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Abstract. The Ring Learning with Errors (RLWE) problem over a
cyclotomic ring has been the most widely used hardness assumption for
the construction of practical homomorphic encryption schemes. However,
this restricted choice of a base ring may cause a waste in terms of plain-
text space usage. For example, an approximate homomorphic encryption
scheme of Cheon et al. (ASIACRYPT 2017) is able to store a complex
number in each of the plaintext slots since its canonical embedding of a
cyclotomic field has a complex image. The imaginary part of a plaintext
is not underutilized at all when the computation is performed over the
real numbers, which is required in most of the real-world applications
such as machine learning.

In this paper, we are proposing a new homomorphic encryption scheme
which supports arithmetic over the real numbers. Our scheme is based
on RLWE over a subring of a cyclotomic ring called conjugate-invariant
ring. We show that this problem is no easier than a standard lattice prob-
lem over ideal lattices by the reduction of Peikert et al. (STOC 2017).
Our scheme allows real numbers to be packed in a ciphertext without
any waste of a plaintext space and consequently we can encrypt twice as
many plaintext slots as the previous scheme while maintaining the same
security level, storage, and computational costs.

Keywords: Ring Learning with Errors · Homomorphic encryption ·
Real number arithmetic

1 Introduction

Learning with Errors (LWE) is a computational problem which asks to distin-
guish a system of linear equations with small errors from a uniformly random
one. After Regev [35] firstly introduced the LWE problem, it has been one of the
standard assumptions for the construction of cryptographic primitives due to its
security and versatility. Lyubashevsky, Peikert, and Regev [32] proposed a vari-
ant of LWE called the Ring Learning with Errors (RLWE) problem. They showed
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that the (decisional) RLWE problem over a cyclotomic ring can be reduced from
the Shortest Independent Vectors Problem (SIVP) over ideal lattices.

Homomorphic Encryption (HE) is a cryptographic scheme which enables
arithmetic operations on encrypted data without decryption. This technology is
a promising solution which can prevent leakage of sensitive personal information
such as financial, medical and genomic data. A number of HE schemes [5,7,8,
13,15,16,18,19,21,23,24] have been suggested following Gentry’s blueprint [22].
Currently, most of the practical HE schemes [13,15,21,23] rely their security on
the hardness of RLWE over a cyclotomic ring. For years, the choice of base ring
was restricted because nothing was known about the hardness of (decisional)
RLWE over non-cyclotomic rings.

Cheon et al. [13] proposed a HE scheme (HEAAN) that supports the arith-
metic of approximate numbers. In addition to homomorphic addition and multi-
plication, the HEAAN scheme can compute the rounding operation (extraction
of the most significant bits) efficiently, which has traditionally been considered
a challenging subject on HE system. Because of this functionality, HEAAN has
showed a remarkable performance in many of the applications [6,14,17,28–30],
requiring computations of real numbers.

Motivation. The HEAAN scheme exploits a variant of the (complex) canonical
embedding over a cyclotomic field to pack a number of plaintext values in a sin-
gle ciphertext. Hence, each of the plaintext slots could store a complex number.
We point out that this complex encoding method has some problems in terms of
efficiency and precision. Since most of the real-world applications (e.g. machine
learning) require computations over purely real numbers, the imaginary part of
a plaintext of HEAAN is underutilized. It can be viewed as a waste of a plaintext
space. In addition, homomorphic operations of HEAAN, such as multiplication
and rounding, generate additional complex errors which can reduce the compu-
tational accuracy.

Peikert et al. [34] recently showed that the RLWE problem over the ring of
integers of an arbitrary number field is no easier than SIVP over ideal lattices of
the same number field. So we aimed to find a new number field and construct a
HE scheme over its ring of integers, which utilizes a fully packed plaintext space
over real numbers to overcome the existing problem.

Our Contribution. We consider the maximal real subfield of a cyclotomic field
as a base number field and define the RLWE problem over its ring of integers
which is called the conjugate-invariant ring. We first show that the conjugate-
invariant ring is the set of real numbers in the ring of integers of a cyclotomic
field and adapt the reduction of [34] to guarantee the hardness of RLWE problem
over the conjugate-invariant ring.

Based on this problem, we construct a new HE scheme that supports approx-
imate arithmetic of real numbers. Our scheme can store a real number in each
of the plaintext slots since the image of conjugate-invariant ring with respect to
the canonical embedding belongs to the set of real vectors. We also propose a
specialized Fast Fourier Transformation (FFT) algorithm over the residue ring
of conjugate-invariant ring to minimize the complexity of arithmetic operations.
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As a result, our HE scheme can encrypt twice as many plaintext slots as the
original HEAAN scheme while maintaining the same security level and compu-
tational costs, i.e., the amortized complexity per slot is reduced by half.

Technical Details. Let m be a power-of-two integer, n = φ(m) = m/2 and
Φm(X) = Xn + 1. Let ζ = exp(2πi/m) be an m-th primitive root of unity and
let F = Q(ξ) be the maximal real subfield of the cyclotomic field K = Q(ζ) for
ξ = ζ + ζ−1. Then the ring of integers of F = Q(ξ) is R = Z[ξ], and we call
this ring the conjugate-invariant ring. By adapting the reduction in [34], we can
show that RLWE over the ring R is no easier than SIVP over ideal lattices in
K. This hardness proof reasonably motivates us to exploit R as a base ring for
the construction of a HE scheme. We also give a cryptanalysis of RLWE over
the conjugate-invariant ring R = {a(X) ∈ Z[X]/(Xn + 1) : a(X) = a(X−1)} to
study the concrete security level. We consider all known attacks on RLWE and
conclude that this problem requires the same attack complexity as the ordinary
(n/2)-dimensional LWE problem.

The plaintext encoding technique of HEAAN utilizes the canonical embed-
ding map for the packing of plaintexts in a single ciphertext. Similarly, we con-
sider the canonical embedding map τ : F → Cn/2 of the number field F . Since
ξ and its conjugate elements are real, the image of F with respect to its canoni-
cal embedding actually lies in Rn/2. Therefore, we can successfully define a ring
homomorphism from F into the vector of purely real numbers, and make the use
of plaintext encoding/decoding algorithms between R and Rn/2 based on this
canonical embedding.

We construct a new HE scheme whose security relies on the hardness of
RLWE over R. We first propose a vector representation for the elements F ,
which is efficient for the rounding operation into R and the modulo operation
of the residue ring Rq = R/qR. Then, we describe a HE scheme over the real
numbers, which provides approximate arithmetic operations and an approximate
rounding operation.

We also explain how to represent the elements of Rq and perform the arith-
metic operations between them. We present a specialized Fast Fourier Trans-
form (FFT) algorithm for an efficient Number Theoretic Transform (NTT) on
the residue ring Rq and fast multiplication between ring elements. This opti-
mization technique constructs a simply computable ring isomorphism from Rq

to Zq[X]/(Xn/2 − 1), so the ordinary NTT conversion on Zq[X]/(Xn/2 − 1) can
be applied to Rq whose dimension is one quarter of that of a naive method.

In conclusion, our approximate HE scheme over R can encrypt (n/2) plaintext
slots in a single ciphertext, twice as many plaintext slots compared to (n/4) of
the ordinary HEAAN scheme over Zq[X]/(Xn/2 + 1), while keeping the same
concrete security level, storage, and computational costs.

Related Works. Arita and Handa [3] proposed a HE scheme based on RLWE
over the decomposition ring, which is a subring of cyclotomic ring. Their subring
technique is applied to HElib [26]: they consider the plaintext space as Zp ⊕· · ·⊕
Zp, which is a subring of the plaintext space GF(pd)⊕ · · ·⊕GF(pd) of HElib for
some integers p and d, where GF(pd) denotes the Galois field of the cardinality
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pd. They claimed that RLWE over the decomposition ring is at least as hard as
its search version. However, there is no known reduction from lattice problems
over ideal lattices to the search version, since the decomposition ring is not
known to be a ring of integers of some number field so far. In contrary, RLWE
over the conjugate-invariant ring which we desired in this paper has a reduction
from SIVP over ideal lattices.

Road-Map. In Sect. 2, we present notations of our paper and some backgrounds
for RLWE. In Sect. 3, we define RLWE over the conjugate-invariant ring and dis-
cuss about its hardness. In Sect. 4, we present our new approximate HE scheme
constructed over the conjugate-invariant ring, describe encoding/decoding algo-
rithms for real numbers, and propose a specialized FFT algorithm for the desired
ring. In last section, we give a summary on our approximate HE scheme com-
pared to original HEAAN.

2 Background

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For an integer m ≥ 2,
Zm := Z/mZ, and Z×

m is the multiplicative group of units in Zm. For a ring
R, its residue ring R/qR modular an integer q is denoted by Rq. For a real
number r, �r� denotes the nearest integer to r, rounding upwards in case of a
tie. For a vector u of (complex) numbers, ‖u‖2 (resp. ‖u‖∞) denotes the �2-norm
(resp. �∞-norm) of u. For an element a of a number field K, ‖a‖can2 (resp. ‖a‖can∞ )
denotes the �2-norm (resp. �∞-norm) of the image vector of a via the canonical
embedding map. For vectors a and b of the same dimension, a 	 b denotes the
component-wise multiplication of a and b. We denote by φ(·) the Euler’s totient
function and Φm(X) the m-th cyclotomic polynomial. For a complex number
z ∈ C, z denotes the complex conjugation of z.

2.2 Number Fields and Ideal Lattices

For any number field K, there exists an element ζ of K such that K = Q(ζ).
Hence K is isomorphic to Q[X]/(f(X)) for the minimal polynomial f(X) of ζ
over Q. The degree n of f(X) equals to the extension degree [K : Q]. There are
exactly n injective ring homomorphisms {σj}1≤j≤n from K to C. The canonical
embedding is defined as the n-tuple of these embeddings as follows:

σ : K → Cn

a 
→ (σj(a))1≤j≤n.

Let s1 be the number of real embeddings of K, then n = s1 + 2s2 for some non-
negative integer s2. Without loss of generality, let σ1, . . . , σs1 be real embeddings
of K. Then the image of σ lies in the space H := {(x1, . . . , xn) ∈ Cn : xs1+s2+j =
xs1+j , 1 ≤ j ≤ s2}. Let {ej}1≤j≤n be a canonical basis of Cn. Let hj = ej for 1 ≤
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j ≤ s1, hs1+j = (es1+j +es1+s2+j)/
√

2 and hs1+s2+j = (es1+j −es1+s2+j)/
√−2

for 1 ≤ j ≤ s2. Then, {hj}1≤j≤n forms an orthogonal R-basis of H.
An element of K is called an algebraic integer if its minimal polynomial over

Q has integral coefficients. The set of all algebraic integers, denoted by OK , is
called the ring of integers of K. A fractional ideal I of K is OK-submodule of
K such that there exists a non-zero element r ∈ OK which satisfies rI ⊆ OK .
If I ⊆ OK , then we call I an (integral) ideal. The image σ(I) of a fractional
ideal I via the canonical embedding forms a lattice in Cn, and we call it an ideal
lattice generated by I. The dual of I in K is a fractional ideal in K defined as
I∨ := {a ∈ K : Tr(aI) ⊆ Z}.

For 1 ≤ k ≤ n, the k-th successive minima of the lattice L, denoted by λi(L),
is the minimum value of r > 0 such that L has k linearly independent vectors
of length at most r. If L is an ideal lattice σ(I) for a fractional ideal I ∈ K, we
simply denote by λk(I). The SIVP over ideal lattices in K is defined as follow.

Definition 1 (SIVP over ideal lattices). For a number field K of degree n and
an approximation factor γ ≥ 1, the K-SIVPγ problem is: given a fractional ideal
I of K, output n linearly independently vectors in the ideal lattice σ(I) of length
at most γ · λn(I).

2.3 Ring Learning with Errors

For positive integers n and q, let R be the ring of integers of a number field
K, Rq = R/qR and KR = K ⊗Q R. Let χkey and χerr be distributions over
R∨ and KR, respectively. For s ∈ R∨

q , AR-LWE
q,χerr

(s) is a distribution which draws
a ← Rq and e ← χerr, and output the pair (a, a · s + e) in Rq × KR/qR∨. The
(decisional) RLWE problem is defined as follows.

Definition 2 (Ring Learning with Errors). Let n, q be positive integers,
and χkey (resp. χerr) be a distribution over R∨

q (resp. KR). The RLWE problem,
denoted by R-LWEq,χerr

(χkey), is to distinguish between the uniform distribution
over Rq × KR/qR∨ and AR-LWE

q,χerr
(s) where s ← χkey.

Since KR is isomorphic to the vector space H, a distribution over H can be
identified as a distribution over KR. If χerr is a (spherical) Gaussian distribu-
tion Dαq over H with respect to the basis {hi}1≤i≤n and χkey is the uniform
distribution over R∨

q , we simply denote by R-LWEq,α.
Lyubashevsky et al. [32] proposed a polynomial-time quantum reduction from

lattice problems over ideal lattices to the RLWE problem, which holds only for
the cyclotomic fields with some special conditions on the modulus q. Peikert
et al. [34] gave a new reduction from the same problem which can be applied to
an arbitrary number field and modulus.

Theorem 1 ([34, Corollary 7.3]). Let n, q be positive integers, 0 < α < 1
be a real number such that αq = ω(1), K be an arbitrary number field of
degree n and R = OK . Then there exists a polynomial-time quantum reduc-
tion from K-SIVPγ to R-LWEq,α given � samples for γ = max{ω(

√
n log n/α) ·

(n�/ log(n�))1/4,
√

2n}.



90 D. Kim and Y. Song

Recently, it was shown by Rosca et al. [36] that the non-dual RLWE problem,
i.e., RLWE with the distribution of the secret over Rq rather than R∨

q , is at least
as hard as the original RLWE problem. In addition, the rounding technique of
Peikert [33] allows us to sample errors from a discrete Gaussian distribution
rather than a continuous Gaussian distribution. With these settings, an RLWE
sample lies in Rq × Rq rather than Rq × KR/qR∨.

3 RLWE over the Conjugate-Invariant Ring

The cyclotomic rings have been the most commonly used as base rings for RLWE
for two main reasons. The ring of integers of the m-th cyclotomic field is iso-
morphic to Z[X]/(Φm(X)), and its structure was particularly well suitable in
the construction of cryptographic schemes with the perspective of efficiency and
some functionalities. In addition, there have been no known reduction to the
RLWE over a non-cyclotomic ring for years until Peikert et al. [34] proposed
a reduction from SIVP over ideal lattices to (decisional) RLWE for arbitrary
number fields recently.

In this section, we introduce a new number field which has not been exploited
in the lattice-based cryptography so far, and compute the ring of integers of the
number field. Then we study on the hardness of RLWE problem over a new ring
in two ways: we give a reduction from a standard lattice problem and study the
concrete security level by considering all known attacks.

Let m ≥ 2 be an integer and n = φ(m) for Euler’s totient function φ(·).
For the m-th primitive root of unity ζ = exp(2πi/m), the m-th cyclotomic
field is defined by K = Q(ζ). Let σ−1 be the element of Gal(K/Q) defined by
σ−1 : ζ 
→ ζ−1, and G = {id, σ−1} be the cyclic subgroup of Gal(K/Q) generated
by σ−1. We denote by F = KG the G-invariant subfield of K which is defined as
F = {a ∈ K : τ(a) = a,∀τ ∈ G}. We first remark that F = Q(ξ) for ξ = ζ +ζ−1.
It is clear that Q(ξ) ⊆ F ⊆ Q(ζ) and [Q(ζ) : F ] = |G| = 2. Since ζ is a root
of X2 − ξ · X + 1 ∈ Q(ξ)[X], the inequality [Q(ζ) : Q(ξ)] ≤ 2 holds and it
implies F = Q(ξ). In particular, we are interested in the set of integer coefficient
elements in Q(ξ) with respect to the Q-basis {1, ξ, ξ2, . . . , ξ

n
2 −1}. We will call

this set Z[ξ] as the conjugate-invariant ring.

3.1 Reduction from SIVP

Some well-known reductions [32,34] from standard problems over ideal lattices
to RLWE requires a condition that the base ring exploited in RLWE should be
a ring of integers of a number field. Therefore, it is crucial to study the ring of
integers of a number field to define and show the hardness of RLWE problem.

We consider the subfield F = Q(ξ) of K = Q(ζ) as a base number field, and
compute its ring of integers R := OF in this section. Fortunately, the structure
of a cyclotomic field derives a quite simple and nice result on the conjugate-
invariant ring as follows.

Lemma 1. Z[ξ] is the ring of integers of F = Q(ξ) (Fig. 1).
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K = Q(ζ)

OK = Z[ζ]

F = Q(ξ)

R = Z[ξ]

Q

Z

Fig. 1. Number fields and their rings of the integers

Proof. It is clear that Z[ξ] ⊆ OF . Since OF ⊆ OK = Z[ζ], every ele-
ment a ∈ OF is uniquely expressed as a =

∑
− n

2 ≤j< n
2

aj · ζj for some
integers a− n

2
, . . . , an

2 −1. From the definition of F , we obtain σ−1(a) = a,

i.e.,
∑n

2 −1

j=− n
2

ajζ
j =

∑n
2
j=− n

2 +1 a−jζ
j which implies aj = a−j for 0 ≤ i < n

2

and a− n
2

= 0. Then, a = a0 +
∑n

2 −1
j=1 ai(ζj + ζ−j) ∈ Z[ξ], since ζj + ζ−j ∈ Z[ξ]

for 1 ≤ j < n
2 . Therefore, OF ⊆ Z[ξ], which directly implies Z[ξ] = OF . ��

It is derived from Lemma 1 that the RLWE problem over R = Z[ξ], simply
denoted by R-LWEq,α, is at least as hard as F -SIVP from Theorem 1. We can
naturally identify R with the ring of polynomials Z[Y ]/(g(Y )) for the minimal
polynomial g(Y ) ∈ Z[Y ] of ξ over Q via mapping a(Y ) 
→ a(ξ). However, it is
more convenient to consider R as the subring

R = {a(X) ∈ Z[X]/(Φm(X)) : a(X) = a(X−1)}
of OK = Z[X]/(Φm(X)). Note that the condition a(X) = a(X−1) corresponds
to the conjugation-invariant property. We will follow this subring perspective in
the rest of paper.

3.2 Cryptanalysis

In this section, we discuss the attack complexity of RLWE over the conjugate-
invariant ring. In general, the RLWE problem does not guarantee the same secu-
rity level as LWE with the same parameter. For example, there have been several
attempts to attack the RLWE (or Poly-LWE) problem over a ring Z[X]/(f(X))
by exploiting its ring structure [9,10,20]. One common limitation of these attacks
is that f(X) should have a root modulo q satisfying some strong conditions.

The RLWE assumption can be viewed as a specific case of LWE (A, b =
As + e) where the random matrix A has a special algebraic structure. In the
case of RLWE over a power-of-two cyclotomic ring, an RLWE sample can be
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understood as a variant of n-dimensional LWE instance where A is a random
anti-circulant matrix. However, there has been no known attack achieving a
lower complexity by exploiting this property. As a result, the current best known
attacks are standard lattice attacks on the ordinary LWE problem such as dual
attack and primal attack, which are well described in [1].

Now we explain how to understand an R-LWE instance as an LWE instance
with a special structure. Let m be a power-of-two integer so that n = m/2
and Φm(X) = Xn + 1. An element of R = {a(X) ∈ Z[X]/(Xn + 1) : a(X) =
a(X−1)} can be uniquely expressed as a(X) = a0 +

∑n
2 −1
j=1 aj · (Xj + X−j) for

some integers a0, . . . , an
2 −1. Therefore, a(X) can be identified with the vector

a = (a0, a1, . . . , an
2 −1) of length (n/2). Based on this identification, an RLWE

sample over the conjugate-invariant ring (a(X), b(X) = a(X)·s(X)+e(X)) ∈ R2
q

with secret s(X) can be transformed to (A, b = As+ e) ∈ Z
n
2 × n

2
q ×Z

n
2
q where A

is a square matrix of size (n/2) whose (i, j)-th component is given by

Aij =

⎧
⎪⎨

⎪⎩

a|i−j| j = 0, or i + j = n
2

a|i−j| + ai+j j > 0, and i + j < n
2

a|i−j| − an−(i+j) j > 0, and i + j > n
2

for 0 ≤ i, j < n/2. This transformation shows that R-LWE can be viewed as
a variant of the (n/2)-dimensional LWE problem where the random matrix A
has this special form. We consider all known attacks on RLWE and claim that
they do not achieve a lower complexity than the standard lattice attacks on
LWE, i.e., currently there is no special attack on R-LWE which exploits the
ring structure of R corresponding to this special structural distribution of A,
similar to the case of RLWE over a power-of-two cyclotomic ring. Therefore,
we conclude that the current best attacks on R-LWEq,α are the standard lattice
attacks, which require the same attack complexity as the lattice attacks on the
(n/2)-dimensional LWE problem.

4 Approximate Homomorphic Encryption over the Real
Numbers

The HEAAN scheme of Cheon et al. [12,13] is the first HE system which sup-
ports an efficient rounding operation for approximate arithmetic. It allows us
to encrypt a number of complex numbers in a single ciphertext and perform an
approximate arithmetic between encrypted vectors in a SIMD manner. However,
there remained one significant problem about the plaintext space.

Most of the real-world applications require computations over the purely
real numbers, but the original HEAAN scheme could encrypt a complex num-
ber in each of plaintext slots. The previous researches [29,30] used the set of
real numbers as a subring of complex numbers, but this approach cannot be
a fundamental solution for the following reason. Every algorithm of the origi-
nal HEAAN scheme, such as homomorphic arithmetic and rounding operation,
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K = Q(ζ) Q[X]/(Xn + 1)

�

F = Q(ξ) Q[Y ]/(g(Y )) Rn/2

Y �→ X + X−1

�

τ�

Fig. 2. Polynomial representation of number fields and canonical embedding

adds a small complex error to the plaintext vector. The imaginary part of an
encrypted plaintext can gradually increase as the computation progressed, and
finally the desired result (real part) can no longer be recovered after its imaginary
part becomes larger than the ciphertext modulus. Consequently, every circuit in
previous applications had a limited depth to bound the size of imaginary parts
during its evaluation.

In this section, we describe a HE scheme which is optimized in the approx-
imate computation over the real numbers compared to the original HEAAN
scheme with complex plaintext slots. The security of our scheme relies on the
RLWE assumption over the ring R = Z[ξ] introduced in the previous section.
For simplicity, the integer m will be chosen as a power of two so that n = m/2
and Φm(X) = Xn + 1.

4.1 Canonical Embedding and Packing Technique

In this subsection, we describe the canonical embedding map of the conjugate-
invariant field and explain how to represent its elements. As mentioned in
the previous section, the conjugate-invariant field F = Q(ξ) can be identi-
fied with the polynomial ring Q[Y ]/(g(Y )) for the minimal polynomial g(Y ) ∈
Z[Y ] of ξ over Q. Note that g(Y ) is a polynomial of degree (n/2) satisfy-
ing g(X + X−1) = X

n
2 + X− n

2 . Let ξj = ζ4j+1 + ζ−(4j+1) for 0 ≤ j < n/2.
Then {ξ0, . . . , ξn

2 −1} forms the set of distinct roots of g(Y ) since Xn + 1 =

(X − ζ)(X − ζ3) . . . (X − ζm−1) =
∏n

2 −1
j=0 (X2 − ξj · X + 1). Therefore, we have

a commute diagram (Fig. 2) for a polynomial representation of number fields by
identifying Y 
→ X + X−1.

Let us denote by τ the canonical embedding of F = Q[Y ]/(g(Y )) into Cn/2.
It sends an element a(Y ) to the vector of its evaluations τ(a) = (a(ξj))0≤j< n

2

at the roots of g(Y ). Since all roots of g(Y ) are real, F is a totally real number
field and the image of τ is a subring of Rn/2. The canonical embedding norm of
an element of a number field is defined by the norm of its canonical embedding.
For example, we write ‖a‖can∞ := ‖τ(a)‖∞ and ‖a‖can2 := ‖τ(a)‖2 for a ∈ F .

The packing technique of HE system allows us to encrypt a multiple num-
ber of messages in a single ciphertext and supports the parallel computation
in a SIMD manner. It has been one of the most important techniques for the
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performance improvements of HE schemes in terms of expansion rate and amor-
tized computational cost. The packing method of approximate HE scheme [13]
is based on the canonical embedding over the complex numbers.

We present a new packing method over the real numbers, by modifying the
previous solution over the complex plane. The core idea is to restrict the domain
of canonical embedding τ to the ring of integers R = Z[Y ]/(g(Y )). In other
words, the decoding algorithm transforms an element a(Y ) of R into the vector
τ(a) = (a(ξj))0≤j<n/2 of dimension (n/2). This vector is real as noted above.
Conversely, the encoding map takes a real vector x = (xj)0≤j<n/2 ∈ Rn/2 as an
input. It first computes the rounding x′ = �x�τ(R) ∈ Rn/2, which is an element
of τ(R) with a small rounding error ‖x − x′‖can2 . The output is obtained by
computing the inverse of x′ which is an integral polynomial in R = Z[Y ]/(g(Y )).
Our packing method is explicitly described as follows.

• Ecd(x). For given x = (xj)0≤j<n/2 ∈ Rn/2, discretize x into τ(R). Output
the corresponding polynomial m(Y ) = τ−1

(�x�τ(R)

) ∈ R.
• Dcd(m). For given m ∈ R, output the vector x = (m(ξj))0≤j<n/2 ∈ Rn/2.

The Ecd algorithm can be viewed as an approximate inverse of the decoding
function with a small rounding error. One can multiply a scale factor to an input
vector before the rounding operation to reduce the relative size of rounding error
and preserve the precision of plaintexts.

As a toy example, let n = m/2 = 4. Then ζ8 = exp(πi/4) = (1 + i)/
√

2 is
an m-th primitive root of unity, and we have {ξ0, ξ1} = {√2,−√

2}. For a real
vector x = (1.1, 2.3), its encoding polynomial with the scaling factor Δ = 64 is
obtained by m(Y ) = τ−1

(�Δ · x�τ(R)

)
= 109 − 27Y . Conversely, the decoded

vector of 109−27Y is computed by Δ−1 ·Dcd(m) = 1
64 (109−27

√
2, 109+27

√
2) ≈

(1.1065, 2.2997), which is a good approximation of the original vector x.

4.2 Scheme Description

This subsection gives a explicit description of our HE scheme over the real num-
bers. Our scheme is very similar to the original HEAAN scheme, but it exploits
a different ring structure R = Z[ξ]. We first propose a method to represent the
elements of the conjugate-invariant field F .

The number field F can be identified with Qn/2 as a Q-module. For example,
an arbitrary element of F = Q[Y ]/(g(Y )) can be uniquely expressed as the
sum

∑n
2 −1
j=0 aj · Y j for some aj ∈ Q, which corresponds to the isomorphism

a 
→ (a0, . . . , an
2 −1) between two modules. However, this representation is not

the best choice for the construction of HE system. One major reason is that the
image {τ(1), τ(Y ), . . . , τ(Y

n
2 −1)} of the basis {1, Y, . . . , Y

n
2 −1} does not form an

orthogonal set in the space Rn/2.
The conjugate-invariant field F = Q[Y ]/(g(Y )) can be understood as a sub-

field of K = Q[X]/(Xn+1) by identifying Y = X+X−1 as noted in the previous
subsection. Every element a(X) of F ≤ K can be uniquely expressed as a Lau-
rent polynomial a(X) = a0 +

∑n
2 −1
i=1 ai(Xi + X−i) of degree and order strictly
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less then (n/2) for some a0, . . . , an
2 −1 ∈ Q. In the following, an arbitrary element

a(X) of F will be identified with its vector of coefficients (a0, . . . , an
2 −1) ∈ Qn/2.

Note that the set {1,X + X−1, . . . , X
n
2 −1 + X1− n

2 } is a basis of F (resp. R) as
a module over Q (resp. Z). In addition, the image of this basis with respect to
the canonical embedding map τ forms an orthogonal basis in Rn/2.

This orthogonal property allows us to use an efficient rounding operation
on F as well as a modulo operation over R. We define the rounding operation
�·� : F → R by sending each of coefficients ai ∈ Q to the closest integer �ai� ∈ Z.
Note that �a� is an element of R which minimizes the rounding error ‖a − �a�‖can2

with respect to the �2 canonical embedding norm. Similar to the rounding oper-
ation, the modulo q operation is simply defined by the coefficient-wise modular
reduction, i.e., [a]q is the element of a + qR which minimizes the size ‖[a]q‖can2 .

• Setup(p, 1λ, L).

– The base integer p, the number of levels L and the security parameter λ
are given as input. Set moduli q1, q2, . . . , qL, which are usually chosen as
qi = pi.

– Choose integers m and P , and small distributions χkey, χenc, and χerr

over the ring R.
– Return the parameter set params ← (m,P, χkey, χenc, χerr).

The setup step should generate a HE parameter set that achieves λ-bit of security
level against the best known attacks on RLWE. A security proof will be given
at the end of this subsection.

• KeyGen(params).

– Sample s ← χkey. Set the secret key as sk ← (1, s).
– Sample a ← U(RqL

) and e ← χerr. Set the public key as pk ← (b, a) ∈
R2

qL
where b ← −as + e (mod qL).

• KSGen(s1, s2). For s1, s2 ∈ R, sample a′ ← U(RP ·qL
) and e′ ← χerr. Output

the switching key as swk ← (b′, a′) ∈ R2
P ·qL

where b′ ← −a′s2 + e′ + P · s1
(mod P · qL).

– Set the evaluation key as evk ← KSGen(s2, s).
• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output v · pk +

(m + e0, e1) (mod qL).
• Decsk(ct). For ct = (c0, c1) ∈ R2

q�
, output m′ = c0 + c1 · s (mod q�).

The decryption algorithm can be simply written by m′ ← [〈ct, sk〉]q�
. The encryp-

tion procedure returns a level L ciphertext ct which satisfies [〈ct, sk〉]qL
≈ m,

i.e., we can only recover an approximate value of m from its encryption. We use
the canonical embedding norm to measure the size of polynomials in R.

• Add(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctadd ← ct + ct′ (mod q�).
• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′

0, c
′
1) ∈ R2

q�
, let (d0, d1, d2) =

(c0c′
0, c0c

′
1 + c1c

′
0, c1c

′
1) (mod q�). Output ctmult ← (d0, d1) + �P−1 · d2 · evk�

(mod q�).
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• RS�→�′(ct). For a ciphertext ct ∈ R2
q�

at level �, output ct′ ← �(q�′/q�) · ct�
(mod q�′). We will omit the subscript (� → �′) when �′ = � − 1.

The algorithms Add and Multevk perform the arithmetic operations over
encrypted plaintexts. The rescaling procedure RS�→�′(·) transforms a level �
encryption of m into an encryption of (q�′/q�) · m of level �′ securely. We refer
the refer to the full version of this paper for the correctness proof and noise
estimation.1

Security. We claim that our HE scheme is IND-CPA secure under the hardness
of RLWE problems over the ring R. It can be shown by considering the following
three distributions:

D1 = {(pk, ct) : pk ← KeyGen(params), ct ← Encpk(0)},

D2 = {(pk, ct) : pk ← U(R2
q), ct ← Encpk(0)},

D3 = {(pk, ct) : pk ← U(R2
q), ct ← U(R2

q)}.

First, the distributions D1 and D2 are computationally indistinguishable under
the assumption of R-LWEqL,χerr

(χkey) since the key generation step samples
s from χkey and generates an RLWE sample pk of parameter (qL, χerr). The
second and third distributions are computationally indistinguishable as long
as R-LWEqL,χerr

(χenc) since a sample from D2 forms two independent RLWE
samples of parameter (qL, χerr) with a secret v ← χenc. Finally, the evalua-
tion key evk ← KSGen(s2, s) can be viewed as an encryption of s2 encrypted
by the secret s. The distribution of evk can be indistinguishable from the uni-
form distribution on R2

P ·qL
under the assumption of circular security when the

R-LWEP ·qL,χerr
(χkey) problem is hard.

4.3 Implications of the Conjugate-Invariant Ring

This section compares our approximate HE scheme over the real numbers with
the original HEAAN scheme from a variety of perspectives. We claim that our
scheme can have twice as many plaintext slots as HEAAN while guaranteeing
the same security level and performance. Furthermore, the utilization of the
conjugate-invariant ring fundamentally blocks the complex explosion problem of
HEAAN which possibly effect on the most significant bits of real messages.

Representation of Ring Elements. Our HE scheme is constructed over the
residue ring Rq = {a(X) ∈ Zq[X]/(Xn + 1) : a(X) = a(X−1)} for an integer q.
We introduce two methods to represent the ring elements of Rq with different
pros and cons.

Basically we use the coefficient representation (a0, . . . , an−1) ∈ Z
n/2
q of

a(X) ∈ Rq as described in the previous subsection. The coefficient represen-
tation is useful to perform the non-arithmetic operations such as the rounding
operation in rescaling procedure. However, we have to consider the following
representation for an efficient multiplication between polynomials in Rq.
1 https://eprint.iacr.org/2018/952.

https://eprint.iacr.org/2018/952
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Suppose that q is an integer such that there exists an m-th primitive root
ωm of unity in Zq. Note that ωn := ω2

m (resp. ωn
2

:= ω4
m) is an n-th (resp.

(n/2)-th) primitive root of unity in Zq. The map Zq[X]/(Xn + 1) → Zn
q , a 
→

(a(ωm), a(ω3
m), . . . , a(ωm−1

m )) is a ring isomorphism since the m-th cyclotomic
polynomial is expressed as a product Xn+1 = (X−ωm)(X−ω3

m) . . . (X−ω2n−1
m )

modulo q. We point out that an element a ∈ Zq[X]/(Xn +1) is contained in the
subring Rq if and only if a(ωj

m) = a(ω2n−j
m ) for all j = 1, 3, . . . , n− 1. Therefore,

the map a 
→ â = (a(ωm), a(ω5
m), . . . , a(ωm−3

m )) is an ring isomorphism from
Rq to Z

n/2
q satisfying â · b = â 	 b̂ for any a, b ∈ Rq, where 	 denotes the

Hadamard (component-wise) multiplication between vectors. It enables us to
perform an arithmetic operation of Rq in O(n) modulo q operations, but the
rescaling procedure cannot be done under this representation.

Complexity of Ring Operations. The conversion between two representa-
tions a 
→ â is one of the most important parts to improve the efficiency of
the HE system on Rq. It can be viewed as a linear transformation on Z

n/2
q by

identifying the elements of Rq with their coefficient vectors.
The NTT is a discrete Fourier transform over a finite field. Specifically, the

NTT over the finite field Zq with an m-th primitive root ωm of unity modulo q,
denoted by NTTm(·), converts a polynomial in Zq[X]/(Xm−1) into a vector in Zm

q

by a 
→ (a(ωj
m))0≤j<m. The NTT is a ring isomorphism between Zq[X]/(Xm −

1) and Zm
q , and its inverse is denoted by INTTm(·). The NTT conversion can

be understood as a linear map from Zn
q to Zn

q whose matrix representation is
the m × m Vandermonde matrix generated by {1, ωm, . . . , ωm−1

m }. The FFT
algorithm can compute NTTm(·) in O(m · log m) operations in Zq.

There have been suggested several methods to modify the NTT conversion
to perform some operations used in cryptographic schemes. For example, Alkim
et al. [2] and Longa-Naehrig [31] exploit a variant of NTT to make an efficient
conversion between distinct representations of a ring element in Zq[X]/(Xn +1).
In the following, we propose a specialized FFT algorithm to perform the linear
transformation a 
→ â on Rq efficiently.

The main idea is to express the linear transformation a 
→ â by a composition
of (n/2)-dimensional NTT conversion and a few simple arithmetic operations.
To be precise, the equality

a(ω4j+1
m ) = a(ωm · ωj

n
2
) = a0 +

n
2 −1∑

i=1

ai

(
ωi

m · ωij
n
2

+ ω−i
m · ω−ij

n
2

)

= a0 +

n
2 −1∑

i=1

ai · ωi
m · ωij

n
2

+

n
2 −1∑

i=1

an
2 −i · ω

−(n
2 −i)

m · ωij
n
2

= a0 +

n
2 −1∑

i=1

(
ai · ωi

m + an
2 −i · ω

−(n
2 −i)

m

)
ωij

n
2

= ã(ωj
n
2
)
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holds for any 0 ≤ j < n
2 where

ã(X) = a0+
(
a1 · ωm + an

2 −1 · ω
1− n

2
m

)
X+· · ·+

(
an

2 −1 · ω
n
2 −1
m + a1 · ω−1

m

)
X

n
2 −1.

Therefore, the linear transformation a 
→ â can be written by the composition
of NTTn/2 and a simple arithmetic operation

(a0, . . . , an
2 −1) 
→

(
a0, a1 · ωm + an

2 −1 · ω
1− n

2
m , . . . , an

2 −1 · ω
n
2 −1
m + a1 · ω−1

m

)
,

and we can compute its inverse by

a =
(
ã0, 2−1 · (ã1 · ω−1

m + ãn
2 −1 · ωm), . . . , 2−1 · (ãn

2 −1 · ω
1− n

2
m + ã1 · ω

n
2 −1
m )

)

for ã = (ã0, . . . , ãn
2 −1) ← INTTn/2(â).

Now let us consider the multiplication of polynomials in the conjugate-
invariant ring R. For given polynomials a, b ∈ Rq with coefficient representation,
we compute their product c = a · b by computing ĉ = â · b = â 	 b̂ and recover-
ing c from ĉ. It consists of three Hadamard multiplications on Z

n/2
q , two NTTn/2

conversions, and a single INTTn/2. Since the Hadamard multiplication takes only
O(n), the complexity of a multiplication over the special ring Rq can be esti-
mated by three NTT conversions of dimension (n/2), while a multiplication over
the ring Zq[X]/(Xn + 1) includes three NTT conversions of dimension n. As a
result, the computational cost of an arithmetic operation on Rq is almost half
that of the m-th cyclotomic ring.

4.4 Application to Fixed-Point Operation

The HEAAN scheme is able to evaluate a circuit approximately, and specifically
our variant is optimized in an arithmetic over the real numbers. We explain how
to use our scheme to perform the fixed-point operation with a finite precision.

As described in Sect. 4.1, a real-valued vector can be identified with a poly-
nomial in the conjugate-invariant ring R via the canonical embedding τ . For the
use of our scheme in fixed-point operation, the base p in scheme description will
be chosen as a scaling factor. So an arbitrary real vector x ∈ Rn/2 is encoded
to a polynomial m ∈ R such that m ≈ p · τ−1(x) with a small rounding error.
An encryption procedure induces an additional error so that an encryption of
m is a pair ct = (c0, c1) ∈ R2

qL
satisfying [c0 + c1 · s]qL

= m + e ≈ p · τ−1(x)
for some small error e. The precision of an encrypted plaintext is decided by a
scaling factor p and the size of errors, i.e., we can use a larger scaling factor to
keep more significant bits.

Let cti be an encryption of mi ≈ p · τ−1(xi) for i = 1, 2. Then their homo-
morphic multiplication returns a ciphertext ctmult encrypting

m1 · m2 ≈ p2 · τ−1(x1) · τ−1(x2) = p2 · τ−1(x1 	 x2)
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Fig. 3. An example of fixed-point operation

which is an encoding of the slot-wise product x1	x2 with scaling factor p2. Then,
we can use the rescaling procedure RS(·) to obtain an encryption of p·τ−1(x1	x2)
and recover the initial scaling factor p. In Fig. 3, we describe an example of fixed-
point multiplication between 1.12 and 2.34 with scaling factor p = 104. Numbers
in gray boxes represent the encrypted values in plaintext slots.

The scaling factor stays the same and the rescaling procedure reduces a
ciphertext level by one. Therefore, for the evaluation of a circuit with depth
L, the bitsize of largest ciphertext modulus should be O(L · log p) which grows
linearly on the depth and bit precision of plaintext, compared to the exponen-
tial growth based on the HE schemes for exact computations without rounding
operation [8,21].

5 Discussions

5.1 Comparison with HEAAN

The security of our scheme relies on the hardness of R-LWE problem. From
the cryptanalysis on RLWE over the conjugate-invariant ring in Sect. 3.2, our
approximate HE scheme over R = {a(X) ∈ Z[X]/(X2n + 1) : a(X) = a(X−1)}
has (approximately) the same security level as the original HEAAN over
Z[X]/(Xn + 1) for a power-of-two integer n, while the other parameters are
set equal. In this setting, the maximum number of plaintexts packed in a sin-
gle ciphertext in our scheme is n, while that of HEAAN is (n/2). This implies
our approximate HE scheme supports twice more parallel computations than
HEAAN in a SIMD manner (Table 1).

Since it requires n log q bits to express an element of the form a0 +∑n−1
i=1 ai(Xi + X−i) ∈ Rq, both schemes essentially have the same key size and

Table 1. Comparison of our scheme and HEAAN

Approximate HE Ours (2n, q) HEAAN (n, q)

Number of plaintext slots n n/2

NTT dimension n n

Bit size of ciphertexts 2n log q 2n log q
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ciphertext size. Furthermore, both schemes exploit the NTT of dimension n for a
ring multiplication, so they have almost same arithmetic complexity. As a result,
our scheme over the dimension 2n actually performs as well as HEAAN over the
dimension n while carrying a definite advantage in the number of plaintext slots.

5.2 Full RNS Variant

Many of ring-based HE schemes such as BGV [8,23] and BFV [7,21] require
polynomial arithmetic over a huge modulus. Recent implementations of HE
schemes [27,37] exploit the Residue Number System (RNS) for the perfor-
mance improvements. In particular, there have been suggested some variants
of BFV [4,25] which can be implemented without high-precision arithmetic.

In both the original HEAAN and our scheme, ciphertext moduli are chosen
to be powers of a base because the scaling factor of a rescaling procedure is equal
to the ratio of two consecutive ciphertext moduli. Unfortunately, this restriction
makes it difficult to apply the existing RNS techniques to HEAAN.

Cheon et al. [11] recently proposed a method to fully eliminate the high-
precision arithmetic of HEAAN based on the approximate base. We leave it to
the reader to check that this idea can be directly applied to our scheme.
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