITD covers open-loop as well
as closed-loop operations including a real-time mode, a simulation configuration
control with scenario management, a control of simulation stages, and a master and
a slave mode for linking multiple simulators in one simulation. The open interfaces
runtime data bus (RDB) and simulation control protocol (SCP) enable bidirectional
high-frequency data communication and event-driven communication. VTD allows
realistic traffic density and features in urban and motorway environments and
the integration of multiple externally controlled entities. It implies an image
generator for visualization, the possibility for simulating simplified sensor models
or physically driven sensors, and is capable of simulating vehicle dynamics (e.g.,
braking system, steering, suspension, tires, etc.). VI'D comes with an editor for
creating road networks based on the OpenDRIVE Specification® and a scenario
editor for setting up different traffic scenarios.

Domain Application V7D is a submicroscopic traffic simulator able to simulate
complex scenarios in submicroscopic resolution. RDB and SCP can be connected
to vehicle buses and stimulate electronic control units (ECUs). Moreover, it can
be used for developing and testing prototypical vehicle functions, especially during
early development phases.

Rating VTD is a toolkit to simulate vehicle behavior in high spatial and temporal
resolution in virtual environments. It enables the user to develop and test vehicle
functions in SiL, DiL, ViL, and HiL2* methods. For environment descriptions and
scenario modeling, it comes with editors for road network modeling and scenario
modeling. Here, well-known formats like the OpenDRIVE Specification is used.
VTD can be operated as co-simulation supporting third-party and custom packages
like ADTF (cf. Sect. 4.1.2). VTD is also very manageable for scenario-based testing.
Nevertheless, VTD is highly dependent on the operating system and a well-equipped
hardware configuration.

4.2.5 CarMaker

General Information IPG CarMaker® is a commercial software solution for
virtual test driving, supporting MiL,20 SiL, HiL, and ViL methods. It is used for

22https://www.vires.com/ [Accessed: 21-Sept-2018].

2http://www.opendrive.org/ [Accessed: 21-Sept-2018].

24 8oftware-, driver-, vehicle-, hardware-in-the-loop.
Zhttps://ipg-automotive.com/products-services/simulation-software/carmaker/ [Accessed:
21-Sept-2018].

26Model-in-the-Loop.

https://www.vires.com/
http://www.opendrive.org/
https://ipg-automotive.com/products-services/simulation-software/carmaker/

Status Report on Automotive Software Development 49

modeling and testing real-world test scenarios and the entire surrounding environ-
ment, including vehicle dynamics and other road participants. CarMaker enables
the user to test virtual prototypes during all stages of development. It includes open-
as well as closed-loop testing during virtual tests and software/hardware platforms.
Additionally, it offers a visualization feature for the simulations. Test automation
and evaluation of simulation results are also integrated in the simulation framework.
CarMaker includes an adaptive driver model and allows modeling driver activities
and system interventions using maneuvers. It integrates a wide range of model and
tool interfaces and is designed as an open integration and test platform.

Domain Application CarMaker is used for the development and test of virtual
vehicle prototypes through all development phases and used by all common original
equipment manufacturers (OEMs) and a large number of suppliers. Furthermore,
research institutes and universities utilize CarMaker.

Rating CarMaker allows scenario-based, reproducible tests in virtual environ-
ments and increases the efficiency during the development and all involved tests.
As it can be linked to well-known models and tools, it is a powerful tool for testing
vehicle systems. Nonetheless, the used hardware has to be individually tailored.

4.2.6 Pedestrian and Cyclist Simulation

Besides the high number of simulation frameworks for different tasks, the sim-
ulation of vulnerable road users is getting more and more important to validate
vehicle driving functions. Therefore, frameworks are needed which are capable of
simulating driving functions in virtual environments including shared spaces and
also provide validated behavior models for various types of vulnerable road users.
To this date and to our knowledge, there is no simulation framework available,
which is able to simulate both at the same time. Existing frameworks like Viswalk,
Legion for Aimsun, and MomenTUM [25] are able to simulate pedestrians, but the
scope of these frameworks is not on driving function testing. Distributed simulation
frameworks, which are linking well-established driving simulators to frameworks
for simulating vulnerable road users and development frameworks like ADTF, might
be an option to pave the way to holistic urban environment simulation frameworks
to validate driving functions.

4.3 System Specification and Documentation

Besides the functional development methods and the traffic simulation approaches,
there are some tools that are specifically designed for the abstract specification of
the automotive system or for the creation of documentation artifacts during the
automotive development process. The two main tools from our point of view are
described in this section.

50 F. Bock et al.

4.3.1 Office

General Information Microsoft Office’’ is an office suite that consists of several
different types of tools: a word processor (Microsoft Word), a spreadsheet tool
(Microsoft Excel), a presentation software (Microsoft PowerPoint), and other tools.
They are designed to be used by technical experts as well as by normal users.
The suite is widely used in different domains, companies, and departments,
and the majority of the users are familiar with the created documents and the
presentation of the included information. This allows the suite to be used as central
sharing possibility for information between persons or departments with no similar
knowledge base. Although many alternative office solutions are available—open
source frameworks as well as proprietary ones—the mainly used framework is still
Microsoft Office. The main reasons for this are the availability of a professional
support and the widespread distribution.

The documents are technically stored as compressed files with the Extensible
Markup Language (XML) format and therefore are suitable to be used within a
version control system. Word is typically used for the storage of, for example, textual
information, requirements, project reports, or meeting transcripts. The layout is not
very strict and can be extended or varied in many ways. Excel uses spreadsheets for
the information storage and is, due to its well-defined structure, especially suitable
for listings, mathematical calculations (via the use of embedded formulas), and
technical detail information such as log files or datasets. PowerPoint is mainly used
as a presentation tool; the layout is restricted and optimized for the use of projectors.
Main usage scenarios are presentations for meetings, short project information for
the management, or any other presentation of use case.

Parts of the documents created in one of the mentioned systems is migratable/-
transferable between the tools, so, for example, diagrams out of an Excel! file can be
embedded in a PowerPoint presentation. Further assistant systems like a thesaurus
system, document validation methods, the extension via macros or diverse printing,
and export functions empower the user in many ways.

Domain Application In the automotive domain, the Office suite is used as a tool to
express the requirements and specifications of the developed systems and collect and
sort the data and log files from the live system and as presentation/documentation
software.

Rating Advantageous are the simple access to all tools, the lucidity of the
documents, and the high diffusion rate. Nevertheless, the embedment of technical
details, code, and simulation possibilities are restricted or nonexistent. This results
in the need for further implementation methods.

2Thttps://www.office.com/ [Accessed: 21-Sept-2018].

https://www.office.com/

Status Report on Automotive Software Development 51

4.3.2 Rational DOORS

General Information Besides the plain textual specification based on files such
as with Microsoft Office, especially in case of large projects with thousands of
requirements and constraints, the complexity is hardly manageable and requires
a solution that implies any type of a database. For this, IBM Rational DOORS?®
was designed and introduced in the automotive domain about two decades ago.
It is server-based, so the user does not necessarily have direct access to the data
container. It allows the creation, management, and export of textual requirements
to several external formats (e.g., Microsoft Excel or Word). Graphical artifacts
such as diagrams and files can be attached, which allow certain types of graphical
documentation and architecture information beyond plain textual descriptions.
Regarding traceability, DOORS uses unique identifiers for each requirement and
allows the creation of links between requirements and to external artifacts. This
offers the possibility to track changes and to find orphaned requirements.

Domain Application DOORS has been used in the automotive domain as specifi-
cation tool for several decades now and is still the major requirement management
and creation tool. Many interfaces to other tools commonly used in the domain exist,
so the interconnection is quite good and the information stored in DOORS can easily
be transferred to other engineers and departments and then be used in their creation
or generation process.

Rating DOORS has a long usage history in the domain, so most of the engineers
are quite familiar with it and therefore it can be easily used in new projects. The
good interconnection with other tools also supports this usage. On the contrary,
the limitation to textual requirements and attached files does not allow a direct
creation or use of models, so the system and software architecture has to be modeled
elsewhere, which is adverse.

5 Classification in the Automotive Development Process

The previously mentioned and described tools differ in their characteristics, as well
as in their valid usage scenarios. The development of modern vehicles and driving
functions is split into several process steps, from specification and planning, over
concept and architecture, through implementation until test and approval. Each step
includes several substeps with individual assigned persons, tools, requirements, and
expected results. The main difficulty when planning a new automotive function
or system is to select the appropriate development tools with regard to project
constraints, budget, required technical characteristics, and project goals. The partial

Z8https://www.ibm.com/de-de/marketplace/requirements-management [Accessed: 21-Sept-2018].

https://www.ibm.com/de-de/marketplace/requirements-management

52 FE. Bock et al.

[Concept Specification] [Acceptance Test] Vehicle Level
\ y 4
\ /
AN 4
[Prelimenary Design] [System Test] Analysis Level
LY 7 4
\ /
\ y
[Detailed Design] [Integration Test J Design Level
\ y A
\ /
\ ¥ 4
[Implementation] Implementation Level

Fig. 5 General overlay [7]

great differences between the tools impede a direct comparison, and a textual
overview is quite difficult to read and understand.

As a result, Bock et al. designed and proposed a graphical taxonomy for the
comparison of automotive development methods [7]. It combines two separate level
definitions out of the automotive domain to be able to provide a certain structure:
the individual process steps defined in the V-model [9] and the levels used in the
EAST-ADL [5]. The resulting classification scheme is depicted in Fig. 5.

The coverage of the different levels for each individual tool under investigation
is illustrated as a diagonal bar corresponding to the V-model shape. To include more
details about the tools and therefore to simplify a proper choice of the best tool for
a certain project setup, additional formatting options are intended and used. Unlike
the original formatting information described in the original publication which was
focused on the type of underlying programming language, a modified version is
reasonable in this case. For the intended overview, we chose three characteristics
as most useful: a binary indicator, if modifications for the use in the automotive
domain are required; a binary indicator, if lines of actions are included so that the
user knows how to create the proper artifacts during the development; and a binary
indicator, if an implementation of the method is included. Many more characteristics
are possible and may be helpful, but we identified these three as main choice factors.
The type of visualization in the target diagram is depicted in Fig. 6.

(@ (b) () (d) (&) (B (2
(a) Modifications (d) Modifications/Lines of Action (g) Modifications/

(b) Lines of Action (e) Lines of Action/Implementation Lines of Action/
(¢) Implementation (f) Modifications/Implementation Implementation

Fig. 6 Binary choice indicators [7]

Status Report on Automotive Software Development 53

Vehicle Level

Design Level

Implementation Level

/1M
(1) Rhapsody/Harmony (2) AUTOSAR (3) EAST-ADL (4) MATLAB/Simulink/TargetLink

Fig. 7 Method comparison part 1

® ®

Vehicle Level

A\

Analysis Level
PD

Design Level

Implementation Level

(1) SCADE (2) ADTF (3) Traffic Simulation (@) SimTAny

Fig. 8 Method comparison part 2

With the help of the formatting scheme and the previously defined diagram
structure, the methods and tools reviewed in Sect. 4 can be sorted in and categorized.
The resulting diagrams are shown in Figs. 7 and 8. All traffic simulation methods
are represented by one single bar, because they all share the same characteristics
and usage scenarios.

These figures can be used as a starting point to choose and evaluate proper
candidates for a specific project setup. Because no details about the target project are
taken into account, no definite decision guidance can be offered, but the provided
diagrams can be used as initial selection method to sort out clearly unfitting
candidates and minimize the group of methods that have to be investigated further.
This lowers the required resource effort for a proper tool selection.

54 F. Bock et al.
6 Outlook: The Future of Automotive Development

The overview of the current used development tools in the automotive domain,
which was given in Sect. 4, is neither complete nor representative of all automotive
manufacturers and their corresponding suppliers. As already mentioned, privacy
policies make it difficult to create a full list of the involved tools. Nevertheless, from
our point of view, the listing contains the major development methods and tools that
are currently used for the specification and implementation of modern automotive
systems.

However, the challenges from Sect. 2 are indications for the increasing complex-
ity of next-generation automotive systems and functions. To be able to handle the
complexity, the existing tools can be extended or modified, although this can only be
done to a certain extent. For a great leap forward in terms of development methods,
either completely new methods can be designed and introduced or methods from
other domains such as the avionics industry can be migrated and adapted to the
specific requirements in the automotive domain. The transfer of tools such as Esterel
SCADE is a first hint of this process, even though much more of these transfer
activities are required.

One major type of methods that is currently in the focus of ongoing investi-
gations regarding the possible application in automotive development is the area
of domain-specific languages. Although some of these languages are already used
(e.g., Simulink is technically a domain-specific language); there are many other
languages, mainly located in the academics or the research domain, that are
candidates for use in the development process. The objective in doing so is to
build, describe, configure, and deploy a fully integrated development chain that is
capable of handling all phases of the development process, manage all required
artifacts, and generate the target code and the adjacent models and files. Topics
such as traceability, versioning, validation, and reusability have to be taken into
account and should be guaranteed. Nevertheless, there is always a trade-off between
completeness of the toolchain and usability. Domain-specific languages inherently
provide consistency and the generation of the required artifacts and are flexible
enough to be enriched with wizards, external libraries, APIs, and other already
available languages to make the process as seamless as possible. For this, there
are currently two major development environments for domain-specific languages
available: Eclipse Xtext* and JetBrains MPS.>°

Another challenge to overcome is the complexity of developing, testing, and
validating new driving functions. They are becoming increasingly complex with
each development cycle and have to handle more complex situations. Scenario-
based development methods and various kinds of virtual development tools are
increasingly used. Traffic scenarios may be used in different ways over the devel-

https://eclipse.org/Xtext/ [Accessed: 21-Sept-2018].
3Ohttps://www.jetbrains.com/mps/ [Accessed: 21-Sept-2018].

https://eclipse.org/Xtext/
https://www.jetbrains.com/mps/

Status Report on Automotive Software Development 55

opment process, to describe use cases, to help derive requirements, may be used for
high-level and detailed system design, and of course are the basis for scenario-based
virtual validation methods. Continuous usage of methods for scenario-based system
engineering starting at predevelopment phases up to release processes must be
achieved to handle the development of future driving systems. Thus, new tools must
be developed, existing ones enhanced and then be embedded and used consequently
over the whole development process. The growing usage of simulation techniques
in driving function development is a first step toward this. But there is much room
for further enhancements in developing methods and processes as well as tools
and toolchains, to make developing and validating future vehicles efficient, with
economically reasonable effort.

With the help of these new concepts and other already existing tools and methods,
the development process in the automotive domain can be extended step by step,
until the complexity of modern automotive systems can be handled again.

References

1. Ali NM, Hosking J, Grundy J (2013) A taxonomy and mapping of computer-based critiquing
tools. IEEE Trans Softw Eng 39(11):1494-1520
2. Azuma M, Coallier F, Garbajosa J (2003) How to apply the bloom taxonomy to software engi-
neering. In: Eleventh annual international workshop on software technology and engineering
practice, 2003. IEEE, Piscataway
3. Babar MA, Gorton I (2004) Comparison of scenario-based software architecture evaluation
methods. In: 11th Asia-Pacific software engineering conference, 2004. IEEE, Piscataway
4. Baudisch A, Richter K, Sollmann S (2011) Erweiterte Vorgehensmodelle fiir die Entwicklung
echtzeitfihiger, hoch-integrierter, multifunktionaler Steuergerite-Plattformen
5. Blom H, Hagl F, Papadopoulos Y, Reiser MO, Sjostedt CJ, Chen DJ, Kolagari R (2012)
EAST-ADL - an architecture description language for automotive software-intensive systems.
International Standard
6. Blum BI (1994) A taxonomy of software development methods. Commun ACM 37(11):82-94
7. Bock F, Homm D, Siegl S, German R (2016) A taxonomy for tools, processes and languages
in automotive software engineering. In: Zizka J, Nagamalai D (eds) Computer science &
information technology. AIRCC Publishing Corporation, Chennai
8. Bock F, Sippl C, German R (2017) Fully automated vehicles: challenges, expectations and
methods. In: Bargende M, Reuss HC, Wiedemann J (eds) Proceedings of 17th Internationales
Stuttgarter Symposium: Automobil- und Motorentechnik, Stuttgart, Germany
9. Brohl A (1993) The V-model. In: Software - application delevopment - information systems
(in German). Oldenbourg, Munich
10. Broy M, Feilkas M, Herrmannsdoerfer M, Merenda S, Ratiu D (2010) Seamless model-based
development: from isolated tools to integrated model engineering environments. Proc IEEE
98(4):526-545
11. Caspi P, Pilaud D, Halbwachs N, Plaice JA (1987) LUSTRE: a declarative language for real-
time programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
principles of programming languages, New York, NY, USA, POPL ’87
12. Cheu RL, Tan Y, Lee D (2003) Comparison of paramics and GETRAM/AIMSUN microscopic
traffic simulation tools. In: 83rd annual meeting of the transportation research board
13. Dajsuren Y, van den Brand MG, Serebrenik A, Roubtsov S (2013) Simulink models are
also software: modularity assessment. In: Proceedings of the 9th international ACM sigsoft
conference on quality of software architectures. ACM, New York, pp 99-106

56

14.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

FE. Bock et al.

De Winter J, Van Leuween P, Happee P (2012) Advantages and disadvantages of driving
simulators: a discussion. In: Proceedings of measuring behavior

. Delgado N, Gates AQ, Roach S (2004) A taxonomy and catalog of runtime software-fault

monitoring tools. IEEE Trans Softw Eng 30(12):859-872

Di Natale M, Sangiovanni-Vincentelli AL (2010) Moving from federated to integrated
architectures in automotive: the role of standards, methods and tools. Proc IEEE 98(4):603-620
Djanatliev A, Dulz W, German R, Schneider V (2011) Veritas - a versatile modeling
environment for test-driven agile simulation. In: Proceedings of the 2011 winter simulation
conference, Phoenix, AZ, USA, WSC 2011

Eckhoff D (2016) Simulation of privacy-enhancing technologies in vehicular ad-hoc networks.
PhD thesis, University of Erlangen

Fiirst S, Bechter M (2016) Autosar for connected and autonomous vehicles: the autosar
adaptive platform. In: 2016 46th annual IEEE/IFIP international conference on Dependable
Systems and Networks Workshop (DSN-W)

Fiirst S, Mossinger J, Bunzel S, Weber T, Kirschke-Biller F, Heitkdmper P, Kinkelin G,
Nishikawa K, Lange K (2009) Autosar—a worldwide standard is on the road. In: 14th
international VDI congress electronic systems for vehicles, Baden-Baden, vol 62

Guo Y, Jones RP (2009) A study of approaches for model based development of an automotive
driver information system. In: 3rd annual IEEE systems conference, 2009. IEEE, Piscataway
Hoffmann H (2014) Systems engineering best practices with the rational solution for systems
and software engineering deskbook release 4.1. Manual

International Organization for Standardization (2015) 11898-1: 2015-road vehicles—controller
area network (CAN)—part 1: data link layer and physical signalling. International Organization
for Standardization

IO for Standardization (2009) ISO/DIS 26262-1 - Road vehicles - functional safety - part 1
glossary

Kielar PM, Biedermann DH, Borrmann A (2016) MomenTUMvV2: a modular, extensible,
and generic agent-based pedestrian behavior simulation framework. TUM-11643, Technische
Universitat Miinchen

Klauda M, Hamann R, Kriso S (2013) ISO 26262 — Muss das Rad neu erfunden werden?,
Springer Fachmedien Wiesbaden, Wiesbaden, pp 224-227

Knauss A, Schroder J, Berger C, Eriksson H (2017) Paving the roadway for safety of
automated vehicles: an empirical study on testing challenges. In: 2017 IEEE Intelligent
Vehicles symposium (IV)

Kornecki AJ, Zalewski J (2003) Design tool assessment for safety-critical software develop-
ment. In: Conference: software engineering workshop, 2003

Kotusevski G, Hawick K (2009) A review of traffic simulation software. Res Lett Inf Math Sci.
13

Lachmann R, Schaefer I (2013) Herausforderungen beim Testen von Fahrerassistenzsystemen.
In: GI-Jahrestagung

Mubasher MM, ul Qounain JSW (2015) Systematic literature review of vehicular traffic
flow simulators. In: 2015 international conference on Open Source Software Computing
(OSSCOM)

Rasshofer RH, Gresser K (2005) Automotive radar and lidar systems for next generation driver
assistance functions. Adv Radio Sci 3:205-209

Ronaldo A, Ismail T (2012) Comparison of the two micro-simulation software AIMSUN
& SUMO for highway traffic modelling, Linkoping University, Communications and Trans-
port Systems, The Institute of Technology, p 96. http://www.diva-portal.org/smash/get/diva2:
555913/FULLTEXTO1.pdf

Schneider V, German R (2013) Integration of test-driven agile simulation approach in service-
oriented tool environment. In: Proceedings of the 46th annual simulation symposium, San
Diego, CA, USA, ANSS 2013

http://www.diva-portal.org/smash/get/diva2:555913/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:555913/FULLTEXT01.pdf

Status Report on Automotive Software Development 57

35.

36.

37.

38.

39.

40.

41.

Schneider V, Deitsch A, Dulz W, German R (2016) Combined simulation and testing based on
standard uml models. In: Principles of performance and reliability modeling and evaluation.
Springer, Cham

Stadler C, Gruber T (2016) Functional engineering platform - a continuous approach towards
functional development. In: 7th conference on simulation and testing for vehicle technology,
Berlin, Germany

Toews R (2016) The biggest threat facing connected autonomous vehicles is cyberse-
curity. https://techcrunch.com/2016/08/25/the-biggest-threat-facing-connected-autonomous-
vehicles-is-cybersecurity/

Tyndale P (2002) A taxonomy of knowledge management software tools: origins and applica-
tions. Eval Program Plann 25(2):183-190

Wachenfeld W, Winner H (2015) Die Freigabe des autonomen Fahrens. Springer, Berlin, pp
439-464

Wenger J (2005) Automotive radar - status and perspectives. In: IEEE compound semiconduc-
tor integrated circuit symposium, 2005. CSIC *05

Winner H (2015) Quo vadis, FAS? In: Handbuch Fahrerassistenzsysteme. Springer, Wiesbaden

https://techcrunch.com/2016/08/25/the-biggest-threat-facing-connected-autonomous-vehicles-is-cybersecurity/
https://techcrunch.com/2016/08/25/the-biggest-threat-facing-connected-autonomous-vehicles-is-cybersecurity/

State-of-the-Art Tools and Methods Used @ m)
in the Automotive Industry e

Harald Altinger

Abstract In recent times, the number of features within a modern-day premium
automobile has significantly increased. The majority of them are realized by
software, leading to more than 1,000,000 LOC ranging from keeping the vehicle
on the track to displaying a movie for rear seat entertainment. The majority of
software modules need to be executed on embedded systems, some of them fulfilling
mission-critical task, where a failure might lead to a fatal accident. Software
development within the automotive industry is different from other industries or
open source, as there are more restrictions upon development guidelines and rather
strict testing definitions to meet the quality and reliability requirements or even
ensure traceability on defect liability. To meet these requirements, various tools and
processes have been integrated into the development process, delivering document
metadata which can be used for further insights, for example, Software Fault
Prediction (SFP).

1 When Reading This Chapter

This chapter represents a short introduction to current tools and development
procedures used within the automotive (software) industry. It is a compilation of
multiple antecedent publications. Some parts will be extended by knowledge of
practitioners to give insights into common processes. As the author is related to
one Original Equipment Manufacturer (OEM), some results might be influenced.

H. Altinger (b))
Audi AG, Ingolstadt, Germany
e-mail: harald.altinger @audi.de

© Springer Nature Switzerland AG 2019 59
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_4&domain=pdf
mailto:harald.altinger@audi.de
https://doi.org/10.1007/978-3-030-12157-0_4

60 H. Altinger
2 A Short Introduction upon Software within Cars

A modern-day premium car, for example, the 2018 Audi A8 [6], if fully equipped,
can contain more than a 100 Electronic Control Units (ECUs), 14 networks and
up to 2 SIM cards, and multiple kilometers of cable (compare Fig. 1). According
to Charette [13], the software within a modern-day premium car might claim
up to 1,000,000 Lines Of Code (LOC). Software modules need to fulfill various
tasks ranging from simple comfort features, for example, controlling the stepper
motor within an electric seat, up to complex tasks like a predictive chassis. Some
features only require a single ECU with a low-power processor, for example,
remote garage door control, while others might require a powerful processor
with multiple cores and a Graphics Processing Unit (GPU) to encode multimedia
content for entertainment. Some features require multiple sensor values connected
to different ECUs and influence more than one actuator or even require online
and map data, for example, the dynamic matrix headlights (see [6]). The majority
of software components need to run under embedded conditions and deliver their
result within real time, for example, power steering; others can operate on soft
real time, for example, navigation systems. Some features need to meet rather
strict development guidelines like Motor Industry Software Reliability Association
(MISRA) or need to satisfy safety requirements as Automotive Safety Integrity
Level (ASIL). Therefore, one can see a car as a heterogeneous network of
multiple distributed computers running a high number of software functions, either

Audi A8

Bordnetz
Cabling
077

Fig. 1 The cabling topology of the 2018 Audi A8; note the actual ECUs are not shown

State-of-the-Art Tools and Methods Used in the Automotive Industry 61

stand-alone, distributed asynchronous, or synchronous, which represents a highly
complex system.

Some modern-day features might only be realized by software. Most of the
required actuators and sensors are already within the car to fulfill various functional-
ities. Central software components might use these to realize enhanced or additional
features, for example, Start/Stop automatic. In this SoftWare Component (SWC)
case, it needs to read back the battery capacity level, the climate control state, if the
driver is steady on the break, etc. If all these conditions are met, the system instructs
the engine control ECU to switch off the engine. Even more complex systems,
for example, Advanced Driver Assistance Systems (ADAS), require information
from multiple sensors, perform calculation upon more than one ECU, and may
control several actuators which sum up to highly complex systems. To visualize
this, we are using the Adaptive Cruise Control (ACC) as an example. The system
consists of two main sensors, a radar and a camera. Both deliver object information
(position, distance, speed, etc.) regarding vehicles ahead of the ego car. Those object
information will be calculated on the ECU connected to the sensor; the ego car’s
motion will be acquired on the Inertial Measurement Unit (IMU) (which is already
a part of the car as Electronic Stability Control (ESC) requires precise acceleration
information to fulfill its task). The SWC realizing the ACC might be hosted on
another ECU, or included on one of the sensors’ ECU. It needs to be connected
via a bus (CAN, FlexRay) network. This software will calculate acceleration and
deceleration upon the driver’s presets (distance to vehicle ahead, driving profile,
etc.) and send the values to break and engine control ECU. Those components
decide upon actual speed and requested (de)acceleration if the engines carrier gas
(in case of an Electriv Vehicle (EV) maybe recuperation abilities) is enough or
if the break system needs to act. Further details have been released by Duba and
Bock [14]; a visualization can be seen in Fig. 2.

Some software are used to compensate mechanical deficits; for example, adding
ESC! to the 1997 Mercedes A-Class after failing the Elk Test to enhance the car’s
stability.

These trends lead to an increasing amount of software being indispensable
parts of the car. Raising the amount of software might cause the number of
software-related bugs to increase too. Figure 3 shows vehicle recalls extracted from
the NHTSA database [27]. This database is publicly available and contains all
defects which lead to an official recall by the NHTSA on US roads. Similar to
Altinger et al. [2], we query the up-to-date database grouping by vehicle models
and model years. A software-related recall is counted if the defect or the repair
description contains “software,” “update,” or “program.”

One can see that a huge number of vehicles need to be recalled due to software
issues. This data is only valid for the USA. The graph uses the term “model year”
as a base, meaning the year where the car (or a sub release) has been introduced to
the market. This is not necessarily the year where the car has been manufactured or

Nowadays ESC is mandatory by law in EU since 11/2014.

H. Altinger

62

SI0MIAU SNQ B BIA PAJOSUUOD I8 SWISAS [V "N

JIOSUAS AY) JO UO UO PaISoy q WYSTW IS DIV Y} O1[oquiks st N YL "(NJANL PUB ‘BISWED “IBPEI :SIOSUSS 221y} JO pasodwiod MOpsHom DIV ayl, ¢ “Sid

yeelg

@ D=

uonesadnoas A3 seb seLued suibus

State-of-the-Art Tools and Methods Used in the Automotive Industry 63

90 vehicle affected by recalls (NHTSA)

T
— total recall

— swfailure recall
—— total sale

8.5

number / logl0

5 ; ; ; ; ; ;
2000 2002 2004 2006 2008 2010 2012 2014
model year

Fig. 3 The software caused recall statistics based on an NHTSA recall database query, [27]. The
sale data is originated by Ward’s Auto [32]. The graph has been generated using the same settings
as Altinger et al. [2]

sold nor the year when the recall has been filed. At high peak, this data shows more
recalls than sales which might be caused by vehicles affected by multiple recalls
during their lifetime.

Fixing a software bug will be performed by updating the software. If a recall is
filed, an OEM needs to pay for contacting the driver, an engineer at a workshop to
update the software, maybe a rental car for the customer, etc. There might be lower
costs upon using Over The Air (OTA) updates. However, the OEM needs to ensure
that all affected vehicles would install the updates. Multiplied with the number of
effected vehicles, easily one recall can sum up to millions of euros to fix a simple
software bug (compare Capers [12]). This leads even to a high economic interest to
prevent bugs in the field and invest a rather high share from the vehicle development
costs into testing.

There are no official numbers on the development costs, but Shea [30] did
interview John Wolkonowicz, a senior auto analyst for North America at IHS
Global, claiming development costs between one (setting up on existing model)
and six (new model, new platform, new engines, etc.) billion USD. Broy et al. [11]
analyze the development costs for a vehicle electronic system at 300 million EUR,
estimating two thirds of this being software development costs.

Developing software to be used within cars is subjected to various restric-
tions. Coding standards, as the 2004 MISRA-C [23], modeling guidelines as the
MAAB [20], limit the usage of programming language features, such as no pointers
or no dynamic memory usage or no unlimited depth of function calls, etc. A
recent study by Altinger et al. [4] demonstrated the effectiveness of such standard
upon preventing common programming bugs. Furthermore, standards like ISO

64 H. Altinger

Table 1 Operators’ overview from three automotive projects

Preprocessor Flow control Data type Mathematical ~ Logic/comp.
% Operator % Operator % Type % Type % Type
19.41 #define 8.92 break 1.48 int 5497 + 8.66 !
15.36 #ifndef 6.79 case 96.32 static 13.75 - 300 !'=
65.24 #include 2.13 default 0.72 struct 147 % 7.05 &
29.24 else 1.48 unsigned 21.85 * 13.06 &&
0.47 for 796 / 4930 =
49.46 if 9.08 ==
0.72 return 2.05 |
2.14 switch 489 |
0.02 while 0.84 >=
0.12 ? 0.15 <=
075 <
0.80 >
032 ~
0.03 A

26262 [17] demand various testing methods addictive to the risk of failure. The
ASIL rating represents a software failure impact upon human lives. If a systems
failure puts human life in danger, it will be rated ASIL D. This level strongly
recommends formal verification of the program code. Even in less critical systems,
the norm demands testing goals, for example, branch/statement coverage upon test
cases. A good overview has been presented by Reactis software [28].

Altinger et al. [4] performed a study on three different automotive software
projects, analyzing the usage of operators within those three projects. Table 1 shows
an overall summary. All these projects use C as a programming language, limited
by the MISRA 2004 coding guidelines. Table 1 demonstrates a strong tendency of
using decision-based code elements (if/else, logic operators, etc.) and no usage of
pointers or dynamic memory in the three automotive software projects. The whole
software has been developed using model-driven approaches realized with Matlab
Simulink and TargetLink to generate the actual C code. The workflow is presented
within Fig.6. A more detailed description on the development process has been
presented by Altinger et al. [3].

3 Development Process and Available Documents

The VW corporation employed 45,742 people within their Research and Develop-
ment (RD) according to their annual fiscal report [31]. This amount of engineers
working together demands clear development processes and descriptions to handle
such huge projects as developing a car. Figure 6 shows an exemplary development
process used by three projects we did analyze. A core component is a clear

State-of-the-Art Tools and Methods Used in the Automotive Industry 65

separation between requirements, development, and testing which is realized by
using different specialized tools working together with an adopted toolchain as
presented by Kiffe et al. [19]. They present their work on linking different tools from
various vendors called ENPROVE. This toolchain enables exporting requirements
written in DOORS into a Matlab Simulink model. Thus the engineer designing the
model can trace if subsystems accord to requirements.

Altinger et al. [2] performed a questionnaire survey receiving 68 responds
from Series Development (SD), Pre Development (PD), and Research (Re). The
authors presented IBM DOORS as the most common tool to write specifications.
Further, they presented a typical work split between dedicated engineers writing
specifications and test cases and developers realizing the software. Within their
work, they presented Mathworks Matlab Simulink as the most common tool to
design models and generate code.

Figure 2 shows the W-development model as a test-enhanced extension to the
well-known V-model as presented by Jin-Hua et al. [18]. One can clearly see a
related testing stage to every definition and implementation stage. As defined by the
MISRA 2004 standard, every module needs to pass code review stages, which are a
core part of the W model (Fig. 4).

Bock et al. [10] present the results from a study on various tools used during
different development stages. The authors are presenting a rather good overview and
short introduction to all tools they present. Their ranking is based on a questionnaire
survey asking whether a tool is in use or a tool/method is familiar, targeting
engineers working at SD, PD, and Re. Their work developed a taxonomy to guide
engineers on the selection of new tools and methods.

Altinger et al. [2] draft commonly used tools for automotive software engineer-
ing. The majority of requirements and specifications are written using IBM DOORS.
An engineer exports the related subset to his software module and establishes a
link between the DOORS database and a Matlab Simulink model. As stated in
Altinger et al. [2], software specifier, developer, and tester are dedicated personnel.
Thus, another engineer exports the test requirements and generates test cases
associated with Software in the Loop (SiL), Hardware in the Loop (HiL), etc.
Following this process, every tool will get updates if requirements change. Scripting
interfaces are used to ensure requirements are linked with code parts.

In contrast to classic software development, there is a strict milestone plan for
every SWC. Figure 5 visualizes them. The automotive industry is dominated by
Start Of Production (SOP), which means there is a fixed date where every module,
no matter if mechanical, electrical, or software, has to be available to be fit into the
new produced model.

Software development has derived various sub-milestones:

» Interface freeze — all software interfaces (including network messages on the
CAN and FlexRay), similar to an Application Programming Interface (API), have
to be defined and are not allowed to be changed afterward.

» Feature freeze — all functionality has to be defined and implemented; rapid
prototypes are still allowed; code optimization might not be completed.

H. Altinger

66

[81] 'Te 310 eny-u1f £q pAjuasaid se ssadoid-p oYL, § 8L

State-of-the-Art Tools and Methods Used in the Automotive Industry 67

automotive software process milestones
550 T T T T

interface freeze feature freeze 100% sdftware

500 - b

400 B

LOC

300 b

1 1 1 1 1 1 1 1
1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045
revision

Fig. 5 Sample of software milestones within the automotive domain

e 100 % software — all implementation shall be done; only bug fixes are allowed
after this point.
e SOP — Version 1.0 which will be shipped with the first customer cars.

4 Tool Usage

Altinger et al. [2] and Bock et al. [10] yield a list of well-established tools to
specify requirements and to perform software tests. Common to both studies, Matlab
Simulink is the dominating programming environment.

As outlined by Altinger et al. [3], there exists a wide range of tools supporting
the development process. Figure 6 presents their interaction. During the analysis of
projects, the following tools served:

* IBM DOORS: writes and traces requirements.

e Matlab Simulink: develops models and performs basic tests during develop-
ment.

* dSpace TargetLink: generates C code based on the Simulink models.

68 H. Altinger

Plattform
Compiler

Code Generator

Revision System

— PTC’ Integrity- sl Q a

I.-'
MATLAB { ‘.

SIMULINK

Model

Development Bug Reports / ITS l'esting (SiL, HiL

()

Requirements

Fig. 6 Development workflow, adopted from Altinger et al. [3]

e PTC Integrity: revision system to store each development artifact (model files,
configurations, etc.). This tool offers an Integrated Ticketing System (ITS) to
handle bug reports and their fixes.

* Target Compiler: a compiler specific to the ECUs platform.

» Testing: various scripting interfaces using standard automotive tools such as
Vector CanOe or CanAp or ADTE, ...

Further and more detailed tool and test strategies are presented by Miiller et al. [24].

ISO 26262 requires tools to be qualified before being used for various levels
of ASIL-rated software. The EntwicklungsProzess Verbesserung, German: Devel-
opment Process Improvement (EnProVe) process as described by Kiffe et al. [19]
performs such tool qualifications. In addition, this process develops scripting
interfaces between the qualified tools to enable automation.

5 Testing Approaches

Traditional testing approaches two decades ago lead to setting up a test car and
perform various road tests on a dedicated test track; if the car passes all of them,
the phase is over. Modern-day cars consist of a huge amount of components which
need to be tested separately. Common approaches are in the loop tests, such HiL,

State-of-the-Art Tools and Methods Used in the Automotive Industry 69

SiL, Model in the Loop (MiL), etc. As Bergmann et al. [7] state, real test drive will
decrease, virtual test drives will increase.

A recent survey by Altinger et al. [2] presents the work distribution upon
engineers when developing car software. There is a dedicated group designing test
cases which might be executed on HiL or even real test drives. Even within early
states of software development, a test case is linked to every stage (compare Jin-
Hua et al. [18]) leading to the W-development process (see Fig. 4).

Within computer games, for example, “Need for Speed,” one can drive a
virtual car on digital reconstructed race tracks. Virtual Test Drive (VID) (see
Dupuis et al. [15]) takes this idea into realistic road simulation. This system uses
a simulated world to generate the test stimuli. Based on road network, a car can
drive along a virtual street, and other cars might be simulated based on driver
model descriptions. The rendering engine can generate an image to be fed into
a camera which will generate test input for computer vision algorithm. Sensor
model descriptions might extract raw values, for example, LIght Detection And
Ranging (LIDAR), based on the virtual world. Nentwig et al. [26] performed
analysis upon performance of generated images for lane mark detection considering
weather influences. Within their study, they compare generated data with real
measurements. Using these toolsets, one might be able to define test cases using
real-world assumptions and generate the stimuli for every ECU on a test bench.
Miiller et al. [24] use this method but extend the data generation. Within their
work, they use VID to calculate sensor input data, for example, video data which
is captured by the car’s ADAS camera using a video screen. Similar processes are
used to generate input data for ultrasonic sensors or even radar. Thus, the complete
system can be considered as an HiL.

SiL. or MiL tests might be performed with stimuli defined within the test cases,
but as systems get more complex, they cannot be tested independently. To cover
more aggregated scenarios, one can use, for example, “Virtuelle Probefahrt 2.0.”
This method is a mixture between real hardware operated on HiL benches and
simulated stimuli (sensors, road network, etc.). An in-depth explanation has been
given by Miegler et al. [21]. Standardized interfaces to exchange modules, for
example, a driver model or road networks, are mandatory. The system is capable of
replacing/mixing stimuli with either simulated data (using, e.g., VID) or recorded
real drive data (e.g., captured at road test drives). The modular architecture enables
engineers to replace sensor models with different simulation approximations. Using
an HiL test bed, the simulated data can be fed into a real ECU or even a network of
ECU.

Rather new technologies, such as Vehicle in the Loop (ViL), are using a real
vehicle but virtual environment to perform initial test without harming real vehicles.
This means a human driver might sit within a real car driving along an empty road.
The driver will have to wear virtual reality glasses where he can see the simulated
traffic. The simulation will generate sensor inputs to be fed into a System Under
Test (SUT) or capture them by real objects on the road. The system will be able
to generate real force feedback (via injecting the real vehicle systems) and record
the driver’s reaction. ADAS development can benefit due to early test chance.

70 H. Altinger

According to Bock et al. [8], the ViL method is usable. Within their work, they
performed user study with 36 persons followed by later work [9] where they verified
the virtualization assumptions stating that ViL is able to generate realistic driving
impressions within a very early stage of development.

Miegler et al. [22] present a new HiL. approach where they use existing ECU
and real-time rapid prototyping systems to integrate unavailable ECU; for example,
vehicle dynamics might be computed on an HiL, and environmental data, for
example, traffic participants, is simulated on a PC. Overall, scenario control is part
of the simulation; Reset/Replay is possible. Rapid prototyping modules are possible
using Automotive Data and Time-Triggered Framework (ADTF) and VTD, where
ADTEF ensures the connectivity to HiLL systems and VTD realizes the environment
simulation.

6 Software Fault Prediction (SFP): A New Idea
to Be Integrated

As presented in Sect. 2, automotive software development follows restrictive set-
tings in terms of coding guidelines and, for example, commit policies. As outlined
by Altinger et al. [3], it is possible to gain advantages. The basic idea in brief is
as follows: use code measurements (LOC, cyclomatic complexity by McCabe, etc.
as analyzed by Herbold et al. [16]) for every commit; extract bug reports from the
ITS and derive a ground truth for bug and fault-free commits; use this data to train
a machine learning algorithm, for example, Support Vector Machine (SVM), Niive
Bayes (NB), and Random Forest (RF); repeat the measurement step at the time
of commit and use the trained machine learning system to derive a probability
if the actual commit contains a bug. Figure 7 presents the involved tools and
process steps to perform such measurements. Further details and sample projects
with measurements are outlined by Altinger et al. [3]. The dataset is publicly
available by Altinger [1]; further datasets, including industry grade, are outlined
by Sayyad et al. [29].

Altinger et al. [3] could demonstrate a rather high true positive hit rate on
fault predictions at more than 90%. They conclude that their data is better than
others, for example, Zimmermann et al. [33], on an open source projects; and
Nagappan et al. [25], on commercial software, as the changes between commits
are smaller and the nature of generated code from model-driven development
approaches results within more homogeneous code structure compared to text-based
software developers. Further, they could rely on the data in the ITS, as there were
policies to enforce correct commit logs by every single developer. Thus, the quality
of the measured data is much higher than, for example, on Zimmermann et al.’s [33]
analysis on the open source tool Eclipse, which suffers from no clear differentiation
between feature commit and a bug fix or needs to deal with blank commit messages.

State-of-the-Art Tools and Methods Used in the Automotive Industry 71

Revision System

Bug Reports PTC" Integrity- E static source

code attributes

change
metric

] Version compare
\ pre. Faulty @
bug fix commits bug fix Lines

= pgthonit Dataset

Algorithm

[sBng apoo |eai]

scripts

Fig. 7 Workflow to extract metric values for dataset; adopted from Altinger et al. [3]

Due to a low bug rate, as there are only 2.6-15% samples in the bug class,
Altinger’s [1] datasets suffer from imbalanced class distribution. To overcome this,
Altinger et al. [5] suggest to use over- and undersampling to enhance predictive
performance. They succeed in showcasing an improved performance using an NB.
They state when using up- or downsampling, one has to choose between precision
(all reported faults are true bugs) and recall (finding all bugs), both of which cannot
be increased at the same time.

The obvious idea, to use a trained prediction model from one project to another,
for example, at an early stage where there are too few metric data to train, does
not seem to perform well. Altinger et al. [3] performed a cross-project prediction
including well-known metric transfer methods but could not archive a prediction
performance above the random hit rate. These findings are in line with other industry
data as presented by Zimmermann et al. [34].

This method seems to be a promising extension to the W-development process
(see Fig.5), as it could be an early indicator to define the various software tests.
As known from Altinger et al. [2], test engineers need to spend free testing budget
based on their experience; thus, SFP might aid in these decisions. As of the more
Statisticiiature, SFP cannot replace a full test suite.

References

1. Altinger H (2015) Dataset on automotive software repository. http://www.ist.tugraz.at/_attach/
Publish/AltingerHarald/MSR_2015_dataset_automotive.zip

2. Altinger H, Wotawa F, Schurius M (2014) Testing methods used in the automotive industry:
results from a survey. In: Proceedings of JAMAICA. ACM, New York, pp 1-6

http://www.ist.tugraz.at/_attach/Publish/AltingerHarald/MSR_2015_dataset_automotive.zip
http://www.ist.tugraz.at/_attach/Publish/AltingerHarald/MSR_2015_dataset_automotive.zip

72

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

H. Altinger

. Altinger H, Herbold S, Grabowski J, Wotawa F (2015) Novel insights on cross project fault
prediction applied to automotive software. In: El-Fakih K, Barlas G, Yevtushenko N (eds)
Testing software and systems, vol 9447. Springer, Berlin, pp 141-157. http://dx.doi.org/10.
1007/978-3-319-25945-1_9

. Altinger H, Dajsuren Y, Sieg S, Vinju JJ, Wotawa F (2016) On error-class distribution in
automotive model-based software. In: 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering, IEEE, Piscataway, pp 688—692. https://doi.org/10.1109/
SANER.2016.81

. Altinger H, Herbold S, Wotawa F, Schneemann F (2017) Performance tuning for automotive
software fault prediction. In: 2017 IEEE 24th international conference on software anal-
ysis, evolution, and reengineering. IEEE, Piscataway. https://doi.org/10.1109/SANER.2017.
7884667

. Audi AG (2017) Audi A8 (Typ 4N) Selbststudienprogramm 662. Technical manual. AUDI AG

. Bergmann R, Walesch R (2012) HiL strategie audi. In: 6. dSpace Anwender Konfernz
2012, dSpace. http://www.dspace.com/shared/data/pdf/ankon2013/tagl_pdf/2_audi_walesch_
robert_bergmann_richard.pdf

. Bock T, Maurer M, Farber G (2007) Validation of the vehicle in the loop (VIL); a milestone
for the simulation of driver assistance systems. In: 2007 IEEE Intelligent vehicles symposium,
pp 612-617

. Bock T, Maurer M, Meel F, Miiller T (2008) Vehicle in the loop. ATZ Automobiltech Z

110(1):10-16. http://dx.doi.org/10.1007/BF03221943

Bock F, Homm D, Siegl S, German R (2016) A taxonomy for tools, processes and languages

in automotive software engineering abs/1601.03528. http://arxiv.org/abs/1601.03528

Broy M, Kruger I, Pretschner A, Salzmann C (2007) Engineering automotive software. Proc

IEEE 95(2):356-373. https://doi.org/10.1109/JPROC.2006.888386

Capers J (2009) A short history of the cost per defect metric. www.semat.org

Charette RN (2009) This car runs on code. IEEE Spectr 46(3):3

Duba GP, Bock T (2008) ATZextra Worldw 13:56. https://doi.org/10.1365/s40111-008-0055-0

Dupuis M, von Neumann-Cosel K, Weiss C (2010) Virtual test drive vereinheitlichung der sim-

ulationsumgebung fiir SiL-, HiL-, DiL-und ViL-tests bei der entwicklung von fahrerassistenz-

und aktiven sicherheitssystemen

Herbold S, Grabowski J, Waack S (2011) Calculation and optimization of thresholds for sets

of software metrics. Empir Softw Eng 16(6):812-841. https://doi.org/10.1007/s10664-011-

9162-z

ISO TC 22 SC 3 (2011) ISO 26262:2011:Road vehicles — Functional safety. International.

WWW.i80.01g

Jin-Hua L, Qiong L, Jing L (2008) The w-model for testing software product lines. In:

International Symposium on Computer Science and Computational Technology, 2008.

ISCSCT’08, vol 1, pp 690-693

Kiffe G, Bock T (2013) Standardisierte entwicklungsumgebung fuer die

softwareeigenentwicklung bei audi. In: 7. cSapce User Conference, dSpace, https://www.

dspace.com/de/gmb/home/company/events/dspace_events/archive_2013/ankon2013.cfm

Mathworks T (2014) Mathworks automotive advisory board checks (MAAB). http://de.

mathworks.com/help/slvnv/ref/mathworks-automotive-advisory-board-checks.html

Miegler M, Nentwig M (2015) Testing of piloted driving on virtual streets. ATZ Worldw
117(9):16-21. http://dx.doi.org/10.1007/s38311-015-0044-7

Miegler M, Schieber R, Kern A, Ganslmeier T, Nentwig M (2009) Hardware-in-the-loop test

of advanced driver assistance systems. ATZ Elektron Worldw 4(5):4-9

Motor Industry Software Reliability Association (2004) MISRA-C:2004 - Guidelines for the

use of the C language in critical systems, 2nd edn. MISRA

Miiller DIFSO, Brand IM, Wachendorf S, Schroder DIFH, Szot DIFT, Schwab DIS, Kremer

B (2009) Integration vernetzter fahrerassistenz-funktionen mit HiL fiir den VW passat CC
14(4):60-65

http://dx.doi.org/10.1007/978-3-319-25945-1_9
http://dx.doi.org/10.1007/978-3-319-25945-1_9
https://doi.org/10.1109/SANER.2016.81
https://doi.org/10.1109/SANER.2016.81
https://doi.org/10.1109/SANER.2017.7884667
https://doi.org/10.1109/SANER.2017.7884667
http://www.dspace.com/shared/data/pdf/ankon2013/tag1_pdf/2_audi_walesch_robert_bergmann_richard.pdf
http://www.dspace.com/shared/data/pdf/ankon2013/tag1_pdf/2_audi_walesch_robert_bergmann_richard.pdf
http://dx.doi.org/10.1007/BF03221943
http://arxiv.org/abs/1601.03528
https://doi.org/10.1109/JPROC.2006.888386
www.semat.org
https://doi.org/10.1365/s40111-008-0055-0
https://doi.org/10.1007/s10664-011-9162-z
https://doi.org/10.1007/s10664-011-9162-z
www.iso.org
https://www.dspace.com/de/gmb/home/company/events/dspace_events/archive_2013/ankon2013.cfm
https://www.dspace.com/de/gmb/home/company/events/dspace_events/archive_2013/ankon2013.cfm
http://de.mathworks.com/help/slvnv/ref/mathworks-automotive-advisory-board-checks.html
http://de.mathworks.com/help/slvnv/ref/mathworks-automotive-advisory-board-checks.html
http://dx.doi.org/10.1007/s38311-015-0044-7

State-of-the-Art Tools and Methods Used in the Automotive Industry 73

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In:
Proceedings of the 28th international conference on software engineering, pp 452-461
Nentwig M, Stamminger M (2011) Hardware-in-the-loop testing of computer vision based
driver assistance systems. In: 2011 IEEE Intelligent vehicles symposium (IV), pp 339-344.
https://doi.org/10.1109/1VS.2011.5940567

NHTSA USDoT {and} USAgov (1997) Office of defects investigation (ODI) recalls database.
www-odi.nhtsa.dot.gov

Reactis (2015) Achieving ISO 26262 compliance with reactis. http://www.reactive-systems.
com/papers/iso-26262.pdf

Sayyad Shirabad J, Menzies T (2005) The PROMISE Repository of Software Engineering
Databases. http://promise.site.uottawa.ca/SERepository, published: School of Information
Technology and Engineering, University of Ottawa, Canada

Shea T (2010) Why does it cost so much for automakers to develop new models? http://
www.autoblog.com/2010/07/27/why-does-it-cost-so-much-for-automakers-to-develop-new-
models/

VW Aktiengesellschaft (2014) Geschaeftsbericht 2014. http://geschaeftsbericht2014.
volkswagenag.com/konzernlagebericht/nachhaltige- wertsteigerung/forschung-und-
entwicklung/f-e-kennzahlen.html

WARDS Auto (2013) U.S. car and truck sales, 1931-2013. www.wardsauto.com
Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: International
‘Workshop on Predictor models in software engineering, 2007. PROMISE’07: ICSE Workshops
2007. IEEE, Piscataway, p 9

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect
prediction: a large scale experiment on data vs. domain vs. process. In: Proceedings of the
7th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering, pp 91-100

https://doi.org/10.1109/IVS.2011.5940567
www-odi.nhtsa.dot.gov
http://www.reactive-systems.com/papers/iso-26262.pdf
http://www.reactive-systems.com/papers/iso-26262.pdf
http://promise.site.uottawa.ca/SERepository
http://www.autoblog.com/2010/07/27/why-does-it-cost-so-much-for-automakers-to-develop-new-models/
http://www.autoblog.com/2010/07/27/why-does-it-cost-so-much-for-automakers-to-develop-new-models/
http://www.autoblog.com/2010/07/27/why-does-it-cost-so-much-for-automakers-to-develop-new-models/
http://geschaeftsbericht2014.volkswagenag.com/konzernlagebericht/nachhaltige-wertsteigerung/forschung-und-entwicklung/f-e-kennzahlen.html
http://geschaeftsbericht2014.volkswagenag.com/konzernlagebericht/nachhaltige-wertsteigerung/forschung-und-entwicklung/f-e-kennzahlen.html
http://geschaeftsbericht2014.volkswagenag.com/konzernlagebericht/nachhaltige-wertsteigerung/forschung-und-entwicklung/f-e-kennzahlen.html
www.wardsauto.com

Part 111
Automotive Software Reuse

Software Reuse: From Cloned Variants m)
to Managed Software Product Lines s

Christoph Seidl, David Wille, and Ina Schaefer

Abstract Many software systems are available in similar, yet different variants
to accommodate specific customer requirements. Even though sophisticated tech-
niques exist to manage this variability, industrial practice mainly is to copy and
modify existing products to create variants in an ad hoc manner. This clone-and-own
practice loses variability information as no explicit connection between the variants
is kept. This causes significant cost in the long term with a large set of variants as
each software system has to be maintained individually. Software product line (SPL)
engineering remedies this problem by allowing to develop and maintain large sets
of software systems as a software family.

In this chapter, we give an overview of variability realization mechanisms in
the state of practice in the industry and the state of the art in SPL engineering.
Furthermore, we describe a procedure for variability mining to retrieve previously
unavailable variability information from a set of cloned variants and to generate
an SPL from cloned variants. Finally, we demonstrate our tool suite DeltaEcore
to manage the resulting SPL and to extend it with new functionality or different
realization artifacts. We illustrate the entire procedure and our tool suite with an
example from the automotive industry.

1 Introduction

Modern software exists in many similar variants that realize slightly different
functionality to accommodate specific customer requirements. For example, the
automotive industry allows customers of their cars to freely decide whether an
optional alarm system should be included or whether the power windows should
be manual or automatic. The selected configuration impacts the software required

C. Seidl (24) - D. Wille - I. Schaefer

Technische Universitit Braunschweig, Institute of Software Engineering and Automotive
Informatics, Braunschweig, Germany

e-mail: c.seidl@tu-braunschweig.de; d.wille@tu-braunschweig.de;

i.schaefer @tu-braunschweig.de

© Springer Nature Switzerland AG 2019 77
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_5&domain=pdf
mailto:c.seidl@tu-braunschweig.de
mailto:d.wille@tu-braunschweig.de
mailto:i.schaefer@tu-braunschweig.de
https://doi.org/10.1007/978-3-030-12157-0_5

78 C. Seidl et al.

to operate the car as significant parts of the program logic may differ. Program
logic may be specified by source code or, on a more abstract level, by design
models such as function block diagrams (FBDs) [19], MATLAB/Simulink! models,
or Rational Rhapsody® statecharts. In consequence, variability stemming from
different configuration options has to be manifested in various realization artifacts
by what is called a variability realization mechanism to reflect the differences in
program logic.

Variability realization mechanisms used in practice, such as copying and modi-
fying specific software systems through clone-and-own, are readily available and do
not require additional tools or changes in development process and/or management
structure. However, in the long run and with a growing number of variants, these
approaches do not support sustainable managed software reuse (see Sect.3.1).
Software product lines (SPLs) [29] offer concepts and facilities for managed
software reuse by treating a set of closely related systems as software family.
However, there is a gap between the state of practice used in industry and the state
of the art for managed software reuse of SPLs in academia with regard to variability
realization mechanisms. Furthermore, manually adopting an SPL approach for a
grown set of cloned software variants entails significant effort and cost [24].

To remedy these problems, in this chapter, we first give an extensive overview
of both the state of practice and the state of the art in variability realization
mechanisms. We then describe a procedure we devised to transition from the grown
structure of cloned variants to managed reuse of SPLs that analyzes the cloned
variants and generates the artifacts for an SPL largely automatically. Finally, we
demonstrate our tool suite DeltaEcore to realize the described transition procedure
for practical application in order to significantly reduce effort and cost of adopting
a managed reuse strategy for grown systems with many variants.

Due to their relevance for industrial practice, we specifically focus on variability
realization mechanisms and an associated reverse engineering procedure. To retrieve
high-level variability information, such as conceptual features, from related product
variants, other approaches exist [30]: Feature location techniques analyze natural-
language requirements documents [46], product maps describing the software’s
composition [32, 39], or existing model-based products [50, 51]. However, these
approaches do not consider fine-grained variability within realization artifacts or do
not generate an SPL as we do.

The structure of this chapter is as follows: Sect. 2 provides an overview of SPL
terminology and introduces a running example from the automotive domain. Sec-
tion 3 explains and contrasts the state of practice and the state of the art in variability
realization mechanisms. Section 4 describes our procedure to transition from grown
software systems with multiple variants to managed reuse by first analyzing the
individual clones and then generating an SPL from the realization artifacts and the

Thttp://www.mathworks.com/products/simulink/.
Zhttps://www.ibm.com/us-en/marketplace/rational-rhapsody/.

http://www.mathworks.com/products/simulink/
https://www.ibm.com/us-en/marketplace/rational-rhapsody/

Software Reuse: From Cloned Variants to Managed Software Product Lines 79

collected information. Section 5 introduces our tool suite DeltaEcore used to create
and maintain an SPL. Finally, Sect. 6 closes with a conclusion.

2 Background

In the following section, we provide background on software product lines and
provide a running example to illustrate concepts and techniques throughout the
chapter.

2.1 Software Product Lines

A software product line (SPL) [8, 29, 43] is an approach for managed reuse where a
set of closely related software systems is perceived as a software family consisting
of commonalities and variabilities. Commonalities constitute the functionality
contained in all systems of the software family, and variabilities constitute the
functionality that sets apart the individual software systems. Individual software
systems of the software family are created by combining the commonalities with
a selection of the variabilities. However, not all combinations of variabilities
are necessarily valid as technical or economical concerns may prohibit certain
combinations.

In an SPL, commonalities and variabilities of artifacts as well as the rules
governing potential combinations of variabilities are represented on different levels
of abstraction. In the problem space [9], variabilities are represented on a mere
conceptual level with no regard to their technical realization, for example, as
names with a description of functionality that can be used to communicate with
nontechnical stakeholders, such as customers or management. In the solution
space [9], variabilities are represented with their effect on realization artifacts, for
example, source code or models. Figure 1 depicts an overview of the essential
constituents of an SPL and their relations.

Software Product Line

Variability — Variability Realization

Model Realization Artifacts

uonnjos

Fig. 1 Overview of the essential constituents of a software product line

80 C. Seidl et al.

The main constituent of the problem space is a variability model, which
governs the valid combinations of variabilities by providing configuration rules.
Various notations for variability models exist, such as feature models [9, 20],
decision models [28], orthogonal variability models (OVMs) [29], and variability
specifications (VSpecs) of the Common Variability Language (CVL) [16]. Despite
the wide variety of available notations, feature models are by far the most commonly
used in industrial practice [5] so that we elaborate on this notation.

A feature model is a hierarchical decomposition of a variable software system
into features. A feature is a user visible functionality that, usually, is configurable,
that is, may be selected or deselected [6]. Features may be mandatory, so that
they have to be selected, or optional, so that they may be deselected. The root
feature is implicitly considered mandatory. Furthermore, features may be grouped
into alternative groups, so that exactly one of the contained features has to be
selected, or or groups, so that at least one of the contained features has to be selected.
Configuration constraints for a feature only apply if their respective parent feature
is selected. For a concrete example of a feature model, see Fig.2 in Sect.2.2 for
our running example. A configuration defined on the feature model is a selection of
features that satisfies all configuration constraints.

The solution space constitutes the realization of all possible software systems of
the software family. Realization artifacts may be of a wide variety of languages:
Source code in different programming languages may specify program logic.
Implementation models, such as statecharts, may define program flow on a higher
level of abstraction. Design models, such as class diagrams or component diagrams,
may represent parts of the architecture. Documentation material, such as user and
developer manuals, may provide information for employing or extending software
systems. The selection of variabilities as part of a configuration may have an
effect on each of these artifacts as, depending on the choice of variabilities, certain
functionality may be present in or missing from the software system. This yields the
need to change the design, implementation, and documentation of the respective
software system. To perform the respective changes, SPLs employ a variability
realization mechanism, which takes as input a configuration from a variability model
to then collect, adapt, and assemble relevant parts of realization artifacts.

BCS
Human Machine Interface Door System Security
Status LED | Power Window Exterior Mirror| Remote Control Key Central Locking System | Alarm System
Legend:
Finger Protection| | Mode | | Electric | Heatable @ Mandatory
/\\ & Optional
/\ Alternative
Automatic Manual Abstract
1 Concrete

"Remote Control Key" = "Central Locking System"

Fig. 2 Excerpt from the BCS feature model

Software Reuse: From Cloned Variants to Managed Software Product Lines 81

The procedure of transforming a configuration into a variant of the SPL is
referred to as variant derivation. A variant® or product of the SPL is the software
system associated with a specific conceptual configuration. The variant derivation
procedure differs greatly depending on the concrete type of variability realization
mechanism employed by the SPL, which we cover in detail in Sect. 3.

2.2 Running Example Automotive Body Comfort System

To illustrate our techniques, we use a running example from an automotive body
comfort system (BCS) SPL [27] along with its realization as statecharts, which
comprises functionalities such as (automatic) power windows and exterior mirror
control. In Fig. 2, we show an excerpt of the feature model for the BCS where the
full SPL comprises 27 features and 11,616 valid product variants. The depicted
feature model comprises different parts of the functionality that are common to all
product variants, such as the car’s exterior mirror orthe human machine
interface. In addition, different optional features exist representing additional
functionality, such as electric or heatable exterior mirrors as well as a
central locking system (CLS).

Individual features may be implemented differently depending on the selection of
other features. For example, the CLS feature exists in alternative implementations
depending on different power window (PW) modes. In Fig.3, we show two
statechart implementations of the CLS feature consisting of the c1s_unlock and
cls lock states with corresponding transitions.

The ManPW variant (cf. Fig.3a) is employed with a manual power window,
whereas the Aut oPW variant (cf. Fig. 3b) is used with an automatic power window.

In terms of implementation, the main difference between the two variants is
that, during a transition from cls_unlock to cls_lock, the ManPW variant is
only disabled (i.e., pw_enabled=false)when the window is closed completely
(i.e., pw_pos==1). Otherwise, it is still possible to manually close the window.
However, the AutoPW variant is disabled independent of the position of the
window, which is automatically closed by generating a corresponding command
(i.e., GEN (pw_but up)). We use these variants of the CLS in the remainder of
this chapter to illustrate different variability realization mechanisms as well as our
variability mining and SPL generation techniques.

3Note that some publications [29] use a different definition of the term variant to describe one
concrete option for a specific variation point, for example, a specific value for a configurable
parameter.

82 C. Seidl et al.

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

key_pos_lock[pw_pos != 1]/cls_locked=true; l

‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;

a)
‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;
key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);
b)

Fig. 3 Two statechart variants associated with the CLS feature. (a) ManPW variant of the central
locking system (CLS). (b) AutoPW variant of the central locking system (CLS)

3 Variability Realization Mechanisms

Different techniques exist to represent changes associated with conceptual features
in realization artifacts, such as source code or models. In the following, we describe
the state of practice of variability realization in industry and survey the state of the
art by explaining in detail different variability realization mechanisms from SPL
engineering.

3.1 State of Practice in Variability Realization

In industrial practice, a couple of ad hoc variability realization mechanisms or
existing language constructs and modularization concepts (not originally intended
to capture variability) are used to encode variability. In the following, we summarize
the most widely applied techniques for variability realization in the solution space,
while the survey by Berger et al. [5] focuses on variability modeling in the problem
space.

¢ Clone-and-Own (or copy-paste-modify) [12, 21]: Developers copy existing
models or source code of product variants and modify the respective artifacts
until a new variant is obtained. This new variant is then stored under a new name
and can be deployed in the same way as existing variants. This process can be
repeated for each variant to be developed. The advantage of this approach is that
it is very lightweight and saves development effort in the short term. No special

Software Reuse: From Cloned Variants to Managed Software Product Lines 83

modeling notation or tool support is required. However, with an increasing
number of variants, the variability in the set of cloned variants becomes difficult
to manage as each software system has to be maintained in isolation. In particular,
for debugging and maintenance, undocumented variability becomes an obstacle.

* Conditional Compilation [26]: In programming languages, conditional compi-
lation techniques allow deriving the implementation for a specific code variant
during compilation by appropriately selecting values for preprocessor macros.
Conditional compilation is most prominently used within C/C++ where code
blocks can be enclosed in #ifdef directives that are omitted for compilation
if the corresponding constant is set to false. Conditional compilation is a widely
used approach within the programming language community and offers very
flexible means to obtain custom-tailored code for specific variants. However,
it leads to code fragmentation and scattering of variability which is difficult to
maintain and debug.

e Variability Encoding [44]: Variability in models or source code is encoded by
standard programming/modeling language constructs that are originally intended
for choice within the control flow during execution. For instance, in programming
languages, variability can be encoded using if statements where the if condition
is a configuration parameter, such as a specific feature. In MATLAB/Simulink,
switch-case statements or variant subsystem blocks are used to capture variabil-
ity [45]. While variability encoding does not require specific language or tool
support to express variability, it is limited to expressing variability in software
behavior (in contrast to variability in its structure), and the binding of variability
is shifted to runtime which means that the complete code base has to be deployed
in all cases which may be disadvantageous for resource-constrained devices or
for protecting intellectual property. Additionally, choices due to variability and
choices due to program behavior are mixed, which violates the separation of
concerns principle and hinders maintenance and debugging.

* Parametrization: Variability of a system is captured by setting specific param-
eter values for system variables. Parametrization in the automotive domain is,
for example, used in characteristic curves or maps, such as for engine control,
set during calibration phases. Alternatively, electronic control units (ECUs)
incorporate a set of behavioral variants that can be configured by parametrization.
After the car is readily built, a parametrization string is entered such that the
software variant matches the built variant of the car. This requires that all possible
variants are already encoded within the ECU. The parametrization strings are
often kept in spreadsheets, which complicates analyses such as finding out
if the software for a specific car variant is configurable at all. Furthermore,
configuration errors may only be detected during system execution, which
significantly complicates debugging.

e Components and Plug-In Frameworks [41]: Variability on the architectural
level can be represented by component or plug-in frameworks. Variants can
be obtained by composing different component variants from a component
library or by using different plug-ins in plug-in frameworks such as Eclipse.
The advantage of component libraries and frameworks is that variability is

84 C. Seidl et al.

modularly encapsulated within components. However, variability is subject to
the granularity of the components. Hence, fine-grained variability in behavior or
structure cannot be captured. Instead, for each (even only fine-grained) change
due to variability, a new variant of a component is needed which leads to
redundancy and replicated code in the component/plug-in library.

3.2 State of the Art in Variability Realization Mechanisms

Despite ad hoc variability realization mechanisms used in industrial practice and
their individual shortcomings, variability realization mechanisms of SPLs support
managed reuse. These variability realization mechanisms can be distinguished into
three principle groups: annotative, compositional, and transformational [34]. In the
following sections, we elaborate on each type.

3.2.1 Annotative Variability Realization Mechanisms

Annotative variability realization mechanisms® [22, 34] utilize annotations to denote
parts of the realization artifact that belong to a particular feature. As a consequence,
with annotative variability realization mechanisms, a single artifact contains all
possible variations of one realization asset affected by variability, often referred to
as a 150% model. For example, a C++ class may contain multiple definitions of a
method with the same signature (similar name of the method with same number and
type of parameters and return value) with different bodies for individual features,
where each definition is wrapped in a preprocessor statement (#ifdef) that only
enables the respective method when a particular feature is selected. Hence, when
used in a disciplined manner, the aforementioned conditional compilation as well as
variability encoding may be viewed as annotative variability realization mechanisms
(see Sect. 3.1).

For annotative variability realization mechanisms, the connection between a
conceptual variability model and the annotations is established through naming
conventions, for example, features of a feature model may have the same name
as presence variables of annotations. During variant derivation, the presence of
elements from the variability model is then resolved to Boolean values for anno-
tations. The realization artifacts are reduced from a 150% model to an artifact of the
intended variant by removing those annotated parts of the realization artifact whose
conditions in the annotations are not satisfied. The result is a variant containing only
the intended functionality. Figure 4 depicts an example of an annotative variability
realization mechanism where the two variants of Fig. 2 are represented as a 150%
model and the Aut oPW variant with automatic power window is derived as example.

4 Annotative variability realization mechanisms are also referred to as subtractive or negative.

Software Reuse: From Cloned Variants to Managed Software Product Lines 85

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;
ManPW l

key_pos_lock[pw_pos != 1]/cls_locked=true;
ManPW

‘ key_pos_unlock/cls_locked=false; T

pw_enabled=true;

AutoPW

key_pos_lock/cls_locked=true; pw_enabled=false;
GEN(pw_but_up);

a)

‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

b)

Fig. 4 Example of an annotative variability realization mechanism. (a) 150% model. (b) Variant
derivation by removing parts of the 150% model

Annotative variability realization mechanisms pose certain requirements to be
applicable: If annotations are internal to realization artifacts, constructs for adequate
annotation have to either be included in the realization language (e.g., if statements)
or in another embeddable language (e.g., the C++ preprocessor). Furthermore, if
annotations are external to realization artifacts (e.g., through a specific annotation
model), elements need to be referenceable from outside of the realization artifact.
Finally, the specification of the 150% model requires full knowledge of all possible
variations at design time.

A variety of tools for managing SPLs is based on an annotative variability realiza-
tion mechanism: BigLever’s Gears® [25] and pure-system’s pure::variants® [7] are
industrial tools for managing SPLs. FeatureIDE’ [42], Clafer [3], and FeatureMap-
per® [17] are tools for managing SPLs stemming from academia.

Shttp://biglever.com/solution/product.html.
Shttp://pure-systems.com/Products.html.
7http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide.
8http://clafer.org.

“http://featuremapper.org.

http://biglever.com/solution/product.html
http://pure-systems.com/Products.html
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide
http://clafer.org
http://featuremapper.org

86 C. Seidl et al.

‘ key_pos_unlock/cls_locked=false;
pw_enabled=true;

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

a)
: ‘ key_pos_unlock/cls_locked=false; A
! pw_enabled=true; i
N [1
key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);
b)

Fig. 5 Example of a compositional variability realization mechanism. (a) Core model and two
units of composition. (b) Variant derivation by adding units of composition to the core model

3.2.2 Compositional Variability Realization Mechanisms

Compositional variability realization mechanisms'? [4, 22, 34] represent a variable
software system as a common core model and multiple units of composition. The
core model comprises the realization of functionality common to all variants. The
units of composition contain the realization of individual configuration options,
usually on the granularity level of a single feature, but it is principally possible to
define finer-grained units of composition. During variant derivation, relevant units
of composition are collected and combined with the core model to form a variant
containing valid realization artifacts. Figure 5 depicts an example of a compositional
variability realization mechanism where the two variants of Fig. 2 are represented as
a common core model with two units of composition and the Aut oPW variant with
automatic power window is derived as example.

It is possible that, in isolation, neither the core model nor the individual units
of composition are valid artifacts with regard to the syntax of the language in

10Compositional variability realization mechanisms are also referred to as additive or positive.

Software Reuse: From Cloned Variants to Managed Software Product Lines 87

which they are specified as they may define partial and incomplete information.
For example, a statechart may define a core model only containing the states where
the units of composition contain various transitions that will connect the states in
different variants.

Compositional variability realization mechanisms require certain conditions: The
functionality affected by variability has to be accessible for modification through
composition, which makes certain structures of realization artifacts more favorable.
For example, in source code, it may be complicated to replace fragments of
methods through composition so that smaller methods are beneficial for compo-
sition. Furthermore, a component-based software architecture [41] or a plug-in
framework allows for easier alignment of features with units of composition but
poses restrictions on the architecture (see Sect. 3.1).

Compositional variability realization mechanisms do not necessarily have to
know all possible variation in advance as new units of composition may be added
later on. However, in contrast to 150% models of annotative variability realization
mechanisms, which store all variations of a realization artifact in a single element,
the (possibly many) units of composition of compositional variability realization
mechanisms lead to an increased scattering, which may increase maintenance effort.

Compositional variability realization mechanisms are used in different
approaches and tools: feature-oriented programming (FOP) [4] -captures
modifications to artifacts resulting from a different feature in a feature module. A
feature module uses superimposition to express changes to a realization artifact by
either adding new or overriding parts of existing realization artifacts or, potentially,
utilizing the previous content. As an example, a feature module for a C++ class
may provide an alternative implementation for an existing method and, as part of
the new implementation, call the previous definition of the method. During variant
derivation, the features selected in a configuration are resolved to the respective
feature modules via name matching, which are then used to compose the core
model of the SPL with the units of composition. FOP is implemented in various
tools, such as the AHEAD Tool Suite!! [4] or FeatureHouse!? [2]. Furthermore,
FeatureIDE [42] may be configured to use a compositional variability realization
mechanism.

Aspect-oriented programming (AOP) [23] may be perceived as a compositional
variability realization mechanism when employed within an SPL. An aspect
captures (potentially cross-cutting) concerns of a software system as additions to
various significant locations of the targeted realization artifact called join points.
Individual features may be realized as aspects that are then combined with the core
model of the SPL by weaving the additions of relevant aspects into the respective
join points. AOP is utilized for the realization of variability in SPLs in various
different approaches [1, 13, 15].

1 1http://cs.utexas.edu/~schwartz/ATS/fopdocs.
2http://infosun.fim.uni-passau.de/spl/apel/fh.

http://cs.utexas.edu/~schwartz/ATS/fopdocs
http://infosun.fim.uni-passau.de/spl/apel/fh

88 C. Seidl et al.

3.2.3 Transformational Variability Realization Mechanisms

Transformational variability realization mechanisms represent variabilities as trans-
formations that restructure a base variant of an SPL to a specific target variant
that constitutes the functionality associated with the selected features of one
particular configuration. Sequences of calls to transformation operations may be
grouped into transformation modules if they have a sufficiently high level of
cohesion. A transformation module may realize variability of an entire feature
or parts thereof. Transformations may have different complexity: On an atomic
level, transformations may be perceived as addition, modification, and removal
of elements of the addressed realization artifact. On a more complex level, these
atomic operations may be synthesized to form compound operations, for example,
to remove an element and all depending references.

During variant derivation, the base variant is copied and relevant transformation
modules are collected and sequentially applied to transform the base variant to
the intended target variant. In the process of transformation, newly required func-
tionality is added, and functionality of the base variant that is rendered redundant
due to the selected configuration is removed. Figure 6 depicts an example of a
transformational variability realization mechanism where the ManPW variant with
the manual power window of Fig. 2 is used as base variant with transformations to
create additional variants and the Aut oPW variant with automatic power window is
derived as example.

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

key_pos_lock[pw_pos != 1]/cls_locked=true; l

‘ keylpos_unlock/cls_locked=fa|se;
pw_enabled=true;

a)

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

b)

Fig. 6 Example of a transformational variability realization mechanism. (a) Base variant. (b)
Variant derivation by adding, modifying, and removing elements

Software Reuse: From Cloned Variants to Managed Software Product Lines 89

The base variant of an SPL may, in principal, be selected arbitrarily from the
set of products. However, the choice of the base variant greatly influences the
number of transformations to create the other variants and, thus, the complexity
of the SPL. Hence, a number of considerations may influence which product is
selected as base variant of the SPL depending on the intended use: Selecting the
product most commonly purchased by customers aligns with business practices
when functionality of other products is viewed as deviation from the common
product. Selecting the product created first aligns with the development process as
subsequent changes may directly be represented as delta modules. Selecting the
product with the most features aligns with product configuration where undesired
functionality may be deselected.

There are multiple approaches that can be perceived as transformational variabil-
ity realization mechanisms if applied in the context of an SPL: Model transformation
may be employed as transformational variability realization mechanism if all
realization artifacts can be perceived as models, for example, as instances of meta-
models (see Sect. 4). In this case, model transformation operations are employed to
alter realization artifacts of the SPL. Model transformation operations may either be
provided as general purpose transformation operations [35, 38] that are agnostic of
the realization language or as domain-specific transformation operations [31] that
are tailored to the respective realization language.

The Common Variability Language (CVL) [16] is an attempt at adding standard-
ized variability to arbitrary modeling notations by overlaying variability information
over realization assets of a software family. CVL provides a set of standard
operations to manipulate realization assets of a software family in order to manifest
changes associated with variability so that it can be regarded as providing a
transformational variability realization mechanism. For example, the approach
allows binding variability at one variation point, for example, by choice from a
fixed set of options or by setting the value of a variable. Variant derivation facilities
may be employed to manifest the effects of changes associated with variability in
implementation artifacts.

Delta modeling [33] is the most prominent transformational variability realiza-
tion mechanism for SPLs. In delta modeling, transformations are performed by
invoking specific delta operations. Delta operations are provided by a delta lan-
guage, which is a domain-specific variability language tied to the source language
employed by realization artifacts it modifies, for example, DeltaStateCharts for
statecharts. The delta language allows fine-grained control over which operations
are available for realizing variability while, at the same time, allowing complex
transformation operations specific to the source language of the artifacts that should
be modified.

Delta modules encapsulate sequences of calls to delta operations with particu-
larly strong cohesion, for example, because they realize a particular feature. Usually,
multiple delta modules are required to realize a specific variant of an SPL. The order
in which the delta modules are applied may influence the created variant. Hence,
not necessarily all application orders of delta modules are valid as, for example,
an element cannot be modified before it was added. To express these restrictions,

90 C. Seidl et al.

application-order constraints may be specified, which state that a specific delta
module can only be applied after another delta module was applied.

During variant derivation, first, the relevant delta modules are collected. This
may be a manual selection of delta modules by a user of the SPL, or, if the SPL also
employs a feature model, the selection of features of a configuration may be resolved
to the set of associated delta modules. Then, the application-order constraints of
delta modules are evaluated and used as input to a topological sorting algorithm,
which creates one valid sequence of application. Finally, the base variant of the SPL
is copied and the transformations are applied sequentially in the order determined
for the delta modules to create the intended target variant of the SPL.

Transformational variability realization mechanisms have both as input and
output a valid variant of the SPL. This is in contrast to annotative and compositional
variability realization mechanisms, which depend on a specific software family
representation as input with either a 150% model or a core model, which both
potentially are not considered valid realization artifacts with regard to syntax
and static semantics of the realization language. Hence, transformational vari-
ability realization mechanisms have various benefits: For one, provided that the
configuration knowledge is sound, both the input and output of transformational
variability realization mechanisms may be inspected with standard tools that depend
on valid syntax and static semantics of the respective artifacts. In addition, the
variability realization process of creating variants by starting out with one concrete
software system and transforming it aligns closely with the common practice of
companies to first develop an individual software solution on request and, later on,
to transform it into an SPL with multiple products to sell off the shelf. Moreover,
using transformations is flexible as not necessarily all features have to be known in
advance and new features can be added seamlessly later on.

Finally, delta modeling as transformational realization mechanism can emulate
the behavior of both annotative and compositional variability realization mecha-
nisms when restricting the delta operations employed in delta modules to only
remove or add elements, respectively. This well-formedness property is referred to
as monotonicity of delta modules [10], and there are procedures to transform any
delta-oriented SPL to a monotonous form [11]. Due to these beneficial properties,
we employ delta modeling for our work and the explanations in the remainder of
this chapter.

4 From Cloned Variants to Managed Software Product Lines

In this section, we explain a procedure to migrate from cloned variants in grown
systems to managed reuse in SPLs. The presented approach is applicable to models
of different block-based modeling languages, such as MATLAB/Simulink models,
FBDs, and statecharts [18, 47, 49].

A common way to describe the notation of a modeling language is through a
metamodel [14, 40]. In a metamodel, metaclasses describe the elements of the mod-

Software Reuse: From Cloned Variants to Managed Software Product Lines 91

eling language, metareferences the relations of these elements, and metaattributes
the properties of each element. Concrete artifacts of the modeling language are
then perceived as instances of the metamodel. The Eclipse Modeling Framework
(EMF) provides Ecore as a notation to specify metamodels and offers a wide variety
of tools on that basis: With Xtext!3 or EMFText,!* models can be specified in a
textual language, for example, source code. With GEE,!> GME!° or Graphiti,17 it
is possible to create visual editors so that models can be specified in a graphical
language, for example, statecharts. With these tools, it is possible to perceive any
realization language (e.g., the language for statecharts) as a metamodel and its
artifacts (e.g., concrete statecharts) as models instantiating the metamodel. This has
the benefit that artifacts may be defined in different representations and may stem
from different sources but can still be handled uniformly as models of an explicitly
defined metamodel. Predefined metamodels, grammars, and parsers exist for many
popular languages to treat their source code as instances of Ecore models, such
as JaMoPP!3 for Java or sreML'® for C/C++. In addition, it is possible to define
metamodels for further languages.

In Fig. 7, we show the metamodel for statecharts we utilize for the BCS running
example. The metaclasses State and Transition represent the respective
elements of the statechart notation, where elements of both are uniquely identified
by the value of the metaattribute id. States may carry a name and transitions
may specify events upon whose occurrence they prompt certain act ions if the
respective guards are satisfied. Metareferences define potential compositions of
the respective elements. A StateChart consists of a number of states, where
the initialState is designated by the specialized class InitialState.
Furthermore, a state contains multiple t ransitions of which each references a
sourceStateand a targetState. Additionally, a state may be a compound in
the sense that it may contain further states and, indirectly, transitions that define its
behavior. Depending on the number of elements instances may reference, metaref-
erences may be distinguished into single-valued references (e.g., initialState
of StateChart) and multivalued references (e.g., states of StateChart),
which is of relevance for our approach. The remaining elements of the metamodel
in Fig. 7 capture variability as will be explained in Sect. 4.1. Finally, the metamodel
URI is the unique identifier of the metamodel which can be utilized to retrieve
the metamodel from a central registry, for example, when checking models for
conformance with the respective metamodel. For the BCS running example, the
metamodel URI is http://www.tu-braunschweig.de/isf/states.

Bhttp://eclipse.org/Xtext.
4http://emftext.org/.
Dhttp://eclipse.org/gef.
16http://eclipse.org/modeling/gmp.
Thttp://eclipse.org/graphiti.
8http://jamopp.org/index.php/JaMoPP.
http://www.srcml.org/.

http://eclipse.org/Xtext
http://emftext.org/
http://eclipse.org/gef
http://eclipse.org/modeling/gmp
http://eclipse.org/graphiti
http://jamopp.org/index.php/JaMoPP
http://www.srcml.org/

92 C. Seidl et al.

1 AlternativeValueEntry] [1 VariableElement]
= key : EString &% containingVariants : EString
= value : EString & variability : EString

[0..*] alternativeValues

[0.1] subStates

[0..*] transitions ‘
£ Transition [1..1] sourceState [State]

& id : EString % id : EString

= events : EString [1..1] targetState %' name : EString
= guards : EString
= actions : EString

€ J € J

[0..*] states

I StateChart]‘ -

id : EString J¢ [1..1] initialState

Ll InitialState

g

~—1 _J

L .

Fig. 7 Metamodel for the statechart notation used in the running example

Due to the benefits of employing metamodels, we heavily utilize model-based
development. However, we do not require users of our mining and generation
technology to use it as well because the model-based character is completely
transparent and required inputs may be provided in textual languages. In Sect. 4.1,
we explain how a set of cloned model variants can automatically be analyzed
to extract variability information (i.e., common and varying parts between the
variants). In Sect. 4.2, we show how to generate delta modules of a delta-oriented
SPL from the cloned variants.

4.1 Mining Variability from Cloned Variants

To support transition from a set of cloned model variants to a managed reuse
strategy, it is essential to identify variability relations between the variants. In Fig. §,
we show our family mining process, an approach to semiautomatically reverse-
engineer variability information from a set of block-based model variants [18, 47,
49]. The approach relies on metamodeling techniques and first translates the input
models in an instance of a metamodel specifically tailored to the modeling language

Software Reuse: From Cloned Variants to Managed Software Product Lines 93

Input for the First Merging
k‘ First Input
Base Model
l

Input
Cloned Model
—) - IZH - m .

Resuk
Compare T 150% Model as Input 150% Model
Model(s)

Fig. 8 Workflow for variability mining from cloned model variants

employed to realize variants, for example, for statecharts, the metamodel of Fig. 7.
Furthermore, we created metamodels capable of handling MATLAB/Simulink mod-
els and FBDs [18, 47, 49]. The family mining algorithm consists of the following
three phases. During the Compare Phase (cf. Sect.4.1.1), models are compared
and possible relations are identified. In the Match Phase, unambiguous one-to-one
relations are selected from these comparisons. In the Merge Phase, the resulting
relations are used to create a /50% model.

In the metamodel for statecharts presented in Fig.7, we provide classes
VariableElement and AlternativeValueEntry to store the determined
variability information: In VariableElement, we allow to store the identified
variability for compared elements (i.e., whether they are contained in all
compared variants or represent variability only present in certain variants). In
addition, we store the model variants containing the corresponding elements. In
AlternativeValueEntry, we allow to define mappings from model names to
alternative values (e.g., when we identify state names with minor deviations in two
compared variants).

The following sections explain each of the steps for mining variability from
cloned variants in details.

4.1.1 Compare Phase

Our family mining approach is realized in a pairwise manner and, thus, iteratively
compares two models at a time. The algorithm starts comparing the models by
selecting a base model (e.g., the smallest variant) and regards all remaining models
as compare models. Next, the algorithm compares the selected base model with one
of the compare models by analyzing the dataflow in the model. For our running
example, we compare the two statechart implementation variants of the CLS feature
(cf. Fig. 3). Starting from the start elements on the highest hierarchy level where data
is introduced to the model or where the execution is started (i.e., the c1ls_unlock
initial states from the variants with manual and automatic central locking system
in Fig. 3), the algorithm separates the currently analyzed model hierarchy for both
models into stages. These stages are created by analyzing the dataflow and contain
only elements that are separated by the same number of edges (e.g., transitions in

94 C. Seidl et al.

statecharts) compared to the start elements. For instance, the compare algorithm
creates stage SO with state c1s_unlock and stage S1 with state cls_lock for
both compared variants in Fig. 3. Depending on the employed modeling language,
not only the analyzed model nodes (e.g., states for statecharts) are relevant but their
connecting edges (e.g., transitions for statecharts) contain additional information
worth considering during comparison. For example, as transitions in statecharts
contain important execution information, they should be analyzed during family
mining. Thus, two additional stages are created for both variants from Fig.3
containing the outgoing transitions from the states c1s_unlock and cls_lock,
respectively.

Next, each stage from the base model is compared with its counterpart from
the compare model by iterating and inspecting all possible combinations of the
contained elements. For each comparison between two model elements, a so-called
compare element is created storing the compared elements together with a similarity
value calculated according to a user-defined metric [48, 49]. Such a metric allows
to assign different weights to the properties of compared elements and, thus, allows
to rank their influence on the model functionality. For instance, when comparing
two transitions from Fig. 3, we could assign a higher weight to actions triggered
by the transitions than to their events (i.e., the events triggering the transition’s
execution) and guards (i.e., conditions that have to be fulfilled in order to execute the
transition) because actions trigger new events and the execution of other transitions.
Consequently, these actions have a high influence on the semantics of a particular
statechart. As the metric is adjustable to different settings, users can easily modify
the weights to different needs. During the comparison of two elements, the similarity
value is calculated by summing up the metric’s weights according to the elements’
similarity. To allow comparison of the calculated similarity values, we normalize the
metric’s values to the interval [0..1]. A concrete example for such a metric can be
found in [48]. In cases where no counterpart exists for the comparison of elements in
a stage, we create comparisons with null, which indicates that the respective element
is optional as it is not present in some of the variants.

Our procedure natively supports comparison of hierarchical models by recur-
sively starting the algorithm when comparing two hierarchical elements (e.g., two
hierarchical states in statecharts or two subsystems in MATLAB/Simulink) [49].
Using this approach, we are able to calculate the overall similarity value of
compared hierarchical elements by averaging the similarity value of their sub-
elements.

4.1.2 Match Phase

The resulting list of compare elements might contain ambiguous relations between
the compared model elements, because, during the comparison of stages, multi-
ple combinations with the same model element might be created. For instance,
during the comparison of the stages containing the transitions going from the
cls unlock state to the cls_ lock state, the algorithm creates two compare

Software Reuse: From Cloned Variants to Managed Software Product Lines 95

elements. Both elements contain the corresponding transition from Fig. 3b compar-
ing it with both possible variants from Fig. 3a.

As these ambiguous relations hinder to identify distinct one-to-one variability
relations between the compared model elements, the algorithm traverses the list of
all possible compare elements. For each contained compare element, it identifies all
other compare elements sharing at least one of the compared elements (i.e., the
element from the base model or the compare model). Afterward, the algorithm
identifies a distinct match for these compare elements by selecting the compare
element with the highest similarity value. All ruled-out compare elements are
deleted and the algorithm continues until no unmatched elements are left. Thus, in
our example, the algorithm matches the transition between the states c1s_unlock
and cls_lock in Fig.3b with the transition containing the pw_pos==1 guard
in Fig.3a because they have a higher similarity compared to the other possible
transition containing the pw_pos!=1 guard (i.e., a higher number of statements
match). In case the algorithm cannot identify distinct relations for a compare
element, it first sorts the conflicting elements to the end of the list. Using this
approach, the algorithm tries to implicitly solve ambiguous relations automatically
by first matching other elements. However, in some cases user intervention may be
necessary to resolve the conflict. Elements that were ruled out completely from all
compare elements (i.e., they have no matching partner) are regarded as optional
elements and are added to the final list of matches in compare elements. For
example, the ruled-out transition between the states c1s_unlockand cls_lock
in Fig.3a has to be added as such an optional compare element to not lose
information contained in the compared variants.

4.1.3 Merge Phase

The resulting list of distinctively matched compare elements can now be used to
create a 150% model storing all implementation artifacts from the compared variants
together with their identified variability (i.e., how the elements are related and
in which models they are contained). The algorithm processes the list of distinct
matches and creates the 150% model by merging the compare elements with a
copy of the base model. For the merging process, we define the following mapping

function to classify variability of compared elements:
similarity >=0.95 mandatory
rel(A, B) = (0 < similarity < 0.95 alternative) @))]

similarity =0 optional

This mapping function is adjustable to user preferences and defines default thresh-
olds that were identified during an impact analysis of differing properties in
compared elements with additional interviews on how similar these elements are
regarded according to domain experts [48, 49]. The threshold of 95% categorizes
two compared elements as mandatory (i.e., they are regarded as equal). However,

96 C. Seidl et al.

we allow minor deviations between the elements because of the 5% interval up to
100% equality. For example, this allows us to regard elements as mandatory despite
minor differences in their names. Mandatory elements do not have to be merged into
the 150% model as they are already contained in the base model copy. However, we
have to annotate differing values for the properties where they are not equal (e.g., the
changed name). Otherwise, we lose information when creating the 150% model.
Compare elements with a similarity value of 0% are regarded as optional (i.e., they
are only contained in some of the variants) as they have no counterpart. Depending
on whether the element was already contained in the base model copy, we have to
copy the corresponding elements to the 150% model. All elements with a similarity
value between the mandatory and optional threshold are regarded as alternatives
(i.e., all variants contain exactly one of the possible alternative elements). Here,
only the element that was not contained previously in the base model copy has to
be copied to the 150% model. For all elements in the 150% model, we compare
the model containing the corresponding element and explicitly store the variability
identified according to the thresholds in Eq. 1. The resulting 150% model is used as
an input for the iterative comparison with the next model.

In Fig. 9, we present the 150% model for our running example. As we can see,
the algorithm correctly identified and annotated the models containing the different
transitions (i.e., either the ManPW variant or the Aut oPW variant). For readability
reasons, we neglected the explicit variability annotations in Fig. 9. However, the
algorithm correctly identifies that the annotated transition from the Aut oPW variant
is an alternative to the annotated transition with the pw_pos==1 guard from the
ManPW variant. The remaining annotated transition with the pw_pos!=1 guard is
identified as an optional element. All elements without annotations are regarded as
mandatory as they are contained in both variants.

key_pos_lock[pw_pos == 1]/cls_locked=true;
pw_enabled=false;

ManPW

key_pos_lock[pw_pos != 1]/cls_locked=true; l

ManPW
‘ key_pos_unlock/cls_locked=false; T

pw_enabled=true;
AutoPW

key_pos_lock/cls_locked=true;
pw_enabled=false; GEN(pw_but_up);

Fig. 9 Part of the 150% model showing the variability of the compared CLS variants

Software Reuse: From Cloned Variants to Managed Software Product Lines 97

Cloned Model 150% Model Delta

Variants Module e 4 ° ° @ e

Generation

Delta
Language [4
D Generation Delta Language
& Variability Mining A Delta M
‘r LTI TTETT) 2 Ih —) Ope.l‘? r *
Identification

Delta Modules

Fig. 10 Workflow for the generation of a delta-oriented SPL consisting of a delta language and
multiple delta modules

4.2 Generating a Delta-Oriented Software Product Line

After creating a 150% model, we are now able to generate an SPL for managed
reuse. In particular, we generate a delta-oriented SPL consisting of a delta language
tailored specifically to the modeling language used to realize implementation
artifacts and a set of delta modules using this delta language to specify the
transformations to create the original set of variants from the base variant. Figure 10
depicts the workflow for SPL generation.

The workflow consists of three steps. First, the algorithm decides on which
transformation operations are required by processing annotations of the 150% model
(cf. Sect.4.2.1). Then, the algorithm uses these operations to generate a delta
language for the modeling language of the inspected variants (cf. Sect. 4.2.2).20
Finally, using this delta language, delta modules are generated that describe the
transformations from the base variant to all of the initially analyzed variants
(cf. Sect. 4.2.3).

4.2.1 Delta Operation Identification

As we apply delta modeling, we intend to transform a base variant (BV) to a target
variant (TV). Our process allows users to freely select any variant contained in
the input 150% model as BV. To determine appropriate delta operation calls for
transformation to the respective TV, we have to decide for each element from the
generated 150% model whether it has to be added, removed, or modified by calling
the respective delta operation.

To identify appropriate operations to call, we use a decision process: The
algorithm analyzes the annotations in the 150% model to identify in which variants
the currently considered element is contained. In case it is not contained in BV
and TV or it is contained in both variants but is regarded as identical, the process
decides to not generate a delta operation. Two elements are regarded as identical

20To be exact, the algorithm generates a delta dialect, which can be used to generate the delta
language (cf. Sect. 5).

98 C. Seidl et al.

Table 1 Decisions for Fig. 9 with BV=ManPW and TV=Aut oPW

Element Decision process
.. R lin BV R inTV
Transition 4 Decide —— !in BV —— Add
.. R lin BV R inTV
Source state for transition 4 Decide —— !in BV —— Set
in BV Iy
e N m B PNLLCy .
Transition 3 Decide — in Bv &1 Nothing
.. , in BV lin TV
Source state for transition 2 Decide —— in BV —— Unset
.. , in BY lin TV
Transition 2 Decide —— in BV —— Remove

if the family mining process marked them as mandatory without any alternative
properties (e.g., for elements with minor name differences). In all other cases, we
have to generate a delta operation for the transformation between both variants. If
the analyzed element is only contained in BV and does not have an annotation for
TV, it has to be unset/removed to generate the final variant. Similarly, the element
has to be set/added when it is only contained in TV and not in BV. For elements
that are contained in both variants but are not similar, the original element has to be
modified.

In Table 1, we present the identification of delta operation calls for the 150%
model in Fig.9 with BV=ManPW (i.e., the variant in Fig.3a) and TV=AutoPW
(i.e., the variant in Fig. 3b). For space reasons, we limit the table to demonstrate an
example for each type of identified delta operation (i.e., add, set, remove, unset, and
nothing). However, for complete transformations, all elements have to be analyzed
by the delta operation identification process. To allow easier reasoning on the
decisions in Table 1, we have numbered the transitions of Fig. 9 consecutively from
top (i.e., the transition with the pw_pos==1 guard) to bottom (i.e., the transition
with the Aut oPW annotation). As we can see, the algorithm identifies correctly that
transition 4 is not contained in ManPW and has to be added during a transformation
to AutoPW. Similarly, transition 2 has to be removed as it is not contained in
AutoPW. In addition, the algorithm identifies that the source states for transition
4 and 2 have to be set and unset, respectively. These operations are required to
update the corresponding references because of the metamodel structure used to
store the statechart variants in Fig. 7 (i.e., the sourceState reference is used to
store the corresponding state). For transition 3, the delta operation identification
process correctly determines that the element does not have to be transformed as it
is contained in both variants.

At present, we analyze atomic differences and identify atomic delta operations
that modify a single value or reference. However, in the future we plan on
identifying semantically richer delta operations by utilizing domain knowledge
or knowledge of the semantics of the realization language, for example, a delta
operation for statecharts that can remove a state as well as all its incoming and
outgoing transitions to preserve well-formedness of the statechart.

Software Reuse: From Cloned Variants to Managed Software Product Lines 99

4.2.2 Delta Language Generation

Using the described decision process, it is possible to determine which delta
operations have to be called to perform the transformations to retrieve target variants
TVs for all inspected cloned variants from the selected base variant BV. Depending
on the selected BV, different delta languages are generated as only delta operations
are considered that are needed to transform BV to the analyzed TVs. For example,
when generating a delta language for the comparison of BV=ManPW with another
TV that only contains additional states and transitions, no remove operation for
transitions is generated. For each decision returned by the algorithm, we generate a
corresponding delta operation and store it in a set to prevent generation of redundant
operations. For instance, in our running example, this prevents the generation of
multiple delta operations to add transitions to states.

In Listing 1, we present an excerpt from the delta language generated for the
150% model in Fig.9 with BVv=ManPW and TV=AutoPW. The excerpt contains
the delta operations generated for the decisions in Table 1. This delta language
was generated with our tool suite DeltaEcore (cf. Sect.5) using information on
the required type of delta operation, the transformed reference or attribute, and
the containing class. The automatically generated names describe the functionality
of the corresponding operation in a unique and descriptive way but they may be
changed manually without impacting further generation (cf. Sect. 4.2.3)

4.2.3 Delta Module Generation

Using the generated delta language, it is now possible to define delta modules that
contain transformations from one variant to another. Our algorithm automatically
generates appropriate delta modules for the variability identified using the family
mining algorithm (cf. Sect. 4.1). To start the delta module generation, our algorithm
expects the selected BV and TVs from the 150% model generated during family

1 deltaDialect

2 configuration:

3 metaModel: <http://www.tu-braunschweig.de/isf/states>;
4

5 deltaOperations:

6 addOperation addTransitionToTransitionsOfState(

7 Transition value, State [transitions] element) ;

8 setOperation setSourceStateOfTransition(State value,

9 Transition [sourceState] element) ;
10 removeOperation removeTransitionFromTransitionsOfState(
11 Transition value, State [transitions] element) ;
12 unsetOperation unsetSourceStateOfTransition/(
13 Transition [sourceState] element) ;
14 /] ...
15 }

Listing 1 Excerpt from the delta language generated for the running example

100 C. Seidl et al.

mining as well as a delta language providing operations to transform to the inspected
variants. The used delta language could either be generated automatically using the
approach described in Sect. 4.2.2 or could be specified manually.

Using the selected BV, the algorithm analyzes the decision of each element from
the currently considered TV to identify the appropriate delta operation to apply. For
this procedure, the adequate delta operation is determined from the provided delta
language by looking up its type (e.g., set, modify) and the metamodel element it
addresses as parameter. First, the number of possible delta operations to apply is
reduced by filtering out all delta operations whose type does not conform with the
decision. For example, the set decision in Table 1 reduces the number of possible
operations for the delta language in Listing 1 to exactly one remaining element
(i.e., the setSourceStateOfTransition operation). Then, the algorithm
compares the references or attributes transformed by the remaining delta operations
and the modified types with the needed transformation according to the generated
decision (i.e., in our example setting the sourceState reference in the Transition
class). Only after these additional checks, a corresponding delta operation call is
generated to realize the needed transformation. It is worth noting that determining
the respective delta operation to call is independent of the name of the operation so
that the latter may be chosen freely before generation.

All generated delta operation calls for a transformation from a selected BV to a
TV are stored in delta modules. In case of add operation calls, the corresponding
constructor calls to create the element to be added are generated automatically and
are also stored in the delta modules. In Listing 2, we show an excerpt for the delta
module to transform BV=ManPW to TV=AutoPW. The excerpt contains all delta
operation calls with corresponding constructor calls for the decisions from Table 1
(cf. Sect. 5.2).

Using the generated delta modules, it is now possible to derive variants from
the defined BV that correspond to all originally inspected cloned variants. In the
following Sect. 5, we explain our implementation of the tool suite DeltaEcore, which
is used for the generation process and which allows automatic variant derivation
from the specified delta modules.

1 delta "CLS-ManPW->CLS-AutoPwW"

2 dialect <http://www.tu-braunschweig.de/isf/states>

3 modifies <CLS-ManPW.statecharts {

4 unsetSourceStateOfTransition(<trans3>) ;

5 removeTransitionFromTransitionsOfState(<trans3>,

6 <cls_unlocks>) ;

7 Transition t = new Transition(id: "transl",

8 events: "key pos lock", actions: "cls locked = true;

9 pw_enabled = false; GEN(pw_but_up);");
10 addTransitionToTransitionsOfState(t, <unlocks>);
11 setSourceStateOfTransition(<unlock>, <transls);
12 /] ...
13}

Listing 2 Excerpt from the delta module generated for the running example

Software Reuse: From Cloned Variants to Managed Software Product Lines 101
5 Realization as Tool Suite DeltaEcore

DeltaEcore®! [36, 37] is a tool suite for variability management using the trans-
formational variability realization mechanism delta modeling. It employs a model-
based development process, which allows the tool suite to be tailored to specific
implementation languages with low effort. DeltaEcore has three major application
areas: delta language creation to adapt the tool suite to work with specific realization
languages, software product line definition to apply a managed reuse strategy to a
family of related software systems, and variant derivation to generate individual
software products from the software product line.?” Figure 11 provides an overview
and the following sections elaborate on each of these application areas in detail.

5.1 Delta Language Creation

Before creating an SPL with DeltaEcore, suitable delta languages for all source
languages used for the implementation have to be created, for example, a delta
language for statecharts. A delta language provides dedicated operations to alter
artifacts of the source language and, thereby, governs the level of control to these
artifacts, for example, by providing operations to change the transitions of a state
but not its id.

DeltaEcore assumes source languages to be available as an Ecore-based meta-
model where the source language’s elements are represented as metaclasses with
references and attributes, which is feasible for both textual and graphical languages.
For example, the statechart notation used throughout the running example is defined
by the metamodel depicted in Fig. 7.

A delta language in DeltaEcore consists of two parts: the common base delta
language and a delta dialect. The common base delta language is agnostic of the
source language and defines language constructs shared by all delta languages,
such as the definition of variables or requiring other delta modules. A delta
dialect is specific to a source language as it references elements of the source
language’s metamodel to define delta operations for the respective source language.
When specifying a delta module to alter an artifact of a specific source language,
DeltaEcore combines the common base delta language with the respective delta
dialect to provide an appropriate delta language.

The common base delta language is provided entirely by DeltaEcore. However,
the delta dialect has to be defined once for each source language, for example, a

2Ihttp://deltaecore.org.

221n this chapter, we focus on functionality of DeltaEcore regarding delta modeling. In addition,
DeltaEcore also allows for a seamless integration of feature models, provides a graphical editor
and configurator, supports integrated management of SPL evolution, and may be interfaced with
other tools, such as FeatureIDE [42].

http://deltaecore.org

C. Seidl et al.

102

Suropour v)[op JI0j seare uonesrjdde Jofew s 0100FeI[2 JO MAIAIAQ [T SI

juenep 19bue)
{(dnTIng"md)N3TD ‘@sjej=pajqeus md
‘ana3=paxoo| sp /20|~ sod A3y

h ‘ann=pajqeus”md
‘3s|ey=pax0o| sp/rojun—sod A3y *

jueLiep aseq

U.._._uunw_nmcwlza
‘as|ey=pay00| sp/pojun—sod A3y 4

0ol s —

q ‘ana3=paxo| sP/[T =i sod~md]}d0| sod"Aay

‘as|ey=pajqeus”md
‘anu3=pax20| s|p/[T == sod~md]yo0| sod"Aay

uoneuwlojsuel|
{(dnTIng"md)N3TD ‘esjey=pajqeus” md
‘anay=pay0| sp/oo| sod~Aay

e
‘ana=pajqeus~md

DeltaEcore

SaINpo B3Rq

QOO0 0O
Q00000
000000

sabenbue elaq

sabenbue 22.nos

-E-_ —
- -— syeydaIelS

SHeyD3eISeyRq

uoneALIdQ JUeLiep

uoniuyaq
aulq PNpo.id 31emypyos

uoneas)
abenbue ejj2a

Software Reuse: From Cloned Variants to Managed Software Product Lines 103

delta dialect for statecharts by specifying the signatures of the delta operations that
should be provided. As the principle nature of altering implementation artifacts in
delta modules is similar even across different languages, DeltaEcore provides seven
types of standard delta operations:

» Set and unset operations alter values of single-valued references, such as the
reference initialState of StateChart, by supplying a new value or
resetting the reference to its default value, respectively.

* Add and remove operations alter values of multivalued references, such as the
reference states of StateChart, by adding or removing a value to the set
of values, respectively. Insert operations alter values of multivalued references
with ordered values by adding a value to the ordered set of values at a specific
position.

* Modify operations alter values of attributes, such as the attribute name of State,
by supplying a new value, which, in contrast to altering values of references, is
guaranteed to be free of side effects.

* Detach operations remove an element from its container so that it can be deleted
from the model upon save if no other references to the element exist.>>

Due to their uniform definition, the standard delta operations of DeltaEcore have
defined semantics in terms of how they affect the artifacts of the source language.
In addition to standard delta operations, it is also possible to supply custom delta
operations with user-defined semantics, for example, to realize complex operations
specific to the source language, such as removing a state along with all its incoming
and outgoing transitions. As an example, we have already presented the delta dialect
for the statechart notation used throughout the chapter in Listing 1 in Sect. 4.2.2.

A delta dialect may be defined in multiple ways: First, it may be defined entirely
manually. Second, it may be generated by DeltaEcore by analyzing the structure
of the source language’s metamodel for suitable delta operations [36]. Third, it
may be generated as part of mining variability of cloned variants as presented in
Sect. 4.2.2 for statecharts. Furthermore, combinations of these approaches are also
possible so that a generated delta dialect may be refined manually to supply specific
user-defined operations. In combination with the common base delta language, the
definition of a delta dialect suffices to create a delta language tailored to a specific
source language.

23We refrained from defining a delete operation due to its potentially cross-cutting effects when
resetting all references to the deleted element. However, a delete operation can be supplied
manually with minimal effort if suitable for the source language.

104 C. Seidl et al.
5.2 Software Product Line Definition

To apply a managed reuse strategy to a family of related software systems,
DeltaEcore supports the definition of an SPL based on delta modeling. For this
purpose, one of the products of the family of software systems is designated as base
variant, and all other variants are described in terms of transformations realizing the
differences of the implementation artifacts to those of the base variant, which are
captured in delta modules.

A delta module modifies a realization artifact (e.g., a statechart) through a
sequence of calls to delta operations to add, modify, and remove elements. In
DeltaEcore, the delta operations available for altering a realization artifact are
provided by the delta dialect as part of the delta language for the respective source
language (e.g., the delta dialect for statecharts).

As an example, we have already presented a delta module in Listing 2 in
Sect.4.2.3. In line 2, the delta dialect for the source language of the artifact to be
altered is set by providing the URI of the language’s metamodel, which DeltaEcore
resolves to the appropriate delta dialect. In line 3, the statechart realizing the manual
power window, which serves as base variant, is referenced to be modified by the
delta module. In lines 4-12, a sequence of calls to delta operations alters the
statechart to contain functionality related to the automatic power window.

To create complex variants, multiple delta modules may be used where each one
encapsulates strongly coherent changes, for example, to realize one feature of the
SPL. However, delta modules may not be completely independent of one another,
for example, when one delta module alters an element that is created by another
delta module. For this purpose, DeltaEcore allows for delta modules to specify delta
module dependencies, which state that a delta module requires another delta module
to be applied before its transformations can be invoked.

DeltaEcore also allows for specifying application-order constraints, which state
that a certain delta module may only be applied after another delta module was
applied. In contrast to delta module dependencies, application-order constraints
do not entail that the referenced delta module is inevitably necessary so that
application-order constraints are only evaluated should both delta modules be
selected explicitly.

The set of all delta modules and their application-order constraints comprise the
SPL, which allows for managed reuse and creation of individual products through
variant derivation.

5.3 Variant Derivation

To create a concrete software product of the SPL defined in DeltaEcore, a variant
derivation has to be performed. For this purpose, a set of delta modules has to be
selected, which is then applied in a suitable order to transform a base variant to a
target variant containing the intended functionality.

Software Reuse: From Cloned Variants to Managed Software Product Lines 105

The initial set of delta modules is supplied by a user through selecting those
delta modules that are associated with the functionality for the software product that
differs from the base variant, for example, to enable the automatic power window.2*
DeltaEcore automatically completes the initial set of delta modules by adding all
(transitively) required delta modules.

To ensure deterministic variant derivation, a valid application sequence for the
relevant delta modules has to be determined. For this purpose, DeltaEcore performs
a topological sorting, which takes into account delta module dependencies as well
as application-order constraints posed upon those delta modules to determine an
application sequence that satisfies all constraints.

DeltaEcore then copies the base variant of the SPL and applies the delta modules
in the determined sequence to perform the transformations described by calls to
delta operations within each delta module. The result is the target variant of the SPL
containing the functionality of the intended software product. In DeltaEcore, the
variant derivation procedure is fully automated so that users of the SPL only need to
supply the initial set of delta modules intended to create a specific software product.
Furthermore, it is also principally possible to use delta modules to perform changes
specific to individual customers, for example, to customize a previously generated
variant.

With the capacities of DeltaEcore for delta language creation, software product
line definition, and variant derivation, it is possible to develop a set of closely related
software systems as delta-oriented SPL. Combined with the variability mining and
SPL generation approaches we presented in Sect. 4, it is possible to seamlessly
migrate from the industrial practice of clone-and-own to a managed reuse strategy
using an SPL.

6 Conclusion

In this chapter, we have demonstrated an approach for seamless transition from the
industrial practice of creating software variants through clone-and-own to a man-
aged reuse strategy with a delta-oriented SPL. We first reviewed the state of practice
and state of the art in variability realization mechanisms. We then introduced our
procedure for variability mining from variants created through clone-and-own to
retrieve previously unavailable variability information. We demonstrated how our
procedure generates a delta-oriented SPL from the mined variability information.
With the resulting delta-oriented SPL, it is possible to maintain and create a large
set of variants from a single set of managed variable artifacts.

In the future, we plan on incorporating domain knowledge to generate seman-
tically richer delta operations to be used within the generated delta language and

241f a feature model is supplied, it is further possible to select a configuration from the feature
model and have DeltaEcore resolve the selected features to the respective associated delta modules.

106 C. Seidl et al.

associated delta modules. Furthermore, we will also investigate how to generate an
initial feature model to be used with the delta modules to also represent the problem
space of the SPL in order to further increase usefulness for the industry.

References

—

10.

11.

12.

13.

14.

. Alves V, Matos P, Cole L, Vasconcelos A, Borba P, Ramalho G (2007) Extracting and evolving

code in product lines with aspect-oriented programming. In: Transactions on aspect-oriented
software development IV. Springer, Berlin, pp 117-142

. Apel S, Kistner C (2009) An overview of feature-oriented software development. J Object

Technol 8(5):49-84

.Bak K, Czarnecki K, Wasowski A (2011) Feature and meta-models in Clafer: mixed,

specialized, and coupled. In: Proceedings of the international conference on software language
engineering (SLE), SLE "11. Springer, Berlin, pp 102-122

Batory D (2004) Feature-oriented programming and the AHEAD tool suite. In: Proceedings of
the international conference on software engineering (ICSE), ICSE ’04. IEEE, Piscataway, pp
702-703

. Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wasowski A (2013) A survey

of variability modeling in industrial practice. In: Proceedings of the international workshop on
variability modeling in software-intensive systems (VaMoS), VaMoS ’13. ACM, New York, pp
7:1-7:8

. Berger T, Lettner D, Rubin J, Griinbacher P, Silva A, Becker M, Chechik M, Czarnecki K

(2015) What is a feature?: a qualitative study of features in industrial software product lines.
In: Proceedings of the international software product line conference (SPLC), SPLC ’15. ACM,
New York, pp 16-25

. Beuche D (2012) Modeling and building software product lines with pure::variants. In:

Proceedings of the international software product line conference (SPLC), SPLC ’12. ACM,
New York, pp 255-255

. Clements PC, Northrop LM (2001) Software product lines: practices and patterns. Addison-

Wesley, Boston

. Czarnecki K, Eisenecker UW (2000) Generative programming: methods, tools, and applica-

tions. Addison-Wesley, Boston

Damiani F, Lienhardt M (2016) On type checking delta-oriented product lines. In: Proceedings
of the international conference on integrated formal methods (iFM), iFM ’16. Springer, Berlin,
pp 47-62

Damiani F, Lienhardt M (2016) Refactoring delta oriented product lines to enforce guidelines
for efficient type-checking. In: Proceedings of the international symposium on leveraging
applications of formal methods, verification and validation (ISoLA), ISoLA’16. Springer,
Berlin

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory
study of cloning in industrial software product lines. In: Proceedings of the European confer-
ence on software maintenance and reengineering (CSMR), CSMR ’13. IEEE, Piscataway, pp
25-34

Figueiredo E, Cacho N, Sant’Anna C, Monteiro M, Kulesza U, Garcia A, Soares S, Ferrari
F, Khan S, Dantas F (2008) Evolving software product lines with aspects. In: Proceedings of
the international conference on software engineering (ICSE), ICSE *08. IEEE, Piscataway, pp
261-270

Greenfield J, Short K (2003) Software factories: assembling applications with patterns, models,
frameworks and tools. In: Proceedings of the international conference on object-oriented
programming, systems, languages and applications (OOPSLA), OOPSLA ’03. ACM, New
York, pp 16-27

Software Reuse: From Cloned Variants to Managed Software Product Lines 107

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Groher I, Voelter M (2009) Aspect-oriented model-driven software product line engineering.
In: Transactions on aspect-oriented software development VI. Springer, Berlin, pp 111-152
Haugen @, Mgller-Pedersen B, Oldevik J, Olsen GK, Svendsen A (2008) Adding standardized
variability to domain specific languages. In: Proceedings of the international software product
line conference (SPLC), SPLC ’08. IEEE, Piscataway, pp 139-148

Heidenreich F, Kopcsek J, Wende C (2008) FeatureMapper: mapping features to models. In:
Proceedings of the international conference on software engineering (ICSE), ICSE *08. ACM,
New York

Holthusen S, Wille D, Legat C, Beddig S, Schaefer I, Vogel-Heuser B (2014) Family model
mining for function block diagrams in automation software. In: Proceedings of the international
workshop on reverse variability engineering (REVE), SPLC *14. ACM, New York, pp 36-43
International Electrotechnical Commission (2009) Programmable logic controllers — part 3:
programming languages. I[EC61131-3 Standard

Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain anal-
ysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Carnegie-Mellon University
Software Engineering Institute

Kapser C, Godfrey MW (2006) “Cloning Considered Harmful” considered harmful. In:
Proceedings of the working conference on reverse engineering (WCRE), WCRE *06. IEEE,
Piscataway, pp 19-28

Kistner C, Apel S, Kuhlemann M (2008) Granularity in software product lines. In: Proceedings
of the international conference on software engineering (ICSE), ICSE *08. ACM, New York,
pp 311-320

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J (1997)
Aspect-oriented programming. ECOOP *97. Springer, Berlin

Krueger C (2002) Variation management for software production lines. In: Software product
lines. Springer, Berlin, pp 37-48

Krueger CW (2008) The Biglever software gears unified software product line engineering
framework. In: Proceedings of the international software product line conference (SPLC),
SPLC *08. IEEE, Piscataway, pp 353-353

Liebig J, Apel S, Lengauer C, Kistner C, Schulze M (2010) An analysis of the variability
in forty preprocessor-based software product lines. In: Proceedings of the international
conference on software engineering (ICSE). ACM, New York, pp 105-114

Lity S, Lachmann R, Lochau M, Schaefer I (2012) Delta-oriented software product line test
models — the body comfort system case study. Tech. Rep. 2012-07, Technische Universitit
Braunschweig, Braunschweig

Muthig D, Atkinson C (2002) Model-driven product line architectures. In: Software product
lines. Springer, Berlin, pp 110-129

Pohl K, Bockle G, van der Linden FJ (2005) Software product line engineering: foundations,
principles and techniques. Springer, Berlin

Rubin J, Chechik M (2013) A survey of feature location techniques. In: Domain engineering:
product lines, languages, and conceptual models. Springer, Berlin, pp 29-58

Rumpe B, Weisemoller I (2011) A domain specific transformation language. In: Proceedings
of the international workshop on models and evolution (ME), ME "11

Ryssel U, Ploennigs J, Kabitzsch K (2011) Extraction of feature models from formal contexts.
In: Proceedings of the international software product line conference (SPLC), SPLC ’11. ACM,
New York, pp 4:1-4:8

Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of
software product lines. In: Software product lines: going beyond. Lecture notes in computer
science, vol 6287. Springer, Berlin, pp 77-91

Schaefer I, Rabiser R, Clarke D, Bettini L, Benavides D, Botterweck G, Pathak A, Trujillo S,
Villela K (2012) Software diversity: state of the art and perspectives. Int J Softw Tools Technol
Transfer 14(5):477-495

Schmidt DC (2006) Model-driven engineering. Computer 39(2):25

108

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SI.

C. Seidl et al.

Seidl C, Schaefer I, ABmann U (2014) DeltaEcore — a model-based delta language generation
framework. In: Modellierung, Modellierung’ 14, pp 81-96

Seidl C, Schaefer I, ABmann U (2014) Integrated management of variability in space and
time in software families. In: Proceedings of the international software product line conference
(SPLC), SPLC ’14. ACM, New York

Sendall S, Kozaczynski W (2003) Model transformation the heart and soul of model-driven
software development. Tech. rep., Microsoft

She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2011) Reverse engineering feature
models. In: Proceedings of the international conference on software engineering (ICSE), ICSE
"11. IEEE, Piscataway, pp 461470

Steinberg D, Budinsky F, Paternostro M, Merks E (2008) Eclipse modeling framework, 2nd
edn. Addison-Wesley, Boston

Szyperski CA (1998) Component software - beyond object-oriented programming. Addison-
Wesley, Boston

Thiim T, Kistner C, Benduhn F, Meinicke J, Saake G, Leich T (2014) FeatureIDE: an
extensible framework for feature-oriented software development. Sci Comput Program 79:70-
85

van der Linden F, Schmid K, Rommes E (2010) Software product lines in action: the best
industrial practice in product line engineering. Springer, Berlin

von Rhein A, Thiim T, Schaefer I, Liebig J, Apel S (2016) Variability encoding: from compile-
time to load-time variability. J Log Algebr Methods Program 85(1):125-145

Weiland J, Manhart P (2014) A classification of modeling variability in Simulink. In: Pro-
ceedings of the international workshop on variability modeling in software-intensive systems
(VaMoS), VaMoS ’14. ACM, New York, pp 7:1-7:8

Weston N, Chitchyan R, Rashid A (2009) A framework for constructing semantically compos-
able feature models from natural language requirements. In: Proceedings of the international
software product line conference (SPLC), SPLC ’09. ACM, New York, pp 211-220

Wille D (2014) Managing lots of models: the FaMine approach. In: Proceedings of the
international symposium on the foundations of software engineering (FSE), FSE ’14. ACM,
New York, pp 817-819

Wille D, Holthusen S, Schulze S, Schaefer I (2013) Interface variability in family model
mining. In: Proceedings of the international workshop on model-driven approaches in software
product line engineering (MAPLE), SPLC ’13. ACM, New York, pp 44-51

Wille D, Schulze S, Seidl C, Schaefer I (2016) Custom-tailored variability mining for
block-based languages. In: Proceedings of the international conference on software analysis,
evolution, and reengineering (SANER), SANER ’16, vol 1. IEEE, Piscataway, pp 271-282
Zhang X, Haugen @, Mgller-Pedersen B (2011) Model comparison to synthesize a model-
driven software product line. In: Proceedings of the international software product line
conference (SPLC), SPLC ’11. IEEE, Piscataway, pp 90-99

Zhang X, Haugen @, Mgller-Pedersen B (2012) Augmenting product lines. In: Proceedings
of the Asia-Pacific software engineering conference (APSEC), vol 1. IEEE, Piscataway, pp
766771

Variability Identification)
and Representation for Automotive s
Simulink Models

Manar H. Alalfi, Eric J. Rapos, Andrew Stevenson, Matthew Stephan,
Thomas R. Dean, and James R. Cordy

Abstract This chapter presents an automated framework for identifying and repre-
senting different types of variability in Simulink models. The framework is based on
the observed variants found in similar subsystem patterns inferred using Simone, a
model clone detection tool, and an empirically derived set of variability operators for
Simulink models. We demonstrate the application of these operators to six example
systems, including automotive systems, using two alternative variation analysis
techniques, one text-based and one graph-based, and show how we can represent the
variation in each of the similar subsystem patterns as a single subsystem template
directly in the Simulink environment. The product of our framework is a single
consolidated subsystem model capable of expressing the observed variability across
all instances of each inferred pattern. The process of pattern inference and variability
analysis is largely automated and can be easily applied to other collections of
Simulink models. We provide tool support for the variability identification and
representation using the graph-based approach.

M. H. Alalfi (<)
Department of Computer Science, Ryerson University, Toronto, ON, Canada
e-mail: manar.alalfi@ryerson.ca

E. J. Rapos - M. Stephan

Department of Computer Science and Software Engineering, Miami University, Oxford, OH,
USA

e-mail: rapose @miamioh.edu; stephamd @miamioh.edu

A. Stevenson - J. R. Cordy
School of Computing, Queen’s University, Kingston, ON, Canada
e-mail: andrews @cs.queensu.ca; cordy @cs.queensu.ca

T. R. Dean
Electrical and Computer Engineering Department, Queen’s University, Kingston, ON, Canada
e-mail: dean@cs.queensu.ca

© Springer Nature Switzerland AG 2019 109
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_6&domain=pdf
mailto:manar.alalfi@ryerson.ca
mailto:rapose@miamioh.edu
mailto:stephamd@miamioh.edu
mailto:andrews@cs.queensu.ca
mailto:cordy@cs.queensu.ca
mailto:dean@cs.queensu.ca
https://doi.org/10.1007/978-3-030-12157-0_6

110 M. H. Alalfi et al.
1 Introduction

Software variability management (SVM) research has gained a lot of interest in
the last two decades, especially for its vital role in developing reusable software
product line (SPL) assets [5]. SVM is a complex, multifaceted problem that
intersects with several traditional software engineering topics, including software
configuration management, run-time dynamism, domain-specific languages, model-
driven engineering, and software architecture. SVM offers a powerful toolbox to
help manage complexity in these fields and is rapidly evolving into an independent
research area that is of vital importance for systems that include configuration and
run-time dynamism of components, in addition to software product lines.

One facet of SVM is variability modeling, an enabling technology for delivering
a variety of related software systems in a fast, consistent, and comprehensive way.
The key is to build a common base from which to efficiently express and manage
variations. SVM is often closely associated with SPLs, which are mainly aimed at
creating and maintaining a collection of similar software systems derived from a
shared set of software assets. Variability can be expressed as stand-alone models,
such as feature models in SPLs, or as annotations on a base model, by means of
extensions to the base modeling language, such as UML profiles with stereotypes
[15].

Variability modeling continues to gain interest from industry, and variability
support in modeling tools, including Mathworks’ Simulink and IBM’s Rhapsody, is
one of their most desirable features. Several industrial standards, such as SysML and
AUTOSAR, are actively working to create extensions that help to express variability.

Understanding variability in existing systems and the variation points of their
artifacts is the first and most important step toward enabling variability modeling.
Many methods have been proposed for analyzing commonality and variability
from a requirement’s point of view, as well as connecting the analysis to the
implementation [11, 21]. However, there remains a need for techniques that analyze
existing system requirements and implementations for commonality and variability
in an automated way.

In this chapter we present a framework for identifying variability candidates
from existing software-intensive systems modeled using Simulink [25], the most
popular modeling languages for hybrid hardware/software systems. Automotive
Simulink models are particularly prone to cloning due to the copy-paste authoring
paradigm of the Simulink IDE and the inherent similarity of elements and tasks in
automotive applications. Our framework, shown in Fig. 1, uses an efficient model
clone detection technique to automatically identify subsystem variants from a large
pool of existing Simulink models. Once all potential variants are identified, the
framework classifies and represents those variants using a set of empirically derived
variability operators.

The framework is aimed at providing tool support to automatically represent
model subsystem variability directly in the Simulink environment and thus provide
practical assistance to engineers to identify, understand, and visualize patterns of

Variability Identification and Representation for Automotive Simulink Models 111

Simone diff / graph matching SimNav -®

Collection of

Simulink Models Model Clones Tagged Simulink Variability

Subsystems Model

Fig. 1 Variability identification and representation framework

similar subsystems in a large model set. This understanding may help, among other
things, in reducing maintenance effort and bug identification at an early stage of
software development, both on the model level and before the model semantics are
transformed into actual code. We demonstrate our framework on six systems from
the Mathworks demonstration set and describe the stages of our framework using a
running example.

In a previous short paper, we proposed a set of empirically derived variability
operators for Simulink models [2] and provided evidence of the soundness of our
operators based on the analysis of six Simulink systems representing a range of
diverse applications. In this chapter, we use those proposed variability operators as
the basis of an automated framework for the identification and representation of
system variability in Simulink models.

The contributions of this chapter are as follows:

* Detailed description of an automated framework for the identification and
representation of variability in Simulink models

* Demonstration of a text-based tagging approach to identify and mark variability
in Simulink models using our previously proposed set of variability operators

* Demonstration of a graph-based approach for the identification and representa-
tion of variability in Simulink models

» Tool support for the graph-based approach that works directly in the Simulink
IDE environment

The following sections provide a detailed description of the proposed framework
and our experience with it.

2 Variability Identification and Representation Framework

The stages of framework as illustrated in Fig. 1 are explained below.

Stage 1: Variability Identification This stage uses model clone detection to
identify groups of similar subsystems in a repository of Simulink models. We
used Simone [1], a hybrid text-based model clone detection tool, to identify
common Simulink subsystem patterns and variability candidates. In this frame-
work we have configured Simone to identify subsystems that are at least 80%

112 M. H. Alalfi et al.

System {
System { { .
Name "add"{ NamemOscukbt{ract
BlockType Inport B;ﬁgkI¥g§"Inp0rt
ord In1 ZOrder 1
IconDisplay "Port number"
Block {
BlockType Inport
Name "In2"

ZOrder 1
IconDisplay "Port number"

lock {
BlockT¥pe“Inport
ZOrder 2
ZOrd 1é Port "2"
IconDlspIay "Port number” IconDisplay "Port number"

} BL
Block { %
BlockTyps Sum ﬁ;gnggggtEgrgt"
Name Ports [2, 1]
Ports [2 1] ZOrder 5
ZOrder 3 Inputs "+-"
63@3;%2?eglsg:f"lnherit- Inherit via internal rule" A UES e DM
Saturate%nlntegerﬂverfLow off ggﬁﬁ?;il&ﬁ?ﬁﬁggeﬁgcg?%{uwlg?erlt via internal rule

lock { Blo
BlockTgpe Outport BIockT

xpe Outport
Name

ZOrder
IconDlspIay “Portnumber” IconDlsplay "Port number"
8 tock »Inte ISITER
rcBloc n “Ip1
Srv:P%rtk dd E;EB},?—CK Inl
DstBlock "Add" " "
DstPort 1 ggﬁggggk Subtract
Line { .
Srepopeay e LlngrgBlock "In2"
Srcg%rtkl Add SrcPort
stBlock " i "]
) DstPort 2 gg%%g?%kz Subtract
S — Line {
glr'(c:gé?ck Add grcglogk "Subtract"
DstBlock_"Outl" W
DstPort 1 nggéegkl Outl
}) ¥
(@) (b)

Fig. 2 Textual representations of example subsystem Variants A and B. (a) Variant A—addition.
(b) Variant B—subtraction

similar to each other as a first approximation. Similar subsystems are clustered
into clone classes, sets of subsystems that are similar to one another. Figure 2
shows an example of two instances of the same subsystem pattern as identified
by Simone. Variant A takes two numbers and adds them together, while Variant
B subtracts one number from the other—both models have two inports and one
outport. Section 3 provides a more detailed discussion of this first stage.

Stage 2: Variability Tagging This stage uses two techniques, #ifdef preproces-
sor text tagging and subgraph similarity algorithms, to identify and tag subsystem
variability between the subsystems in each clone class identified in Stage 1.
This identification and tagging process is based on a set of proposed variability
operators that we have empirically inferred from a large set of observations
of variance in pattern candidates identified by Simone. Section 4 presents
our proposed variability operators for Simulink. The example in Fig.2 shows
portions of the model that are similar among all instances (highlighted in green),
while the elements in different colors represent the variation between the two
models. This stage is aimed at automating the identification of commonality and
variability in this way and at marking the type of variability according to our
variability operators. A detailed description of this stage is presented in Sect. 5.

Stage 3: Variability Representation This stage presents our approach to repre-
senting the identified Simulink subsystem variability using Simulink’s built-in

Variability Identification and Representation for Automotive Simulink Models 113

System { }
Name "varianceDemo3" }
Block { Block {
ﬁlchT\{D? Inport BlockType SubSystem
Zglgger r1| Name "SubSubsystem"
IconDlsplay "Port number" Ports [2, 1]
ZOrder 5
Bloc VariantControl "Variantl®
ElockT¥pe Inport System {
Name Name "SubSubsystem"
%Urder 2 Block {
IconDisplay "Port number" g;g;km;}"pm
Block { Z0rder -1 .
BlockType SubSysten IconDisplay "Port number
Name "TopLevelVariant\n" élock i
Ports [2, 1]
Zorder 6 BlockType Inport
Variant on Name "In2
Systen {) Z0rder ;2
Name "TopLevelVariant\n" IconDisplay "Port number”
Block { }
BlockType Inport Block {
Name "1"1 BlockTgpe Sum
ZOrder 1 . N Name "Subtract"
IconDisplay "Port number Ports [2, 1]
} ZOrder -31
Block { i
BlockT: I t nput>amel
Naﬁ; ..%E;.. npor OutDataTxpeStr "Inherit: Inherit via internal rule"
SaturateOnIntegerOverflow off
FZ)Ortgerzli }
ort "2"
IconDisplay "Port number" Blo?{o({:kType outport
Name "Outl"
Block { Z0rder -3
BlockType SubSystem IconDisplay "Port number"
Name "AddSubsystem\n")
Ports [2, 1] }
ZOrder 4 }
Variant%ontrol “Variant" Block {
ystem
Name "AddSubsystem\n" S:g;kIéEiIOUtport
Block { 70
BlockType Inport Icor\Dlsplay "Port number"
Name "Inl" }
ZOrder -1 }
IconDisplay "Port number" }
) Block {
Block { BlockType Outport
BlockType Inport me "zﬁtl“ P
Name "In2" Z0rder 4

Z()rder -2 IconDisplay "Port number"

"2
I(Dr\Dlsplay "Port number" Line {
SrcBlock "Inl"

Block { Defhlock "TopLevelVariant\n®
BlockType Sum stBloc opLevelVariant\n
Nage *Agq DstPort 1
B b

rder -
T I -y
utDataTypeStr "Inherit: Inherit via internal :«:-
Saturategnlntegeroverﬂow of f B:gglogk “TopLevelVariant\n®

Block { Line {

BlockType Outport SchLock "TopLevelVariant\n"
Name "Outl" SrcPor

ZOrder -3 DstBlock "Outl"

IconDisplay “"Port number" DstPort 1

! }

Fig. 3 Textual representation of the variance model for Variants A and B of Fig. 2

Variant Subsystem Block capability. Referring to our running example in Fig. 2,
portions of the model that are similar among all instances (highlighted in green)
are placed directly into the new variance model, with some renaming for sources
and destinations pertaining to Variant Subsystem Blocks. The variability [e.g.,
the “Add” block of Variant A (highlighted in pink), and the “Subtract” block
of Variant B (highlighted in cyan)] must be encapsulated in Variant Subsystem
Blocks for the corresponding variability operators, with additional source lines
to implement the variants. Figure 3 presents the textual representation of the
created variant model representing both Variant A and Variant B. The sections
highlighted in green are the common elements from Variant A to Variant B,
the pink highlighting represents the “Add” block from Variant A, and the cyan
highlighting represents the “Subtract” block from Variant B. All of the other
necessary information to construct the textual representation of the variance
model is available from the text of Variants A and B. Section 6 discusses
variability representation in Simulink based on our proposed operators.

114 M. H. Alalfi et al.

We believe that automating the application of variability operators will streamline
the process of representing subsystem variability in Simulink Models and reduce the
risk of error introduced through manual representation. In the following sections,
we discuss the stages of our approach in more detail, beginning with a discussion
of the automated similarity identification inferred by Simone. We then introduce
two options for tagging variation in the identified sets of similar subsystems,
one based on diff and #ifdef on the normalized textual representation of the
models and one using graph matching algorithms to determine identical subgraphs.
Finally, we discuss the final step of translating the tagged variations to Simulink
Variant Subsystem Blocks, completing an end-to-end automated process for the
identification and representation of subsystem variability in Simulink models.

3 Variability Identification

To determine an appropriate set of Simulink subsystem variability operators, we
used the set of models in the six diverse Simulink systems of the Mathworks
Simulink demonstration set as a starting point. These systems include models for
a range of applications in industrial, automotive, aerospace, and other domains and
are intended to demonstrate the range of ways to represent model features in these
applications using Simulink. They include a range of model versions and variants
for each application and represent a rich source of examples of Simulink model
variation.

3.1 Simone: An Initial Approximation

To begin, we first required some indication of which subsystems in the models of
each system were similar enough to be considered variants of each other. For this
we used the Simone sub-model clone detector [1]. Simone is a hybrid model clone
detection technique that uses a normalized text representation of graphical models
to efficiently identify near-miss subsystem clones, that is, those that are similar up to
a given threshold of difference (in this experiment, up to 20% different). Simone is
based on the NICAD code clone detector [17], extended to handle graphical models.

To identify and categorize subsystem variations, we applied Simone to the entire
set of models in each of the six Simulink demonstration systems. From each set of
models, Simone generated a database of near-miss subsystem clone pairs, represent-
ing pairs of model subsystems which are largely similar but may vary up to 20% in
components, connections, inputs, outputs, or other attributes. Simone automatically
groups these clone pairs into “clone classes,” which are sets of subsystems that
are nearly similar to one another. It inherits from NICAD an efficient exemplar-
based algorithm to achieve this clustering, choosing a particular cloned subsystem
and then gathering all those other cloned subsystems that are similar to it within

Variability Identification and Representation for Automotive Simulink Models 115

the difference threshold. By beginning with the largest exemplars, it automatically
identifies the most inclusive set of variants of each cloned subsystem.

In practice even the raw clone classes resulting from this analysis can already be
used by Simulink model engineers to understand variations in their systems directly
from the examples in each class. In our previous work, we have integrated the results
of Simone directly into the Simulink IDE using a Simulink plugin called SimNav [8,
16] that directly presents similar subsystems in the Simulink model editor (Fig. 4).

Table 1 presents the initial clustering results provided by Simone for the set
of models in each of the six Simulink demonstration systems. Each subsystem in
each clone class has at least 80% common elements with the others in the class. A
particular element of each clone class is chosen by our framework as an exemplar,
from which the others in the class are considered to be variants. We then classified
the nature of these variants to empirically derive the variability operators presented
in the next section.

4 Variability Operators

Using a manual inspection of the Simone results for the six systems using SimNav,
and investigating the variants in each Simone-reported clone class, we identified the
following types of variability in similar Simulink subsystems:

Block Variability Changes at the block level, such as added or removed blocks,
or one block replaced with another. An example of this type of variability is
shown in Fig. 5 (encircled in red).

Input/Output Variability Changes in the input/output ports for a specific block.
These can be changes to the number of ports or the signatures of the ports. A
changed signal falls into this category as well. This type of variability is shown
in Fig. 6 (encircled in red).

Function Variability Changes to the contained function of a specific block or set
of blocks, such as constant values, data parameters, or the entire function. This
type of variability is shown in Fig. 7 (note the different functions and constants
in the corresponding blocks of the two subsystems).

Layout Variability Changes to the layout information of the model elements,
such as block position. This type of variability is shown in Fig.8 (note the
mirroring of parts of the model).

Subsystem Name Variability Changes to the names of similar subsystems. This
type of variability is shown in Fig. 9 (encircled in red).

For each of the six systems, we determined the number of instances of each
type of variability and ensured that all observed variations could be covered by
the set of variability operators. The results of this categorization can be found in
Table 2. The most common types of variability we observed were block variability
and input/output variability, with the others occurring less frequently. There were
no instances of variability that did not fall into one of these five categories.

M. H. Alalfi et al.

116

([8] wo1y) QT JUINWIIS Y} UT d0BJIIUT UoNeIOo[dXd SSB[O QU0 WASASqNs ABNWIS 9Y], $ “S1

dif] uninf weieg A ead we] ad

Caiiei=l o oo abusout Mauarranony sryeo iisua g deign By

Variability Identification and Representation for Automotive Simulink Models

Table 1 Simone clone detection results at a difference threshold of 20%

System name

subsystems

clone pairs

clone classes

Automotive 357 189 24
Aerospace 188 62 15
Industrial 16 4 2
Features 935 85 25
General 146 11 7
Others 28 6

117

\¥alsidemo_radar b

Radar Tracking Model

HE-=1E

XY
aroah Ay g
metion [y Range-Searg
! [y
]ﬂl‘lﬂr Yo Measrerant nose
Radsr
Measurmart Meas. nose

Nobe intersity

|%a|sidemo_radar_emi ¥

Radar Tracking Using MATLAB Function Block

- - [=i L.

. e
arzaf Accaler sticn Range-Bearng
moten Model ‘i"

PolrCoords

Est. Pesition
[x sbct.y. yoed

s X
™} e

Veasrement_ nom
Radw

Meag uremant
NKeoae

Meas. nose
intersiy

Fig. 5 Block variability

S Tagging Subsystem Variability

To model the variability across the instances of a given subsystem pattern, we must
first determine the common components of the subsystem across all of the instances
in the clone class. Once we determine the commonalities between all instances, the
remaining components of the subsystem represent the variations we wish to model
using the variability operators.

118 M. H. Alalfi et al.

[%a)f14 »
oooo
10— =
Pzt " g force (g) ﬁ
Stick nput e
Pilct G force
Q) NS i
u Lo o bl
|; Stick Input (in) r’\ e
pakpha (rad) Elevator Command (deg) [! || Eievator Deflection & (ﬁqi Nz Pikt (g)
Tas+1
] (radisec) A Vertical Velosity w (ft k]
Actuator
oo Modal
b Vertical Gust wGust (fUseb)
Angle of
a Atk
Pitch Rate g
Wy Gu b) Rotary Gust qGust {w»‘ » 1ue —r@
- Gt A J sipha (rad)
Arcraft
Dryden Wind Dyramic.
Gust Modes Model
[Pa]sidemo_f14 »
F-14 Longitudinal Flight Control
This demensration models 8 fight cortrol algarthm
fior the long motoncf a F-14,
Stick, in [\] =
o Semd, deg 1 8.. deg wdot, ftise l pdot, ftisec’
Tas+1
—{c rad
Actustor
onroler Mesel adet, radised Plgiot NePilot g e "
Nz Pilt,
wGust, ftisec g
q.rjdsec
q. rad/sel P d radisec
whust Pzt G-force
o NI™) aGust, radisec | :
Gt 5
L]
= Arcraft
Dryden Wind &
GustModes » mﬂ spra. g
o &D)
siphs, rad

Fig. 6 Input/output variability

5.1 Tagging Using #ifdef

Since Simone computes the clone classes based on a normalized textual difference
between the subsystems, one straightforward way to tag the variability between
models is in their textual representation. In this section we describe how to use
the unix diff command and source transformation to tag the variation in similar
subsystems.

We begin with a single difference file generated using the command diff -DFIRST
modell.mdl model2.mdl. This command merges the two files using C-style #ifdef
statements to characterize the differences. For example, Fig. 10 shows two Outport

Variability Identification and Representation for Automotive Simulink Models 119

[%a) sfendemo_cpix

L 1
o
Param =5
=)—=
Param = [5 6]
L1

I{l 2 31}_p|stun_cpu(

Param = [2431 445| B471)

I e e o

Param = [1431 7+2]
[Pa|sfendemo_matadd

Matrix
| —n

Param = 1

Matrix I
Add

Param =[1 3.2 4|

I el e

Param =1

-
o

=

Param=[135;246)

Workspace

Param = cal{3, [1 2;3 4], [56; 7 8]) To

Fig. 7 Function variability

blocks from two models taken from the Simulink example model set. Figure 11
shows the difference between the two outport blocks.

In this example, the differences between the corresponding outport blocks are
three different attributes: Name, SID, and Position. The Name attribute identifies the
name of the block, while the Position attribute is part of the layout of the model. The
SID attribute is the unique identifier given to each element of a Simulink model.
We manually split the difference into three differences and append a tag to each
difference condition to indicate which of the variability operators of Sect. 4 applies.

The resulting difference file is shown in Fig. 12. The first difference uses the
condition FIRST _Name to indicate that this is a subsystem name variability. The
third difference appends the variability tag _Layout to indicate a layout difference.

120 M. H. Alalfi et al.

|%alf14 ¥ [Pa|Controller

® h‘m E - ? L -®

Ingat (in) Stax Preportional Command (deg)
Prafiter pha integral
comperssor
1
q Talset
sipha (rag)
Alphssersor
Lew-pass Fibme
W1
s
qiradsec

Prch Rate
Lead Fiter

[Pajf1de ¥ [P Controller

o >
o= :H'I"

Tasst

Stiex
Irput (i Sk
gt () Prefiter phs ngral

O
! b Tpan L
— 2e0
Talse1
sighs (rad) ALpE
Alphs-jeriar Contoler
Low-pass Fime
3=
W2
qlradvech
Pich Rate

Lead Fiw

Fig. 8 Layout variability

The second difference is a difference internal to the representation of the model, and
we use the variability tag _Other for this case.

In general, the variability can be categorized based solely on the entity attributes
involved in the differences. In the Simulink demonstration systems, the attributes
that reflect the names of entities are the Name and Text attributes. Some of
the attributes associated with layout are Position, Location, ZoomFactor, Points,
FontName, and FontSize. The value attributes are much more varied as they specify
the options for each of the function blocks in the models. Some examples of value
attributes in the demonstration models are Value, DataFormat, TimeRange, YMin,
and YMax.

Variability in structure appears in the output of diff in two different ways.
First, they may appear as differences in attributes that express the connectivity
between elements of the model. These are attributes such as DstBlock, SrcBlock,
DstPort, SrcPort, PortNumber, and Port. The second way these differences can
appear is as additions and deletions of structural elements such as blocks and

Variability Identification and Representation for Automotive Simulink Models 121

Pajaerospace » [2]6DOF i [Fa]Euler Angles

Direction Cosine Malrix
Trom Euler Arglas
50
Euler
Rl]
wu (w) LJ
[’aJaerospace » [5a]6DoF @ternions)
ut Vo
Wb
wh
VoW :\::)r et ancs I
Transposs
1is iy @
:? Direction Cosine Matrix o
e ﬁ Treem guatesrions
— angias ®
o {w) I_r Euler angles e
from quaterrions
Fig. 9 Subsystem name variability
Table 2 Observed instances of the identified variability operators
System name Block Input/output Function Layout Subsystem name
Automotive 10 6 1 3 8
Aerospace 5 17 2 4 13
Industrial 5 2 0 0 0
Features 22 22 17 2 4
General 5 3 1 1 1
Others 14 24 4 3 5

lines. Figure 13 shows the diffs resulting from the addition of a block in the
one of the models, m_SimulinkDemo Models_aerospace_0.3__2_123_so.mdl. The
diff algorithm triggers on the first difference, and since the element following an
additional block is often another block, the first line of that block (i.e., Block {)
often matches and appears outside of the difference at the beginning and inside

122

Block {
BlockType Outport
Name "alpha, rad"
SID "71"
Position [675, 357, 705, 373]
IconDisplay "Port number"
InitialOutput "0"

}

Block {
BlockType Outport
Name "alpha (rad)"
SID "60"
Position [630, 235, 650, 255]
IconDisplay "Port number"
InitialOutput "O"

Fig. 10 Example subsystem difference

Block {

BlockType Outport
#ifndef FIRST

Name "alpha (rad)"

SID "60"

Position [630, 235, 650, 255]
#else /*x FIRST x/

Name "alpha, rad"

SID "71"

Position [675, 357, 705, 373]
#endif /x FIRST x*/

IconDisplay "Port number"

InitialOutput "0"

}

Fig. 11 Example subsystem difference

Block {
BlockTvpe Outport
#ifndef FIRST_Name
Name "alpha (rad)"
#else /+ FIRST x/
Name "alpha, rad"
#endif /x FIRST x/
#ifndef FIRST_Other
SID "60"
#else /x FIRST x/
SID "71"
#endif /x FIRST x*/
#ifndef FIRST_Layout
Position [630, 235, 650, 255]
#else /x FIRST */
Position [675, 357, 705, 373]
#endif /x FIRST x*/
IconDisplay "Port number"
InitialOutput "0"

Fig. 12 Example subsystem difference split into tags

File m_SimulinkDemoModels_aerospace_0.3__2 171 so.mdl:

File m_SimulinkDemoModels_aerospace_0.3__2 123 so.mdl:

M. H. Alalfi et al.

Variability Identification and Representation for Automotive Simulink Models

Block {

#ifndef FIRST
BlockType Gain
Name "Gain5"

SID "42"
Position [530, 222, 580, 268]
ShowName off
Gain "1/Uo"
}
Block {
#endif /% ! FIRST %/

Fig. 13 Example additional block difference

#ifndef FIRST_Structure
Block {
BlockType Gain
Name "Gain5"
SID "42"
Position [530, 222, 580, 268]
ShowName off
Gain "1/Uo"

}
#endif /= ! FIRST x*/
Block {

Fig. 14 Example transformed additional block difference

Annotation {
#ifndef FIRST
Name "F-14 Flight Control(an updated
version of this demo is available
by running ’sldemo_f14")"
Position [328, 377]
#else /* FIRST =/
Name "F-14 Longitudinal Flight Control"
Position [368, 17]
FontName "Arial"
FontSize 18
FontWeight "bold"

Annotation {

Name "This demonstration models a flight
control algorithm for the
longitudinal motion of a Grumman
Aer" "ospace F-14."

Position [367, 47]

#endif /x FIRST x/

}

Fig. 15 Example complex difference

123

the difference at the end (Fig. 13). This is easily handled by moving the difference
markers slightly earlier as shown in Fig. 14. We use _Structure when tagging both
structure attribute differences and added/deleted structural elements, also shown in

Fig. 14.

The differences can interact in interesting ways, but they can always be broken
down into either additional elements or changes to attributes. Thus complex
differences such as the diffs shown in Fig. 15 can be separated into multiple diffs,

124 M. H. Alalfi et al.

Annotation {
#ifndef FIRST_Name
Name "F-14 Flight Control(an updated
version of this demo is available
by running ’'sldemo_f14’)"
#else /* FIRST x/
Name "F-14 Longitudinal Flight Control"
#endif
#ifndef FIRST_Layout
Position [328, 377]
#else /x FIRST */
Position [368, 17]
FontName "Arial"
FontSize 18
FontWeight "bold"
#endif

!
#ifdef FIRST_Layout
Annotation {

Name "This demonstration models a flight
control algorithm for the
longitudinal motion of a Grumman
Aer" "ospace F-14."

Position [367, 47]

}
#endif /+ FIRST =/

Fig. 16 Example transformed complex difference

as shown in Fig. 16. This one difference encompasses all of a name change for an
annotation, layout changes for the annotation, and an additional annotation.

These transformations, which we explored manually, can be implemented in
a straightforward manner as a source transformation in TXL [7], following the
approach taken by Malton et al. [14]. Malton et al. used a trace-based approach to
expand preprocessor statements in conventional programming languages, handling
overlaps between macros as expansions in the scope of the replacement.

Figure 17 shows the beginning of three-way diff (using the command diff3) of
three elements of a clone class from the Matlab demonstration model set. As can
be seen from the figure, the differences are the names of the systems, the names of
several blocks, the location of one block, and the internal identifier SID. All of the
remaining differences in these three files are to the internal identifiers of the blocks.
All of the remaining block types, values, and other attributes are identical.

Figure 18 shows the final result; we have merged the contents of the diff with
the original files. The highlights show the line common to all three files. Each of
the ifdef lines has also been annotated with the type of the difference based on the
attribute within.

The remaining issue is that blocks in the model are occasionally in different
orders in different model files. Simone performs a canonical sort of elements on the
subsystems extracted from the models before making comparisons when identifying
clone pairs. We can apply this same sorting algorithm to the original model files
before performing the diff for tagging.

Variability Identification and Representation for Automotive Simulink Models 125

1:2c
Name "m_SimulinkDemoModels_automotive_10_13_so"
282
Name "m_SimulinkDemoModels_automotive 10_17_so"
3:2c
Name "m_SimulinkDemoModels_automotive_10_33_so"
1:4c
3:4c
Name "validate_driver"
2:4c
Name "validate_passenger"
====2
1:8c
3:8c
Name "validate_driver"
2:8c
Name "validate_passenger"
1:12c
Location [65, 299, 664, 654]
2:12c
3:12c
Location [69, 319, 668, 674]
====)
1:15c
3:15c
Name "validate_driver"
2:15c
Name "validate_passenger"
1:29c
SID "74"
2:29c
SID "110"
3:29c
SID "83"

Fig. 17 Example three-way diff

5.2 Tagging via Graph Algorithms

An alternate approach to discover and tag variability in Simulink model clones
is to treat a Simulink system as a directed graph and apply subgraph matching
techniques. In this approach, Simulink blocks represent graph nodes, and the
connections between blocks represent directed graph edges. This graph-based
abstraction makes it immune to changes in layout, which is beneficial for finding
a set of common blocks between clones but does not help to discover layout-based
variability.

The first step in this approach is to discover a set of common blocks between
the system clones. Our current algorithm supports an arbitrary number of clones,
but we describe it with two clones for simplicity. The goal is to map a subset of
blocks in clone 1 to a subset of blocks in clone 2. This mapping is accomplished

126 M. H. Alalfi et al.

Model {
#ifdef FIRST_Name

Name "m_SimulinkDemoModels_automotive_10_13_so"
#elif SECOND_Name

Name "m_SimulinkDemoModels_automotive_10_17_so"
#else

Name "m_SimulinkDemoModels_automotive_10_33_so0"
#endif

System {
#ifdef FIRST_Name || THIRD_Name
Name "validate_driver"

#elif
Name "validate_passenger"
#endif
Location [428, 407, 944, 880]
Block {

BlockType SubSystem
#ifdef FIRST_Name || THIRD_Name
Name "validate_driver"

#elif
Name "validate_passenger"
#endif
Ports 1
Position [115, 123, 300, 177]
System {

#ifdef THIRD_Layout

Location [65, 299, 664, 654]
#else

Location [69, 319, 668, 674]

#endif
Fig. 18 Example transformed three way diff

by first mapping a single block from clone 1 to clone 2 known as the root and then
recursively matching each roots’ neighbors as well as possible.

This algorithm incorporates two types of block matches: strong match (block
type and name must both match) and weak match (block type must match but name
can differ). The root blocks are chosen by selecting the strongly matched block
pair (one from each clone) with the most connections. Since only one connected
subgraph is produced from this algorithm, more connections on the root block
increases the chances of a larger resulting subgraph. As block matching grows
outward from the root blocks, strong matches are prioritized over weak matches
to help disambiguate potential match candidates. It is possible for strong matches
to exist in the clones that are not found by this algorithm, for example, if they are
separated from the root block by an unmatchable region.

The end result is a connected subgraph G; from clone 1 and a connected
subgraph G, from clone 2, where each node in G is mapped to a corresponding
node in G. These subgraphs represent the set of common blocks between two
clones, as shown in Fig. 19.

Once the common set of blocks is established, the remaining blocks in each clone
represent some form of variation. In a merged model file, such as that shown in
Sect. 6.7, the common blocks and their connections remain untagged, but the other
blocks can be tagged with their clone variant. This can be accomplished by using

Variability Identification and Representation for Automotive Simulink Models 127
Wy Tic
fe heat (W) i '} Coctant TiC) T1 »
e > HOT fust use (gisy "4 15 (015) 1
O—— S (gas)
b4 Fr. HOT fusl use ig/ HOT emis 2 a0
HOT amis igis) 41 i
e 1t temp correct
Foan,
@ £x Gas Tomg (C) > i‘;:"‘-
w rads) L s Tc_ex_pas_imp ol
02 s haurst - Ofex
2 heat (W)
HOT engine maps

Fig. 19 Common blocks computed by the graph matching algorithm. The root block (red) is
determined, then neighboring blocks are recursively included first by strong match (blue) and then

by weak match (yellow)

the #ifdef approach from Sect. 5.1 or by simply adding a new Simulink parameter
such as “Variant clonel” to each appropriate variant block. When extending this
algorithm to find variation in three or more clones, a tag will specify each clone

where the block exists.

128 M. H. Alalfi et al.
6 Representing Variability

Once the variability has been tagged in all instances in a clone class, our goal is to
produce a single subsystem model capable of serving for all the instance subsystems
of that clone class. To do this, we make use of the Simulink Variant Subsystem
Block, a built-in feature of Simulink designed to offer developers the choice between
any number of different options for a particular subsystem.

A Variant Subsystem Block can contain any number of different subsystems,
as long as they all have the same number of inports. The contained subsystems
represent alternatives for the variant subsystem, and only one of them may be active
at any given time. The active subsystem is determined by a logical expression,
often making use of a Simulink mode variable. While on the face of it the
Variant Subsystem Block seems limited in its expressiveness, being restricted to
replacement of entire subsystems, in our work we have leveraged this feature to
represent not the subsystem alternatives of the model itself, but rather our variability
operators as Variant Subsystem Blocks, allowing us to expose the individual points
of variation explicitly in the Simulink environment.

The following subsections outline how we use the Variant Subsystem Block to
represent each of our variability operators. We refer back to the example figures in
Sect. 4 as examples of each type of variability.

6.1 Block Variability

Block variability is perhaps the most intuitive operator to model using the Variant
Subsystem Block, especially in the instance of a block being replaced by another
similar block. To model this using a Variant Subsystem Block, we simply place
each of the alternative blocks in its own subsystem and place all subsystems in
a Variant Subsystem Block. In instances where a block, or group of blocks, is
added (or removed, since there is no concept of directionality associated with
the block variability operators), the variability is modeled by having the added
blocks contained within a subsystem and placed in the Variant Subsystem Block.
To represent those instance(s) without those blocks, an empty subsystem, where the
inports connect directly to the outports (or sometimes a terminator), is placed in the
Variant Subsystem Block.

To illustrate this operator, recall the example presented in Fig. 5. This operator is
represented on the main level of the newly created variability]l model by inserting a
Variant Subsystem Block in its place, which then contains two subsystems, one for
each of the original options. This can be seen in Fig. 20, which shows the top-level
model with the Variant Subsystem Block, as well as the two options inside of it
(outlined in red).

Variability Identification and Representation for Automotive Simulink Models

129

[¥al sldemo_radar »

Radar Tracking Model

= Enn

Resicush

Est Pation
e
l/ Measremen]_ o R
Fad
Maasurmart Meas rese
Nese rtersiy

[a] sldema_radar_eml ¥

(a)

(¥l variabilityl »

Radar Tracking Using MATLAB Function Block

2
==k

@ =
Uaanremant oo
Faclar -
Moasuremant Mess. rose iabilityl P (o3 Variant Sub »
prey i (P|variabilityl b ¥a|Varia system

1) Orly subsyitems can B4 added 33 viran choites o ha kel
2) Blsoks cannct be comected = 13 level 3 comestivey

<2

” - —

Fig. 20 Representing block variability. (a) Clone pair with block variation. (b) Corresponding
variability model

130 M. H. Alalfi et al.
6.2 Input/Output Variability

Modeling input/output variability using Variant Subsystem Blocks is somewhat less
intuitive. In order to represent this type of variability, the top-level subsystem must
contain the greatest number of inputs and outputs across all instances. Extra inputs
are then dealt with inside the options of the Variant Subsystem, typically by sending
them to a terminator in the variants where they are not used. Instances where there
are extra outputs are even more difficult to represent, as anything that follows is
affected, and will need to be represented inside another Variant Subsystem Block.
We can consider the outputs as inputs to the conceptual block “remainder of the
model.” The extra outputs are then sent to terminators in the instances that do not
contain them and are used as they normally would be in the instances that do contain
them.

To illustrate representation of this operator, recall the example of Fig. 6, and more
specifically the additional outputs from the Aircraft Dynamics Model subsystem
in the sidemo_fI14 model, and thus the additional input to the block to the right,
which also is in an instance of block variability, as our example. At the top level,
there must be a Variant Subsystem Block (Variant Subsystem 1—outlined in red)
to model the different options for the Aircraft Dynamics Model, which will have
four outputs, as this is the maximum number from all of the options. To handle the
extra outputs, a second Variant Subsystem Block (Variant Subsystem 2—outlined
in blue) is used. Variant Subsystem 2 also handles the changed subsystem block by
offering two options—note one option uses three inputs, and the other uses two.
In the instance where only two inputs are required, it is contained in a Container
Subsystem (outlined in green), and the third input is sent to a terminator. This can
all be seen Fig.21, which shows the top-level model (top), as well as the contents
of each of the Subsystem Variant Blocks [Variant Subsystem 1 (bottom left) and
Variant Subsystem 2 (bottom center)] and the contents of the created Container
Subsystem (bottom right). Note that the variability2 model only accounts for the
discussed input/output variability.

6.3 Function Variability

While function variability is its own type of operator, it can be modeled in the same
manner as block variability. Consider that the two blocks with different functions
can be thought of as different blocks entirely. Just as with block variability, we
represent this with a Variant Subsystem Block, with an option for each of the
original blocks.

To illustrate this operator, recall the example from Fig. 7. Each block is replaced
with a Variant Subsystem Block, thus allowing a choice between the two options.
Each Variant Subsystem Block can use its own mode variable, thus allowing
combinations of options, or a common mode variable, thus only representing the

Variability Identification and Representation for Automotive Simulink Models 131

1 5
iy S 1 g |
e [e
f\ caouston
Eweater Commang (3ag) | E €we 2o Darmcion ¢ ez Pt ig)
Covole “::' L
2w 0
sngmet
T Alms
<] e ¢ -_.@
ﬁm J ohe (e
Aroah
o i Cyramis
Gust Moses Mol
F-14 Longitudinal Flight Control 0
Tra cemcrer son model B Mgt control Bigortne
o thw longitaanel moon of 8 Grumman Aercecace 14
HEH
L
N asetr rapiot o bt (T)
b et Rsae i
a i [FrEe
“ 5ot e _—
Arcet
m;‘: o
1
sicra e
(@)
Q
=2
varabey] ¥ By Varat Subayitem] ¥ waawmw-n k.w-awwp&rmuw«r
o S KX ‘ <
e : J | =8
; 2 | :
= XD
@ _ ‘??’ =
' 1=
» 4
\
»
@b ‘
2 = -

Fig. 21 Representing input/output variability. (a) Clone pair with input/output variation. (b)
Corresponding variability model

132 M. H. Alalfi et al.

[Pl sfendemo_matadd [Pl sfendema_cpbe |

Comegrt HHOI T LaEeas e Syt 1HIO201E Toa Matiteria, b

(a)
[Pa] variability3 »

Subsystem Subsystem
E! Outtl > Inlbsysom1 >
Variant Subsystem4 Variant Subsystem

Su tem Su tem
l:’s}‘SOI.I'H In1 bsysOT.rl‘I

Y

Subsystem Subsystem’
Out1 p{in1 ~ Outl »

Variant Subsystem8 Variant Subsystem2

L |

L |
Variant Subsystem5 Variant Subsystem1

L |

L |

A4

EWO;'? s

Variant Subsystem7 Variant Subsystem3

(b)

Fig. 22 Representing function variability. (a) Clone pair with function variation. (b) Correspond-
ing variability model

two original observed variants. Figure 22 shows the top level of the variability3
model, with the eight blocks replaced with Variant Subsystem Blocks.

6.4 Layout Variability

Because the layout of the model has no effect on its behavior, we have chosen to not
represent changes in layout in the resulting variability model. Representing the other

Variability Identification and Representation for Automotive Simulink Models 133

types of variability in a class that also has layout variability, one layout instance is
arbitrarily chosen to represent all models in that class, regardless of their initial
layout.

6.5 Subsystem Name Variability

If the contents of a subsystem have not changed, and only the name has changed,
there is no behavioral change to the model; however we still wish to represent this
variability as it does have meaning to the developers. This representation would be
handled in the exact same way that block variability would be; we can just consider
the two differently named blocks different versions of a block and use them as
options in the Variant Subsystem. This would also account for instances where the
name has changed, and the actual contents vary slightly, as is the case with our
example in Fig. 9. Since the implementation for block variability has already been
demonstrated, there is no need to explicitly illustrate it here.

6.6 Combinations of Operators

Through observation of the studied systems, it is evident that each subsystem pattern
may require more than one type of variability, and as such, more than one variability
operator may need to be applied. Rather than defining combinations of operators
as their own unique operator, we have determined that applying any individual
operators in succession is sufficient in representing the variability. For example, in
an instance where there exists both function variability and block variability, each is
handled individually following their respective process.

6.7 Creating Variability Models Directly in Simulink

Currently the process of creating variability models has been automated directly
within SimNav for pairs of models. Given two models, the similar blocks and
different blocks can be tagged (using an extension of the algorithm described above),
and the different blocks are then merged using the Subsystem Variant Block.

In Sect. 5.2 we discuss an algorithm to find the common blocks among models
in a class of near-miss clones. We use this algorithm to automatically construct a
variability model representing the clone class. For this procedure, consider a clone
class with n clones (Cy, C, C3, ..., Cy,) where each clone contains a set of blocks
(C; = {blocky, blocky, blocks, . . .}).

134 M. H. Alalfi et al.

1. Compute the blocks in common between all clones in the clone class using the
algorithm from Sect. 5.2:

n
Ccommon = ﬂ Ci
i=1

2. Take the complement of the common blocks to find the blocks that vary between
clones, one variant set per clone: V; = C; — Ceommon
. For each variant set V;, place its blocks into a subsystem S;
. Create a variant system containing subsystems Sy, S2, ..., Sp.
5. The final variability model contains the common blocks Cymmon and the variant
subsystem from the previous step.

F OS]

The connections between blocks are kept wherever possible (i.e., within the
common blocks and within each individual set of variant blocks). Connections that
traverse the boundary between a variant set and the common set are severed and
replaced by input/output ports in the resulting subsystems. The blocks within each
subsystem are then connected to these ports such that the meaning of the original
clone is restored when its corresponding Variant Subsystem Block is activated.
Figure 23 shows a clone pair both before and after the variability procedure has
been applied.

Due to the scalability limitations of graph algorithms, we also plan to continue
exploring other possibilities for automating the creation of variability models. We
plan on extending the work from Sect.5.1 to allow us to directly manipulate the
textual representation of subsystem variants into a single Simulink model capable
of expressing variability in a similar manner to that described in this section.

7 Related Work

Model variability is a richly researched area. There have been a number of
techniques developed for many different domains [9]. Typically, variability is looked
at from a management perspective [5], in that it is an essential property of projects
that needs to managed. There have also been steps taken to semiautomatically
extract variability in code-based projects [13] and model-based projects [20] in
order to manage it. The difference between our work and the latter is we use model
clone detection, via Simone, as the starting point for finding variability among,
and grouping into classes/patterns, sets of models, whereas they compare systems
recursively by mapping similar components of the same type based on different
criteria. like name similarity, number of identical parameter values, connections,
and more, in order to get a weighted similarity sum between zero and one. Similar
to one of our two presented approaches for tagging variability, they identify variation
points using a graph-based approach. It is our contention that using classes, patterns,
and clustering provides a better basis for representing variability and more useful

Variability Identification and Representation for Automotive Simulink Models 135

pamegeris (| o - pamarger ' it -

I i iy on

| E—=]
v dowt joasind e S dwn "l Eataze mrvedem | >
E ::\a—b:ulul E N
b J \)
@
(a)
N
out1 p v
>
ouzp b £
CL[3> |11 B passenger
= Outd | movets| |
omSvstem | 4 N . Lo D
== e gy) w —
et |1> > endstop t ..] 1
Dut2 L J
2 s B
. oo Out3) ; I il 1] .
. o Outd p _ , J obstacle moveDown | > |
ariantFrom System?2 Outd J_-"' ::\o- b-iomm J
- . |
(b) E]

Fig. 23 (a) A clone pair with variation, i.e., common blocks in yellow and different blocks in red
and (b) the corresponding variability model

information than basic name and property similarity. In addition, graph-based
approaches for matching typically do not perform well on larger model sets due
to subgraph isomorphism [6]. Our approach avoids this issue because our model
clone detection algorithm uses the textual representations of the models [1]. While
one of our proposed tagging approaches uses graph algorithms, it is applied only
to sets of single models/graphs that have already been identified as similar, so the
subgraph isomorphism complexity will not be an issue on this small scale.

Albeit a relatively new subarea, there is some existing work on variability in
Simulink models. Weiland and Manhart [26] argue the necessity for modeling
variability in Simulink. They introduce a classification of possible concepts that can
be employed in order to represent Simulink variability: model elements for model
adaptation, conditional model elements, and model elements for data variability. In
this chapter, we realize the first of these concepts proposed by them in order to
explicate variability among Simulink clones. While Weiland and Manhart note that
using the variant subsystem block does not perform well in regard to their binding
time, we have found, from speaking to our industrial partners and engineers, that this

136 M. H. Alalfi et al.

solution is most preferable for them. They want the variability to be demonstrated
and usable within their native Simulink environments. In addition, we have yet to
witness any binding time limitations or concerns in using the variant subsystem
block, but this is something we will continue to monitor as we employ this solution
in our methods.

One Simulink-specific approach to encoding variability is accomplished by
Haber et al. [11], who note that functional modeling approaches for representing
Simulink variability are often complex and do not scale well to larger systems. Thus,
they propose Delta Simulink, which is a first-class language that includes single-
step operations like add, remove, modify, and replace. While it is an operational
approach, it is also graphical in that users can illustrate their deltas in a separate,
non-Simulink, viewer. Because their approach is operational, they note that “some
modification operations have to be split up into several deltas to be applied in a
sequence.” Our representation avoids this in that it is declarative. The sets of models
belonging to a related cluster indicate, all at once, exactly how the models differ.
This declarative representation is understandably simpler, while still being precise,
and has been received well thus far by our industrial partners. Another concrete
deficiency is that Delta Simulink is another modeling language, and the tools they
develop are external from Simulink. During our conversations with the industrial
engineers, it was made clear from the beginning that a key priority was to have an
approach that works within Simulink and can be as least disruptive as possible to
their processes. Seeing as Delta Simulink is a new language, albeit an extension to
Simulink, and exists outside the Simulink editor environment, their solution was not
ideal for our purposes.

Steiner et al. [21] manage Simulink variability by using and contrasting
Pure::variants, which has a Simulink connector that uses “point of change”
information, and Hephaestus, which has a graphical interface that allows developers
to select system elements to be used to generate specific product line instances.
Their approach uses conditional model elements in order to represent Simulink
variability, which, as we discussed previously in this chapter, would not be ideal for
Simulink clone variants. In addition, the learning curve for using their technique
is quite high as engineers would have to familiarize themselves with Pure::variants
and Hephaestus. It uses the Hephaestus graphical interface, which is external to the
Simulink editor native environment and is another reason this approach was not
well suited for us nor our partners.

Managing clones in product lines involves cases where systems using product
lines or feature models have exact duplicates or similar segments of a related
product line. Rubin et al. [18, 19] provide a framework for handling such systems
that includes abstract operators that allow engineers to reason and manage clones
detected in these systems. Their work is focused on the product line, higher level
of abstraction, level, while our work is intended explicitly for Simulink models. In
addition, our approach is declarative, while theirs is operational.

While variability involves looking at how systems differ at a somewhat larger
scale, model mutations focus on stepwise changes to a model in order to perform
various types of analysis. Recently, we proposed and validated a taxonomy of

Variability Identification and Representation for Automotive Simulink Models 137

Simulink model mutations for the purposes of injecting various types of Simulink
model clones [24]. There is also work on Simulink model mutations that describe
mutation instances that explicitly try to mutate a model’s run-time properties [4,
12, 27]. While this mutation analysis work was helpful in guiding how we viewed
Simulink variability, we essentially were focused on a higher and more feature-
oriented level.

Basit and Dajsuren [3] use a constraint language in order to model mutations
among Simulink clones with the purpose of allowing clone management that is
entirely separate from the models. Their work is concerned with a different, but
related, task. Their work looks at the model clones as simply clones, while we focus
on the (sub)system level in order to identify candidates for (sub)system variants. Our
approach is more geared toward tool support and working directly in the Simulink
environment to assist engineers. In addition, they do not have a tool at this point,
and engineers would have to use their constraint language.

Calculating and representing variability in models is analogous to calculation
and representation phases of model comparison [23]. The first phase, calculation,
involves discovering what is the same and what is different, while the second phase
of model comparison, representation, addresses the form that the differences and
similarities among models take. There are many different ways of achieving model
comparison calculation [22], but nothing was specifically suited to identifying
variability among a set of Simulink models as outlined in our framework. As such,
we presented both a Unix diff and graph-based approach in this chapter. Model
comparison representation can be realized in an operational fashion, such as through
the use of edit scripts, or in a more declarative fashion like those that represent the
differences in a model-based or abstract syntax-like form. The representation we
present in this chapter falls more in the declarative category as we are representing
the variability in model form by having multiple model implementation options
linked to a specific variation point.

For our graph-based variation analysis, where we explicate the similarities
and differences within a set of already identified “similar" models, we based our
approach on what Deissenboeck et al. [10] did in their ConQAT graph-based model
clone algorithm. The difference here is that we are using a graph-based approach on
only the microlevel in order to compare and contrast a small set of models. The
algorithm ConQAT uses cannot detect near-miss clones, while our model clone
detection approach can [1]. Using an approach that does not identify near-miss
clones from the graph-based variation analysis perspective is sufficient, as we need
only to identify variation points.

8 Conclusion

Based on the six example systems of the Simulink demonstration set, we have
empirically derived five variability operators for Simulink models. These five
operators encompass all of the different types of variability observed from the initial

138 M. H. Alalfi et al.

analysis of similar subsystem variance provided by Simone, a hybrid sub-model
clone detector. We have presented two methods for tagging variability across a set of
similar Simulink models, one based on text differencing and one on graph matching.
Both of these processes have been automated for pairs of similar subsystems, and
we are currently extending them to handle N-way differencing. We have shown how
each of the five variability operators can be represented directly in the Simulink
environment through a novel use of the Variant Subsystem Block by extending our
SimNav tool to support this feature. While the variability representation using the
graph matching approach showed good results in representing variability for small
subsystems, we are still experimenting our tool for larger subsystems and expect
to face some scalability issues related to our graph matching algorithm. For that
reason, we continue to explore the alternative text-based implementation carrying
on our tagging approach using #ifdef. This alternative approach has the advantages
that it automatically tags variations based with the types of variability operators and
is likely to scale better than the graph-based approach.

Acknowledgements This work is supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada as part of the NECSIS Automotive Partnership with General
Motors, IBM Canada, and Malina Software Corp. and by an Ontario Research Fund Research
Excellence grant.

References

1. Alalfi MH, Cordy JR, Dean TR, Stephan M, Stevenson A (2012) Models are code too: near-
miss clone detection for Simulink models. In: ICSM’12 - 28th international conference on
software maintenance, pp 295-304

2. Alalfi MH, Rapos EJ, Stevenson A, Stephan M, Dean TR, Cordy JR (2014) Semi-automatic
identification and representation of subsystem variability in Simulink models. In: ICSME’ 14 -
30th international conference on software maintenance and evolution, pp 486-490

3. Basit HA, Dajsuren Y (2014) Handling clone mutations in Simulink models with VCL. In:
IWSC’14 - 8th international workshop on software clones, pp 1-8

4. Binh NT, et al (2012) Mutation operators for Simulink models. In: KSE’12 - 4th international
conference on knowledge and systems engineering, pp 54-59

5. Capilla R, Bosch J, Kang KC (2013) Systems and software variability management. Springer,
Berlin

6. Cook SA (1971) The complexity of theorem-proving procedures. In: 3rd ACM symposium on
the theory of computing. ACM, New York, pp 151-158

7. Cordy JR (2006) The TXL source transformation language. Sci Comput Program 61(3):190—
210

8. Cordy JR (2013) Submodel pattern extraction for Simulink models. In: SPLC’13 - 17th
international conference on software product lines, pp 7-10

9. Czarnecki K, Grunbacher P, Rabiser R, Schmid K, Wasowski A (2012) Cool features and tough
decisions: a comparison of variability modeling approaches. In: VaMoS’12 - 6th international
workshop on variability modelling of software-intensive systems, pp 173-182

10. Deissenboeck F, Hummel B, Jiirgens E, Schitz B, Wagner S, Girard JF, Teuchert S (2008)
Clone detection in automotive model-based development. In: Proceedings of the 30th interna-
tional conference on software engineering. ACM, New York, pp 603-612

Variability Identification and Representation for Automotive Simulink Models 139

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Haber A, Kolassa C, Manhart P, Nazari PMS, Rumpe B, Schaefer I (2013) First-class
variability modeling in Matlab/Simulink. In: VaMoS’13 - 7th international workshop on
variability modelling of software-intensive systems, pp 11-18

He N, Riimmer P, Kroening D (2011) Test-case generation for embedded Simulink via formal
concept analysis. In: DAC’11 - 48th design automation conference, pp 224-229

Kastner C, Dreiling A, Ostermann K (2013) Variability mining: consistent semiautomatic
detection of product-line features. IEEE Trans Softw Eng 40(1):67-82

Malton A, Schneider K, Cordy J, Dean T, Cousineau D, Reynolds J (2001) Processing
software source text in automated design recovery and transformation. In: IWPC’01 - 9th
international workshop on program comprehension, pp 127-134. https://doi.org/10.1109/
WPC.2001.921724

Object Management Group (2009) Variability modeling. http://www.omgwiki.org/vari-ability/
doku.php?id=introduction_to_variability_modeling

Rapos EJ, Stevenson A, Alalfi MH, Cordy JR (2015) SimNav: Simulink navigation of model
clone classes. In: 2015 IEEE 15th international working conference on source code analysis
and manipulation (SCAM), pp 241-246. https://doi.org/10.1109/SCAM.2015.7335420

Roy CK, Cordy JR (2008) NICAD: accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In: ICPC’08, 16th IEEE international
conference on program comprehension, pp 172-181

Rubin J, Chechik M (2013) A framework for managing cloned product variants. In: ICSE’13 -
35th international conference on software engineering, pp 1233-1236

Rubin J, Czarnecki K, Chechik M (2013) Managing cloned variants: a framework and
experience. In: SPLC’13 - 17th international conference on software product lines, pp 101—
110

Ryssel U, Ploennigs J, Kabitzsch K (2010) Automatic variation-point identification in function-
block-based models. In: GPCE’10 - 9th international conference on generative programming
and component engineering. ACM, New York, pp 23-32

Steiner E, Masiero P, Bonifécio R (2013) Managing SPL variabilities in UAV Simulink models
with pure: variants and hephaestus. CLEI Electron J 16(1):1-7

Stephan M, Cordy JR (2012) A survey of methods and applications of model comparison.
Tech. Rep. 2011-582, Queen’s University, revision 3

Stephan M, Cordy JR (2013) A survey of model comparison approaches and applications.
In: International conference on model-driven engineering and software development (Model-
sward), SCITEPRESS, pp 265-277

Stephan M, Alalfi MH, Cordy JR (2014) Towards a taxonomy for Simulink model muta-
tions. In: International conference on software testing, verification and validation workshops
(ICSTVVW), pp 206-215. https://doi.org/10.1109/ICSTW.2014.17

The Mathworks Inc (2014) Simulink version 8. http://www.mathworks.com/products/
simulink/

Weiland J, Manhart P (2014) A classification of modeling variability in Simulink. In:
VaMoS’14 - 8th international workshop on variability modelling of software-intensive systems,
pp 1-7

Zhan Y, Clark J (2005) Search-based mutation testing for Simulink models. In: GECCO’05 -
genetic and evolutionary computation conference, pp 1061-1068

https://doi.org/10.1109/WPC.2001.921724
https://doi.org/10.1109/WPC.2001.921724
http://www.omgwiki.org/vari-ability/doku.php?id=introduction_to_variability_modeling
http://www.omgwiki.org/vari-ability/doku.php?id=introduction_to_variability_modeling
https://doi.org/10.1109/SCAM.2015.7335420
https://doi.org/10.1109/ICSTW.2014.17
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/

Defining Architecture Framework)
for Automotive Systems e

Yanja Dajsuren

Abstract Although architecture frameworks have not been standardized in the
automotive industry, different types of architecture viewpoints and views have been
introduced recently as part of automotive architecture frameworks. In this chapter,
we first present a literature review which has been carried out to discover the existing
architecture frameworks and architecture description languages for the automotive
industry as well as their benefits and gaps. We propose an architecture framework
for automotive systems (AFAS) based on the extracted viewpoints from existing
automotive architecture description mechanisms.

1 Introduction

An architecture description language (ADL) is considered a viable solution to
manage multidisciplinary engineering information in an effective way [7, 24, 34].
According to the ISO 42010 international standard [18], an ADL provides one or
more model kinds (data flow diagrams, class diagrams, state diagrams, etc.) as a
means to frame some concerns for its stakeholders. Model kinds can be organized
into architecture views, which are governed by architecture viewpoints.
Recognizing the importance of ADLs, automotive companies have been actively
involved in their development over the last decade. These include BMW who
have been involved in developing AML [6, 31], as well as Volvo, Fiat, and
VW/Carmeq who have been involved in developing the EAST-ADL (Embedded
Architectures and Software Technologies-Architecture Description Language) [9]
and TADL [39]. EAST-ADL is being extended to model the fully electric vehicle
in the scope of the ICT MAENAD project, where many automotive manufacturers
and suppliers are participating [23]. Besides the automotive ADLs, SysML [27] and

Y. Dajsuren (B<)

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

e-mail: y.dajsuren@tue.nl

© Springer Nature Switzerland AG 2019 141
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_7&domain=pdf
mailto:y.dajsuren@tue.nl
https://doi.org/10.1007/978-3-030-12157-0_7

142 Y. Dajsuren

MARTE [26] are also attracting considerable attention of automotive companies
[1, 2, 30].

According to the ISO 42010 international standard [18], in addition to an ADL,
an architecture framework is another key mechanism used to describe architec-
tures. An architecture framework provides conventions, principles, and practices
for the description of architectures within a specific domain and/or community
of stakeholders [18]. The benefits of existing architecture frameworks such as
Kruchten’s 4+1 view model [20], Ministry of Defense Architecture Framework
(MODAF) [5], The Open Group Architecture Framework (TOGAF) [38], and
ISO Reference Model for Open Distributed Processing (RM-ODP) [17] drive the
creation of architecture frameworks for other industries.

Having a standardized architectural foundation and specifically automotive-
specific architecture frameworks is very important for the automotive industry. The
key elements of this proposed architecture framework was first introduced in the
scope of the automotive architecture framework (AAF) [8]. The AAF aimed to
describe the entire vehicle system across all functional and engineering domains and
drive the thought process within the automotive industry [8]. Only in recent years,
automotive companies have started to take initiative in defining an architecture
framework for automotive systems, for example, architecture design framework
(ADF) by Renault [14].

Automotive embedded systems are categorized into vehicle-centric functional
domains (including powertrain control, chassis control, and active/passive
safety systems) and passenger-centric functional domains [covering multimedia/
telematics, body/comfort, and human machine interface (HMI)] [24]. Each
functional domain needs to tackle different system concerns. For example, the
powertrain control enables the longitudinal propulsion of the vehicle, and body
domain supports the functioning of the airbag, wiper, and lighting and other
functions for the vehicle users. However, all the integrated functionalities must
not jeopardize the key vehicle requirements of safety and efficiency.

The automotive industry is vertically organized [7], which facilitates inde-
pendent development of vehicle parts. An automobile manufacturer (called an
“original equipment manufacturer”, or OEM) creates the functional architecture
and distributes the development of the functional components to the suppliers,
who implement and deliver the software models and/or hardware [7]. Software
models for each functional component or subsystem can be developed in different
ADLs or programming languages, which may make the integration process at the
OEM more cumbersome. This process requires common architecture frameworks
between OEMs and suppliers or at least better formalization of architecture views
and consistency between them.

Therefore, there needs to be a common definition of an ADL and architecture
framework, and these should be applicable for all functional domains. However,
architecture description elements of an automotive-related ADL and architecture
frameworks (i.e., architecture viewpoints, views, and correspondences) are not
systematically defined. Figure 1 shows the timeline of the automotive architecture
description mechanisms.

Defining Architecture Framework for Automotive Systems 143

AML EAST-ADL AADL EAST-ADL2
MARTE
SysML

AAF ADF

2002 2004 2006 2008 2010 2012 2014

\/

Fig. 1 Timeline of the automotive architecture description mechanisms

This chapter extracts architecture elements (viewpoints, views) from automotive
ADLs, compares the extracted elements with the existing automotive architecture
frameworks, and proposes an architecture framework for automotive systems
(AFAS) with a coherent set of architecture views.

1.1 Chapter Outline

Section 2 presents the automotive architecture frameworks and describes the
architecture viewpoints defined in the automotive frameworks. Section 3 introduces
automotive-related ADLs and presents the extracted architecture viewpoints from
the ADLs. Section 4 presents an architecture framework for automotive systems
(AFAS), which contains architecture viewpoints and views consistent with the
automotive AFs and ADLs. Section 5 summarizes the chapter.

2 Automotive AFs and Viewpoints

An architecture framework establishes a common practice for creating, interpret-
ing, analyzing, and using architecture descriptions within a particular domain
of application or stakeholder community [18]. While an architecture description
language (ADL) is used to describe or represent an architecture, an architecture
framework enables the efficient use of an ADL for a particular domain. Therefore, a
standard architecture framework in the automotive industry can enable an efficient
architecture description for system stakeholders. In the ISO 42010 international
standard, a conceptual model of an architecture framework as shown in Fig.2
is almost identical to the conceptual model of an ADL as shown in Fig. 3. The
differences are as follows:

* An architecture framework should provide at least a single architecture view-
point, which is used to organize the model kinds.

* An ADL should define at least a single model kind without necessarily providing
a architecture viewpoint.

144 Y. Dajsuren

1.7 g identifies 1
Stakeholder Architecture

Framework
T
has 4 identifies
v
1o S
4 frames Architecture
Concern p e Viewpoint
0.*
g
Correspondence
Model Kind Rule
Fig. 2 A conceptual model of an architecture framework [18]
1.0 4 identifies 1 Architecture
Stakehold Description
‘__l:nnguage \
1
0.*
has 4 identifies Correspondence
v Rule
1o 1
4 frames N AR
Concern — | ModelKing |— <l Viewpolnt

Fig. 3 A conceptual model of an architecture description language [18]

In this section, we present the automotive architecture frameworks, extract
common architecture viewpoints, and summarize other architecture viewpoints that
exist only in one of the architecture frameworks.

2.1 Automotive Architecture Frameworks

Automotive architecture framework (AAF) [8] is the first architecture framework
for the automotive industry to pave the way for a standardized architecture descrip-
tion. The AAF was defined to describe the entire vehicle system across all functional

Defining Architecture Framework for Automotive Systems 145

and engineering domains. Since the AAF conforms to the ISO 42010 international
standard [8], a set of viewpoints and views are explicitly defined. The AAF proposes
two sets of architecture viewpoints: mandatory or general viewpoints and optional
viewpoints. Mandatory viewpoints and their respective views include functional
viewpoint, technical viewpoint, information viewpoint, driver/vehicle operations
viewpoint, and value net viewpoint. Optional viewpoints suggested by the AAF
are safety, security, quality and RAS (reliability, availability, serviceability), energy,
cost, NVH (noise, vibration, harshness), and weight. The general viewpoints are
intended to be closer to the already proven frameworks in other manufacturing
industries, for example, RASDS [37] and RM-ODP [17]. Since the introduction
of the concepts in the first draft of the AAF, further research is needed to identify
automotive-specific architectural elements.

Architectural design framework (ADF) [14] is developed by an OEM to sup-
port the construction of an architecture framework for the automotive industry. The
ADF includes operational, functional, constructional, and requirements viewpoints.
Although the AAF and ADF are constructed to provide the basis for the architecture
framework for the automotive industry, architecture viewpoints and views are
extracted from architecture frameworks from other industries. Furthermore, in
these frameworks, the definition of architectural elements including architecture
viewpoints, views, and correspondences have not been addressed consistently with
automotive ADLs.

2.2 Extracting Viewpoints from Automotive AFs

An architecture framework may include one or more architecture viewpoints, which
consist of a set of model kinds [18]. We discussed above the architecture viewpoints
and views of AAF and ADF frameworks. The viewpoints are described in a similar
way to the viewpoint catalog [32]. Below we extract the common viewpoints of
AAF and ADF according to the following template:

* Definition: Definition of the viewpoint is presented.

o Stakeholders: Although the stakeholders are not explicitly identified for the
viewpoints in the AAF and ADF, we list the stakeholders.

* Concerns: Stakeholder concerns are defined.

* Views: The views governed by the viewpoints are presented.

* Model kinds: The model kinds used in the viewpoint are presented.

Functional Viewpoint Table 1 summarizes the functional viewpoint, which is
defined both in the AAF and ADF frameworks. A function realizes a feature in a
set of interacting and interdependent software and/or hardware components.

The functional viewpoint extracted from automotive ADLs as discussed in
Sect. 3.2 generally matches the description of the functional viewpoint in AAF and
ADF frameworks.

146 Y. Dajsuren

Table 1 Functional viewpoint definition extracted from AAF and ADF frameworks

Functional viewpoint

Definition It describes the vehicle functions and their interactions

Stakeholders AAF: OEMs, suppliers, tool vendors, and research institutes
ADF: Undefined

Concerns Functional composition and interfaces

Architecture views AAF: Functional view

ADF: Functional breakdown structure view, functional architecture
view, allocation on functions view

Model kinds AAF: Functional architecture (Functional composition of a vehicle,
its functional entities, interfaces, interactions, interdependencies,
behavior, and constraints)

ADF: AD, BDD, IBD for the functional breakdown structure view;
AD, BDD, IBD for the functional architecture; allocation concept for
the requirements allocation on functions views

Correspondence rules AAF: Correspondences to technical and optional viewpoints, for
example, energy

ADF: Refinement and conformance correspondence to the operational
viewpoint

In AAF, the functional viewpoint describes vehicles in terms of vehicle functions
and their logical interactions. The AAF functional viewpoint governs a functional
view, which describes the functional composition of a vehicle, its functional entities,
interfaces, interactions, interdependencies, behavior, and constraints [8]. Although
AAF does not specify a particular model kind for the functional viewpoint, it
defines the functional architecture. The functional architecture describes the system
from the black-box perspective by describing the system’s functionality that is
presented to the outside world [8]. The stakeholders of the AAF are defined as
OEMs, suppliers, tool vendors, and research institutes. Stakeholder concerns are
not explicitly defined for the AAF functional viewpoint. Based on the description of
the functional viewpoint, we defined them as functional composition and interfaces.
The functional viewpoint corresponds to the technical and optional viewpoints.

In ADF, the functional viewpoint supports three main views: functional break-
down structure, functional architecture, and allocation on functions [14]. ADF
defines SysML model kinds for each functional views. SysML activity diagram
(AD), block definition diagram (BDD), and internal block diagram (IBD) are
defined for the functional breakdown structure view. In the activity diagram, the
system functions are defined by regrouping or refining activities (actions) identified
in the operational scenario views and allocating them to SysML blocks. In the BDD
and IBD, ports and connectors conform to a flow type (e.g., energy, information)
of external interfaces and object flows specified in ADs [14]. Although it is not
explicitly mentioned in the ADF, an allocation concept is plausibly used for
allocating requirements to functions (blocks). Stakeholders, their concerns, and
correspondence rules are not explicitly determined in the ADF. We expect the
same stakeholders and concerns for the AAF are applicable to the ADF. Regarding

Defining Architecture Framework for Automotive Systems 147

correspondence, the functional viewpoint conforms or refines the operational
viewpoint.

Technical/Constructional Viewpoint Table 2 presents the technical/construc-
tional viewpoint, which looks at a vehicle in terms of its physical components, their
relationships, and constraints. AAF refers to it as a technical viewpoint and ADF
refers to it as a constructional viewpoint.

In AAF, the fechnical viewpoint addresses a vehicle from the perspective
of its physical components. This includes electronic control units (ECUs), their
geometry, and composition within superordinate geometric structures as well as
their relationships. It also includes the vehicle’s behavior such as physical aspects
like thermodynamics, acoustics, vibrations, mechanical deformation, as well as
dependencies and constraints [8].

The AAF technical viewpoint governs a technical view, which consists of
runtime model view, hardware topology view, and allocation view. As in the
AAF functional view, the technical view does not specify the model kinds for its
constituent views; instead the definitions of what they should represent are provided.
The technical architecture describes how the system can be realized into a given
hardware platform [8]. It consists of the runtime model, the hardware topology,
and the allocation model. The runtime model describes the behavior of the system
from a physical/technical perspective. The hardware topology model describes the
structure of the hardware platform using physical units, which represent hardware
components (ECUs, sensors, mechanical components, etc.) and their connections
(buses, wires, etc.) [8]. The allocation model maps the elements of the runtime

Table 2 Technical/constructional viewpoint

Technical/constructional viewpoint

Definition It describes vehicle physical components, their relationships,
constraints, and allocation
Stakeholders AAF: OEMs, suppliers, tool vendors, and research institutes
ADF: Undefined
Concerns Physical component composition and their relationships
Architecture views AAF: Technical architecture view consisting of runtime model view,

hardware topology view, and allocation view
ADF: Product breakdown structure view, organic architecture view,
requirements and function allocation on components view

Model kinds AAF: Technical architecture for the technical view consisting of
runtime model (for the runtime view), hardware topology (for the
hardware topology view), allocation model (for the allocation view)
ADF: BDD, IBD for a product breakdown structure view; BDD, IBD
for an organic architecture view, requirements and function allocation
on components

Correspondence rules AAF: Correspondences to the functional viewpoint and optional
viewpoints, for example, energy viewpoint
ADF: Conformance correspondence to the functional viewpoint

148 Y. Dajsuren

model to the elements of the hardware topology model [8]. As in the functional
viewpoint, all stakeholders are considered relevant to the technical viewpoint. AAF
determines that the technical viewpoint has strong correspondences to the functional
viewpoint and optional viewpoints, for example, energy viewpoint.

The ADF constructional viewpoint supports the product breakdown structure,
organic architecture, and allocation on components views. ADF also defines SysML
the model kinds for each constructional view. SysML BDD and IBD model kinds
are selected for the product breakdown structure and organic architecture views.
The allocation concept is used for allocating requirements and function to com-
ponents [14]. The product breakdown structure identifies and allocates the system
functions to physical components. The organic architecture defines the components
of the system, their interfaces, and connections, which satisfy the system’s technical
requirements (e.g., cost, weight, size, authorized/forbidden use of materials) and
other criteria (e.g., performance, effectiveness) [14]. Architecture models for the
allocation on components view captures the allocation and structuring of the system
requirements and functions to physical components to achieve an optimal allocation.
The flows between functions are associated with the interfaces/connectors (e.g.,
mechanic, electric, network) between components [14].

As in the functional viewpoint, all stakeholders are considered relevant to the
constructional viewpoint. ADF does not specify the concerns and correspondences
explicitly. However, we identified the same concerns as AAF. The conformance
correspondence is detected according to the implicit description of architecture
views of the ADF constructional viewpoints.

Requirements Viewpoint Table 3 presents the requirements viewpoint, which
looks at the vehicle from the perspective of the vehicle stakeholders including
end users (drivers and passengers) and vehicle environment. We map the AAF
driver/vehicle operations mandatory viewpoint, value net mandatory viewpoint,
and all the optional viewpoints, that is, safety, security, quality, RAS (reliability,
availability, serviceability), energy, cost, NVH (noise, vibration, harshness), and
weight viewpoints to the ADF requirements viewpoint.

In ADF, requirements viewpoint captures elicitation of stakeholder requirements
and elaboration of system technical requirements. ADF requirements viewpoint sup-
ports the stakeholder requirements view, high-level requirements view, and system
technical requirements view. The ADF requirements viewpoint is in alignment with
the AAF mandatory viewpoints driver/vehicle operations and value net viewpoints.
The AAF driver/vehicle operations viewpoint looks at the interactions, interfaces,
and interdependencies between vehicle and its end user (driver and passengers) as
well as the surrounding environment (e.g., road, other vehicles, and traffic control
systems) [8]. In addition, it describes the related behavior, constraints, and priorities.
The driver/vehicle operations viewpoint governs driver/vehicle operations view.

Actors and system boundary are also captured as part of the ADF stakeholder
requirements view. The AAF value net viewpoint is used to optimize the efficiency
of the value creation process [8]. It can also be captured by the ADF stakeholder
requirements view. High-level requirements are identified after the stakeholder

Defining Architecture Framework for Automotive Systems 149

Table 3 Requirements viewpoint definition extracted from AAF and ADF frameworks

Requirements viewpoint

Definition It captures the vehicle from the perspective of the vehicle driver and
the world around the vehicle
Stakeholders AAF: All stakeholders (end users, OEMs, suppliers, tool vendors, and

research institutes)
ADF: Undefined
Concerns Interactions between vehicle, end user, environment

Architecture views AAF: Driver/vehicle view, value net view, optional views (safety,
security, quality, RAS, energy, cost, NVH, and weight views)

ADF: Stakeholder requirements view, high-level requirements view,
system technical requirements view

Model kinds AAF: Driver/vehicle operations model, value net model, models for
safety, security, quality, RAS, energy, cost, NVH, and weight views

ADF: Requirements diagram for the stakeholder requirements,
high-level requirements, and system technical requirements views

Correspondence rules AAF: Correspondences to other mandatory viewpoints

ADF: Correspondence to the operational, functional, constructional
viewpoints

requirements are elicited. An example high-level requirement can define measures
of effectiveness or key performance parameters (KPP) [14]. The technical require-
ments are built after the operational models are defined, for example, by defining
functional requirements from operations identified in sequence diagrams in the
operational view [14]. Technical requirements capture functional, performance, and
interface requirements or constraints [14]. What is captured in the AAF optional
viewpoints depends on the vehicle system. However, ADF requirements viewpoint
can support viewpoints such as safety, security, quality, RAS, energy, cost, NVH,
and weight viewpoints.

In AAF, no specific model kind is defined for requirements-related viewpoints.
In ADF, SysML requirements diagram type is selected for the requirements
viewpoint [8].

Formalization of stakeholder and high-level requirements and elaboration of
system technical requirements are captured by the SysML requirements diagram for
all these views. All stakeholders, including vehicle end users (drivers and passen-
gers), are defined for this viewpoint. Interactions, interfaces, and interdependencies
between vehicle, end users, and the surrounding environment are key concerns. This
viewpoint corresponds to other viewpoints to enable the requirements traceability of
each viewpoint.

Other Viewpoints AAF information viewpoint is mandatory but does not have
a similar viewpoint in the ADF. The information viewpoint looks at the vehicle
from the perspective of information or data objects used to define and manage a
vehicle [8]. It governs the information view, which describes information or data
objects, their metadata, properties, relationships, configurations, and configuration
constraints [8].

150 Y. Dajsuren

ADF operational viewpoint is the most abstract viewpoint of the ADF frame-
work. The operational viewpoint governs structural and behavioral operational
views. The structural operational view consists of the maximal system scope, system
environment, operational context, external interfaces, and use case views [14].
The actors, system scope, system environment, and high-level interactions are
identified in these structural views. The behavioral operational view consists of
operational scenarios and system working mode views. These views are built
from the structural operational views [14]. System use cases are used to identify
actors, the system boundary and high-level interactions, which are refined in SysML
sequence diagrams. Operational scenarios view addresses detailed interactions
between the system and external systems/user/environment to realize the use cases.
System working states view uses state machines to describe alternative conditions
for operational scenarios [14]. SysML diagram types are mapped to the operational
viewpoint as follows: SysML internal block diagram type is selected for the maxi-
mal system scope, system environment, operational context, and external interfaces
views. SysML use case diagram type is selected for the use case view. SysML
sequence and activity diagram types are selected for the operational scenarios view.
SysML state machine diagram type is selected for the system working modes view.

Although these viewpoints exist only in one of the architecture frameworks,
we address these viewpoints in the definition of the architecture framework for
automotive systems (AFAS) in Sect. 4, for example, the information viewpoint of
the AAF is included in the AFAS framework.

2.3 Discussion

An Architecture framework for the automotive systems has not been standardized
in the automotive industry. Automotive architecture framework (AAF) and architec-
ture design framework (ADF) aim to define a complete and integrated architecture
framework for the automotive industry. We have identified common architecture
viewpoints of these frameworks and summarized those that exist only in one of
the frameworks. In the following section, we present the automotive ADLs and
extract the viewpoints defined in the scope of the automotive ADLs. In Sect. 4, we
then integrate the common architecture viewpoints of architecture frameworks and
ADLs. Other viewpoints are also considered in the definition of the architecture
framework.

3 Automotive ADLs and Viewpoints

According to the ISO 42010 international standard for systems and software
engineering [18], an architecture description language (ADL) is any form of
expression used to describe an architecture. As illustrated in Fig. 4, an ADL provides

Defining Architecture Framework for Automotive Systems 151

1.0 4 identifies 1 Architecture
Stakeholder Description
1 Language

1.

4 identifies

4 frames
Concern ez Model Kind
1. i

Fig. 4 ADL conceptual model [18]

Correspondence
Rule

Architecture
Viewpoint

one or more model kinds (data flow diagrams, class diagrams, state diagrams etc.)
as a means to frame some concerns for its stakeholders [18]. In the case of several
model kinds provided by an ADL to capture complex architectural representations,
architecture viewpoints can be used to organize them. Correspondence rules can
be used to express and enforce architecture relations, for example, refinement,
composition, and traceability.

In this section, we present the automotive architecture ADLs, extract common
architecture viewpoints, and summarize other architecture viewpoints that exist
only in one of the ADLs. We apply the same template followed in Sect. 2.2, when
describing the architecture viewpoints.

3.1 Automotive ADLs

EAST-ADL [9] (Embedded Architectures and Software Technologies-Architecture
Description Language) is an architecture description language for automotive
domain. It has been defined in the scope of an European research initiative, ITEA
project EAST-EEA since 2001 [9]. The EAST-EEA project aimed to reduce auto-
motive software’s dependency on hardware, allowing more flexibility regarding the
allocation of software [24]. The EAST-ADL has been refined in the ATESST project
to EAST-ADL2 [36], which was extended further to support modeling of fully
electric vehicles in the scope of the MAENAD project to EAST-ADL2.1.12 [22].
In the remainder of the chapter, EAST-ADL refers to the EAST-ADL2.1.12. The
main purpose of EAST-ADL is to capture engineering information of automotive
electrical/electronic (E/E) systems to enable modeling of the entire system devel-
opment life cycle. The language consists of four main abstraction levels, which
can be considered architecture viewpoints of the ISO 42010 standard. The highest
level is called a vehicle level, where the basic vehicle features, requirements, and
use cases are captured. The abstract functionalities based on the requirements
and features are further defined in the analysis level and further refined as the

152 Y. Dajsuren

concrete functionalities in the design level. The design level also contains functional
definitions of application software, hardware components, and middleware. It also
covers function to hardware (e.g., ECU) allocations. The lowest abstract level,
implementation level, uses AUTOSAR [3] concepts to realize the higher-level
models. Requirements, variability, timing, dependability, and environment models
are captured in parallel with these abstraction levels.

TADL [39] (timing-augmented description language) is originated from EAST-
ADL, AUTOSAR, and MARTE. It was developed by the TIMMO project. TADL
addresses timing issues early in the development cycle by standardizing specifica-
tion, analysis, and verification of timing constraints in all levels of abstraction of
EAST-ADL2.

AADL [12] (architecture analysis and design language) was developed to model
software, hardware, and system architecture of real-time embedded systems such
as aircraft, motorized vehicles, and medical devices. The Society of Automotive
Engineers (SAE) defined the AADL as SAE AS5506 Standard based on the MetaH
ADL [40]. Initially AADL was known as the Avionics Architecture Description
Language. In AADL, a system is constructed as a composite component consisting
of application software and execution platform. AADL enables a system designer to
perform analyses of the composed components such as system schedulability, sizing
analysis, and safety analysis. The focus of AADL is on task structure and interaction
topology, although generalization to more abstract entities is possible. It supports
the definition of mode handling, error handling, and interprocess communication
mechanisms. As such, it acts as a specification of the embedded software, which
can be used for automatic generation of an application framework where the actual
code can be integrated smoothly. The language supports different types of analysis
mechanisms, for example, for safety and timing analysis. Further, a behavioral
annex is proposed, to allow a common behavioral semantics for AADL descriptions.

AML [31] (automotive modeling language) is developed in the scope of the
FORSOFT project, which defined an architecture centric language to analyze
and synthesize automotive embedded systems. Similar to other ADLs, it offers
commonly accepted modeling constructs to specify the software and hardware parts
of the system architecture. The architecture is described by using components, in-
and outports, and connectors. The abstract syntax of the AML provides a conceptual
and methodological framework as a prerequisite for well-defined semantics of the
offered modeling constructs. The usage of different kinds of textual, graphical, or
tabular notations for a concrete model representation is supported. AML models
can be represented by various notational elements offered by widespread modeling
languages and tools such as ASCET-SD,! UML 1.4/2.0, and UML-RT.

SysML [27] (Systems Modeling Language) of OMG is a general purpose graph-
ical modeling language to support specification, analysis, design, and verification
of complex systems. It is sponsored by INCOSE/OMG with broad industry and
vendor participation and adopted by the OMG in 2006 as OMG SysML. The

TETAS ASCET-S http://www.etas.com/.

http://www.etas.com/

Defining Architecture Framework for Automotive Systems 153

SysML adjusts UML2 [28] to system engineering by excluding unrelated diagrams
and including new modeling concepts and diagrams for systems engineering.
The SysML concepts concern requirements, structural modeling, and behavioral
constructs. New diagrams include a requirement diagram and a parametric diagram
and adjustments of UML activity, class, and composite structure diagrams. Tabular
representations of requirements or allocations, for example, are also included as
an alternative notation. Multiple vendors support SysML tools such as MagicDraw
(No Magic) [25], Enterprise Architect (Sparx Systems) [35], Sirius (Eclipse) [11],
Rational Rhapsody (IBM) [16], and PolarSys (Former TOPCASED) (Eclipse) [10].
One of the drawbacks of SysML is that SysML, as in UML, does not have a well-
defined semantics.

Figure 5 illustrates the SysML structure, which consists of the following diagram

types:

¢ The requirement diagram provides cross-cutting relationships between require-
ments and system models.

¢ The structure diagrams are block definition diagrams (BDD), internal block
diagrams (IBD), package diagrams, and parametric diagram. UML class and
composite structure diagrams are the basis of the BDD and IBD. A parametric
diagram is a new diagram type, which can define quantitative constraints
like maximum acceleration, minimum curb weight, and total air conditioning
capacity.

e The behavior diagrams are use case, state machine, activity diagrams, and
sequence diagrams. Activity diagram is modified from UML 2.0 activity dia-
gram.

Tabular representations of requirements or allocations, for example, are also
included as an alternative notation. SysML can be used to model hardware, software,
information, processes, etc.

MARTE [26] (Modeling and Analysis of Real Time and Embedded) profile is
an OMG standard for modeling real-time and embedded applications in UML2. It
provides fundamental concepts of modeling and analyzing concerns of the real-time
and embedded systems such as performance and schedulability issues. MARTE
design model supports real-time embedded models of computation and commu-
nication and software and hardware resource modeling, while analysis model

SysML
diagram
] [
Requirement . . .
A Structure diagram Behavior diagram
diagram

Fig. 5 SysML structure

154 Y. Dajsuren

enables generic quantitative analysis, schedulability, and performance analysis and
refinement [13]. Both hardware and software aspects are supported.

3.2 Extracting Viewpoints from Automotive ADLs

The relationship between the architecture description elements (i.e., stakeholders,
concerns, viewpoints, views, and model kinds) is presented in IEEE 1471-2000
standard and subsequently in ISO 42010 international standard [18]. Correspon-
dences and correspondence rules are used to express and enforce architecture
relations (e.g., composition, refinement, consistency, traceability, and dependency)
within or between architecture description elements [18]. However, architecture
description elements remain vague in automotive ADLs. Therefore, in this section,
we identify the viewpoints together with other architecture elements, namely,
stakeholders, concerns, viewpoints, and respective model kinds from automotive
ADLs introduced in Sect.3.1. The summary of the viewpoints extracted from the
automotive ADLs is presented in Table 4.

Feature Viewpoint Product line engineering is one of the software engineering
approaches to reduce software development costs. It is used by some automotive
suppliers, but it is not used by the OEMs [7]. A feature is an end-user visible
characteristic of a system [19], and it is captured in the feature viewpoint. The
feature viewpoint is absent in the extracted viewpoints from automotive architecture
frameworks as discussed in Sect. 2.2. However, EAST-ADL is the only automotive
ADL to support product lines in the architecture description. Table 5 summarizes

Table 4 Automotive ADLs and viewpoints

Viewpoint EAST-ADL AADL AML SysML MARTE
Feature Technical
feature
Functional Functional Layered Functional Functional System con-
analysis system network viewpoint figuration,
modeling (from ADF) generic
component
Logical Functional Composite Logical A subset of High-level
design system architecture functional application
(functional viewpoint
design (from ADF)
architecture)
Implementation AUTOSAR Application Technical Constructional ~ Allocation
software rep- software, architecture viewpoint
resentation, execution (from ADF)
hardware platform
design

architecture

Defining Architecture Framework for Automotive Systems 155

Table 5 Feature viewpoint definition extracted automotive ADLs

Feature viewpoint

Definition It captures the vehicle from the perspective of the vehicle features and
the world around the vehicle

Stakeholders End user, system architect, tier-x designer, safety engineer, tester or
maintenance engineer

Concerns Vehicle features, interactions between vehicle features, end user,
environment

Architecture views Vehicle view

Model kinds Vehicle feature diagram

Correspondence rules Correspondences to environment, requirements, and functional
viewpoints

the feature viewpoint, which is extracted from the EAST-ADL. As discussed in
Sect. 3.1, the highest abstraction level of EAST-ADL is called a vehicle level, where
the basic vehicle features, requirements, and use cases are captured [36]. The vehicle
level can be interpreted as a vehicle view, which contains a vehicle feature model.
The vehicle feature model is used to describe a product line in terms of available
features and their dependencies. The feature model can be used as a starting point
to related requirements, use cases, and other constructs [9]. It can be used by all
the stakeholders. Feature viewpoints have a correspondence with the environment,
requirements, and functional viewpoints.

From other automotive-related ADLs, MARTE has mechanisms that can be used
for the product line engineering. For example, CombinedFragments, abstract class,
inheritance, interface implementation, variables can be used for analyzing software
product line models [4]. However it is not considered a feature viewpoint, given that
the MARTE is not a profile for software product line engineering.

Functional Viewpoint The functional viewpoint describes the vehicle from the
abstract functions and their interaction point of view. Table 6 presents the functional
viewpoint, which is defined in all automotive ADLs. The definition and purpose
of the functional viewpoint of automotive ADLs is the same as the functional
viewpoint of the automotive architecture frameworks as discussed in Sect.2.2.
However, the architecture views and model kinds differ among automotive ADLs.

In EAST-ADL, the vehicle features are realized by abstract functions in the
Functional Analysis Architecture (FAA) at the functional analysis view. The FAA
specifies what the system will do by specifying the main structure, interfaces,
and behavior to realize the features and requirements from the vehicle view [9].
The FAA does not provide detailed design or implementation decisions. There is
an n-to-m mapping between vehicle feature entities and FAA entities i.e., one or
several functions may realize one or several features [36]. EAST-ADL provides the
concepts for function component modeling to define the logical functionality and
decomposition in the FAA [36]. Functions interact with each other via ports that are

156 Y. Dajsuren

Table 6 Functional viewpoint definition extracted from automotive ADLs

Functional viewpoint
Definition It describes the vehicle functions and their interactions

Stakeholders End user, system or functional architect, tier-x designer, safety
engineer, tester or maintenance engineer

Concerns Functional composition and interfaces
Architecture views EAST-ADL: Analysis view
AADL: Layered architecture modeling view
AML: Functional network view

SysML: Functional breakdown structure view, functional architecture
view, allocation on functions view

MARTE: Breakdown structure view, functional architecture view,
allocation on functions view

Model kinds EAST-ADL: Functional analysis architecture (Function component
modeling conepts)

AADL: Core AADL language

AML: AML metamodel and semantics for the functions and functional
network

SysML: AD, BDD, IBD for the functional breakdown structure view;
AD, BDD, IBD for the functional architecture; allocation concept for
the requirements allocation on functions views

MARTE: AD, BDD, IBD for the functional breakdown structure view;
AD, BDD, IBD for the functional architecture; allocation concept for
the requirements allocation on functions views

Correspondence rules EAST-ADL: Correspondences to feature, environment, and
requirements viewpoints (an n-to-m mapping between vehicle feature
entities and FAA entities (i.e., one or several functions may realize one
or several features)

AADL: Refinement correspondence to the composite system view

AML: Refinement and allocation correspondence to logical
architecture

SysML, MARTE: Refinement and conformance correspondence to the
logical viewpoint

linked by connectors. The system boundary, environment model, and abstract safety
analysis can be carried out in the analysis view [36].

AADL introduced the layered architecture modeling to support hierarchical
containment of components, layered use of threads for processing and services,
and layered virtual-machine abstraction of the execution platform [33]. In AADL,
a system is constructed as a composite system consisting of application software,
execution platform, or system components, which are all considered specific type
of components. AADL defines components by type and implementation declara-
tions [12]. A component’s interface and external attributes (e.g., interaction points,
flow specifications, and internal property values) are defined in a component
type declaration [12]. A component’s internal structure (e.g., its subcomponents,
subcomponent connections, flow implementations, and properties) are defined in a

Defining Architecture Framework for Automotive Systems 157

component implementation declaration [12]. The AADL core modeling language
for the component-based representation enables modeling of components, interac-
tions, and properties [12]. It has graphical and textual representations. The layered
architecture and composite system models are further refined in the composite
system. Because the functional viewpoint describes the system’s functionality in
black-box perspective, we map the layered system modeling to the functional
viewpoint.

We map the functional network abstraction level to the functional viewpoint,
because a network of functions, that is, generic and reusable building blocks, are
defined at this level. A function has an interface, which specifies the required and
provided signals [31]. Local signals of a function are not accessible to enable
reusability [31]. Regarding correspondence to other viewpoints/views, functions
can be refined and deployed on different control units of the lower level logical
architecture view.

For SysML, we reuse the architectural elements of the functional viewpoint in
the ADF framework in Sect. 2.2. In the ADF breakdown structure view, functional
architecture view, and allocation on functions view are defined for the functional
viewpoint. SysML activity diagram, block definition diagram, and internal block
diagrams are selected for the breakdown structure view and functional architecture
view.

Logical Viewpoint We generalized a more concrete viewpoint that refines the
functional viewpoint as a logical viewpoint. Table 7 presents the logical viewpoint,
which is (implicitly) defined in all automotive ADLs except AML. Note that the
AAF defines logical viewpoint as a white-box representation of a system, but it does
not define it as an architecture viewpoint [8]. Thus the logical viewpoint is not listed
as one of the architecture viewpoints of the automotive architecture frameworks in
Sect. 2.2. However, it is a viewpoint that is common among automotive ADLs.

In EAST-ADL, the functional analysis architecture (FAA) of the analysis view
(governed by the functional viewpoint) is refined by the functional design architec-
ture (FDA) and hardware design architecture (HDA) at the design level/view [22].
We exclude the HDA from the design viewpoint, because the logical architecture
needs to be independent from the underlying hardware. The FDA decomposes the
functions defined in the FAA by adding a behavioral description and a detailed
interface definition to meet constraints regarding nonfunctional requirements such
as efficiency, reuse, or supplier concerns [22]. There are n-to-m mappings by
realization relationships between entities in the FDA and entities in the FAA [22].

In AADL, the internal structure of a system is constructed as a composite system
consisting of application software, execution platform, or system components [12],
which are all considered specific type of components as described in the functional
viewpoint section. Therefore, we map the composite system to the logical viewpoint.
The AADL core modeling language for the component-based representation is also
applied for the composite system representation. The composite system models are
further refined in the application software view.

158 Y. Dajsuren

Table 7 Logical viewpoint definition extracted automotive ADLs

Logical viewpoint

Definition It refines the functional architecture into logical components, which
are independent from implementation details and underlying hardware

Stakeholders End user, system architect, tier-x designer, safety engineer, tester or
maintenance engineer

Concerns Internal structure of the vehicle functions, detailed interactions
between and inside vehicle functions

Architecture views EAST-ADL: Functional design view
AADL: Composite system view
AML: Logical architecture view
SysML: Functional breakdown structure view
Model kinds EAST-ADL: Functional design architecture
AADL: Core AADL language
AML: AML metamodel and semantics for the logical architecture
SysML: AD, BDD, IBD for the functional breakdown structure view

Correspondence rules EAST-ADL: Refinement correspondence to functional viewpoint
(n-to-m mappings by realization relationships between entities in the
FDA and entities in the FAA)

AADL: Refinement correspondence to the application software,
physical platform

AML: Refinement correspondence to the functional network view

SysML: Refinement and conformance correspondence to the
functional viewpoint

In AML, logical architecture model refines the functional network models [31].
The logical architecture model describes the logical control units, actors, and
sensors of the environment [31]. The functions defined in the functional network
are deployed on different logical control units. However, implementation details
like the system is clocked (not event driven), and communication between/within
logical control units are synchronous and are specified at this stage.

For SysML, we reuse the part of the architectural elements of the functional
viewpoint in the ADF framework in Sect. 2.2. The ADF breakdown structure view
is defined to capture function identification and decomposition. SysML activity
diagram, block definition diagram, and internal block diagrams are selected for the
breakdown structure view.

Implementation Viewpoint The implementation viewpoint describes the software
architecture of the electrical/electronic (E/E) system in the vehicle [22]. Table 8
summarizes the implementation viewpoint elements extracted from the automotive
ADLs.

In EAST-ADL, the implementation viewpoint is supported by the system
architecture and software architecture of AUTOSAR [22]. AUTOSAR serves as a
basic infrastructure for the management of functions within both future applications

Defining Architecture Framework for Automotive Systems 159

Table 8 Implementation viewpoint definition extracted automotive ADLs

Implementation viewpoint

Definition It realizes the logical architecture into software and hardware
components
Stakeholders End user, system architect, tier-x designer, safety engineer, tester or

maintenance engineer

Concerns Implementation of logical components into software and hardware
components, optimal resource utilization, allocation, performance
estimation, etc.

Architecture views EAST-ADL: Implementation view, design view (hardware design)
AADL: Application software view, execution platform view
AML: Technical architecture view

SysML: Product breakdown structure view, organic architecture view,
requirements and function allocation on components view

Model kinds EAST-ADL: AUTOSAR application software, AUTOSAR basic
software (using AUTOSAR software component template, ECU
resource template, and system template), hardware design architecture
from the design level

AADL: Core AADL language
AML: AML metamodel and semantics for the technical architecture

SysML: BDD, IBD for a product breakdown structure view; BDD,
IBD for an organic architecture view, requirements and function
allocation on components

Correspondence rules EAST-ADL: Realization correspondence to logical viewpoint (n-to-m
mappings by realization relationships between entities in the
implementation view and entities in the design view)

AADL, AML, SysML: Realization correspondence to the logical
viewpoint

and standard software modules [3]. In EAST-ADL, AUTOSAR software compo-
nents realize the functional design architecture, and AUTOSAR basic software
components realize the hardware design architecture using the AUTOSAR software
component, ECU resource, and system templates. Regarding the correspondence,
traceability is supported from implementation level elements (AUTOSAR) to upper
level elements by realization relationships [22].

In addition to the AUTOSAR system and software architectures, the EAST-ADL
hardware design architecture (HDA) is also mapped in this viewpoint. HDA is then
refined further by ECU specifications and topology.

In AADL, a system instance consists of application software components and
execution platform components [12].

In AML, the technical architecture enriches the logical architecture with concrete
technical information, for example, concrete bus, control unit, and operating
system specifications [31]. The performance estimation can be carried out in this
architecture modeling [31]. AML language is used for this viewpoint.

We consider the constructional viewpoint discussed in the ADF in Sect.2.2
as part of the implementation viewpoint, because it decomposes a vehicle into

160 Y. Dajsuren

physical components and defines their relationships and constraints. Then the imple-
mentation viewpoint for SysML supports product breakdown structure, organic
architecture, and allocation on components views. As discussed in Sect. 2.2, ADF
identifies SysML BDD and IBD model kinds for the product breakdown structure
and organic architecture views. The allocation concept is used for allocating
requirements and functions to components [14]. The product breakdown struc-
ture identifies and allocates the system functions to physical components. The
organic architecture defines the components of the system, their interfaces, and
connections, which satisfy the system’s technical requirements (e.g., cost, weight,
size, authorized/forbidden use of materials) and other criteria (e.g., performance,
effectiveness) [14]. Architecture models for the allocation on components view
captures the allocation and structuring of the system requirements and functions to
physical components to achieve an optimal allocation. The flows between functions
are associated with the interfaces/connectors (e.g., mechanic, electric, network)
between components [14].

Other Viewpoints EAST-ADL extensions are considered as other viewpoints,
which are orthogonal to the main architecture viewpoints:

* Requirements are captured in EAST-ADL following the principles of
SysML [22].

e Variability is realized in EAST-ADL at all levels besides the feature models on
vehicle level [22].

e Timing is supported by the TIMMO project. It defined a methodology and
representation of timing aspects in automotive embedded systems [22]. TADL
defines timing constraints in all levels of abstraction of EAST-ADL2 [39].

* Dependability extension covers several aspects, that is, availability, reliability,
safety, integrity, and maintainability [22].

3.3 Discussion

Architecture description languages (ADLs) have been developed to define automo-
tive architectures effectively to tackle the increasing complexity and development
costs [24, 34]. Although the ISO 42010 international standard [18] has defined what
constitutes an ADL, the automotive ADLs have been developed without specifying
the architectural elements of an ADL as defined in the ISO 42010 international
standard. Therefore, we have mapped the architecture viewpoints of the automotive
ADLs to the viewpoints of the automotive architecture frameworks. The mapping
provides an input for further aligning the architecture elements of the automotive
ADLSs and automotive architecture frameworks.

We have identified common architecture viewpoints and views of these frame-
works. In the following section, we integrate the viewpoints and views defined in the
scope of the automotive ADLs and automotive architecture frameworks and propose
a conceptual model of an architecture framework for automotive systems. Other

Defining Architecture Framework for Automotive Systems 161

viewpoints that are briefly presented here are also discussed in the definition of the
framework in the following section.

4 Architecture Framework for Automotive Systems

This section presents the architecture framework for automotive systems (AFAS),
which contains architecture viewpoints consistent with the existing automotive
architecture frameworks (AFs) and the automotive architecture description lan-
guages (ADLs) as discussed in Sects.2 and 3, respectively. The architectural
elements of the AFAS are shown in Fig.6. The AFAS viewpoints are defined
based on the preceding analysis of the automotive AFs and ADLs. In addition,
we studied proprietary automotive architectural models and practices and aligned
the AFAS with the results based on the interviews carried out with the domain
experts from an OEM. The AFAS framework thus contains architectural viewpoints
complementary to automotive ADLs, automotive AFs, and proprietary approaches.
The simplified architectural elements are illustrated in Fig.6. The representation

a N N

o

)

Stakeholders Viewpoints
Requirements .
End-user engineer Feature Implementation
Architect Sys.tem Requirements Deployment
engineer
Designer Manager Functional Information
Software
engineer Tester 4 Model kinds N
NS —/
Requirements Behavioral
/ Concerns \
Functionality Traceability Structural Dynamic
Dependability Maintainability Correspondence Rules
Performance Cost REQ_ALLVP IMP_DEP
Safety Testability IMP_FNVP INFO_ALLVP

Fig. 6 AFAS overview

162 Y. Dajsuren

of the AFAS overview is in alignment with the graphical representation in the
MEGAF infrastructure [15]. In the following section, we elaborate the architecture
viewpoints and related elements of AFAS.

Feature Viewpoint Since AAF was specified as an automotive industry reference
for the vehicle line architectures [8], the feature viewpoint is not specified in
the AAF. However, we considered the feature viewpoint necessary, because even
a single feature can be configured further, such as cruise control or Bluetooth
telephone connection, which can be configured for a product or a specific vehicle.
Therefore, we revise the feature viewpoint of the EAST-ADL, which is presented
in Sect. 3. The feature viewpoint contains feature view, which specifies a vehicle
feature model. The feature model can be used as a starting point to related
requirements, use cases, and other constructs [9].

Automotive architecture frameworks and ADLs do not explicitly define the
system stakeholders for the frameworks and ADLs. General stakeholders as end
users, OEMs, suppliers, tool vendors, and research institutes are identified for
automotive architecture frameworks. End users, system architects, tier-x designers,
safety engineers, and testers or maintenance engineers are identified from the
automotive ADLs. Therefore, we have interviewed a number of domain experts
from an OEM and identified stakeholders as driver, fleet owner (fleet information
center), manager, product line manager, requirements manager, system/software
architect, designer, system integrator, developer, analyst, tester, and (external/inter-
nal) supplier. OEMs, suppliers, tool vendors, and research institutes are stakeholders
more from the organizational perspective. Therefore, we clarified more specific
roles as key stakeholders for an automotive architecture framework. We combined
the stakeholders defined for the automotive AFs and ADLs with the stakeholders
identified by the automotive domain experts. The selected stakeholders are listed in
Fig.6.

The feature viewpoint can be used by architects, designers, requirements engi-
neers, system engineers, managers, and testers. Feature viewpoints have a corre-
spondence with the requirements and functional viewpoints. Table 9 summarizes
the revised feature viewpoint.

Table 9 Feature viewpoint definition in AFAS framework

Feature viewpoint

Definition It captures the vehicle from the perspective of the vehicle features and
the world around the vehicle

Stakeholders Architect, designer, requirements engineer, system engineer, manager,
and tester

Concerns Functionality, cost, maintainability

Architecture views Vehicle feature view

Model kinds Vehicle feature diagram

Correspondence rules Correspondences to requirements and functional viewpoints

Defining Architecture Framework for Automotive Systems 163

Table 10 Requirements viewpoint definition in AFAS framework

Requirements viewpoint

Definition It captures the vehicle from the perspective of the vehicle driver and
the world around the vehicle

Stakeholders All stakeholders (end users, architect, designer, software engineer,
requirements engineer, system engineer, manager, and tester)

Concerns Functionality, traceability, cost

Architecture views Stakeholder requirements view, high-level requirements view, system

technical requirements view, value net view

Model kinds Requirements and use case diagram type for the stakeholder
requirements, high-level requirements, and system technical
requirements views

Correspondence rules Traceability correspondences to other viewpoints

Requirements Viewpoint The requirements viewpoint is defined in the automotive
AFs as presented in Sect. 2 and defined as an extension in the EAST-ADL language
as discussed in Sect.3. In the AFAS, the requirements viewpoint is included as
one of the main viewpoints. We summarize below the description based on the
requirements viewpoint of the automotive AFs and EAST-ADL. Table 10 presents
the requirements viewpoint, which looks at the vehicle from the perspective of
the vehicle stakeholders including end users (drivers and passengers) and vehicle
environment.

As in ADF, the requirements viewpoint captures elicitation of stakeholder
requirements and elaboration of system technical requirements. The requirements
viewpoint supports the stakeholder requirements view, high-level requirements view,
and system technical requirements view as in ADF. Since the AAF driver/vehicle
operations view looks at the interactions, interfaces, and interdependencies between
the vehicle and its end user and environment, it is considered part of the stakeholder
requirements view. The value net view is included, as it is used to optimize the
efficiency of the value creation process for an OEM, suppliers, and engineering
partners [8]. We map the SysML requirements and use case diagram types for
the model kinds, which can be used to model the requirements views. The use
case diagram shows the interaction between users and the system. The stakeholder
requirements view can also identify actors and system boundary as in ADF. The
requirements viewpoint corresponds to other viewpoints to enable the requirements
traceability of each viewpoint.

Functional Viewpoint The functional viewpoint was defined in both automotive
AFs and ADLs. The functional viewpoint is considered the cornerstone of most
architecture descriptions [32]. We revise the functional viewpoints of the AFs and
ADLs into Table 11.

As in AAF, the functional viewpoint describes vehicles in terms of vehicle
functions and their logical interactions. We revise the AAF architecture views of
the functional viewpoint, that is, a functional view, which specifies a structural

164 Y. Dajsuren

Table 11 Functional viewpoint definition in AFAS framework

Functional viewpoint

Definition It describes the vehicle functions and their interactions

Stakeholders Architect, designer, requirements engineer, system engineer, manager,
and tester

Concerns Functionality, dependability, cost, maintainability

Architecture views Functional view, detailed functional view, allocation on functions view

Model kinds BDD for the functional view, IBD for the detailed functional view,

allocation concept for the requirements allocation on functions views

Correspondence rules Realization and traceability correspondences to the requirements
viewpoint

model that contains a number of functions or subsystems realizing features. The
functional view is the first view that stakeholders try to read due to simplicity [32].
The functional architecture is described in this view, which contains a structural
model kind that contains a number of functions or subsystems realizing features.

We define a detailed functional view, which refines the functions and their
interfaces by specifying more details (similar to logical view). The ADF allocation
on functions view is reused in this viewpoint. We revised the SysML diagram
types that are defined for the functional viewpoint in ADF. In ADF, SysML
activity diagram was selected for the functional breakdown structure and functional
architecture views. However, it was stated that the functional requirements need
SysML use case, activity, and sequence diagrams to specify the behavior of a
function. It was concluded after successful application of SysML in deriving
functional architectures from requirements and use cases [21].

The functional architecture represents the static view of the system; therefore
behavioral diagrams are not necessary. This concurs with our view that the
functional architecture needs to specify abstract functions in a static structural model
independent of implementation and technological details. Therefore, we exclude the
SysML activity diagram, which was part of the ADF functional viewpoint. From the
ADF architecture views of the functional viewpoint, namely, breakdown structure
view, functional architecture view, and allocation on functions view, the breakdown
structure view is not selected for the functional viewpoint. The main reason is that
the breakdown structure can be represented in the functional architecture without
behavioral models. The allocation of requirements and features to functions is
necessary for enabling traceability of the requirements and features.

Implementation Viewpoint The implementation viewpoint consists of software,
hardware, and topology views. Therefore, the technical/constructional viewpoint
of the AAF and ADF can be a part of the implementation viewpoint, specifically
addressing the hardware view. Table 12 revises the implementation viewpoint
elements discussed in Sect. 3.2.

The implementation viewpoint governs software view, hardware view, and
topology view. Software view represents the software architecture, where detailed

Defining Architecture Framework for Automotive Systems 165

Table 12 Implementation viewpoint definition in AFAS framework

Implementation viewpoint

Definition It realizes the functional architecture into software and hardware
components

Stakeholders Architect, designer, software engineer, requirements engineer, system
engineer, manager, and tester

Concerns Dependability, safety, performance, maintainability, cost

Architecture views Software view, hardware view, topology view

Model kinds BDD, IBD, AD, SD, and SM for a software view, BDD and IBD for

the hardware and topology views

Correspondence rules Realization correspondence to functional viewpoint (n-fo-m mappings
by realization relationships between entities in the implementation
view and entities in the functional view)

descriptions and implementation of a function is realized in software components
or blocks. The software components realize the functional components. Regarding
the correspondence, implementation viewpoint realizes the functional view. In
the hardware view, the E/E hardware architecture is represented. The hardware
architecture typically consists of ECUs, sensors, actuators, and controller area
network (CAN) buses. The topology view specifies the connections (buses, e.g.,
CAN and local interconnect network (LIN), and wires) between ECUs, sensors, and
actuators.

We consider the constructional viewpoint discussed in the ADF in Sect.2.2 as
part of the hardware view, which is governed by the implementation viewpoint,
because it decomposes a vehicle into physical components and defines their
relationships and constraints. As in the functional viewpoint, all stakeholders are
considered relevant to the implementation viewpoint. ADF does not specify the
concerns and correspondences explicitly. However, we identified the same concerns
as AAF. The correspondence is conformance according to the implicit description
of architecture views of the ADF constructional viewpoints.

Deployment Viewpoint The deployment viewpoint describes the environment into
which the system will be deployed, including capturing the dependencies of the
system on its runtime environment [32]. Table 13 summarizes the deployment
viewpoint elements extracted from the automotive ADLs. The allocation view
describes the mapping between software components to ECUs. It can be in a table
format.

Information Viewpoint The information viewpoint of the AAF is included in the
AFAS framework, because it describes how the architecture manages and distributes
information [32]. The information view is also reused for the information viewpoint.
The information view describes information or data objects, their metadata, proper-
ties, relationships, configurations, and configuration constraints [8].

166 Y. Dajsuren

Table 13 Deployment viewpoint definition in AFAS framework

Deployment viewpoint

Definition It defines the environment into which the system will be deployed
Stakeholders Architect, safety engineer, system engineer, tester

Concerns Functionality, dependability, performance, safety, cost
Architecture views Execution platform view, concurrency view, allocation view
Model kinds Process model

Correspondence rules Realization correspondence to implementation viewpoint

5 Conclusion

We integrated the architecture viewpoints extracted from automotive AFs and ADLs
into architecture framework for automotive systems (AFAS). The main objective of
the framework is to have consistent architecture description elements.

The functional viewpoint exists in both AFs and ADLs as it is a cornerstone
of architecture description. However, some of the viewpoints are not directly
mappable. Therefore, we analyzed the semantics of the architecture description
elements and integrated feature, requirements, functional, implementation, and
information viewpoints from existing AFs and ADLs. A deployment viewpoint
was added to the AFAS, because an OEM plays mostly a role of an integrator or
assembler by integrating software/(E/E)/hardware systems into a vehicle. Currently
an architecture framework addressing continuous integration and deployment,
ecosystem and transparency, and car as a constituent of a system of systems is being
developed with Volvo cars as well [29]

References

—

. Andrianarison E, Piques JD (2010) SysML for embedded automotive systems: a practical
approach. In: Embedded real time software and systems (ERTS?). ERTS? series, Toulouse,
pp 1-10
2. Apvrille L, Becoulet A (2012) Prototyping an embedded automotive system from its
UML/SysML models. In: Embedded real time software and systems (ERTSZ), ERTS? series,
Toulouse, pp 1-10

3. AUTOSAR (2018) The AUTomotive Open System ARchitecture (AUTOSAR). http://autosar.
org. Accessed 27 Oct 2018

4. Belategi L, Sagardui G, Etxeberria L (2010) MARTE mechanisms to model variability
when analyzing embedded software product lines. In: Software product lines: going beyond.
Springer, New York, pp 466470

5. British Ministry of Defence (2012) MOD architecture framework. https://www.gov.uk/
guidance/mod-architecture-framework. Accessed 12 March 2019

6. Braun P, Rappl M (2001) A model-based approach for automotive software development. In:

Workshop on object-oriented modeling of embedded real-time systems (OMER). LNI, vol 5,

pp 100-105

http://autosar.org
http://autosar.org
https://www.gov.uk/guidance/mod-architecture-framework
https://www.gov.uk/guidance/mod-architecture-framework

Defining Architecture Framework for Automotive Systems 167

7.

8.

9.

10.
11.
12.
13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.

30.

31.

Broy M (2006) Challenges in automotive software engineering. In: International conference on
software engineering (ICSE). ACM, New York, pp 3342

Broy M, Gleirscher M, Merenda S, Wild D, Kluge P, Krenzer W (2009) Toward a holistic and
standardized automotive architecture description. Computer 42(12):98-101

Cuenot P, Frey P, Johansson R, Lonn H, Papadopoulos Y, Reiser M, Sandberg A, Servat
D, Kolagari RT, Torngren M, Weber M (2011) The EAST-ADL architecture description
language for automotive embedded software. In: Model-based engineering of embedded real-
time systems. Springer, Berlin, pp 297-307

Eclipse (2019) PolarSys (former TOPCASED). http://polarsys.org/. Accessed 12 March 2019
Eclipse (2019) Sirius. http://www.eclipse.org/sirius/. Accessed 12 March 2019

Feiler P, Gluch D, Hudak J (2006) The architecture analysis & design language (AADL): an
introduction. Tech. Rep. CMU/SEI-2006-TN-011, Software Engineering Institute, Carnegie
Mellon University

Gerard S, Espinoza H (2006) Rationale of the UML profile for Marte. In: From MDD concepts
to experiments and illustrations. ISTE, London, pp 43-52

Gongora H, Gaudré T, Tucci-Piergiovanni S (2013) Towards an architectural design framework
for automotive systems development. In: Complex systems design and management. Springer,
Cham, pp 241-258

Hilliard R, Malavolta I, Muccini H, Pelliccione P (2012) On the composition and reuse of
viewpoints across architecture frameworks. In: The joint working IEEE/IFIP conference on
software architecture (WICSA) and European conference on software architecture (ECSA).
IEEE, Helsinki, pp 131-140

IBM (2019) Rational Rhapsody Designer for systems engineers. http://www.ibm.com/
software/products/. Accessed 12 March 2019

ISO (1998) ISO/IEC 10746-1 Information technology — reference model of open distributed
processing (RM-ODP)

ISO (2011) ISO/IEC/IEEE 42010 - Systems and software engineering—architecture description
Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-oriented domain analysis
(foda) feasibility study. Tech. rep., DTIC Document

Kruchten P (1995) The 4+1 view model of architecture. IEEE Softw 12(6):42-50. https://doi.
org/10.1109/52.469759

Lamm J, Weilkiens T (2010) Functional architectures in SysML. Tag des Systems Engineering
(TdSE)

MAENAD (2014) EAST-ADL 2.1.12 domain model specification. http://east-adl.info/
Specification/V2.1.12/html/index.html. Accessed 12 March 2019

MAENAD (2014) ICT MAENAD project. http://maenad.eu/. Accessed 12 March 2019

Navet N, Simonot-Lion F (2009) Automotive embedded systems handbook. Industrial infor-
mation technology series. CRC Press, Boca Raton

NoMagic (2019) MagicDraw SysML plugin. http://www.nomagic.com/products/magicdraw-
addons/sysml-plugin.html. Accessed 12 March 2019

Object Management Group (2011) UML profile for MARTE: modeling and analysis of real-
time embedded systems, version 1.1. http://www.omg.org/spec/MARTE/1.1. Accessed 12
March 2019

OMG (2012) Systems modeling language (SysML) specification, version 1.3. http://www.omg.
org/spec/SysML/

OMG (2015) The Unified Modeling Language - UML 2.0. https://www.omg.org/spec/UML/2.
0/. Accessed 12 March 2019

Pelliccione P, Knauss E, Heldal R, Agren S. M, Mallozzi P, Alminger A, Borgentun D (2017)
Automotive architecture framework: the experience of Volvo cars. J Syst Archit 77:83—100
Rao AC, Dhadyalla G, Jones RP, McMurran R, White D (2006) Systems modelling of a driver
information system — automotive industry case study. In: System of systems engineering (SSE).
IEEE, Los Angeles, pp 254-259

Rappl M, Braun P, Von Der Beeck M, Schroder C (2002) Automotive software development:
a model based approach. Tech. rep., SAE Technical Paper

http://polarsys.org/
http://www.eclipse.org/sirius/
http://www.ibm.com/software/products/
http://www.ibm.com/software/products/
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
http://east-adl.info/Specification/V2.1.12/html/index.html
http://east-adl.info/Specification/V2.1.12/html/index.html
http://maenad.eu/
http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html
http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/SysML/
http://www.omg.org/spec/SysML/
https://www.omg.org/spec/UML/2.0/
https://www.omg.org/spec/UML/2.0/

168 Y. Dajsuren

32. Rozanski N, Woods E (2005) Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley, Upper Saddle River

33. SAE International (2012) Architecture analysis and design language. http://www.aadl.info/.
Accessed 12 Feb 2019

34. Schiuffele J, Zurawka T (2005) Automotive software engineering: principles, processes,
methods, and tools. Society of Automotive Engineers, Warrendale

35. Sparx Systems (2019) Enterprise architect. http://www.sparxsystems.com/. Accessed 12 March
2019

36. The ATESST Consortium (2013) EAST-ADL specification. http://www.east-adl.info/
Specification.html. Accessed 12 Feb 2019

37. The Consultative Committee for Space Data Systems (2008) Reference architecture for space
data systems. http://public.ccsds.org/publications/. Accessed 12 Feb 2019

38. The Open Group (2018). The open group architectural framework (TOGAF). http://www.
opengroup.org/togaf/. Accessed 12 February 2019

39. The TIMMO Consortium (2009) TADL: timing augmented description language, version 2.
http://adt.cs.upb.de/timmo-2-use/timmo/publications.htm. Accessed 12 March 2019

40. Vestal S (1997) MetaH support for real-time multi-processor avionics. In: Parallel and
distributed real-time systems workshop, pp 11-21

http://www.aadl.info/
http://www.sparxsystems.com/
http://www.east-adl.info/Specification.html
http://www.east-adl.info/Specification.html
http://public.ccsds.org/publications/
http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/
http://adt.cs.upb.de/timmo-2-use/timmo/publications.htm

Part IV
E/E Architecture and Safety

The RACE Project: An m)
Informatics-Driven Greenfield Approach s
to Future E/E Architectures for Cars

Alois Knoll, Christian Buckl, Karl-Josef Kuhn, and Gernot Spiegelberg

Abstract As cars are turning more and more into “computers on wheels,” the
development foci for future generations of cars are shifting away from improved
driving characteristics toward features and functions that are implemented in
software. Classical decentralized electrical and electronic (E/E) architectures based
on a large number of electronic control units (ECUs) are becoming more and more
difficult to adapt to the extreme complexity that results from this trend. Moreover,
the innovation speed, which will be dictated by the computer industry’s dramati-
cally short product lifecycles, requires new architectural and software engineering
approaches if the car industry wants to rise to the resulting multidimensional
challenges. While classical evolutionary architectures mapped the set of functions
that constitute the driving behavior into a coherent set of communicating control
units, RACE (Reliable Control and Automation Environment) is an attempt to
redefine the architecture of future cars from an information processing point of view.
It implements a straightforward perception-control/cognition-action paradigm; it
is data centric, striking a balance between central and decentralized control. It
implements mechanisms for fault tolerance and features plug-and-play techniques
for smooth retrofitting of functions at any point in a car’s lifetime.

A. Knoll ()
Technische Universitit Miinchen (TUM) and fortiss GmbH, Miinchen, Germany
e-mail: knoll @in.tum.de

C. Buckl - K.-J. Kuhn - G. Spiegelberg
Siemens AG, CT RTC RACE, Miinchen, Germany

© Springer Nature Switzerland AG 2019 171
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_8&domain=pdf
mailto:knoll@in.tum.de
https://doi.org/10.1007/978-3-030-12157-0_8

172 A. Knoll et al.

1 Introduction’

Over the last decades of “vehicle electronification and digitalization,” it has become
clear that information and communication technology (ICT) will determine the
vehicle of the future. ICT is becoming the dominant factor and will drive vehicle
developments by itself—people will want their cars to be equipped with ICT
as powerful as it is in their offices and homes. For this reason, architectures
and technologies for vehicle ICT cannot be viewed merely as a framework for
gradual evolutionary innovations as they once were—they will determine the future
development of cars in terms of functionality, innovation speed, and value creation.
Architectures designed with these insights in mind will make new approaches
and functions possible—from greater autonomy in driving to a more complete
integration of the vehicle into the ICT infrastructure—and thus help significantly
to achieve socio-political goals like energy efficiency or lower accident rates.
Today’s automotive electronic/electric (E/E) architectures are a result of a long
evolutionary process. The number of electronic control units (ECUs) has risen
dramatically since their first large-series introduction into car technology in the
1970s. At present, the value added by ICT to the car is between 30% and 40%, but
80% of the innovations>—from entertainment systems by way of driver assistance
systems to advanced engine and chassis control—are due to ICT. While the first
antilock braking system (ABS) in 1978 had a small processor with a few hundred
lines of code, today’s luxury cars have millions of lines of code running on
high- performance processors and dedicated chips. Still, however, the potential of
modern ICT is far from being fully exploited by the car industry. For example,
the move to full “drive-by-wire” or even “drive-by-wireless,” although offering
numerous advantages, has not been made because the necessary fundamental
software structures are not deemed to be sufficient for this industry’s standards. The
development in areas like infotainment or telematics is also much faster, which has
now become a real threat to traditional car manufacturers. One of the reasons is that
customers want their car to keep pace with their rapidly changing ICT environment
over the lifetime of the car—which will increase rather than decrease as we move to
maintenance-free electric powertrains—and that static architectures will not be able
to meet the dynamic, and as of now unforeseeable needs that will arise in the future.
What can be foreseen, however, is that there will be an ever-increasing speed
of development in customer electronics, innovative applications (purely defined in
software), new business models based on “platforms,” and much more emphasis
on environmental protection and resource economy. These aspects can only be
taken care of if automotive original equipment manufacturers (OEMs) can keep
up with the pace of the development of processing power, storage capacity, and

Note that parts of this section, including Figs. 1 and 2, are an updated extract from [1].
Zhttp://aesin.org.uk/about/about-automotive-electronics/

http://aesin.org.uk/about/about-automotive-electronics

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 173

communication bandwidth—in other words, if they can rely on an architecture base
that can make practical use of these developments.

In summary, ICT architecture is increasingly becoming a barrier—or an
enabler!—to innovation.

2 A Brief History of ICT E/E Architectures for Cars

A look at the history of car electronics can be helpful to understand why the time
is now ripe to develop radically new architectures (see Fig. 1). In the evolution of
vehicle architectures, there is a trend for the architecture actually to accidentally
become much more complex than it is essential for the achieved increase in
overall functionality. Hence, new functions to be added become more and more
cumbersome and hard to integrate, and the innovation activities therefore tend to
lag behind. Only a substantial revision of the architecture enforced by a disruptive
technology leap can bring the accidental complexity back down to its essential level.

The only way of achieving this is to raise the level of functional abstraction
at which new functions can be integrated. This has already been observed in the
automotive industry. To reduce emissions and improve comfort, in the 1980s it
was necessary to expand the use of microcontrollers. Complexity relatively quickly

w
c
o
=]
|9}
c
=) Cloud-/Swarm-oriented
‘*6 ICT architecture
S I
z e]
o3 /!
> Centralized / \\ I'I
E ICT architecture _,"‘ \\ !
)] ——
- ~70 ECUs ! -~ 1
I
£ Introduction of CAN as (2010) ,1 \\ (] ,’ e tial
8 a standard bus system in 1987 ~40 ECUs, 7 \ !z ssen 1a
Passat B6 \ ;{I Complexity
: ~10 £cus, (2005) \ (number of
Bosch ABS in Passat B5 ot functions)
Mercedes S-Class (1996) 4 | !
introduced in 1978 £ I |
/ I I
First Million : |
VW Beetle i :
produced I 1
I I I
I I 1
Age of cable I Age of busses and ECUs | Age of services I
~40 yrs I ~26yrs | ~17yrs i
| L
1955 l1965 ' 1975 ! 1985 ! 1995 ! 2005 l2015 l2025 l2035 Time

Fig. 1 Qualitative past and expected future growth of essential complexity due to increasing
functionality to be supplied by electronic and software infrastructure, plotted against accidental
complexity introduced by suboptimal mapping of ICT technology to vehicle technology

174 A. Knoll et al.

became a big problem because it was almost impossible to connect all these
electronics modules together in a big cable harness. The solution was an abstraction
of communication through shared media—buses like the CAN bus virtualized the
physical connection. It thus became significantly easier to introduce new functions
because integration no longer had to take place at the cable level, but at the
information level.

While CAN is a networking standard originating from the automotive industry,
the other important standard when it comes to architectures is Automotive Open
System Architecture (AUTOSAR).? We are currently observing huge efforts in the
industry to completely revise this standard in view of the requirements emerging
from autonomous driving and an ever-increasing number of advanced driver
assistance systems. This will be called the Adaptive AUTOSAR Platform, but when
it will be published, it will be far from complete. Like AUTOSAR Classic, it will be
subject to many revisions, and its initial version will be limited in scope.

The differences between AUTOSAR classic and RACE are manifold, and will
become clear in the rest of this paper. Some differences are that the RACE RTE
is dynamic to allow for plug and play. RACE provides support for fault tolerance
and recovery, as well as a complete up-to-date software development environment,
including separation kernels, as an underlying operating system layer. Moreover,
the hardware structure based on central computers is a radical departure from the
current architectures.

Notwithstanding, today’s ICT architectures face problems because of the ever-
increasing number of control devices. A new, centralized electric/electronics archi-
tecture, with a base middleware, might drastically reduce accidental complexity.
New functions may then be integrated, not as physical electronic control devices but
as software. The third step, finally, would be a further virtualization of the necessary
total system of hardware and software (the hardware/software stack) into a service-
oriented architecture. The underlying execution platform, composed of control
devices and buses, would be entirely virtualized by middleware. The middleware
would also implement non-/extrafunctional features, such as fault tolerance or
communication delays. Then it would be possible to distribute functions as desired,
even outside the vehicle; the car would thus become quite naturally part of a larger
system.

At this point, a closer look at other sectors is in order. In the early 1980s,
solutions in industrial controls and PCs proved that modular hardware and standard
operating systems like MS-DOS and Unix can completely change entire industries.
Open standards have resulted in increased innovations in hardware and software
ever since. Economies of scale in production, with the associated cost reductions
in modular hardware, made PCs attractive to end users. In the 1990s, a new
architecture was introduced in aviation because of problems very similar to those
in the automotive sector today. The “Integrated Modular Avionics IMA” [2] showed

3See, for example: O. Scheid, AUTOSAR Compendium, CreateSpace Independent Publishing
Platform, August 2015.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 175

that a new architecture can help reduce complexity and create a viable basis for
future developments. Important concepts like centralizing and virtualizing computer
architecture, local data concentrators, and “X by wire” can be adopted and adapted
to the needs of automotive design—today more than ever. Robotics may also be of
interest for a reorientation of ICT architecture in the automotive industry.

The logical architecture for controlling service robots, with its division into
environmental perception, planning, and action, can particularly serve as a model
for a logical architecture in the automotive industry. Important concepts from
middleware architectures in robotics may also be of interest for the automotive
sector, such as is being currently observed with the success of the Robot Operating
System (ROS) [3], which in turn can only be a first step on the way to a quality-
controlled industry-grade operating system for robots.

Let us now speculate briefly on how the future of ICT architectures would
look if we learn from what we have observed in the past. As Fig. 2 shows, ICT
architecture could thus develop in three steps. In an initial step, which is already
going on today, ICT modules are integrated and encapsulated at a high level. In
the second step, the ICT architecture could be reorganized with reference to all
functions relevant to the vehicle. And finally, a middleware that integrates both
the functions relevant to driving and the nonsafety-critical functions for comfort
and entertainment would make it possible to customize vehicles for their drivers
by integrating third-party software. Consequently, the automotive industry could
manage the upcoming changes in two phases:

* First Phase: Low Function/Low Cost. This scenario is the most suitable for
new market actors focusing on low-cost vehicles. The vehicle functionality
and customer expectations for comfort and reliability are relatively low. The
resulting requirement set is well suited for introducing a revised, simplified ICT
architecture that is based on a drive-by-wire approach; actuator components are
connected directly to the power electronics and the ICT. Actuators have a local
energy supply and can be controlled via software protocols, reducing the number
of cables and control devices.

¢ Second Phase: High Function/Low Cost. This assumes that ICT introduced in
phase 1 has been optimized over the years and is now very reliable so that even
customers with high expectations buy vehicles based on this architecture. This
trend is reinforced by the ability to integrate new functions easily into vehicles
and to customize them.

In summary, it is obvious that the necessary complexity of functions implemented
by electronics and software will rise significantly:

1. Automated and autonomous driving will become state of the art very shortly.
These functions are very complex and have high-performance requirements on
the ECU. But even more exacting is a new requirement on E/E architectures: the
system must become fail operational. While today it is state of the art to simply
shut down a function as soon as an error is detected, in the future, fall-back
functions must be provided to ensure that the vehicle can still be driven in a safe
state even if there is a partial or even complete breakdown.

A. Knoll et al.

176

1291 uoneoridde oy je A[feuy uay) pue
[oA9] wAIsAs oy Je doe[d aye) Aew juowdo[ersp oAndnIsIp e ‘ostmayrT “(Yey) Joyye sdoys ATeuonnjoAd UQy) pue) 2INJOAIYOIL JOSUIS-I0ILNIO. AU} JO [OAJ] oY) 1B
UOTIN[OAI [eNITUT A3 103dx9 oA "sdals eandnisip,, Kreuonnjoaar se [[om se ‘sdays Areuonnjoa? ur Juawdo[oadp 9[qrssod e pue sarnjoayore [D] JO SIAeT ¢ *S1g

(1e9 BpISul uonn|oAal uondUNS) (BuiALp snowouolny) (sa|npoy [eolo8e parelbsiul AlybiH)
JeD pajeibaju| Yews 1eD [eo1109|3 Hews 1eD [eolos|3

uonnjonsy

uonnjoAg

2I1nj08]Iyoly
10suag Jorenioy

uonnjonsy

90Inos ABiaug
ures} eaug

IN}08)1Y2IY
walsAs

uopnjong

2In}08)YoIY
uoneolddy

Juswabeuew }99|4
apu paziwndo
1509 paziwndo

uoinnjonay

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 177

2. Connected mobility is another massive trend that will require an increasing
interaction of the car with its infrastructure and with other I'T-driven domains.
This will not result in an increase in system complexity but generates another
big challenge: security. While in the past cars were isolated systems, the growing
openness of the E/E platform requires treating security as a key design criterion.

In summary, besides meeting additional functional requirements, future E/E
architectures will have to provide additional extrafunctional properties, like a
fail-operational system and security. Moreover, highly integrated mechatronic com-
ponents are reinforcing the trend toward X-by-wire control or even X-by-wireless
one. Through the introduction of middleware architectures and by encapsulating
and abstracting from those mechatronic modules, integration can take place at a
much higher logical level. Components to merge sensor data will become important
elements of middleware architectures, along with mechanisms that ensure that
safety-critical functions are separated from noncritical ones. They can be performed
on a single computer without interfering with one another. This in turn will result in
the centralization of all the computers in the car, similarly to server technology.

We will now look at the requirements in more detail. For an overview of the
initial concepts at the time of the project’s start, see [4].

3 A Set of Requirements for a New Architecture

In recognition of these trends, RACE* was started to establish a technology
addressing the upcoming challenges. The main intention of RACE is to provide
OEMs with an example of a platform technology that enables them to redesign
their E/E architectures. By providing generic hardware components, a related run-
time environment (RTE), and system engineering tools, OEMs can introduce new
functions in most cases as software rather than the way it is today—as an ECU. This
way, OEMs can benefit from faster innovation cycles of software. In the following
subsections, the project goals will be listed in more detail.

3.1 Integration of New Functions in Software to Achieve
Faster Development Times

The core platform will speed up the development of new automotive functions
particularly related to:

* Integration of new functions as software: the core platform should be able
to execute hardware-independent applications from all automotive domains;
this includes but is not limited to body/comfort, driver assistance systems,

“4For a short introduction, see http://w3.siemens.com/topics/global/en/electromobility/pages/race.
aspx

http://w3.siemens.com/topics/global/en/electromobility/pages/race.aspx
http://w3.siemens.com/topics/global/en/electromobility/pages/race.aspx

178 A. Knoll et al.

power train, chassis control, and occupant and pedestrian safety. Hardware-
independent applications are all those applications that do not require specific
hardware components (e.g., actuators with power electronics). By integrating
these functions on one single platform, RACE also addresses the trend that the
functions of different domains are increasingly interacting with each other and
the domain barriers vanish.

* Software updates in the field: users require continual updates to increase
the functionality of their cars. Therefore, frequent software updates in the
field of both of the platform and functions are an essential requirement. Agile
development methods are to be supported.

* Scalability and reuse: the RACE core platform shall support the scalability to
different platform variants. Reuse of applications must be supported.

This is accomplished by number of different concepts, most importantly a rigidly
implemented publish/subscribe mechanism, along with a data-centric structure that
not only ensures the necessary decoupling but also guarantees data consistency and
sparsity—data are produced and stored at only one place across the whole system.
Wherever possible, these concepts are supported by formal checks. For example,
checks are made to determine whether a complete and unambiguous data flow
graph can be obtained from the collection of application software components and
modules. Moreover, if there is a subscriber with several potential (publishers in the
computed data flow graph), then the RTE is checked to see if it has the appropriate
data fusion methods available (used, for example, for redundant sensors). If this is
not the case, the configuration will be aborted, and a corresponding message of the
reason is generated.

However, it was beyond the scope of the RACE project to produce a complete
guarantee of the overall behavior and timing of a RACE application architecture.
To check whether each component is supplied with data is certainly not sufficient
to ultimately ensure the functional integrity of the application architecture. This,
however, is an interesting subject for follow-up research.

3.2 Enabling New Business Models by Software Updates
and Opening Function Development to Third Parties

In order to meet the requirements arising from the OEMs’ desire to permanently
develop new business models around their cars in order to be able to react to
changing market needs, the core platform shall support the integration of functions
even in after-sales market. There should be no need to integrate these functions
during the original design phase of the car. Moreover, the architecture should be
open to the integration of third-party applications. This integration should not be
restricted only to applications from today’s Tier-1 suppliers but support the creation
of new ecosystems (see Sect. 7).

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 179
3.3 Built-In Safety and Security

The core should be designed such that it provides the necessary safety and security
for accommodating functions of the highest criticality level. It should support the
development of dependable systems covering:

* Availability: readiness for correct service up to fail-operational quality

» Reliability: guaranteeing correct service

» Safety: absence of unreasonable risk up to Automotive Safety Integrity Level D
(ASIL-D)

* Integrity: mechanisms to inhibit improper system alteration

* Maintainability: ability to undergo modifications and repairs

» Testability: simplifying verification strategies and analyzing misbehavior

* Security: protecting automotive software systems from unauthorized access, use,
disclosure, disruption, modification, perusal, inspection, recording, or destruction

Furthermore, the core should provide the basis for functions with fail-operational
requirements. The RACE core platform should support the execution of applications
in fail-operational mode. Even in case of a subsystem failure, the core platform
would guarantee the correct execution of the application.

The current software version of RACE runs under the PikeOS> hypervisor
real-time operating system. This allows for third-party software to work “in isola-
tion” and to prevent system crashes due to programming errors. While according
to the above list of requirements there was some work undertaken to design
a hardware security module for authentication, the implementation of security
measures resulting from the integration of potentially dangerous and malignant
software was not in the focus of the development work. However, it was made
sure that no design decisions were taken that would prevent security measures to
be implemented. By the same token, we expect this spatial and temporal separation
to be a key component in meeting safety requirements: a hypervisor like PikeOS is
used in many mixed-criticality environments and has stood the test of large-scale
deployment and can, therefore, be expected to also meet the safety and software
integrity needs in future cars.

3.4 Simplifying Migration from Other Platforms

Clearly, the core platform should support all applicable international automotive
standards and state-of-the-art technologies. Furthermore, the core platform will
support the collaboration between various partners by standardized data exchange

Shttps://www.sysgo.com/products/pikeos-hypervisor/

https://www.sysgo.com/products/pikeos-hypervisor

180 A. Knoll et al.

formats and support the integration of application software from various partners on
a single ECU via a run-time environment and across the entire vehicle network.

Despite its superior functionality, production costs for a customer system
platform based on the RACE core should not exceed the costs of a traditional E/E
architecture. Moreover, the nonrecurring costs should be driven down to a minimum.
Since these costs are hard to measure, it is important that production costs by
themselves be equivalent or even lower.

4 RACE Architecture Concepts

To meet the requirements listed above, a completely new architecture has been
developed, implemented as an advanced prototype, and integrated into a number
of demonstrator cars (Fig. 3). The leitmotiv has been to design an architecture that
fits the needs of information processing (‘“future cars will be computers on wheels”),
capitalizes on the rich experience in Computer Science and Informatics in the design
of mission-critical distributed systems, and makes it possible to keep pace with the
rapid progress in methodology and tools for software design.

The central concept is that of a platform, centered about functions that are
integrated very easily. The set of functions can hence change very easily and—
taken as a whole—constitutes the complete functionality of the car controller
across all domains. But not only that: since our focus is on communications and

% % Steering ' Cooling & Auto pilot m
) % heating @
X T e e eS| g
| @
=
w 3
o ‘ General Purpose RACE Controller (HW) ‘;
= -
@ . . n
8| Runtime Environment & OS (SW) g
| I/O-Expander as Sensor/ Actuator Connector (HWV)
=B | (DD e e e
m
Py
x Radar ‘ Camera | | Motor Battery

Fig. 3 Overview of the RACE architecture. The complete system consists of the controllers
(GPRCs), the run-time environment (RTE) running on centralized hardware, and the IO expanders
and interfaces. An integral part of the system is the engineering system, which provides all the
software tools for programming the components in a certifiable way. The goal here is to abstract as
much as possible from the hardware and to provide a “single system illusion” to the programmer

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 181

the communication protocols used within the car and those used outside the car
are mostly identical, there is no longer a fixed barrier between the car and the
infrastructure—this border becomes irrelevant.

4.1 General Structure and Communications

RACE is based on an execution platform consisting of General Purpose RACE
Controllers (GPRCs), implemented as so-called Duplex Control Computers (DCCs)
(see the following section), and a real-time run-time environment (RTE); see [5].
On top of this platform, OEMs can integrate their functions purely as software
components. The architecture is designed to be scalable; if further processing power
or resources, such as more memory, are required, additional RACE controllers can
easily be added. The GPRCs communicate via a high-bandwidth, real-time Ethernet
using the upcoming IEEE 802.1-TSN [6] standard.

Sensors and actuators can be integrated via common interfaces (CAN, local
interconnect network (LIN), Ethernet, digital/analog input/output (I10)). If more
I0s are required than what is offered by the GPRCs, 10 expanders (IOXPs) can
be attached to the GPRCs. An IOXP provides a number of 10 interfaces, but in
contrast to a GPRC it does not offer enough processing power to execute complex
software functions. Its main purpose is to interface with sensors and actuators,
which can provide any degree of local intelligence and/or data compression and/or
preprocessing capabilities. In any case, the main benefit of using such a hierarchical
system of data sources and data concentrators—as supported by our architecture—
will substantially cut back on the cable harness, which may significantly reduce
costs and failure probabilities.

Another concept that leads to significant cost and development time reduction is
reusability. Software functions communicate via OEM-defined interfaces with each
other and with the sensors and actuators. As a result, these functions can be reused
across different vehicles. If an OEM so chooses, these interfaces can be shared
throughout the industry (or collaboration partners), and reuse may even take place
across the industry.

The system engineering tool chain includes a test system and a continuous
integration solution. The tool chain is optimized for agile development. New
software components can be tested seamlessly at all levels, from software in
the loop, by way of hardware in the loop up to vehicle in the loop. The test
system enables fault injection to test different scenarios, such as rare and typically
irreproducible component errors. A configuration tool simplifies the integration and
building of new vehicles, automating many steps that in the past had to be done by
system integrators and were very cumbersome.

Altogether, the scalable platform, reusability of functions, and system engineer-
ing environment and tool chain offer a fast and flexible way to bring new functions
or changes to future cars. We will now look at specific safety and security aspects in
a little more detail.

182 A. Knoll et al.
4.2 Built-In Safety and Security

RACE implements a “Safety-Element-out-of-Context” approach as defined in ISO
26262. The run-time environment (RTE) offers a separation of all software functions
to eliminate any unintended interactions between software components. As a
consequence, the RACE platform can execute functions with mixed criticality on
the same controller (see Fig. 4).

4.2.1 Separation Concept

To further simplify the development of safety-critical systems, there are several
built-in safety mechanism patterns for different safety levels. GPRCs are currently
designed with two-channel controllers, where each channel or “lane” has its own
processing unit. For functions with no safety requirements (quality management),
the function can be deployed on any channel. If the function has safety requirements
but can be shut down in case of a failure, the function can be deployed to both
channels of a GPRC. The replication can be realized as homogeneous replication
(duplication the function) or diverse replication (two diverse implementations or a
“productive function” and a “plausibility function/watchdog”); see Fig. 5.

The run-time environment monitors the consistence of the results on both
channels and can shut down the function in case of an unwanted deviation. Functions
with fail-operational requirements (meaning a function must still be operational
even in case of component failures) are also available. These are implemented as
a master-slave mechanism provided by the run-time environment. This mechanism
allows the deployment of a function on two GPRCs to ensure the correct execution
even if one GPRC fails. Depending on the required fail-over times, the system can
be configured for cold or hot-standby mode.

4.2.2 Scalable Safety

All these safety patterns are based on an indication-based health-monitoring system
built into the RTE. The RTE permanently monitors the data flow and execution
of components. In case of a deviation from normal behavior, the RTE raises an
error indication. A health monitoring component collects all these indications and
determines the health status of the different fault-containment regions on application
component, hardware, and network level. Several mechanisms are available to react
to the failures of a component, ranging from fault masking if redundant results are
available to the actual shut down and separation of the faulty component.

Besides these safety mechanisms, RACE also incorporates a configurable secu-
rity mechanism, such as secure boot, authentication, authorization, and encryption.
Several mechanisms of the RTE contribute to safety and security at the same time.

183

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . .

Pasn 9q Ued SUI)SAS 1910 Inq ‘waIsAs Junerado SONIJ oy ut payuswa[dur st jourey uoneredes SurArapun ay)

1om se

‘Apuarm)) "wrojierd arempIey ouo Uo AJTeONIID

poxtw Surjpuey o) yoeoidde mo—Apuopuadopur uni ueo suonesrjdde jey) amsuo 03 awr pue ddeds ur sopdrourid uoneredas 10ms smo[[of AOVY $ SIA

ajpAo sw gl ‘6o

uopeindwog puno.boeg Hoy3 jsag
Kianooay Joug Kjuoud ybiH

| | uo
dl > €dl Zdl Niyed
awi
*
Jojdepy fliojdepy Jj0)de
PY 31y
L e RBInpayss

31y

'y A
Bnpayog [eso]

uoneiedas [eijodwa]

(lsusay) uonesedas) SO id

Klowsan

loydepy
31y

uones|jddy

Jojdepy
31y

uoljesi|ddy

b
I3|puey ol
Bleq

31y

uoneiedas aseds

184 A. Knoll et al.

Scalable Safety Concept

= Non-critical: Application runs on one lane of the GPRC
u Fail-Silent: Application runs on both lanes of the GPRC{homogeneous or diverse replication)
= Fail-Operational: Applicationis deployed on at least two GPRC and is actively executed on one GPRC
= Fail-Operationalwith very short fail-over times: application is executed on at least two GPRCs (Master, Hot-Standby
Slave)
Slave flag set Master flag set
Lane A Lane B Lane A . LaneB
Lane A ; P
=) (=0 -k
fos
_ [mwos |
Master | | .Mt'n!ke.(l
flag set initiative

Fig. 5 Illustration of the scalable safety concept. Depending on system configuration, applications
can be run that are noncritical or applications with fail-silent/operational behavior—all in mixed
mode on the same physical controllers

S Implementation and Tooling

We believe that the most important aspect when a disruptive architecture is to be
introduced is the compatibility with the current state of software engineering.

This will not only result in potential cost savings and a dramatic increase
in productivity, but it will also enable the OEM to keep pace with the rapid
developments in the consumer electronics world. Nevertheless, it is also of utmost
importance to keep abreast and keep in sync with the developments in the field of
mission critical systems in general and in autonomous systems in particular.

5.1 Information Flow

Figure 6 illustrates the information flow, which implements a “perception—
cognition—action” cycle. This makes it not only possible to adapt paradigms
from cognitive system theory and practice, but it also results in very logical layering
of the processing functions at an easily comprehensible level of abstraction. At
the lowest level, the data from (smart) sensors are generated and are routed into
the system through a communication layer (middleware). Likewise, through this
communication layer, the signals needed for behavior generation, i.e., the data for
the (smart) actuators, are also distributed.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 185

Run Time Environment (RTE) for the execution of

o A A Al
applicatiol software blocks L pp. ‘ . L PP

Centralized computing platform

Sensor) Actuator
Data

Vehicle data model Signals

Run-time Services

Smart 4 Smart

Sensors Actuators
| Sensor Actuator

V\, Data Signals

Fig. 6 Illustration of the basic implementation of a concrete car with four central Duplex Control
Computers (DCCs). The general structure supports the construction of a “perception—cognition—
action” architecture

The middleware subsystem used in RACE is based on CHROMOSOME [7]. In
principle, other middleware systems could also be used, such as Data Distribution
Service (DDS) [8]. One layer above the communication middleware is the layer
of centralized processing through the control computers; these are the dual-lane
processing elements described above. Depending on the processing power that is
needed, there can be an indefinite number of DCCs.

The execution layer (run-time environment (RTE)) is responsible for the (virtual)
connections between sensors and actuators. These connections can be dynamically
generated, using the central data model of the vehicle, i.e., the abstraction of
sensors and actuators. The RTE also provides the fail-operational services, as well
as the “Plug & Play” management of all entities. The “Apps” correspond to the
(retrofittable) automotive applications shown in Fig. 3.

Figure 7 shows an example of how this general architecture may be mapped to
a topology in a real car: there are two DCCs, one for the drivetrain and energy
source control, the other one for braking and steering. Hardware redundancy on the
communication level is achieved by double ring structure: an inner ring for the direct
DCC communications and an outer ring for sensors and actuators. Both rings are
doubled so that the physical failure of one ring does not lead to a complete system
failure. The communication protocol is a partial implementation of [6]; the DCCs
can run mixed-criticality applications. There are also provisions for ingress/egress
rate limiting to isolate faulty components, and there is hardware support for the
precision time protocol (PTP).

186 A. Knoll et al.

Actuator Fl.et.—;t-ﬂc
Sofinector steering

Duplex Control Duplex Control |
Computer 1 Computer 2

Sensor/ e
‘;‘S;n“:?gr Actuator Elft_[”_'
connector connector EL

m
=
é
z
=
®
32
=

Fig. 7 Example of a topology of in a car with two central Duplex Control Computers. Inner
glass-fiber ring (red) for DCC to DCC communication, outer ring (white) for sensor and actuator
communications

5.2 Software Design

As mentioned above, one of the primary goals of RACE is to create a structural
environment, i.e., the RTE, in which the latest developments in computer science,
software engineering methods and tools, as well as insights from research into
autonomous vehicles, can easily flow together. The resulting requirements on the
RTE based on these project objectives are:

e The complexity of the software system should be reduced to the absolute
essential minimum (see introductory section). This is realized by providing
a modular development environment based on the decoupling of application
modules that can establish dynamic communication links via virtual channels
with guaranteed quality-of-service levels.

¢ Introduction of new complex functions at run time should be supported. This is
realized by abstracting all automotive domain functions to the software level.
New functions can hence be introduced simply by adding software modules.
Clearly, this has not been done yet, but the foundations have been laid in
RACE. This can be compared to the developments in the smartphone domain:
they already combine a plethora of sensor modalities (vision, audition, touch,
inertia ...) in one single device, and hardly any new function needs a hardware
accessory—it is all performed within the software. It is likely that at least in the
sensor/communication domain, customers will expect the same from their cars.

* Plug-and-play capabilities are also mandatory. Customers will want to add new
functions, or they want to attach new devices with added functionalities, such as
additional entertainment equipment. If new complex functions are added (e.g.,
more sophisticated assistance and/or autonomy functions), this may even require
the addition of one or more duplex control computers (DCCs), which means that
the RTE has to be highly scalable.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 187

* Scalability with respect to functions and computation platform is also a must.
This is approached by providing automatic configuration tools and functions
wherever possible and therefore provide a maximum of scalability with respect
to functions and resources.

 Certifiability is of the utmost importance. We believe that in the future, formal
methods will have to be applied to ensure correct system behavior in all
circumstances. However, until the underlying theory is powerful enough, we
must provide all the generic mechanisms for safety and security, which will have
to comply with the present standards for mission-critical systems.

Finally, there should also be a clear migration path from today’s architectures to
an environment like RACE.

Looking at the current state of run-time environments, and starting from that
point, in RACE we have added the following features: (1) data-centric design, (2)
segregation in time and space for running mixed-criticality applications on cost-
effective hardware, (3) configurable safety and security mechanisms that enable
tailored fault detection and recovery, (4) testing environment that can inject faults
and trace them, and (5) automatic configuration functions at all levels.

It is beyond the scope of this article to elaborate on all of these topics.
However, we describe one aspect of the RACE implementation: the data-centric
communication design based on CHROMOSOME (see Fig. 8). The state of the
art is to explicitly “wire together” senders and receivers via messages over a bus
system. This results in strong coupling, an inflexible topology, and very often a
redundant data acquisition and processing. The basic concept for data exchange
is the decoupling of physical connections and logical communication relations.
Moreover, data types can be associated not only with a syntax but also with
semantics (why is it there? how is it used? etc.) and attributes (e.g., how precise
is it?). These properties are stored in a central “topic dictionary,” which lends itself
to automatic configuration because dependencies, contradictions, redundancies, etc.
can be checked automatically. All of these entities are supported by powerful tools,
typically adapted from open-source tools, like Eclipse, that underpin rapid access to
all system variables with all associated information, stored in one central repository.

Such automatic configuration—together with the modularity that enables the
“plugging together” of predefined parameterized components—can be of great help
in the system integration process. At the same time, the RTE registers and analyzes
different error indications, which are accessible to all the DCCs in the system (see
Fig. 9). There is a very fine-grained error handling available, with several reactions
possible as a result of an error/failure indication. Errors inside the RTE can be
handled by error masking (if there is redundant data). The application management
can decide on a graceful degradation of the application and an adjustment of perfor-
mance level, can change the master/slave role assignment, and/or activate/deactivate
masters and slaves. Finally, the overall platform management can deactivate DCCs,
and it can determine the whole platform mode, including an emergency shutdown
after driving the system into a safe state.

A. Knoll et al.

188

HOV Y ul uSisop olueo-ereq § ‘814

0 200amysg Sidung umlysg Syhins
0 uogry AuEENED UooERY AMesnel o
0 uoniey Aawane) uooney Apeined 4

Aoeunooe 68 ‘wey ejep jo saedold Jeyund = aynquUNy - s e A" s S i
AgojeA Jeo il dccindede oo W
‘Bra ‘xejuhs pue sojjuewas pauyep yym adA) ejeq = aidog - o= e e ﬁﬁﬁh
mgb EWU U@CF@%&Q uo BRURATSIIRINAI = UOAIMIP MO IR LODLIYRT SApa BINquINY =
paseq ‘wsiueyos|y-(S)equosqns-(d)ysiignd :uonejuswajdw|
30V 10} INOSOWOYHD UM Buljepoy T orton vt + &

e 30 TR R &

B eves e wspue op &

Wby Jeay =

Japanu) B

-ejeq

31 ut Aposuip ejep ejeplieA o} Ajljiqissod =
T Aqixely pesesou|

| adoy. :Alleonewolne pejejnojeo eq ueo uoneinByuod
= o1e)s ‘JaAI908l puE Jepuss Jo Buidnoseq =

=
]

Wby Jeay
1apan) 2

Yo teay

Sl |2pad-feany

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 189

Loss signal
redundancy -
Validate S
Bats mance
Data failures Level Calc
(range, jump, ...) f
Data Monitoring Lane inconsistency Indication
time error —1—> Management
10 Management Driver CRC, —I_’

frame counter

(RACE Ethernet O

Fig. 9 The RTE registers and analyzes different error indications and makes them accessible
system-wide

6 Realization on the Hardware Level

We briefly outline the design of the hardware that was developed for the prototypes.
We have realized a number of successively complex testing configurations, equipped
with prototypes of the hardware—starting from desktop “breadboards,” by way
of laboratory setups to complete cars. These cars (built by Roding GmbH, a
manufacturer of small-series sports cars) were tested on a specially designed test
rig (Fig. 10).

These cars have two wheel-hub motors and a steer-by-wire system without
mechanical fallback, and they are a carbon/aluminum lightweight construction with
a total car mass of 1250 kg. The braking system is a fully electric braking “future
brake system” from TRW; the steer-by-wire subsystem was provided by Paravan
GmbH. The E/E architecture is a redundant design based on RACE with an Ethernet
ring structure, as depicted in Fig. 10, which uses of IOXPs for connecting sensors,
actuators, and Human Machine Interface (HMI). The overall performance is 126 kW
(up to 330 kW for a limited period of time); the overall torque is 1000 Nm (up to
2500 Nm for a limited period of time). Power electronics operate at a voltage level
of 720 V; the battery capacity is 20 kWh.

Figure 11 shows the topology of the connections of the DCCs with all the units
in the car, including the HMI and the steering wheel (an example of a redundant
connection). The cars were built and programmed by a small project team. Several
mission-critical functions were implemented and tested successfully. A complete
set of functions, which would have enabled the cars to drive on a test site, was

190 A. Knoll et al.

Fig. 10 The cars equipped with the RACE architecture. Top: physical appearance, bottom: car
on test rig with direct coupling (all four wheels) to external electric motors that can induce very
realistic driving dynamics scenarios

not implemented in RACE. As a project continuation, a parcel delivery vehicle
was equipped for road testing by Siemens AG after the end of the RACE project
(Fig. 12).

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 191

Camera Ultrasound Display Battery Hub Motor

5 < Il : '

Camera) HMI

entral Computer

Lidar/
RELETS

Lidar/Radar
Change frame . Steering 5 Inverter
Wheel /

Steer-by-Wire Force Feedback Force Feedback Brake
Actuator Steering Wheel Pedal System Hub motor

Fig. 11 The topology of the sensors, DCCs, and actuators in the prototype cars

Fig. 12 The physical realization of the DCC (left) and the IOXP (right). The DCC has two ARM
A9 CPUs and four RACE Ethernet connectors, as well as two test Ethernet. The IOXP features
one CPU and several I/0s: CAN, LIN, digital, and analog. It also has two RACE Ethernet and one
Test-Ethernet connector

7 Deployment and Business Opportunities

There has been an ongoing discussion about the commercial viability of alternative
architectures, as outlined in the introductory section of this article. Clearly there
are lots of arguments in favor of evolutionary approaches and certainly just as
many arguments for disruptive changes. The problem for decision makers is that the
question in general is virtually undecidable because there are so many factors that
influence the decision. These range from nonrecurring costs by way of integration
cost for every specialty of a car series, to the cost and risks resulting from customer

192 A. Knoll et al.

desires for functional update over the lifetime, to the maintenance costs of (reusable)
software, and to the replacement strategies of obsolete hardware.

The major challenge of automotive OEMs is the complexity of the E/E architec-
ture conflicting with the required faster innovation cycles in the age of digitalization.
This issue can be addressed with an approach like RACE because it reduces
the number of controllers, minimizes the heterogeneity of network technologies,
and offers several generic services that need to be covered during application
development. Another complexity issue addressed by our approach is the undesired
redundancy of data signals. With each new generation of cars, the number of data
signals increases significantly.® The reason is mainly the difficult access to data
across the different domains, controllers, and network technologies. A centralized
approach offers a solution to this issue, and RACE alleviates this problem further by
its data-centric design and the homogeneous hardware platform. Even if RACE is
not used down to the implementation and hardware level, some of its concepts may
still be used as a basis to redesign the function architecture with modularity and data
centricity and be reused at the application level only.

Altogether, the approach pursued here enables OEMs to build up a common
architecture across the different car platforms produced by the manufacturer,
including the possibility to reuse the functions across the different cars. New and
innovative suppliers can enter the automotive market and readily integrate their
functions. While in the past new suppliers had to provide an integrated electronic
control unit (ECU) with their function (software), which made it difficult for them
to enter the market, they can now deliver just the software as a safety element out
of context. This makes it also possible for the OEMs to reduce their dependency
on tier-one suppliers. In addition, this approach also simplifies the in-sourcing of
differentiating “brand-defining” functions by the OEM.

Finally, the approach using generic hardware and a high-integration platform
offers the possibility to switch from a “bill of material” business model to a “revenue
over lifetime” business model. Today, the electronics are individually optimized for
concrete functions, which come with their own ECU. It is hard for developers to
request additional resources to prepare for later software updates—or even new
functions—because these resources would need to be stretched over a very high
number (typically over 100) of ECUs. With the drastically reduced number of
controllers that implement application-level functions, the software deployment,
support, and update mechanisms can be changed in such a way that after-sales can
be significantly increased. Therefore, a modular approach like this architecture lends
itself to business developments along several lines:

e The RTE is the core offering, including a configuration tool.
e The full system is offered as a modular toolbox to be used (i.e., integrated and
configured) by OEMs with focus on safety up to ASIL-D and fail-operational

6Some OEMs assume that the instantaneous speed of a car (i.e., one unambiguous variable) is
identified by more than 20 different functions inside the car, e.g., by direct measurement, derivation
from other sensor signals, or an estimation.

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 193

mode; it includes an operating system from a preferred supplier, communication
system, and hardware development support.

» The application software development is delegated to a partner network. While
RACE can be used as a “neutral” and open platform, third parties can integrate
their functionality easily. It offers application engineering support up to Refer-
ence implementations.

* Fully integrated RACE controllers or support in HW design and manufacturing
services can be provided.

* Integration services are not within the focus today, but customers can profit from
the experience and expertise/Know-How in the RACE team.

The complete substitution of a proven architecture basis in large-volume car
series without changing the structures of the producers’ organizations is clearly
infeasible. We therefore suggest collecting experience from the producers of smaller
series, e.g., of special-purpose vehicles with low production volume (~3000 cars
per year), which are individualized for specific customers. An interesting example
is StreetScooter,” a company producing specialized parcel delivery vehicles. Due to
the low volume of the market, this domain is not relevant for big OEMs and smaller
companies can enter the market, testing the viability of their ideas. The major
challenge of these manufacturers is exactly this low volume. It is not profitable to
design specialized controllers for these cars, and therefore the manufacturers depend
on already existing controllers from first-tier suppliers. However, due to the low
volumes, required modifications are not given very high priority.

8 Summary

RACE is designed to fully support the requirements of upcoming automotive
functions. With respect to automated driving, RACE offers a fail-operational
platform, allows the integration of functions with different criticality levels on one
controller, and offers high performance and safety simultaneously. Especially the
latter is of importance as today’s high-criticality solutions are based on processor
technologies with low performance. Connected mobility is addressed by a high-
bandwidth network based on [6], built-in interfaces to web services (prototype), and
built-in security mechanism. RACE has developed several unique properties that
will be required in the future:

* No tradeoff between performance and safety: while today’s solutions rely
typically on high-performance processors for functions with lower criticality
levels (up to ASIL B) and low-performance processors for functions with high
criticality levels, RACE has the potential to provide full processing power up to

"http://www.streetscooter.eu/

http://www.streetscooter.eu

194 A. Knoll et al.

the highest safety levels. It is also a complete solution for functions with fail-
operational requirements.

* Hardware designed for use in series production: standard suppliers optimize
the controllers based on customer requirements. This is, however, only feasible
for larger volumes. RACE provides controllers ready for application in car
production. The low volumes of each single application are compensated by the
general applicability across different cars.

» Solution optimized for in-house configuration and integration: today, integration
of functions is typically done by the supplier. This leads to high costs and delays
in development. RACE offers the possibility to configure the platform and to
integrate software components by the OEM, shortening the development times.
Configuration and integration tools automate many previously tedious tasks and
reduce the risk of introducing errors. With RACE, the OEM has the choice to
decide whether configuration and integration are done in-house or by a service
provider.

* Qualified tool chain and infrastructure for agile development: RACE will provide
a qualified tool chain and infrastructure for agile development, reducing the
development time. Similar to prototyping platforms, RACE will offer a seamless
integration of development tools. The result, however, will be serial code running
on serial hardware.

* Designed for testability: RACE RTE was designed with testability in mind.
All data flows can be monitored by a nonintrusive test system guaranteeing
exactly the same behavior with and without the test system. Furthermore, a fault-
injection infrastructure is available to provoke specific situations simplifying the
verification systems significantly. This is made possible through a dedicated and
fixed scheduling time slot for testing. This approach sacrifices some time and
computational power, but we consider the ease of testing that results from it a
good trade-off (see [9]).

* Designed for updates: RACE offers direct support for integrating new functions
or updating existing functions via updates over the air. Via this mechanism, auto-
motive functions become a freestanding product. The “Plug & Play capability”
allows for new business models for the aftermarket.

Acknowledgments The development of the RACE platform was supported by the German
Federal Ministry for Economic Affairs and Energy (http://bmwi.de/); see http://www.projekt-race.
de/en/.

The authors wish to express their gratitude to the whole team who made the development of the
concepts, tools, and the cars possible in record time. This project was only possible through a real
concerted team effort and a lot of passion on all sides. Clearly, an overview paper like this can only
describe results at a rather high level. The authors are happy to provide additional information on
request.

http://bmwi.de
http://www.projekt-race.de/en
http://www.projekt-race.de/en

The RACE Project: An Informatics-Driven Greenfield Approach to Future E/E. . . 195

References

1. Bernard M et al (2010) The software car: information and communication technology (ICT)
as an engine for the electromobility of the future. A study for the German Federal Ministry of
Economics and Technology. Published by fortiss GmbH. http://www.fortiss.org/ikt2030/

2. Watkins CB, Walter R (2007) Transitioning from federated avionics architectures to Integrated
Modular Avionics. In: 2007 IEEE/AIAA 26th digital avionics systems conference, pp 2.A.1-1-
2.A.1-10. https://doi.org/10.1109/DASC.2007.4391842

3. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A
(2009) ROS: an open-source Robot Operating System. In: [EEE-ICRA workshop on open source
software in robotics organized by Hirohisa Hirukawa and Alois Knoll, Kobe, Japan, May 2009

4. Sommer S, Camek A, Becker K, Buckl C, Zirkler A, Fiege L, Armbruster M, Spiegelberg
G, Knoll A (2013) Race: a centralized platform computer based architecture for automotive
applications. In: Vehicular electronics conference (VEC) and the international electric vehicle
conference (IEVC) (VEC/IEVC 2013), IEEE, October 2013

5. Becker K, Frtunikj J, Felser M, Fiege L, Buckl C, Rothbauer S, Zhang L, Klein C (2015) Race
RTE: a runtime environment for robust fault-tolerant vehicle functions. In: Proceedings of the
CARS workshop, 11th European dependable computing conference — dependability in practice,
2015

6. http://www.ieee802.org/1/pages/tsn.html

7. Buckl C, Geisinger M, Gulati D, Ruiz-Bertol F, Knoll A (2014) CHROMOSOME: a run-
time environment for plug&play-capable embedded real-time systems. In: Sixth international
workshop on adaptive and reconfigurable embedded systems (APRES 2014), ACM, April 2014

8. http://www.omg.org/spec/DDS/

9. Frohlich J, Frtunikj J, Rothbauer S, Stiickjiirgen C (2016) Testing safety properties of cyber-
physical systems with non-intrusive fault injection — an industrial case study. Proceedings of
the workshop on dependable embedded and cyber-physical systems and systems-of-systems
(DECSo0S). In: Skavhaug A et al (eds) Proceedings of the workshops international conference
on computer safety, reliability, and security (SAFECOMP), vol 9923, Springer, LNCS, pp 105-
107

http://www.fortiss.org/ikt2030/
http://dx.doi.org/10.1109/DASC.2007.4391842
http://www.ieee802.org/1/pages/tsn.html
http://www.omg.org/spec/DDS/

Development of ISO 11783 Compliant)
Agricultural Systems: Experience Report @

Enkhbaatar Tumenjargal, Enkhbat Batbayar, Sodbileg Tsogt-Ochir,
Munkhtamir Oyumaa, Woon Chul Ham, and Kil To Chong

Abstract The connection of different modules from different manufacturers into a
single bus for the exchange of data and control is a challenge for the agricultural
machinery industry using ISO 11783 standards (called ISOBUS in the market). It
shows strong potential to become the de facto standard for the exchange of data
between modules on the agricultural tractor. This research presents the development
of an ISOBUS monitoring system and virtual terminal (VT) for agricultural
vehicles. The graphical user interface (GUI) of VT is developed on the embedded
system by using the Qt with cross-platform for an ARM Cortex-A9 microprocessor
named by Freescale i.MX6 Quad. The GUI application programs were developed
based on the Isocore-suite commercial library by the OSB AG Engineering company
and certified by the Agricultural Industry Electronics Foundation. The implemented
electronic control units (ECUs) and ISOBUS monitoring system were developed
by the ISOAgLib open-source library, in addition to tools such as the vt-designer,
the vt2iso, the CAN server, the CAN messenger, and the CAN logalizer. The
implementation of ISOAgLib is fully compatible with the ISO 11783 standard. The
hardware implementation is the development board for the STM32 ARM Cortex-
M3 microcontroller. The implemented ECUs were experimentally tested on the ISO
11783-compliant intelligent monitoring system AFS Pro 700 for the New Holland
Agriculture tractor. Also, we simulated VT-Server and implemented the sprayer, the
manure spreader, the global positioning system modules with the Kvaser PCle CAN
device, and PCAN-USB device in order to analyze all CAN messages and network
protocols such as the transport protocol (TP), extended transport protocol (ETP),
address claiming, and request parameter group number (PGN) messages. Finally,

E. Tumenjargal (P<)
Department of Electronic Engineering, Chonbuk National University, Jeonju, Republic of Korea

Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
e-mail: t.enkhbaatar @must.edu.mn

E. Batbayar - S. Tsogt-Ochir - M. Oyumaa - W. C. Ham - K. T. Chong
Department of Electronic Engineering, Chonbuk National University, Jeonju, Republic of Korea
e-mail: enkhbat@jbnu.ac.kr; wcham @jbnu.ac.kr; kitchong @jbnu.ac.kr

© Springer Nature Switzerland AG 2019 197
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_9&domain=pdf
mailto:t.enkhbaatar@must.edu.mn
mailto:enkhbat@jbnu.ac.kr
mailto:wcham@jbnu.ac.kr
mailto:kitchong@jbnu.ac.kr
https://doi.org/10.1007/978-3-030-12157-0_9

198 E. Tumenjargal et al.

we present an ISOBUS object pool (IOP) binary file from the implemented ECU
and an interpretation of IOP files shown on the CONLAB-VT.

1 Introduction

Since 2010, our team has been working on the ISO 11783 standard by implementing
a virtual terminal (VT) and universal gateway for agricultural machinery. The
EUREKA foundation supports that project. How can the ISOBUS network be
monitored? Our development based on the parameter group number (PGN) message
gives us more information on the connection between the electronic control unit
(ECU) and VT implemented. An ISOBUS-PGN message is a unit number following
the ISO 11783 standard and J1939. The main challenges of implementation of the
VT are what does the ISOBUS really look like, what is the practical experience with
Qt graphical user interface (GUI)-based application development, how compatible
are the tractor systems, how can functional safety be guaranteed, what about the
certification of the Agricultural Industry Electronics Foundation (AEF) and the
ISOBUS plugfest? These are challenges for the entire agricultural industrial sector.
Agricultural machinery control is an interdisciplinary field of study concerning the
integration of mechanics, electronics, and software engineering expertise. Today,
a new generation of tractors exists with capabilities so advanced that they can
be entrusted with many of the roles and responsibilities that were once handled
manually. This evolution in tractors is the direct result of continuing research
advancements among its constituent disciplines. The ISO 11783 standard has, and
continues to be, an active area of research within the agricultural engineering
community. Before the advent of ISOBUS, farmers were restricted to using specific
precision displays and proprietary operating systems for the control of machinery.
This led to reduced efficiency owing to the lack of compatibility between proprietary
solutions from various manufacturers, which often cannot communicate with each
other. Farmers regularly work with tractors and other implements (components)
from different manufacturers. The absence of standardization between electronic
systems from these various manufacturers makes it complicated to use them,
as the different proprietary solutions mean that the implements do not connect
smoothly or may not connect at all. Another problem is that the tractor and each
of the components require their own individual terminal for data exchange and for
control of the machine. For a while, this situation was disappointing because it
is not feasible to use innovative products [5, 6], hence the need for the ISOBUS
standard. After the publication of the ISOBUS standard, agricultural equipment
manufacturers invested a huge amount of money in the development of this standard
and even more on the design of an ISOBUS-compliant product. Some tractors
and many types of machineries support the ISOBUS standard nowadays, which
means that this is the right time for ISOBUS to continue to grow. The ISOBUS
standard provides many advantages to farm owners, namely, comprehensive tools
and standardization of the control setting interface, a better overview in the cabin,
simpler connection between tractor and implement via “plug in play,” system

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 199

reliability, in addition to cost and time-savings due to precision agriculture. ISOBUS
allows the downloading of tasks of the planned field operation onto the farm
management computer, along with calculations required for control. It also supports
the eventual uploading to the operator’s terminal (known as the monitoring system)
in the cabin through an SD card, a USB, WLAN, or a wireless network. It is possible
to plan and evaluate the use of resources for farmers. In addition, ISOBUS is
especially suitable for cooperation between large manufacturers and small suppliers
that can be eventually provided to farmers. ISOBUS will be the main connection
between tractors and implements in the future; furthermore, every tractor and
machinery manufacturer will fully support the ISOBUS standard. The farmer will
only have to connect their ISOBUS implement, and the ISOBUS will bring up
its own operator terminal. The ISOBUS group is primarily composed of eight
manufacturers and three associations plus an additional 200 members. It is forecast
that the number of ISOBUS device manufacturers will rise sharply and may interpret
the standard in their own way, but this can lead to incompatibility problems. To
address the problem, events are held where devices are tested by their manufacturers
for compatibility, for example, the two annual plugfest events organized by the
AEF, where manufacturers can test the plug-and-play compatibility of their devices.
The AEF tests the compliance of a device with the ISO 11783 standard in their
laboratories, establishes a database, and maintains transparency with regard to the
functionality supported by specific products and their compatibility with others.
Since the establishment of the ISOBUS standard, it has required a higher number
of software systems. Software development, and especially software architecture, is
the key to achieving cost savings in an ISOBUS system.

2 Background of the ISO 11783 Standard

The ISO 11783 standard establishes parameters for communication between ECUs
in agricultural machinery and implements. This standard has 14 parts, with 11
published by the ISO, and was started in 1991 by an ISO committee formed by the
union of two other standards, the DIN 9684 Standards Association of the German
Deutsche Industrie Normen (DIN) and the SAE J1939 North American Society—
Society of Automotive Engineers (SAE). The standard DIN 9684—Agricultural
Tractors and Machinery or standard LBS (Landwirtschaftliches Bus-System—
Mobile Agricultural Bus) was developed in Germany by groups of companies and
institutions associated with the DIN. The first version of the standard was completed
in 1997, with five parties, two of which had great influence on the standard ISO
11783. The SAE J1939 (2007)—Recommended Practice for Truck and Bus Control
and Communication Network—was developed by the SAE J1939 Truck and Bus
Control and Communications Subcommittee for applications in heavy vehicles such
as buses, trucks, and construction vehicles. The working group (WG1) of the ISO
11783 first held discussions in February 1991 [4], addressing the development of a
standard connector and adopting the use of the latest standard CAN 2.0B. Currently,

200 E. Tumenjargal et al.

Table 1 Current status of the parts of the ISO 11783 standard [6]

Parts Title Status (international standard)
Part 1 General standard for mobile data communication ISO 11783-1
Part 2 Physical layer ISO 11783-2
Part 3 Data link layer ISO 11783-3
Part 4 Network layer ISO 11783-4
Part 5 Network management ISO 11783-5
Part 6 Virtual terminal ISO 11783-6
Part 7 Implement messages application layer ISO 11783-7
Part 8 Power train messages ISO 11783-8
Part 9 Tractor ECU ISO 11783-9
Part 10 Task controller ISO 11783-10
Part 11 Mobile data element dictionary ISO 11783-11
Part 12 Diagnostic services ISO 11783-12
Part 13 File server ISO 11783-13
Part 14 Sequence control ISO 11783-14

Transmission Engine |

Fig. 1 Agricultural tractor network structure based on the ISO 11783 standard [1, 3, 4]

the ISO 11783 is formed of 14 documents. The current state of development of the
standard is described in Table 1. Figure 1 shows a full tractor system that consists
of the main network tractor bus based on SAE J1939 and an implement bus based
on ISO 11783. The tractor bus is used for its own internal system ECUs such as
the hitch control ECU, the transmission control ECU, and the engine ECU. It is
supported by global or specific destinations in the network using its own specific
source address (SA), and it can be integrated onto the monitoring system. The tractor
bus may use undefined messages (data length, package size, or data description
that are undefined in the standard) for the manufacturer’s secret, in addition to
proprietary messages specified in the standard.

Part 1 of the ISOBUS standard is the foundation of this standard. This section
presents the terms and definitions used in the 13 remaining parts, the abbreviations

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 201

of terms, the application of the Open Systems Interconnection (OSI) model
standard, and the requirements of an ISOBUS network. Annexes of this part contain
all message identifiers, address and preferred industry groups, control functions, and
codes of manufacturers. Furthermore, there are also forms of codes for the requests
of manufacturers, for new identifiers, or for their modification.

Part 2 of the standard ISOBUS describes the physical layer, the electrical
parameters, the standard connectors, the minimum behavior of the network in cases
of failure or loss of connection from the CAN bus and attached to a subdivision
bit of time and examples of electrical circuits. The physical layer is based on
protocol CAN 2.0 B and sets a rate of 250kbps for serial communication. CAN
2.0 B also defines the physical environment, or the bus, consisting of four lines:
two data conductors called CAN high and CAN low and two reference electrical
conductors called terminating bias circuit power (TBC-PWR) and terminating
bias circuit ground (TBC-GND). The standard connection between the tractor
and agricultural implement is carried by the connector implement bus breakaway
connector (IBBC), which is located in the tractor. The main function of this
connector is to group the data pipeline with the pipeline of power (electricity).
Thus, an agricultural implement tractor gets the connection to the CAN bus and
12V power through a connector only, the implement breakaway connector (IBC),
located in the agricultural implement. Both connectors are shown in Fig. 2.

This part also defines that a termination should be located at both ends of each
rail, for example, in both the tractor bus and the implement bus. This termination,
called terminating bias circuit, has the function of providing an electrical reference
level between the pins and the CAN-H and CAN-L and promoting impedance
matching at the ends of the network, through the power provided by the pins and the

100 5 {?1'12]

|

61,7 23 |

24,16 205

uwy u
- -
Tl A . —| 2
=| ==
el % Sy 3
uw
o4
=
+
: 1
Z %
s Iso 17832 &
| v
1-GND 4 -ECU PWR 7-=TBC_RTN
2-ECU_GND 5=TBC_DIS 8-CAN_H
3-PWR 6—TBC_PWR 9—-CAN_L

Fig. 2 Implement breakaway connector and implement bus breakaway connector, and pin alloca-
tions

202 E. Tumenjargal et al.

Agricultural Implement

ECU ECU ECU ECU
SA=80 SA=81 SA=82 SA=83
SRR TR RSB RSB
“ - - =
2 2 iy Y
< =z 2 <
g g E IBBC

@. Implement Net\;érrk
= e

Fig. 3 Network topology in an agricultural implement

Tractor Implement
VT TC GPS ECU ECU
S5A=38 SA=247 SA=28 SA=80 5A=81
- N = N . = N
IBBC IBBC IBBC

Implement Bus Implement Bus

TECU EoweIake Hitch Control
SA=240 Rl (E10) SA=35
SA=7 e
TBC TBC

‘ : Tractor Bus - ’

Fig. 4 Network topology on a tractor. SA, source address

TBC-PWR and TBC-GND. This standard connector allows for the communication
of an agricultural implement with a tractor that has the IBBC. At the other extreme,
the implement must contain a TBC as the end of the implement bus moved the
tractor to the implement. As shown in Fig. 3, the tractor and the implement bus,
which owns the TBC correctly in its extremes, is divided . As can be observed
in the three previous configurations, the standard IBBC also has the function of
performing the function of the TBC. When the IBBC implement is not connected
to the connector itself at one end of the bus, it therefore provides termination of
the TBC. When the IBBC is connected to the tractor implement, termination of the
TBC is automatically disabled, as this site is no longer considered the end of the
bus, which is located at the end of the agricultural implement bus. The agricultural
implement must provide the TBC in extreme buses.

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 203

The topology of a network ISO 11783 on a tractor is shown in Fig. 4. The tractor
has two buses: a tractor bus and an implement bus. The two buses are separated
by the tractor ECU. Each control function communicating on the ISO 11783 data
network requires an SA. There can be a one-for-one relationship of SAs with ECUs
and control functions on the network. If an ECU performs more than one control
function, an address is required for each control function.

Part 3 of the ISO 11783 standard describes the data link layer. We describe
the format of the message board, the unit of data protocol, or protocol data unit
(PDU), message types, message priority, the mechanism of access to means of
communication, the arbitration process, the detection of errors, the TP, and the
annexes to this party in question, a routine for message processing, the sequence of
data transfer (DT) via TP, and examples of communication mode. The data link layer
is also based on the CAN protocol. The identifier field is divided into smaller fields,
according to the SAE J1939 standard, which adopts the extended frame format, the
CAN 2.0 B. This format defines the identifier of 29 bits. The handle consists of six
fields: priority (three bits), data page (one bit), reserved (one bit), PDU format (PF;
eight bits), PDU specific (PS; eight bits), and SA (eight bits), as shown in Fig. 5.

The standard defines an entity called a “group parameter number,” or PGN.
The PGN is composed of the reserved fields, data page or PF, and PS, totaling 18
bits. Each PGN is associated with one and only one message. Thus, messages are
identified by PGN, which are in the identifier field of each frame. The field data must
be interpreted by the ECU according to the PGN identified. That is, for each PGN
there is a protocol that defines the content and the division units from the data field.
The messages are divided into two formats as the destination address. Messages can
be sent to a specific address in PF 1 or to a global address (broadcast) in PF 2. The
identification of the two types is made on the field PF. When the value is smaller
than PF 240 (F016), the message is sent to a specific address. In this case, the PDU

Control

Arbitration field Fleld
!4 . 32 bits)I(" 8bits ><— Datafield >
S | Identifier |R |1 Identifier Rir|r| DLC Data Field CRC | ACK | EOF
(0] i D T|1]0 Field
F 11 bits RI|E 18 bits R 4 bits 0 to 64 bits 15 bits| 2 bits | 7 bits
] Bit Stuffing >~ No bit Stufling —>
Type <« ParameterGroup ¢ Addressing >
PDU1 nﬂ P El PDU Format (0-239) [Destination Address (0-255) | Source Address (0-255)
Ibits 1 1 8 bits 8 bits 8 bits
< Parameter Group »<— Addressing —»
PDU2|piP|P j PDU Format (240-255) l Group Extension ‘ Source Address (0-255)

Fig. 5 The identifier field of the CAN packet

204 E. Tumenjargal et al.

field is not considered in the PGN. In the second case, the value of the PF is greater
than or equal to 240, and the PS is an extension field for the identification of the
PGN. In this case, there is no specific destination, and all ECUs should receive the
message. As regards the PGN field data page, the maximum number of possible
PGNs to be used is doubled. Overall, (240 + 16 x 256) *x 2 = 8672 PGNs
can be transmitted. The TP is described at the data link layer. The TP is aimed at
packing and unpacking messages with a size between 9 and 1785 bytes and also to
manage the transport connection. There are two PGNs assigned to a TP: connection
management (CM) and DT. The ISO 11783 standard currently supports five types of
messages: commands, requests, broadcast/responses, acknowledgments, and group
functions. The command message type categorizes parameter groups that command
a specific or global destination from a source. The request message type, identified
by the PGN, provides the ability to request information globally or from a specific
destination. The broadcast/response message type can be either an unsolicited
broadcast of information from a controller or a response to a command or request.
The acknowledgment-type message is available in two different forms. The first
form is provided by the CAN protocol, whereas the second form of acknowledgment
is the response of a “normal broadcast,” or ACKnowledgment (ACK) or negative
ACKnowledgment (NACK), to a specific command or request as provided by an
application layer. The group function message type is used for groups of special
functions (e.g., proprietary functions, management functions, multi-packet transport
functions). Transport protocol functionality is subdivided into two major functions:
message “packetization” and reassembly and CN. These are described in specific
subclauses, in which the term-originating controller corresponds to the controller
that transmits the request to send messages and the receiving controller corresponds
to the controller that transmits the clear to send messages. Messages greater than
eight bytes in length are too large to fit into a single CAN data frame. Therefore,
such messages are broken into several smaller packets, and those packets are
transmitted in separate CAN data frames. The individual packets that consist of
a large message must be identified separately so that they can be reassembled
correctly; the first byte of the data field is defined as the sequence number of the
packet. Individual message packets are assigned a sequence number from 1 to 255.
In this part of the standard a structure called NAME is also defined, as shown in
Fig. 6. This data structure is composed of 64 bits divided into various fields, which
describe the function and placement of an ECU network ISOBUS. Every function
NAME’s describes the function that a CF performs, and its numerical value is used
in the arbitration for the address. Thus, the whole ECU must have a NAME for
an address on the network and be able to describe its features and functionality to
all other ISOBUS ECUs on a network. The negotiation for obtaining an address is
carried through four specific messages. The message “Address Claim” is used to
assert, declare, or support a network address. A claim occurs when an ECU enters
the network and seeks an address. The statement occurs when the address has been
already used by another ECU (message “Request for Address Claimed”).

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 205

18EAFFFEh Tx Data 3 00 EE 00

18EEFFCDh Rx Data 8 34 74 C2 0B 00 21 00 A0

18EEFFACh Tx Data 8 34 98 D6 0B 00 17 00 20

18EAFFF7h Tx Data 8 34 98 D6 0B 00 82 00 A0

18EEFF26h Tx Data 8 34 98 D6 0B 00 1D 00 A0 I
Self- .

Cor:)fligura Irgr";it’;y DC?ZI:: %‘T;i;: Reserved| |Function :i]us?(a;:z; InsEtSrEJce fgncat‘ﬂrue-r rI\lduemnng

Instance Code

address

[1 bit][3 bit][4 bit][7 bit][1 bit][8 bit][5 bit][3 bit][11bit][21bit]
[o [o JQos JU o Jes)for]fer)fod

< { Name Fields in the CAN } >

Fig. 6 NAME field of ISOBUS data

2.1 Virtual Terminal

The standard of the VT, which is used for the operation parameters set up for
tractor and implements, is described in Part 6 of ISO 11783. A VT is an operator
interface device that allows both information to be displayed and operators to input
information. The VT is one type of CF or ECU on the implemented bus. This device
is located in the tractor cab and must connect to the bus implement. The VT has
a pixel-addressable (graphical) display. Information on connecting a working set
(WS) is shown to the operator on the graphical display. This information is shown
in display areas that are defined by data masks, alarm masks, and soft key masks.
Annexes of this part of the standard contain various information about objects,
events, commands, messages between the ECU and the VT, and the TP extended,
or the extended transport protocol (ETP). The term WS is used for an ECU, an
implement, or a group of implements either represented by a single ECU or a group
of ECUs acting as a WS. Therefore, these implements can be grouped together to a
WS where one ECU is the WS Master (WSM) and all others are the WS members.
The WSM acts as an interface to the implement bus. A VT provides a common
user interface to all WSs on the bus; it contains a graphic display with a limited set
of graphical objects, a few soft keys with an icon on the display, and a means of
navigating the display and manipulating values. The manner in which the display is
shown in the VT is stored in the “object pool” (OP). The OP is a representation of a

206 E. Tumenjargal et al.

WS, and it consists of objects supported in the standard. The objects may be input
numbers, output numbers, bar meters, needle meters, polygon graphics, or bitmap
graphics. The objects have parameters such as position, size, color, and value. The
OP defines object types, the relationships among objects, and all the parameters for
each object. As soon as the WS (WS) is connected to the network and powered up,
the VT and WS begin to communicate. After initial handshaking and requests, the
WS begins to upload the OPs to the VT screen. If the mobile system contains more
than one WS, the active display can be changed on the VT [2, 5, 6]. This means that
the WSM is addressed for several services (e.g., handling the communication to a
VT) whereas the members are still active in performing their tasks. A WS member
can receive PGNs addressed to the WSM. The view of the architecture of the WS is
shown in Fig. 7. An OP is a collection of objects that completely define the operator
interface for an implement and a single WS. The operator interface definition for
the device of one or more implements represented by either a single ECU or a WS
consists of a set of objects. Each object contains all the necessary attributes and
child object references for completion of the object processing. The WS assigns
a unique object ID to each object in the OP. The OP is transferred to the VT at
initialization by using TP and ETP. The VT is intended to be capable of storing the
OPs in a modifiable memory area. The size and number of OPs are limited only
by the available memory and software design of the VT, but only one OP per WS
exists, as shown in Fig. 8.

. Working Set
Working Set g
ws
WS Master Master '
single ECU ECU#1 |
&b
a. b.

Fig. 7 Working set architecture. (a) Working set (WS) used a single ECU. (b) WS used a group
of ECUs

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 207

2 . .
. Virtual Terminal

Object Pools Lol RechvedObiec

. = Object Pool #1 | | Object Pool #1 Object Pool L

Virtual Terminal T'“';‘;;g:;’ by OjectPoal a2 ovesronrs || % (onearesss |

bject ool MM Object Pool #N | =]
Status: initialization . \ —_ | Oibject Pool #4 |

a. b.

Fig. 8 Object pools processing in a virtual terminal (VT). (a) Object pools transferred by transport
protocol/extended transport protocol. (b) Object pools transferred to memory

Address Claim
complete
—4(— Working Set
Address Claim Adjust object pool for
Send address claim request & complete & scaling, available fonts,
to broadcast _supported colors, etc
* ; Wait until VT begin
transmission of the VT . .
Begin transmission of VT status message VT to determine object
status message pool exist in non-
3 Identify itself & its —voltage memory
members to VT using
Request default language " messages y
setting from TECU DI:Le r;tr:::l:r;nl::er
l_ Begin transmitting completed
e e working set (Asking for object
orking Sets to Initialize _maintenance message . pool transferred from
to load their object pools non-volatile memory
J ' Request language & or using TP, ETP, and
format message from messages)
Complete the auxiliary VT =

initialization
a.

Fig. 9 Initialization process of (a) VT and (b) WS

When the OP of a WS has been deleted and a VT receives a WS maintenance
message from the missing WS, it should provide a NACK message. The NACK
message is sent to the SA of the WS. When a WS has been disconnected and
reconnected to the VT, the WS may attempt to reload it in the OP. The status
messages allow the WS to determine the health of the VT and monitor the progress
of tasks in the VT. They also allow the VT to monitor the health of WSs in Fig. 9.

208 E. Tumenjargal et al.
2.2 ISOAgLib Open-Source Library

In this research, we propose a generic ISO 11783-compatible implementation
based on the ISOAgLib library [5]. The open source library written in C/C++
enables building of the ISO 11783 standard-compatible features. The ISOAgLib
was initially created by Achim Spangler as LBS-Lib within the subproject of the
IKB Duernast project as a doctoral student at the Technical University of Munich—
crop production engineering—which started in 1999 [7]. Now he is working for
the company OSB AG and leads the evolution and upgrading of the ISOAgLib
according to the modifications of the ISO standards. The LBS-Lib is an open-source
way of stimulating the use of open communication protocols in agriculture. With the
progress in standardizing, ISO 11783 has been “upgraded” to ISOBUS as ISOAgLib
and now enables users to implement ISOBUS functionality. The documentation for
news, changes, main features, and the structural overview of ISOAgLib is presented
on the http://ISOAgLib.org homepage. ISOAgLib is designed for easy adoption
to new hardware platforms. Therefore, the greater part of the software can be
used without any changes for all hardware types. The more this common software
part is used, the better the quality can get. The layered structure is illustrated in
Fig. 10. The ISOAgLIib is designed in three layers. The top layer, which contains all
algorithms to define the communication, can be used without any changes on every
platform. All hardware interactions such as receiving or sending CAN messages

[(Part3) | | (parts) | | (Parte) | [(Part7) | [(Part?) | [(Part10)| [(Part12)| [(Part13)
7 '“ 1/ 1/ by by T)

Communication . = ~ Virtual Application Process Task Diagnostic File
w Ma g ment Terminal Layer Data Controller Services Server

| L
Driver Common
i System Access
Extension Y

Hardware

. C
Abstraction Svstoe::::ess RS232 Sensor Actor
Layer J I 2

Hardware

Fig. 10 System architecture of ISOAgLib

Scheduler

EEPROM RS232 Sensor Actor

http://ISOAgLib.org

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 209

are piped through the hardware abstraction layer. This serves an abstract platform-
independent interface to the communication layer and to apply itself. Each direct
hardware access is handled by a hardware adoption layer, which uses mostly a
simple name mapping from the BIOS or OS functions and types. By restricting
any hardware adoption changes to some simple header and source files, adoption to
different ECU types becomes easier.

2.3 Tool Chain

ISOAgLib is tailored to fit into the ISOBUS development tool chain of OSB.
As a programming library, ISOAgLib represents the backbone of an ISO 11783
application and delivers the protocol stack function and the enhancements of vt2iso,
in addition to a CAN server, as connectors to the adjacent parts of the design
development process and test. Figure 11 illustrates the development structure of
ISOBUS by using an OSB tool chain.

The ISOAgLib developer made a lot of useful example source codes and tutorials
for the implementation of the ISO 11783 standard. In our case, we are studying
version 2.2-rc5 of ISOAgLib because this version has tutorials and examples.
Figure 12 illustrates the multifunction of the ISOAgLIib tutorial, which is GPS ECU,
display ECU, DataSource ECU, and TractorBridge ECU, on the Ethernet network
using a CAN server.

3 System Architecture of the VT Server ECU

The development of the VT hardware requires a high-performance microprocessor
system with an embedded operating system. We designed and implemented a
development board that contains a Freescale . MX6Q ARM Cortex-A9 (advanced
RISC machine) quad-core 32-bit microprocessor,2 GB DDR3 RAM, 16 GB eMMC
flash memory, two serial ports, USB host, USB 2.0 OTG, two SD card interface,
10.4-inch TFT LCD interface with resistive touch screen, 100 Mb/s Ethernet,
and two channels for analog camera interfaces. Freescale 1.MX6Q is designed
to provide a cost-effective, low-power capability, high-performance application
processor solution for mobile devices and general applications. The features of the
1.MX6Q microprocessor are ARM Cortex-A9 MPCore-based quad CPUs, Video
Pro. Unit, GPU3D, GPU2D, GPUVG, image processing subsystem (IPUv3H), port
USB 2.0 OTG, memory subsystem, application processor peripherals such as two
CAN buses, etc., as shown in Fig. 13.

E. Tumenjargal et al.

sng Nv2

uopeIs oM

ureyd 00} gSO Ay} Y suonedrdde SNGOST Jo ammonns juswdoroadp aordwo) 11 Sig

pappaqui3

juawdojanag

210

ufeydjooL

pafoid3al
peoidepy

:o:...:.u:.._cu
uopeIs}Iom

(s3ueyaiadosd
‘podiaalqo)
apo)/eieq

pajesauan

A

ujeydjooy
++) 39818

Y
uoneindyyuo)
j981e]

ﬁ

OXI"0SIZIN
1001 91719V OSI

)

A

syur] Aveyaridold
uonew.oju| Pafoid

wsyensulyniy
UOIIB IO BIBIN

329foid QLA

~\

S

yaloid

M—hmcm_mm_o gx 1U guwwms

\\._/

e s

211

Development of ISO 11783 Compliant Agricultural Systems: Experience Report

S0'B9T°T6T I

Areiqr uado qri3yQSI Jo Juawuoraud suryiom Jrduirg (q) Arexqrp uado qr3yQS] Jo sarmonns safi] (8) g1 *S14

Q)
0'89T°Z6T:dI T'0'89T°T6T dI E£'0°89T°T6T dI
uesh dosdnia adpugiopesnia sosuagsdonia

\;

e e e

&
1
|

E'0'89T°T6T dI
Aejdsignaa

e

:u..:m__m uo uamm_ SN NV [ENMIA

2'0'89T°Z6T:dI
19A195 NYD

wesSosd _.n_anu.:nM_n JANIIS NYD

_./

__ sbpugropeine () @
I wesdmpeudorgnoe O @
osussdons) &
Aepdagroe O @
Hoameceregrs) @
aunoseRgoe) @
ba W
Ul dopasp)
spelosd sepdwo) =

| 3jdwes:jeloiny vonesust™ a0)
oszaoM) &
sangbo 0 &

g

_\|.rrl |||||| \l
ansvosi b
Jo Ateagijuiey -

sa008 pany 5322) =

212 E. Tumenjargal et al.

I1SO 11783 Compliantintelligent Monitoring System
Embedded Operating System

m’ Qt-GUI based VT Server program
| GUI for VT | ..-|\ Virtual CAN Server

| pipe|
LCD Display Driver H Object Pool Handler

Linux Kernel 3.0.35

Resistive

onch Flexible CAN

Touch screen - — .
s:cm::;m 'EMMCFlash
Memory Flexible CAN

H = device

—— ’ Physical

Soft Keys =<] -
= = .
i UART interface

—_
TVPS

Hardware Interfaces
Advanced Embedded System (i.MX6Q-ARM Cortex-A9)

Fig. 13 Architecture of the VT server electronic control unit (ECU)

Part 6 of the ISO 11783 standard specifies a device that allows interaction
between the operator and other nodes in a network based on ISO 11783 by
exchanging information in a graphical display and across different input modes.
Such a device is called a VT. As the user interface, the VT uses a graphical
display (touch screen or not), physical keys, sound, and auxiliary inputs. The design
guidelines and implementation presented in the standard seek standardization in
features, but without restricting the use of different technologies and maintaining
independence from manufacturers. The VT screen, like the example in Fig. 14a, is
organized in a central area that can contain a data mask or alarm masks. The alarm
masks are special screens that contain high-priority messages reporting anomalous
or special conditions detected by the system. In total, up to five means of user
interaction are provided. As Fig. 14b illustrates, there are four groups of keys on
the VT: soft keys, control, navigation, and editing. Some of these are optional as
they have similar functionality through the GUI. Use of ESC (escape) is provided in
the standard and should be implemented to allow the user to prevent any parameter
change or any editing from being done.

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 213

a b
(-
L | =
L |)
| -
. L | =
| | | J Soft
r ([=)
- o EE
$)
. Physical
Data Mask Area Physical screen Softkey Soft key soft key ‘ 1 1
designator mask area Control Navigation Editing

Fig. 14 (a) Example of the application of masks. (b) Keys for user interaction

Also supported is the use of simple beeps, buzzer types, or polyphonic devices.
One way is through physical auxiliary inputs loosely connected to the VT and
directed to independent commands on the active data mask. ISO 11783 on the
network, all ECUs are categorized into different groups called WSs and each ECU
contains a WSM. At the startup network, a VT server device receives a sequence of
objects representing its whole segment logically, including events, benchmarks, and
a complete description of the data masks and alarms. This group of objects is stored
in an OP, which in turn is stored in the memory of a VT or some of the non-volatile
memory of its own equipment. Being a complete logical representation of network
devices, it is the access point between the application and the physical network of
the VT. For example, for a given sensor update, its value on the screen of the VT
sends a message by changing the corresponding property in the OP. Even if the mask
contains data that are not active, the value is displayed and updated in due course,
as shown in Fig. 15.

We developed an application architecture (framework) that provides the neces-
sary support for the development of the ISO 11783 entities, providing management
messages described in the standard, operable on multiple platforms, and using
classes of objects that facilitate customization and expansion to meet not only the
VT and task controller tasks, but also other ECUs, the tractor ECU, the network
interconnection units, the WSM, and diagnostic tools. Figure 16 illustrates the
sequence of procedures for configuring a WS with a VT.

214 E. Tumenjargal et al.

Status Bar

Home

o Active Working Set

Settings | Softkey Mask
Language _
+ DataMask
1S0BUS L - 2
Shorteut button

Progress bar

Fig. 15 ISOBUS monitoring system based on Qt. The data mask and soft-key mask comply with
the standard size set in ISO 11783-6

Start of a WS

S

Step 1: setting an ECU ‘ _ Step.?];l? pf;m: t::(::n?:;:gfsage :

Step2aholdmessans il ‘ Step 6: request parameters VT

status " J
Step 3: identification master and Step 7: request version of record in |
members | memory object pool non-volatile

Step 4: start sending the message

. | Step 8: transfer of object pool

Fig. 16 Sequence of procedures for configuring a WS witha VT

The sequence of the implementation was based on the procedure of configuring

a WS with a VT. The following sequence must be performed when setting an OP in
aVT:

1. The WSM must complete the process of obtaining an address.
2. The WSM must wait for the transmission of the message “status of VT.”

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 215

W

. The WSM must identify you and the members in the group.

. The WSM should start sending periodic “Working Set Maintenance” messages

5. The WSM must ask the message “Command Language” to VT, which contains
the language information, format, and units used in the network.

6. The WSM can ask the VT sending parameters to identify their capabilities.

7. The WSM can ask the VT information about the existence of the OP in its
nonvolatile memory.

8. The transfer of the OP should be initiated and completed. This can be done by

asking the VT to OP load the nonvolatile memory or using a TP defined in the

ISO 11783 standard.

~

Initialization of the VT with WSs queued as in the flowchart shown in Fig. 16.
The implementation of the firmware codes came from an existing source code
of the ISOAgLib library. The first step is the configuration of an ECU in the
network. This is a procedure for obtaining an address. For this procedure, we use
the following materials: “Part 5—Network Management—of ISO 11783 standard”
and the ISOAgLib library. The library contains the implementation of an ECU
configuration on the network layer in the object-oriented language C++. The
second step is waiting for a message “VT status” from the VT. This message
indicates that there is a VT on the network and it contains data about their
occupation. In this and the second step, data contained in Part 6 of the ISO 11783 are
used. The third step is the identification of the WS. This procedure is performed by
two messages. One of them, the WSM, identifies the group master and contains the
number of ECUs that constitutes the set. The other, called the “working set member,”
identifies each member of the NAME field. The PGNs of those WSs are detailed in
“Part 7—Implement Message Application Layer—ISO 11783.” The fourth step is
the start of the cycle of sending the message “working set maintenance,” as this
has been shown to the VT. This message provides the recognition of the WSs of
their presence at the VT. This recognition ensures the services offered by the VT.
In this step, as in the second step, data contained in Part 6 of the ISO 11783 are
used. The fifth step is to request the message “command language,” which identifies
the language, units, and format (date, time, and units) used in the network. This
PGN is detailed in “Part 7—Implement Message Application Layer—ISO 11783.”
The sixth step is optional and refers to a request for technical information from
the VT. Examples of information include the appointment of memory available for
sending an OP, display size, resolution, and the quantity of soft keys. In this step,
we use the data contained in ‘“Part 6—Virtual Terminal—ISO 11783 standard.” The
seventh step, which is optional, also refers to the request for information on the OP
version recorded in the nonvolatile memory. In this step, we used the data contained
in Part 6 of the ISO 11783. The eighth and final step of this procedure is to load
the OP into the VT. This can be done by asking the VT to load the existing OP into
the nonvolatile memory or by sending the OP through a TP. In this step we used
the following materials: “Part 3—Data link layer,” “Part 6—Virtual terminal,” and
software tool vt-designer and vt2iso. The “Part 6—Virtual terminal—ISO 11783
standard” detail defined features of all objects and their attributes. Each attribute is

216 E. Tumenjargal et al.

defined by type (Boolean, byte, integer or floating point), size in bytes, limit values,
and description. Also, this part presents the messages for managing the dispatch of
the OP. The TPs used to send the OP in this development are the TP and ETP.

4 System Architecture of VT Client ECU

The implemented ECUs are called the VT client ECUs. Every client should have its
own OP following the ISO 11783 standard. The ISO 11783 object pool (IOP) is a
data file that contains a group of objects that graphically represent a WS in a VT.
Through this resource, the WS is able to send data to the operator and also provide
commands to enable features or change the settings of the same. A WS may submit
only one IOP in the VT, whose objects can have their attributes modified at any time
by the messages defined in Fig. 17. An IOP is a set of bytes in which the objects that
define it are arranged sequentially, as shown in Fig. 18. The interpretation of the
bytes in direct sequence deciphers the boundaries of each object. Figure 19 shows
the structure of an IOP, a sample IOP file for the WS of a sprayer, and an example
of a picture object.

Object] ObjectID Type @ Attributesand data
Object2 ObjectID Type @ Attributesand data
Object3 | ObjectID Type @ Attributesand data

ObjectN = ObjectID = Type @ Attributesand data

Fig. 17 Structure of an ISO 11783 object pool (IOP)

Object 1=Working Set Object 2=Font Attributes
& 4
Sprayer.iop \ //

00000000: |01 00 nn|n1 niled goloilanlon dbd anlos aonlnoz ool
00000010: |65 6ef0S O0F17§0cf03J00J01J00)0af00f15 bojo4 00|
00000020: MU OUD U0 IS JC 00U OO0 00U OC OO IS 3¢ 00 OO0 OO0 0Od
00000030: 00 15 00 00 OO0 OO 32 00 17 00 02 00 01 OO 33 0O
00000040: 17 00 02 00 01 00 3c 00 19 02 00 ££f £f 00 46 00
000000S0: 18 00 01 aa aa 00 64 00 01 01 96 00 l1le 00 65 00
00000060: 00 00 2d 00 66 00 14 00 3a 00 69 00 Oc 00 96 00
00000070: 6c 00 46 00 73 00 78 00 Sa 00 SO 00 éb 00 le 00
00000080: b4 00 b8 Ob 14 00 b9 00 b9 Ob 3c 00 b9 00 ba Ob
00000090: 64 00 b9 00 bb Ob 8c 00 b9 00 be 0b b4 00 b9 00

Fig. 18 Sample IOP file for a Sprayer.iop

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 217

Actual Actual Format

Width — : :
] Width Height Options
ObjectType —_ v g o .
ObjectID — \ 5 - —
! \ - / P wwS
Transparency g D 5 T :
color 2A00K00N00) 00) FRHRER Properties | __value |
A AR AR AR AR Object ID 180 (0xD0B4)
Al A M S 00 00 0 Object Type 20(0x14)
Number of AR AR AD - I
bytes in raw AR AD 00 0 A t (0x001D)
data (D2=210) f‘-: 00 00 Actual Width 29(0%001D)
Actual Height 14(0x000E;
Number of AR 00 00 02 A Heig (l)
MACros to :.: s AR Format 1(0x01)
follow AR Options 1(0x01)
AR Transparent Color 10{0x0A)
AD
0A OA
_ Raw \ Macro ID
data * EventID

Fig. 19 Sample of a picture object in a Sprayer.iop file

The client-side ECU development is based on the ISOAgLib open-source library
and some tools. Figure 20 illustrates the OP uploading state diagram. It generates
hexadecimal or binary codes compatible with microprocessors and microcon-
trollers. In our case, we use the ARM Cortex-M3 core 32-bit microcontroller
STM32F107VC.

The vt-designer [8] is a software tool whose graphical development, editing,
and emulation of ISO 11783-compliant OPs are shown in Fig.20. This tool can
be imported and exported as both an IOP file and a VT project file (*.vtp). A project
is created in a template folder, which contains two files and two folders. One of
the file’s expansions is *.vtp, which is a vt-designer project file. Another file is the
XML file (e.g., Sprayer.xml), which contains OPs and their details. An XML file
contains OP information such as buttons, data mask and position, name, and size,
how many child and parent devices, etc. One of the folders includes picture files, and
another folder contains a language file. Another tool is vt2iso, which is developed
by OSB-IT and is open source. This software generates a header and includes files
from vt-designer project files. Figure 21 shows a diagram of the general method of
implementation of VT client ECUs.

5 Architecture of PGN Analyzer

All ISO 11783 packets, except for the request and address claim packets, contain
8 bytes of data and a standard header, which contains an index called PGN, which
is embedded in the 29-bit identifier of the CAN message. A PGN identifies the
function and associated data of a message. As it is possible to catch CAN messages
on an ISOBUS and interpret PGN-based information, we implement a new device

E. Tumenjargal et al.

100} 19USISAP-1A B AQ pajeard ugisap [ood 109[qo s Jokeids 10) NDH payuswdrduwr ue jo ojdwes (g "1

yrurewrxepuaug-speasds [
JulRwrRRpUIG-1apeads [

sajuy 1nding - ¢ ydorxepyuassg-sspeasds [
dorxepuaaig-sapeads

°ltd ._—S__x —¢€ yanepuIIn-sapeasds [] J
93113190~ ¢ 6 IXRpUINY-Ipeads] %
Japeaids >ExepUIRI0-apealds [tcttttPaIIVLIS IIFHOLd ONTCC e 900 foryemy (3
aInueiN Jo IND - T >prepwang-peads [NN herogeimet
safqo wnquiy [

spalgo wqeuey, [

218

€323003d/> waigo nydeib anpg [
24 wIK> f139iq0 Jnydesb inding 0]
BLITOST> spalgo adeys wnding [
<E3TTI/> s9lq0 py nding [

£/ THE ROU PIF PIA.

37T LTum3ITIRIITIN LTemUIVJIATIVIIE LTu=n

spalgo pray snduy [

<EITTI>

Sq10°00006| UTd UTeW

(00T 0 Fsmprirganypis B

3 &
\(SLEE artTeI00) 0s‘0o e
i Kaxa308 p— (0000r -0 Spuondussag J=
A3x3708 .08 EBuTIIIETOO223 (a0
’ sy 3uspI ...xcn;mﬁ.“u.....n..n ,.uowxun”nw 2e/gaN i (0:00 #sbunpomprs = =
o . ‘ v Burpop, B ©
<edvEatg/>
£/ uTumiI0daaTioTay odem(q.syie demaTE> em e mm mm ° spafqo pasydoy
<edvmatE> se/sql FO €.33/501 lFul‘ 2341 P3fa0
<EITIVUOTIONG/> Sl
</ TumUIvaoATINTIY JDUNT =yivg LIVCOTIOTO> — .)] - ULPHP
<eaTIVUOTIONG> [PP e | @ffFRIAFTRALY IRV e IADRU
<393(0za> dpf swondD suomoy waoid waf Wl wg

CluT=65688-05.=dUTPoOUs L0 T eU0TEIsa TEX,> S———

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 219

VTP or VT Designer VTP or Vi2iso
IOP file /make a new xml /generate

object pools/ new header
and include
Virtual Terminal filesin
Manure Spreader ECU et v C,C++/

= objPool2e
= ObjPocl3c
= objpocle
= ObjPocleh
ObjPocliop
= ObjPeclioph

export

J IAR ARM Header and

Fig. 21 Block diagram for the development of an implemented ECU with the AFS Pro 700
monitor

o - G Real ECU #1 = } 2
I \ Data) | Data) Sensors
PGN Analyzer Software V| Local Timing ‘-!—f
system
RS5232 port
PGN Analyzer } §_ { | Real ECU #2 M
| Data ;2 Data) | Data | Sensors
Hardware | v E — 7| | Local Timing v
Local Timing system
| system .
Real ECU #N J
| Data | | Data) Sensors

—

\ 1 | Local Timing \ y
- system

Fig. 22 Main structure of the parameter group number analyzer

ISOBUS PGN analyzer. Figure 22 illustrates the main structure of the ISOBUS PGN
analyzer. The PGN analyzer, attached to the ISOBUS, reads messages, interprets
them, and displays them on the screen in an easily comprehensible form. It can be
used to generate messages and monitor the traffic on physical bus systems. A PGN
analyzer monitors and simulates real traffic of connected ECUs and functionality
of the ECUs. In fact, to support our work, we have implemented the PGN analyzer

220 E. Tumenjargal et al.

tool. The development consists of two parts: GUI of the application and firmware-
level programming. The PGN analyzer is implemented on an embedded board Gold
Bull where the main CPU is 32-bit, 72 MHz Cortex-M3-cored STM32F107 with
two CAN interfaces. The communication between the board and the application
programs in a PC is via an RS232 serial communication interface. The CAN1
channel is used to monitor the ISOBUS. The status information of the PGN
analyzer is depicted on the LCD display on the board. The hardware programming
is implemented at the firmware level. Figure 23 shows the main structure of the
firmware-level program.

As RS232 transfers data in 8 bits, we invented a data packet to exchange a
message between the PC and the PGN analyzer device. The packet structure is
given in Table 2. “Command” byte defines the packet corresponding byte is “D”
packet carries CAN data. In all other instances, the packet is the instruction for the
PGN analyzer device. The packets start with an “@” symbol and end with a “$”
symbol. The receiver via RS232 receives successful data and constructs the packet.
After receiving a packet, the device recognizes its command and calls a function
correspondent to the command. The device sends CAN data to the ISOBUS.

6 Experimental Results

The main purpose of research work is to implement an ISO 11783-compliant VT
server, client ECUs, and a PGN analyzer device. The programming uses the library
ISOAgLib. We developed global positioning system (GPS) hardware and software,
the sprayer ECU, PGN analyzer device, and the VT, and the implementation has two
parts of hardware and software. The hardware system for the VT is an advanced
embedded board that is supported by a real-time operating system such as the
embedded Linux. The development of the application-level program is based on
ISOAgLib, which slows down the development of our work with the GUI of
our system. The main communication parts are implemented using the ISOAgLib
library according to the ISO 11783 standard, as shown in Fig. 24.

7 Conclusion and Future Work

The technical complexity of agricultural machinery will increase in the future; thus,
it is becoming more important to learn and apply technologies such as the ISO
11783 standard. This standard enables the development of agricultural machines
that are compatible with other ISOBUS machines. In this work, we use two kinds
of embedded boards: the ARM Cortex-A9 quad-core Freescale i.MX6Q-based
system for VT and the ARM Cortex-M3 core microcontroller development board
for sample ECUs. Besides developing this system, we have checked the feasibility
of using the ISOAgLib open-source library in a real implementation of ECUs

221

Development of ISO 11783 Compliant Agricultural Systems: Experience Report

snq NVO 943 PUe Z€ZSY U99/39q poyiour Sutiagng oys jo wyiLio[e ureiy € ‘814

="~
3sI77103U0” X1SY ISIITXUSY 2y} 0} ejep sppe
N#NJ3 0} ul abeyoed asuodsay Jo sebeyoed 10113 ou j| 'sBeyj Jou7 s}es
louig sppe pue sbe|4 Jo113 syo9yo Buiaieoal Jo so11d Aue si asayy A
:onuo) dsay tou3 sBeig tou3 31 ebexoed zezsy a39|d \r d ceesy
————1 | pue J3jnq dAI909Y SH29Y9
Ayoud FEINELEN]
JaybiH
Z#NO3 3SI7 103U0D”X1SY
ojul an|eA snjejs pajejas ppe pue 187 (o1
SNJe)JsS 32IA3P pue snq NYD SHI3Y9 JuoQ X1SY no wayj spuas
:(o9s Jad 22u0) ¥29yd snje}s aslneq Jajiwisuel] sysi|
s ey H_ |7 ayj ul ejeq si aauy Ji N
eq™ L ISIT ejeax.Lsy pue XLlceesy)
1#N03 d X¥NVO Jw ‘}sI7 ele@ XLSY 0} ul wayy _IH fyoud 1SI771013U0DX 1 SY L4
ppe pue abeyoed NyO paially | _JemoT s¥29yo
‘I1sI7 e1e@ XUNVD s|quiassesiq ‘Is!| BleQ” XHNVO | [eleq x.1sy Hepwisuell
9 ojul 31 synd uy ul S| anjeA Jayjid Aue
<aN sowoo ejep Ny J1 | || # 193114 pPue ISITTXUNVO SH08uD
no3 m —Xuf 119A1909Y NVO ‘d|quiassesiq pue 13|14 NVO ceesy
Sd9 [“SNANVD
(2 3y} 0} wayj spuas U
B INgTXINVO Ul
{XTNvo ejep Aue si aiayy §|
no3L \ [LNVD =
NVO popuaixa} [SREEE] IS XSy
ng XINVD L_NOdosi|
_ _ 1T =
bo) § *OAOWIAI dNJeA I 1 -X ‘a3exoed vied NVD-d ‘PPe onjea 191 -4 Spuewwo)
‘Be|} oo paje|ad S}as JI SINDD0 JoLID J| “I1SIT XHSYH dy) wouy eyep
SaAoWal JI [Nyssadons Buissaooid puewwo) J| 1Sl 8y} Jo Aljus ay) Ul puBLIWOD
1A 3y} 0} Buiploooe }1 sseooid pue ejep speal AiJdwa jou si 1Sl XHSYH I $3o9YD
'SpuBWWOY) SS320.d
<

pleoq psseq gIN-X310) INAV CENLS

222 E. Tumenjargal et al.

Table 2 Main structure of the RS232 data packet

Start of serial End of serial
communication Total bytes Command Data Checksum package
RS232 data packet ‘@’ Total bytes ‘F’,°X’,‘C’,'D’, Data Checksum ‘$’
(from PC to device) ‘R’,S’,P’
RS232 data packet ‘@’ Total bytes ‘T’ Data Checksum ‘$’

(from device to PC)

Hardware testing GPS sensor Testing Dashboard Dashboard
device for VT for tractor of tractor of tractor

T

CAN-Bus analysis by PCAN-USB ISOBUS Certified
using PCAN Explorer analyzer Sprayer ECU

Fig. 24 Development environment for ISO 11783 CONLAB-VT and implemented ECUs

for agricultural machinery. We also tested all of the implemented ECUs such as
GPS and sprayer with an AFS Pro 700-ISOBUS-compliant monitor. In addition to
the successful implementation of the VT based on the ISOAgLib library and Qt
GUI tool, real hardware systems consist of several development boards, which are
iTOP-1.MX6q, and Huins development kits. One of the most important things is
to monitor all of the devices connected to the bus. For this reason, we developed
and implemented the ISOBUS PGN analyzer device firmware and GUI application
program for Windows. In future work, we aim to improve further the application
program for VTs according to the technical specifications of the ISO 11783.
Our developed product, consistent with the standardization of the communication
between a tractor and an implement, is convenient for tractor drivers and farmers.
The implementation of the ISO 11783 without systematic planning is difficult
and complex. There are limited amounts of ISOBUS-compatible equipment in the
Republic of Korea, and implementation was difficult because of a lack of well-
facilitated laboratories and real tests on a tractor and an implement. After studying
source codes of the ISOAgLib library and ISO 11783 standard, we conclude that the
main purpose of the development was achieved and it proved that it was possible to
use our methodology for the development of ISOBUS-compatible ECUs.

Development of ISO 11783 Compliant Agricultural Systems: Experience Report 223

References

1. Backman J, Oksanen T, Visala A (2012) Navigation system for agricultural machines: nonlinear
model predictive path tracking. J Comput Electron Agric 82:32-43

2. Hyeokjae K, Enkhbaatar T, Woonchul H (2011) Implementation of virtual terminal based on
CAN by using WinCE platform builder 6.0. Key Eng Mater 480:938-943

3. ISO 11783-6 (2004) Tractors and machinery for agriculture and forestry—serial control and
communications data network. In: Part 6: virtual terminal. International Organization for
Standardization, Geneva

4. 1SO 11783-5 (2007) Tractors and machinery for agriculture and forestry—serial control and
communications data network. In: Part 5: network management. International Organization for
Standardization, Geneva

5. Spangler A, Auernhammer H, Demmel M (2001) Stimulating use of open communication
standards in agriculture (DIN9684 and IS011783) with capable open source program library
as possible reference implementation. In: Blackmore S, Grenier G (eds) Proceedings of the 3rd
European Conference on Precision Agriculture. Montpellier, pp 719-724

6. Stone ML (1999) ISO 11783 an electronic communications protocol for agricultural equipment.
In: Spangler A, Wodok M (eds) Conference on agricultural equipment technology, Louisville,
February 1999. IsoAgLib—development of ISO 11783 applications in an object oriented way,
2010. American Society of Engineers, Reston

7. Tumenjargal E, Badarch L, Kwon H, Ham W (2013) Embedded software and hardware
implementation system for a human machine interface based on ISOAgLib. J Zheijang Univ
Sci C Comput Electron 14:155-166

8. VT Designer Software. http://www.vt-designer.com

http://www.vt-designer.com

Safety-Driven Development)
and ISO 26262 S

Yaping Luo, Arash Khabbaz Saberi, and Mark van den Brand

Abstract The automotive industry has seen a rapid change in the technologies
used inside the vehicles. Since the introduction of the first electronic control unit,
the impact of electronics and computer science on the quality of the vehicles
is increasing every year. Arguably, safety is one of the most important quality
attributes of a vehicle that needs special attention during all the stages of the
lifecycle of a vehicle. The overall safety of a vehicle can be seen from multiple
aspects, such as passive safety, active safety, and functional safety. Functional
safety addresses the hazards that are caused by malfunctioning of electrical and/or
electronic (E/E) systems. There are many factors that impact functional safety such
as the organization and management, the development process, the design of the
systems, the system type and technologies used in it, the quality control methods,
etc. The ISO 26262 standard provides the state of the art of functional safety in
automotive industry. In this chapter some of the most important aspects of functional
safety from ISO 26262 perspective are discussed; namely, safety management,
development process, architecture design, and safety assurance are presented here.

1 Introduction

In safety-critical domains such as automotive, railway, and avionics, even a small
failure of a system might cause injury to or death of people. A number of
international safety standards are introduced as guidelines for system suppliers
to keep the risk of systems at an acceptable level [5], such as IEC 61508

Y. Luo (<) - M. van den Brand

Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

e-mail: y.luo2 @tue.nl; m.g.j.v.d.brand @tue.nl

A. Khabbaz Saberi
TNO Technical Sciences/Automotive, Helmond, The Netherlands
e-mail: arash.khabbazsaberi @tno.nl

© Springer Nature Switzerland AG 2019 225
Y. Dajsuren, M. van den Brand (eds.), Automotive Systems and Software
Engineering, https://doi.org/10.1007/978-3-030-12157-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12157-0_10&domain=pdf
mailto:y.luo2@tue.nl
mailto:m.g.j.v.d.brand@tue.nl
mailto:arash.khabbazsaberi@tno.nl
https://doi.org/10.1007/978-3-030-12157-0_10

226 Y. Luo et al.

(multiple domains) [19], ISO 26262 [20] (automotive domain), DO 178C (avionic
domain) [40], CENELEC railway standards (railway domain) [8—10], etc.

In the automotive domain, currently the ISO 26262 standard, which is a goal-
oriented standard for safety-critical systems within the scope of road vehicles, is the
state of the art. Since its introduction in 2011, ISO 26262 has attracted more and
more attention in the automotive domain. A number of safety-driven development
methods have been proposed based on this standard [24]. In this chapter we first
introduce some basic concepts in the ISO 26262 standard (Sect. 1), and then we
discuss safety management in Sect. 2 and the safety lifecycle (Sect. 3) in the context
of the standard. Furthermore, a brief comparison of several safety architecture
patterns is given in Sect. 4. Finally, as compliance with safety standards is a basis of
safety assessment, a number of model-driven techniques, designed for supporting
safety assessment, are presented in Sect. 5.

1.1 1S0O 26262

ISO 26262 is an adaptation of the generic IEC 61508 standard, which focuses on
electrical/electronic (E/E) systems but provides a general design framework for
safety-critical systems [26]. Similar to IEC 61508, ISO 26262 is a risk-based safety
standard. It provides a risk-driven safety lifecycle for developing safety-critical
systems in the automotive domain. In the standard the risk of hazardous situations
is qualitatively assessed. This is done to avoid or control systematic failures and to
detect or control random hardware failures.

The ISO 26262 consists of ten parts as shown in Fig. 1. Part 3 to Part 7 correspond
to the safety lifecycle, while Parts 1 and 2 and Part 8 to Part 10 provide the
additional information related to interpretation of the main parts. The ISO 26262
standard is structured based upon the V model. Parts 3 to 7 construct the primary
V cycle for the whole system development. The main goals of Part 3 are to identify
system hazards and risks through hazard analysis and risk assessment (HARA)
and define safety goals and functional safety concept (FSC). Part 4 focuses on
the system-level development, integration, and validation. In this part, technical
safety requirements (TSRs) are derived based on FSC. Moreover, Parts 5 and 6 have
their own (smaller) V cycles for hardware and software development, respectively.
In these two parts, more detailed safety requirements are derived from TSRs.
These safety requirements are assigned to concrete subsystems or components for
implementation. Finally, Part 7 covers the release of the system for production.

1.2 Functional Safety Definition

Functional safety is easy to understand, yet difficult to formally define. The
ISO 26262 standard gives a definition of functional safety using a number of other

Safety-Driven Development and ISO 26262 227

Part 1 & Part2

Part 4
Product Development

TSR [Safety
specification validation

[)

System

Integration &
testing

Hardware D

Safety req. Architecture

[Hardware Design | Implementation]

Unit testing]

[Safety req.]
verification

[Safety evaluation

[Testing

Part 8 - Part 10

Fig. 1 An overview of the ISO 26262 V model

risk
_ - o
absence of unreason- judged to be unacceptable in a cer- Combmatxonfoithe prozazblihty of N
able risk P tain context according ot valid so- Ogi;rrfr;fe ot harm and the severity
cial moral concept ol tha arln\

— hysical inj d to health
due to hazards -»‘ potential source of harm _‘_» Er };fzzilem.]ury or damage to heal

failure

cause by malfunction- or unintended behavior of the | termination of the ability of an ele-

. . item mentor an item to perform a func-
ing behavior = . A
tion as required
with respect to the design |

system or array or systems or a

intent for this item function to which ISO 26262 is ap-
plied
systems that consist of electrical systems or part of a system includ-

| and /or electronic elements, includ-

of E/E systems. ing components, hardware, software,

g ptrogrammable electronic ele-____' hardware part, and software unit
ments

Fig. 2 The overview of functional safety definition in ISO 26262

concepts which have their own complex definition. An overview of the full definition
is shown in Fig. 2. The definition of functional safety simply reads as follows:

Definition 1 “Absence of unreasonable risk due to hazards caused by malfunction-
ing behavior of E/E systems.”

228 Y. Luo et al.

The phrases in italic are elaborated with more definitions. After compiling all the
defined concepts, the definition transforms to:

Absence of combination of the probability of occurrence of physical injury or damage to the
health of people and the severity of that harm, judged to be unacceptable in a certain
context according to valid societal moral concepts due to potential sources of harm caused
by termination of the ability of an element or an item to perform a function as required or
unintended behavior of the item with respect to the design intent for this item of systems
that consist of electrical and/or electronic elements, including programmable electric
elements.

We can agree that this definition is difficult to grasp at first glance! To add
to the complexity, there are also some side notes attached to this definition. For
instance, in the definition of failure, there is an important note about the difference
between required and specified failures. The ISO 26262 standard considers incorrect
specification also a source of failure, which is a quite strong definition.

To simplify the definition, and ease the burden of understanding functional safety,
a simplified yet less accurate approach is taken to define functional safety. There are
a few vital implications in ISO 26262 definition of functional safety, namely:

1. Functional safety depends on the design intent.

2. Functional safety tackles (in scope of ISO 26262) failures of E/E systems.

3. Functional safety is only applicable to hazards that cause harm to people (and
not damage to property).

Considering these points, we propose a shorter definition for functional safety:

Definition 2 Operating correctly with fail-safe or fail-operational strategies to
prevent hazards.

In this definition, operating correctly means doing what is intended, referring
to the design intent. In other words, correct behavior reflects the design intent.
Moreover, the design should be able to cope with possible failures, thus preventing
hazards from happening. In this definition, two major strategies for coping with
failures are identified: fail-safe that means reverting to a safe state which no longer
provides the required functionality fail-operational that means reverting to a safe
state while some variation (may be degraded) of the functionality is still provided.

The proposed short definition, in comparison with the longer definition in
ISO 26262, lacks the notion of risk. Therefore, this definition does not convey
the goal of reducing the risk that is addressed in the long version. However, this
definition makes it easier to understand functional safety in a pragmatic manner.

1.3 Functional Safety Goals

Failures of the E/E systems are recognized (the focus of functional safety) as the
primary cause for hazards. There are various ways for categorization of failures.
One generic way is to classify them into two types: random (hardware) failures and

Safety-Driven Development and ISO 26262 229

Flg 3 The relation between Failure
failures and hazard

Random HW Systematic

SW/HW

systematic failures. Random hardware failures are unpredictable failures that occur
during lifetime of a hardware part [20]. These failures are only relevant to hardware
parts and do not apply to software units. Systematic failures are, on the other hand,
deterministic and have a certain cause (usually the design of the system). These
failures can happen in both hardware and software elements. An example of these
failures is a software bug/error. An overview of this categorization and the relation
between failures and hazards is shown in Fig. 3.

From the definition of functional safety, it can be inferred that failures (may)
cause hazards. Consequently, the goal of functional safety is to reduce the risks of
hazards. This goal can be refined into two subgoals by categorizing the types of
failures: (1) preventing systematic failures and (2) mitigating random failures.

Preventing systematic failures implies that the development process of safety-
critical systems should be carried out in such a way that the human errors (i.e., the
primary cause of systematic failures) or other contributing factors do not lead to an
unresolved failure. This goal is achieved by defining a predictable process for the
development of safety-critical systems. The mechanism for ensuring achievement
of this goal includes reviewing work products, analysis, and testing.

We mitigate random hardware failures during design by analyzing possible
failures and using detection and reaction mechanisms known as safety mechanism.
The random hardware failures are a probabilistic phenomenon, and they are
unpreventable. Hence, there should be mechanisms in the design that detect these
failures and act to prevent failures from creating hazards.

Furthermore, it should be possible to systematically provide evidence about the
achievement of the abovementioned subgoals.

In summary, there are three main subgoals for functional safety:

1. Preventing systematic failures
2. Mitigating random failures
3. Showing (providing evidence) that the previous goals have been achieved.

These goals are achieved by a combination of controlling the development process,
design, verification and validation, and documentation.

2 Safety Management

Safety engineering is complex, especially in a multidisciplinary domain such as the
automotive industry. It involves a wide variety of tasks that are typically carried out
by multiple people with various skills and experiences. The safety-related tasks are

230 Y. Luo et al.

Safety management

Management during Management after

Overall management
development release

Project
independent
safety engineering

Maintenance and
field monitor

Competence

Safety culture
management

Safety planning Resource Compliance with
and coordinating management standards

Performing

confirmation
measures

Fig. 4 The overview of safety management parts

the activities that are performed during the safety lifecycle (referred to as safety
activities in ISO 26262 vocabulary). As defined by ISO 26262, the safety lifecycle
is the entire duration of time that a safety-critical system exists in any phase, from
the concept phase to the decomposition phase. Moreover, the safety activities are
highly dependent on each other, as well as other non-safety activities related to
development, testing, and production of a safety-critical system. Therefore, safety
management is a necessity to ensure systematic and smooth realization of all the
safety-related activities. Since management attention is required for realization of
safety activities, ISO 26262 also provides some guidelines on the most critical
considerations for safety management.

Safety management is divided in three main parts in ISO 26262 Part 2: overall
safety management, safety management during development, safety management
and after release for production. An overview of safety management is shown in
Fig. 4. The overall safety management considers the project-independent aspects of
safety engineering. This includes safety culture, competence management, quality
management, and definition of project-independent development process. Safety
culture has been the main focus of safety engineering in several industries after
the Chernobyl disaster in 1986. Safety culture is described in more details in the
following subsection [15].

The goal of safety management during development and after release for
production is ensuring safe realization of a safety-critical system. This is (in most
cases) done by ensuring compliance with a safety standard such as ISO 26262.

The ISO 26262 standard recommends assignment of a safety manager to the
development of a system. The primary goal of the safety manager is to coordinate
all safety activities during the safety lifecycle. Planning and coordinating of safety
activities and resource management are typical responsibilities of safety managers.

Safety-Driven Development and ISO 26262 231

The responsibilities of a safety manager overlap with those of a project manager,
in tasks such as planning and resource management. The difference is that the
safety manager is involved only with the safety-related planning and resources in
the overlapping tasks. There are tasks with no overlap for these two roles too. For
example, cost management is only a task of the project manager. Another example
is risk management and project control. While both the project manager and the
safety manager perform these tasks, they have different focus. The project manager
performs risk management for project risks, whereas the safety manager cares
for the system risks. Similarly, both roles perform project control, but the safety
manager cares only about control mechanisms that impact safety. The ISO 26262
refers to these control mechanism as confirmation measures. These activities are
performed to increase the trust in the development process with respect to safety-
related issues. Confirmation measures are described in more details in the rest of
this chapter.

Lastly, safety management after release for product is responsible for planning
of maintenance and field monitoring for possible undiscovered failures.

2.1 Safety Culture

Safety culture is one of the key elements of overall safety management in
ISO 26262 [20]. In general safety culture requires the organization to provide
the proper environment for people involved in safety activities. Safety culture is
defined by [39] as follows:

The set of enduring values and attitudes regarding safety issues, shared by every member of
every level of an organization. Safety Culture refers to the extent to which every individual
and every group of the organization is aware of the risks and unknown hazards induced by
its activities; is continuously behaving so as to preserve and enhance safety; is willing and
able to adapt itself when facing safety issues; is willing to communicate safety issues; and
consistently evaluates safety related behavior.

An overview of the contributing factors to safety culture is shown in Fig.5.
These key factors are the result of aggregation of the aspects considered in the
literature [39, 44]. The descriptions of these factors are as follows:

Management commitment is the willingness of the organization at every level
(from top to down) to invest effort in safety and their genuine positive atti-
tude toward safety. The ISO 26262 standard emphasizes on this factor in
Part 2: 5.4.2.1 and 5.4.2.2.

Justess (only considered in [39]) is the extent to which behavior according to
functional safety is encouraged and rewarded by the organization. Moreover,
there should be a “no blame” culture where in event of an accident, solutions are
sought instead of blaming the responsible person. The ISO 26262 also mentions
this matter in Part 2: 5.4.2.1.

232

Safety Culture

Management
commitment

Justness

Knowledge and skills

Continuous
improvement

Awareness

Flow of information

Monitoring, control,
and supervision

Fig. 5 Safety culture contributing factors

Y. Luo et al.

Legend:

——> Contribute

Awareness is the level of individuals’ appreciation of their role and impact on
functional safety and on safety in general. Moreover, the understanding of the
risks involved in their work for themselves and others is also a part of awareness.
The ISO 26262 standard addresses the issue of roles in Part 2: 5.4.2.2.

Flow of information is the accessibility of new information for the right people
through transparent communication. For instance, if there is a new hazardous
situation identified during a recent test, the information should be easily provided
to others, to be considered if applicable in their projects. In ISO 26262-2 5.4.2.3,
the flow of information is mentioned as explicit communication of functional
safety anomalies. The ISO 26262 standard even takes flow of information further
by stating that there should be a process for resolving functional safety anomalies
in Part 2: 5.4.2.4.

Knowledge and skills (similar to “behavior” in [39]) are the extent of individuals’
knowledge of safety engineering processes and activities and, in particular in this
case, the ISO 26262 standard. This factor is more important in a research and
development environment. General appreciation of the relevant knowledge and
skills is needed in an organization to allow effective implementation of functional
safety. Several clauses of ISO 26262 can be linked to this aspect of safety culture
such as Part 2: 5.4.2.5, and 5.4.2.6.

Continuous improvement (the same as “adaptability” in [39]) is the willingness
of an organization to learn from their experiment and improve on the way
of working of the organization. Continuous improvement is also mentioned in
Part 2: 5.4.2.7.

Monitoring and control (only considered in [44]) is the existence of supervision
mechanisms concerned with safety and the visibility of these mechanism in the
organization. Moreover, the extent of availability of the required authority to
execute functional safety activities is also part of this aspect. The supervision
issue can be traced in ISO 26262 Part 2: 5.4.2.8.

Safety-Driven Development and ISO 26262 233
2.2 Safety Culture Metrics

A model for safety culture maturity is introduced by [17]. Another related work has
been done by [12] on safety culture maturity model. An overview of the maturity
model is shown in Fig. 6. Similar to the Capability Maturity Model (CMM), the
safety culture maturity model has five levels. The general idea is that an increase in
the level shows improved safety culture maturity.

The first level, indicating the worst safety culture, is when an organization
considers safety as a burden. There are typically no processes in place for handling
safety issues, and the members of the organization only care about not getting in
trouble. The second level is applicable when there are some processes for safety
but not strictly followed by the members. It could be that the management of the
organization states that safety is important, but it is not believed by the members.
In the next level, that is, the calculative level, the safety processes are followed
and the members are more involved in the safety issues. Nevertheless, the safety
processes are not believed to be critical. In the proactive level, both the management
and the members believe in their safety processes, and all hazards are addressed
systematically. In the last level, safety is deemed an organization value. Both
members and management are constantly improving the safety. More details can
be found in [16].

The ISO 26262 standard does not provide any recommendations on the safety
culture maturity level. Therefore, it is the companies’ ambition that drives the target
with respect to their safety culture maturity level. Identifying the safety culture
maturity level of a company and maintaining or improving it is therefore also the
responsibility of that company.

Level 5
GENERATIVE

Level 4
PROACTIVE

Improving
Safety Culture

Level 3
CALCULATIVE

Level 2
REACTIVE

Level 1
PATHOLOGICAL

Fig. 6 Safety culture maturity model [39]

234 Y. Luo et al.

Depending on the level of safety culture maturity, the actions needed for
improving or maintaining the safety culture differ. Changes in areas such as
management support, processes, and training are required for improving the safety
culture. More information on this topic can be found in [18].

2.3 Confirmation Measures

Ensuring compliance with safety standards is one of the important responsibilities
of the safety manager during development. The ISO 26262 standard created
mechanisms, referred to as confirmation measures, for ensuring compliance with
this standard. These measures include confirmation reviews on selected work
products indicated by ISO 26262, functional safety audit, and functional safety
assessment. Depending on the Automotive Safety Integrity Level (ASIL) assigned
to the system of interest, these measures shall be performed by the indicated people.
This indication can be a different person (than the creator of the work product),
a person from a different team within the same organization, or a person from an
independent (with respect to management structure) organization. Some examples
of the confirmation measures are shown in Table 1.

3 Safety Lifecycle: Integrated V Model

The ISO 26262 standard is the collection of best practices in the automotive
industry; thus, it has a number of practical considerations that is specific to this
domain. The best example of these considerations is the differentiation between the
functional safety concept and the technical safety concept. These two phases corre-
spond to the functional view and physical view in system engineering development.
The reason for separating these two phases, which in other domains are carried
out in parallel, is due to the special considerations between the original equipment
manufacturers (OEMs), and their suppliers (Tiers). In case of different settings for
the development chain, or developing a Safety Element out of Context (SEooC),
there is a possibility of using a more effective development process by tailoring the
safety lifecycle.

The ISO 26262 standard does not provide recommendations for a development
process of the functionality required for the system under development. It defines
a safety lifecycle that contains all the activities related to functional safety. Indeed,
there is an underlying assumption about another process (seemingly going on in
isolation from the safety lifecycle) for designing the system. This process is referred
to as quality management (QM) in ISO 26262. The safety lifecycle of ISO 26262
requires some information about the functionality of the system from an external
process. For instance, the preliminary architecture which is a prerequisite for the
functional safety concept needs to be provided via an external source (ISO 26262

Safety-Driven Development and ISO 26262

235

Table 1 Example of confirmation measures, and ASIL dependent and independent level [20]

Confirmation measures

Confirmation review of the
hazard analysis and risk
assessment of the item (see
ISO 26262-3:2011, Clauses 5
and 7, and, if applicable, ISO
26262-8:2011, Clause 5)
Independence with regard to
the developers of the item,
project management, and the
authors of the work product

Confirmation review of the
safety plan (see 6.5.1)
Independence with regard to
the developers of the item,
project management, and the
authors of the work product
Confirmation review of the
item integration and testing
plan (see ISO 26262-4)
Independence with regard to
the developers of the item,
project management, and the
authors of the work product

Degree of
independency applied
to ASIL

A B C D
13 13 I3 13

10 Il 12 12

The notations are defined as follows:

Scope

The scope of this review shall
include the correctness of the
determined ASILs and quality
management (QM) ratings of
the identified hazardous events
for the item and a review of the
safety goals

Applies to the highest ASIL
among the safety goals of the
item

Applies to the highest ASIL
among the safety goals of the
item

—: No requirement and no recommendation for or against regarding this confir-

mation measure

10: The confirmation measure should be performed; however, if the confirmation
measure is performed, it shall be performed by different person

I1: The confirmation measure shall be performed, by a different person

12: The confirmation measure shall be performed, by a person from a different
team, that is, not reporting to the same direct superior

I3: The confirmation measure shall be performed, by a person from a different
department or organization, that is, independent from the department respon-
sible for the considered work product(s) regarding management, resources,

and release authority

236 Y. Luo et al.

Release of Product

Safety Plan

Vehicle level
Design

Vehicle level
Req.

“(ra
N System level
Req.
.\’ DX : S5 Y (a1 & .
omponen . _ s omponen
level Req. Safety Analysis Testing

I
I :V'\) '
: Refine —--# Qptional iteration D Requirement Q Safety i
I

|
' I

— Process flow < —-> Verify/ validate O Design D Quality

B
HARA e ___ @
Safety Goal

System level
Design

level Design

Fig. 7 The integrated V model

Part 3: 8), or (non)functional requirements should be included or referenced in the
specification of technical safety requirements (ISO 26262 Part 4: 6.4).

This means that the whole development of a system (both functionality and
functional safety) cannot be solely based on the safety lifecycle recommended in
ISO 26262. The safety lifecycle addresses the functional safety-related develop-
ments, yet the functionality of the system is not addressed in this process. Therefore,
there needs to be a development process in which the desired functionality is
considered.

Considering the mentioned issues, there is a need for alignment of the safety
process and the engineering process that creates the functionality of the system.

A model of the integrated V model for functional safety is shown in Fig.7. The
color codes in the model are used to differentiate between functional and safety
perspectives of development: blue and yellow colors are used for functional design,
orange is used for safety parts, and violet is used for verification and validation
activities related to both functional and safety parts of the design.

In the integrated V model, the requirement development is modeled in a separate
flow (as opposed to the traditional V model) to emphasize the hierarchical structure
of requirements and to enforce gradual development and refinement of requirements
based on higher-level requirements and design.

The safety lifecycle of ISO 26262 is simplified in various ways in the integrated
V model. To start with, the production phase of ISO 26262 is removed completely,

Safety-Driven Development and ISO 26262 237

which, in turn, reduces some related activities too. Furthermore, the safety require-
ments hierarchy is slightly modified by merging functional safety requirements and
technical safety requirements into system safety requirements. In addition, the dual
V model (Vee of Vee) of ISO 26262 is reduced to a single V model. In other words,
the development of hardware and software (which is followed in separate V models
in ISO 26262 as shown in Fig. 6) is merged in the main V model; this change results
in a reduction of verification and validation activities too.

This process model is especially useful for nonconventional automotive compa-
nies (i.e., companies that do not work according to the norms of the automotive
industry) who require ISO 26262 compliance, simply since this process does not
reflect the norms within automotive industry. Moreover, it could also be useful for
conventional automotive companies that require a lightweight process for a specific
project. This can be because of different reasons, for example, projects with a
tight time to market requirement that does not allow full process coverage or early
development projects that require tight coupling of design and safety processes. The
description of the steps of the integrated V model is as follows:

Project proposal (R1): The proposed integrated V model starts with the project
proposal, in which the general goals of the project, customer wishes, application,
the project business plan, etc. are reflected. This step also contains the planning
of the development activities for designing the system under development.

Safety plan (S1): In this step, the safety plan is made according to ISO 26262
guidelines. The safety plan contains the planning of all the safety activities
related to the safety of the system.

Domain requirements (R2): Here, the domain requirements as well as customer
wishes are described (refined) in the form of high-level requirements.

Boundary definition (D1): Based on the high-level requirements, the design steps
are initiated by defining the system. In this step, the system is defined in
interaction with its environment.

Operational safety (S2): Following the definition of the system, operational safety
starts where the safety-critical behavior of the item is defined. It should be noted
that the operational safety is not part of ISO 26262 safety lifecycle. The goal of
operational safety is to deduce the high-level nominal behavior requirements of
the item from a safety point of view. At this point iterations over high-level steps
are made in order to reflect the possible changes that may be needed for satisfying
operational safety requirements. After completion of this step, functional safety
assessment (Q4) should be planned.

Vehicle-level requirements (R3): Here, the vehicle-level requirements are defined
by translating customer wishes and the high-level requirement to functional and
nonfunctional vehicle-level requirements. Moreover, the requirements based on
the boundary of the system are also addressed at this point.

Vehicle-level design (D2): During vehicle design, the internal functions are
designed to address the vehicle-level requirements and operational safety
requirements. D2 is the equivalent of functional architecture design (the same as
preliminary architecture in ISO 26262).

238 Y. Luo et al.

The combination of the steps R2, R3, D1, D2, and S1 composes the item
definition from ISO 26262.

Hazard analysis and risk assessment and safety goals (S3): This is a step from
ISO 26262, that is, hazard analysis and risk assessment (HARA). This step is
performed following the guidelines of the standard and results in safety goals.
The resulting safety goals may need iteration over the vehicle-level design.
When the vehicle-level steps are finished, test cases should be designed based
on functional requirements and safety goals to be performed for system/safety
validation (Q3).

System-level requirement (R4): Afterwards, the system-level requirements are
described, containing both functional and technical requirements, by refining the
higher-level requirements.

System-level design (D3): Next, the design is further refined by system-level
design. The architecture designed in D2 is detailed to satisfy the requirements
from R4 and S3.

System safety requirements (S4): Following the system-level design, system
safety requirements are described by refining S3 based on D3. Moreover, the
system safety requirements are verified by doing qualitative functional safety
analyses such as FMEA, FTA, etc. Similar to previous levels, iterations are made
after S4 for revising the design in D3 with respect to requirements in R4.

Item integration and testing (Q2): Afterward, integration tests should be designed
based on the system-level design and system-level (safety) requirements.

Component-level requirements (R5): During this step, the hardware and software
requirements refine both the system-level safety and non-safety requirements (S4
and R4).

Component-level design (D4): In the component-level design, the components of
the system are detailed and implemented.

Safety analysis (S5): In safety analysis step, the functional safety analyses are
performed on the system. The analysis is used to verify the safety of the system
in a quantitative manner.

Component testing (Q1): The components tests are designed in this step based on
requirements in RS.

Quality (Q1-Q4): Finally, following the steps Q1-Q4 verifies and validates the
design against the requirements, and the system is ready for delivery in QS.

The integrated V model introduces a simplified version of the ISO 26262 stan-
dard lifecycle matched with a development process. Synchronization points between
the two processes are clearly defined. Furthermore, iteration points within the
same level are defined. Additionally, the defined design levels facilitate hierarchical
architecture design and requirements elicitation.

Safety-Driven Development and ISO 26262 239
4 Safety Architecture Patterns

Besides the development process (discussed in the previous section), which is
the major contributor to the first goal of functional safety (preventing systematic
failures), the architecture design also has an important role in achieving the first two
goals. Good architecture design reduces the chances of making mistakes (primary
source of systematic failure) during implementation. Moreover, it can provide
proven solutions for mitigation of random failures. Therefore, in this section, this
topic is discussed and some guidelines for choosing a suitable architecture pattern
are proposed.

Decisions about the system architecture have a great impact on characteristics
of the system under development. Furthermore, since architecture design is usually
done at the early stages of a project, it is important to consider safety and specifically
functional safety in the architecture design. One of the recommendations of
ISO 26262 is to use well-trusted design principles for system architecture. Tradi-
tionally, architecture principles are stated using architecture patterns or styles [7].
The ISO/IEC/IEEE 42010 standard [21] recognizes architecture patterns as a
fundamental mean for expressing design. Moreover, adherence to architecture
patterns is considered as a form of redundancy in other domains too [43].

There are various architecture patterns for safety-critical systems in the liter-
ature [11], for example, Protected Single Channel, Homogeneous Redundancy,
Heterogeneous Redundancy, Safety Executive, and 3-level Safety Monitoring (also
known as E-Gas). An analysis on the impact of these safety pasterns on cost,
reliability, safety, negotiability, and execution time has been provided in [4].

The Protected Single Channel Pattern improves safety by monitoring the input
data and checking the data integrity and optionally monitoring the outputs. The
Homogeneous Redundancy Pattern improves safety and reliability by copying the
main channel and switching between them in case of failure. Duplex, Triple Mod-
ular, etc. are different variations of this pattern. The Heterogeneous Redundancy is
similar to Homogeneous Redundancy except that each added channel is developed
independently; therefore it is one of the most expensive patterns. The Safety
Executive Pattern can switch to a secondary channel to bring the system to safe
state in case of a failure in the main channel. The 3-level Safety Monitoring Pattern
is widely used in the automotive industry because it provides a cost-effective safety
solution. This pattern monitors the internal states of a system in the first level and
monitors the inputs and outputs in the second level. The third level is dedicated to
the nominal functionality of the system.

In this section, we compare some of the mentioned patterns. The comparison
is done from five perspectives: reliability, safety, cost, modifiability, and impact on
executive time. For each of these aspects, we define different classes to facilitate the
comparison. All comparisons are carried out between a basic system and a system
developed according to a pattern.

240 Y. Luo et al.

Reliability

This aspect shows the relative improvement in the system’s reliability achieved by
a pattern. The reliability of a pattern is assigned to one of the reliability classes R1,
R2, and R3, in accordance with Table 2.

Safety

This aspect indicates the safety recommendations or improvement that a pattern
could contribute to. The safety of a pattern is assigned to one of the safety classes
S1, S2, and S3, in accordance with Table 3.

Cost

This aspect gives the implications on costs of a pattern, which include the recurring
cost per unit and development cost of the pattern. The cost of a pattern is assigned
to one of the cost classes C1, C2, and C3, in accordance with Table 4.

Modifiability

This aspect indicates the degree to which a system developed according to a pattern
can be modified and changed. The modifiability of a pattern is assigned to one of
the modifiability classes M1, M2, M3, and R4, in accordance with Table 5.

Impact on Execution Time

This aspect shows the effect of a pattern on the total time of execution at runtime.
The impact on executive time of a pattern is assigned to one of the impact classes
T1, T2, and T3, in accordance with Table 6.

Table 7 shows the results of our comparison of some of the patterns. From
reliability perspective, only Triple Modular Redundancy Pattern can improve the
reliability of a basic system. From safety perspective, Triple Modular Redundancy
Pattern can bring most safety improvements, while Safety Executive Pattern brings
lowest safety improvements. From cost perspective, we could see that among these
patterns, Sanity Check Pattern, Protected Single Channel Pattern, and 3-Level
Safety Monitoring Pattern are low-cost patterns, and Triple Modular Redundancy
Pattern and Safety Executive Pattern are high-cost patterns. From modifiability

Table 2 Classes of reliability

Class R1 R2 R3
Description Lower than a basic The same as a basic Higher than a basic
system system system

Table 3 Classes of safety
Class S1 S2 S3

Description Lower impact Small improvements Incremental improvements

Table 4 Classes of cost

Class Cl C2 C3
Description Low cost Reasonable cost High cost

Safety-Driven Development and ISO 26262 241

Table 5 Classes of modifiability

Class M1 M2 M3 M4
Description The same as a Very simple to Can be modified Can be modified
basic system be modified with easy steps with extra cost

Table 6 Classes of impact on executive time

Class T1 T2 T3
Description No effect Little influence Increase in the execution
time

Table 7 Results of comparison with other patterns

Pattern name Reliability ~ Safety Cost Modifiability Impact on execution time
Triple modular R3 S3 C3 M1 T2

redundancy

Sanity check R2 S2 Cl1 M2 T1

Safety R1 S1 C3 M3 T1

executive

Protected single R1 S2 Cl1 M4 T2

channel

3-Level safety R2 S2 Cl1 M3 T3

monitoring

perspective, Triple Modular Redundancy Pattern and Sanity Check Pattern are easier
to be modified than the other four patterns. Finally, from impact on execution time
perspective, only 3-Level Safety Monitoring Pattern causes big influence. Note that
the comparison results of these patterns can be different, if they are compared from
other perspectives or in different contexts. Therefore, when engineers choose which
patterns to be used or applied, they could validate our comparison in the context
of their use scenarios. Besides, sometimes engineering can also build their own
patterns based on the existing ones.

S Model-Driven Design for Safety Assessment

In the previous sections, we discussed the main factors for achieving the first two
goals of functional safety. In this chapter we explore the third goal. We specifically
discuss how to provide evidence for achieving the first two goals.

The safety standards describe generalized approaches to identifying hazards and
risks, design lifecycle, and analyses and design techniques. Therefore, when apply-
ing such standards for a specific application, a significant degree of interpretation of
those standards may be necessary.

The process for developing safety-critical systems in these safety domains is
manually checked for compliance with the standards. This checking process is

242 Y. Luo et al.

referred as safety assurance and certification. Due to the amount of manual work
involved, safety assurance is usually costly and time-consuming. Moreover, when a
system evolves, some of the existing safety assurance data needs to be regathered or
revalidated. To address this, model-driven techniques have been applied to facilitate
safety assurance. We divide these techniques into three categories: modeling safety
standards, modeling safety argumentation, and modeling support for safety case
assessment.

5.1 Modeling Safety Standards

Models of safety standards are widely used for understanding and communicat-
ing among engineers and software developers. However, there are a number of
significant challenges to deal with. Firstly, the modeling process suffers from
subjectiveness issues. In some domains (such as the automotive domain), there is
no authority providing an interpretation of the safety standard, and the modeling
process is mainly performed by experts based on manufacturer requirements to
ensure sufficient quality. Thus, the whole process of extracting information from
the safety standards becomes subjective. Furthermore, when a new version of the
standard is released, the models need to be updated or modified by persons who may
have not created these models. Due to the invisible modeling process, most of the
previous work needs to be redone. Secondly, standards are represented in natural
language, with the resulting inevitable manual work of interpretation becoming
more costly and less reliable. It also increases the difficulty of identifying the
reusable information from the safety-related artifacts developed during the safety
lifecycle. Thirdly, standards themselves contain inconsistencies. There are a number
of synonyms used in the standard, which makes it impossible to generate the models
from the standards automatically. Sometimes, standards are even in contradiction
with themselves [42]. For example, in ISO 26262, formal methods are merely
recommended, while the use of semiformal methods is always highly recommended.
However, the standard does mention formal methods and formal notations at a
number of places. Finally, any formal model should support the demonstration of
compliance with the safety standard, both for the development process and for the
diverse artifacts created during product development. We advocate that standards
need to be universally understandable and expressed in a language that is simple,
well structured, but strict. For this goal, we believe that in the future it should be
possible to transform standards into models automatically and vice versa.

Work to date has generally involved conceptual modeling of standards for
understanding. A conceptual model for the aeronautic standard DO 178B is created
to improve communication and collaboration among safety engineers and software
engineers [50]. A conceptual model of the generic standard IEC 61508 for electrical
and electronic equipment is proposed for the development of compliant embedded
software [38]. Also, a study on process modeling has been done in the context of
ISO 26262 [25]. All of these studies refer to compliance with the standards from

Safety-Driven Development and ISO 26262 243

Table 8 Methods and tools used for each model

Model Purpose Extraction method Possible description methods
Structure Showing the structure ~ Manual modeling UML, Ecore, ontology
model of the standard of the table of content

Conceptual ~ Capturing the main Snowball approach UML, Ecore, ontology
model concepts or terms used

in the standard and
their relations

Process Demonstrating the Mapping between SPEM, BPMN
model required process standard concepts and

described in the SPEM elements

standard

a specific point of view. However, the modeling process is still subjective, which
may lead to inconsistencies of the models after future modifications. Furthermore,
the traceability of the source of the models is not covered: no one knows where the
concepts and relations in the models come from, except the expert who has identified
or defined them.

To address this, three kinds of models are proposed for the safety standards. The
structure model and the conceptual model are introduced to support unambiguous
understanding of the standard; the process model supports the demonstration of
compliance of the process of the project with the process described in the standard.
Due to the different characteristics and aims of ISO 26262 models (structure model,
conceptual model, and process model), different methods are chosen to extract and
describe these models. Most of the selected description methods in Table § are
widely used in the industry.

The structure model of the standard can be obtained by modeling the table
of content. For the conceptual model, we defined the Snowball approach for
extraction [28]. The results of the structure model and conceptual model can be
represented as an Ecore model, an UML model [34], or an ontology. For the process
model, we have used Software and Systems Process Engineering Meta model
(SPEM) [35] as the description language and the SPEM supporting tool Eclipse
Process Framework (EPF) [3] for visualization. Besides, other formal process
languages can also be used for constructing process model, such as BPMN [45].

5.2 Modeling Safety Argumentation

A safety case is a well-structured argument for justifying that a system is safe. In [6],
a safety case is defined as:

Definition 3 “A documented body of evidence that provides a convincing and
valid argument that a system is adequately safe for a given application in a given
environment.”

244 Y. Luo et al.

In some international safety standards, explicit safety cases are required for safety-
critical systems. For example, ISO 26262 stimulates the use of safety cases to
demonstrate the product safety [41]. Besides, MOD Def Stan 00-55 [33] for safety-
critical software in defense equipment requires producing safety cases with explicit
safety requirements.

Typically, safety cases are represented in free text, but in this way, the structure
of the safety cases might be unclear, which allows for inconsistencies and con-
fusion [31, 32]. To address this, modeling techniques are introduced to facilitate
safety case construction and to increase the understandability and confidence in
the claimed safety assurance [41]. For instance, techniques originally from model-
driven development are used for representing concepts in safety cases, such as
ontologies and SBVR models. Goal Structuring Notation (GSN) is introduced as a
graphical modeling approach for safety case construction [23]. With the increase of
safety-critical software and systems, such as cars, more and more GSN-based safety
cases are developed. The reusability of GSN-based safety cases becomes another
challenge. People want to reuse safety cases whenever it is possible. Informal reuse
of safety case elements occurs, like “Copy and Paste” of the textual safety case
documents between projects. A number of problems with informal reuse are listed
in [22]. For example, it may cause inappropriate reuse, lack of traceability, or lack
of consistency. To prevent these problems, safety case patterns are introduced as an
approach to reuse of common structures of safety cases.

5.2.1 Safety Case Construction with Controlled Language

As more and more users (argument readers and writers, such as safety engineers, or
safety assessors) are involved in safety case development, common understanding of
the meaning of a safety case element is important. If it is not the case, the confidence
of a safety case can be misplaced. To address this, some research has been done
on the understandability of safety arguments. In [14], assured safety arguments are
proposed as a clear argument structure to demonstrate how to create clear safety
arguments. Besides, in [13], a precise definition of context in GSN arguments is
proposed to achieve a better understanding. However, the content of a safety case
element is still documented by natural language. The ambiguities caused by using a
natural language are still unsolved.

We have proposed a methodology to use an SBVR-based controlled lan-
guage [36] to support the development of clear safety arguments [30]. By using
a controlled language, all the concepts (noun concepts and verb concepts) in a
safety case are well-defined in a SBVR vocabulary. Argument readers can check the
definitions or examples of those concepts to get a common understanding of them.
In this way, the understandability of safety arguments can be improved. Besides, a
model transformation has been implemented to generate SBVR vocabularies from
EMEF conceptual models, which can be obtained via modeling safety standards
(Sect.5.1). Then the manual work involved in vocabulary development can be
reduced.

Safety-Driven Development and ISO 26262 245

An overview of the proposed approach is shown in Fig. 8. There are three phases:
conceptual phase (P1), vocabulary phase (P2), and modeling phase (P3). In the
conceptual phase (P1), a conceptual model of the target domain will be manually
built from scratch using the Snowball approach [28] or semiautomatically refined
from other conceptual models [29]. The conceptual model will be used as an
input of the vocabulary development. The meta model that we use for describing
conceptual models is the Ecore meta model. After this, a model transformation will
be carried out to transform the conceptual model from an EMF format to an SBVR
specification. Then in the vocabulary phase (P2), users (argument writers) can build
their own vocabulary based on the generated SBVR model. Note that users can also
skip the previous phase and start by creating a new SBVR vocabulary. Finally, in
the modeling phase (P3), the vocabulary will be used to facilitate the safety case
construction.

5.2.2 A GSN Editor with SBVR Functionality

To construct safety cases in GSN with vocabulary support, we have integrated the
SBVR functionality into the GSN editor. As the result, the noun and verb concepts
defined in a vocabulary will be highlighted while safety engineers edit a GSN
element. Figure 9 shows a screenshot of the GSN editor. When a GSN element is
edited, a list of suggested concepts is given via content assistant. For example, after
typing “p,” a list of concepts in the vocabulary that start with “p” is provided. In
this way, the number of errors, such as ambiguities of a safety case, can be reduced.
Users can always look into the vocabulary to check the definitions of nouns and

verbs used in their safety cases to avoid misunderstanding.

5.3 Safety Case Assessment

Currently, different industries have different processes for assessing safety cases.
To the best of our knowledge, there does not exist a general and formal manual
which describes how a safety case is assessed. After a restrict literature study, we
have found four sources that have mentioned safety case assessment from different
angles. These descriptions are not only specified for GSN-based safety cases, but
also applicable for textual safety cases.

5.3.1 Overview of Safety Assessment Approaches

The first source is a safety case assessment manual for Gas Conveyors’ Safety Cases
provided by HSE [1]. In this document, they described a framework for assessing
GSMR (Gas Safety Management Regulations) safety cases. In the Gas and Pipelines
Unit, a safety case is assessed in two stages. The first stage is the registration stage.

Y. Luo et al.

246

ASo[opoyiowt 9y} JO MITAIOAO UY § "SI

[PPOIN IALS

[9POIN Tenydaduo))
109[01/prepuelrs

Jojipa aseo Ajajes ojul
Jo}ipe YAGS ejelbajul

uonewJojsuel] |9pon

247

Safety-Driven Development and ISO 26262

Anpeuonouny YAFS WM 101pa NSO 43 o uonensn(il 6 814

SUDIIUNY SUOEPUBIS MOPUIMIaMO <=

SUBIIIUNY UOHIRIBIUIMOPUIMIaMEY 4
BIEMPIBY MOPUIMIBME <
uaLwAojdap MopuUIpIamod <= H) “*suoioun) auoep “*suoljounyuoioe
MOPUIM MO <= MOpuUlMIamod unop 2d UBIS™MOopUIpJamod Jajul- MOpUIpBMOd
| so SpIETEH , _ 7 Jo spuezey jo spuezey jo spuezey
_vENNmIIE £PEZEH Md ZPJEZEH Md LPIEZEH Md

MOpUIpIaMO
"MOPUIMISMO JO SPIEZRLPaYIUSD] 40 pdoar VHYH
| s1en00 Juswnbie ay)
HodaiyHyH
piezeH ns

a umopul %M.m_wn_m ‘ajesado” o) sjes”Alqeidecoes|

Mopulipiemod

ejuoy ubisag reondol

248 Y. Luo et al.

n-Iterations

/\ Accept

Stage | Stage 2 Stage 3

Initiation | —P> Review Revise

The proposer _/

constructs initial
safety arguments

Fig. 10 Safety argument review process [49]

After a safety case has been received by the administration team (AT), the member
of the AT checks whether the case is complete as described by its own content
list. Then they initially review the safety case to determine whether it is reasonable
and contains sufficient information for assessment. The second stage is the main
part of safety case assessment. During this stage, the assessor should complete the
following steps [1]:

* Identify and clarify priority issues which should be examined further and/or
resolved as part of the assessment process.

» Discuss and resolve such issues with the proposer of a safety case.

* Reach formal agreement on improvements required.

* Reach a decision, where possible, to accept the safety case and record why.

* Provide reasons, in writing, for rejecting a safety case.

* Identify inspection topics.

The second source is a safety case review process introduced in [48, 49] (Fig. 10).
This process includes three stages: Initiation, Review, and Revise. Stage 1 is the
initial development of a safety case which is done by safety case developers. When
the safety case is completed, developers submit it to safety case assessors. Assessors
need to review the safety case and give feedback for revising it if necessary. This
review and revise stage may be repeated several times until a judgment is proposed.
The judgment can be either “Accept” or “Reject.”

The third source is the description about the goal and needs of safety assessor
in high-level requirements [2] of OPENCOSS. The goal of safety assessors is to
assess whether a safety demonstration of a product or assurance demonstration of
a system or component is acceptable. The principal needs of a safety assessor are
to view the baseline artifacts of safety case, to improve locating deficiencies and
inconsistencies in the safety-critical system, and to cooperate with safety managers
or other safety case assessors.

The fourth resource is a presentation by Ola Orsmark on the third Scandinavian
Conference on System and Safety [37]. It describes three topics around functional
safety: the objectives and outcomes of safety case assessment, the benefits of

Safety-Driven Development and ISO 26262 249

delivering a good safety case, and the tips for developing effective argumentation.
They stated, The objectives of safety case assessment are to evaluate whether
the reasoning about the functional safety of the product is valid and to get an
independent statement that the claim about the functional safety is reasonable.
This is consistent with the objectives in the third source. Simply, the assessor is
required to evaluate a safety case and then to provide a recommendation which
gives judgments on the claims. The outcomes of a safety case assessment could
be identified strengths and weaknesses of a safety case, a recommendation of the
judgments, and required corrective actions.

5.3.2 An Alternative Safety Assessment Process

From the aforementioned four resources, we obtained an insight of safety case
assessment process. This helped us to understand the responsibilities of safety
assessors and to identify the user actions during the assessment process. However,
the activities in these processes are not specified, especially in the review stage. To
make the steps in the review stage explicit, we propose a detailed process flow for the
review stage. It is designed for general safety case assessment which is independent
on safety case formats. In other words, this process can be applied to both textual
and graphical safety cases.

Figure 11 shows the detailed steps of our proposed process. There are four
key steps in the safety case assessment: (1) prepare for review; (2) validate logic
and structure; (3) evaluate quality; (4) and record and give feedback. In the
first step, Preparation, the assessor receives a safety case which is developed by
safety case developers. Hereby, we assume that the safety case is submitted with
additional information wherein the purpose of the safety case and its background
are introduced. Before starting the assessment, a number of preparations should
be done. The completeness and consistency of the safety case are checked by the
assessor, for example, whether there are undeveloped elements. Besides, they also
need to check the format of the safety case to select corresponding tool used for the
review process.

In the second step, Logic and structure validation, the assessor should initia