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Abstract. We propose two authenticated key exchange protocols from
supersingular isogenies. Our protocols are the first post-quantum one-
round Diffie–Hellman type authenticated key exchange ones in the fol-
lowing points: one is secure under the quantum random oracle model and
the other resists against maximum exposure where a non-trivial combi-
nation of secret keys is revealed. The security of the former and the
latter is proven under isogeny versions of the decisional and gap Diffie–
Hellman assumptions, respectively. We also propose a new approach for
invalidating the Galbraith–Vercauteren-type attack for the gap problem.
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1 Introduction

All conventional cryptosystems from discrete logarithm and/or factorization
intractability assumptions would be totally broken by the emergence of quan-
tum computers, i.e., by Shor’s algorithm [27]. In the post-quantum era, it is
important to confirm whether classical cryptographic techniques are still secure
against quantum adversaries. Recently, strong security notions and constructions
against quantum computers have been intensively studied (e.g., [1,3,10,32,33]).
Moreover, National Institute of Standards and Technology has initiated a pro-
cess to standardize quantum-resistant public-key cryptographic algorithms [24],
so, to study quantum-resistant cryptosystems is a hot research area.

Key establishing over insecure channels is one of important cryptographic
techniques. In a key establishing protocol, two parties exchange some messages,
and then, they can share a key. Recent researches on this have lead to authenti-
cated key exchange (AKE). In the post-quantum era, it is preferable to have an
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AKE protocol secure based on a problem which resists against quantum adver-
saries. We then propose two quantum-resistant AKE schemes from a (relatively)
new mathematical foundation, i.e., supersingular isogenies.

Supersingular Isogeny Diffie–Hellman (SIDH). Computing a sequence
of isogenies of elliptic curves is a new cryptographic basic operation in some
applications. For example, a cryptographic hash function from expander graphs,
proposed in [6], consists of computing an isogeny sequence, which is based on the
hardness of constructing an isogeny between two (randomly chosen) isogenous
curves. Diffie–Hellman (DH) type key exchange protocols based on isogenies
are given by Rostovtsev and Stolbunov [26] and De Feo et al. [11], which were
considered as candidates for post-quantum public-key primitives.

Childs et al. [7] considered the isogeny computation problem for ordinary
elliptic curves, and obtained a subexponential-time quantum algorithm. In con-
trast, the algorithm cannot be applied to the supersingular case (because of non-
commutativity of endomorphism rings). Therefore, both applications above, i.e.,
hash function and key exchange, need to employ supersingular elliptic curves
(and the graph consisting of them). In particular, supersingular isogeny Diffie–
Hellman (SIDH) protocol proposed by De Feo et al. [11] has short public keys
compared to other post-quantum candidates, and has been intensively studied
for serving as a drop-in replacement to existing Internet protocols [2,8,9].

Very recently, Petit [25] proposed a mathematical attack for the security of
SIDH, but also showed that the security is not affected by the attack if we use
appropriate public parameters as is given in Sect. 3.

Authenticated Key Exchange. In an AKE protocol, two parties have own
static public keys, exchange ephemeral public keys, and compute a session key
based on the public keys and the related secret keys. AKE protocols achieve
that honest parties can establish a session key, and any malicious party cannot
guess the session key. The latter condition is formulated in an indistinguishability
game.

Regarding to this security game, several models have been invented, and
the Canetti–Krawczyk (CK) model was proposed to capture leakage of the ses-
sion state [5]. After the proposal, several security requirements have been indi-
cated such as key compromise impersonation (KCI), weak perfect forward secrecy
(wPFS), and maximal exposure attacks (MEX) (refer to [21] for KCI, wPFS, and
MEX). The CK model has been integrated with KCI, wPFS, and MEX to the
CK+ model [13].

Recently, several SIDH AKE protocols have been proposed [14,22,23,31].
Galbraith proposed a one-round1 protocol (SIDH TS2) in [14] based on the

Unified Model DH protocol by Jeong, Katz, and Lee [18]. The protocol is CK-
secure under a decisional problem in classical random oracle model (ROM).
1 Galbraith claims that the protocol is one-round however the description shows that

it is two-round as the responder generates the response after receiving the first
message [14].
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Longa shows a two-round SIDH AKE protocol (AKE-SIDH-SIKE) which is
CK+-secure from a KEM scheme [23]. However, it is based on a generic con-
struction known already.

LeGrow, Jao, and Azarderakhsh defined a security model in which the adver-
sary is allowed to make quantum queries, and proposed a quantum CK secure
(qCK secure) protocol [22]. The protocol, we call it LJA, is secure in the quantum
random oracle model (QROM) however it is two-round.

Xu et al. proposed a two-round protocol (AKESIDH-2) in [31], and the proto-
col is CK+-secure under a decisional problem in classical random oracle model
(ROM).

It is worth to note here that all the existing SIDH AKE protocols shown
above only achieve two-pass protocols except the SIDH TS2 protocol. In a one-
round protocol, two parties can simultaneously exchange their ephemeral keys,
while in a two-pass one, a party has to wait for the ephemeral key from the other
party. Moreover, a one-round AKE protocol has several advantages of efficiency,
e.g., each party can pre-compute ephemeral keys in advance.

Supersingular Isogeny Gap DH Problem. Traditional DH AKE proto-
cols have been constructed from several forms of DH assumptions, i.e., com-
putational, decisional and gap DH assumptions, for attaining various trade-offs
between security and efficiency. Recently, Galbraith and Vercauteren [16] and
Thormarker [29] independently proposed attacks, called GV-type attack in this
paper, on the supersingular isogeny computational DH (SI-CDH) problem with
access to decision degree oracle, which determines whether two supersingular
curves are isogenous of some specific degree or not. While the attack can be
extended to some form of SI version of gap DH (SI-GDH) problem, still, there
exist possible approaches to formulate a secure form of SI-GDH problem (and
assumption) for which the above attack is ineffective. Therefore, it is impor-
tant to find and establish such secure SI-GDH assumptions to rescue (a wide
range of) SIDH-based AKE schemes on the gap assumptions. (For surveys on
SIDH-related computational problems, refer to [16,30].)

Contributions. We propose two one-round authenticated key exchange pro-
tocols from supersingular isogenies: one is a protocol secure in the CK model
with a quantum adversary under a supersingular isogeny version of the DDH
assumption, and the other is a protocol secure in the CK+ model with a classi-
cal adversary under a supersingular isogeny version of the gap DH assumption.

We call the latter assumption degree-insensitive (di-)SI-GDH assumption in
which an adversary has access to a degree-insensitive SI-DDH oracle, and then
cannot employ the GV-type attack for which degree distinction is crucial. We
expect that the new assumption is of independent interest. Then, both protocols
have several advantages of efficiency and wide applicability in practical situations
as they retain a simple one-round Diffie–Hellman structure, and are realized in
exchanging a single elliptic curve with an auxiliary smooth-order torsion basis,
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which can be efficiently compressed [2,8]. We give a comparison table of the
existing SIDH AKE protocols and our proposals in Table 1.

Table 1. Comparison of SIDH AKE protocols.

Assumption Model Action Proof

SIDH TS2 [14] SI-CDH CK One-round (see footnote 1) ROM

AKE-SIDH-SIKE [23] SI-DDH CK+ Two-round ROM

LJA [22] SI-DDH qCK Two-round QROM

AKESIDH-2 [31] SI-DDH CK+ Two-round ROM

SIDH UM SI-DDH CK One-round QROM

Biclique SIDH di-SI-GDH CK+ One-round ROM

Notations. When A is a set, y ∈R A denotes that y is uniformly selected from
A. When A is a random variable, y ←R A denotes that y is randomly selected
from A according to its distribution. We denote the finite field of order q by Fq.

2 Security Models: CK-Security and CK+-Security

This section outlines the CK and CK+ security definitions for two-pass PKI-
based authenticated key exchange protocols. Note that, in our post-quantum CK
and CK+ models, all parties are modeled by probabilistic polynomial-time (ppt)
Turing machines while the adversary is modeled by a polynomial time quantum
machine. For further CK and CK+ details and explanations, see [12,21]. It is
worth to note here that the proposed protocols are one-round and thus, it is
enough to describe the security model as for two-pass AKE because a two-pass
model includes a one-round one.

We denote a party’s identity Â, B̂, Ĉ, . . . , where the ID space is IDS. A
party honestly generates its own keys, static public and static secret ones, and
the static public key is linked with the party’s identity in some systems like
PKI.2 The maximum numbers of parties and sessions are polynomially bound
in the security parameter.

We outline our models for a two-pass AKE protocol where parties, Â and B̂,
exchange ephemeral public keys, X and Y , i.e., Â sends X to B̂ and B̂ sends
Y to Â, and thereafter derive a session key. The session key depends on the
exchanged ephemeral keys, identifiers of the parties, the static keys, and the
protocol instance that is used.

2 Static public keys must be known to both parties in advance. They can be obtained
by exchanging them before starting the protocol or by receiving them from a certifi-
cate authority. This situation is common for all PKI-based AKE protocols.
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Keys. The public key owned by each party and its secret key are called static
public key and static secret key, respectively. The one-time use session informa-
tion exchanged in the protocol is called ephemeral public key as the information
is generated from a temporary secret called ephemeral secret key.

Session. An invocation of a protocol is called a session. A session is activated
via an incoming message of the forms (Π, I, Â, B̂) or (Π, R, Â, B̂, Y ), where
Π ∈ PRS is a protocol identifier in the protocol ID space, PRS. If Â is activated
with (Π, I, Â, B̂), then Â is the session initiator, otherwise it is the session
responder. We say that Â is the owner (resp. peer) of session sid if the third
(resp. fourth) coordinate of sid is Â. After activation, session initiator Â creates
ephemeral public key X and a new session identified with (Π, I, Â, B̂, X, ⊥),
and sends (Π, R, B̂, Â, X) to the session responder B̂, who then prepares
ephemeral public key Y and a new session identified with (Π, R, B̂, Â, X, Y ),
computes the session key and sends (Π, I, Â, B̂, X, Y ) to Â. Upon receiving
(Π, I, Â, B̂, X, Y ), Â updates the session identifier (Π, I, Â, B̂, X, ⊥) with
(Π, I, Â, B̂, X, Y ) and computes a session key for that session. We say that a
session is completed if its owner computes a session key.

If Â is the initiator of a session, the session is identified via sid = (Π, I, Â,
B̂, X, ⊥) or sid = (Π, I, Â, B̂, X, Y ). If B̂ is the responder of a session, the
session is identified via sid = (Π, R, B̂, Â, X, Y ). The matching session of the
session identified via (Π, I, Â, B̂, X, Y ) is a session with identifier (Π, R, B̂,
Â, X, Y ) and vice versa.

Adversary. Adversary M is modeled as a probabilistic Turing machine that
controls all communications including session activation. Activation is performed
via a Send(message) query. The message has one of the following forms: (Π,
I, Â, B̂), (Π, R, Â, B̂, X), or (Π, I, Â, B̂, X, Y ). Each party submits its
responses to adversary M, who decides the global delivery order.

The secret information of a party is not accessible to adversary M; however,
leakage of secret information is obtained via the following adversary queries.

– SessionKeyReveal(sid): M obtains the session key for the session with session
identifier sid, provided that the session is completed.

– SessionStateReveal(sid): M obtains the session state of the owner of session
sid if the session is not completed (the session key is not established yet). The
session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the
static secret key.

– Corrupt(Â): The query allows M to obtain all information of party Â. If a
party, Â, is corrupted by a Corrupt(Â) query issued by M, then we call the
party, Â, dishonest. If not, we call the party honest.

Definition 1 (Freshness). Let sid∗ be the session identifier of a completed
session, owned by an honest party Â with an honest peer B̂. If the matching



182 A. Fujioka et al.

session exists, then let sid∗ be the session identifier of the matching session of
sid∗. Define sid∗ to be fresh if none of the following conditions hold:

– M issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if sid∗ exists.
– sid∗ exists and M makes either of the following queries

• SessionStateReveal(sid∗) or SessionStateReveal(sid∗),
– sid∗ does not exist and M makes the following query

• SessionStateReveal(sid∗).

Security Experiment. Initially, adversary M is given a set of honest par-
ties, for whom M selects identifiers. Then the adversary makes any sequence of
the queries described above. During the experiment, M makes a special query
Test(sid∗), where sid∗ is the session identifier of a fresh session, and is given
with equal probability either the session key held by sid∗ or a random key; the
query does not terminate the experiment. The experiment continues until M
makes a guess whether the key is random or not. The adversary wins the game
if the test session sid∗ is still fresh and if the guess by M was correct. The
advantage of quantum adversary M in the AKE experiment with AKE protocol
Π is defined as

AdvAKE
Π (M) = Pr[M wins] − 1

2
.

Definition 2 (Post-quantum CK security). We say that an AKE protocol
Π is post-quantum secure in the CK model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any polynomial-time quantum adversary M, AdvAKE
Π (M) is negligible

in security parameter λ for the test session sid∗,
(a) if sid∗ does not exist, or
(b) if sid∗ exists, and the static secret key of the owner of sid∗ and the static

secret key of the owner of sid∗ are given to M.

Definition 3 (Post-quantum CK+ security). We say that an AKE protocol
Π is post-quantum secure in the CK+ model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any polynomial-time quantum adversary M, AdvAKE
Π (M) is negligible

in security parameter λ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is

given to M,
(b) if sid∗ does not exist, and the ephemeral secret key of the owner of sid∗

is given to M,
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the static

secret key of the owner of sid∗ are given to M,
(d) if sid∗ exists, and the ephemeral secret key of the owner of sid∗ and the

ephemeral secret key of the owner of sid∗ are given to M,
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(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the
ephemeral secret key of the owner of sid∗ are given to M, or

(f) if sid∗ exists, and the ephemeral secret key of the owner of sid∗ and the
static secret key of the owner of sid∗ are given to M.

The static and ephemeral public keys of our schemes include supersingular
curves and points on them. We can test supersingularity of curves in polynomial
time, e.g., [28]. We make an important remark: While Krawczyk mentions a
strong adversary model where a corrupted party can choose to register any public
key of its choice at any point during the protocol as a variant of the CK(+) model
in [21], we do not allow the re-registration of static public key (similar to the
CK(+) model), and the initial public key is honestly generated and has been
used until the end of the protocol. It is because that an active attack which
Galbraith et al. [15] proposed for revealing static keys might be considered as
an effective attack when we adopt the above flexible key re-registration.

3 Supersingular Isogeny Diffie–Hellman (SIDH)

We describe the SIDH protocol, whose implementation is investigated in detail
in [9] and subsequently in [2,4,8,19,20]. The security is studied in [15,25]. For
making user secret keys short, we follow the description in the SIKE docu-
ment [17], that is, the user key is given as just one scalar, e.g., kA ∈ Z/�eA

A Z.

3.1 Original (Concrete) Description of SIDH

For two small primes �A, �B (e.g., �A = 2, �B = 3), we choose a large prime p such
that p ± 1 = f · �eA

A �eB

B for a small f and �eA

A ≈ �eB

B = 2Θ(λ), where λ is a security
parameter. Then, we also choose a random supersingular elliptic curve E over
Fp2 with E(Fp2) � (Z/(p ± 1)Z)2 ⊇ (Z/�eA

A Z)2 ⊕ (Z/�eB

B Z)2. We use isogenies,
φA and φB, with kernels of orders, �eA

A and �eB

B , respectively, and the following
commutative diagram for the SIDH key exchange between Alice and Bob.

E
φA−−−−→ EA = E/〈RA〉

φB

⏐
⏐
�

⏐
⏐
�φAB

EB = E/〈RB〉 φBA−−−−→ E/〈RA, RB〉

for kerφA = 〈RA〉 ⊂ E[�eA

A ],
ker φB = 〈RB〉 ⊂ E[�eB

B ],
ker φBA = 〈φB(RA)〉 ⊂ EB[�eA

A ],
ker φAB = 〈φA(RB)〉 ⊂ EA[�eB

B ].

Below we first choose generators PA, QA, PB, QB such that E[�eA

A ] = 〈PA, QA〉,
E[�eB

B ] = 〈PB, QB〉 and then set the random curve E/Fp2 and the above gen-
erators as public parameters, i.e., we define the generator as pksidh = (g =
(E; PA, QA, PB, QB), e = (�A, �B, eA, eB)) ←R Gensidh(1λ). Secret-key spaces for
Alice and Bob are given as SK A = Z/�eA

A Z and SK B = Z/�eB

B Z, respectively. DH-
type key exchange is given as below (Fig. 1). Here, since 〈φB(PA) + kA φB(QA)〉 =
〈φB(RA)〉 = ker φBA and 〈φA(PB) + kB φA(QB)〉 = 〈φA(RB)〉 = ker φAB hold, we
have the equality of the j-invariants KAlice = j(EB/ ker φBA) = j(E/〈RA, RB〉) =
j(EA/ ker φAB) = KBob, and K = KAlice = KBob is a shared key. Alice’s out-
put includes φA(PB) and φA(QB) as well as EA, and the security is based on the
hardness of isogeny problem with the auxiliary inputs.
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Fig. 1. Outline of SIDH protocol (original description).

3.2 Crypto-Friendly Description of SIDH

We prepare an alternative crypto-friendly description of SIDH for a simple pre-
sentation of our proposed AKE.

We set

g = (E; PA, QA, PB, QB), a = kA, and b = kB.

Let the sets of supersingular curves and those with an auxiliary torsion basis be

SSEC p = {supersingular elliptic curve E over Fp2

with E(Fp2) � (Z/(p ± 1)Z)2 ⊇ (Z/�eA

A Z)2 ⊕ (Z/�eB

B Z)2},

SSEC p,A = {(E; P ′
B, Q′

B) |E ∈ SSEC p, (P ′
B, Q′

B) : basis of E[�eB

B ]},

SSEC p,B = {(E; P ′
A, Q′

A) |E ∈ SSEC p, (P ′
A, Q′

A) : basis of E[�eA

A ]}.

Thus, SIDH public keys of A and B are given elements of SSEC p,A and SSEC p,B,
respectively. Then, we define

ga = (EA; φA(PB), φA(QB)) ∈ SSEC p,A,

where RA = PA + kAQA, φA : E → EA = E/〈RA〉,
gb = (EB; φB(PA), φB(QA)) ∈ SSEC p,B,

where RB = PB + kBQB, φB : E → EB = E/〈RB〉,
(

gb
)a

= j(EBA),
where RBA = φB(PA) + kAφB(QA), φBA : EB → EBA = EB/〈RBA〉,

(ga)b = j(EAB),
where RAB = φA(PB) + kBφA(QB), φAB : EA → EAB = EA/〈RAB〉.

We describe SIDH using this notation below (Fig. 2). Public parameters are
g = (E; PA, QA, PB, QB) and e = (�A, �B, eA, eB). Here, shared secret is given as
KAlice =

(

gb
)a = (ga)b = KBob, which shows correctness of the SIDH protocol.

4 Post-quantum Assumptions from SIDH

We define SI-CDH, SI-DDH, ds- and di-SI-GDH assumptions against quantum
adversaries based on the notation in Sect. 3.2. The SI-DDH assumption is needed
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for indistinguishability security of SIDH shared keys. Moreover, all of the follow-
ing assumptions excluding ds-SI-GDH (see Proposition 1) are considered reason-
able at present.

Fig. 2. Outline of SIDH protocol (crypto-friendly description).

Definition 4 (SI-CDH Assumption). Let S be a quantum machine adver-
sary. For pksidh = (g = (E; PA, QA, PB, QB), e = (�A, �B, eA, eB)) ←R Gensidh(1λ)
and a ∈R SK A, b ∈R SK B, S receives ( pksidh, ga, gb), and S outputs h ∈ Fp2 .
If h = (ga)b (=

(

gb
)a), S wins. We define the advantage of S for the SI-CDH

problem as AdvSI-CDH
g,e (S) = Pr[S wins]. The SI-CDH assumption is: For any

polynomial-time quantum machine adversary S, the advantage of S for the SI-
CDH problem is negligible in security parameter λ.

Definition 5 (SI-DDH Assumption). Let S be a quantum machine adver-
sary. For pksidh = (g = (E; PA, QA, PB, QB), e = (�A, �B, eA, eB)) ←R Gensidh(1λ)
and a, r ∈R SK A, b, s ∈R SK B, S receives Xb for b ∈R {0, 1}, that is defined by

X0 = ( pksidh, ga, gb, (ga)b ) and X1 = ( pksidh, ga, gb, (gr)s ),

S outputs a guess bit b′. If b = b′, S wins. We define the advantage of S for the
SI-DDH problem as AdvSI-DDH

g,e (S) = Pr[S wins]−1/2. The SI-DDH assumption
is: For any polynomial-time quantum machine adversary S, the advantage of S
for the SI-DDH problem is negligible in security parameter λ.

Definition 6 (ds- and di-SI-GDH Assumption). Let S be a quan-
tum machine adversary. For pksidh = (g = (E; PA, QA, PB, QB), e =
(�A, �B, eA, eB)) ←R Gensidh(1λ) and a ∈R SK A, b ∈R SK B, S receives
(pksidh, g, ga, gb), and S access SI-DDH oracle for any input X =
(pksidh, (E′

A;P
′
AB, Q

′
AB), (E′

B;P
′
BA, Q′

BA), h′) where P ′
AB, Q

′
AB (resp. P ′

BA, Q
′
BA) are

points in E′
A(Fp2) (resp. E′

B(Fp2)) and h′ ∈ Fp2 , and then outputs h ∈ Fp2 . If
h = (ga)b (=

(

gb
)a), S wins. According to the behavior of SI-DDH oracle, we

have two types of SI-GDH problem, i.e.,

– degree-sensitive SI-GDH (ds-SI-GDH) problem. The ds-SI-DDH ora-
cle answers true if there exist a supersingular elliptic curve E′

AB and isogenies
(φ′

A, φ′
B, φ′

AB, φ′
BA) among E,E′

A, E
′
B, E

′
AB which form a commutative diagram

as in Fig. 3 such that
• degree d′

A of φ′
A (and φ′

BA) is equal to �eA

A and degree d′
B of φ′

B (and φ′
AB)

is equal to �eB

B and
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• P ′
AB = φ′

A(PB), Q′
AB = φ′

A(QB) and P ′
BA = φ′

B(PA), Q′
BA = φ′

B(QA) where
points (PA, QA, PB, QB) are given in public key pksidh, and h′ = j(E′

AB),
and false otherwise. We call this case degree-sensitive SI-GDH (ds-SI-GDH)
problem.

– degree-insensitive SI-GDH (di-SI-GDH) problem. The di-SI-DDH
oracle answers true if there exist a supersingular elliptic curve E′

AB and iso-
genies (φ′

A, φ′
B, φ′

AB, φ′
BA) among E,E′

A, E
′
B, E

′
AB which form a commutative

diagram as in Fig. 3 such that
• degree d′

A of φ′
A (and φ′

BA) is a power of �A and degree d′
B of φ′

B (and φ′
AB)

is a power of �B and
• P ′

AB = φ′
A(PB), Q′

AB = φ′
A(QB) and P ′

BA = φ′
B(PA), Q′

BA = φ′
B(QA) where

points (PA, QA, PB, QB) are given in public key pksidh, and h′ = j(E′
AB),

and false otherwise. We call this case degree-insensitive SI-GDH (di-SI-GDH)
problem.

We define the advantage of adversary S for the ds–SI-GDH and di-SI-
GDH problems as Advds-SI-GDH

g,e (S) = Pr[S wins] and Advdi-SI-GDH
g,e (S) =

Pr[S wins], respectively. The ds-SI-GDH (resp. di-SI-GDH) assumption is: For
any polynomial-time quantum machine adversary S, the advantage of S for the
ds-SI-GDH (resp. di-SI-GDH) problem is negligible in security parameter λ.

Fig. 3. Commutative diagram for true instances of SI-DDH oracles, in which it holds
that ker(φ′

BA) = φ′
B(ker(φ′

A)) and ker(φ′
AB) = φ′

A(ker(φ′
B)).

Proposition 1 (adapted from [16]). The ds-SI-GDH assumption does not
hold, i.e., there exists a ppt adversary against the ds-SI-GDH problem.

Proof Sketch. Very recently, Galbraith and Vercauteren proposed an attack
on the SI-CDH problem with access to the decision degree (DD) oracle [16],
which determines whether two supersingular curves are isogenous of some spe-
cific degree or not. As a basic building block, first, we describe an attack
on the SI-CDH problem using the DD oracle. The input of the problem is
(pksidh = (g = (E; PA, QA, PB, QB), e = (�A, �B, eA, eB)), EA, PAB, QAB), where
φA : E → EA is an �eA

A -isogeny, PAB = φA(PB), and QAB = φA(QB). The goal of the
adversary S is to reveal φA. For that, S calculates integer u such that u · �A ≡ 1
(mod �B), and then one �A-isogeny ψ : EA → E′. S send

(p̃k
sidh

= (g, ẽ = (�A, �B, eA − 1, eB), E′, u · ψ(PAB), u · ψ(QAB))
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to the DD oracle. Here, we note that the exponent eA − 1 is used instead of eA
for the implicitly defined �A-power isogeny. That is, the oracle distinguishes the
degree (or length) of the isogeny, in other words, whether E′ is �eA−1

A -isogenous
to E or �eA+1

A -isogenous to E. See the left hand side of Fig. 4. Then, the adversary
reveals all the isogeny by repeating this �A-backtracking decision.

Next, we extend the above strategy to solve the ds-SI-GDH prob-
lem. Namely, an ds-SI-GDH adversary obtains an input (pksidh = (g =
(E; PA, QA, PB, QB), e = (�A, �B, eA, eB)), EA, PAB, QAB, . . .), where φA : E → EA

is an �eA

A -isogeny, PAB = φA(PB), and QAB = φA(QB). The goal of the adversary
S is to reveal φA. For that, S calculates one �A-isogeny ψ : EA → E′ as before.
Moreover, S calculates degree �eB

B -isogenies E → E′
B and E′ → E′

AB that makes
commutative SIDH diagram (E,E′, E′

B, E
′
AB). Then, S send

(p̃k
sidh

= (g, ẽ = (�A, �B, eA − 1, eB), E′, E′
B, . . . , j(E

′
AB))

to the ds-SI-DDH oracle and determine whether ψ is a backtracking step in φA

or not. See the right hand side of Fig. 4. From here on, repeating this procedure,
S can reveal φA. Also, S can compute EAB by using EB and φA, which solves the
ds-SI-GDH problem. ��

Fig. 4. Diagrams for the GV-type attack. The right (resp. left) hand side shows the
strategy for the ds-SI-GDH problem (resp. the SI-CDH problem with access to the DD
oracle). The attacker distinguishes which one of the eA + 1 left arrows of �A-isogenies
from EA is backtracking by using the ds-SI-DDH (resp. the DD) oracle.

As described in the above proof, to distinguish the degree of isogeny (or
distance between two elliptic curves in the �A-isogeny graph) is crucial for the
GV-type attack. Since the ability for the distinction is given by the ds-SI-DDH
oracle, the GV-type attack adversaries have no advantages in the di-SI-GDH
problem. Therefore, in contrast to the ds-SI-GDH problem, we may assume that
the di-SI-GDH problem cannot be solved by any efficient adversaries, and can
be used for the basis of the security of our biclique scheme.

Note that auxiliary points φ′
A(PB), φ′

A(QB), φ′
B(PA), φ′

B(QA) in true instance X
for di-SI-DDH oracle impose some restrictions on implicitly defined isogenies
φ′
A, φ

′
B (and φ′

AB, φ
′
BA) used in Fig. 3. However, since degrees d′

A and d′
B of φ′

A and
φ′
B can be chosen as any powers of �A and �B respectively, a wide range of tuples

(E′
A, E

′
B, E

′
AB) can be accepted for forming the commutative diagram in Fig. 3.

Therefore, as an extreme possible case, any tuple of supersingular elliptic curves
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(E′
A, E

′
B, E

′
AB) might form the commutative diagram in Fig. 3, that is, any tuple

of such curves would be true instances in the hypothetical case. We cannot
exclude such possibility from our present knowledge of the di-SI-GDH problem. A
satisfiable analysis of the di-SI-GDH problem seems to need more understanding
of the Ramanujan graph of �-isogenies of supersingular curves.

Lemma 3.2 and Theorem 3.3 in [30] also show some interesting connection
between computational and decisional SIDH problems. However, we notice that
answers of all the oracles (OE,1)�e , (OE,2)�e and (OE,3)�e (for �e = �e1

1 or �e2
2 ) are

related to isogenies of degrees dividing �e, which is defined by public parameters.
In particular, all the isogeny degrees have smaller or equal than �e. Our di-SI-
GDH problem is related to unbounded degrees which are just a power of �. Thus,
Lemma 3.2 and Theorem 3.3 in [30] are now unrelated with our situation, but,
we think seeking relationships between the di-SI-GDH problem and the results
in [30] is an interesting research direction.

5 Proposed SIDH UM Protocol

In this section, we propose the SIDH UM protocol, where it can be proved in
the quantum random oracle model under the SI-DDH assumption.

Before describing the protocol, we explain that each party needs to have two
static public keys. The public parameter, g, contains two parameters, (P1, Q1)
and (P2, Q2). A party has a key on (P1, Q1) and the other key on (P2, Q2).
Then, (P1, Q1) is used to generate the ephemeral public key of the initiator and
(P2, Q2) is used to generate the ephemeral public key of the responder. When
the role is exchanged, each party uses the other static key which is not used
before.

This double construction in public parameter and static public keys gives
resistance to reflection attacks. To the best of our knowledge, the previous
researches of key exchange on supersingular isogenies have lacked this consider-
ation.

5.1 Useful Techniques for Quantum Random Oracle Model

A problem on security proofs in the quantum random oracle model is how to
generate random values for exponentially many positions in order to simulate
outputs of the hash function. For a hash function H : Dom → Rng , in the quan-
tum random oracle model, the adversary poses a superposition |φ〉 = Σαx|x〉 and
the oracle returns Σαx|H(x)〉. If Rng is large for a quantum polynomial-time
simulator, it is difficult to generate all random output values of H to compute
Σαx|H(x)〉. Zhandry [33] showed a solution with the notion of k-wise indepen-
dent function.

A weight assignment on a set X is a function D : X → R such that
Σx∈X D(x) = 1. A distribution on X is a weight-assignment D such that
D(x) ≥ 0 for all x ∈ X . Consider the set of functions H : X → Y for sets
X and Y, denoted by HX ,Y . We define the marginal weight assignment DW of
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D on HX ,Y where the weight of a function HW : W → Y is equal to the sum of
the weights of all H ∈ HX ,Y that agree with HW on W.

Definition 7 (k-wise equivalence). We call two weight assignments D1 and
D2 on HX ,Y k-wise equivalent if for all W ⊆ X of size k, the marginal weight
assignments D1,W and D2,W (of D1 and D2) over HX ,Y are identical.

Definition 8 (k-wise independent function). We call a function f k-wise
independent function if f is k-wise equivalent to a random function.

Lemma 1 (Theorem 3.1 in [33]). Let A be a quantum algorithm making q
quantum queries to an oracle H : X → Y. If we draw H from some weight
assignment D, then for every z, the quantity PrH←D[AH() = z] is a linear
combination of the quantities PrH←D[H(xi) = ri∀i ∈ 1, . . . , 2q] for all possible
settings of the xi and ri.

Lemma 2 (Theorem 6.1 in [33]). If there exists 2qi-wise independent func-
tion, then any quantum algorithm A making qi quantum queries to random ora-
cles Oi can be efficiently simulated by a quantum algorithm B, which has the
same output distribution, but makes no queries.

Hence, a quantum algorithm B can simulate quantum random oracles in a
polynomial-time. We use this simulation technique to simulate outputs of the
hash function in the security proof of the SIDH UM protocol.

On the other hand, the other problem on security proofs in the quantum
random oracle model is how to insert intended random values as the outputs of
corresponding oracle inputs. Zhandry [33] showed a solution with the notion of
semi-constant distributions SCω.

Definition 9 (Semi-constant distribution). Define SCω, the semi-constant
distribution, as the distribution over HX ,Y resulting from the following process:

– First, pick a random element y from Y.
– For each x ∈ X , do one of the following:

• With probability ω, set H(x) = y. We call x a distinguished input to H.
• Otherwise, set H(x) to be a random element in Y.

Lemma 3 (Corollary 4.3 in [33]). The distribution of outputs of a quantum
algorithm making h queries to an oracle drawn from SCω is at most a distance
3
8h4ω2 away from the case when the oracle is drawn from the uniform distribu-
tion.

We suppose that the simulation succeeds with probability ε if the adversary
uses an inserted random value as the outputs of corresponding oracle inputs.
If the probability that the adversary uses one of the points is ω, then the sim-
ulation succeeds with probability εω − 3

8h4ω2. By choosing ω to maximize the
success probability, the simulation succeeds with probability O(ε2/h4). We use
this simulation technique to insert a SI-DDH instance into the hash function in
the security proof of the SIDH UM protocol.
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5.2 Description of SIDH UM Protocol

We give our SIDH UM protocol using the notation in Sect. 3.2. Public parameters
are g = (E; P1, Q1, P2, Q2) and e = (�1, �2, e1, e2). We set Π = SIDHUM, that
is, the protocol ID is “SIDHUM.” Static and ephemeral keys are the same as our
biclique SIDH protocol. Let two secret-key spaces for initiators and responders
be given as SK 1 = Z/�e1

1 Z and SK 2 = Z/�e2
2 Z, respectively.

User Â has two static public keys, A1 = ga1 and A2 = ga2 , where a1 = kA,1 ∈R

SK 1, a2 = kA,2 ∈R SK 2, and a1 and a2 are Â’s static secret keys. User B̂, also,
has two static public keys, B1 = gb1 and B2 = gb2 , where b1 = kB,1 ∈R SK 1,
b2 = kB,2 ∈R SK 2, and b1 and b2 are B̂’s static secret keys. Here, ephemeral
secret keys for Â and B̂ are given as

x = kX ∈R SK 1, and y = kY ∈R SK 2,

respectively. Â sends a ephemeral public key X as X = gx to B̂, B̂ sends back
a ephemeral public key Y as Y = gy to Â.

Â computes Z1 = Ba1
2 , and Z2 = Y x, and then, obtains the session key K as

K = H(Π,Z1, Z2, Â, B̂, X, Y ), where H is a hash function.
B̂ can computes the session key K as K = H(Π,Z1, Z2, Â, B̂,X, Y ) from

Z1 = Ab2
1 , and Z2 = Xy.

It is clear that the session keys of both parties are equal (Fig. 5).

Fig. 5. Outline of SIDH UM protocol. Fig. 6. Outline of Biclique SIDH protocol.

5.3 Security

Theorem 1. Suppose that H is modeled as a quantum random oracle and that
the SI-DDH assumption hold for (g, e). Then the SIDH UM protocol is a post-
quantum CK-secure authenticated key exchange protocol in the quantum random
oracle model.

In particular, for any AKE quantum adversary M against the SIDH UM pro-
tocol that runs in time at most t, involves at most n honest parties and activates
at most s sessions, and makes at most h queries to the quantum random oracle
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and q SessionKeyReveal queries, there exists an SI-DDH quantum adversary S
such that

AdvSI-DDH
g,e (S) ≥ 2AdvAKE

SIDHUM(M)2

n2s2(8hq + 3(h + q + 1)4)
,

where S runs in time t plus time to perform O(

(n + s)λ
)

low-degree isogeny
operations.

An intuition of the security proof is given in Sect. 5.1. The SI-DDH assump-
tion used in Theorem 1 can be degree-sensitive. Hence, it implies security under
the SI-CDH assumption by using the reduction in Proposition 1. However, an
additional reduction cost is necessary. It is not trivial to directly prove security
under the SI-CDH assumption because of the no-cloning theorem. Specifically,
in the reduction to the CK security, the SI-CDH solver wants to extract the
answer of the SI-CDH problem from a random oracle query by the AKE adver-
sary. However, the query is a quantum state, and the solver cannot record a copy
of the input. Thus, this proof strategy does not work. Recently, Zhandry [34]
introduced a technique to record quantum queries. How to apply this technique
to the proof is an open problem.

6 Proposed Biclique SIDH Protocol

In this section, we propose the biclique SIDH protocol, where it can be proved
in the random oracle model under the di-SI-GDH assumption.

It is worth to note here that the SIDH UM protocol is secure in the quan-
tum random oracle model under the SI-DDH assumption, and therefore, the
SIDH UM protocol is superior than the biclique SIDH protocol in the following
points: the computational model of adversaries and the assumption relaying to
the security. However, the biclique SIDH protocol can be shown to be secure in
the CK+ model, that is, the protocol resists against maximum exposure where
a non-trivial combination of secret keys is revealed. This shows that the biclique
SIDH protocol is superior than the SIDH UM protocol in this sense.

As our SIDH UM protocol in Sect. 5, the public parameter, g, contains two
parameters, (P1, Q1) and (P2, Q2) in our biclique SIDH protocol. A party has
a key on (P1, Q1) and the other key on (P2, Q2).

6.1 Description of Biclique SIDH Protocol

We give our biclique SIDH protocol using the notation in Sect. 3.2. Public param-
eters are g = (E; P1, Q1, P2, Q2) and e = (�1, �2, e1, e2). We set Π = BCSIDH,
that is, the protocol ID is “BCSIDH.” Let two secret-key spaces for initiators
and responders be given as SK 1 = Z/�e1

1 Z and SK 2 = Z/�e2
2 Z, respectively.

User Â has two static public keys, A1 = ga1 and A2 = ga2 , where a1 = kA,1 ∈R

SK 1, a2 = kA,2 ∈R SK 2, and a1 and a2 are Â’s static secret keys. User B̂, also,
has two static public keys, B1 = gb1 and B2 = gb2 , where b1 = kB,1 ∈R SK1,
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b2 = kB,2 ∈R SK2, and b1 and b2 are B̂’s static secret keys. Here, ephemeral
secret keys for Â and B̂ are given as

x = kX ∈R SK 1, and y = kY ∈R SK 2,

respectively. Â sends an ephemeral public key X as X = gx to B̂, B̂ sends back
an ephemeral public key Y as Y = gy to Â.

Â computes the non-trivial combinations of the ephemeral and static public
keys as Z1 = Y a1 , Z2 = Bx

2, Z3 = Ba1
2 , and Z4 = Y x, and then, obtains

the session key K as K = H(Π,Z1, Z2, Z3, Z4, Â, B̂,X, Y ), where H is a hash
function.

B̂ can computes the session key K as K = H(Π,Z1, Z2, Z3, Z4, Â, B̂,X, Y )
from Z1 = Ay

1, Z2 = Xb2 , Z3 = Ab2
1 , and Z4 = Xy.

It is clear that the session keys of both parties are equal (Fig. 6).
Charles et al. [6] proposed a hash function secure against quantum adversaries

from the isogeny computation intractability. Hence, we can use the isogeny-based
hash function in the real implementation for H, however, H is modeled as a
random oracle in the security proof below.

6.2 Security

Theorem 2. Suppose that H is modeled as a random oracle and that the di-
SI-GDH assumption hold for (g, e). Then the biclique SIDH protocol is a post-
quantum CK+-secure authenticated key exchange protocol in the random oracle
model.

In particular, for any AKE quantum adversary M against the biclique SIDH
protocol that runs in time at most t, involves at most n honest parties and
activate at most s sessions, and makes at most h queries to the random oracle,
there exists a di-SI-GDH quantum adversary S such that

Advdi-SI-GDH
g,e (S) ≥ min

{ 1
sn

,
1
n2

,
1
s2

}

· AdvAKE
BCSIDH(M),

where S runs in time t plus time to perform O(

(n + s)λ
)

low-degree isogeny
operations and make O(h + s) queries to di-SI-DDH oracle.

As we consider a case where the security model is CK+, an adversary may
access to a non-trivial combination of secret keys. However, it means that the
adversary cannot access to the other combination of the secret key. Thus, the
di-SI-GDH solver can embedded an instance to the public keys where secret key
are not revealed. As we assume the random oracle model, the adversary has to
make a query which contains the di-SI-GDH answer, and then, the theorem can
be proved. Note here that the di-SI-DDH oracle is necessary to keep consistency
between the answers by the di-SI-GDH solver on adversary’s questions.

We consider how to extend our security proof in the random oracle model
to that in the quantum random oracle model as in the SIDH UM protocol.
For completing the simulation, we need to extend the di-SI-GDH assumption
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(Definition 6). Namely, in random oracle simulation, S first checks compatibility
of input elements using di-SI-DDH oracle. Hence, in the quantum ROM situation,
since inputs are given in quantum superposition form, we should extend the di-
SI-DDH oracle to take as input the superpositions. If the di-SI-GDH quantum
adversary allows the extended di-SI-DDH oracle access, then our security proof
can be converted to quantum ROM secure one.

7 Conclusion

We proposed two authenticated key exchange protocols from supersingular iso-
genies: SIDH UM and biclique SIDH. We also discussed a new approach for
invalidating the Galbraith–Vercauteren attack for the gap problem on the super-
singular isogeny Diffie–Hellman, and defined the di-SI-GDH assumption.

The SIDH UM protocol is secure in the CK and quantum random oracle
models under the SI-DDH assumption. The biclique SIDH protocol is secure in
the CK+ and random oracle models under the di-SI-GDH assumption.

Our protocols are the first post-quantum one-round Diffie–Hellman type
authenticated key exchange ones in the following points: one is secure under the
quantum random oracle model and the other resists against maximum exposure
where a non-trivial combination of secret keys is revealed.
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