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Abstract. Oblivious polynomial evaluation (OPE) was first introduced
by Naor and Pinkas in 1999. An OPE protocol involves a receiver, R who
holds a value, α and a sender, S with a private polynomial, f(x). OPE
allows R to compute f(α) without revealing either α or f(x). Since its
inception, OPE has been established as an important building block in
many distributed applications.

In this article we investigate a method of achieving unconditionally
secure distributed OPE (DOPE) in which the function of the sender is
distributed amongst a set of n servers. Specifically, we introduce a model
for DOPE based on the model for distributed oblivious transfer (DOT)
described by Blundo et al. in 2002. We then describe a protocol that
achieves the security defined by our model.

Our DOPE protocol is efficient and achieves a high level of security.
Furthermore, our proposed protocol can also be used as a DOT protocol
with little to no modification.

1 Introduction

Oblivious polynomial evaluation (OPE) was first introduced by Naor and Pinkas
in 1999 [20]. An OPE protocol involves two parties, a receiver, R who holds a
private value, α and a sender, S who holds a private polynomial, f(x). Informally,
an OPE protocol allows R to learn the evaluation of S’s polynomial at his private
value i.e. f(α), whilst keeping S from learning α and R from learning any more
information about f(x). A more formal definition, adapted from [7] is given
below:

Definition 1 [7]. An OPE protocol is composed of two parties, S who has a
polynomial f(x) over a finite field F and R who has an input value α ∈ F.
Correctness is achieved if, at the end of the protocol, R learns f(α). Security
is guaranteed if the following two conditions are met after the protocol has been
executed:
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1. S cannot reduce his uncertainty of α, i.e. the probability of S computing α is
1/|F|.

2. R does not learn any information relating to f(x), other than f(α).

OPE has been found to have a myriad of applications in such things as secure
computation [12], oblivious neural learning [7], secure set intersection [15] and
privacy preserving data mining [18]. As a result of this, an extensive amount of
research has been conducted on this topic [7,13–15,17,19,24,25].

Within the literature, OPE protocols come in two flavours, (1) computation-
ally (conditionally) secure protocols, which are secure against an adversary that
is computationally bounded, and security is based on cryptographic assump-
tions; and (2) unconditionally (information theoretic) secure protocols, where
the adversary is computationally unbounded. We limit the focus of this article
to unconditionally secure OPE protocols.

To the best of the author’s knowledge there exists only three unconditionally
secure OPE protocols in the literature. The first unconditionally secure OPE
was given by Chang and Lu [7]. To achieve information theoretic security they
use a third party who takes an active role in the protocol execution. The second
information theoretic secure OPE protocol was given by Hanaoka et al. in [14]
(and was later expanded on in [24]). Their protocol also requires the use of a
third party although, in their protocol the third party acts as an initialiser, in
that he merely distributes some (unrelated, effectively random) information at
the start of the protocol and then takes no further part in the protocol execution.
The third OPE protocol that achieves information theoretic security was given
by Li et al. [17]. Their protocol takes a different approach and instead utilises
a set of servers to collectively implement the function of the sender. We denote
such a scheme as a distributed oblivious polynomial evaluation (DOPE) protocol
in order to differentiate this type of scheme from the other three-party protocols.

In the DOPE protocol of Li et al. [17] the sender initialises the protocol by
distributing some information amongst a set of n ≥ 2 servers. Following this, S
takes no further part in the protocol. To compute his evaluation, R communicates
with a subset composed of t amount of these servers where t ≤ n is known as the
threshold. The sender’s security is guaranteed against a coalition composed of
l − 1 servers and R; whilst the receiver’s privacy is guaranteed against a subset
of b − 1 servers, where b + l < t ≤ n. Li et al. also show how to improve this
scheme allowing for the greater threshold of b = l = t by introducing some
publicly known information. However, we note that this increase in security
comes at a cost. Namely, it increases the overall complexity of their protocol
and it also allows both R and the servers to gain some extra information about
f(x). Since OPE protocols (and by extension DOPE protocols) are generally
used as building blocks in larger multi-party protocols an OPE protocol that
leaks information relating to f(x) may result in security flaws in the overlying
multi-party protocol.

As a result of this, an efficient DOPE protocol that does not leak any infor-
mation and still achieves a high level of security is needed.
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1.1 Our Contribution

In this paper we develop such a protocol by first describing a model of DOPE and
then introducing an efficient DOPE protocol that achieves the security defined in
our model. Specifically, our proposed protocol allows R to compute his evaluation
by simply broadcasting some information and then receiving contact from t or
more servers. The protocol achieves security for R against a coalition of t − 1
servers and security for S against a coalition composed of t − 1 servers and R
and does not leak any information relating to either f(x) or α.

To develop a model of DOPE we simply apply a slightly modified version
of the already established and well studied security framework developed by
Blundo et al. [4,5] for the purpose of distributed oblivious transfer (DOT) [1,8–
10,21,22]. We then give the construction of a DOPE protocol that is secure
under this model. An interesting property of our protocol is that it can also be
utilised as a DOT protocol with little to no modification.

Our protocol achieves security equivalent to what Blundo et al. describe as a
strong DOT protocol [4]. That is, our DOPE protocol is secure against a coalition
composed of t − 1 servers and R even after R has received f(α).

2 Model

Similar to a DOT protocol a DOPE protocol consists of a sender, S, the receiver,
R and n servers, s1, · · · , sn. As per Definition 1 the sender has a polynomial, f(x)
of degree k ≥ 1 over F, whilst the receiver has a point α ∈ F, such that |F| = q
where q is a prime number and q > max(k, n). We assume a standard model
of communication present in many multi-party protocols [2] i.e. a synchronous
broadcast connection exists between the servers and R, such that R can privately
and simultaneously send the same message to all of the servers. Additionally,
we assume each server has a secure channel that allows them to send private
messages to R. DOPE consists of two phases:

1. Initialisation: S privately distributes some information relating to f(x) to
each of the n servers. Following this S takes no further part in the protocol.

2. Evaluation: R broadcasts some information to all of the servers. A set of
t or more servers send a response to R who then uses this information to
compute f(α).

In order to achieve both correctness and security a DOPE protocol must
satisfy the following security conditions, originally given by Blundo et al. [4] and
informally stated by Corniaux and Ghodosi [9] for the purpose of DOT:

1. Correctness: R is able to compute the requested evaluation after receiving
information from t or more servers.

2. Receiver’s Privacy: A coalition of t − 1 servers cannot compute any infor-
mation relating to α.
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3. Sender’s Privacy: After the initialisation phase (but before the evaluation
phase) a coalition composed of t − 1 servers and R cannot compute any
information relating to f(x).

4. Sender’s Privacy After Protocol Execution: After communication
between R and the servers has occurred and R has computed f(α), a coali-
tion composed of t−1 servers and R cannot compute any information relating
to f(x); other than what the evaluation of R’s chosen value (i.e. f(α)) has
already revealed.

In our model we assume that all participants follow the protocol exactly, i.e.
they are semi-honest. A benefit of our model is that the degree of f(x) (given
as k) is not related to the threshold parameter, t. This allows for a flexible and
easily changeable level of security. For instance, even if the degree of k is small S
can ensure security against a large number of servers by assigning a high value
to t.

In regards to the security conditions given by Blundo et al. it was shown that
a DOT protocol that achieves all four security conditions could only be achieved
in two rounds of communication between the servers and R or by allowing S to
contact R during the initialisation phase. This also proves true for our DOPE
protocol which is given in the next section. We note that, similar to Blundo’s
“Strong DOT Protocol” [4] our protocol assumes that S correctly distributes
the information to the servers and does not try to initiate any further contact
with R or the servers after the initialisation phase.

3 DOPE Protocol

In this section we describe our DOPE protocol and then evaluate the security
of the protocol against the security conditions given in the previous section.

In our proposed protocol S utilises Shamir’s secret sharing scheme to securely
distribute his polynomial among the n servers. For completeness, we will firstly
review Shamir’s secret sharing scheme.

3.1 Shamir’s Secret Sharing Scheme

In a threshold secret sharing scheme a special participant, known as the dealer,
distributes shares of his secret value, s, amongst n participants, in such a way
that any t of these participants can reconstruct s. Whilst t − 1 or fewer partici-
pants cannot compute any information relating to s. Secret sharing is a funda-
mental building block of many distributed protocols. The specific secret sharing
scheme used in this article is Shamir’s secret sharing scheme [23] which is briefly
explained below.

Denote the n participants as P1, · · · , Pn, the dealer as D and let all cal-
culations take place in the finite field F where |F| = q such that q > n is a
prime number. The scheme consists of two phases, the sharing phase and the
reconstruction phase.
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Sharing Phase

1. D constructs a random polynomial, g(x), of degree at most t − 1, such that
g(0) = s.

2. Each participant, Pi, is privately assigned the share Vi = g(i).

Reconstruction Phase

1. A set of t or more participants perform Lagrange interpolation over their
shares to compute g(x).

2. The participants take g(0) as the secret.

3.2 The Proposed DOPE Protocol

The underlying idea behind our protocol is similar to the protocol given by Li
et al. [17], in that we have S utilise Shamir’s secret sharing scheme to distribute
shares of the coefficients of f(x) to each server.

To achieve privacy for R we have S distribute some semi-random information
along with the shares of the coefficients. Each server receives shares of this infor-
mation whilst R receives the information in its entirety. Using the distributed
information R can then easily distribute his value α among the servers, who
then perform a computation and send the output back to R. Following this, R
computes a polynomial of which the free term is his desired evaluation.

The actual method utilised to distribute shares of α was originally given in
[11] as a means to securely introduce input values under a shared MAC key in
multi-party computation. We specifically use it to allow the contacted servers
to efficiently compute a share of α multiplied by a given coefficient of f(x). The
full OPE protocol is given in Fig. 1.

In Sect. 2 we stated the result of Blundo et al. [4] which proved that a strong
DOT protocol can only be achieved in two rounds. The same is true for our
DOPE protocol, we merely circumvented this limitation by allowing S to contact
R in the initialisation phase. Specifically, in our protocol we have S directly send
the values r1, · · · , rk to R in the initialisation phase. This is actually not strictly
necessary, and to limit direct contact between S and R we could instead have S
distribute shares of r1, · · · , rk to each server. At the start of the evaluation phase
a set of t or more servers would then send R their shares of these values. This
results in a two round protocol in which R only has to be present during the
evaluation phase. This is, of course, the exact same approach taken by Blundo
et al. [4] for their strong DOT protocol.

In fact, due to the similarity of the models our DOPE protocol can easily be
converted to a strong

(
1
m

)
DOT protocol. In a

(
1
m

)
DOT protocol the receiver

wishes to learn 1 of m secrets held by S. If we define S’s secrets as ω1, · · · , ωm

then we can achieve DOT by having S compute f(x) so that f(i) = ωi for
i = 1, · · · ,m. In this case the degree of the polynomial is then k = m − 1. To
learn the ith secret R sets α = i and then executes the rest of the protocol as
before.
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Input: S has the polynomial f(x) = a0 + a1x + · · · + akxk and R the value α.
Output: R receives f(α) and S gets nothing.

Initialisation

1. S creates a set of random values r1, · · · , rk and computes k values of the form
γi = ri · ai for i = 1, · · · , k.

2. For each coefficient, ah (h = 0, · · · , k), S computes a random polynomial,
Ah(x) of degree at most t − 1 such that Ah(0) = ah. He does the same for
each γi value, computing k polynomials of the form Γi(x) with free term
Γi(0) = γi.

3. Using Shamir’s secret sharing scheme S distributes these values among the
servers, giving server sj (j = 1, · · · , n) the following information:

– k shares of the form γij = Γi(j)
– k + 1 shares of the form ahj = Ah(j)

4. S privately sends to R the values r1, · · · , rk and then takes no further part in
the protocol.

Evaluation

1. R broadcasts to all servers a set of k values of the form εi = αi − ri.
2. A set of t or more servers, denoted as W respond to R’s broadcast values.

Each server, sj ∈ W, computes and sends to R the share:

zj = a0j +
k∑

i=1

(aij · εi + γij )

3. R performs Lagrange interpolation across each zj value to compute the poly-
nomial Z(x) with free term Z(0) = f(α).

Fig. 1. The proposed DOPE protocol

Where our protocol differs from many DOT protocols [5] however, is that our
proposed DOPE protocol allows the receiver to contact more than the threshold
amount of t servers. In fact, in our protocol R actually contacts all n servers,
and we require t or more servers to respond to R. The specific servers that do
respond to R can be chosen in any arbitrary fashion, as long as there are t or
more of them. This allows for a fairly robust protocol, in that the protocol can
tolerate up to n − t servers not responding to R.



138 L. Cianciullo and H. Ghodosi

3.3 Evaluation

In this section we evaluate the security of the proposed DOPE protocol by
proving that it meets the conditions given in Sect. 2.

Correctness

Theorem 1. If all participants follow the protocol correctly the receiver obtains
f(α) by contacting t or more servers.

Proof. At the end of the evaluation phase R will have received t or more (up to
n) shares of the form:

zj = a0j +
k∑

i=1

(aij · εi + γij )

Where the share zj is from server sj . Due to the homomorphic nature of Shamir’s
secret sharing scheme linear operations performed on shares also correspond to
the secrets and polynomials these shares are computed from [3]. In other words
the shares correspond to the polynomial:

Z(x) = A0(x) +
k∑

i=1

(Ai(x) · εi + Γi(x))

The free term of each Ai(x) is Ai(0) = ai, similarly Γi(0) = ri · ai, therefore:

Z(0) = a0 +
k∑

i=1

(ai · εi + ri · ai)

Since εi = αi − ri this becomes:

Z(0) = a0 +
k∑

i=1

(ai · αi − ai · ri + ri · ai)

= a0 +
k∑

i=1

ai · αi

= a0 + a1 · α + a2 · α2 + · · · + ak · αk

= f(α)

Receiver’s Privacy

Theorem 2. A coalition of t−1 servers cannot compute any information relat-
ing to α.
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Proof. Suppose that a set of t − 1 servers, who were all contacted by R, form a
coalition. The goal of this coalition is to compute some information relating to
α. Collectively the servers have a set of t − 1 shares relating to each coefficient
of f(x), (i.e. a0, · · · , ak) as well as t − 1 shares relating to the product of each
random value and a coefficient, i.e. γi = ai · ri for i = 1, · · · , k. Additionally,
the servers also have k values of the form εi = αi − ri which gives the following
system of equations:

ε1 = α − r1

ε2 = α2 − r2

...

εk = αk − rk

From the above system we can see that to compute α the coalition would
first need to compute a given ri value. However, due to the perfectly secure
nature of Shamir’s secret sharing scheme [6,23], t − 1 shares does not reveal any
information relating to a given secret. As a result of this, the coalition of servers
cannot compute any information relating to any of the coefficients of f(x), the
γi or the ri values. Since each ri value is chosen at random, and they cannot
compute any information relating to these values the above system is composed
of k independent equations and k + 1 unknowns (each ri value in addition to α)
which results in every possible value of α being equally likely.

Sender’s Privacy

Theorem 3. A coalition composed of t − 1 servers and R cannot compute any
information relating to f(x) during initialisation.

Proof. At the end of the initialisation phase a coalition of t − 1 servers and R
will have the following information:

1. The values r1, · · · , rk.
2. t− 1 shares corresponding to each coefficient polynomial (A0(x), · · · , Ak(x)),

which gives (k + 1)(t − 1) shares.
3. t−1 shares relating to the each of other set of polynomials (Γ1(x), · · · , Γk(x)),

giving k(t − 1) collective shares.

As per the proof of Theorem 1 it is impossible to compute any information about
a given polynomial, of degree t−1, with only t−1 shares. However, the free term
of each polynomial of the form Γi(x) for 1 = 1 · · · k is Γi(0) = riai where ri is a
known quantity. The coalition can use this knowledge to compute a polynomial
with free term ai. This allows them to hold two polynomials with the free term ai.

We note that even with this extra knowledge they cannot achieve anything as
ai is unknown to them and furthermore, holding two sets of t− 1 shares relating
to two different polynomials with the same free term does not actually reveal
any information [16,23].
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Sender’s Privacy After Protocol Execution

Theorem 4. A coalition composed of t − 1 servers and R cannot compute any
information relating to f(x) after the execution of the protocol, other than what
the evaluation of R’s chosen value, f(α), gives them.

Proof. The proof of this is analogous to the previous proof with the addition
of some extra information, namely the information given to R by the other
servers who contacted him. For the sake of the proof we will assume the worst,
i.e. that all n servers contact R. Without loss of generality and for the sake
of convenience, assume that the coalition is composed of R and the first t − 1
servers, s1, · · · , st−1. This coalition has the exact same information as before,
this time however, they also have the added knowledge of the other n− t server’s
responses to R. That is:

zt = a0t +
k∑

i=1

(ait · εi + γit)

zt+1 = a0t+1 +
k∑

i=1

(ait+1 · εi + γit+1)

...

zn = a0n +
k∑

i=1

(ain · εi + γin)

If the coalition are able to compute any of the polynomials used to distribute
the coefficients of the senders polynomial, A0(x), · · · , Ak(x), or even the polyno-
mials used to distribute the product of the random values and the coefficients,
Γ1(x), · · · , Γk(x), then they can easily compute the value of a given coefficient
of f(x). We must therefore prove that this is not possible.

First, let h = 0, · · · , k and let i = 1, · · · , k then any given server, sj , contacted
by R has k + 1 shares of the form ahj

corresponding to Ah(x) and k shares of
the form γij corresponding to Γh(x). We can write these polynomials as:

Ah(x) = ah + Ah1x + Ah22x2 + · · · + Aht−1x
t−1

Γi(x) = riai + Gi1x + Gi2x
2 + · · · + Git−1x

t−1

Using this notation the response of each server, zj for j = 1, · · · n, can be written
as:

zj =
k∑

y=1

ayα
y +

k∑

h=0

(
εh

(t−1∑

v=1

Ahv
jv

)
)

+
k∑

i=1

(t−1∑

v=1

Givjv
)

Therefore, from n responses R obtains a system composed of n equations
and t(k +1)+k(t−1) unknowns, specifically, t unknowns from each of the k +1
polynomials of the form Ah(x) and t − 1 unknowns from each of the k amount
of polynomials of the form Γi(x).
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However, we note that each zj is composed of a linear combination of polyno-
mials of degree t − 1. Therefore, the system that R constructs is only composed
of, at most, t independent equations. We note that t ≥ 2 and k ≥ 1, meaning
that the amount of unknowns will always be greater than the amount of inde-
pendent equations. As a result of this, R and the coalition of t−1 servers cannot
compute anything from just the responses.

In fact, even with the direct shares of each of the t−1 servers in the coalition
they still cannot compute any information. This is because the equation used
to describe a given share is not linearly independent to the equation used for a
given zj i.e. each zj is simply a linear combination of a given participant’s share
and thus, is not a separate (independent) equation.

The net result for the coalition is a system composed of only t independent
equations and t(k + 1) + k(t − 1) unknowns, resulting in each value of a given
coefficient of f(x) being equally likely.
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LNCS, vol. 5594, pp. 377–388. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02620-1 26

9. Corniaux, C.L.F., Ghodosi, H.: A verifiable distributed oblivious transfer protocol.
In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 444–450.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22497-3 33

10. Corniaux, C.L.F., Ghodosi, H.: An information-theoretically secure threshold dis-
tributed oblivious transfer protocol. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.)
ICISC 2012. LNCS, vol. 7839, pp. 184–201. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37682-5 14

https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/3-540-36492-7_19
https://doi.org/10.1007/3-540-36492-7_19
https://doi.org/10.1007/3-540-45682-1_22
https://doi.org/10.1007/978-3-642-02620-1_26
https://doi.org/10.1007/978-3-642-02620-1_26
https://doi.org/10.1007/978-3-642-22497-3_33
https://doi.org/10.1007/978-3-642-37682-5_14
https://doi.org/10.1007/978-3-642-37682-5_14


142 L. Cianciullo and H. Ghodosi

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38
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