
Kwangsu Lee (Ed.)

 123

LN
CS

 1
13

96

21st International Conference
Seoul, South Korea, November 28–30, 2018
Revised Selected Papers

Information Security
and Cryptology –
ICISC 2018

Lecture Notes in Computer Science 11396

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Kwangsu Lee (Ed.)

Information Security
and Cryptology –

ICISC 2018
21st International Conference
Seoul, South Korea, November 28–30, 2018
Revised Selected Papers

123

Editor
Kwangsu Lee
Sejong University
Seoul, South Korea

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-12145-7 ISBN 978-3-030-12146-4 (eBook)
https://doi.org/10.1007/978-3-030-12146-4

Library of Congress Control Number: 2018968329

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1910-8890
https://doi.org/10.1007/978-3-030-12146-4

Preface

ICISC 2018, the 21st International Conference on Information Security and Cryptol-
ogy, was held in Seoul, South Korea, during November 28–30, 2018. This year the
conference was hosted by the KIISC (Korea Institute of Information Security and
Cryptology).

The aim of this conference is to provide an international forum for the latest results
of research, development, and applications in the field of information security and
cryptology. This year we received 49 submissions and were able to accept 21 papers.
The review and selection processes were carried out by the Program Committee
(PC) members via the EasyChair review system. First, each paper was blind reviewed,
by at least three PC members for most cases. Second, to resolve conflicts in the
reviewers’ decisions, the individual review reports were open to all PC members, and
detailed interactive discussions on each paper followed.

The conference featured four invited talks given by Hoeteck Wee, Jooyoung Lee,
Aaram Yun, and Katsuyuki Takashima and one additional invited tutorial given by
Katsuyuki Takashima. We thank the invited speakers for their kind acceptance and nice
presentations. We would like to thank all authors who submitted their papers to ICISC
2018 and all PC members. It was a truly rewarding experience to work with such
talented and hard-working researchers. We also appreciate the external reviewers for
assisting the PC members.

Finally, we would like to thank all attendees for their active participation and the
Organizing Committee members who expertly managed this conference. We look
forward to seeing you again at next year’s ICISC.

November 2018 Kwangsu Lee

Organization

Program Committee

Joonsang Baek University of Wollongong, Australia
Lynn Batten Deakin University, Australia
Olivier Blazy XLim, Université de Limoges, France
Zhenfu Cao East China Normal University, China
Donghoon Chang IIIT-Delhi, India
Jie Chen East China Normal University, China
Keita Emura NICT, Japan
David Jao University of Waterloo, Canada
Dong Seong Kim The University of Queensland, Australia
Dong-Chan Kim Kookmin University, South Korea
Huy Kang Kim Korea University, South Korea
Taekyoung Kwon Yonsei University, South Korea
Hyang-Sook Lee Ewha Womans University, South Korea
Hyung Tae Lee Chonbuk National University, South Korea
Jooyoung Lee Korea Advanced Institute of Science and Technology,

South Korea
Kwangsu Lee Sejong University, South Korea
Moon Sung Lee UNIST, South Korea
Joseph Liu Monash University, Australia
Koji Nuida The University of Tokyo, Japan
Daehun Nyang Inha University, South Korea
Jong Hwan Park Sangmyung University, South Korea
Josef Pieprzyk Queensland University of Technology, Australia
Kui Ren State University of New York at Buffalo, USA
Kouichi Sakurai Kyushu University, Japan
Jae Hong Seo Hanyang University, South Korea
Wenling Wu Chinese Academy of Sciences, China
Dae Hyun Yum Myongji University, South Korea
Aaram Yun UNIST, South Korea

Additional Reviewers

Abuhmed, Tamer
Chang, Seunghwan
Chen, Hua
Chen, Zhenhua
Cheng, Chen-Mou
Choi, Wonseok
Dagvatur, Zayabaatar
Dutta, Sabyasachi
Eom, Jieun
Esser, Andre
Hasan, Munawar
Hayashi, Takuya
Jati, Arpan
Kang, Jeonil
Kim, Jeongsu
Kim, Jonghyun
Kim, Junsik
Kim, Seongkwang
Kim, Younjin
Lee, Byeonghak
Lee, Dong Hoon

Lee, Jinwoo
Lee, Young Kyung
Lim, Seongan
Maeng, Youngjae
Mishina, Ibuki
Ohata, Satsuya
Ouaddah, Aafaf
Roy, Partha Sarathi
Seo, Minhye
Shinagawa, Kazumasa
Singh, Ajit Pratap
Su, Chunhua
Takashima, Katsuyuki
Takayasu, Atsushi
Tian, Miaomiao
Une, Masashi
Wang, Luping
Wu, Longfei
Zeng, Ming
Zhao, Qian

VIII Organization

Abstracts of Invited Talks

Tweakable Block Ciphers: Construction
and Applications

Jooyoung Lee

KAIST, Korea
hicalf@kaist.ac.kr

A tweakable block cipher is a block cipher that accepts additional inputs called tweaks
to provide variability to encryption. Recently, this primitive is widely used in various
cryptographic schemes such as (authenticated) encryption and message authentication.
In the first part of this talk, we survey recent results on construction and application of
tweakable block ciphers. We also compare security notions between block ciphers and
tweakable block ciphers in the standard/ideal primitive models.

In the second part, we propose a new construction of tweakable block ciphers from
standard block ciphers. Our construction, dubbed XHX2, is the cascade of two inde-
pendent XHX constructions, so it makes two calls to the underlying block cipher using
tweak-dependent keys. We prove the security of XHX2 up to minf22ðnþmÞ=3; 2nþm=2g
queries (ignoring logarithmic factors) in the ideal cipher model, when the block cipher
operates on n-bit blocks using m-bit keys. The XHX2 tweakable block cipher is the first
construction that achieves beyond-birthday-bound security with respect to the input
size of the underlying block cipher in the ideal cipher model.

Security Against Quantum
Superposition Attacks

Aaram Yun

School of Electrical and Computer Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea

aaramyun@unist.ac.kr

Abstract. In the post-quantum cryptography, we usually consider adversaries
who have quantum computational capabilities. Such an adversary has a quantum
computer ‘at home’, and is able to carry out arbitrary polynomial-time quantum
computation privately, but all the interaction between the adversary and its
environment (including the legitimate users) are classical. In other words, such
an adversary can compute quantumly, but all of its oracle queries are classical.

On the other hand, there are situations where we also consider adversaries
who not only have quantum computational capabilities, but also have ability to
make its oracle queries in quantum superposition. One obvious example is the
quantum random oracle model, where the adversary can make superposition
queries to the random oracle, since such a query models adversary’s private hash
function evaluation, which can be carried out in superposition. There are also
works which consider adversaries making quantum superposition queries not
only to the random oracle but to all oracles.

In this talk, I would like to discuss the above adversarial model, and make a
survey of some of the works in that model, both cryptanalytic attacks and
constructions secure against quantum superposition attacks.

Contents

Invited Talk

New Assumptions on Isogenous Pairing Groups with Applications
to Attribute-Based Encryption. 3

Takeshi Koshiba and Katsuyuki Takashima

Public-Key Encryption and Implementation

Mitigating the One-Use Restriction in Attribute-Based Encryption. 23
Lucas Kowalczyk, Jiahui Liu, Tal Malkin, and Kailash Meiyappan

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 37
Kento Oonishi and Noboru Kunihiro

Compact Implementation of Modular Multiplication for Special
Modulus on MSP430X . 55

Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and Zhi Hu

Homomorphic Encryption

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model. . . . 69
Xuecheng Ma and Dongdai Lin

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring. . . 85
Duhyeong Kim and Yongsoo Song

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption. 103
Louis Goubin, Geraldine Monsalve, Juan Reutter,
and Francisco Vial-Prado

Secure Multiparty Computation

The Six-Card Trick: Secure Computation of Three-Input Equality 123
Kazumasa Shinagawa and Takaaki Mizuki

Unconditionally Secure Distributed Oblivious Polynomial Evaluation 132
Louis Cianciullo and Hossein Ghodosi

An Efficient Private Evaluation of a Decision Graph 143
Hiroki Sudo, Koji Nuida, and Kana Shimizu

Post-Quantum Cryptography

Key Reuse Attack on NewHope Key Exchange Protocol 163
Chao Liu, Zhongxiang Zheng, and Guangnan Zou

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 177
Atsushi Fujioka, Katsuyuki Takashima, Shintaro Terada,
and Kazuki Yoneyama

On the Complexity of the LWR-Solving BKW Algorithm 196
Hiroki Okada, Atsushi Takayasu, Kazuhide Fukushima,
Shinsaku Kiyomoto, and Tsuyoshi Takagi

Secret Sharing and Searchable Encryption

A Hierarchical Secret Sharing Scheme Based on Information
Dispersal Techniques . 217

Koji Shima and Hiroshi Doi

Cheating-Immune Secret Sharing Schemes from Maiorana-McFarland
Boolean Functions. 233

Romar B. dela Cruz and Say Ol

A New Privacy-Preserving Searching Model on Blockchain 248
Meiqi He, Gongxian Zeng, Jun Zhang, Linru Zhang, Yuechen Chen,
and SiuMing Yiu

Storage Security and Information Retrieval

ELSA: Efficient Long-Term Secure Storage of Large Datasets 269
Matthias Geihs and Johannes Buchmann

How to Block the Malicious Access to Android External Storage 287
Sisi Yuan, Yuewu Wang, Pingjian Wang, Lingguang Lei, Quan Zhou,
and Jun Li

A Novel Tamper Evident Single Database Information-Theoretic Private
Information Retrieval for User Privacy Applications 304

Radhakrishna Bhat and N. R. Sunitha

Attacks and Software Security

Practical Algebraic Side-Channel Attacks Against ACORN 325
Alexandre Adomnicai, Laurent Masson, and Jacques J. A. Fournier

XIV Contents

A Closer Look at the Guo–Johansson–Stankovski Attack Against
QC-MDPC Codes . 341

Tung Chou, Yohei Maezawa, and Atsuko Miyaji

Recurrent Neural Networks for Fuzz Testing Web Browsers. 354
Martin Sablotny, Bjørn Sand Jensen, and Chris W. Johnson

Author Index . 371

Contents XV

Invited Talk

New Assumptions on Isogenous Pairing
Groups with Applications

to Attribute-Based Encryption

Takeshi Koshiba1 and Katsuyuki Takashima2(B)

1 Waseda University, Tokyo, Japan
tkoshiba@waseda.jp

2 Mitsubishi Electric, Kanagawa, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. We introduce new isogeny-related assumptions called Isog-
DDH and Isog-DBDH assumptions. By using the assumptions, we rein-
force security of several existing (hierarchical) identity-/attribute-based
encryption (HIBE/ABE) schemes. While the existing schemes are proven
from the standard DBDH assumption, our reinforced secure ones have
two incomparable security proofs: one is proven from the DBDH as well
and another is proven from the Isog-DDH assumption which is incompa-
rable with DBDH. As a result, if either DBDH or Isog-DDH assumption
holds, the proposed HIBE/ABE schemes are secure. For obtaining our
(H)IBE secure in the standard model, we assign a unique (product) group
called ID-group to each (H)ID, and introduce a new proof technique, i.e.,
ID-group partitioning by using isogenies as trapdoors.

Keywords: Isogenous pairing groups · Identity-based encryption ·
Attribute-based encryption · Security reinforcement

1 Introduction

1.1 Background

Since the National Institute of Standards and Technology (NIST) has initi-
ated a standardization process for post-quantum public-key cryptographic algo-
rithms [23], studying such cryptosystems is a hot research area. Aside from
lattice-based, code-based, and multivariate cryptography, isogeny-based cryp-
tography is (relatively) newly entered as a candidate post-quantum primitive.

Very recently, Boneh et al. [8] suggest another research direction for using
isogenies on elliptic curves in applied cryptography which includes n-way non-
interactive key exchange, verifiable random functions, constrained pseudoran-
dom functions, broadcast encryption, and witness encryption. We also seek such
applications of isogenies in (hierarchical) identity-/attribute-based encryption
((H)IBE/ABE). For the purpose, we use a unified framework for operations on

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-12146-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_1&domain=pdf
http://orcid.org/0000-0001-8994-729X
https://doi.org/10.1007/978-3-030-12146-4_1

4 T. Koshiba and K. Takashima

elliptic curves (i.e., scalar multiplication, pairing and isogeny) called isogenous
pairing groups (IPG) by Koshiba and Takashima [21].

(Key-policy) attribute-based encryption (KP-ABE) is a powerful and useful
generalization of identity-based encryption (IBE). In a KP-ABE system, cipher-
texts are associated with sets of attributes and user secret keys distributed by
an authority are associated with formulas over attributes. A user should be able
to decrypt a ciphertext if and only if the secret key formula is satisfied by the
ciphertext attributes. Previously, IBE schemes were constructed on three math-
ematical primitives, i.e., pairing [4,5,28], factoring [7,12] and lattices [1,16] and
ABE schemes were constructed on only two mathematical primitives, pairing
[18,24] and lattices [6,17]. Through reformulations of previous pairing based
IBE/ABE on the IPG framework, we obtain several IBE/ABE schemes based
on another mathematical primitive, i.e., system of pairings and isogenies, in this
paper (as in [21]). (Refer to Remark 1 in Sect. 2.1 for the concrete instantiation
of IPG by using supersingular elliptic curves.)

In constructing IBE/ABE schemes, quality of underlying assumptions is an
important factor for assessing the schemes. Previous works in pairing cryptog-
raphy realized a highly secure IBE/ABE (e.g., adaptive security) under non-
standard assumptions like q-type ones for the first time. However, the q-type
assumptions (and also the associated schemes) suffered a special attack which
was presented by Cheon [11] at Eurocrypt 2006. Consequently, it is very desir-
able that the non-standard q-type assumption should be replaced by a static
(non-q type) assumption. Hence, in subsequent works, the same security level
can be accomplished under standard (or better) assumptions. For example, many
high secure pairing cryptosystems have been established under one of standard
assumptions like DBDH and DLIN assumptions.1 Our starting point in this work
is the following question.

For pairing cryptosystems with some desirable security which is proven
under the standard DBDH or DLIN assumption, can we add other incom-
parable security proofs for them by using isogenies?

We propose new methodologies for evolving pairing systems further into the
desirable directions. The key for the step comes from rich algebraic struc-
tures on elliptic curves, and specifically from isogeny operations, which have
attracted notice in the context of post-quantum cryptography. We extend
Koshiba-Takashima’s work [21], however, our aim is not post-quantum schemes,
but, we reinforce (classical) security of pairing-based IBE/ABE schemes by using
isogenies as trapdoor homomorphisms.

For example, we reformulate the basic Boneh-Franklin (BF) IBE [5] in the
setting of IPG with minor modifications. The reformulated IBE has two incom-
parable security proofs, one is from DBDH (as before) and the other is from
a new, isogeny-related Isog-DDH assumption. The additional Isog-DDH based

1 Here, DLIN (resp. DBDH) represents a family of progressively weaker k-Lin (resp. k-
BDH) assumptions, e.g., [3,10,25] since DLIN = 2-Lin and DBDH is equivalent to
1-BDH.

New Assumptions on Isogenous Pairing Groups 5

Sec in ROM
of Anon-IBE

(in full version)

Sec in StM
of suKP-ABE

(in full version)

Sec in StM
of Basic IBE
in Sect. 3.1

Sec in StM of
obHIBE

(in full version)

Sec in StM of
nbHIBE

(in full version)

Sec in StM
of luKP-ABE
in Sect. 3.2

N = 2dn N = d N = dnN = nN = 1 N = 2d

Lemma 1 Lemma 2

Theorem
1

Theorem
2

DBDH

N-Isog-DBDH N-Isog-DBDH

N-Isog-DDH

N = 2dn N = d N = dnN = nN = 1 N = 2d

Fig. 1. Reductions between problems on IPG and security of proposed IBE/ABE,
where n is the bit length of identities and attributes, and d is the maximum hierarchy
length (depth) in HIBE and the maximum size of small universe (and the set of cat-
egories) in KP-ABE, and ROM, StM, obHIBE, nbHIBE, suKP-ABE and luKP-ABE
stand for Random Oracle Model, Standard Model, one-bit (resp. n-bit) ID-space HIBE
and small universe (resp. large universe) KP-ABE, respectively. The proposed anony-
mous IBE, obHIBE, nbHIBE and suKP-ABE schemes will be given in the full version
of this paper.

security proof reinforces the standard DBDH based security. Such kind of secu-
rity reinforcement was used in a variant of Cramer-Shoup encryption scheme
[13,26]. The CS3b encryption scheme in [13] has two incomparable IND-CCA
security proofs: one is proven from the DDH assumption (and standard assump-
tions for hash and key derivation functions) in the standard model, and another
is proven from the CDH assumption (and a standard assumption for hash) in
the random oracle model.

In our ABE, by using randomly chosen multiple pairing groups and encoding
various attributes of some user, i.e., his/her name, age, affiliate, gender, etc. onto
the different groups, we have more independence among the encoded attributes
since all previous ABE schemes encode various types of attributes onto one
same pairing group. This intuition for security reinforcement is captured by new
isogeny-related assumptions which give incomparable security proofs as well as
previous ones. Furthermore, decryption executes pairing operations between key
and ciphertext components and computes decryption results on the target group
GT (refer to Fig. 2).

1.2 Our Results

We define two new assumptions on IPG, i.e., Isog-DDH and Isog-DBDH assump-
tions, and obtain security reinforced several IBE/ABE schemes, which have
two security proofs, one is reduced from DBDH and another is reduced from
(N -)Isog-DDH assumption (Fig. 1). It implies that if either DBDH or Isog-DDH

6 T. Koshiba and K. Takashima

assumption holds, our reinforced IBE/ABE schemes are secure.2 We stress that
our situation is different from several previous works. For example, in [28], Waters
proposed celebrated adaptive secure IBE and HIBE schemes from DBDH and
DLIN assumptions. The security proof needs both DBDH and DLIN assump-
tions, and implies that if both DBDH and DLIN assumptions hold, the Waters
(H)IBE schemes are secure (see footnote 2), which means the logical structure
is different from ours. We summarize our Lemmas, Theorems and Corollary in
Fig. 1, and describe our results below.

1. We define two new assumptions in the IPG framework for proving the
reinforced security of our IBE and ABE schemes: the (N -)Isog-DDH and
(N -)Isog-DBDH assumptions (For the terminology, see the footnote for Def-
inition 3). Then we show two reductions in Lemmas 1 and 2: the Isog-DBDH
assumption is reduced to the DBDH assumption (resp. the Isog-DDH assump-
tion). We stress that the two underlying assumptions are incomparable, that
means that even if the DBDH assumption would be broken by some future
progress of the attack techniques, the scheme possibly survives because of the
isogeny-related assumption. As another interpretation, while someone may
find a new attack in future since isogeny problems have not yet mature his-
tory of scrutiny, but, our schemes are secure based on the traditional DBDH,
which means that our Isog-DBDH based schemes are at least as secure as the
underlying DBDH based ones. For the details, see Sect. 2.

2. We present an anonymous IBE construction adaptive-ID secure in the random
oracle model (ROM) whose security is proven from Isog-DBDH (in the full
version of this paper). Our IBE scheme is based on the Boneh-Franklin IBE
(BF-IBE), and has an efficiency (or practicality) comparable to the BF-IBE.
One of the main differences is that a public master key has two elliptic curve
parameters for using isogeny in the cryptographic construction. Since BF-IBE
was adopted as an international standard [20], our IBE is quite practical with
respect to the data sizes, encryption and decryption times.

3. We also present (H)IBE constructions which are selective-ID secure from
Isog-DBDH in the standard model (Theorem 1 in Sect. 3.1). Our first IBE
scheme (basic IBE) is a special form of our KP-ABE in Sect. 3.2. The scheme
is conceptually simple and can be extended to a hierarchical IBE, but the
security of the HIBE is not easy to be based on Isog-DBDH since we should
publish auxiliary group elements for delegation. Therefore, we modify it and
obtain our one-bit (resp.n-bit) ID-space HIBE scheme based on Boneh-Boyen
HIBE [4], whose security is proven from the Isog-DBDH assumption (in the
full version of this paper).

4. We construct small and large universe KP-ABE schemes which are selective-
attribute secure from Isog-DBDH in the standard model (see Theorem 2 in

2 Since logical equivalence A → C ≡ ¬A∨C holds for truth variables A, B, C, it holds
that (A∨B) → C ≡ ¬(A∨B)∨C ≡ (¬A∨C)∧(¬B∨C) ≡ (A → C)∧(B → C). We
have (A ∧ B) → C ≡ (A → C) ∨ (B → C) in a similar manner (in the case [28]). In
our case, A = “DBDH assumptions holds”, B = “N -Isog-DDH assumptions hold”,
C = “our schemes are secure”.

New Assumptions on Isogenous Pairing Groups 7

Sect. 3.2 for the large universe one). First, we construct a small universe
KP-ABE and then obtain the large universe construction by hierarchically
combining the small universe ABE and the basic IBE as underlying ones.
The proposed KP-ABE schemes are based on the GPSW06 KP-ABE [18].
We note that all sizes of secret keys and ciphertxts of our small universe
KP-ABE are quite comparable to those of GPSW06 small universe KP-ABE
(and public parameter sizes of the two schemes are of asymptotically same
order). Since there exists a generic conversion from KP-ABE to CP-ABE and
vice versa [2] (with large overheads and some restrictions), we obtain CP-
ABE schemes from our KP-ABE schemes, whose security is also proven from
Isog-DBDH.

We point out a comparison with existing works. While there exist some
generic combiners for encryption, e.g., [15,19], which need two different proofs for
the reinforced security, our schemes have two incomparable proofs just by proving
security from one simple assumption (i.e., Isog-DBDH assumption). Therefore,
our constructions have efficiency advantages over generic combiner constructions
(see our anonymous IBE and small universe KP-ABE, for example).

1.3 Key Techniques

Underlying Mathematical Framework of IPG [21]. For most pairing cryp-
tosystems, the bilinear property e(g0, ĝα

0) = e(g0, ĝ0)α is a key point, which is
considered as a compatibility condition on pairing with (public key) ĝα

0 and scalar
multiplication with (secret key) α. Based on the above similarity, for our IBE and
ABE, a compatibility of pairing and isogeny, e.g., e0(g0, ĝ0) = e1(φ(g0), φ(ĝ0)),
is required. Note that since we use multiple elliptic curves, pairings e0 and e1
are defined on different curves E0 and E1 := φ(E0), respectively. Based on the
compatibility, the notion of isogenous pairing groups (IPG), an extension of that
of pairing groups, was formulated. In the system, multiple pairing groups of the
same prime order are employed, where efficient homomorphisms between them
are hidden from adversaries. It is schematically presented in Fig. 2 in Sect. 2.1.

New Assumptions on IPG: Isog-DDH and Isog-DBDH. We formu-
late new assumptions for our proposals, namely, N -Isog-DDH and N -Isog-
DBDH assumptions. An instance for the 1-Isog-DDH problem consists of
(g, ĝ, gα, φ(ĝ), φ(ĝ)β , hT) for distinguishing whether hT is gαβ

T or random, where
g ∈ G0 ⊂ E0 and φ(ĝ) ∈ Ĝ1 ⊂ E1 and then secret scalars α and β are encoded
on different (isogenous) elliptic curves E0 and E1, and gT := e0(g, ĝ). Therefore,
informally, an adversary without knowing φ cannot obtain a meaningful pair-
ing value gαβ

T from gα and φ(ĝ)β . We extend it to 1-Isog-DBDH, whose (simple
form) instance consists of (g, ĝ, gα, φ(ĝ), φ(ĝ)β , φ(g)γ , φ(ĝ)γ , hT) for distinguish-
ing whether hT is gαβγ

T or random. The intractability of N -Isog-DBDH on N +1
multiple groups is reduced from that of N -Isog-DDH (resp. the standard DBDH).
Our basic IBE (resp., small, large universe ABE) scheme is secure under the n-
Isog-DBDH (resp., d-Isog-DBDH, dn-Isog-DBDH) assumption, where d is small
universe size and n is bitlength of an identity or attribute.

8 T. Koshiba and K. Takashima

First Step for Isog-DBDH-Based IBE: Partitioning via Isogeny in
ROM. By using the above similarity, we replace a part of master key pair
of BF-IBE, (pk := (ĝ, ĝγ), sk := γ) for a group element ĝ ∈ Ĝ0 and a random
scalar γ, by (pk := (ĝ, φ(ĝγ)), sk := (φ, γ)) for a randomly chosen isogeny φ.
The important difference is that further randomization is applied by isogeny φ
as well as random scalar γ. The difference leads to security under incomparable
DBDH and 1-Isog-DDH. In our IBE in the random oracle model, the target ID∗

is assigned as H(ID∗) := gα and secret key skID∗ := φ(H(ID∗))γ = φ(gα)γ ,
which cannot be computed by adversary. However, for other ID �= ID∗ and
H(ID) := gτID with simulated τID

U← Fq, we can compute isogeny image
skID := φ(H(ID))γ = φ(gτID)γ = (φ(g)γ)τID since simulator knows φ(g)γ and
τID. We should extend this partitioning in ROM to more complicated setting
like the standard model, hierarchical or attribute-based settings via trapdoor
isogenies.

New Proof Technique: ID-Group Partitioning via Trapdoor Isogenies.
For properly partitioning IDs in security proofs in the standard model, in our
(hierarchical) IBE schemes, n-bit identity ID := (IDj)j∈[n] is encoded as a unique
group GID (resp. ĜID) called ID-groups in secret key (resp. ciphertext) such that
GID = GID′ (resp. ĜID = ĜID′) if and only if ID = ID′. The ID-group is given as
a direct product of n isogenous pairing groups, i.e., GID := G1,ID1 × · · · ×Gn,IDn

(resp. ĜID := Ĝ1,ID1 × · · · × Ĝn,IDn
). In our IBE, public parameters include 2n

isogenous pairing groups (Gj,ι, Ĝj,ι)j∈[n];ι=0,1. In selective-ID security proof, if
adversary declares challenge identity ID∗ := (ID∗

j), then n groups (Ĝj)j∈[n] given
in the n-Isog-DBDH instance are used for the challenge ID-group ĜID∗ , i.e.,
Ĝj,ID∗

j
:= Ĝj for j ∈ [n]. Other n isogenous pairing groups (Gj,ID∗

j
, Ĝj,ID∗

j
)j∈[n]

in public parameters are newly generated together with trapdoor isogenies
φj : G0 → Gj,ID∗

j
where G0 is given in the n-Isog-DBDH instance. For a key

queried identity ID := (IDj), we have at least one index j such that IDj �= ID∗
j

(i.e., IDj = ID∗
j) by definition. Therefore, we can use the above isogeny φj for the

key generation simulation on the ID-group GID. We call the technique ID-group
partitioning since we partition 2n ID-groups into key-simulatable 2n − 1 ones
(other than for challenge ID∗) and one ciphertext-simulatable ID-group for chal-
lenge ID∗ in the setup phase via the above trapdoor isogenies (φj)j∈[n]. For the
details of the idea, see Sect. 3.1. Moreover, this ID-group partitioning technique
is used for a conversion from small universe KP-ABE to large universe one in a
modular manner (Theorem 2). We stress that our schemes which are secure in
the standard model do not use isogenies in real operations except for master key
generation, but use them in simulation in a crucial manner as we see above.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

New Assumptions on Isogenous Pairing Groups 9

that y is uniformly selected from A. We denote the finite field of order q by Fq.
Let [n] := {1, .., n} and [0, n] := {0} ∪ [n] := {0, .., n} for any n ∈ Z>0. For two
vectors �y = (yi)i∈[r] and �v = (vi)i∈[r], �y · �v denotes the inner-product

∑r
i=1 yivi.

For an element g := (gi) (resp. ĝ := (ĝi)) in product group K := G1 × · · · × Gr

(resp. K̂ := Ĝ1 × · · · × Ĝr) and vector �y = (yi)i∈[r] ∈ F
r
q, g

�y denotes the group
element (gyi

i)i∈[r]. For scalar ζ ∈ Fq, gζ denotes scalar exponentiation (gζ
i)i∈[r].

For two elements g := (gi) and ĝ := (ĝi) in the above product group K and K̂,
pairing eK is defined as eK(g, ĝ) :=

∏
i∈[r] ei(gi, ĝi) if the pairing ei is defined on

Gi × Ĝi for i ∈ [r].

2 Isogenous Pairing Groups (IPG) and Assumptions

We review the notion of isogenous pairing groups (IPG) [21] which models isoge-
nous (supersingular) elliptic curves and related operations on them (Sect. 2.1).
For mathematical background on IPG, refer to Appendix A in [21]. We then give
definitions of key assumptions, i.e., Isog-DDH, DBDH, Isog-DBDH assumptions,
and their relations (Lemmas 1 and 2) in Sect. 2.2.

2.1 Definition of Isogenous Pairing Groups (IPG)

We first define trapdoor homomorphisms (TH) for unifying operations on ellip-
tic curves. Three THs, i.e., exponentiation (scalar multiplication), pairing and
isogeny, give a rich algebraic structure.

Definition 1 (Trapdoor Homomorphism (TH)). A (randomly chosen)
function φ := φξ : G0 → G1 with two (randomly chosen) cyclic groups G0, G1 of
a prime order q is called a trapdoor homomorphism if the following conditions
hold.

– (Homomorphism) φ is a non-trivial (e.g., non-zero for an additive group)
homomorphism.

– (TH-DH (TH-Diffie-Hellman) intractability assumption) Any probabilistic
polynomial-time (ppt) machine B computes φ(g) only with a negligible prob-
ability when given (g0, φ(g0), g) for randomly chosen φ and g0, g

U← G0.
– (Polynomial-size trapdoor) There exists a ppt machine B which computes φ(g)

for any g ∈ G0 given a polynomial-size trapdoor ξ for φ := φξ.

Examples. By using elliptic curves, we have three examples of THs.

1. (Exponentiation) G0 := G1 := G is an elliptic curve cyclic group and φ := φξ

is an exponentiation on G (i.e., scalar multiplication on the curve), i.e.,
φξ : g �→ g ξ, where ξ is a scalar. TH-DH input and output are given as
(g0, φ(g0), g) = (g0, g

ξ
0, g) and φ(g) = g ξ, respectively, and then TH-DH

intractability is the same as the usual computational DH assumption.

10 T. Koshiba and K. Takashima

Fig. 2. Compatibility of IPG

2. (Pairing) G0 := G, G1 := GT is a part of asymmetric pairing groups and φ :=
φξ is a pairing operation on G×Ĝ, i.e., φξ : g �→ e(g, ξ), where ξ is an element
in Ĝ, TH-DH input and output are given as (g0, φ(g0), g) = (g0, e(g0, ξ), g)
and φ(g) = e(g, ξ), respectively, and then TH-DH intractability is reduced to
the computational BDH (CBDH) assumption.

3. (Isogeny) G0 := G0, G1 := G1 are two different elliptic curve cyclic groups
obtained from two curves E,E′, respectively, and φ := φξ is an isogeny from
G0 to G1, i.e., φξ : E → E′ := E/C, where ξ := C is a (cyclic) subgroup in
E. The TH-DH intractability is another kind of natural extensions of the DH
assumption obtained by using isogenies other than that given in [14].

Combining the three trapdoor homomorphic structures, we propose a use-
ful cryptographic framework called Isogenous Pairing Groups (IPG). When
applying IPG framework and Isog-DBDH to crypto constructions, compatibil-
ity of pairings on different groups (or elliptic curves) and isogenies is a main
ingredient. For asymmetric pairing groups (G0, Ĝ0) and (G1, Ĝ1) with TH
φ : G0 × Ĝ0 → G1 × Ĝ1 (given by an isogeny), it is informally described as

e0(g, ĝ) = e1(φ(g), φ(ĝ)), (1)

where e0 (resp., e1) is an efficiently computable pairing on G0 × Ĝ0 (resp.,G1 ×
Ĝ1), i.e., on the curve E0 (resp.,E1). For the correctness, Theorem 6.1
and Proposition 8.2 in chapter III of [27] show that eweil,0(g, ĝ)deg φ =
eweil,1(φ(g), φ(ĝ)), where eweil,0 (resp. eweil,1) is the Weil pairing on E0 (resp.E1),
and then we have Eq. (1) for e0 := eweil,0(·, ·)deg φ and e1 := eweil,1(·, ·) when
deg φ is fixed. The above property (1) is extended to among multiple curves
{Et}t∈[0,N] or multiple asymmetric pairing groups (Gt, Ĝt)t∈[0,N] as is given in
Eq. (2) below.

Definition 2 (Isogenous Pairing Groups (IPG)). Isogenous Pairing
Groups (IPG) generator generates a random instance as follows:

GenIPG(1λ, N) R−→ (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,N],GT), skIPG := (φt)t∈[N]),

where (Gt, Ĝt, et,GT) are asymmetric pairing groups of a prime order q with
pairings et : Gt × Ĝt → GT , trapdoor homomorphisms φt : G0 × Ĝ0 → Gt × Ĝt

New Assumptions on Isogenous Pairing Groups 11

such that Gt = φt(G0) and Ĝt = φt(Ĝ0) under natural identifications G = G×1
Ĝ

and Ĝ = 1G × Ĝ (given by isogenies between different elliptic curves), and gt =
φt(g0) ∈ Gt, ĝt = φt(ĝ0) ∈ Ĝt. The isogenous pairing groups satisfy.

Compatibility: e0(g0, ĝ0) = et(gt, ĝt) = et(φt(g0), φt(ĝ0)) for any t ∈ [N]. (2)

We denote the common non-trivial pairing value by gT , i.e., gT = e0(g0, ĝ0) �= 1.
See Fig. 2. Moreover, we require that Gt �= Ĝt. (Namely, all the points in Gt and
Ĝt generate the group of q-torsion points on the t-th elliptic curve.)

Remark 1 (Instantiation of GenIPG by Elliptic Curves). A trapdoor
(homomorphic) isogeny generation algorithm THGenIPG(G0, Ĝ0, g0, ĝ0, e0), which
is used as a main ingredient of GenIPG and also used in simulation in secu-
rity proofs, outputs a newly isogenous group (G, Ĝ, g, ĝ, e, φ) such that trap-
door φ : G0 × Ĝ0 → G × Ĝ with G = φ(G0), Ĝ = φ(Ĝ0) is an effi-
ciently computable group isomorphism, g = φ(g0), ĝ = φ(ĝ0) and the com-
patibility holds, i.e., e0(g0, ĝ0) = e(φ(g0), φ(ĝ0)) = e(g, ĝ). If we use algorithm
THGenIPG as an ingredient, a concrete instantiation of IPG generation algorithm
GenIPG(1λ, N) is obtained as follows: Generate a (random) supersingular elliptic
curve E0/Fp2 with a sufficiently large, odd prime p and large prime q | p ± 1,
then we have G0 × Ĝ0 ⊂ E(Fp2) where G0, Ĝ0 are cyclic groups of order q since

q2 |
E0(Fp2) = (p ± 1)2. Generate bases g0
U← G0, ĝ0

U← Ĝ0 and the pairing e0
is defined by e0(h0, ĥ0) := eweil,0(h0, ĥ0)�κ

for any h0 ∈ G0, ĥ0 ∈ Ĝ0 from the
Weil pairing eweil,0 on E0 and suitably chosen (�, κ). Then we set the 0-th pairing
group (G0, Ĝ0, g0, ĝ0, e0). For a concrete instantiation of the 0-th pairing group
generation by using elliptic curves, see the full version.

For each t ∈ [N], (Gt, Ĝt, gt, ĝt, et, φt)
R← THGenIPG(G0, Ĝ0, g0, ĝ0, e0). Then,

output (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,N],GT), skIPG := (φt)t∈[N]).
Below, we give a concrete instantiation of THGenIPG for a supersingular EC

E0 for (G0, Ĝ0, g0, ĝ0, e0). Namely, generate a random supersingular EC which
is �κ-isogenous to E0 (given in [9,29]) for � = 2. For the details of the main
subroutine of THGenIPG (Algorithm Isogclg�,κ), see the full version of this paper.
Concrete instantiation of THGenIPG by using supersingular elliptic curves
Input : An initial elliptic curve E0.
Output : An isogenous E and all the selector bits ω := {ωi}0≤i<κ, that is,

a trapdoor ξ for computing the isogeny φ := φξ : E0 → E.
for 0 ≤ i < κ do

generate a random bit ωi ∈ {0, 1} for selecting a next kernel point Ri,
which is either of two points in Ki := Ei[�] \ ψi−1(Ei−1[�]) if i �= 0
(resp., in Ki := {some fixed two points in Ei[�]\{OEi

}} if i = 0) since � = 2.
Ri is determined from ωi by a lexicographic order in Fp2 .
compute ψi : Ei → Ei+1 := Ei/〈Ri〉 for the selected Ri.

end for
we set the composition φ := ψκ−1 · · · ψ0 : E0 → Eκ.
return E := Eκ (or j-inv. j(Eκ)) and all the selector bits ξ := ω := {ωi}0≤i<κ.

12 T. Koshiba and K. Takashima

After obtaining the above output E := Eκ and ξ, THGenIPG outputs isogenous
pairing group (G, Ĝ, g, ĝ, e, φ), where G := φ(G0), Ĝ := φ(Ĝ0), g := φ(g0), ĝ :=
φ(ĝ0) using φ := φξ : E0 → E, and e := eweil on E.

2.2 Assumptions on IPGs and Their Relationships

Definition 3 (N -Isog-DDH Assumption (on IPG)).3 Let B be a ppt
adversary. For (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,N],GT), skIPG := (φt)t∈[N])

R←
GenIPG(1λ, N) and α, β, δ

U← Fq, B receives Xb for b
U← {0, 1}, that is defined by

X0 := (pkIPG, gα
0 , (ĝβ

t)t∈[N], gαβ
T) and X1 := (pkIPG, gα

0 , (ĝβ
t)t∈[N], gδ

T).

B outputs a guess bit b′. If b = b′, B wins. The advantage of adversary B is
defined as AdvN-Isog-DDH

B (λ) := Pr[b′ = b] − 1/2 for any security parameter λ.
The N -Isog-DDH assumption is: For any ppt adversary B, the advantage of B
for the N -Isog-DDH problem is negligible in λ.

Our aim is to obtain HIBE and ABE secure under Isog-DDH and also secure
under DBDH. For that, we define the notion of Isog-DBDH assumption, which
is reduced from the Isog-DDH and also from the DBDH (Lemmas 1 and 2 and
Fig. 1). First, we define (a form of) the standard DBDH assumption on the 0-th
(asymmetric) pairing group (G0, Ĝ0) as follows. We then define N -Isog-DBDH
assumption on the IPG (Gt, Ĝt)t∈[0,N].

Definition 4 (DBDH Assumption (on (G0, Ĝ0))). Let B be a ppt machine
adversary. For (pkIPG := ((G0, Ĝ0, g0, ĝ0, e0),GT), skIPG := ∅) R← GenIPG(1λ, 0)
and α, β, γ, δ

U← Fq, B receives Xb for b
U← {0, 1}, that is defined by

X0 := (pkIPG, gα
0 , ĝβ

0 , gγ
0 , ĝγ

0 , gαβγ
T) and X1 := (pkIPG, gα

0 , ĝβ
0 , gγ

0 , ĝγ
0 , gδ

T),

where gT := e0(g0, ĝ0). B outputs a guess bit b′. If b = b′, B wins. The advantage
of adversary B is defined as AdvDBDH

B (λ) := Pr[b′ = b] − 1/2 for any security
parameter λ. The DBDH assumption is defined as in Definition 3.

Definition 5 (N -Isog-DBDH Assumption (on IPG)). Let B be a ppt
adversary. For (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,N],GT), skIPG := (φt)t∈[N])

R←
GenIPG (1λ, N) and α, β, γ, δ

U← Fq, B receives Xb for b
U← {0, 1}, that is defined

by

X0 := (pkIPG, gα
0 , (ĝβ

t)t∈[N], (gγ
t , ĝγ

t)t∈[0,N], gαβγ
T) and

X1 := (pkIPG, gα
0 , (ĝβ

t)t∈[N], (gγ
t , ĝγ

t)t∈[0,N], gδ
T),

3 The terminology in [21] and in this paper are slightly different. In [21], our
(N -)Isog-DDH assumption is called (N -)Isog-DBDH assumption and our N -Isog-
DBDH assumption is not defined.

New Assumptions on Isogenous Pairing Groups 13

where gT := e0(g0, ĝ0). B outputs a guess bit b′. If b = b′, B wins. The advantage
of adversary B is defined as AdvN-Isog-DBDH

B (λ) := Pr[b′ =b]−1/2 for any security
parameter λ. The N -Isog-DBDH assumption is defined as in Definition 3.

Lemma 1. The DBDH problem is reduced to the N -Isog-DBDH problem. (In
other words, the hardness of the N -Isog-DBDH problem is reduced to the hardness
of the DBDH problem.) For any adversary B against N -Isog-DBDH, there exists
an adversary C for the DBDH problem, such that for any security parameter λ,
AdvN-Isog-DBDH

B (λ) ≤ AdvDBDH
C (λ).

Lemma 2. The N -Isog-DDH problem is reduced to the N -Isog-DBDH problem.
(In other words, the hardness of the N -Isog-DBDH problem is reduced to the
hardness of the N -Isog-DDH problem.) For any adversary B against N -Isog-
DBDH, there exists an adversary C for the N -Isog-DDH problem, such that for
any security parameter λ, AdvN-Isog-DBDH

B (λ) ≤ AdvN-Isog-DDH
C (λ).

Proofs of Lemmas 1 and 2 will be given in the full version of this paper.

2.3 On Validity of the N-Isog-DDH Assumption

All assumptions for pairing cryptography are reduced to the corresponding
assumptions on the target group GT by the MOV reduction [22], and the security
is evaluated by validity of the reduced assumption in practice.

Our N -Isog-DDH assumption is also reduced to the DDH assumption on
GT ⊂ F

∗
p2 as follows: Given a random instance Xb for b

U← {0, 1} of the N -
Isog-DDH problem, that is given by Xb := (pkIPG, gα

0 , (ĝβ
t)t∈[N], gθ

T), where

(pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,N],GT)), θ = αβ if b = 0 and θ
U← Fq if b = 1,

a reduction algorithm computes gα
T := e0(gα

0 , ĝ0) and gβ
T := e1(g1, ĝ

β
1). Then,

(GT , gT , gα
T , gβ

T , gθ
T) is a random DDH instance on GT .

Since the discrete logarithm problem in the quadratic extension of a suffi-
ciently large prime field, F∗

p2 , is hard, our N -Isog-DDH assumption (for a large
p) is considered as reasonable at present.

3 Proposed Basic IBE and KP-ABE

3.1 Proposed Basic IBE in the Standard Model

Key Ideas in Constructing the Proposed IBE Scheme. We first describe
a simple version of our basic IBE, which is proven secure directly from Isog-DDH
(as the simple BF-type IBE given in the full version). Public parameters include
2n IPGs ((Gj,ι, Ĝj,ι, gj,ι, ĝj,ι, ej,ι)j∈[n];ι∈[0,1],GT) and hT := gs0

T where n is the

bit length of ID and a random s0
U← Fq and s0 is the master secret key.

14 T. Koshiba and K. Takashima

Key generation and encryption algorithms consist of two steps, i.e., ID-group
setup and group element encoding. In all previous pairing cryptosystems, these
algorithms consist of only the latter step, group element encoding on the same
pairing group. An ID-group for n-bit identity ID := (IDj)j∈[n] is given by GID :=
G1,ID1 × · · · × Gn,IDn

where components Gj,IDj
are selected by n-bits (IDj)j∈[n]

out of 2n IPG groups given in public parameters. The base element in the ID-
group is naturally given as gID := (g1,ID1 , . . . gn,IDn

) ∈ GID. We note that the
bases (GID, gID) for element encoding are different for all ID. We then generate
n-out-of-n shares �s := (sj)j∈[n] such that s0 =

∑
j∈[n] sj where s0 is the master

secret. The secret key is generated as kID := g�s
ID := (gs1

1,ID1
, . . . gsn

n,IDn
).

In a dual manner, in encryption, an ID-group for n-bit identity ID :=
(IDj)j∈[n] is given by ĜID := Ĝ1,ID1 × · · · × Ĝn,IDn

and the base element is
ĝID := (ĝ1,ID1 , . . . ĝn,IDn

) ∈ ĜID. A ciphertext for message m ∈ GT is given
as (cID, cT), which consists of cID := ĝζ

ID := (ĝζ
1,ID1

, . . . ĝζ
n,IDn

) ∈ ĜID and

z := hζ
T , cT := z · m ∈ GT with a random ζ

U← Fq.
Decryption has as input a secret key kID := g�s

ID and a ciphertext cID′ := ĝζ
ID′ .

If ID = ID′, decryptor can use the natural direct product pairing eID on the
ID-groups for ID, i.e.,

eID : GID × ĜID gID × ĝID �→ e1,ID1(g1,ID1 , ĝ1,ID1) · · · en,IDn
(gn,IDn

, ĝn,IDn
) ∈ GT ,

where gID := (g1,ID1 , . . . , gn,IDn
) and ĝID := (ĝ1,ID1 , . . . , ĝn,IDn

). The decryptor
calculates z′ := eID(kID, cID) = eID(g�s

ID, ĝζ
ID) =

∏
j∈[n] ej,IDj

(gj,IDj
, ĝj,IDj

)ζsj =

g
ζ

∑
j∈[n] sj

T = (gs0
T)ζ = hζ

T and then decryption succeeds as m := cT · (z′)−1 since
z′ = z.

For proving standard model (selective-ID) security from n-Isog-DDH (not
n-Isog-DBDH) for the above simple IBE, simulator should execute ID-group
partitioning in setup phase. Let me explain it below. For the obtained n-Isog-
DDH instance Xb := (pkIPG, gα

0 , (ĝβ
j)j∈[n], gδ

T) with δ = αβ if b = 0 and

δ
U← Fq if b = 1, the simulator should embed gα

0 ∈ G0 into user secret keys where
implicitly master secret s0 is set as s0 := α, and (ĝβ

j ∈ Ĝj)j∈[n] and gδ
T ∈ GT

into the challenge ciphertext where implicitly challenge ciphertext randomness
ζ is set as ζ := β. Here, we note that the fact that we cannot take pairing of
group elements gα

0 and (ĝβ
j)j∈[n] implies that simulated keys cannot decrypt the

challenge ciphertext.
In setup simulation, for ID length n, we prepare 2n isogenous pairing groups

(Gj,ι, Ĝj,ι)
j∈[n]
ι∈[0,1]. At the start of simulation, challenger obtains the challenge

identity ID∗ := (ID∗
j)j∈[n] and n-Isog-DDH instance Xb := (pkIPG, gα

0 , (ĝβ
j)j∈[n],

gδ
T) with pkIPG := ((Gj , Ĝj , gj , ĝj , ej)j∈[0,n],GT). Let the product groups GX

and ĜX (n-Isog-DDH instance groups) be GX := G1 × · · · × Gn and ĜX :=
Ĝ1 × · · · × Ĝn, whose components are given in the n-Isog-DDH instance. The

New Assumptions on Isogenous Pairing Groups 15

simulator executes ID-group simulation as GID∗ := GX and ĜID∗ := ĜX , i.e.,
Gj,ID∗

j
:= Gj and Ĝj,ID∗

j
:= Ĝj for j ∈ [n] where Gj , Ĝj are obtained from

the n-Isog-DDH instance. If we set ĝID∗ := (ĝj)j∈[n] in ĜID∗ = ĜX , the sim-
ulator uses cID∗ := ĝβ

ID∗ := (ĝβ
j)j∈[n] and z := gδ

T in the challenge cipher-
text where implicitly ciphertext randomness is set as ζ := β. I.e., in public
parameters,

if ι = ID∗
j , the simulator sets (Gj,ι, Ĝj,ι, gj,ι, ĝj,ι, ej,ι) := (Gj , Ĝj , gj , ĝj , ej)

which are obtained from the n-Isog-DBDH instance in order to use
all of (ĝβ

j)j∈[n] in challenge ciphertext simulation,

and the simulator generates n new isogenous pairing groups (G′
j , Ĝ

′
j , g

′
j , ĝ

′
j , e

′
j , φ

′
j)

R← THGenIPG(G0, Ĝ0, g0, ĝ0, e0) for j ∈ [n], and the n pairing groups are
included in public parameters for the indices that ι �= ID∗

j for the challenge
ID∗ := (ID∗

j)j∈[n], i.e.,

if ι �= ID∗
j , the simulator sets (Gj,ι, Ĝj,ι, gj,ι, ĝj,ι, ej,ι) := (G′

j , Ĝ
′
j , g

′
j , ĝ

′
j , e

′
j)

in order to use one of (φ′
j(g

α
0))j∈[n] in key generation simulation.

In key generation, a queried ID := (IDj)j∈[n] is not equal to the challenge ID∗,
i.e., IDj0 �= ID∗

j0 for some j0 ∈ [n]. Then simulator obtain gα
j0,IDj0

= φ′
j0

(gα
0) since

Gj0,IDj0
:= G

′
j0

is generated from G0 by simulator. The simulator generates n-

shares of zero as (s′
j)j∈[n]

U← {(s′
j) ∈ F

n
q | ∑

j∈[n] s
′
j = 0}, and then simulates the

key kID = (kj)j∈[n] as kj0 := φ′
j0

(gα
0) · gs′

j0
j0,IDj0

= g
α+s′

j0
j0,IDj0

and kj := g
s′

j

j,IDj
if j �= j0.

Since (s′
j) is uniformly distributed in {(s′

j) ∈ F
n
q | ∑

j∈[n] s
′
j = 0}, the exponent

system (α+ s′
j0

, (s′
j)j �=j0) is uniformly distributed in {(sj) ∈ F

n
q | ∑

j∈[n] sj = α}
as in real generated keys. This completes the overview of construction idea of
simple version of basic IBE secure from the n-Isog-DDH assumption.

For obtaining full version of basic IBE secure from the n-Isog-DBDH assump-
tion, we combine the above simple version and (a special form of) Goyal
et al.’s KP-ABE construction. In particular, public parameters include bases

ĥj,ι := ĝ
τj,ι

j,ι , hj,ι := g
1

τj,ι

j,ι with τj,ι
U← Fq for all j ∈ [n], ι = 0, 1. The secret key

and ciphertext elements are encoded on the ID-groups in a similar manner as
above with using bases hj,ι and ĥj,ι, respectively. Therefore, we have the security
proof from the above proof and that for Goyal et al.’s KP-ABE. For details, see
Theorem 1 and its proof.

16 T. Koshiba and K. Takashima

Construction.

Setup(1λ, n) :
(
pkIPG := ((G0, Ĝ0, g0, ĝ0, e0), (Gj,ι, Ĝj,ι, gj,ι, ĝj,ι, ej,ι)

j∈[n]
ι∈[0,1],GT),

skIPG := (φj,ι)
j∈[n]
ι∈[0,1]

)
R← GenIPG(1λ, 2n),

s0
U← Fq, hT := gs0

T , τj,ι
U← Fq, ĥj,ι := ĝ

τj,ι

j,ι , hj,ι := g
1

τj,ι

j,ι for all j, ι,

return pk := (((Gj,ι, Ĝj,ι, ĥj,ι, ej,ι)
j∈[n]
ι∈[0,1], GT , hT), sk := (s0, (hj,ι)).

KeyGen(pk, sk, ID := (IDj)) :
/ ∗ ID-group setup ∗ / GID := G1,ID1 × · · · × Gn,IDn

, hID := (hj,IDj
) ∈ GID,

/ ∗ Group element encoding ∗ / choose random �s := (sj)j∈[n] ∈ F
n
q

such that s0 =
∑n

j=1 sj , kID := h�s
ID, return skID := kID.

Enc(pk, m, ID := (IDj)) :

/ ∗ ID-group setup ∗ / ĜID := Ĝ1,ID1 × · · · × Ĝn,IDn
, ĥID := (ĥj,IDj

) ∈ ĜID,

/ ∗ Group element encoding ∗ / ζ
U← Fq, cID := ĥζ

ID, z := hζ
T ,

cT := z · m, return ctID := (cID, cT).
Dec(pk, skID := kID, ctID′ := (cID′ , cT)) :

if ID = ID′, z′ := eID(kID, cID), return m′ := c/z′, otherwise, return ⊥.

[Correctness]: If ID = ID′, z′ = eID(kID, cID) =
∏

j∈[n] ej,IDj
(hsj

j,IDj
, ĥζ

j,IDj
)

=
∏

j∈[n] ej,IDj
(g

sj
τj,IDj

j,IDj
, ĝ

ζ·τj,IDj

j,IDj
) =

∏
j∈[n] g

sj ·ζ
T = g

∑
j∈[n] sj ·ζ

T = gs0ζ
T = hζ

T = z

Security. The definition of selective-ID security is standard and will be given
in the full version of this paper.

Theorem 1. The proposed IBE scheme is selective-ID secure under the n-Isog-
DBDH assumption in the standard model.

For any adversary A, there exists an adversary B for the n-Isog-DBDH prob-
lem, such that for any security parameter λ, Advibe,selA (λ) ≤ Advn-Isog-DBDH

B (λ).

A proof of Theorem1 will be given in the full version of this paper.

3.2 Large Universe KP-ABE

The proposed large universe KP-ABE scheme is constructed from the basic IBE
in Sect. 3.1 and small universe KP-ABE, which will be given in the full version.

Construction. An attribute xt := (xt,j)j∈[n] for any sub-universe id t ∈ [d] is
an element in U := {0, 1}n, and our construction has a hierarchical structure for
t ∈ [d] and j ∈ [n] with two instantiations of the small universe ABE. In the low

New Assumptions on Isogenous Pairing Groups 17

level instantiation, i.e., basic IBE, a special form of n-out-of-2n secret sharing
predicate is used for identity-matching for the n-bit identities xt. The IPG with
2dn + 1 pairing groups is used.

Setup(1λ, d, n) :(
pkIPG := ((G0, Ĝ0, g0, ĝ0, e0), (Gt,j,ι, Ĝt,j,ι, gt,j,ι, ĝt,j,ι, et,j,ι)

t∈[d],j∈[n]

ι∈[0,1] ,GT),

skIPG := (φt,j,ι)
t∈[d],j∈[n]

ι∈[0,1]

)
R← GenIPG(1λ, 2dn),

s0
U← Fq, hT := gs0

T , τt,j,ι
U← Fq, ĥt,j,ι := ĝ

τt,j,ι

t,j,ι , ht,j,ι := g
1

τt,j,ι

t,j,ι for all t, j, ι,

return pk := ((Gt,j,ι, Ĝt,j,ι, ĥt,j,ι, et,j,ι)
t∈[d],j∈[n]

ι∈[0,1] ,GT , hT), sk := (s0, (ht,j,ι)).

KeyGen(pk, sk, S := (M, ρ)) : choose random �u ∈ F
r
q such that �1 · �u = s0,

for i ∈ [l], si := Mi · �u, choose random �si := (si,j)j∈[n] ∈ F
n
q

such that si =
∑n

j=1 si,j ,

if ρ(i) = (t, vi := (vi,j) ∈ {0, 1}n), Gt,vi := Gt,1,vi,1 × · · · × Gt,n,vi,n ,

ht,vi := (ht,j,vi,j)j∈[n], ki := h�si
t,vi

∈ Gt,vi , /∗ Gt,vi is the t-th base group ∗ /,

return skS := {ki ∈ Gt,vi}i∈[l].

Enc(pk, m, Γ) : ζ
U← Fq,

for (t, xt := (xt,j) ∈ {0, 1}n) ∈ Γ, Gt,xt := Gt,1,xt,1 × · · · × Gt,n,xt,n ,

ĥt,xt := (ĥt,j,xt,j)j∈[n], ct := ĥζ
t,xt

∈ Gt,xt , /∗ Gt,xt is the t-th base group ∗ /,

z := hζ
T , cT := z · m, return ctΓ := ({ct ∈ Gt,xt}(t,·)∈Γ , cT).

Dec(pk, skS := {ki}i∈[l], ctΓ := ({ct}(t,·)∈Γ , cT)) :

if S := (M, ρ) accepts Γ := {(t, xt)}, then compute {σi}ρ(i)∈Γ

such that �1 =
∑

ρ(i)∈Γ σiMi, where Mi is the i-th row of M,

z′ :=
∏

ρ(i)=(t,vi)∈Γ et,vi(ki, ct)
σi , return m′ := c/z′. otherwise, return ⊥.

[Correctness]: If S accepts Γ , z′ =
∏

ρ(i)=(t,vi)∈Γ et,vi
(ki, ct)σi

=
∏

ρ(i)=(t,vi)∈Γ et,vi
(hσi�si

i , ĥζ
t) = g

ζ
∑

ρ(i)=(t,vi)∈Γ σisi

T = (gs0
T)ζ = hζ

T = z.

Security. The definition of selective-attribute security is standard and will be
given in the full version of this paper.

Theorem 2. The proposed large universe KP-ABE scheme is selective-attribute
secure under the dn-Isog-DBDH assumption in the standard model.

For any adversary A, there exists an adversary B for the dn-Isog-DBDH prob-
lem, such that for any security parameter λ, Advkp-abe,selA (λ) ≤ Advdn-Isog-DBDH

B (λ).

A proof of Theorem2 will be given in the full version of this paper.

18 T. Koshiba and K. Takashima

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
575–601. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 24

3. Benson, K., Shacham, H., Waters, B.: The k -BDH assumption family: bilinear map
cryptography from progressively weaker assumptions. In: Dawson, E. (ed.) CT-
RSA 2013. LNCS, vol. 7779, pp. 310–325. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36095-4 20

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

6. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

7. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS 2007, pp. 647–657 (2007)

8. Boneh, D., et al.: Multiparty non-interactive key exchange and more from isogenies
on elliptic curves. In: MATHCRYPT 2018 (2018). https://eprint.iacr.org/2018/665

9. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander
graphs. J. Crypt. 22(1), 93–113 (2009). Preliminary version: IACR Cryptology
eprint Archiv, 2006:021 (2006)

10. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

11. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

14. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014). Preliminary
version: IACR Cryptology eprint Archiv, 2011:506 (2011)

15. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7 11

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-662-48797-6_24
https://doi.org/10.1007/978-3-662-48797-6_24
https://doi.org/10.1007/978-3-642-36095-4_20
https://doi.org/10.1007/978-3-642-36095-4_20
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://eprint.iacr.org/2018/665
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-540-30576-7_11

New Assumptions on Isogenous Pairing Groups 19

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

17. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC 2013, pp. 545–554 (2013)

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

19. Herzberg, A.: Folklore, practice and theory of robust combiners. J. Comput. Secur.
17(2), 159–189 (2009)

20. ISO/IEC 18033–5:2015: Information technology - Security techniques - Encryption
algorithms - Part 5: Identity-based ciphers. ISO/IEC (2015)

21. Koshiba, T., Takashima, K.: Pairing cryptography meets isogeny: a new framework
of isogenous pairing groups. IACR Cryptology ePrint Archive 2016:1138 (2016)

22. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993).
Preliminary version appeared in STOC 1991

23. National Institute of Standards and Technology: Post-Quantum crypto standard-
ization: Call for Proposals Announcement, December 2016. http://csrc.nist.gov/
groups/ST/post-quantum-crypto/cfp-announce-dec2016.html

24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11. http://eprint.iacr.org/2010/563

25. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. IACR Cryptology ePrint Archive 2007:74
(2007). http://eprint.iacr.org/2007/074

26. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 19

27. Silverman, J.: The Arithmetic of Elliptic Curves. GTM, vol. 106, 2nd edn. Springer,
New York (2009). https://doi.org/10.1007/978-0-387-09494-6

28. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

29. Yoshida, R., Takashima, K.: Computing a sequence of 2-isogenies on supersingu-
lar elliptic curves. IEICE Trans. Fundam. 96-A(1), 158–165 (2013). Preliminary
version is available in ICISC 2008. LNCS, vol. 5461, pp. 52–65 (2008)

http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
http://eprint.iacr.org/2010/563
http://eprint.iacr.org/2007/074
https://doi.org/10.1007/3-540-45539-6_19
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-3-642-03356-8_36

Public-Key Encryption and
Implementation

Mitigating the One-Use Restriction
in Attribute-Based Encryption

Lucas Kowalczyk(B), Jiahui Liu, Tal Malkin, and Kailash Meiyappan

Columbia University, New York, USA
{luke,tal}@cs.columbia.edu,

{jl4161,kkm2142}@columbia.edu

Abstract. We present a key-policy attribute-based encryption scheme
that is adaptively secure under a static assumption and is not directly
affected by an attribute “one-use restriction”. Our construction improves
upon the only other such scheme (Takashima ’17) by mitigating its down-
side of a ciphertext size that is dependent on the maximum size of any
supported attribute set.

1 Introduction

Attribute-based encryption (ABE) is a type of public key encryption which
allows for fine-grained access control to encrypted data. In Key-Policy ABE,
ciphertexts are associated with attributes, and secret-keys are associated with
Boolean access policies that take in a set of attributes and return True if the
key is capable of decrypting ciphertexts associated with that set and return
False otherwise. Security guarantees that (potentially colluding) users without
an authorized key should not be able to learn anything about an encrypted mes-
sage. (A dual variant called Ciphertext-Policy ABE swaps the roles of attributes
and access policies to be associated with the secret keys and ciphertexts respec-
tively).

One way to make security proofs for ABE more attainable is to consider
restricted notions of security. For KP-ABE, the notion of selective security
requires the adversary to commit to a target set of attributes for the chal-
lenge ciphertext that will be attacked at the start of the security game. The
earliest constructions of ABE using bilinear groups were proven secure in this
model [17,34]. The notion of semi-adaptive security [18] requires the adversary
to commit to a target set of attributes, but allows the adversary to see the public
parameters first. These notions are obviously not realistic attack scenarios, so a
KP-ABE scheme would ideally satisfy the notion of adaptive security (full secu-
rity), where the challenge attribute set can be chosen adaptively (in response to
public parameters and any amount of secret keys received). The first construc-
tion of ABE achieving adaptive security appeared in [21], employing the dual
system encryption methodology [33] in its security reduction.

Another way to make proving security of ABE schemes easier is to reduce
security to parameterized assumptions like q-type assumptions, where the size of
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 23–36, 2019.
https://doi.org/10.1007/978-3-030-12146-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_2

24 L. Kowalczyk et al.

the elements included in the assumption’s challenge grows with some property
of the adversary. q-type assumptions were used in the ABE constructions of
[24,34] to prove security. However, the security of dynamic assumptions like q-
type assumptions is not well-understood, and the assumptions are often closely
related to the scheme in which they are used. For example, the assumption may
include a number of group elements that scales with the number of queries made
by the adversary in the security proof. Further, it is known that many q-type
assumptions become stronger as q grows [11], so we would ideally like to reduce
security of ABE constructions to better understood assumptions of a static size,
like the Decisional Linear Assumption (DLIN) or the Symmetric External Diffie-
Hellman Assumption (SXDH).

A natural class of access policies one would like to be able to support in
an ABE construction is that of general Boolean formulas. Unfortunately, it has
proven tremendously difficult to construct efficient ABE for general Boolean for-
mulas with adaptive security under static assumptions. All constructions except
for [32] suffer from a “one-use restriction”. That is, they only natively sup-
port read-once Boolean formulas, or formulas where attributes are used at most
once in inputs. One way to extend such constructions to support formulas that
use attributes more than once (say, k times) is to use k copies of new “meta-
attributes” that stand for each use of the original attribute, and are handled as
a group [21]. The downside of this approach is that it destroys the compactness
of the construction – for KP-ABE, the size of the ciphertexts no longer depends
on just the attribute set of the ciphertext, but also on the complexity of the for-
mulas that the scheme supports (namely, the ciphertexts grow linearly with the
maximum number of attribute uses in any formula supported). Ciphertexts asso-
ciated with n′ attributes in a scheme like [21] where policies can reuse attributes
at most k times are of size O(n′ · k).

Takashima presented the first KP-ABE scheme (proven adaptively secure
from static assumptions) with ciphertexts that do not grow directly with the
number of attribute uses [32], but unfortunately, the construction still has a
dependence on the set of allowed policies. Specifically, ciphertexts are of size
O(n + r), where n is the maximum size of any supported attribute set and r
is the maximum number of columns in any policy matrix supported (this is
the policy dependency). For (fan-in 2) Boolean formulas, standard techniques
[22] to translate the formula into a policy matrix result in r being equal to the
number of AND gates in the formula. Additionally, this dependence on n, the
maximum size of any supported attribute set rather than only the attribute
set of the relevant ciphetext is undesirable, since one can imagine the size of
each ciphertext’s associated attribute set varying wildly from the worst-case
maximum-sized set supported by the system. In fact, it is unclear whether O(n+
r)-size ciphertexts are ever an asymptotic improvement over the O(n′ · k)-size
ciphertexts of all other known ABE schemes proved adaptively secure under
static assumptions.

Mitigating the One-Use Restriction in Attribute-Based Encryption 25

reference |sk| |ct| assumption
[21] O(|f |) O(n′ · k) DLIN
[28] O(|f |) O(n′ · k) DLIN
[9] O(|f |) O(n′ · k) k-LIN
[10] O(|f |) O(n′ · k) SXDH
[32] O(|f |) O(n+ r) DLIN
Ours O(|f |) O(n′ + r) SXDH

Fig. 1. Summary of several KP-ABE schemes proven adaptively secure under static
assumptions for monotone span programs. Here, n′ is the number of attributes associ-
ated to the ciphertext, n is the maximum size of any supported attribute set, r is the
maximum number of columns in any policy matrix, and k is the maximum number of
attribute reuses in any policy (except in the name for the “k-LIN” assumption, which
is unrelated and an unfortunate overloading).

1.1 Our Result

In this work, we describe a KP-ABE construction that mitigates one of the
two undesirable dependencies of [32], featuring ciphertexts of size O(n′ + r)
instead of O(n+r) (while remaining adaptively secure from a static assumption:
the Symmetric Diffie-Hellman Assumption (SXDH) and allowing the reuse of
attributes in its monotone span program policies). This significant improvement
allows us to rigorously argue that there exist classes of access policies for which
our construction enjoys an asymptotic improvement over the state of the art.
We note that our construction is for the small-universe setting, where attributes
come from a polynomial (in the security parameter) sized universe that is fixed
upon setup, whereas the construction of [32] supports an attribute universe that
may be exponentially large. This allows us to focus on the techniques required to
asymptotically improve the ciphertext size. Our scheme is likely translatable to
accommodate a large attribute universe without sacrificing asymptotic efficiency,
but we leave this for future work.

Our construction avoids a dependence on k, the multiplicity of attribute-reuse
in supported policies, but retains the dependence on r, the number of columns
in supported policy matrices. We view reducing this last dependence to achieve
truly compact adaptively secure ABE from a static assumption as an interesting
open problem.

1.2 Comparing Perfomance

Figure 1 contains a comparison of several KP-ABE schemes proven adaptively
secure under static assumptions for monotone span programs.

An obvious question in comparing our construction to the state-of-the-art is:
how does r compare to k? Is n′ + r ever better than n′ · k? It is easy to come up
with individual formulas where this is the case, but it’s not obvious that such
a formula can’t always be “compressed” to an equivalent formula that has less

26 L. Kowalczyk et al.

attribute-reuse. In general, circuit/formula minimization questions like this are
difficult to answer.

Fortunately, we can make a simple counting argument to show that indeed
there are classes of functions which cannot be expressed using Boolean formulas
with much smaller maximum attribute reuse than the maximum number of AND
gates within the class. To see this, consider some subset of x attributes in the
attribute universe. There are 22

x

Boolean functions on these attributes, and we
can express each function as a DNF in the naive way as a formula that uses at
most O(2x) AND gates. So, for this class of functions, r = O(2x).

However, counting the number of different Boolean formulas that could
attempt to realize these functions using a maximum k reuses of any attribute
shows that at least k = Ω(2x) attribute-reuses are required to realize all of the
functions in this class. In this case, we see our construction enjoys a multiplica-
tive to additive improvement (from n′ · Ω(2x) to n′ + O(2x)).

1.3 Technical Details

Our construction can be seen as combining the best of both worlds between the
construction of [32], which is the first to not directly depend on the number
of attribute-reuses (while adaptively secure from a static assumption), and the
lineage of [10,17,19,21], which enjoys ciphertexts that are independent of the
size of the attribute universe (they depend only on the number of attributes
actually associated with the ciphertext).

Specifically, all of these schemes are based on linear secret sharing and are
built using bilinear groups. Given a matrix M representing a monotone span
program, linear secret shares of α are constructed by choosing randomness ri,
then computing M · (α, r2, ..., rm) to obtain a vector of shares λ. The construc-
tions of [10,17,19,21] embed these shares into their constructions’ secret keys,
where they are hidden by attribute-randomness that can only be removed using
corresponding elements from a ciphertext. See Fig. 2 for an example. A crucial
step of the dual-system proof [33] of adaptive security occurs when secret shares
in the dual “semi-functional” space of a secret key are changed from sharing 0
to sharing a random element α′ (in [24], this is the change from “nominal semi-
functional” to “temporary semi-functional”). This is the step of the proof that
uses the fact that the keys requested by an adversary are not allowed to decrypt
the challenge ciphertext, to argue that there exists different randomness r′

i where
a sharing of 0 using the ri randomness looks identically distributed to a sharing
of random α′ using the r′

i randomness, as long as the only shares seen are not
allowed to reconstruct the secret. Crucially, the alternative randomness r′

i is not
defined until the challenge ciphertext is requested (as the challenge ciphertext
defines which shares in the key are allowed to be seen). The constructions in
the [21] lineage therefore require that the change in the secret shares in their
keys be information theoretic (so they can be implicitly changed upon challenge
ciphertext creation). This turns out to be the root of the one-time attribute use
restriction (reusing attributes prevents this information-theoretic argument from
working).

Mitigating the One-Use Restriction in Attribute-Based Encryption 27

{gλj+aρ(j)yj , gyj}j∈M

Fig. 2. Example secret key

[32] employs a technique of delayed share construction to get around this
problem. Specifically, the construction does not construct a secret sharing {λj}
which is embedded in the secret key, but instead keeps the components that
generate λj (vectors M j and (α, r2, ..., rm)) separate until decryption. The M j

portion is embedded in the key and the randomness (α, r2, ..., rm) is stored in
the ciphertext. Decryption computes the dot product of these two components to
implicitly construct λj that function in the same way as before. The advantage of
this approach is that the randomness used in the secret shares is not needed until
the challenge ciphertext is requested, so computational assumptions can be used
to side-step the one-time attribute use restriction that comes with information-
theoretic changes.

Like [21,32] also masks secret key components, making them only available
to ciphertexts associated with the appropriate attributes. However [32] does this
via a somewhat blunt tool: namely, its secret keys contain a vector y which can
encode orthogonality relationships with any subset of the attributes associated
with a ciphertext and whose length is as large as the maximum attribute set
supported by the system.

In contrast, the “share encapsulation” in [21] demonstrated in Fig. 2 can be
thought of as using a vector of dimension 2 to perform the same job. (aρ(j)yj , yj)
is being used to hide the share λj and share retrieval will be allowed only give
a ciphertext with an “orthogonal” vector: (s,−saρ(j)). Our construction can be
seen as essentially replacing [32]’s vector y with constant-dimensioned vectors
like this, resulting in a ciphertext dependent only on the number of attributes
associated with it, just like all previous schemes. Essentially, an information-
theoretic “encapsulation” argument supported by the vector y for all shares is
replaced with a computational one using a vectors of a constant size for each
attribute. Doing so makes the dual-system hybrid more delicate, as it requires
careful management of rerandomization across the now greatly reduced dimen-
sions.

1.4 Related Work

Additional work on ABE in the bilinear setting includes various constructions of
KP-ABE and CP-ABE schemes (e.g. [5,16,18,30]), schemes supporting multiple
authorities (e.g. [7,8,22,29]), and schemes supporting large attribute universes
(e.g. [1–3,6,10,15,19,23,28,31]).

The construction of [14] supports circuit access policies rather than monotone
span programs or Boolean formulas, which makes it more expressive than any
known bilinear scheme. It was proven selectively secure under the standard LWE
assumption. The construction of [6] later extended this to semi-adaptive security

28 L. Kowalczyk et al.

for circuit access policies from LWE. Proving full adaptive security for a ABE
scheme supporting circuits from LWE or an assumption on bilinear maps is an
interesting open problem.

Circuit policies are supported by the construction in [12] based on multilin-
ear maps. This scheme is proven selectively secure, under a particular compu-
tational hardness assumption for multilinear groups. The multilinear scheme in
[13] achieves adaptive security, relying on computational hardness assumptions
in multilinear groups.

2 Preliminaries

We will write a ← Zp to denote choosing a uniformly at random from set Zp

and will abuse notation to use j ∈ M as a subscript to denote each index j of
the rows Mj of matrix M .

2.1 Prime Order Bilinear Groups

We construct our system in prime order asymmetric bilinear groups. We let G
denote a group generator - an algorithm which takes a security parameter λ as
input and outputs (p,G,H,GT , e), where p is a prime, G,H and GT are cyclic
groups of order p, and e : G × H → GT is a map with the following properties:

1. (Bilinear) ∀g ∈ G,h ∈ H, a, b ∈ Zp, e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G,h ∈ H such that e(g, h) has order p in GT .

We refer to G,H as the source groups and GT as the target group. We assume
that the group operations in G,H and GT and the map e are computable in
polynomial time with respect to λ, and the group descriptions of G,H and GT

include a generator of each group.

2.2 Dual Pairing Vector Spaces

We will employ the concept of dual pairing vector spaces from [26,27], where we’ll
denote choosing random dual orthogonal bases as: (B,B∗) ← Dual(Zn

p). Such
bases are collections of linearly independent vectors chosen at random up to
orthogonality constraints (bi · b∗

i = 1, bi · b∗
j = 0 for i �= j). For example, one can

implement Dual(Zn
p by choosing a random invertible matrix B, setting B := B

which then defines B
∗ as B

∗ := (B−1)T . Note that the dual basis generation
procedure satisfies the property that, if R is an invertible matrix, then (B,B∗)
and (R · B, (R−1)T · B∗) are distributed identically when (B,B∗) ← Dual(Zn

p).
We will use this fact in our security proof to introduce new randomness into free
dimensions of the construction as well as to embed computational assumptions.
Finally, we will write gv to denote the vector of group elements (gv1 , ..., gvn),
and will use the notation: (x1, ..., xn)B to denote gx1b1 · ... · gxnbn .

Mitigating the One-Use Restriction in Attribute-Based Encryption 29

2.3 Complexity Assumptions

The security of our system will be reduced to the Symmetric External Diffie-
Hellman assumption (SXDH). We use the notation x ← S to express that ele-
ment x is chosen uniformly at random from the finite set S.

Symmetric External Diffie-Hellman Assumption (SXDH). The SXDH problem
in G is stated as follows: given an asymmetric bilinear group (G,H) of prime
order p with respective generators g, h, and given ga, gb and T = gab+r∗ ∈ G
where a, b ← Zp and either r∗ = 0 or r ← Zp, output “yes” if r is a random
element of Zp and “no” otherwise. The SXDH problem in H is stated symmet-
rically, swapping the role of G and H.

Definition 1. SXDH Assumption in (G,H): no polynomial time algorithm can
achieve non-negligible advantage in deciding the SXDH problem in G or the
SXDH problem in H.

2.4 Background for ABE

We now give required background material on Linear Secret Sharing Schemes,
the formal definition of a KP-ABE scheme, and the security definition we will
use.

Monotone Span Programs/Linear Secret Sharing Schemes. Our con-
struction uses linear secret-sharing schemes (LSSS) to realize monotone span pro-
gram access structures [25]. We use the following definition (adapted from [4]).
In the context of ABE, attributes will play the role of parties and will be repre-
sented as indexes i ∈ [|U|] for a fixed universe U .

Definition 2. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing
scheme Π over a set of attributes is called linear (over Zp) if

1. The shares belonging to all attributes form a vector over Zp.
2. There exists an �×n matrix Λ called the share-generating matrix for Π. The

matrix Λ has � rows and n columns. For all j = 1, . . . , �, the jth row of Λ is
labeled by an attribute i = ρ(j) (ρ is a mapping that maintains the relationship
between matrix rows and attributes). When we consider the column vector
v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp

are randomly chosen, then Λv is the vector of � shares of the secret s according
to Π. The share (Λv)j = λj belongs to attribute i = ρ(j).

We note the linear reconstruction property: we suppose that Π is an LSSS.
We let S denote an authorized set. Then there is a subset S∗ ⊆ S such that the
vector (1, 0, . . . , 0) is in the span of rows of Λ indexed by S∗, and there exist
constants {ωi ∈ Zp}i∈S∗ such that, for any valid shares {λi} of a secret s accord-
ing to Π, we have:

∑

i∈S∗
ωiλi = s. These constants {ωi} can be found in time

30 L. Kowalczyk et al.

polynomial in the size of the share-generating matrix Λ [4]. For unauthorized
sets, no such S∗, {ωi} exist.

For any set S of unauthorized shares, since the vector (1, 0, ..., 0) is not in
the span of rows indexed by S, then there is some vector w that is orthogonal to
all of the rows of Λ indexed by S but is not orthogonal to (1, 0, ..., 0). By scaling
this vector, we can maintain these orthogonality relationships and force the first
coordinate w1 to be 1. Our proof of security will use the existence of this vector.

KP-ABE Definition. A key-policy attribute-based encryption system consists
of four algorithms: Setup, Encrypt, KeyGen, and Decrypt.

Setup(λ,U) → (PP,MSK). The setup algorithm takes in the security parameter
λ and the attribute universe description U . It outputs the public parameters PP
and a master secret key MSK.

Encrypt(PP,m, S) → CT. The encryption algorithm takes in the public param-
eters PP, the message m, and a set of attributes S. It will output a ciphertext
CT. We assume that S is implicitly included in CT.

KeyGen(MSK,PP,A) → SK. The key generation algorithm takes in the master
secret key MSK, the public parameters PP, and an access structure A over the
universe of attributes. It outputs a private key SK which can be used to decrypt
ciphertexts encrypted under a set of attributes which satisfies A. We assume
that A is implicitly included in SK.

Decrypt(PP,CT,SK) → m. The decryption algorithm takes in the public
parameters PP, a ciphertext CT encrypted under a set of attributes S, and a
private key SK for an access structure A. If the set of attributes of the ciphertext
satisfies the access structure of the private key, it outputs the message m.

Adaptive Security for KP-ABE Systems. We define adaptive security for
KP-ABE Systems in terms of the following game:

Setup. The challenger runs the Setup algorithm and gives the public parameters
to the attacker.

Phase 1. The attacker queries the challenger for private keys corresponding to
access structures.

Challenge. The attacker declares two equal length messages M0,M1 and a set of
attributes A ⊆ U where U is the attribute universe such that A does not satisfy
the access structure of any of the keys requested in Phase 1. The challenger flips
a random coin β ∈ {0, 1}, encrypts Mβ under S to yield ciphertext CTβ and
gives CTβ to the attacker.

Phase 2. The attacker queries the challenger for private keys corresponding to
access structures that are not satisfied by S.

Mitigating the One-Use Restriction in Attribute-Based Encryption 31

Guess. The attacker outputs a guess β′.

Definition 3. The advantage of an attacker A in this game is defined as
AdvKP−ABE

A (λ) = Pr[β = β′] − 1
2 .

Definition 4. A key-policy attribute based encryption scheme is adaptively
secure if no polynomial time algorithm can achieve a non-negligible advantage
in the above security game.

3 Construction

Setup(λ,U) → PP,MSK. The setup algorithm chooses an asymmetric bilinear
group G(λ) → (p,G,H,GT , e). It then chooses random generators g ∈ G,h ∈ H.
For i ∈ [k] where k = |U| it chooses values ai ← Zp. It then generates random
dual orthonormal sets:

(D,D∗) ← Dual(Z6
p)

(B,B∗) ← Dual(Z3(r+1)
p)

(Ai,A
∗
i) ← Dual(Z3

p) for i ∈ [k]

The public parameters PP are:

e(g, h)
(e1)D∗ , (e2)D∗

{(ei)B∗}i∈[r+1]

{(ai, 0, 0)A∗
i
}i∈[k]

The MSK is:

(e1)D, (e2)D
{(ei)B}i∈r+1

{(1, 0, 0)Ai
}i∈[k]

Such a construction is equipped to create keys for access policies which include
attributes i ∈ U .

Encrypt(m,S, PP) → CT. The encryption algorithm draws α,Δ, s, zi ← Zp

(for i ∈ [r]) and forms the ciphertext as:

CTS = (C0, C1, C2, {C3,i}i∈S)

where

C0 := m · e(g, h)α

C1 := (α,−Δ,02,02)D∗

C2 := (Δ, z2, ..., zr, s,0r+1,0r+1)B∗

C3,i := (sai, 0, 0)A∗
i

(This implicitly includes S)

32 L. Kowalczyk et al.

KeyGen(MSK,M,PP) → SK. The key generation algorithm takes in the
public parameters, master secret key, and LSSS access matrix M . It chooses a
random exponent x ← Zp. For each row j (associated with attribute ρ(j)) in the
policy matrix M , it chooses exponent yj ← Zp and outputs the secret key:

SKM = (K1, {K2,j ,K3,j}j∈M)

where:

K1 := (1, x,02,02)D
K2,j := (——xM j——, aρ(j)yj ,0r+1,0r+1)B
K3,j := (−yj , 0, 0)Aρ(j)

Decrypt(CTS , SKM , PP)→ m. Given ciphertext CTS = (C0, C1, C2, {C3,i}i∈S)
and secret key SKM = (K1, {K2,j ,K3,j}j∈M), if S satisfies M , then there is a
set S∗ of policy row indices such that j ∈ S∗ =⇒ ρ(j) ∈ S and there exist
efficiently computable constants ωj such that

∑

j∈S∗
ωjMj ·z = Δ (recall Sect. 2.4).

The decryption algorithm computes these ωj and then computes:

B =
∏

j∈S∗
e(C2,K2,j)ωj · e(C3,ρ(j),K3,j)ωj

D = e(C1,K1)

and finally, computes and outputs:

C0

B · D
= m

4 Correctness

This scheme satisfies correctness since:

B =
∏

j∈S∗
e(C2,K2,j)ωj · e(C3,ρ(j),K3,j)ωj

=
∏

j∈S∗
e

(
(Δ, z2, ..., zr, s, 0r+1,0r+1)B∗ ,

(——xM j——, aρ(j)yj ,0r+1,0r+1)B

)ωj

· e

(
(saρ(j), 0, 0)A∗

ρ(j)
,

(−yj , 0, 0)Aρ(j)

)ωj

=
∏

j∈S∗
e(g, h)xωjλj+sωjaρ(j)yj · e(g, h)−sωjaρ(j)yj

= e(g, h)

x

∑

j∈S∗
ωjλj

= e(g, h)xΔ

Mitigating the One-Use Restriction in Attribute-Based Encryption 33

D = e(C1,K1)

= e

(
(α,−Δ,02,02)D∗

(1, x, 02,02)D

)

= e(g, h)α−xΔ

and finally:

C0

B · D
=

m · e(g, h)α

e(g, h)xΔ · e(g, h)α−xΔ

= m

5 Proof of Security

Our proof of security will consist of a hybrid sequence of games where the keys
and challenge ciphertext are constructed according to various types. At a high
level, the proof follows a typical dual-system hybrid structure, where the chal-
lenge ciphertext is first made “semi-functional,” then the hybrid continues over
the secret keys requested, transforming each key into a “semifunctional” vari-
ant which is useless to the attacker relative to the challenge (semifunctional)
ciphertext.

There are two parts to the key hybrid: one that makes semifunctional keys
which were requested before the challenge ciphertext and another that makes
semifunctional keys which were requested after the challenge ciphertext. The
high level reason for this difference is that for keys requested after the challenge
ciphertext, the challenge attribute set is already known. This makes it easy to
follow a standard selective security argument to make each key semifunctional.
The harder part of the hybrid deals with making keys requested before the
challenge ciphertext (and the challenge attribute set) is known. This is where
we use the delayed randomness contained within our ciphertext as well as the
fact that we allow the semifunctional ciphertext distributions to depend on the
current key of the hybrid. This bifurcated approach to handling secret keys in a
dual-system proof was first employed in [24] and later refined by [2,3].

A key step in our proof (and of [32]) is a lemma where each policy matrix
row is isolated in turn against the ciphertext’s w alternative randomness com-
ponent and their dot product’s distribution is used to argue that the row can
be multiplied by an uncorrelated x∗. In [32], this argument takes advantage of
the inefficient y vector, but for us, we need to delicately thread just enough ran-
domness through the single attribute element ai hiding each row to accomplish
the same feat.

Theorem 1. Under the SXDH assumption, our KP-ABE construction is adap-
tively secure against any polynomial time adversary A.

We give the proof of Theorem 1 in the full version of this paper [20].

34 L. Kowalczyk et al.

Acknowledgements. This work was supported in part by The Leona M. & Harry
B. Helmsley Charitable Trust; NSF grant CCF-1423306; and the Defense Advanced
Research Project Agency (DARPA) and Army Research Office (ARO) under Contract
W911NF-15-C-0236. The first author is additionally supported in part by an NSF
Graduate Research Fellowship DGE-16-44869. Any opinions, findings and conclusions
or recommendations expressed are those of the authors and do not necessarily reflect
the views of the the Defense Advanced Research Projects Agency, Army Research
Office, the National Science Foundation, or the U.S. Government.

References

1. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: CCS
(2017)

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

3. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

4. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 321–334
(2007)

6. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

7. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 28

8. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Proceedings of the 2009 ACM Conference on Com-
puter and Communications Security, pp. 121–130 (2009)

9. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

10. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

11. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/11761679_1

Mitigating the One-Use Restriction in Attribute-Based Encryption 35

12. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 27

13. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. IACR Cryptology ePrint Archive 2014, 622 (2014).
http://eprint.iacr.org/2014/622

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

15. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling function-
alities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.
9986, pp. 361–388. Springer, Heidelberg (2016b). https://doi.org/10.1007/978-3-
662-53644-5 14

16. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 47

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

18. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

19. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional lin-
ear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 524–541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 26

20. Kowalczyk, L., Liu, J., Malkin, T., Meiyappan, K.: Mitigating the one-use restric-
tion in attribute-based encryption. IACR Cryptology ePrint Archive 2018, 645
(2018). https://eprint.iacr.org/2018/645.pdf

21. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

22. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

23. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

24. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

25. Karchmer, M., Wigderson, A.: On span programs. In: CCC, pp. 102–111 (1993)
26. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector

decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85538-5 4

https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27
http://eprint.iacr.org/2014/622
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-662-48000-7_26
https://eprint.iacr.org/2018/645.pdf
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-540-85538-5_4
https://doi.org/10.1007/978-3-540-85538-5_4

36 L. Kowalczyk et al.

27. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 13

28. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

29. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 9

30. Ostrovksy, R., Sahai, A., Waters, B.: Attribute based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

31. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: 2013 ACM Conference on Computer
and Communications Security, pp. 463–474 (2013)

32. Takashima, K.: New proof techniques for DLIN-based adaptively secure attribute-
based encryption. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342,
pp. 85–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 5

33. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

34. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/978-3-319-60055-0_5
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4

Attacking Noisy Secret CRT-RSA
Exponents in Binary Method

Kento Oonishi(B) and Noboru Kunihiro(B)

The University of Tokyo, Tokyo, Japan
kento oonishi@mist.i.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. In this paper, we perform a security evaluation on the RSA
encryption scheme with the Chinese remainder theorem (CRT-RSA),
against side-channel attacks. We discuss the methods for recovering the
CRT-RSA secret keys by observing physical information. In the CRT-
RSA scheme, we calculate the exponentiations by repeated squaring and
multiplication operations during decryption. The square-and-multiply
sequences of the exponentiation can be obtained by side-channel attacks.
However, errors occur in the square and multiply sequences because of
physical-information observation errors, due to which the secret keys can-
not be recovered by using Bernstein et al.’s method, even if window size
w = 1 in sliding window exponentiation. In this paper, we propose an
algorithm for correcting the errors in the square-and-multiply sequences,
and for obtaining the correct secret keys, when the square-and-multiply
sequences are generated at w = 1, namely, the binary method. More-
over, we theoretically prove that the expected time complexity of our
algorithm is in polynomial time, when the error rate is less than 5.8%.

Keywords: CRT-RSA encryption scheme · Exponentiation ·
Error correction · Side-channel attacks

1 Introduction

1.1 Background

RSA encryption scheme [25] is an extensively used public-key cryptosystem. It
is composed of public keys (N, e), and a secret key d. The public key e, is a
sufficiently small parameter, such as 216 + 1 = 65537, which is used in many
systems; whereas, N is the product of two distinct n/2 bit primes, p and q.
The value-pair (e, d) ∈ Z

∗
(p−1)(q−1) × Z

∗
(p−1)(q−1), satisfies ed ≡ 1 mod (p −

1)(q − 1). In this paper, we consider the PKCS#1 standard [26], RSA with the
Chinese remainder theorem (CRT-RSA). In the CRT-RSA scheme, the public
keys are the same as those of the standard RSA scheme, while secret keys are
(p, q, d, dp, dq, qp). Parameters dp ∈ Z

∗
p−1, dq ∈ Z

∗
q−1, and qp ∈ Zp are defined

as dp := d mod p − 1, dq := d mod q − 1, and qp := q−1 mod p, respectively.
These additional secret keys enable faster decryption using the CRT.
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 37–54, 2019.
https://doi.org/10.1007/978-3-030-12146-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_3

38 K. Oonishi and N. Kunihiro

The security of the RSA scheme is based on the difficulty of the factoriza-
tion problem. However, even if the factorization problem is difficult, the imple-
mented RSA is not always secure against physical attacks, such as cold boot
attacks [7] and side-channel attacks [14]. As the secret keys can be leaked by
physical attacks, the RSA scheme must be secure against such attacks.

In previous research, security analysis of the RSA scheme against physical
attacks, such as cold boot and side-channel attacks, were conducted. In cold boot
attacks, attackers observe the DRAM data remanence and read the secret-key
bits. In side-channel attacks, they observe physical data based on secret keys,
such as the power consumption [11,15], implementation time [14], electromag-
netic [5], sound [6], and cache access [2,12,23,30,31], during RSA decryption.
We review these physical attacks on the RSA scheme.

Cold Boot Attacks on the RSA Scheme. Before cold boot attacks were
introduced, there were several studies on the consecutive partial leakage of the
RSA secret-key bits. The first key recovery method was proposed by Rivest and
Shamir [24]. They proved that the RSA scheme can be broken, when 2/3 of the
most or least significant bits of p are known. Further, Coppersmith [4] proved
that the RSA scheme can be broken, when half of the most significant bits of p
are known. In the Coppersmith method, attackers recover the RSA secret keys
by solving equations on the small unknown values of the secret keys using LLL
reduction [19]. Recent studies on key recovery from known consecutive bits are
based on the Coppersmith method [29].

After the emergence of cold boot attacks, the recovery of the RSA secret keys,
based on cold boot attacks, were extensively researched. In cold boot attacks,
the RSA secret keys are given as bits with non-consecutive erasure and error;
therefore, the setting of the given consecutive bits in previous research is an
unnatural assumption. Hence, several models for the partial RSA secret keys
have been proposed, and a key recovery algorithm was constructed, based on
Heninger and Shacham’s work [9] in CRYPTO 2009, in which RSA secret keys
with erasure bits were considered, and the search for the RSA secret keys was
thorough a binary tree. Based on this, studies on the various settings of noisy
bits were conducted. For example, Henecka et al. [8] considered bits with random
errors, and Kunihiro et al. [17] considered bits with both erasure and error.
Similarly, RSA-secret-key recovery has been considered for various settings in
discrete [22] and analog data [16,18]. The above mentioned methods recover the
RSA secret keys from the least significant bits. In addition to these methods,
methods for recovering the RSA secret keys from the most significant bits by
changing the method of constructing the tree have been proposed [13,20,27,28].

Side-Channel Attacks on the RSA Scheme. Since the proposal of the
timing attack [14] in 1996, there have been many side-channel attacks on the
RSA scheme. These attacks monitor the exponentiations during decryption and
extract the RSA secret keys as square-and-multiply sequences. Obtaining these

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 39

sequences is easier than obtaining the bits because cold boot attacks require the
device itself of a regular user, whereas side-channel attacks do not.

Exponentiation is implemented efficiently using the binary, fixed window, and
sliding window methods. Recent studies focus on attacking the fixed window [5,
11,31] and sliding window methods [2,5,11,12]. In particular, Bernstein et al. [2]
have proposed a method for recovering CRT-RSA secret keys from square-and-
multiply sequences without knowing the multiplier.

1.2 Motivation

Previous studies on side-channel attacks on the RSA scheme have mainly focused
on observing the physical data precisely; they assumed that there were no errors
in the square-and-multiply sequences. Bernstein et al. attacked the exponentia-
tion using the sliding window method. They demonstrated that, if the square-
and-multiply sequences can be obtained correctly, the CRT-RSA secret keys can
be recovered, when the window size is w ≤ 4.

However, there are errors in the square-and-multiply sequences obtained from
physical data [1,2]. Bernstein et al. [2], in particular, report that there is an
average of 14 errors in the square-and-multiply sequences of 1024-bit CRT-RSA
decryption, under the sliding window method at w = 4. This corresponds to
a 1.1% error rate in the square-and-multiply sequences. If there are errors in
these sequences, Bernstein’s method fails even if w = 1. In order to correct the
errors in the square-and-multiply sequences, they proposed a majority vote by
observing the physical data repeatedly, and declared that their method succeeds
when the physical data is observed 20 times. However, there is no guarantee that
attackers can observe the physical data repeatedly because decryption depends
on the regular user. A similar problem arises in other methods, such as the
differential power analysis [15].

In view of the above, we focus on correcting the errors in the square-and-
multiply sequences, based on one observation alone. In cold boot attacks, various
bits models are studied. In these researches, if key recovery succeeds, the cor-
rect CRT-RSA secret keys can be obtained. Therefore, the errors in the bits
can be corrected. In side-channel attacks, the errors in the square-and-multiply
sequences are considered in [12]; they proposed a key recovery algorithm, using
square-and-multiply sequences with error. However, this study is ambiguous
regarding the construction of the algorithm. Moreover, it does not reveal the
error that can be recovered by their algorithm.

Thus, we require a key recovery algorithm using square-and-multiply
sequences with small errors, extracted from one physical data alone. In addition,
the error, in the square-and-multiply sequences, that can be recovered must be
revealed.

1.3 Our Contribution

In this paper, we present a key recovery algorithm using the square-and-multiply
sequences on exponentiations, cdp and cdq , with small errors at w = 1, namely,

40 K. Oonishi and N. Kunihiro

the binary method. In order to recover the CRT-RSA secret keys from square-
and-multiply sequences with error, we focus on the similarity between our attack-
ing situation and that of Henecka et al.’s [8], whose algorithm recovers CRT-RSA
secret key bits with error using a binary tree. We focus on the relationship
between the bits and the square-and-multiply sequences, and propose a key
recovery algorithm based on the square-and-multiply sequences.

In addition, we analyze our proposed algorithm theoretically. We prove that
we can recover with an error rate less than 5.8% in the square-and-multiply
sequences in the expected polynomial time, if square-and-multiply sequences
with error are provided from one physical data, by observing cdp and cdq . Our
algorithm works well on the errors in the square-and-multiply sequences, as
demonstrated experimentally in [2]; the average error rate is 1.1%.

2 Preliminaries

In this section, we introduce the encryption and decryption of the CRT-RSA
scheme and the binary method. In addition, we present the leakage model of a
square-and-multiply sequence, and define the problem dealt with in this study.
Finally, we introduce the notations used in our proposed algorithm, and the
analysis of our algorithm.

2.1 Encryption and Decryption of the CRT-RSA Scheme

First, we introduce the encryption and decryption of the standard RSA scheme.
In standard RSA scheme, the public keys are (N, e) and the secret key is d. The
encryption of a message m, is performed as C = me mod N , and the decryption
as m = Cd mod N .

Next, we present the encryption and decryption of the CRT-RSA scheme.
In the CRT-RSA scheme, the public keys are (N, e) and the secret keys are
(p, q, d, dp, dq, qp). The mathematical relationship between the public and secret
keys can be expressed using k, kp, kq ∈ Z as follows:

N = pq,

ed = 1 + k(p − 1)(q − 1),
edp = 1 + kp(p − 1),
edq = 1 + kq(q − 1).

The encryption is the same as that of the standard RSA scheme. The decryption
algorithm is given by Algorithm 1.

While the standard RSA decryption calculates under modulus N , the CRT-
RSA decryption calculates under moduli p and q. Therefore, the exponentiation
deals with half bits compared to the standard RSA scheme; decryption in the
CRT-RSA scheme is approximately four times faster than that in the standard
RSA scheme.

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 41

Algorithm 1. CRT-RSA Decryption Algorithm [26]
Input: Ciphertext c, and secret keys (p, q, d, dp, dq, qp).
Output: Message m
Compute m1 = cdp mod p, m2 = cdq mod q
Compute h = (m1 − m2)qp mod p
Compute m = m2 + qh
return m

2.2 Exponentiation (Binary Method)

The binary method is performed as Algorithm 2. With this Algorithm 2, we
read d from the most-significant-bit side. Exponentiation includes two opera-
tions: squaring and multiplication. When the bit is zero, we perform squaring;
when the bit is one, we perform squaring followed by multiplication. In this
paper, S denotes squaring and M denotes multiplication. We write the imple-
mentation record using S and M. Using Algorithm 2, when we convert cd as
a square-and-multiply sequence; we convert a zero bit of d into S, and a one
bit of d into SM. For example, when we calculate c5, the binary representation
of 5 is 5 = 1012; therefore, the square-and-multiply sequence is SMSSM. In a
square-and-multiply sequence, the first operation is always S, and the Ms are
not consecutive. Moreover, the number of Ss is the same as the number of bits
of d, and the number of Ms is the same as the number of one bits in d.

Algorithm 2. Exponentiation (binary method) [21]
Input: c and d = (dt . . . d0)2
Output: cd

Set x = 1
for i = t down to 0

Compute x = x2 (Squaring)
if di = 1

Compute x = cx (Multiplication)
end for
return x

2.3 Leakage Model

In CRT-RSA decryption, we execute modular exponentiations, cdp and cdq . From
these operation, we obtain the square-and-multiply sequence by physical attacks.
If these sequences can be obtained correctly, we can obtain the secret keys easily
because the bits and the square-and-multiply sequence have a one-to-one corre-
spondence. However, we do not always obtain the square-and-multiply sequence
correctly.

42 K. Oonishi and N. Kunihiro

In this paper, we consider that attackers obtain a square-and-multiply
sequence, in which each operation, S (resp. M), is incorrectly judged as another
operation, M (resp. S), with probability δ > 0, independently. When δ = 0, the
above attacking situation is the same as that in Bernstein et al. However, in our
model, the attacker knows the public keys and the square-and-multiply sequence
of cdp and cdq with error. We propose an algorithm that can solve our problem,
and analyze the upper bound of the error rate δ, that can be recovered in the
expected polynomial time.

2.4 Notations

We use notations similar to those in [9]. First, we introduce the notations used
in our algorithm. We rewrite each bit of integer x ≥ 0, as x = xn−1xn−2 . . . x0

and x[i] = xi(0 ≤ i ≤ n − 1). Next, we define τ(x) = maxm∈Z2m|x. Moreover,
we define Slice(i) as (p[i], q[i], dp[i + τ (kp)], dq[i + τ (kq)]). Slice(i) denotes the
corresponding bits of secret keys p, q, dp, dq.

Next, we introduce the notations used in the analysis of our algorithm. In
the analysis, we define the entropy function H(x), as H(x) = −x log x − (1 −
x) log(1−x). The base of log is two. In addition, we define the inverse function of
the entropy function. We define y = H−1(x)(0 < x ≤ 1) as y such that H(y) = x
and 0 < y ≤ 1/2. In addition, we define αt and βt as following.

αt =
1
2

− log(2t + 1) + 1
2t

, βt = H−1(αt).

3 Previous CRT-RSA Secret Key Recovery Algorithm [8]

In this section, we review Henecka et al.’s key recovery algorithm. Their method
is based on the RSA-key-candidate tree [9]. We review the construction of the
binary tree and Henecka et al.’s work.

First, we review the key candidate tree proposed in [9]. When the public keys
(N, e), and parameters (kp, kq), are given, we can construct the key candidate
tree. The tree depth corresponds to the number of recovered bits of p and q.

In order to construct the tree, we calculate the root of tree, initially, as
Slice(0) = (1, 1, dp[τ (kp)], dq[τ (kq)]) , and the lower bits of dp, dq, namely,
dp[i] (0 ≤ i ≤ τ (kp) − 1) and dq[i] (0 ≤ i ≤ τ (kq) − 1). We can calculate these
using known data, such as the public keys (N, e), and parameters (kp, kq).

From the root, we can calculate the candidates for the CRT-RSA secret keys.
If bits below Slice(i − 1) are given in each variable, we can calculate Slice(i) as

follows: We define p′ =
i−1∑

j=0

p[j]2j , q′ =
i−1∑

j=0

q[j]2j , d′
p =

i+τ(kp)−1∑

j=0

dp[j]2j , d′
q =

i+τ(kq)−1∑

j=0

dq[j]2j . We calculate these values using known information. Then, we

solve

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 43

p[i] + q[i] ≡ (N − p′q′) [i] mod 2, (1)

dp[i + τ (kp)] + p[i] ≡ (
kp (p′ − 1) + 1 − ed′

p

)
[i + τ (kp)] mod 2, (2)

dq[i + τ (kq)] + q[i] ≡ (
kq (q′ − 1) + 1 − ed′

q

)
[i + τ (kq)] mod 2. (3)

We can calculate the right-hand sides of (1)–(3) from known information. These
simultaneous equations have two solutions; therefore, if the bits below Slice(i−1)
are given in each variable, we can calculate two candidates for Slice(i). Thereby,
we can calculate the candidates for the CRT-RSA secret keys through the binary
tree.

By repeating this operation, until we calculate Slice(n/2−1), we can calculate
the candidates for the CRT-RSA secret keys; the CRT-RSA secret keys always
have 2n/2 candidates. However, finding the correct secret keys consumes tremen-
dous time. Therefore, we adopt the branch and bound algorithm to searching
for the secret key candidates. Previous studies prune leaves that do not resemble
the observed data, in the binary tree.

Next, we review Henecka et al.’s work. Attackers are given the public keys
(N, e), and the secret keys bits with errors. Each bit is judged incorrectly as
another bit with probability δ > 0, independently. Their algorithm calculates
t slices using (1)–(3), and compares the Hamming distance between the t new
bits and observed data, pruning leaves, whose Hamming distance is greater than
C. Using this algorithm, when we are given two secret keys dp and dq, we can
recover with an error rate of 11% in the expected polynomial time.

4 Proposed CRT-RSA Secret Key Recovering Algorithm

4.1 Proposed Algorithm

First, we calculate the candidates for (kp, kq), as described in [9]. The number
of candidates for (kp, kq) is 2(e − 1); therefore, we construct 2(e − 1) trees.

Next, we calculate the key candidate in each tree, using the branch and bound
strategy. We calculate t new unknown slices using simultaneous Eqs. (1)–(3).
We set parameter t, to obtain the expected time complexity of our algorithm’s
polynomial time (see Sect. 4.2). After calculating the t new unknown slices, we
convert t bits of dp and dq into square-and-multiply sequences, 0 to S and 1 to
SM.

We then prune the leaves that do not match the observed sequence. We
further calculate the disagreement rate between the calculated and observed
sequences. We pay attention to the t new bits of dp and dq, and when the
disagreement rate is strictly more than Y , we prune the leaf. We set parameter
Y , to obtain the expected time complexity of our algorithm’s polynomial time
(see Sect. 4.2).

An example of pruning is illustrated in Fig. 1. We compare candidates and
observed data from the rightmost operation. For candidate 1, we consider 10

44 K. Oonishi and N. Kunihiro

dp dq Disagreement Rate Result
Observed Data SMSSSM MSSMSS
Candidate 1 SMSS SMSMSM 5/10=0.5 Prune
Candidate 2 SSSM SSMSM 1/9=0.111 Remain
Candidate 3 SSS SSSM 3/7=0.429 Prune

Fig. 1. Example of pruning, when Y = 0.15

operations: four in dp and six in dq. For dp, we compare SMSS in candidate 1
and SSSM in the observed data; therefore, the number of disagreements is two.
Similarly, for dq, we compare SMSMSM of candidate 1 and MSSMSS in the
observed data; therefore, the number of disagreements is three. The number
of disagreements between candidate 1 and the observed data is five; thus, the
disagreement rate is 5/10 = 0.5. Therefore, candidate 1 is pruned because 0.5 >
0.15. Candidates 2 and 3 are similar.

We repeat this step, until Slice(n/2 − 1) are calculated, and search for the
leaf that satisfies N = pq. The proposed algorithm is given by Algorithm 3.

Algorithm 3. Proposed CRT-RSA Secret Key Recovery Algorithm
Input: Public keys (N, e), square-and-multiply sequences of cdp , cdq with error,
number of expansions t, threshold Y
Output: Secret keys (p, q, dp, dq)
Each kp, kq

Calculate the root of the tree.
for i = 1 to �(n/2 − 1)/t�

Compute Slice((i − 1)t + 1), · · · , Slice(it).
Transform the new bits of dp, dq into square-and-multiply sequences.
Prune the leaves, whose disagreement rates are strictly more than Y .

end for
Search for the leaf that satisfies N = pq.

4.2 Analysis of the Proposed Algorithm

In this subsection, we analyze Algorithm 3. We introduce a heuristic assump-
tion [9] where, if the values of kp and kq are correct, the slice calculated from
the incorrect leaf is random. Moreover, we assume that, when the values of kp

and kq are incorrect, the slice calculated is random.
The goal of our analysis is to prove the following Theorem 1:

Theorem 1. Let ε > 0, t =
⌈
ln(n)/

(
4ε2

)⌉
. Moreover, let Y satisfy Y ≤

βt/ (2 − βt). Then, when δ < Y −ε, the expected time complexity of Algorithm 3

is O
(
n2+ ln 2

2ε2

)
, and the success rate of Algorithm 3 is at least 1 −

(
2ε2

ln n
+

1
n

)
.

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 45

Remark 1. When n → ∞, βt converges to H−1(1/2) = 0.11. Therefore, Theo-
rem 1 implies that 0.11/(2 − 0.11) = 0.058 is the upper bound of the error rate
that can be recovered in expected polynomial time. Moreover, the success rate
converges to 1 in n → ∞.

Analysis Strategy. Before proving Theorem 1, we review the analysis in [8],
wherein the parameters satisfy the condition that the expected number of new
leaves generated from incorrect partial keys is 1/2, after calculating t slices and
pruning. This guarantees that the bound of the expected number of leaves after
pruning is constant. Then, because the expected number of all leaves in Henecka
et al.’s algorithm is polynomial in n, the expected time complexity of their
algorithm is polynomial in n.

We evaluate the number of remaining leaves, when we calculate t slices and
prune the candidates for parameter Y . When t slices are calculated, 2t leaves are
generated from one leaf. As heuristic assumption in [9], the new 2t bits of dp, dq

calculated from the incorrect partial keys are independent of the 22t elements.
Thus, if these elements are reduced to less than 2t−1 by pruning, the expected
number of new leaves generated from the incorrect partial keys is less than 1/2.

In [8], the analytical result is obtained directly from the Hoeffding inequal-
ity [10]. However, in square-and-multiply sequences, there are restrictions
between each operation. Moreover, same-length key bits have different lengths in
a square-and-multiply sequence. These restrictions render analysis hard, when
square-and-multiply sequences are given. In order to address this problem, we
analyze each length of a square-and-multiply sequence.

When we calculate t slices, we convert t bits of dp and dq into square-and-
multiply sequences. We deal these 2t bits together. In these bits, the number of M
in the square-and-multiply sequence is equal to the number of “one” bits. When
we define the number of one bits in 2t bits as tM (0 ≤ tM ≤ 2t), the length of the
sequence is 2t + tM. If there are less than 2t−1/(2t + 1) leaves in each tM after
pruning, the number of leaves is reduced to 2t−1 because

∑2t
tM=0 2t−1/ (2t + 1) =

2t−1. We now analyze the condition, Y , where less than 2t−1/(2t + 1) leaves
remain in each tM after pruning. Y indicates the condition for the error rate
that can be corrected in the expected polynomial time. We focus on the analysis
of Y and the details of the proof of Theorem 1 with respect to the setting of t,
the time complexity, and the success rate, shown in full version.

Analysis of the Upper Bound of Y . We now prove the following Lemma 1
that shows the condition, Y , where less than 2t−1/(2t+1) leaves remain in each
tM, after pruning.

Lemma 1. When 0 ≤ tM ≤ 2tβt or 2t (1 − βt) ≤ tM ≤ 2t, the number of
leaves is always less than 2t−1/(2t+1). When 2tβt < tM < 2t (1 − βt), less than
2t−1/(2t + 1) leaves remain after pruning, under Y ≤ 2tβt/ (2t + tM).

In order to prove Lemma 1, we use the following the Lemma 2 proved in
Appendix, and the Lemma 3 from [3].

46 K. Oonishi and N. Kunihiro

Lemma 2. Let L ∈ N, tM be an integer that satisfies 0 ≤ tM ≤ �L/2	, and
C be an integer that satisfies 0 ≤ C ≤ L. Then, the number of sequences
with length L, including tM Ms, generated from the bits, and whose number of
disagreements is less than C compared to the observed data, is less than

⎧
⎪⎪⎨

⎪⎪⎩

(
L − tM

C

)
if 0 ≤ C ≤ min (tM, L − 2tM)

(
L − tM

tM

)
if min (tM, L − 2tM) ≤ C ≤ L.

Lemma 3. [3] Let a, b be nonnegative integers. When b ≤ a, it holds that(
a

b

)
≤ 2aH(b/a).

Remark 2. We explain the relationship between Lemma 1 and the error rate
that can be recovered. We now consider the average and the worst cases, when
t → ∞ that βt converges to H−1(1/2) = 0.11. First, we consider the average
case. In practice, as there are random 0 and 1 values in the 2t bits, tM = t with
a high probability. Therefore, Y ≤ 2/3 × 0.11 = 0.073, and we can correct a
7.3% error rate in the square-and-multiply sequences practically. From [8], we
can correct an 11% error rate in the bits. This difference occurs because one bit
corresponds to 1.5 operations on an average, and the information in a character
in an operation is 2/3 times as much as that in a bit. We next consider the worst
case. In Lemma 1, the strictest upper bound of Y is βt/ (2 − βt). Therefore,
0.11/(2 − 0.11) = 0.058 is the worst case of the error rate that can be recovered
in the expected polynomial time. We consider the latter worst case in Theorem 1.

Proof. We consider a sequence with length, L = 2t + tM, that is generated from
2t bits and includes tM Ms. When L = 2t + tM, the condition, where the leaf is
not pruned is C = (2t + tM) Y . Therefore, from Lemma 2, the number of leaves
after pruning is less than

⎧
⎪⎪⎨

⎪⎪⎩

(
2t

(2t + tM) Y

)
if 0 ≤ (2t + tM) Y ≤ min (tM, 2t − tM)

(
2t

tM

)
if min (tM, 2t − tM) ≤ (2t + tM) Y ≤ 2t + tM.

Thus, from Lemma 3, the number of leaves after pruning is less than
{

22tH((2t+tM)Y/2t) if 0 ≤ (2t + tM) Y ≤ min (tM, 2t − tM)
22tH(tM/2t) if min (tM, 2t − tM) ≤ (2t + tM) Y ≤ 2t + tM.

(4)

We must prove that, when we set Y as Lemma 1, the number of (4) is less
than 2t−1/2t+1. From the definiton of αt, 2tαt = (t−1)− log(2t+1). Therefore,
22tαt = 2t−1/(2t + 1). Thus, we must show the following, under Y , in Lemma 1:

⎧
⎪⎪⎨

⎪⎪⎩

H

(
(2t + tM) Y

2t

)
≤ αt if 0 ≤ (2t + tM) Y ≤ min (tM, 2t − tM)

H

(
tM
2t

)
≤ αt if min (tM, 2t − tM) ≤ (2t + tM) Y ≤ 2t + tM.

(5)

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 47

Further, we show this is satisfied for all 0 ≤ tM ≤ 2t, under Y , in Lemma 1.
First, when 0 ≤ tM ≤ 2tβt or 2t (1 − βt) ≤ tM ≤ 2t, then 0 ≤ H(tM/2t) ≤

αt. Thus, in 0 ≤ (2t + tM) Y ≤ min (tM, 2t − tM),

H

(
(2t + tM) Y

2t

)
≤ H

(
tM
2t

)
≤ αt.

Therefore, the first inequality in (5) is satisfied. The second inequality in (5) is
also satisfied obviously.

Next, we consider in the case, where 2tβt < tM < 2t (1 − βt). In Lemma 1,
when Y ≤ 2tβt/ (2t + tM), we insist that the number of leaves after pruning, is
less than 2t−1/(2t + 1). Now, we show that, when Y ≤ 2tβt/ (2t + tM), (5) is
satisfied.

When Y ≤ 2tβt/ (2t + tM), for all 0 ≤ x ≤ Y ,

H

(
(2t + tM) x

2t

)
≤ H (βt) = αt.

However, if there are Y that satisfy (2t + tM) Y > min (tM, 2t − tM), there are
x in [0, Y] such that

H

(
(2t + tM) x

2t

)
> H

(
tM
2t

)
> H (βt) = αt.

Therefore, if there are Y that satisfy (2t + tM)Y > min (tM, 2t − tM), contra-
diction occurs. Therefore, Y satisfies (2t + tM) Y ≤ min (tM, 2t − tM). Thus, we
consider only the first inequality in (5), which is satisfied obviously. Therefore,
we show (5) in all tM, we prove Lemma 1.
�

5 Numerical Experiments with the Proposed Algorithm

We implemented our proposed Algorithm 3 in C++ using NTL library version
10.3.0. Our tests were run on an Intel Core i7, at 2.40 GHz with 16-GB memory.
To render the proposed Algorithm 3 more efficient, we used following techniques.
We implemented the proposed Algorithm 3 for the first depth search. We pruned
the leaves containing 4tY errors, before calculating t slices completely. This is
because the errors monotonically increase, during the calculation of the slices.

In the experiment, we tested the proposed Algorithm 3 on a 1024-bit CRT-
RSA. We generated 100 random keys. In each key, we added noise in the square-
and-multiply sequences as δ = 0.011 observed in [2]. We then set parameters
t, Y , in Algorithm 3. In this experiment, we set t = 40, 60, 80, 100 for Y = 0.03,
t = 40, 60 for Y = 0.04. We executed our proposed Algorithm 3 for each square-
and-multiply sequence with error. When the correct secret keys were output, the
proposed Algorithm 3 was considered successful. We measured the success rate,
average time for all the trials, and average time for successful trials for 100 pairs
of square-and-multiply sequences with noise, when given the correct kp and kq.
The experimental results are listed in Tables 1 and 2.

48 K. Oonishi and N. Kunihiro

Table 1. Experimental data under δ = 0.011, Y = 0.03 for correct kp and kq

t

40 60 80 100

Average time for all the trials (ms) 22.2 237 1530 17973

Average time for successful trials (ms) 25.2 234 1537 17188

Success rate (%) 67 93 98 97

Table 2. Experimental data under δ = 0.011, Y = 0.04 for correct kp and kq

t

40 60

Average time for all the trials (ms) 124 2287

Average time for successful trials (ms) 130 2287

Success rate (%) 88 100

From Tables 1 and 2, it can be established that the secret keys were recovered
with a high success rate. In Table 1, when we set t = 40, we recovered 67% of
the secret keys in 25.2 ms; thus, we recovered 2/3 of the secret keys in 30 ms.
Moreover, when we set a larger value of t, the running time was more and the
success rate was higher. For example, when we set t = 60, we recovered 93%
of the secret keys in 0.24 s. For t = 80, 100, almost all the secret keys were
recovered; however, the success rate was not 100%.

Thus, we set the larger value of Y as Y = 0.04, for achieving a success rate
of 100%. In Table 2, when we set t = 40, we recovered 88% of the secret keys in
0.13 s. When we set t = 60, we recovered all the secret keys in 2.3 s.

In addition to these experiments, we executed Algorithm 3 for δ = 0.011,
t = 40, Y = 0.05. In this experiment, we recovered 99% of the secret keys in 1.1
s. Thus, for δ = 0.011, almost all the secret keys were recovered in approximately
1–2 s using our proposed Algorithm 3.

6 Conclusion

In this paper, we presented a key recovery algorithm, using the square-and-
multiply sequences on exponentiations cdp and cdq with small errors, at w = 1,
namely, the binary method.

We theoretically proved that we can correct square-and-multiply sequences
with error rates less than 5.8% in the expected polynomial time, when cdp and
cdq are observed only once. In addition, we experimentally demonstrated that
our proposed Algorithm 3 recovers small errors of 1.1%, in 1–2 s under correct
(kp, kq).

Acknowledgements. This research was partially supported by JST CREST Grant
Number JPMJCR14D6, Japan and JSPS KAKENHI Grant Number 16H02780.

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 49

A Appendix: Proof of Lemma 2

In this section, initially, we prepare the tools used for proving Lemma 2, after
which we prove the Lemma 2.

A.1 Tools Used for Proving Lemma 2

In order to prove Lemma 2, we define certain sets and prove Lemma 4. First, we
define the set of square-and-multiply sequences.

Definition 1. Let L ∈ N. A(L) is defined as the set of all square-and-multiply
sequences with length L.

A(L) includes elements that cannot be converted into bits. The elements in set
A(L), merely display S and M. Therefore, the number of elements in set A(L),
is 2L. In the following discussion, we refer to operations in sequence as the first
operation, second operation, etc., from the left operation.

We then define the square-and-multiply sequences that can be converted
into bits.

Definition 2. Let L ∈ N and tM be non-negative integers. T (L,S, tM) is
defined as the set of square-and-multiply sequences that satisfy the following con-
ditions: the length of the sequence is L, the first operation of the sequence is S,
the number of Ms is tM, and the Ms are not consecutive. Similarly, T (L,M, tM)
is defined as the set of square-and-multiply sequence that satisfies the following
conditions: the length of the sequences is L, the first operation of the sequence
is M, the number of Ms is tM, and the Ms are not consecutive.

We now calculate the number of elements in T (L,S, tM), used in our analysis.
The element of T (L,S, tM) that satisfies the first operation is S, and the Ms
are not consecutive. Moreover, the number of Ss is L − tM and the number of
Ms is tM. Thus, the elements of T (L,S, tM) are generated from L − tM bits,
including tM one bits. Therefore,

|T (L,S, tM)| =

⎧
⎨

⎩

(
L − tM

tM

)
0 ≤ tM ≤ �L/2	

0 otherwise.

Next, we consider a situation, where an observed square-and-multiply
sequence is õ. We define the set of square-and-multiply sequences at a certain
distance from õ.

Definition 3. Let L ∈ N, tM, C be non-negative integers, and õ ∈ A(L).
Then, B (L,S, tM, C, õ) is defined as the set of square-and-multiply sequences
in T (L,S, tM) satisfying the condition that the number of disagreements with
õ, excluding the first operation, is less than C. In addition, B (L,M, tM, C, õ)
is defined as the set of square-and-multiply sequences in T (L,M, tM) satisfy-
ing the condition that the number of disagreements with õ, excluding the first
operation, is less than C.

50 K. Oonishi and N. Kunihiro

By Definition 3, for all õ ∈ A(L),

|B (L,S, tM, C − 1, õ)| ≤ |B (L,S, tM, C, õ)| . (6)

Finally, we define the upper bound of the number of elements in set B.

Definition 4. Let L ∈ N, k,C be non-negative integers. Then, b̃ (L,S, tM, C)
is defined as b̃ (L,S, tM, C) = maxõ∈A(L) |B (L,S, tM, C, õ)| .
From (6),

b̃ (L,S, tM, C − 1) ≤ b̃ (L,S, tM, C) . (7)

In order to prove Lemma 2, we present the upper bound of b̃ (L,S, tM, C) in
Lemma 4.

Lemma 4. Let L ∈ N, tM be an integer satisfying 0 ≤ tM ≤ �L/2	, and C be
an integer satisfying 0 ≤ C ≤ L − 1. Then,

⎧
⎪⎪⎨

⎪⎪⎩

b̃ (L,S, tM, C) ≤
(

L − tM
C

)
if 0 ≤ C ≤ min (tM, L − 2tM)

b̃ (L,S, tM, C) ≤
(

L − tM
tM

)
if min (tM, L − 2tM) ≤ C ≤ L − 1

is satisfied.

Proof. We prove Lemma 4 by mathematical induction. The recurrence formula
on b̃ is following. When L ≥ 3,

b̃ (L,S, tM, C)

≤ max
(
b̃ (L − 1,S, tM, C) + b̃ (L − 2,S, tM − 1, C − 1) ,

b̃ (L − 1,S, tM, C − 1) + b̃ (L − 2,S, tM − 1, C)
)

. (8)

We now consider the case where L = 1 and L = 2. For L = 1 and L = 2,
because |T (1,S, 0)| = 1 and |T (2,S, 0)| = |T (2,S, 1)| = 1, b̃ (L,S, tM, C) is
always less than one. Therefore, when L = 1 and L = 2, Lemma 4 is true.

We now consider the case, where Lemma 4 is true, when 1 ≤ L ≤ m(m ∈ {x ∈
N|x ≥ 2}). We prove that Lemma 4 is true, when L = m+1. We consider the set
T (m + 1,S, tM). The condition T (m + 1,S, tM) �= ∅ is 0 ≤ tM ≤ �(m + 1)/2	,
and the possible value of C is 0 ≤ C ≤ m. For these (tM, C), we prove

⎧
⎪⎪⎨

⎪⎪⎩

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
C

)
if 0 ≤ C ≤ X

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
tM

)
if X ≤ C ≤ m

under X = min (tM,m + 1 − 2tM).
First, we consider the case, where C = 0. C = 0 indicates that no mismatch

exists between the sequence and the observed data; thus, the number of the
sequences that satisfy C = 0 is no more than one. Thus, b̃ (m + 1,S, tM, C) ≤ 1.

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 51

We then consider the case, where 1 ≤ C ≤ tM − 1. From the assumption by
mathematical induction, Lemma 4 is true, when L = m,m − 1. When L = m,

⎧
⎪⎪⎨

⎪⎪⎩

b̃ (m,S, tM, C) ≤
(

m − tM
C

)
if 0 ≤ C ≤ min (tM,m − 2tM)

b̃ (m,S, tM, C) ≤
(

m − tM
tM

)
if min (tM,m − 2tM) ≤ C ≤ m − 1

is satisfied. Thus,
(

m − tM
tM

)
≤

(
m − tM

C

)
under min (tM,m − 2tM) ≤ C ≤

tM. Therefore, b̃ (m,S, tM, C) ≤
(

m − tM
C

)
under 0 ≤ C ≤ tM. Similarly, when

L = m − 1,
⎧
⎪⎪⎨

⎪⎪⎩

b̃ (m − 1,S, tM, C) ≤
(

m − 1 − tM
C

)
if 0 ≤ C ≤ min (tM,m − 1 − 2tM)

b̃ (m − 1,S, tM, C) ≤
(

m − 1 − tM
tM

)
if min (tM,m − 1 − 2tM) ≤ C ≤ m − 2

is satisfied. Thus,
(

m − 1 − tM
tM

)
≤

(
m − 1 − tM

C

)
under min (tM,m − 1 − 2tM)

≤ C ≤ tM. Therefore, b̃ (m − 1,S, tM, C) ≤
(

m − 1 − tM
C

)
under 0 ≤ C ≤ tM.

Thus, under 1 ≤ C ≤ tM − 1,

b̃ (m,S, tM, C) + b̃ (m − 1,S, tM − 1, C − 1)

≤
(

m − tM
C

)
+

(
(m − 1) − (tM − 1)

C − 1

)
=

(
m + 1 − tM

C

)

and

b̃ (m,S, tM, C − 1) + b̃ (m − 1,S, tM − 1, C)

≤
(

m − tM
C − 1

)
+

(
(m − 1) − (tM − 1)

C

)
=

(
m + 1 − tM

C

)
.

Therefore, from (8), under 1 ≤ C ≤ tM − 1,

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
C

)
.

However, |T (m + 1,S, tM)| =
(

m + 1 − tM
tM

)
. Thus, under 1 ≤ C ≤ tM − 1,

b̃ (m + 1,S, tM, C) ≤ min
((

m + 1 − tM
C

)
,

(
m + 1 − tM

tM

))
.

52 K. Oonishi and N. Kunihiro

Therefore, under X = min (tM,m + 1 − 2tM),
⎧
⎪⎪⎨

⎪⎪⎩

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
C

)
if 1 ≤ C ≤ X

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
tM

)
if X ≤ C ≤ tM − 1

is satisfied.
Finally, we consider the case, where tM ≤ C ≤ m. Because

|T (m + 1,S, tM)| =
(

m + 1 − tM
tM

)
, b̃ (m + 1,S, tM, C) ≤

(
m + 1 − tM

tM

)
under

tM ≤ C ≤ m.
In conclusion,

⎧
⎪⎪⎨

⎪⎪⎩

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
C

)
if 0 ≤ C ≤ X

b̃ (m + 1,S, tM, C) ≤
(

m + 1 − tM
tM

)
if X ≤ C ≤ m

under X = min (tM,m + 1 − 2tM). Therefore, when L = m + 1, Lemma 4 is
true. In conclusion, Lemma 4 is proved.
�

A.2 Proof of Lemma 2

In Lemma 4, the upper bound of b̃ (L,S, tM, C) is calculated. This function does
not consider the first operation of the sequence. We now consider the first oper-
ation of the sequence. Let õ be a partially observed sequence, and let its length
be L. We calculate the upper bound of the number of elements ũ(L, tM, C, õ) in
T (L,S, tM), such that the number of disagreements with õ is less than C.

First, we consider the case, where 0 ≤ C ≤ L − 1. From Lemma 4, if the
first operation of õ is S, then ũ(L, tM, C, õ) ≤ b̃ (L,S, tM, C) , and if the first
operation of õ is M, then ũ(L, tM, C, õ) ≤ b̃ (L,S, tM, C − 1) . Because of (7),
ũ (L, tM, C, õ) ≤ b̃ (L,S, tM, C) . From Lemma 4, ũ (L, tM, C, õ) is less than

⎧
⎪⎪⎨

⎪⎪⎩

(
L − tM

C

)
if 0 ≤ C ≤ min (tM, L − 2tM)

(
L − tM

tM

)
if min (tM, L − 2tM) ≤ C ≤ L − 1

We next consider the case, where C = L. Because of |T (L,S, tM)| =(
L − tM

tM

)
, ũ (L, tM, C, õ) is less than

(
L − tM

tM

)
. Therefore, the number of

sequences, whose length is L, including tM Ms, generated from the bits, and
whose number of disagreements is less than C, compared to the observed data
is less than ⎧

⎪⎪⎨

⎪⎪⎩

(
L − tM

C

)
if 0 ≤ C ≤ min (tM, L − 2tM)

(
L − tM

tM

)
if min (tM, L − 2tM) ≤ C ≤ L

�

Attacking Noisy Secret CRT-RSA Exponents in Binary Method 53

References

1. Bauer, S.: Attacking exponent blinding in RSA without CRT. In: Schindler, W.,
Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 82–88. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29912-4 7

2. Bernstein, D.J., et al.: Sliding right into disaster: left-to-right sliding windows leak.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 555–576.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 27

3. Bruen, A.A., Forcinito, M.A.: Cryptography, Information Theory, and Error-
Correction: A Handbook for the 21st Century. Wiley, Hoboken (2005)

4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. J. Crypt. 10, 233–260 (1997). https://doi.org/10.1007/
s001459900030

5. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 11

6. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 25

7. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM. 52, 91–98 (2009). https://doi.org/10.1145/1506409.1506429

8. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 19

9. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 1

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
J. Am. Stat. Assoc. 58, 13–30 (1963). https://doi.org/10.1080/01621459.1963.
10500830

11. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Shamir, A.: Comparative power
analysis of modular exponentiation algorithms. IEEE Trans. Comput. 59, 795–807
(2010). https://doi.org/10.1109/TC.2009.176

12. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368–388. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 18

13. Jagnere, P., Sanket, S., Chauhan, A., Jaiswal, R.: Better algorithms for MSB-side
RSA reconstruction. In: WCC 2015 (2015)

14. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

16. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
261–278. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-
3 15

https://doi.org/10.1007/978-3-642-29912-4_7
https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1109/TC.2009.176
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-44709-3_15
https://doi.org/10.1007/978-3-662-44709-3_15

54 K. Oonishi and N. Kunihiro

17. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. IEICE Trans. Fundam. E97-A, 1273–1284 (2014).
https://doi.org/10.1587/transfun.E97.A.1273

18. Kunihiro, N., Takahashi, Y.: Improved key recovery algorithms from noisy RSA
secret keys with analog noise. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 328–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 19

19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261, 515–534 (1982). https://doi.org/10.1007/BF01457454

20. Maitra, S., Sarkar, S., Sen Gupta, S.: Factoring RSA modulus using prime
reconstruction from random known bits. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 82–99. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12678-9 6

21. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

22. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 24

23. Percival, C.: Cache Missing for Fun and Profit (2005). http://www.daemonology.
net/papers/htt.pdf

24. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-39805-8 3

25. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM. 21, 120–126 (1978). https://doi.
org/10.1145/359340.359342

26. RSA Laboratories: PKCS#1 v2.2: RSA Cryptography Standard (2012). https://
www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-
standard-wp.pdf

27. Sarkar, S., Sen Gupta, S., Maitra, S.: Reconstruction and error correction of RSA
secret parameters from the MSB side. In: WCC 2011 (2011)

28. Sarkar, S., Sen Gupta, S., Maitra, S.: Error correction of partially exposed RSA
private keys from MSB side. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS,
vol. 8303, pp. 345–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45204-8 26

29. Takayasu, A., Kunihiro, N.: A tool kit for partial key exposure attacks on RSA. In:
Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 58–73. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52153-4 4

30. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX 2014, pp. 719–732 (2014)

31. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL
constant time RSA. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS,
vol. 9813, pp. 346–367. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53140-2 17

https://doi.org/10.1587/transfun.E97.A.1273
https://doi.org/10.1007/978-3-319-52153-4_19
https://doi.org/10.1007/978-3-319-52153-4_19
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-642-12678-9_6
https://doi.org/10.1007/978-3-642-34961-4_24
https://doi.org/10.1007/978-3-642-34961-4_24
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
https://doi.org/10.1007/3-540-39805-8_3
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://doi.org/10.1007/978-3-642-45204-8_26
https://doi.org/10.1007/978-3-642-45204-8_26
https://doi.org/10.1007/978-3-319-52153-4_4
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1007/978-3-662-53140-2_17

Compact Implementation of Modular
Multiplication for Special Modulus

on MSP430X

Hwajeong Seo1(B), Kyuhwang An1, Hyeokdong Kwon1, and Zhi Hu2

1 Hansung University, Seoul, Republic of Korea
hwajeong84@gmail.com, tigerk9212@gmail.com, hdgwon@naver.com

2 Central South University, Changsha, China
huzhi math@csu.edu.cn

Abstract. For the pre/post-quantum Public Key Cryptography (PKC),
such as Elliptic Curve Cryptography (ECC) and Supersingular Isogeny
Diffie–Hellman key exchange (SIDH), modular multiplication is the
most expensive operation among basic arithmetic of these cryptographic
schemes. For this reason, the execution timing of such cryptographic
schemes in an implementation level, which may highly determine the
service availability for the low-end microprocessors (e.g., 8-bit AVR and
16-bit MSP430X), is mainly relied on the efficiency of modular multipli-
cation on the target processors.

In this paper, we present new optimal modular multiplication
techniques based on interleaved Montgomery multiplication on 16-bit
MSP430X microprocessors, where the multiplication part is performed
in a hardware multiplier and the reduction part is performed in a basic
Arithmetic Logic Unit (ALU) with optimal modular multiplication rou-
tine, respectively. This approach is effective for special modulus of NIST
curves, SM2 curves, and SIDH. In order to demonstrate the superior-
ity of proposed Montgomery multiplication, we applied the proposed
method to the NIST P–256 curve, of which the implementation improves
the previous modular multiplication and squaring operations by 39%
and 37.1% on 16-bit MSP430X microprocessors, respectively. Moreover,
secure countermeasures against timing attack and simple power analysis
is also applied to the scalar multiplication of NIST P–256, which achieves
the 9,285,578 clock cycles and only requires 0.575 s (@16 MHz). The pro-
posed Montgomery multiplication has broad applications to other cryp-
tographic schemes and microprocessors.

Keywords: Montgomery multiplication · Public Key Cryptography ·
MSP430X · Software implementation

1 Introduction

Internet of Things (IoT) technology has been actively studied in academic and
industry fields due to its useful applications, ranging from home automation,
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 55–66, 2019.
https://doi.org/10.1007/978-3-030-12146-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_4

56 H. Seo et al.

surveillance system, and health–care services. Unlike traditional service models,
the IoT applications are able to provide highly customized services for each user
by recognizing the customer’s needs or preferences through actively collected
data from remotely deployed IoT devices. However, the low-end IoT sensors are
usually placed in the public space (building, road, and street), which are easily
accessible and manipulated by any legitimate or malicious users. If the adver-
saries illegally capture the installed IoT devices and perform the sophisticated
reverse engineering or any effective hacking measures, the secret information can
be easily leaked.

In order to prevent the potential threats, the information of the IoT devices
should be securely encrypted through the cryptography algorithm, namely Pub-
lic Key Cryptography (PKC). However, the PKC requires the complicated com-
putations and the low-end IoT devices have very limited resources, in terms of
storage, energy, and computation power. In order to meet the sufficient service
availabilities, the careful optimization techniques of implementations should be
considered. The PKC instantiations such Elliptic Curve Cryptography (ECC) in
pre-quantum case or Supersingular Isogeny Diffie–Hellman key exchange (SIDH)
in post-quantum case highly rely on the efficient implementation of modular
multiplication, which is the most expensive operations in finite field arithmetic.
For this reason, the execution timing of modular multiplication determines the
service availability for the low-end microprocessors (e.g., 8-bit AVR and 16-bit
MSP430X embedded processors).

In this paper, we present new optimal modular multiplication techniques
based on interleaved Montgomery multiplication on 16-bit MSP430X micropro-
cessors, which are effective for special modulus of NIST curves, SM2 curves,
and SIDH. In the proposed interleaved Montgomery multiplication, the multi-
plication part is performed in a hardware multiplier, while the reduction part
is performed in a basic Arithmetic Logic Unit (ALU) with optimal routine.
Specially, we applied the proposed method to the NIST P–256 curve, of which
the implementation improves the previous modular multiplication and squaring
operations by 39% and 37.1% for 16-bit MSP430X microprocessors, respectively.
Moreover, secure countermeasures against timing attack and simple power anal-
ysis are applied to the scalar multiplication on NIST P–256 curve, which achieves
the 9,285,578 clock cycles and only requires 0.575 s (@16 MHz). Our implemen-
tations imply that the proposed Montgomery multiplication would have broad
applications to more cryptographic schemes (e.g., SM2 and SIDH) and micro-
processors (e.g., 8-bit AVR).

The rest of this paper is organized as follows. In Sect. 2, we explore the pre-
vious works of Montgomery multiplication and target MSP430X processor. In
Sect. 3, we present implementations of Montgomery multiplication and NIST
P-256 on the MSP430X processor. In Sect. 4, we evaluate the proposed imple-
mentations on the target embedded processors. Finally, we conclude the paper
in Sect. 5.

Modular Multiplication on MSP430X 57

Algorithm 1. Calculation of the Montgomery reduction
Require: An odd m-bit modulus M , Montgomery radix R = 2m, an operand T where

T = A · B or T = A · A in the range [0, 2M − 1], and pre-computed constant
M ′ = −M−1 mod R

Ensure: Montgomery product Z = MonRed(T,R) = T · R−1 mod M
1: Q ← T · M ′ mod R
2: Z ← (T + Q · M)/R
3: if Z ≥ M then Z ← Z − M end if
4: return Z

2 Preliminaries and Related Works

2.1 Montgomery Multiplication

The modular reduction in School-book approach requires an expensive division
operation, which is a high overheads on the low-end devices. Such expensive divi-
sion operation can be transformed to the relatively cheap multiplication opera-
tion through Montgomery reduction, of which the detailed description is given
in Algorithm 1.

The Montgomery reduction is proceeded as: given the intermediate result of
multiplication T = A · B or T = A · A (where A and B are operands), T is
multiplied by the inverse of modulus (M ′) and then the results are reduced by
R and stored into Q. Afterward, the equation ((T + Q ×M)/R) is performed.
Finally, the calculation of the Montgomery multiplication may require a final
subtraction of the modulus (M) to get a reduced result in the range of [0,M).
Recently, Gueron and Krasnov presented the implementation of Montgomery
multiplication friendly modulus [6]. When the modulus has a special pattern
(0xFFFFFFFF in hexadecimal), this can be performed in addition and subtraction
operations rather than multiplication. The approach is widely used in recent
ECC and SIDH implementations and shows the highest performance [2,4,8–10].

2.2 Target Processors

The MSP430 family of microcontrollers are widely used in IoT fields, such as
small satellite applications [12]. The most popular IoT platform is TelosB and
TmoteSky. The MSP430 microcontrollers have 16-bit instruction sets and 12
general-purpose registers. The specifications of clock frequency and ROM/RAM
varies for each model. The MSP430 supports a number of instruction sets, includ-
ing addition, subtraction, and basic operations. The detailed basic arithmetic is
given in Table 1.

In particular, the integer multiplication is carried out with a memory–
mapped hardware multiplier. The cost of multiplication is the cost of writing
the operands and reading the result to/from a multiplier’s memory address in
the MSP430 embedded processors. The operands can be accessed by four differ-
ent addressing modes, including register direct, indexed, register indirect, and
indirect with auto-increment.

58 H. Seo et al.

Table 1. Instruction set summary for MSP

asm Operands Description Operation #Clock

ADD Rr, Rd Add without carry Rd ← Rd+Rr 1

ADDC Rr, Rd Add with carry Rd ← Rd+Rr+C 1

SUB Rr, Rd Sub without borrow Rd ← Rd-Rr 1

SUBC Rr, Rd Sub with borrow Rd ← Rd-Rr-B 1

MOV Rr, Rd Move Rd ← Rr 1

CLR Rd Clear Rd ← 0 1

Recently, advanced MSP430X microcontrollers have been introduced. The
MSP430X supports 20-bit addressing pointers and a new 32-bit hardware mul-
tiplier. This sophisticated 32-bit hardware multiplier significantly improves the
performance of traditional MSP430 implementation based on 16-bit hardware
multiplier. The hardware multiplier supports both 32-bit multiplication and 32-
bit Multiplication & ACcumulation (MAC) modes. In order to select the mul-
tiplication modes, the 32-bit operands should be written into specific memory
addresses (multiplication: MPY32L, MPY32H, MAC: MAC32L, MAC32H) by two 16-
bit. Particularly, the MAC mode efficiently accumulates the intermediate results
into the result memory (RES0, RES1, RES2, RES3) and sets the carry bit into
the carry memory (SUMEXT). The multiplier is triggered by writing the 32-bit
operands into the operand memory (OP2L, OP2H). Afterward, the 65-bit results
are accessible through result and carry memory addresses (RES0, RES1, RES2,
RES3, SUMEXT).

Many previous works used the product-scanning multiplication over
MSP430X hardware multiplier since the MAC mode efficiently accumulates the
intermediate results in a column-wise fashion with small number of memory
accesses [5,14]. In this work, we also adopted the product-scanning method for
multiplication, but we used a basic ALU for reduction over the MSP430X micro-
processors for special modulus.

3 Proposed Montgomery Multiplication

In this section, we explore the efficient implementation of Montgomery multi-
plication for special modulus. The target modulus consists of special patterns
(0x00000000, 0x00000001, and 0xFFFFFFFF in hexadecimal), which can be per-
formed in simple addition and subtraction operations rather than complicated
multiplication. Though we target the NIST P–256, the proposed method can be
applied to the other cryptographic algorithms, such as SM2 and SIDH.

3.1 Constant Modular Addition/Subtraction for Special Modulus

Finite field addition (resp. subtraction) operation requires the final subtraction
(resp. addition) with target modulus after addition (resp. subtraction) to fit

Modular Multiplication on MSP430X 59

the intermediate results in the range of target field. When the data format is
unsigned, the reduced result should not generate the overflow bits. If we perform
the conditional final subtraction or addition operation, the execution timing or
power consumption becomes varied depending on the conditional statements.
Since the program routines are highly correlated with secret values, the adversary
may get the secret information from conditional execution of final subtraction
for reduction [18].

In order to avoid the conditional statements, the constant-time reduction is
introduced by Liu et al. in [11], which utilizes the conditional reduction (i.e.
a multi-precision subtraction) of field arithmetic with the mask. After execut-
ing the first part of modular addition (i.e. A + B), it first generates the 2’s
complement of carry, and it can be the value (mask). When the carry bit is
set, the mask is always set to 0xFF. Otherwise, the value is set to zero (0x00).
The masked modulo is then subtracted without the comparison. In [19], the
optimized reduction technique for special modulus is introduced. For the NIST
P-256 curve, the modulus p256 = 2256 − 2224 + 2192 + 296 − 1 can be rewritten as
0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
in hexadecimal1, which consists of only three special patterns as 0xFFFF, 0x0000,
and 0x0001, in 16-bit wise hexadecimal way. Among them two patterns (i.e.
0xFFFF and 0x0001) are only masked and utilized them for reduction since
0x0000 pattern does not require the masked reduction. These features are highly
utilized in MSP430X microprocessors. The pattern (0x0001) is obtained from
carry and the remaining pattern is obtained through one subtraction with ZERO
register and CARRY register (i.e. 0x0000 - 0x0001 = 0xFFFF). The details are
given in Algorithm 2.

Algorithm 2. Masked subtraction for NIST P-256 on MSP430X

Input: carry register (CARRY), temporal
register (MASK)

Output: result pointer (RESULT)
1: CLR MASK

2: SUB CARRY, MASK

3: SUB MASK, 2*0(RESULT)

4: SUBC MASK, 2*1(RESULT)

5: SUBC MASK, 2*2(RESULT)

6: SUBC MASK, 2*3(RESULT)

7: SUBC MASK, 2*4(RESULT)

8: SUBC MASK, 2*5(RESULT)

9: SBC 2*6(RESULT)

10: SBC 2*7(RESULT)

11: SBC 2*8(RESULT)

12: SBC 2*9(RESULT)

13: SBC 2*10(RESULT)

14: SBC 2*11(RESULT)

15: SUBC CARRY, 2*12(RESULT)

16: SBC 2*13(RESULT)

17: SUBC MASK, 2*14(RESULT)

18: SUBC MASK, 2*15(RESULT)

As above demonstration, the MASK register is firstly set to zero, and then
subtracted by CARRY register. When the CARRY register is set to 1, the MASK

1 SM2 curve also has similar special patterns of modulus (0xFFFFFFFEFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF).

60 H. Seo et al.

register is always set to 0xFFFF (in hexadecimal). Otherwise, both CARRY and
MASK registers are set to 0. By using an efficient memory based operation of
MSP430X processor, the masked values are directly subtracted from the inter-
mediate results (i.e. RESULT). For the case of modular subtraction, the borrow bit
is used for MASK register and the least significant bit of MASK register is extracted
to CARRY register through AND instruction with value (0x0001).

3.2 Interleaved Montgomery Multiplication/Squaring for Special
Modulus

Generic n-word Montgomery multiplication requires (n2+n) multiplication. The
Montgomery multiplication consists of multiplication and reduction parts. Both
parts can be implemented in interleaved or separated way. On one hand, the
advantage of separated version combines any multiplication and reduction meth-
ods without difficulties. On the other hand, the interleaved version optimizes the
number of memory access for intermediate results. In this paper, the interleaved
version is adopted since the hardware multiplier of MSP430X is very efficient
to handle the accumulation of intermediate results. In Fig. 1, the comparison
of procedures for interleaved Montgomery multiplication in hardware utilization
are described.

Fig. 1. Procedures for Montgomery multiplication in hardware utilization, MUL: mul-
tiplication, RED: reduction, RES: result

Note that previous methods only utilized the hardware multiplier for both
multiplication and reduction. This approach is efficient for original Montgomery
multiplication. However, the proposed method performs the multiplication in the
hardware multiplier and the reduction in the basic arithmetic logic unit. This
approach shows better performance than previous work when it comes to special
modulus.

Register and Memory Utilization. Since the performance is highly relied on
the number of memory accesses, the optimized register utilization is very impor-
tant for high-speed implementations. MSP430X microprocessor equips only 12
general purpose registers, among which five, two, one, and three registers are
assigned for intermediate results, temporal storage, memory address of interme-
diate results in hardware multiplier, and memory address of operands as well

Modular Multiplication on MSP430X 61

as results, respectively. Every operand of multiplication is directly assigned to
hardware multiplier and the 96-bit wise intermediate results are cached in the
five 16-bit registers, which is used for efficient reduction based on the basic
arithmetic. Montgomery multiplication needs to keep Q operands to perform
the reduction, which are dynamically loaded/stored from/to the STACK.

Modular Reduction. Our modular multiplication combined both hardware-
aided multiplication and basic Arithmetic Logic Unit (ALU) based modular
reduction. At first we follow the product–scanning multiplication (i.e. column-
wise multiplication) routines, which can be implemented with Multiplication–
and–ACcumulation mode of hardware multiplier. Afterward the intermediate
results are loaded to some 16-bit registers and then reduced. Different from
previous Montgomery reduction which utilizes the product–scanning based mul-
tiplication, in our reduction we exploited the properties of special modulus and
thus replaced the expensive multiplication into addition/subtraction operations.

Algorithm 3. Montgomery Multiplication in second column for NIST P-256 on
MSP430X
Input: operand pointers (APTR and

BPTR), memory address of carry bit
in hardware multiplier (SPTR), tempo-
ral registers (T0 and T1)

Output: stack pointer R1, intermediate
results (C0, C1, C2, C3, CARRY)

...
1: MOV @APTR+, &MPY32L

2: MOV @APTR+, &MPY32H

3: MOV @BPTR+, &OP2L

4: MOV @BPTR+, &OP2H

5: MOV @APTR+, &MAC32L

6: MOV @APTR+, &MAC32H

7: SUB #2*4, BPTR

8: MOV @BPTR+, &OP2L

9: MOV @BPTR+, &OP2H

10: ADD @RL+, C0

11: ADDC @RL+, C1

12: ADDC @RL+, C2

13: ADDC @RL+, C3

14: ADDC @SPTR, CARRY

15: SUB #2*4, RL

16: MOV @R1+, T0

17: MOV @R1+, T1

18: ADD T0, C2

19: ADDC T1, C3

20: ADC CARRY

21: SUB T0, C0

22: SUBC T1, C1

23: SBC C2

24: SBC C3

25: SBC CARRY

26: SUB #2*2, R1

27: MOV C0, 2*2(R1)

28: MOV C1, 2*3(R1)

29: ADD C2, C0

30: ADDC C3, C1

31: CLR C2

32: CLR C3

33: ADDC CARRY, C2

34: CLR CARRY

...

For example, the modulus for NIST P-256 curve consists of three patterns
in hexadecimal way, which includes 0x00000000, 0x00000001, and 0xFFFFFFFF.

62 H. Seo et al.

Since the 0x00000000 pattern does not require any computations, the routine is
optimized away. The 0x00000001 pattern only requires five 16-bit wise addition,
and the operands are directly loaded from memory and added to the memory.
The 0xFFFFFFFF pattern requires three 16-bit wise addition and five 16-bit wise
subtraction operations, where both operations requires identical 32-bit operands.
We firstly load the 32-bit operands to two 16-bit registers (temporal storages)
and used the operands twice for 32-bit addition and 32-bit subtraction, respec-
tively. When the 0xFFFFFFFF pattern appears before operand generation, five
16-bit wise subtraction operations are optimized away because the least signifi-
cant double-word is always set to zero.

The detailed descriptions of Montgomery multiplication in second column for
NIST P-256 on MSP430X are given in Algorithm3. It can be viewed that from
Step 1 to 15, two partial products are obtained in the product-scanning way,
while from Step 16 to 34, Montgomery reduction with 0xFFFFFFFFFFFFFFFF is
performed in simple addition and subtraction.

Final Reduction. The last step of Montgomery multiplication may require
the final subtraction to get reduced results. We adopted the masked subtraction
described in Algorithm 2.

Modular Squaring. The squaring operation is also frequently called in the
cryptographic implementations. For the straight-forward squaring implementa-
tion, we can directly use the multiplication for squaring by setting both operands
to identical values. However, the multiplication routine does not ensure the
highest performance for squaring operation since some memory accesses/partial
products can be optimized by loading/performing once rather than twice. The
detailed descriptions are given in Algorithm 4. Note that from Step 1 to 6, the
partial product is obtained. When the part of operand for partial product is
identical, we only need to assign it rather than full operands.

Algorithm 4. Partial products for squaring operations on MSP430X

Input: operand pointers (APTR and
BPTR), memory address of carry bit
in hardware multiplier (SPTR)

Output: intermediate results (CARRY)
...
1: MOV @APTR+, &MAC32L

2: MOV @APTR+, &MAC32H

3: SUB #2*4, BPTR

4: MOV @BPTR+, &OP2L

5: MOV @BPTR+, &OP2H

6: ADD @SPTR, CARRY

7: SUB #2*2, BPTR

8: MOV @BPTR+, &OP2L

9: MOV @BPTR+, &OP2H

10: ADD @SPTR, CARRY

...

Modular Multiplication on MSP430X 63

3.3 Implementation of NIST P–256 on MSP430X Microprocessors

The first implementation of ECC on MSP430X belongs to Gouvêa et al. [5],
where they utilized the new 32-bit hardware multiplier instructions of MSP430X.
Particularly, the new 32-bit hardware multiplier enhances the previous 16-bit
hardware multiplier based prime field multiplication by about 45%. The combi-
nation of optimized algorithms and hardware shows that ECC at the security
level of 128-bit is feasible for the MSP430X. Seo et al. intensively studied on
multi-precision multiplication and squaring operations on MSP430 processors
[15–17], where they optimized the register usages by caching the operands and
memory access through incremental addressing mode.

In LatinCrypt’14, Hinterwälder et al. suggested Curve25519 for MSP430
microcontrollers [7], in which they avoided conditional jumps and loads to pre-
vent timing attacks. Moreover, they provided a comprehensive evaluation of
different implementations of the modular multiplication, based on which the
Curve25519 implementations on MSP430X having 16-bit and 32-bit hardware
multipliers achieved 9.1M and 6.5M cycles, respectively. Düll et al. in [3] opti-
mized the X25519 key-exchange protocol for MSP430X 16-bit microcontrollers,
and their implementations for MSP430X takes 5,301,792 cycles (32-bit multi-
plier) and 7,933,296 cycles (16-bit multiplier) for the computation of Diffie–
Hellman key exchange. The computation is performed in less than a second if
clocked at 16 MHz for a security level of 128 bits. Recently, Seo in [14] presented
size optimized implementation of Curve25519, where he utilized hardware mul-
tiplier and accelerated the performance through the optimized multiplication
routines in product-scanning way.

In this work, we targeted the special modulo of NIST P–256, and imple-
mented desired cryptographic primitives. The NIST P–256 elliptic curve is given
by

E/Fp256 : y2 = x3 − 3 · x + b, p256 = 2256 − 2224 + 2192 + 296 − 1,

and other details can be referred to the FIPS 186-2 standard [1]. For finite
field arithmetic, we mainly follow the proposed techniques described in Sect. 3
to do the modular addition/subtraction and modular multiplication/squaring
operations. Moreover, we adopted the constant-time finite field inversion of NIST
P–256, which is performed by powering p256−2. Such inversion can be computed
at a cost of 255S + 13M by following Algorithm 2 in [19]. For elliptic curve group
arithmetic, we utilized the Montgomery ladder using co-Z Jacobian arithmetic
with X and Y coordinates only, which ensures the fast and regular Montgomery
ladder algorithm for scalar multiplication [13]. Since the regular Montgomery
ladder algorithm does not require conditional statements, the implementation is
always constant timing, and thus secure against the simple power analysis and
timing attacks.

64 H. Seo et al.

4 Evaluation

We implemented the NIST P–256 by using the proposed method on 16-bit
MSP430X microprocessors (i.e. MSP430F5529) and evaluated the performance
of implementations in execution time (clock cycles).

In Table 2, the detailed descriptions of performance evaluation for finite field
operations are given. Note that addition and subtraction operations are much
cheaper than multiplication and squaring operations (i.e., 8.x faster). It is also
natural that the squaring operation is faster (by 4.6%) than multiplication
through dedicated squaring routine in this paper. What’s more, the inversion
is implemented based on Fermat’s little theorem, which is a regular fashion and
ensures constant timing.

Table 2. Performance evaluation (execution timing in clock cycles) of finite field addi-
tion, subtraction, multiplication, squaring and inversion operations for NIST P–256 on
16-bit MSP430X microprocessors.

ADD SUB MUL SQR INV

227 228 2,019 1,926 522,040

We also give the comparison results of NIST P–256 with previous work as
Table 3. For the most performance-critical operations, our proposed modular
multiplication and squaring operations improve the performance of those in [5]
by 39% and 37.1%, respectively. Such performance enhancements are achieved
through optimized memory access, register utilization, and efficient modular
reduction techniques. Moreover, this performance improvement directly influ-
ences the performance of scalar multiplication.

Table 3. Comparison of NIST P–256 implementations on 16-bit MSP430X micropro-
cessors

Method MUL SQR Scalar MUL Cache Attack Timing Attack
Gouvêa et al. [5] 3,315 3,064 5,321,776 – –

This work 2,019 1,926 9,122,988
√ √

Though previous implementation of scalar multiplication requires 5,321,776
clock cycles [5], which is faster than ours. This is mainly because their imple-
mentation utilized the NAF method for scalar multiplication, which requires
pre-computed Look-Up Table (LUT) to accelerate the performance. However,
the frequent LUT access increases cache hit rates and may cause cache attack.
It should be noted that in [5] the point addition and doubling chain is not a
regular fashion, which would be vulnerable to timing attack and leak the secret
information.

Modular Multiplication on MSP430X 65

In order to avoid the potential side channel attacks, we also implemented the
scalar multiplication on NIST P–256 in regular fashion as the Montgomery ladder
algorithm. Thus constant timing finite field arithmetic and regular elliptic curve
group arithmetic result in constant timing scalar multiplication implementation.
Even though we sacrifice the performance, the implementation is much secure
than previous works.

5 Conclusion

In this paper, we present new optimal modular multiplication techniques for
special modulus based on interleaved Montgomery multiplication on 16-bit
MSP430X microprocessors. The multiplication part of Montgomery multipli-
cation is performed in the hardware multiplier, while the reduction operation
is performed in the basic Arithmetic Logic Unit (ALU) with an optimal rou-
tine. Furthermore, the final subtraction is efficiently handled through masked
subtraction for the target embedded processors.

The proposed implementation improves the previous modular multiplication
and squaring operations for NIST P–256 curve by 39% and 37.1% for 16-bit
MSP430X microprocessors, respectively. Based on the improved Montgomery
multiplication, the scalar multiplication of NIST P–256 is efficiently constructed.
The implementation utilized the Co-Z representation and security countermea-
sures against timing attack and simple power analysis. The proposed implemen-
tation of scalar multiplication achieves 9,122,988 clock cycles and requires only
0.575 s (@16 MHz).

We hope that such techniques for modular multiplication with special mod-
ulus on MSP430X microprocessor would improve the performance (as well as
implementation security) of cryptographic primitives, which are thus applicable
for more cryptographic schemes (such as SM2/NIST ECC and SIDH) and more
platforms (such as 8-bit AVR).

Acknowledgement. This work was partly supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2017R1C1B5075742) and the MSIT(Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (2014-1-00743)
supervised by the IITP (Institute for Information & communications Technology Pro-
motion). The work of Zhi Hu is partially supported by the Natural Science Foundation
of China (Grant No. 61602526).

References

1. FIPS 186-2: Digital signature standard (DSS). Federal Information Processing
Standards Publication 186–2, National Institute of Standards and Technology
(2000)

2. Adalier, M.: Efficient and secure elliptic curve cryptography implementation of
Curve P-256. In: Workshop on Elliptic Curve Cryptography Standards (2015)

66 H. Seo et al.

3. Düll, M., et al.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcon-
trollers. Des. Codes Crypt. 77(2–3), 493–514 (2015)

4. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11) (2017)

5. Gouvêa, C.P., Oliveira, L.B., López, J.: Efficient software implementation of public-
key cryptography on sensor networks using the MSP430X microcontroller. J. Cryp-
togr. Eng. 2(1), 19–29 (2012)

6. Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit
primes. J. Cryptogr. Eng. 5(2), 141–151 (2015)

7. Hinterwälder, G., Moradi, A., Hutter, M., Schwabe, P., Paar, C.: Full-size high-
security ECC implementation on MSP430 microcontrollers. In: Aranha, D.F.,
Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 31–47. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 2

8. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Supersingular isogeny Diffie-
Hellman key exchange on 64-bit ARM. IEEE Trans. Dependable Secure Comput.
(2017)

9. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 6

10. Liu, Z., Seo, H., Castiglione, A., Choo, K.K.R., Kim, H.: Memory-efficient imple-
mentation of elliptic curve cryptography for the Internet-of-Things. IEEE Trans.
Dependable Secure Comput. (2018)

11. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-
compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE
Trans. Inf. Forensics Secur. 11(7), 1385–1397 (2016)

12. Peters, D., Raskovic, D., Thorsen, D.: An energy efficient parallel embedded system
for small satellite applications. ISAST Trans. Comput. Intell. Syst. 1(2), 8–16
(2009)

13. Rivain, M.: Fast and regular algorithms for scalar multiplication over elliptic curves.
IACR Cryptology Eprint Archive (2011)

14. Seo, H.: Compact software implementation of public-key cryptography on
MSP430X. ACM Trans. Embed. Comput. Syst. (TECS) 17(3), 66 (2018)

15. Seo, H., Kim, H.: Multi-precision squaring on MSP and ARM processors. In: 2014
International Conference on Information and Communication Technology Conver-
gence, ICTC, pp. 356–361. IEEE (2014)

16. Seo, H., Lee, Y., Kim, H., Park, T., Kim, H.: Binary and prime field multiplication
for public key cryptography on embedded microprocessors. Secur. Commun. Netw.
7(4), 774–787 (2014)

17. Seo, H., Shim, K.A., Kim, H.: Performance enhancement of TinyECC based on
multiplication optimizations. Secur. Commun. Netw. 6(2), 151–160 (2013)

18. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 15

19. Zhou, L., Su, C., Hu, Z., Lee, S., Seo, H.: Lightweight implementations of NIST
P-256 and SM2 ECC on 8-bit resource-constraint embedded device. ACM Trans.
Embed. Comput. Syst. (TECS) (2018)

https://doi.org/10.1007/978-3-319-16295-9_2
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/3-540-45353-9_15

Homomorphic Encryption

Multi-identity IBFHE and
Multi-attribute ABFHE in the

Standard Model

Xuecheng Ma1,2 and Dongdai Lin1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{maxuecheng,ddlin}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. The notion of multi-identity IBFHE is an extension of iden-
tity based fully homomorphic (IBFHE) encryption. In 2015, Clear and
McGoldrick (CRYPTO 2015) proposed a multi-identity IBFHE scheme
that is selectively secure in the random oracle model under the hardness
of Learning with Errors (LWE). At TCC 2016, Brakerski et al. pre-
sented multi-target ABFHE in the random oracle where the evaluator
should know the target policy. In this paper, we present a multi-identity
IBFHE scheme and a multi-attribute ABFHE scheme in the standard
model. Our schemes can support evaluating circuits of unbounded depth
but with one limitation: there is a bound N on the number of cipher-
texts under the same identity or attribute involved in the computation.
The bound N could be thought of as a bound on the number of inde-
pendent senders. Our schemes allow N to be exponentially large so we
do not think it is a limitation in practice. Our construction combines
fully multi-key FHE and leveled single-identity IBFHE or single-attribute
ABFHE, both of which have been realized from LWE, and therefore we
can instantiate our construction that is secure under LWE. Moreover,
our multi-attribute ABFHE is non-target where the public evaluator do
not need to know the policy.

Keywords: Multi-identity · Multi-attribute ·
Homomorphic encryption · Standard model

1 Introduction

Identity Based Encryption (IBE) is proposed in 1984 by Shamir [Sha84]
which is a generalization of public key encryption where the public key of a user
can be arbitrary string such as an email address, IP address or staff number,
depending on the application. The first realizations of IBE are given by [SOK00,
BF01] using groups equipped with bilinear maps. Subsequently, realizations from
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 69–84, 2019.
https://doi.org/10.1007/978-3-030-12146-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_5

70 X. Ma and D. Lin

bilinear maps [BB04a,BB04b,Wat05,Wat09], from quadratic residues modulo
composite [Coc01,BGH07], from lattices [GPV08,CHKP10,ABB10] and from
the computational Diffie-Hellman assumption [DG17] have been proposed.

Attribute-based encryption (ABE)1 [SW05,GPSW06] is a generaliza-
tion of IBE that allows to implement access control. A (master) public key mpk
is used for encryption, and users are associated to secret keys skf corresponding
to policy functions f : {0, 1}� → {0, 1}. The encryption of a message μ is labeled
with a public attribute x ∈ {0, 1}�, and can be decrypted using skf if and only
if f(x) = 0. The security guarantee of ABE is collusion resistance: a coalition
of users learns nothing about the plaintext message μ if none of their individ-
ual keys are authorized to decrypt the ciphertext. Goyal, Pandey, Sahai and
Waters [GPSW06] constructed ABE for log-depth circuits using bilinear maps.
Gorbunov, Vaikuntanathan and Wee [GVW13] presented the first ABE scheme
where the policies can be arbitrary (a-priori bounded) polynomial circuits from
LWE. Boneh et al. [BGG+14] showed an ABE scheme improving the size of
secret key.

Fully homomorphic encryption (FHE) is first presented in 1987 by
Rivest, Adleman and Dertouzos [RAD78]. Then Gentry [Gen09a,Gen09b] pro-
posed the first construction in a breakthrough work in 2009. Since then, there
are some follow-up works [BV11,BGV12,Bra12,GSW13,AP14] for improving
efficiency and security. In 2013, Gentry, Sahai and Waters [GSW13] proposed a
FHE scheme without an evaluation key which makes it enable to compile IBE
with some properties into identity based (leveled) fully homomorphic encryption
(IBFHE). Their compiler can also be applied to ABE that yields an attribute
based (leveled) fully homomorphic encryption. Clear and McGoldrick [CM14]
make IBFHE and ABFHE bootstrappable by using programm obfuscation.

López-Alt, Tromer and Vaikuntanthan [LTV12] considered an extension of
homomorphic encryption into the multi-key setting, where it is possible to com-
pute on encrypted messages even if they were not encrypted using the same key.
In multi-key FHE (MKFHE), a public evaluator takes ciphertexts encrypted
under different keys, and evaluates arbitrary (maybe with bounded depth) func-
tions on them. The resulting ciphertext can then be decrypted using the col-
lection of keys of all parties involved in the computation. Note that the secu-
rity of the encryption scheme compels that all secret keys need to be used for
decryption. [LTV12] constructed an on-the-fly multiparty computation (MPC)
protocol by applying multi-key FHE. The next step forward was by Clear and
McGoldrick [CM15] who proposed a multi-key FHE in the standard model and a
multi-identity IBFHE in the random oracle. Note that the compiler in [GSW13]
can only yield a single-identity IBFHE. As a stepping stone, they were able to
construct a multi-key FHE scheme based on the hardness of the learning with
errors (LWE) problem [Reg05,Reg09], which is related to the hardness of certain
short vector problems (such as GapSVP, SIVP) in worst case lattices.

1 There are other variants such as ciphertext-policy ABE, but we focus on key-policy
ABE here.

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 71

The first multi-identity IBFHE proposed by [CM15] is a leveled multi-identity
IBFHE in the random oracle. [CM16] constructed a fully multi-identity IBFHE
scheme that supports unbounded-depth circuits with bounded inputs by com-
bining a MKFHE and multi-identity IBFHE. A natural question is that Can
we construct a multi-identity IBFHE supporting unbounded-depth circuits in the
standard model on the standard assumption?

Brakerski et al. [BCTW16] proposed a leveled multi-target ABFHE in the
random model where the evaluator should know the target policy. Hiromasa and
Kawai [HK17] extended leveled multi-target ABFHE to dynamic homomorphic
evaluation. But these multi-target ABFHE schemes are all in the random oracle
model. Can we construct a multi-attribute ABFHE supporting unbounded-depth
circuits in the standard model on the standard assumption?

1.1 Our Contributions

We propose constructions of multi-identity IBFHE and multi-attribute ABFHE
in the standard model. Our schemes support unbounded evaluation circuit
depth but with one limitation: the number of ciphertexts joining the func-
tion computation under the same identity or attribute is bounded but can
be exponential. Our construction combines a fully MKFHE and single-identity
IBFHE or single-attribute ABFHE. There are instantiations of single-identity
IBFHE, fully MKFHE [CM15,BP16,PS16,CZW17] and single-attribute ABFHE
[GSW13] from LWE, so our construction can be instantiated from LWE. In
order to construct a multi-identity IBFHE or multi-attribute ABFHE, Clear and
McGoldrick [CM16] combine a fully MKFHE and leveled multi-identity IBFHE
or multi-attribute ABFHE. So their proposal is not in the standard model with-
out a multi-identity IBFHE or multi-attribute ABFHE in the standard model.
In fact, their purpose is to make the multi-identity IBFHE support unbounded
evaluation circuit depth while our goal is to construct a multi-identity IBFHE
or multi-attribute ABFHE that supports unbounded evaluation circuit depth in
the standard model. Brakerski et al. [BCTW16] proposed a multi-target ABFHE
in the random oracle where the policy should be known to the evaluator while
ours is non-target in the standard model.

1.2 Our Construction

Our construction is combining a MKFHE and a single-identity IBFHE or
single-attribute ABFHE. The constructions of multi-identity IBFHE and multi-
attribute ABFHE are similar, so we will show our high level idea of the con-
struction of multi-identity IBFHE, the detail will be presented in Sect. 4. Our
construction is similar to [CM16]. Both of our construction is using MKFHE
to evaluate the circuit and then decrypts the evaluated MKFHE ciphertext
by evaluation with the IBFHE encryptions of corresponding secret keys which
makes the final resulting ciphertext compact. The difference here is that [CM16]
decrypts the evaluated MKFHE ciphertext completely which needs a multi-
identity IBFHE while we just partially decrypts it which makes the final resulting

72 X. Ma and D. Lin

IBFHE ciphertexts compact. It is the point that single-identity IBFHE works
here.

We present the overview of our construction as follows: The setup algorithm
generates params of MKFHE and (mpk,msk) of IBFHE by running their setup
algorithms respectively. The extract algorithm is the same as that of single-
identity IBFHE. When encrypts a plaintext μi, the sender generates a pair
of key (pki, ski) of MKFHE, and encrypts ski using encryption algorithm of
IBFHE and then encrypts the plaintext using pki. When evaluates a function
f , run the evaluation algorithm of MKFHE and obtain the MKFHE encryption
of f(μ1, ..., μ�), then partially decrypt the evaluated MKFHE ciphertext with
IBFHE ciphertexts of the collection of secret keys corresponding the same iden-
tity. The resulting ciphertext is compact because the number of compact IBFHE
ciphertexts in the final resulting ciphertexts are independent on the number of
input ciphertexts and the size of the evaluation function. If the ciphertext is
“fresh”, we just obtain the secret key of MKFHE by decrypting IBFHE cipher-
text and then decrypt the MKFHE ciphertext. If the ciphertext is evaluated,
we can obtain the partial decryption by decrypting the IBFHE ciphertexts and
finish the remaining decryption procedure of MKFHE.

1.3 Other Related Work

Clear and McGoldrick [CM15] extended the scheme of [GSW13] to the multi-
identity setting and obtain a multi-identity IBFHE scheme that is selectively
secure in the random oracle model under the hardness of Learning with Errors
(LWE). Their scheme was simplified by Mukherjee and Wichs [MW16] who
used multi-key FHE to construct a 2-round MPC protocols in the CRS model.
Recently, Peikert and Shiehian [PS16] put forth a notion of multi-hop MKFHE,
in which the result ciphertexts of homomorphic evaluations can be used in further
homomorphic computations involving additional parties. Chen et al. [CZW17]
then presented a compact multi-hop MKFHE which is based on Brakerski-
Gentry-Vaikuntanathan (BGV) FHE scheme. Brakerski and Perlman [BP16]
presented a similar notion called fully dynamic MKFHE that supports an
unbounded number of homomorphic operations for an unbounded number of
parties. Canetti et al. [CRRV17] show that CPA secure multi-identity IBFHE
can be used to construct CCA1 secure homomorphic encryption.

2 Preliminaries

Let �q denote �log q� + 1 and m̂ = m · �q. Let a ∈ Z
m
q be a vector of some

dimension m over Zq and A ∈ Z
n×m
q be a matrix. A[i] means the i-th row of

A. We can see a vector as a matrix where n = 1. BitDecomp(a): We define an
algorithm BitDecomp that takes as input a vector a ∈ Z

m
q and outputs an m̂-

dimensional vector (a1,0, ..., a1,�q−1, ..., am,0, ..., am,�q−1) where ai,j is the j-th bit
in ai’s binary representation (ordered from least significant to most significant).

Binary(A): It takes a matrix A ∈ Z
n×m
q and outputs a (n · m̂)-dimensional

vector (BitDecomp(A[1]), ...,BitDecomp(A[n])).

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 73

Definition 1 ([BHHO08]). A public key encryption scheme PKE is said to be
weakly circular secure if it is secure even against an adversary who gets encryp-
tions of the bits of the secret key.

2.1 Multi-identity IBFHE

A Multi-Identity IBFHE scheme is defined with respect to a message space M,
an identity space I, a class of circuits C ⊂ M∗ → M and ciphertext space
C. A Multi-identity IBFHE scheme is a tuple of ppt algorithms (Setup, KeyGen,
Encrypt, Decrypt, Eval) defined as follows:

• Setup(1λ): On input (in unary) a security parameter λ, generate public param-
eters MPK and a master secret key MSK. Output (MPK, MSK).

• KeyGen(MSK, id): On input master secret key MSK and an identity id: derive
and output a secret key skid for identity id.

• Encrypt(MPK, id, μ): On input public parameters MPK, an identity id, and a
message μ ∈ M, output a ciphertext c ∈ C that encrypts μ under identity id.

• Decrypt(skid1 , ..., skidn , c): On input n secret keys skid1 , ..., skidn for (resp.) iden-
tities id1, ..., idn and a ciphertext c ∈ C, output μ ∈ M if c is a valid encryp-
tion under identities id1, ..., idn; output a failure symbol ⊥ otherwise.

• Eval(MPK,C, c1, ..., c�): On input public parameters MPK, a circuit C ∈ C

and ciphertexts c1, ..., c� ∈ C, output an evaluated ciphertext ĉ ∈ C.

For all choices of Setup(1λ) → (MPK, MSK),id1, ..., idn, j1, ..., j� ∈ [n], ci =
Encrypt(MPK, idji

, μi) (μi ∈ M),C : M� → M,ĉ = Eval(MPK,C,c1, ..., c�)

– Correctness.

Decrypt(skid1 , ..., skidn , ĉ) = C(μ0, ...μ�)

– Compactness.

|ĉ| ≤ poly(λ, n)

where n is the number of distinctive identities.
– Security. The security of multi-identity IBFHE is the same with the security

of IBE.

3 Building Blocks from Previous Works

3.1 Fully Multi-key FHE

A homomorphic encryption scheme is multi-key if it can evaluate circuits on
ciphertexts encrypted under different public keys. It is called leveled MKFHE
if its setup algorithm needs to take a supported evaluation circuit depth as a

74 X. Ma and D. Lin

input. Any leveled MKFHE [CM15,PS16,CZW17] with additional weakly circular
security assumption can be converted into a fully MKFHE scheme. To decrypt
an evaluated ciphertext, the decryption algorithm uses the secret keys of all
parties involved in the computation. In fact, we need the MKFHE with threshold
decryption property. We will define a generalized threshold decryption property
called subset threshold decryption and show that we can realize it by modifying
existing threshold decryption multi-key FHE.

A multi-key homomorphic encryption scheme MKFHE = (MKFHE.Setup,
MKFHE.Keygen, MKFHE.Encrypt, MKFHE.Decrypt, MKFHE.Eval) is a 5-tuple of
ppt algorithms as follows:

• Setup params ← MKFHE.Setup(1λ): Takes the security parameter as input
and outputs the public parametrization params of the system.

• Key generation (pk, sk) ← MKFHE.Keygen(params): Outputs a public
encryption key pk and a secret decryption key sk.

• Encryption c ← MKFHE.Encrypt(pk, μ): Using the public key pk, encrypts
a single bit message μ ∈ {0, 1} into a ciphertext c.

• Decryption μ ← MKFHE.Decrypt((sk1, ..., skN̂), c): Using the sequence of
secret keys (sk1, ..., skN̂), decrypts a ciphertext c to recover the message μ ∈
{0, 1}.

• Evaluation ĉ ← MKFHE.Eval(C,(c1, ..., c�), (pk1, ..., pkN̂)): Using the
sequence of public keys (pk1, ..., pkN̂), applies a circuit C : {0, 1}� → {0, 1} to
(c1, ..., c�), where each ciphertext cj is evaluated under a sequence of public
keys Vj ⊂ {pk1, ..., pkN̂} (we assume that Vj is implicit in cj). Upon termi-
nation, outputs a ciphertext ĉ.

Remark 1. In multi-key GSW scheme, there is a Expand algorithm which takes
a ciphertext cj under pkj and Vj where Vj ⊂ {pk1, ..., pkN̂} and pkj ∈ Vj as
inputs and outputs a expanded ciphertext ĉj which is the encryption of the same
plaintext encrypted by cj under all of public keys in Vj.

Definition 2 (fully multi-key FHE). A scheme MKFHE is fully multi-key
FHE, if the following holds. Let N̂ = N̂λ be any polynomial in the security
parameter, C = Cλ be a sequence of circuits.
For all params ← MKFHE.Setup(1λ),(pki, ski)← MKFHE.Keygen(params)(i ∈
[N̂]), μj ∈ {0, 1}j∈[�]. MKFHE.Decrypt(cj , skij) = μj where {skij ∈
{sk1, ..., skN̂}}j∈[�], ĉ ← MKFHE.Eval(C,(c1, ..., c�), (pk1, ..., pkN̂)).

– Correctness.

C(μ0, ..., μ�) = MKFHE.Decrypt(ĉ)

– Compactness.

|ĉ| ≤ poly(λ, N̂)

where N̂ is the number of distinctive public keys whose corresponding cipher-
texts joining the computation.

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 75

Semantic Security. The definition of IND-CPA security for MKFHE is the same
as that for standard public-key encryption. It works for the multi-key setting
because if any adversary A who can distinguish expanded (possibly evaluated)
ciphertexts of two equal-length plaintext can be used to distinguish two equal-
length plaintext encryptions of public-key encryption. There exists a simulator
B that can break IND-CPA security of PKE2 with the help of A. The challenger
generates (pk1, sk1)← MKFHE.KeyGen(params) (we suppose the params here is
common information). B receives pk1 from the challenger and sends it to A. A
generates N̂ − 1 pairs of keys {(pki, ski) ← MKFHE.KeyGen(params)}i∈{2,...,N̂}
and sends pk2, ...pkN̂ and two equal-length messages (μ0, μ1) to B. B forwards
(μ0, μ1) to the challenger and obtains the challenge ciphertext c from it. B can
expand c into a ciphertext ĉ under pk1, ..., pkN̂ and sends it to A. B just forwards
A’s guess. If A can guess right with probability 1

2 + ξ, then the advantage of B
breaks IND-CPA of PKE is ξ. The reason we define the security of multi-identity
IBFHE and multi-attribute ABFHE as the security of IBE and ABE respectively
is similar.

We now define a multi-key FHE which supports a one-round generalized
threshold distributed decryption protocol called subset threshold decryption. Such
a protocol consists of two components: (1) given an expanded ciphertext (pos-
sibly evaluated) c each subset can compute a partial decryption using its corre-
sponding secret keys, (2) there is a way to combine the partial decryptions com-
puted by each subset to recover the plaintext. It is easy to know that threshold
decryption is just a special case that there is only one element in each subset.

Definition 3. A Subset Threshold multi-key FHE scheme is a MKFHE scheme
with two additional algorithms MFHE.SubsetDec,MFHE.CombineDec described
as follows:

– hi ← MKFHE.SubsetDec(c, (pk1, ..., pkN̂), Ii1 , ...Ii|Ti| , skIi1
, ..., skIi|Ti|

): On

input an expanded ciphertext (possibly evaluated) under a sequence of N̂ pub-
lic keys and corresponding secret keys ski1 , ..., ski|Ti| of the i-th index subset Ti

and outputs a partial decryption hi. Here Ti = {Ii1 , ..., Iiti
} where Iij ∈ [N̂],

ti = |Ti|.
– μ ← MKFHE.CombineDec(h1, ..., hn): On input n partial decryption outputs

the plaintext μ.

Along with the properties of multi-key FHE we require the scheme to satisfy the
correctness and security.

Correctness. Let params ← MKFHE.Setup(1λ). For any sequences of N̂ cor-
rectly generated key pairs {(pki, ski) ← MKFHE.Keygen(params)}i∈[N̂] and any

�-tuple of messages (μ1, ..., μ�). For set of indices T = {1, ..., N̂} and any n sub-
sets of T T1, ...Tn, where Ti ∩Tj = ∅ (i �= j) and T1 ∪ ...∪Tn = T . We denote Ti

2 The PKE is not a general PKE here. Its setup, encryption, decryption algorithms
are the same as the MKFHE scheme.

76 X. Ma and D. Lin

as {Ii1 , ..., Iiti
}. Let R : [�] → [N̂] denote a function from indices of plaintexts to

indices of public keys and {ck ← Encrypt(pkR(k), μk)}k∈[�] be encryptions of the
messages μk under the R(k)-th public key. Let C be any (boolean) circuit and let
ĉ := Eval(C, (c1, ..., c�) be the evaluated ciphertext. The below equation should
hold with probability 1.

MKFHE.CombineDec(h1, ..., hn) = C(μ1, ..., μ�)

{hi ← MKFHE.SubsetDec(c, pk1, ..., pkN̂ , Ii1 , ..., Ii|Ti| , skIi1
, ..., skIi|Ti|

)}i∈[n] are
partial decryptions and {Ti = {Ii1 , ..., Iiti

}}i∈[n] in above equation.

Security. The semantic security of MKFHE with subset threshold decryption
should hold. It is trivial because the IND-CPA security does not dependent on
decryption algorithm.

We will show that we can easily convert the threshold decryption of multi-key
GSW into our subset threshold decryption. In fact, threshold decryption defined
in [MW16] also has two similar algorithms3 PartDec and FinDec where Part-
Dec takes the evaluated ciphertext c, all parties’ public keys (pk1, ..., pkN̂) and
one party’s secret key ski and outputs the partial decryption pi, and FinDec
takes all partial decryptions (p1, ..., pN̂) as inputs and outputs the plaintext

μ. We observe that the FinDec algorithm of GSW-type scheme is
∑N̂

i=1 pi.
So we can instantiate our SubsetDec and CombineDec algorithms as follows:
SubsetDec(c, pk1, ..., pkN̂ , Ii1 , ..., Ii|Ti| , skIi1

, ..., skIi|Ti|
):

{pij ← PartDec(c, pk1, ..., pkN̂ , Iij , skIij
)}j∈[|Ti|], hi =

∑|Ti|
j=1

pij

CombineDec(h1, ..., hn) :
∑n

i=1 hi

We refer to SubsetDec[Ti] as the circuit that SubsetDec algorithm takes Ti as the
indices components of inputs.

3.2 Leveled IBFHE

A leveled IBFHE scheme is defined with respect to a message space M, an iden-
tity space I, a class of circuits C ⊂ M∗ → M and ciphertext space C. An
IBFHE scheme is a tuple of ppt algorithms (Setup, KeyGen, Encrypt, Decrypt,
Eval) defined as follows:

• Setup(1λ, L): On input (in unary) a security parameter λ and the bounded
evaluation circuit depth L supported, generate public parameters MPK and
a master secret key MSK. Output (MPK, MSK).

3 More details of the two algorithms can be found in [MW16].

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 77

• KeyGen(MSK, id): On input master secret key MSK and an identity id: derive
and output a secret key skid for identity id.

• Encrypt(MPK, id, μ): On input public parameters MPK, an identity id, and a
message μ ∈ M, output a ciphertext c ∈ C that encrypts μ under identity id.

• Decrypt(skid, c): On input secret key skid for (resp.) identity id and a ciphertext
c ∈ C, output μ ∈ M if c is a valid encryption under identities id; output a
failure symbol ⊥ otherwise.

• Eval(MPK,C, id,c1, ..., c�): On input public parameters MPK, a circuit C ∈ C

and ciphertexts c1, ..., c� ∈ C under id, output an evaluated ciphertext ĉ ∈ C
under id.

For all choices of Setup(1λ, L) → (MPK, MSK), ci = Encrypt(MPK, id, μi) (μi ∈
M),C : M∗ → M whose depth is less than L, ĉ = Eval(MPK,C,c1, ..., c�)

– Correctness.

Decrypt(skid, ĉ) = C(μ0, ...μ�)

– Compactness.

|ĉ| ≤ poly(λ,L)

4 Multi-identity IBFHE

4.1 Construction

We combine a multi-key FHE and single-identity IBFHE to construct our multi-
identity IBFHE scheme. Setup algorithm outputs public parameters and mas-
ter secret key of IBFHE and params of MKFHE by running their setup algo-
rithms respectively. When encrypt a plaintext μ ∈ {0, 1}, the sender generates
(pk, sk) ← MKFHE.KeyGen(params), then encrypts sk under id and μ under
pk. The evaluator evaluates the circuit on MKFHE ciphertexts and obtain an
evaluated ciphertext ĉ. Then it evaluates with the leveled IBFHE scheme the
partial decryption circuit SubsetDec[Tj] for all j ∈ [n] where Tj is the set of
indices of corresponding public keys for idj . The number of (compact) evalu-
ated IBFHE ciphertext is independent on the number of senders which makes
the whole resulting ciphertext compact. Receivers can obtain partial decryption
of the evaluated MKFHE ciphertext by decrypting the IBFHE ciphertext under
its identity. Then they can jointly decrypt the evaluated MKFHE ciphertext.
Our construction is fully multi-identity IBFHE with additional weakly circular
security where we do not need to take circuit depth as input in the Setup algo-
rithm. In order to compute a function in our construction we will assign every
plaintexts, every pair of (public and secret) keys of MKFHE and identities of
IBFHE indices. Let the pair of keys and plaintext share the same index because
each public key of MKFHE only encrypts one plaintext. For example, if we use
pk to encrypts μi, we denote pk as pki and sk as ski. We can use lexicographic
order of identities as their indices. Suppose there are � plaintexts and n different

78 X. Ma and D. Lin

identities involved in the computation, we can define a function R̂ : [�] → [n]
where R̂(i) = j if pki is generated in the encryption process for idj . Set the
preimages of j as Tj = {I(idj ,1), ..., I(idj ,tj)} where I(idj ,1), ..., I(idj ,tj) are indices
of the ciphertexts for the same identity idj .

• Setup(1λ,N): Take the security parameter and the bound of number of
ciphertexts under the same identity that the system can tolerate. Compute
params ← MKFHE.Setup(1λ), (MPK′,MSK′) ← IBFHE.Setup(1λ, L), where
L = τ(N,λ) is the depth of the decryption circuit of MKFHE for parameters4

λ and N . Output (MPK,MSK) = ((MPK′, params),MSK′).
• KeyGen(MSK, id): This algorithm is the same as IBFHE. Just output skid =

IBFHE.KeyGen(MSK, id).
• Encrypt(MPK, id,μ ∈ {0, 1}): Run (pk, sk) ← MKFHE.KeyGen(params). Com-

pute c′ ← MKFHE.Encrypt(pk, μ), φ ← IBFHE.Encrypt(MPK′, id, sk). Output
c = (type := 0, enc := (c′, φ, id, pk)).

• Eval(MPK,C, c1, ..., c�): The ciphertexts are assumed to be “fresh” cipher-
texts generated with the encryption algorithm. In other words, their type
components are all 0. Otherwise the evaluator outputs ⊥. Parse ci as
(type := 0, enc := (c′

i, φi, idR̂(i), pki). Firstly, evaluate the circuit on
MKFHE ciphertexts. Compute ĉ = MKFHE.Eval(C,(c′

1, ..., c
′
�), (pk1, ..., pk�)).

For all j ∈ [n], proceed as following two steps. Step 1: encrypt the
evaluated MKFHE ciphertext. Let ĉbin = Binary(ĉ). Compute {c̄i ←
IBFHE.Encrypt(MPK′, idj , ĉbin[i])}i∈[|ĉbin|] the IBFHE encryption of every
bit of evaluated ciphertext ĉ. Step 2: evaluate partial decryption cir-
cuit SubsetDec[Tj] on ({φI(idj ,k)}k∈|Tj |, {c̄i}i∈[|ĉbin|]) and obtain the IBFHE

encryption cidj under idj of the partial decryption of ĉ where cidj =
IBFHE.Eval(MPK′,SubsetDec[Tj], idj , φI(idj ,1)

, ..., φI(idj ,|Tj |) , c̄1, ...c̄|ĉbin|). Finally,
outputs c = (type :=1, (cid1 , ..., cidn))

• Decrypt(skid1 , ..., skidn , c): If c is a “fresh”ciphertext where type = 0, we
parse enc as (c′, φ, id, pk) and computes sk = IBFHE.Decrypt(skid, φ). Com-
putes μ = MKFHE.Decrypt(c′, sk) and outputs μ if sk �= ⊥. If c is an eval-
uated ciphertext (i.e. type = 1), parse c as (cid1 , ..., cidn), compute hi =
IBFHE.Decrypt(skidi, cidi) and outputs μ = MKFHE.CombineDec(h1, ..., hn).
Otherwise output ⊥.

Remark 2. We can instantiate our MKFHE with the scheme of GSW-MKFHE
[MW16,BP16,PS16] where its decryption circuit depth is O(log(N · λ)). We set
N to be a large value which dominates λ, so its decryption circuit depth is roughly
O(logN). For example, suppose we set N as 264, we need a leveled IBFHE that
can evaluate 64-depth circuits.

4 In fact, if there exists a “pure” IBFHE, we don’t need take N as input that makes
our construction be a “pure” multi-key IBFHE.Unfortunately, [CM16] can only yield
almost “pure” scheme which does not work here.

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 79

4.2 Main Results

Theorem 1. Let N be a positive integer. Let λ be the security parameter. Let n
be any polynomial in λ. Suppose there exists an IND-CPA secure subset threshold
decryption MKFHE scheme that evaluates circuits of depth d, and its subset
threshold decryption circuit depth is τ(N,λ). Suppose that there exists an IBFHE
scheme that can compactly evaluate circuits depth of τ . Then there exists a multi-
identity IBFHE scheme supporting n identities that can compactly evaluate all
d-depth boolean circuits in {0, 1}∗ → {0, 1} with a limitation that the number of
ciphertexts under the same identity is no more than N .

Correctness
The construction is correct if MKFHE and leveled IBFHE are both correct.
The decryption correctness of fresh ciphertext is guaranteed by the decryp-
tion correctness of MKFHE and IBFHE. If we set the parameters of IBFHE to
support evaluation circuits depth larger than the depth of the decryption algo-
rithm of MKFHE scheme, combining the evaluation and subset threshold decryp-
tion correctness of MKFHE and decryption correctness of IBFHE, the evaluated
ciphertext can be decrypted correctly. So the correctness of our construction is
guaranteed.

Compactness
If ciphertexts of IBFHE are compact, our construction is likewise compact. If
ciphertexts of IBFHE is compact, |cidj | ≤poly(λ, L), where L is a polynomial5 in
λ and larger than the depth of the decryption circuit of MKFHE. The evaluated
ciphertext c is n · |hi| compact IBFHE ciphertexts where |hi| is independent on
the evaluated function and N . So we can conclude that |c| ≤ poly(λ, n).

Security

Theorem 2. Suppose that MKFHE is IND-CPA secure and single-identity IBFHE
is IND-X-CPA secure,our construction is IND-X-CPA secure multi-identity IBFHE
where X ∈ {Selective,Adaptive}.

Proof. We will prove the security by hybrid argument as follows.

Hybrid H0: This is identical to the IND-X-CPA game of multi-identity IBFHE.

Hybrid H1: Let id∗ be the challenge identity the adversary sends. There is only
one difference in the challenge ciphertext with H0. The challenger replaces the
encryption of the secret key sk of the MKFHE (i.e. φ component of the challenge
ciphertext) with φ ← IBFHE.Encrypt(MPK′, id∗, 0|sk|), where 0|sk| is zeros whose
length is the same as sk.
H0 and H1 is indistinguishable. In fact, if any ppt adversary A can distinguish
them there exists a simulator B that can use A to break the IND-X-CPA of
IBFHE. In the challenge phase, when A chooses a challenge identity id∗, B gener-
ates a pair of key for MKFHE i.e. it computes params ← MKFHE.Setup(1λ) and
5 We see N as a constant here.

80 X. Ma and D. Lin

(pk, sk) ← MKFHE.KeyGen(params). Then B sends id∗ and (m0 = sk,m1 = 0|sk|)
to its challenger. B obtains the challenge ciphertext from the challenger and set
it as the φ component of its own challenge ciphertext c∗ and then computes the
remaining components of c∗ via the encryption algorithm. B sends A’s guess to
its challenger. If φ is the encryption of sk, the view of A is identical to H0. If φ
is the encryption of 0|sk|, the view of A is identical to H1. So the advantage of
B breaks IND-X-CPA of IBFHE is equal to the advantage of A distinguishing H0

and H1. It is concluded that H0 and H1 are indistinguishable.

Hybrid H2: This is same as H1 except that the challenger dose not encrypt
μ0 or μ1 sent by the adversary A in the challenge phase. It encrypts 0 instead.
If A can distinguish H1 and H2 with a non-negligible advantage there exists a
simulator B can break the IND-CPA security of MKFHE. B sends the public key
pk obtained from its challenger to A. A chooses two plaintext μ0 ∈ {0, 1} and
μ1 ∈ {0, 1} as the challenge plaintext pair to B. B randomly choose a bit b and
sends (μb,0) to its challenger. B obtains a ciphertext c′ from its challenger and
set it as the MKFHE component of its challenge ciphertext c∗ answered to A. B
computes the remaining components of c∗. B outputs 0 if A’s guess is H1, and 1
otherwise. If c′ encrypts μb, the view of A is identical to H1. If c′ encrypts 0, the
view of A is identical to H2. So H1 is indistinguishable from H2 if MKFHE is
IND-CPA secure. In H2, the advantage of the adversary is zero because there are
no information about the bit the challenger chooses in the challenge ciphertext.

Optimization
In fact, we can choose an integer ω in the setup stage and encrypt ω bits under
one public key of MKFHE. We need an additional hybrid argument of multiple
encryptions of MKFHE in the proof of security.

5 Multi-attribute ABFHE

In this section, we will show the construction of multi-attribute ABFHE. The
construction and proof are similar to those of multi-identity IBFHE. We give
the proof in full version. Let X denotes attribute space and F denotes policy
space. Suppose there are � plaintexts and n different attributes involved in the
computation, we can define a function R′ : [�] → [n] where R′(i) = j if pki

is generated in the encryption process for xj . Set the preimages of j as Tj =
{I(xj ,1), ..., I(xj ,tj)} where I(xj ,1), ..., I(xj ,tj) are indices of the ciphertexts for the
same identity xj .

• Setup(1λ,N): Take the security parameter and the bound of number of cipher-
texts for the same attribute that the system can tolerate. Compute params
← MKFHE.Setup(1λ), (MPK′,MSK′) ← ABFHE.Setup(1λ, L), where L is the
depth of the decryption circuit of MKFHE for parameters, λ and N . Output
(MPK,MSK) = ((MPK′, params),MSK′).

• KeyGen(MSK, f ∈ F): This algorithm is the same as ABFHE. Just output skf

= IBFHE.KeyGen(MSK,f).

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 81

• Encrypt(MPK, x ∈ X , μ ∈ {0, 1}): (pk, sk) ← MKFHE.KeyGen(params). Com-
pute c′ ← MKFHE.Enc(pk, μ), φ ← Encrypt(MPK′, x, sk). Output c =
(type := 0, enc := (c′, φ, x, pk)).

• Eval(MPK,C, c1, ..., c�): Firstly, the ciphertexts are assumed to be “fresh”
ciphertexts generated with the encryption algorithm. In other words, their
type components are all 0. Otherwise the evaluator outputs ⊥. Parse ci

as (type := 0, enc := (c′
i, φi, xR′(i), pki). Compute ĉ = MKFHE.Eval(C,

(c′
1, ..., c

′
�), (pk1, ..., pk�)). Let ĉbin = Binary(ĉ). Compute {c̄i ← ABFHE.

Encrypt(MPK′, xj , ĉbin[i])}i∈[|ĉbin|] the ABFHE encryption of every bit
of evaluated ciphertext ĉ. Then evaluate partial decryption circuit
SubsetDec[Tj] on ciphertexts ({φIxj,k

}k∈|Tj |, {c̄i}i∈|cbin|) and obtain ABFHE

encryption cxj
under xj of partial decryption of ĉ where cxj

=
ABFHE.Eval(MPK′,SubsetDec[Tj], xj , φI(xj,1)

, ..., φI(xj,|Tj |) , c̄1, ...c̄|ĉbin|) for all
j ∈ [n]. Outputs c = (type :=1, (cx1 , ..., cxn

))
• Decrypt(skf1 , ..., skfn , c): For simplicity6, we suppose fi(xi) = 0 here. If

c is a “fresh” ciphertext where type = 0, we parse enc as (c′, φ, x, pk)
and compute sk = ABFHE.Decrypt(skfi

, φ) where x = xi. Compute
μ = MKFHE.Decrypt(c′, sk) and output μ if sk �= ⊥. If c is an evalu-
ated ciphertext (i.e. type = 1), parse c as (cx1 , ..., cxn

), compute hi =
ABFHE.Decrypt(skfi

, cxi
) and outputs μ = MKFHE.CombineDec(h1, ..., hn).

Otherwise output ⊥.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 28

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 17

[BB04a] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 14

[BB04b] Boneh, D., Boyen, X.: Secure identity based encryption without ran-
dom oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 27

[BCTW16] Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic
attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 13

6 It also works if skfi can decrypt ciphertexts under many different attributes.

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-662-53644-5_13
https://doi.org/10.1007/978-3-662-53644-5_13

82 X. Ma and D. Lin

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 13

[BGG+14] Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 30

[BGH07] Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryp-
tion without pairings. IACR Cryptology ePrint Archive, vol. 2007, no. 177
(2007)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp.
309–325 (2012)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 7

[BP16] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 8

[Bra12] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32009-5 50

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October
2011, pp. 97–106 (2011)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

[CM14] Clear, M., McGoldrick, C.: Bootstrappable identity-based fully homomor-
phic encryption. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS
2014. LNCS, vol. 8813, pp. 1–19. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-12280-9 1

[CM15] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 31

[CM16] Clear, M., McGoldrick, C.: Attribute-based fully homomorphic encryption
with a bounded number of inputs. In: Pointcheval, D., Nitaj, A., Rachidi,
T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 307–324. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-31517-1 16

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol.
2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45325-3 32

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-319-12280-9_1
https://doi.org/10.1007/978-3-319-12280-9_1
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-319-31517-1_16
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-45325-3_32

Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model 83

[CRRV17] Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-
ciphertext secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC
2017. LNCS, vol. 10175, pp. 213–240. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54388-7 8

[CZW17] Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from
ring-LWE with compact ciphertext extension. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70503-3 20

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 18

[Gen09a] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009). crypto.stanford.edu/craig

[Gen09b] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryp-
tion for fine-grained access control of encrypted data. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security,
CCS 2006, Alexandria, VA, USA, 30 October–3 November 2006, pp. 89–98
(2006)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, 17–20 May 2008, pp. 197–206 (2008)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–
92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 5

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Symposium on Theory of Computing Conference, STOC
2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 545–554 (2013)

[HK17] Hiromasa, R., Kawai, Y.: Fully dynamic multi target homomorphic
attribute-based encryption. IACR Cryptology ePrint Archive, vol. 2017,
no. 373 (2017)

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In: Pro-
ceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, 19–22 May 2012, pp. 1219–1234 (2012)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 26

[PS16] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 9

[RAD78] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy
homomorphisms. Found. Sec. Comput. 4, 169–179 (1978)

https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://crypto.stanford.edu/craig/
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9

84 X. Ma and D. Lin

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93
(2005)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34:1–34:40 (2009)

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blak-
ley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 5

[SOK00] Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystem based on pairings, 01
2000

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 27

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 7

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03356-8 36

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36

Approximate Homomorphic Encryption
over the Conjugate-Invariant Ring

Duhyeong Kim1 and Yongsoo Song2(B)

1 Department of Mathematical Sciences and RIM, Seoul National University,
Seoul, South Korea

doodoo1204@snu.ac.kr
2 University of California, San Diego, USA

yongsoosong@ucsd.edu

Abstract. The Ring Learning with Errors (RLWE) problem over a
cyclotomic ring has been the most widely used hardness assumption for
the construction of practical homomorphic encryption schemes. However,
this restricted choice of a base ring may cause a waste in terms of plain-
text space usage. For example, an approximate homomorphic encryption
scheme of Cheon et al. (ASIACRYPT 2017) is able to store a complex
number in each of the plaintext slots since its canonical embedding of a
cyclotomic field has a complex image. The imaginary part of a plaintext
is not underutilized at all when the computation is performed over the
real numbers, which is required in most of the real-world applications
such as machine learning.

In this paper, we are proposing a new homomorphic encryption scheme
which supports arithmetic over the real numbers. Our scheme is based
on RLWE over a subring of a cyclotomic ring called conjugate-invariant
ring. We show that this problem is no easier than a standard lattice prob-
lem over ideal lattices by the reduction of Peikert et al. (STOC 2017).
Our scheme allows real numbers to be packed in a ciphertext without
any waste of a plaintext space and consequently we can encrypt twice as
many plaintext slots as the previous scheme while maintaining the same
security level, storage, and computational costs.

Keywords: Ring Learning with Errors · Homomorphic encryption ·
Real number arithmetic

1 Introduction

Learning with Errors (LWE) is a computational problem which asks to distin-
guish a system of linear equations with small errors from a uniformly random
one. After Regev [35] firstly introduced the LWE problem, it has been one of the
standard assumptions for the construction of cryptographic primitives due to its
security and versatility. Lyubashevsky, Peikert, and Regev [32] proposed a vari-
ant of LWE called the Ring Learning with Errors (RLWE) problem. They showed

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 85–102, 2019.
https://doi.org/10.1007/978-3-030-12146-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_6

86 D. Kim and Y. Song

that the (decisional) RLWE problem over a cyclotomic ring can be reduced from
the Shortest Independent Vectors Problem (SIVP) over ideal lattices.

Homomorphic Encryption (HE) is a cryptographic scheme which enables
arithmetic operations on encrypted data without decryption. This technology is
a promising solution which can prevent leakage of sensitive personal information
such as financial, medical and genomic data. A number of HE schemes [5,7,8,
13,15,16,18,19,21,23,24] have been suggested following Gentry’s blueprint [22].
Currently, most of the practical HE schemes [13,15,21,23] rely their security on
the hardness of RLWE over a cyclotomic ring. For years, the choice of base ring
was restricted because nothing was known about the hardness of (decisional)
RLWE over non-cyclotomic rings.

Cheon et al. [13] proposed a HE scheme (HEAAN) that supports the arith-
metic of approximate numbers. In addition to homomorphic addition and multi-
plication, the HEAAN scheme can compute the rounding operation (extraction
of the most significant bits) efficiently, which has traditionally been considered
a challenging subject on HE system. Because of this functionality, HEAAN has
showed a remarkable performance in many of the applications [6,14,17,28–30],
requiring computations of real numbers.

Motivation. The HEAAN scheme exploits a variant of the (complex) canonical
embedding over a cyclotomic field to pack a number of plaintext values in a sin-
gle ciphertext. Hence, each of the plaintext slots could store a complex number.
We point out that this complex encoding method has some problems in terms of
efficiency and precision. Since most of the real-world applications (e.g. machine
learning) require computations over purely real numbers, the imaginary part of
a plaintext of HEAAN is underutilized. It can be viewed as a waste of a plaintext
space. In addition, homomorphic operations of HEAAN, such as multiplication
and rounding, generate additional complex errors which can reduce the compu-
tational accuracy.

Peikert et al. [34] recently showed that the RLWE problem over the ring of
integers of an arbitrary number field is no easier than SIVP over ideal lattices of
the same number field. So we aimed to find a new number field and construct a
HE scheme over its ring of integers, which utilizes a fully packed plaintext space
over real numbers to overcome the existing problem.

Our Contribution. We consider the maximal real subfield of a cyclotomic field
as a base number field and define the RLWE problem over its ring of integers
which is called the conjugate-invariant ring. We first show that the conjugate-
invariant ring is the set of real numbers in the ring of integers of a cyclotomic
field and adapt the reduction of [34] to guarantee the hardness of RLWE problem
over the conjugate-invariant ring.

Based on this problem, we construct a new HE scheme that supports approx-
imate arithmetic of real numbers. Our scheme can store a real number in each
of the plaintext slots since the image of conjugate-invariant ring with respect to
the canonical embedding belongs to the set of real vectors. We also propose a
specialized Fast Fourier Transformation (FFT) algorithm over the residue ring
of conjugate-invariant ring to minimize the complexity of arithmetic operations.

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 87

As a result, our HE scheme can encrypt twice as many plaintext slots as the
original HEAAN scheme while maintaining the same security level and compu-
tational costs, i.e., the amortized complexity per slot is reduced by half.

Technical Details. Let m be a power-of-two integer, n = φ(m) = m/2 and
Φm(X) = Xn + 1. Let ζ = exp(2πi/m) be an m-th primitive root of unity and
let F = Q(ξ) be the maximal real subfield of the cyclotomic field K = Q(ζ) for
ξ = ζ + ζ−1. Then the ring of integers of F = Q(ξ) is R = Z[ξ], and we call
this ring the conjugate-invariant ring. By adapting the reduction in [34], we can
show that RLWE over the ring R is no easier than SIVP over ideal lattices in
K. This hardness proof reasonably motivates us to exploit R as a base ring for
the construction of a HE scheme. We also give a cryptanalysis of RLWE over
the conjugate-invariant ring R = {a(X) ∈ Z[X]/(Xn + 1) : a(X) = a(X−1)} to
study the concrete security level. We consider all known attacks on RLWE and
conclude that this problem requires the same attack complexity as the ordinary
(n/2)-dimensional LWE problem.

The plaintext encoding technique of HEAAN utilizes the canonical embed-
ding map for the packing of plaintexts in a single ciphertext. Similarly, we con-
sider the canonical embedding map τ : F → C

n/2 of the number field F . Since
ξ and its conjugate elements are real, the image of F with respect to its canoni-
cal embedding actually lies in R

n/2. Therefore, we can successfully define a ring
homomorphism from F into the vector of purely real numbers, and make the use
of plaintext encoding/decoding algorithms between R and R

n/2 based on this
canonical embedding.

We construct a new HE scheme whose security relies on the hardness of
RLWE over R. We first propose a vector representation for the elements F ,
which is efficient for the rounding operation into R and the modulo operation
of the residue ring Rq = R/qR. Then, we describe a HE scheme over the real
numbers, which provides approximate arithmetic operations and an approximate
rounding operation.

We also explain how to represent the elements of Rq and perform the arith-
metic operations between them. We present a specialized Fast Fourier Trans-
form (FFT) algorithm for an efficient Number Theoretic Transform (NTT) on
the residue ring Rq and fast multiplication between ring elements. This opti-
mization technique constructs a simply computable ring isomorphism from Rq

to Zq[X]/(Xn/2 − 1), so the ordinary NTT conversion on Zq[X]/(Xn/2 − 1) can
be applied to Rq whose dimension is one quarter of that of a naive method.

In conclusion, our approximate HE scheme over R can encrypt (n/2) plaintext
slots in a single ciphertext, twice as many plaintext slots compared to (n/4) of
the ordinary HEAAN scheme over Zq[X]/(Xn/2 + 1), while keeping the same
concrete security level, storage, and computational costs.

Related Works. Arita and Handa [3] proposed a HE scheme based on RLWE
over the decomposition ring, which is a subring of cyclotomic ring. Their subring
technique is applied to HElib [26]: they consider the plaintext space as Zp ⊕· · ·⊕
Zp, which is a subring of the plaintext space GF(pd)⊕ · · ·⊕GF(pd) of HElib for
some integers p and d, where GF(pd) denotes the Galois field of the cardinality

88 D. Kim and Y. Song

pd. They claimed that RLWE over the decomposition ring is at least as hard as
its search version. However, there is no known reduction from lattice problems
over ideal lattices to the search version, since the decomposition ring is not
known to be a ring of integers of some number field so far. In contrary, RLWE
over the conjugate-invariant ring which we desired in this paper has a reduction
from SIVP over ideal lattices.

Road-Map. In Sect. 2, we present notations of our paper and some backgrounds
for RLWE. In Sect. 3, we define RLWE over the conjugate-invariant ring and dis-
cuss about its hardness. In Sect. 4, we present our new approximate HE scheme
constructed over the conjugate-invariant ring, describe encoding/decoding algo-
rithms for real numbers, and propose a specialized FFT algorithm for the desired
ring. In last section, we give a summary on our approximate HE scheme com-
pared to original HEAAN.

2 Background

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For an integer m ≥ 2,
Zm := Z/mZ, and Z

×
m is the multiplicative group of units in Zm. For a ring

R, its residue ring R/qR modular an integer q is denoted by Rq. For a real
number r, �r� denotes the nearest integer to r, rounding upwards in case of a
tie. For a vector u of (complex) numbers, ‖u‖2 (resp. ‖u‖∞) denotes the �2-norm
(resp. �∞-norm) of u. For an element a of a number field K, ‖a‖can2 (resp. ‖a‖can∞)
denotes the �2-norm (resp. �∞-norm) of the image vector of a via the canonical
embedding map. For vectors a and b of the same dimension, a 	 b denotes the
component-wise multiplication of a and b. We denote by φ(·) the Euler’s totient
function and Φm(X) the m-th cyclotomic polynomial. For a complex number
z ∈ C, z denotes the complex conjugation of z.

2.2 Number Fields and Ideal Lattices

For any number field K, there exists an element ζ of K such that K = Q(ζ).
Hence K is isomorphic to Q[X]/(f(X)) for the minimal polynomial f(X) of ζ
over Q. The degree n of f(X) equals to the extension degree [K : Q]. There are
exactly n injective ring homomorphisms {σj}1≤j≤n from K to C. The canonical
embedding is defined as the n-tuple of these embeddings as follows:

σ : K → C
n

a
→ (σj(a))1≤j≤n.

Let s1 be the number of real embeddings of K, then n = s1 + 2s2 for some non-
negative integer s2. Without loss of generality, let σ1, . . . , σs1 be real embeddings
of K. Then the image of σ lies in the space H := {(x1, . . . , xn) ∈ C

n : xs1+s2+j =
xs1+j , 1 ≤ j ≤ s2}. Let {ej}1≤j≤n be a canonical basis of Cn. Let hj = ej for 1 ≤

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 89

j ≤ s1, hs1+j = (es1+j +es1+s2+j)/
√

2 and hs1+s2+j = (es1+j −es1+s2+j)/
√−2

for 1 ≤ j ≤ s2. Then, {hj}1≤j≤n forms an orthogonal R-basis of H.
An element of K is called an algebraic integer if its minimal polynomial over

Q has integral coefficients. The set of all algebraic integers, denoted by OK , is
called the ring of integers of K. A fractional ideal I of K is OK-submodule of
K such that there exists a non-zero element r ∈ OK which satisfies rI ⊆ OK .
If I ⊆ OK , then we call I an (integral) ideal. The image σ(I) of a fractional
ideal I via the canonical embedding forms a lattice in C

n, and we call it an ideal
lattice generated by I. The dual of I in K is a fractional ideal in K defined as
I∨ := {a ∈ K : Tr(aI) ⊆ Z}.

For 1 ≤ k ≤ n, the k-th successive minima of the lattice L, denoted by λi(L),
is the minimum value of r > 0 such that L has k linearly independent vectors
of length at most r. If L is an ideal lattice σ(I) for a fractional ideal I ∈ K, we
simply denote by λk(I). The SIVP over ideal lattices in K is defined as follow.

Definition 1 (SIVP over ideal lattices). For a number field K of degree n and
an approximation factor γ ≥ 1, the K-SIVPγ problem is: given a fractional ideal
I of K, output n linearly independently vectors in the ideal lattice σ(I) of length
at most γ · λn(I).

2.3 Ring Learning with Errors

For positive integers n and q, let R be the ring of integers of a number field
K, Rq = R/qR and KR = K ⊗Q R. Let χkey and χerr be distributions over
R∨ and KR, respectively. For s ∈ R∨

q , AR-LWE
q,χerr

(s) is a distribution which draws
a ← Rq and e ← χerr, and output the pair (a, a · s + e) in Rq × KR/qR∨. The
(decisional) RLWE problem is defined as follows.

Definition 2 (Ring Learning with Errors). Let n, q be positive integers,
and χkey (resp. χerr) be a distribution over R∨

q (resp. KR). The RLWE problem,
denoted by R-LWEq,χerr

(χkey), is to distinguish between the uniform distribution
over Rq × KR/qR∨ and AR-LWE

q,χerr
(s) where s ← χkey.

Since KR is isomorphic to the vector space H, a distribution over H can be
identified as a distribution over KR. If χerr is a (spherical) Gaussian distribu-
tion Dαq over H with respect to the basis {hi}1≤i≤n and χkey is the uniform
distribution over R∨

q , we simply denote by R-LWEq,α.
Lyubashevsky et al. [32] proposed a polynomial-time quantum reduction from

lattice problems over ideal lattices to the RLWE problem, which holds only for
the cyclotomic fields with some special conditions on the modulus q. Peikert
et al. [34] gave a new reduction from the same problem which can be applied to
an arbitrary number field and modulus.

Theorem 1 ([34, Corollary 7.3]). Let n, q be positive integers, 0 < α < 1
be a real number such that αq = ω(1), K be an arbitrary number field of
degree n and R = OK . Then there exists a polynomial-time quantum reduc-
tion from K-SIVPγ to R-LWEq,α given � samples for γ = max{ω(

√
n log n/α) ·

(n�/ log(n�))1/4,
√

2n}.

90 D. Kim and Y. Song

Recently, it was shown by Rosca et al. [36] that the non-dual RLWE problem,
i.e., RLWE with the distribution of the secret over Rq rather than R∨

q , is at least
as hard as the original RLWE problem. In addition, the rounding technique of
Peikert [33] allows us to sample errors from a discrete Gaussian distribution
rather than a continuous Gaussian distribution. With these settings, an RLWE
sample lies in Rq × Rq rather than Rq × KR/qR∨.

3 RLWE over the Conjugate-Invariant Ring

The cyclotomic rings have been the most commonly used as base rings for RLWE
for two main reasons. The ring of integers of the m-th cyclotomic field is iso-
morphic to Z[X]/(Φm(X)), and its structure was particularly well suitable in
the construction of cryptographic schemes with the perspective of efficiency and
some functionalities. In addition, there have been no known reduction to the
RLWE over a non-cyclotomic ring for years until Peikert et al. [34] proposed
a reduction from SIVP over ideal lattices to (decisional) RLWE for arbitrary
number fields recently.

In this section, we introduce a new number field which has not been exploited
in the lattice-based cryptography so far, and compute the ring of integers of the
number field. Then we study on the hardness of RLWE problem over a new ring
in two ways: we give a reduction from a standard lattice problem and study the
concrete security level by considering all known attacks.

Let m ≥ 2 be an integer and n = φ(m) for Euler’s totient function φ(·).
For the m-th primitive root of unity ζ = exp(2πi/m), the m-th cyclotomic
field is defined by K = Q(ζ). Let σ−1 be the element of Gal(K/Q) defined by
σ−1 : ζ
→ ζ−1, and G = {id, σ−1} be the cyclic subgroup of Gal(K/Q) generated
by σ−1. We denote by F = KG the G-invariant subfield of K which is defined as
F = {a ∈ K : τ(a) = a,∀τ ∈ G}. We first remark that F = Q(ξ) for ξ = ζ +ζ−1.
It is clear that Q(ξ) ⊆ F ⊆ Q(ζ) and [Q(ζ) : F] = |G| = 2. Since ζ is a root
of X2 − ξ · X + 1 ∈ Q(ξ)[X], the inequality [Q(ζ) : Q(ξ)] ≤ 2 holds and it
implies F = Q(ξ). In particular, we are interested in the set of integer coefficient
elements in Q(ξ) with respect to the Q-basis {1, ξ, ξ2, . . . , ξ

n
2 −1}. We will call

this set Z[ξ] as the conjugate-invariant ring.

3.1 Reduction from SIVP

Some well-known reductions [32,34] from standard problems over ideal lattices
to RLWE requires a condition that the base ring exploited in RLWE should be
a ring of integers of a number field. Therefore, it is crucial to study the ring of
integers of a number field to define and show the hardness of RLWE problem.

We consider the subfield F = Q(ξ) of K = Q(ζ) as a base number field, and
compute its ring of integers R := OF in this section. Fortunately, the structure
of a cyclotomic field derives a quite simple and nice result on the conjugate-
invariant ring as follows.

Lemma 1. Z[ξ] is the ring of integers of F = Q(ξ) (Fig. 1).

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 91

K = Q(ζ)

OK = Z[ζ]

F = Q(ξ)

R = Z[ξ]

Q

Z

Fig. 1. Number fields and their rings of the integers

Proof. It is clear that Z[ξ] ⊆ OF . Since OF ⊆ OK = Z[ζ], every ele-
ment a ∈ OF is uniquely expressed as a =

∑
− n

2 ≤j< n
2

aj · ζj for some
integers a− n

2
, . . . , an

2 −1. From the definition of F , we obtain σ−1(a) = a,

i.e.,
∑n

2 −1

j=− n
2

ajζ
j =

∑n
2
j=− n

2 +1 a−jζ
j which implies aj = a−j for 0 ≤ i < n

2

and a− n
2

= 0. Then, a = a0 +
∑n

2 −1
j=1 ai(ζj + ζ−j) ∈ Z[ξ], since ζj + ζ−j ∈ Z[ξ]

for 1 ≤ j < n
2 . Therefore, OF ⊆ Z[ξ], which directly implies Z[ξ] = OF . ��

It is derived from Lemma 1 that the RLWE problem over R = Z[ξ], simply
denoted by R-LWEq,α, is at least as hard as F -SIVP from Theorem 1. We can
naturally identify R with the ring of polynomials Z[Y]/(g(Y)) for the minimal
polynomial g(Y) ∈ Z[Y] of ξ over Q via mapping a(Y)
→ a(ξ). However, it is
more convenient to consider R as the subring

R = {a(X) ∈ Z[X]/(Φm(X)) : a(X) = a(X−1)}
of OK = Z[X]/(Φm(X)). Note that the condition a(X) = a(X−1) corresponds
to the conjugation-invariant property. We will follow this subring perspective in
the rest of paper.

3.2 Cryptanalysis

In this section, we discuss the attack complexity of RLWE over the conjugate-
invariant ring. In general, the RLWE problem does not guarantee the same secu-
rity level as LWE with the same parameter. For example, there have been several
attempts to attack the RLWE (or Poly-LWE) problem over a ring Z[X]/(f(X))
by exploiting its ring structure [9,10,20]. One common limitation of these attacks
is that f(X) should have a root modulo q satisfying some strong conditions.

The RLWE assumption can be viewed as a specific case of LWE (A, b =
As + e) where the random matrix A has a special algebraic structure. In the
case of RLWE over a power-of-two cyclotomic ring, an RLWE sample can be

92 D. Kim and Y. Song

understood as a variant of n-dimensional LWE instance where A is a random
anti-circulant matrix. However, there has been no known attack achieving a
lower complexity by exploiting this property. As a result, the current best known
attacks are standard lattice attacks on the ordinary LWE problem such as dual
attack and primal attack, which are well described in [1].

Now we explain how to understand an R-LWE instance as an LWE instance
with a special structure. Let m be a power-of-two integer so that n = m/2
and Φm(X) = Xn + 1. An element of R = {a(X) ∈ Z[X]/(Xn + 1) : a(X) =
a(X−1)} can be uniquely expressed as a(X) = a0 +

∑n
2 −1
j=1 aj · (Xj + X−j) for

some integers a0, . . . , an
2 −1. Therefore, a(X) can be identified with the vector

a = (a0, a1, . . . , an
2 −1) of length (n/2). Based on this identification, an RLWE

sample over the conjugate-invariant ring (a(X), b(X) = a(X)·s(X)+e(X)) ∈ R2
q

with secret s(X) can be transformed to (A, b = As+ e) ∈ Z
n
2 × n

2
q ×Z

n
2
q where A

is a square matrix of size (n/2) whose (i, j)-th component is given by

Aij =

⎧
⎪⎨

⎪⎩

a|i−j| j = 0, or i + j = n
2

a|i−j| + ai+j j > 0, and i + j < n
2

a|i−j| − an−(i+j) j > 0, and i + j > n
2

for 0 ≤ i, j < n/2. This transformation shows that R-LWE can be viewed as
a variant of the (n/2)-dimensional LWE problem where the random matrix A
has this special form. We consider all known attacks on RLWE and claim that
they do not achieve a lower complexity than the standard lattice attacks on
LWE, i.e., currently there is no special attack on R-LWE which exploits the
ring structure of R corresponding to this special structural distribution of A,
similar to the case of RLWE over a power-of-two cyclotomic ring. Therefore,
we conclude that the current best attacks on R-LWEq,α are the standard lattice
attacks, which require the same attack complexity as the lattice attacks on the
(n/2)-dimensional LWE problem.

4 Approximate Homomorphic Encryption over the Real
Numbers

The HEAAN scheme of Cheon et al. [12,13] is the first HE system which sup-
ports an efficient rounding operation for approximate arithmetic. It allows us
to encrypt a number of complex numbers in a single ciphertext and perform an
approximate arithmetic between encrypted vectors in a SIMD manner. However,
there remained one significant problem about the plaintext space.

Most of the real-world applications require computations over the purely
real numbers, but the original HEAAN scheme could encrypt a complex num-
ber in each of plaintext slots. The previous researches [29,30] used the set of
real numbers as a subring of complex numbers, but this approach cannot be
a fundamental solution for the following reason. Every algorithm of the origi-
nal HEAAN scheme, such as homomorphic arithmetic and rounding operation,

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 93

K = Q(ζ) Q[X]/(Xn + 1)

�

F = Q(ξ) Q[Y]/(g(Y)) R
n/2

Y �→ X + X−1

�

τ�

Fig. 2. Polynomial representation of number fields and canonical embedding

adds a small complex error to the plaintext vector. The imaginary part of an
encrypted plaintext can gradually increase as the computation progressed, and
finally the desired result (real part) can no longer be recovered after its imaginary
part becomes larger than the ciphertext modulus. Consequently, every circuit in
previous applications had a limited depth to bound the size of imaginary parts
during its evaluation.

In this section, we describe a HE scheme which is optimized in the approx-
imate computation over the real numbers compared to the original HEAAN
scheme with complex plaintext slots. The security of our scheme relies on the
RLWE assumption over the ring R = Z[ξ] introduced in the previous section.
For simplicity, the integer m will be chosen as a power of two so that n = m/2
and Φm(X) = Xn + 1.

4.1 Canonical Embedding and Packing Technique

In this subsection, we describe the canonical embedding map of the conjugate-
invariant field and explain how to represent its elements. As mentioned in
the previous section, the conjugate-invariant field F = Q(ξ) can be identi-
fied with the polynomial ring Q[Y]/(g(Y)) for the minimal polynomial g(Y) ∈
Z[Y] of ξ over Q. Note that g(Y) is a polynomial of degree (n/2) satisfy-
ing g(X + X−1) = X

n
2 + X− n

2 . Let ξj = ζ4j+1 + ζ−(4j+1) for 0 ≤ j < n/2.
Then {ξ0, . . . , ξn

2 −1} forms the set of distinct roots of g(Y) since Xn + 1 =

(X − ζ)(X − ζ3) . . . (X − ζm−1) =
∏n

2 −1
j=0 (X2 − ξj · X + 1). Therefore, we have

a commute diagram (Fig. 2) for a polynomial representation of number fields by
identifying Y
→ X + X−1.

Let us denote by τ the canonical embedding of F = Q[Y]/(g(Y)) into C
n/2.

It sends an element a(Y) to the vector of its evaluations τ(a) = (a(ξj))0≤j< n
2

at the roots of g(Y). Since all roots of g(Y) are real, F is a totally real number
field and the image of τ is a subring of Rn/2. The canonical embedding norm of
an element of a number field is defined by the norm of its canonical embedding.
For example, we write ‖a‖can∞ := ‖τ(a)‖∞ and ‖a‖can2 := ‖τ(a)‖2 for a ∈ F .

The packing technique of HE system allows us to encrypt a multiple num-
ber of messages in a single ciphertext and supports the parallel computation
in a SIMD manner. It has been one of the most important techniques for the

94 D. Kim and Y. Song

performance improvements of HE schemes in terms of expansion rate and amor-
tized computational cost. The packing method of approximate HE scheme [13]
is based on the canonical embedding over the complex numbers.

We present a new packing method over the real numbers, by modifying the
previous solution over the complex plane. The core idea is to restrict the domain
of canonical embedding τ to the ring of integers R = Z[Y]/(g(Y)). In other
words, the decoding algorithm transforms an element a(Y) of R into the vector
τ(a) = (a(ξj))0≤j<n/2 of dimension (n/2). This vector is real as noted above.
Conversely, the encoding map takes a real vector x = (xj)0≤j<n/2 ∈ R

n/2 as an
input. It first computes the rounding x′ = �x�τ(R) ∈ R

n/2, which is an element
of τ(R) with a small rounding error ‖x − x′‖can2 . The output is obtained by
computing the inverse of x′ which is an integral polynomial in R = Z[Y]/(g(Y)).
Our packing method is explicitly described as follows.

• Ecd(x). For given x = (xj)0≤j<n/2 ∈ R
n/2, discretize x into τ(R). Output

the corresponding polynomial m(Y) = τ−1
(�x�τ(R)

) ∈ R.
• Dcd(m). For given m ∈ R, output the vector x = (m(ξj))0≤j<n/2 ∈ R

n/2.

The Ecd algorithm can be viewed as an approximate inverse of the decoding
function with a small rounding error. One can multiply a scale factor to an input
vector before the rounding operation to reduce the relative size of rounding error
and preserve the precision of plaintexts.

As a toy example, let n = m/2 = 4. Then ζ8 = exp(πi/4) = (1 + i)/
√

2 is
an m-th primitive root of unity, and we have {ξ0, ξ1} = {√2,−√

2}. For a real
vector x = (1.1, 2.3), its encoding polynomial with the scaling factor Δ = 64 is
obtained by m(Y) = τ−1

(�Δ · x�τ(R)

)
= 109 − 27Y . Conversely, the decoded

vector of 109−27Y is computed by Δ−1 ·Dcd(m) = 1
64 (109−27

√
2, 109+27

√
2) ≈

(1.1065, 2.2997), which is a good approximation of the original vector x.

4.2 Scheme Description

This subsection gives a explicit description of our HE scheme over the real num-
bers. Our scheme is very similar to the original HEAAN scheme, but it exploits
a different ring structure R = Z[ξ]. We first propose a method to represent the
elements of the conjugate-invariant field F .

The number field F can be identified with Q
n/2 as a Q-module. For example,

an arbitrary element of F = Q[Y]/(g(Y)) can be uniquely expressed as the
sum

∑n
2 −1
j=0 aj · Y j for some aj ∈ Q, which corresponds to the isomorphism

a
→ (a0, . . . , an
2 −1) between two modules. However, this representation is not

the best choice for the construction of HE system. One major reason is that the
image {τ(1), τ(Y), . . . , τ(Y

n
2 −1)} of the basis {1, Y, . . . , Y

n
2 −1} does not form an

orthogonal set in the space R
n/2.

The conjugate-invariant field F = Q[Y]/(g(Y)) can be understood as a sub-
field of K = Q[X]/(Xn+1) by identifying Y = X+X−1 as noted in the previous
subsection. Every element a(X) of F ≤ K can be uniquely expressed as a Lau-
rent polynomial a(X) = a0 +

∑n
2 −1
i=1 ai(Xi + X−i) of degree and order strictly

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 95

less then (n/2) for some a0, . . . , an
2 −1 ∈ Q. In the following, an arbitrary element

a(X) of F will be identified with its vector of coefficients (a0, . . . , an
2 −1) ∈ Q

n/2.
Note that the set {1,X + X−1, . . . , X

n
2 −1 + X1− n

2 } is a basis of F (resp. R) as
a module over Q (resp. Z). In addition, the image of this basis with respect to
the canonical embedding map τ forms an orthogonal basis in R

n/2.
This orthogonal property allows us to use an efficient rounding operation

on F as well as a modulo operation over R. We define the rounding operation
�·� : F → R by sending each of coefficients ai ∈ Q to the closest integer �ai� ∈ Z.
Note that �a� is an element of R which minimizes the rounding error ‖a − �a�‖can2

with respect to the �2 canonical embedding norm. Similar to the rounding oper-
ation, the modulo q operation is simply defined by the coefficient-wise modular
reduction, i.e., [a]q is the element of a + qR which minimizes the size ‖[a]q‖can2 .

• Setup(p, 1λ, L).

– The base integer p, the number of levels L and the security parameter λ
are given as input. Set moduli q1, q2, . . . , qL, which are usually chosen as
qi = pi.

– Choose integers m and P , and small distributions χkey, χenc, and χerr

over the ring R.
– Return the parameter set params ← (m,P, χkey, χenc, χerr).

The setup step should generate a HE parameter set that achieves λ-bit of security
level against the best known attacks on RLWE. A security proof will be given
at the end of this subsection.

• KeyGen(params).

– Sample s ← χkey. Set the secret key as sk ← (1, s).
– Sample a ← U(RqL

) and e ← χerr. Set the public key as pk ← (b, a) ∈
R2

qL
where b ← −as + e (mod qL).

• KSGen(s1, s2). For s1, s2 ∈ R, sample a′ ← U(RP ·qL
) and e′ ← χerr. Output

the switching key as swk ← (b′, a′) ∈ R2
P ·qL

where b′ ← −a′s2 + e′ + P · s1
(mod P · qL).

– Set the evaluation key as evk ← KSGen(s2, s).
• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output v · pk +

(m + e0, e1) (mod qL).
• Decsk(ct). For ct = (c0, c1) ∈ R2

q�
, output m′ = c0 + c1 · s (mod q�).

The decryption algorithm can be simply written by m′ ← [〈ct, sk〉]q�
. The encryp-

tion procedure returns a level L ciphertext ct which satisfies [〈ct, sk〉]qL
≈ m,

i.e., we can only recover an approximate value of m from its encryption. We use
the canonical embedding norm to measure the size of polynomials in R.

• Add(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctadd ← ct + ct′ (mod q�).
• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′

0, c
′
1) ∈ R2

q�
, let (d0, d1, d2) =

(c0c′
0, c0c

′
1 + c1c

′
0, c1c

′
1) (mod q�). Output ctmult ← (d0, d1) + �P−1 · d2 · evk�

(mod q�).

96 D. Kim and Y. Song

• RS�→�′(ct). For a ciphertext ct ∈ R2
q�

at level �, output ct′ ← �(q�′/q�) · ct�
(mod q�′). We will omit the subscript (� → �′) when �′ = � − 1.

The algorithms Add and Multevk perform the arithmetic operations over
encrypted plaintexts. The rescaling procedure RS�→�′(·) transforms a level �
encryption of m into an encryption of (q�′/q�) · m of level �′ securely. We refer
the refer to the full version of this paper for the correctness proof and noise
estimation.1

Security. We claim that our HE scheme is IND-CPA secure under the hardness
of RLWE problems over the ring R. It can be shown by considering the following
three distributions:

D1 = {(pk, ct) : pk ← KeyGen(params), ct ← Encpk(0)},

D2 = {(pk, ct) : pk ← U(R2
q), ct ← Encpk(0)},

D3 = {(pk, ct) : pk ← U(R2
q), ct ← U(R2

q)}.

First, the distributions D1 and D2 are computationally indistinguishable under
the assumption of R-LWEqL,χerr

(χkey) since the key generation step samples
s from χkey and generates an RLWE sample pk of parameter (qL, χerr). The
second and third distributions are computationally indistinguishable as long
as R-LWEqL,χerr

(χenc) since a sample from D2 forms two independent RLWE
samples of parameter (qL, χerr) with a secret v ← χenc. Finally, the evalua-
tion key evk ← KSGen(s2, s) can be viewed as an encryption of s2 encrypted
by the secret s. The distribution of evk can be indistinguishable from the uni-
form distribution on R2

P ·qL
under the assumption of circular security when the

R-LWEP ·qL,χerr
(χkey) problem is hard.

4.3 Implications of the Conjugate-Invariant Ring

This section compares our approximate HE scheme over the real numbers with
the original HEAAN scheme from a variety of perspectives. We claim that our
scheme can have twice as many plaintext slots as HEAAN while guaranteeing
the same security level and performance. Furthermore, the utilization of the
conjugate-invariant ring fundamentally blocks the complex explosion problem of
HEAAN which possibly effect on the most significant bits of real messages.

Representation of Ring Elements. Our HE scheme is constructed over the
residue ring Rq = {a(X) ∈ Zq[X]/(Xn + 1) : a(X) = a(X−1)} for an integer q.
We introduce two methods to represent the ring elements of Rq with different
pros and cons.

Basically we use the coefficient representation (a0, . . . , an−1) ∈ Z
n/2
q of

a(X) ∈ Rq as described in the previous subsection. The coefficient represen-
tation is useful to perform the non-arithmetic operations such as the rounding
operation in rescaling procedure. However, we have to consider the following
representation for an efficient multiplication between polynomials in Rq.
1 https://eprint.iacr.org/2018/952.

https://eprint.iacr.org/2018/952

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 97

Suppose that q is an integer such that there exists an m-th primitive root
ωm of unity in Zq. Note that ωn := ω2

m (resp. ωn
2

:= ω4
m) is an n-th (resp.

(n/2)-th) primitive root of unity in Zq. The map Zq[X]/(Xn + 1) → Z
n
q , a
→

(a(ωm), a(ω3
m), . . . , a(ωm−1

m)) is a ring isomorphism since the m-th cyclotomic
polynomial is expressed as a product Xn+1 = (X−ωm)(X−ω3

m) . . . (X−ω2n−1
m)

modulo q. We point out that an element a ∈ Zq[X]/(Xn +1) is contained in the
subring Rq if and only if a(ωj

m) = a(ω2n−j
m) for all j = 1, 3, . . . , n− 1. Therefore,

the map a
→ â = (a(ωm), a(ω5
m), . . . , a(ωm−3

m)) is an ring isomorphism from
Rq to Z

n/2
q satisfying â · b = â 	 b̂ for any a, b ∈ Rq, where 	 denotes the

Hadamard (component-wise) multiplication between vectors. It enables us to
perform an arithmetic operation of Rq in O(n) modulo q operations, but the
rescaling procedure cannot be done under this representation.

Complexity of Ring Operations. The conversion between two representa-
tions a
→ â is one of the most important parts to improve the efficiency of
the HE system on Rq. It can be viewed as a linear transformation on Z

n/2
q by

identifying the elements of Rq with their coefficient vectors.
The NTT is a discrete Fourier transform over a finite field. Specifically, the

NTT over the finite field Zq with an m-th primitive root ωm of unity modulo q,
denoted by NTTm(·), converts a polynomial in Zq[X]/(Xm−1) into a vector in Z

m
q

by a
→ (a(ωj
m))0≤j<m. The NTT is a ring isomorphism between Zq[X]/(Xm −

1) and Z
m
q , and its inverse is denoted by INTTm(·). The NTT conversion can

be understood as a linear map from Z
n
q to Z

n
q whose matrix representation is

the m × m Vandermonde matrix generated by {1, ωm, . . . , ωm−1
m }. The FFT

algorithm can compute NTTm(·) in O(m · log m) operations in Zq.
There have been suggested several methods to modify the NTT conversion

to perform some operations used in cryptographic schemes. For example, Alkim
et al. [2] and Longa-Naehrig [31] exploit a variant of NTT to make an efficient
conversion between distinct representations of a ring element in Zq[X]/(Xn +1).
In the following, we propose a specialized FFT algorithm to perform the linear
transformation a
→ â on Rq efficiently.

The main idea is to express the linear transformation a
→ â by a composition
of (n/2)-dimensional NTT conversion and a few simple arithmetic operations.
To be precise, the equality

a(ω4j+1
m) = a(ωm · ωj

n
2
) = a0 +

n
2 −1∑

i=1

ai

(
ωi

m · ωij
n
2

+ ω−i
m · ω−ij

n
2

)

= a0 +

n
2 −1∑

i=1

ai · ωi
m · ωij

n
2

+

n
2 −1∑

i=1

an
2 −i · ω

−(n
2 −i)

m · ωij
n
2

= a0 +

n
2 −1∑

i=1

(
ai · ωi

m + an
2 −i · ω

−(n
2 −i)

m

)
ωij

n
2

= ã(ωj
n
2
)

98 D. Kim and Y. Song

holds for any 0 ≤ j < n
2 where

ã(X) = a0+
(
a1 · ωm + an

2 −1 · ω
1− n

2
m

)
X+· · ·+

(
an

2 −1 · ω
n
2 −1
m + a1 · ω−1

m

)
X

n
2 −1.

Therefore, the linear transformation a
→ â can be written by the composition
of NTTn/2 and a simple arithmetic operation

(a0, . . . , an
2 −1)
→

(
a0, a1 · ωm + an

2 −1 · ω
1− n

2
m , . . . , an

2 −1 · ω
n
2 −1
m + a1 · ω−1

m

)
,

and we can compute its inverse by

a =
(
ã0, 2−1 · (ã1 · ω−1

m + ãn
2 −1 · ωm), . . . , 2−1 · (ãn

2 −1 · ω
1− n

2
m + ã1 · ω

n
2 −1
m)

)

for ã = (ã0, . . . , ãn
2 −1) ← INTTn/2(â).

Now let us consider the multiplication of polynomials in the conjugate-
invariant ring R. For given polynomials a, b ∈ Rq with coefficient representation,
we compute their product c = a · b by computing ĉ = â · b = â 	 b̂ and recover-
ing c from ĉ. It consists of three Hadamard multiplications on Z

n/2
q , two NTTn/2

conversions, and a single INTTn/2. Since the Hadamard multiplication takes only
O(n), the complexity of a multiplication over the special ring Rq can be esti-
mated by three NTT conversions of dimension (n/2), while a multiplication over
the ring Zq[X]/(Xn + 1) includes three NTT conversions of dimension n. As a
result, the computational cost of an arithmetic operation on Rq is almost half
that of the m-th cyclotomic ring.

4.4 Application to Fixed-Point Operation

The HEAAN scheme is able to evaluate a circuit approximately, and specifically
our variant is optimized in an arithmetic over the real numbers. We explain how
to use our scheme to perform the fixed-point operation with a finite precision.

As described in Sect. 4.1, a real-valued vector can be identified with a poly-
nomial in the conjugate-invariant ring R via the canonical embedding τ . For the
use of our scheme in fixed-point operation, the base p in scheme description will
be chosen as a scaling factor. So an arbitrary real vector x ∈ R

n/2 is encoded
to a polynomial m ∈ R such that m ≈ p · τ−1(x) with a small rounding error.
An encryption procedure induces an additional error so that an encryption of
m is a pair ct = (c0, c1) ∈ R2

qL
satisfying [c0 + c1 · s]qL

= m + e ≈ p · τ−1(x)
for some small error e. The precision of an encrypted plaintext is decided by a
scaling factor p and the size of errors, i.e., we can use a larger scaling factor to
keep more significant bits.

Let cti be an encryption of mi ≈ p · τ−1(xi) for i = 1, 2. Then their homo-
morphic multiplication returns a ciphertext ctmult encrypting

m1 · m2 ≈ p2 · τ−1(x1) · τ−1(x2) = p2 · τ−1(x1 	 x2)

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 99

Fig. 3. An example of fixed-point operation

which is an encoding of the slot-wise product x1	x2 with scaling factor p2. Then,
we can use the rescaling procedure RS(·) to obtain an encryption of p·τ−1(x1	x2)
and recover the initial scaling factor p. In Fig. 3, we describe an example of fixed-
point multiplication between 1.12 and 2.34 with scaling factor p = 104. Numbers
in gray boxes represent the encrypted values in plaintext slots.

The scaling factor stays the same and the rescaling procedure reduces a
ciphertext level by one. Therefore, for the evaluation of a circuit with depth
L, the bitsize of largest ciphertext modulus should be O(L · log p) which grows
linearly on the depth and bit precision of plaintext, compared to the exponen-
tial growth based on the HE schemes for exact computations without rounding
operation [8,21].

5 Discussions

5.1 Comparison with HEAAN

The security of our scheme relies on the hardness of R-LWE problem. From
the cryptanalysis on RLWE over the conjugate-invariant ring in Sect. 3.2, our
approximate HE scheme over R = {a(X) ∈ Z[X]/(X2n + 1) : a(X) = a(X−1)}
has (approximately) the same security level as the original HEAAN over
Z[X]/(Xn + 1) for a power-of-two integer n, while the other parameters are
set equal. In this setting, the maximum number of plaintexts packed in a sin-
gle ciphertext in our scheme is n, while that of HEAAN is (n/2). This implies
our approximate HE scheme supports twice more parallel computations than
HEAAN in a SIMD manner (Table 1).

Since it requires n log q bits to express an element of the form a0 +∑n−1
i=1 ai(Xi + X−i) ∈ Rq, both schemes essentially have the same key size and

Table 1. Comparison of our scheme and HEAAN

Approximate HE Ours (2n, q) HEAAN (n, q)

Number of plaintext slots n n/2

NTT dimension n n

Bit size of ciphertexts 2n log q 2n log q

100 D. Kim and Y. Song

ciphertext size. Furthermore, both schemes exploit the NTT of dimension n for a
ring multiplication, so they have almost same arithmetic complexity. As a result,
our scheme over the dimension 2n actually performs as well as HEAAN over the
dimension n while carrying a definite advantage in the number of plaintext slots.

5.2 Full RNS Variant

Many of ring-based HE schemes such as BGV [8,23] and BFV [7,21] require
polynomial arithmetic over a huge modulus. Recent implementations of HE
schemes [27,37] exploit the Residue Number System (RNS) for the perfor-
mance improvements. In particular, there have been suggested some variants
of BFV [4,25] which can be implemented without high-precision arithmetic.

In both the original HEAAN and our scheme, ciphertext moduli are chosen
to be powers of a base because the scaling factor of a rescaling procedure is equal
to the ratio of two consecutive ciphertext moduli. Unfortunately, this restriction
makes it difficult to apply the existing RNS techniques to HEAAN.

Cheon et al. [11] recently proposed a method to fully eliminate the high-
precision arithmetic of HEAAN based on the approximate base. We leave it to
the reader to check that this idea can be directly applied to our scheme.

Acknowledgement. Duhyeong Kim was supported in part by Research Foundation
of Korea (NRF) Grant funded by the Korean Government (Global Ph.D. Fellowship
Program) under Grant 2016H1A2A1906584, and in part by NRF Grant funded by the
Korean Government (MSIT) under Grant 2017R1A5A1015626.

References

1. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report,
Cambridge MA, March 2018. HomomorphicEncryption.org

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: Proceedings of the 25th USENIX Security Symposium, pp. 327–
343. USENIX Association (2016)

3. Arita, S., Handa, S.: Subring homomorphic encryption. In: Kim, H., Kim, D.-C.
(eds.) ICISC 2017. LNCS, vol. 10779, pp. 112–136. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78556-1 7

4. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

5. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

6. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Cryptology ePrint Archive, Report 2018/758 (2018). https://eprint.iacr.org/
2018/758

http://homomorphicencryption.org/
https://doi.org/10.1007/978-3-319-78556-1_7
https://doi.org/10.1007/978-3-319-78556-1_7
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758

Approximate Homomorphic Encryption over the Conjugate-Invariant Ring 101

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM
(2012)

9. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-
LWE revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 6

10. Chen, H., Lauter, K., Stange, K.E.: Attacks on the search RLWE problem with
small errors. SIAM J. Appl. Algebr. Geom. 1(1), 665–682 (2017)

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. Cryptology ePrint Archive, Report 2018/931
(2018). https://eprint.iacr.org/2018/931

12. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

14. Cheon, J.H., Kim, D., Kim, Y., Song, Y.: Ensemble method for privacy-preserving
logistic regression based on homomorphic encryption. IEEE Access 6, 46938–46948
(2018)

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

16. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 19

17. Dathathri, R., et al.: CHET: compiler and runtime for homomorphic evaluation of
tensor programs. arXiv preprint arXiv:1810.00845 (2018)

18. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

19. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

20. Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
63–92. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 4

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-662-49890-3_6
https://eprint.iacr.org/2018/931
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-29485-8_19
http://arxiv.org/abs/1810.00845
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-47989-6_4

102 D. Kim and Y. Song

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178. ACM (2009)

23. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

24. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

25. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. Cryptology ePrint Archive, Report 2018/117 (2018).
https://eprint.iacr.org/2018/117

26. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. IBM Research (Manuscript) (2013)

27. Halevi, S., Shoup, V.: An implementation of homomorphic encryption (2014).
https://github.com/shaih/HElib/

28. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 1209–1222. ACM (2018)

29. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 83 (2018)

30. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on
homomorphic encryption: design and evaluation. JMIR Med. Inform. 6(2) (2018)

31. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

33. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

34. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 461–473. ACM (2017)

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM (2005)

36. Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE problems.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 6

37. Simple Encrypted Arithmetic Library (release 3.0.0). Microsoft Research, Red-
mond, WA, October 2018. http://sealcrypto.org

https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2018/117
https://github.com/shaih/ HElib/
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-319-78381-9_6
http://sealcrypto.org

Excalibur Key-Generation Protocols
for DAG Hierarchic Decryption

Louis Goubin1, Geraldine Monsalve2,3, Juan Reutter2,3,
and Francisco Vial-Prado2,3(B)

1 Laboratoire de Mathématiques de Versailles, UVSQ, Université Paris-Saclay,
Versailles, France

2 DCC, Pontificia Universidad Católica de Chile, Santiago, Chile
fovial@uc.cl

3 IMFD Chile, Santiago, Chile
https://www.imfd.cl

Abstract. Public-key cryptograpy applications often require structur-
ing decryption rights according to some hierarchy. This is typically
addressed with re-encryption procedures or relying on trusted parties,
in order to avoid secret-key transfers and leakages. Using a novel app-
roach, Goubin and Vial-Prado (2016) take advantage of the Multikey
FHE-NTRU encryption scheme to establish decryption rights at key-
generation time, thus preventing leakage of all secrets involved (even
by powerful key-holders). Their algorithms are intended for two parties,
and can be reused to form chains of users with inherited decryption
rights. In this article, we provide new protocols for generating Excalibur
keys under any DAG-like hierarchy, and present formal proofs of security
against semi-honest adversaries. Our protocols are compatible with the
homomorphic properties of FHE-NTRU, and the base case of our secu-
rity proofs may be regarded as a more formal, simulation-based proof of
said work.

1 Introduction

In some public-key cryptography applications, parties own decryption rights over
ciphertexts according to hierarchic structures. For instance, in a mail redirection
scenario it may be required that Alice is able to decrypt all of Bob’s ciphertexts,
and not conversely. If Bob simply transfers his secret key to Alice, she may leak or
sell Bob’s secret, causing a lot more damage than leaking Bob’s plaintexts only.
Overcoming this, proxy re-encryption and hierarchical identity-based encryption
schemes rely on trusted parties to generate master secret keys or involve public
re-encryption procedures. Using a different approach, authors in [4] proposed
two-party computation protocols that securely perform a key generation proce-
dure of the celebrated NTRU-based Multikey-FHE [8]. As a result of this, Alice
receives a key pair (skA, pkA) such that skA can decrypt all of Bob’s ciphertexts,
and no information about Bob’s secret key can be deduced from this key pair,
the execution of the protocol or any public values. Moreover, Alice’s and Bob’s
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 103–120, 2019.
https://doi.org/10.1007/978-3-030-12146-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_7

104 L. Goubin et al.

secrets are tied together, thus effectively avoiding leakage by Alice (assuming
she is not willing to reveal her own secret key skA). The newly-created Excalibur
key pair behaves as a regular key of the system, even allowing multikey homo-
morphic operations when using sufficiently large parameters such as the ones
suggested in [8]. In addition, these keys can be used as inputs to generate more
powerful Excalibur keys, allowing decryption inheritance for a bounded chain
of users. In addition, this whole procedure can be regarded as an automatic
N -hop proxy re-encryption scheme, addressing a re-encryption paradigm in fully
homomorphic encryption scenarios, as pointed out in [4].

In this article we extend these key-generation protocols and provide multi-
party computation protocols in the advised cyclotomic polynomial ring of Stehlé
and Steinfeld [9] that can securely generate FHE-NTRU keys for some types of
DAG-like hierarchies, in such a way that the key of a particular node n in this
hierarchy can decrypt all messages encrypted for nodes below it, while not having
access to secrets (other than own private keys). In order to do this, we address
the case where Bob above is replaced by a set of participants.

As typical MPC applications, our protocols require the composition of sev-
eral routines. In all generality, this poses additional security restrictions, as a
composition of two secure protocols is not necessarily secure (some examples are
given in [3]). This has been the subject of extensive research, and we highlight
the Universal Composability (UC) framework proposed by Cannetti [2] in which
any two UC-secure protocols may be arbitrarily composed ensuring the inheri-
tance of security. In our case, only non-concurrent composition is performed, and
as pointed out in [3], security is proven directly with simulation-based proofs.

Our Contributions. This article provides new protocols that extend those
from [4], addressing the case where k > 2 parties jointly generate an NTRU-FHE
key pair with additional decryption rights, and preventing leakage of secret keys
from the receiving party. To this end, we propose secure multi-party computa-
tion protocols in cyclotomic polynomial rings between parties P1, . . . , Pk that
generate a key-pair for party P1 with decryption rights over all parties involved,
and such that no information about other secret-keys can be leaked from the
execution of the protocol, inputs and outputs, and public values, even if some
parties collude.

We provide security analysis of these protocols in the semi-honest but col-
luded setting, where parties follow the protocols and sample from the correct
distributions but may cooperate with each other to deduce secrets. The base
case of our security analysis may be regarded as a more formal, simulation-
based proof of the protocols in [4]. Achieving security in malicious adversarial
settings (where parties may deviate or sabotage the protocol) is a challenging
problem for k > 2 parties, which we leave for future work.

In order to generate an Excalibur key pair that inherits decryption of 3 other
keys with 128 bits of security in mind, parties using our protocols need to perform
around 224 1-out-of-2 OT protocols and 224 multiplications in Zq[x]/(xn+1) with
secure NTRU parameters (this can be performed in range of minutes on a regular

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 105

laptop, as per our simulations and [1]). We are confident that there is much to
optimize in these procedures, opening another interesting angle for future work.

Overview of the Article. We begin in Sect. 2 by revisiting necessary concepts
to construct our protocols. In Sects. 3 and 4, we define the notions of security
we want to achieve, and state the corresponding underlying assumptions. Our
protocols are presented in Sect. 5, with proofs and security analysis described in
Sect. 6.

2 Preliminaries

Let q be a large prime. For an integer x ∈ Z, (x mod q) represents the modular
reduction of x into the set {−�q/2�, . . . �q/2�}, which we denote by Zq. The
indicator function of a set S is any function that outputs 1 if the preimage is in
S and 0 otherwise. For a distribution χ that samples from some set S, e ← χ

means that e is sampled from S with the distribution χ, and e $←− S means that
e is sampled from S according to the uniform distribution. We denote tuples of
elements with bold letters. For n a power of 2, let Rq

def= Zq[X]/(Xn + 1) be the
cyclotomic ring of polynomials modulo Xn + 1 and coefficients in Zq.

Invertible Bounded Gaussian Distributions in the Quotient Ring. We
first recall that the ring Rq = Zq[X]/(Xn + 1) is not a unique factorization
domain as Xn + 1 is generally not irreducible in Zq, and units of this ring with
small coefficients are used as NTRU secret keys. For instance, if q = 1 mod 2n,
Xn +1 splits into n linear factors in Zq, ensuring a large key space. See [4,9] for
more details. In the following definition, for a real number r > 0, let Γr be the
Gaussian distribution on R

n centered about 0 and with standard-deviation r.

Definition 1 (Bounded Discrete Gaussian distribution over Rq). For a
real number 0 < B � q, let GB be the B-bounded discrete Gaussian distribution
over Rq, that is, the distribution that samples polynomials from Rq as follows:

1. Sample a vector x ← ΓB, and restart if ||x||∞ > B.
2. Output the polynomial p ∈ Rq whose coefficients vector is �x�.
Let G×

B be the distribution that samples from GB until the output is invertible.

FHE-NTRU Encryption and the Multikey Property. The Multikey FHE
scheme presented in [8] uses a modified version of NTRU (Nth-truncated) encryp-
tion scheme, which we present here for the sake of completeness.

Parameters: Let n be a power of 2, q be a large prime such that q = 1
mod 2n and 0 < B � q. Recall that Rq = Zq[x]/(xn + 1).

Key Generation: Sample a polynomial f ← GB and set sk ← 2f + 1 until
sk is invertible. Sample g ← G×

B and define pk ← 2g · sk−1.

106 L. Goubin et al.

Encryption: For a message m ∈ {0, 1} and public-key pk, sample s, e ← GB ,
and output c ← m + 2e + s · pk mod q.

Decryption: For ciphertext c and secret-key sk, output m = c · skmod 2.
The linearity of the decryption equation allowed authors of [8] to construct

the first Multikey FHE scheme, where the result of homomorphic operations
involving ciphertexts related to different entities can be jointly decrypted by
these parties. As noted in [4], this linearity also implies that a secret key with
small extra multiplicative factors (such as other secret keys) is able to correctly
decrypt, i.e. a polynomial multiplication in Rq of a small number of secret keys
acts as a regular key and inherits the decryption rights of all its factors. For
two parties in [4], the Rq-product of secret keys is performed in a secure MPC
fashion in order to attain the desired property.

3 Security Definitions

We present the usual secure MPC definitions that capture the security of our key-
generation protocols. We distinguish two adversarial settings: the semi-honest
case in which players cooperate with the execution of the protocol and sample
from the correct distributions, but may collude and try to learn secrets from their
shared views; and the malicious case, in which adversaries are not guaranteed
to follow the protocol. In this paper, we only consider semi-honest adversaries,
leaving the malicious case for future work.

3.1 Simulation-Based MPC Security Against Semi-honest
Adversaries

Fix a set of P = {P1, . . . , Pk} of parties. Following e.g. [7], our notion of security
is based on the idea of emulating functionalities, which are k-ary functions f :
({0, 1}∗)k → ({0, 1}∗)k. To describe a functionality f we usually write f =
(f1, . . . , fk), where each fi is a random k-ary function that outputs a string.

As usual, the idea is to show that a protocol computing a functionality f is
secure if all possible information that can be computed by a collusion of some
parties can be simulated by means of the combined input and output of these
parties when executing the protocol.

Let f be a functionality, and π a protocol for computing f . The view of the
i-th party when executing π on input x = {x1, . . . , xk} and security parameter
λ, denoted as viewπ

i (x, λ), is a tuple (xi, ri,m
i
1, . . . ,m

i
j), where ri is the content

of the internal random tape of the i-th party, and mi
1, . . . ,m

i
j represents the

messages sent and received with other parties during the execution of π. For
a set S ⊆ P of parties, we set viewπ

S(x, λ) as the concatenation of each tuple
viewπ

i (x, λ). We also write fS as the tuple formed of each fi, for i ∈ S, and xS

as the tuple formed of each xi, i ∈ S.
The output of the i-th party when executing π on input x = {x1, . . . , xk}

and security parameter λ is denoted as outputπ(x, λ).

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 107

Definition 2. Let P be a set of k parties, and f = (f1, . . . , fk) a functionality.
We say that π securely computes f in the presence of semi-honest adversaries if
for every set S � P of colluded parties there is a PPT algorithm IS such that

(IS(1λ,xS , fS(x, λ)), f(x, λ))
s≈ (viewπ

S(x, λ), outputπ(x, λ))

We now give a proposition that allows us to prove security for protocols that
involve executing other protocols as non-concurrent sub-routines. Let π1, . . . , π�

be protocols computing functionalities φ1, . . . , φ�, and let ρπ1,...,π� be a protocol
computing a functionality g that makes use of π1, . . . , π� in a non-concurrent
fashion, so that πi is called only after πi−1 returns, and additionally, ρπ1,...,π�

pauses when executing each πi. Denote by ρπ1→φ1,...,π�→φ� the protocol where
instead of calling to each πi, an oracle computes the functionality fi. We have
the following.

Proposition 1. If every πi securely computes φi, and ρπ1→φ1,...,π�→φ� securely
computes g, then ρπ1,...,π� securely computes g.

Please refer to [7] for more on simulation techniques. Note that the restriction
that sub-protocols are invoked non-concurrently is key for stating this result in
such a simplified way, instead of using the machinery proposed in [2]. We do
highlight that the restriction of Canetti’s framework into our scenario yields
security requirements equivalent to that of Definition 2 (see [3], Sect. 5.2).

4 Hardness Assumptions

The security of our protocols against semi-honest adversaries is based on two
well-known assumptions (RLWE and DSPR), and the difficulty of new factor-
ization problems in Rq that extend those from [4].

Definition 3 (Decisional Small Polynomial Ratio assumption, from
[9]). For some parameters q, n,B, it is computationally hard to distinguish
between the following two distributions over Rq: (1) A polynomial pk = 2g(2f +

1)−1 ∈ Rq where f, g ← G×
B , and (2) a uniformly random polynomial u

$←− Rq.

Definition 4 (Gaussian Product Distribution). Let ξl
B be the distribution

that samples polynomials pi ← G×
B for i = 1, . . . , l and outputs

∏l
i=1 pi.

Definition 5 (Special factors problem). Let α ← ξl
B and β ← ξm

B . The
Special Factors Problem is to output α, β with the knowledge of c = α · β and
access to the indicator function of {α, β}.

In other words, the task is to find the correct factorization of c. Recall that
Rq is not a UFD, so for any unit u ∈ Rq there is a posible factorization c =
u · (u−1c). In order to find α, β, the solver must query the indicator function.
In our construction, secret keys play the role of the individual factors of c, and
the indicator function consists in encrypt-decrypt key-guessing routines. When
l = m = 1, this is the small factors problem from [4].

108 L. Goubin et al.

Definition 6 (Special GCD problem). Let α, β ← G×
B and y ← ξl

B. Given
u = α · y and v = α · β and access to the indicator function of {α, β, y}, output
α, β and y.

Definition 7 (Special Factors Assumption). For some set of parameters, it
is computationally hard to solve the Special Factors or the Special GCD problems.

As noted in [4], Special GCD reduces to a version of DSPR, and the SF
problem may be expressed as a quadratic system of equations in Zq in the
underdetermined setting, which is considered secure [10]. Moreover, as in [4]
we put it as a conjecture that the additional cyclic structure provided by Rq

does not help an attacker to solve this system.

5 MPC Key Generation Protocols

Our protocols assume a set of participants P = {P1, . . . , Pk}, and the objective
is to create a key pair (sk1, pk1) for participant P1, based on the set (ski, pki)
of all other participants. As we have mentioned, the pair (sk1, pk1) can decrypt
any message encrypted with the public key of any other participant.

We use a basic protocol SPm for computing a certain scalar product, that
works as follows. Party A holds m bits b = (b1, . . . , bm) and party B holds
two vectors r(0) = (r(0)1 , . . . , r

(0)
m) and r(1) = (r(1)1 , . . . , r

(1)
m). At the end of the

protocol, A learns
∑m

i=1 r
(bi)
i and B learns nothing. Note that when m = 1

this is simply a
(
2
1

)
-OT (1-out-of-2 oblivious transfer). The construction of this

protocol is straightforward, and based on [6]. It is outlined in AppendixA.

5.1 Secure MPC Protocols for Multiplication in Rq

The building blocks of our key-generating scheme are two protocols, that we
name k-Multiplication Protocol and k-Shared Multiplication Protocol. Both of
these protocols share the goal of performing a multiparty multiplication of ele-
ments in Rq, but differ in the final output learned by the participants.

Our k-Multiplication Protocol is a nontrivial extension of algorithm 2-MP,
from [4]. We need this algorithm for defining our protocols, so we recall it bellow.

k -Multiplication Protocol (k-MP). We use this protocol to multiply k ele-
ments in our ring. Every participant P� begins with a secret element x� given as
input, as well as a uniformly random polynomial r�. Upon finishing, participant
P1 learns

∏k
�=1 x� +

∑k
�=2 r�, and the rest of the participants learn nothing.

Algorithm 2 contains the detail of this protocol, and Algorithm1 provides
the base case. The idea is to use (k-1)-MP to perform a secure multiplication of
all but participant’s P1 ring elements (see step 8). In turn, the multiplication
for participant P1 is carefully masked with additive uniform noise in order to
avoid input leaking. In the end (Step 12), P1 performs SPm with each other
participant with the goal of cancelling noise.

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 109

Algorithm 1. Two-party Rq multiplication 2-MP, from [4].
Require: Player P1 holds x1 ∈ Rq and P2 holds a pair (x2, r2) ⊂ R2

q . Let m ∈ N be
such that it is unfeasible to compute 2m additions in Rq.

Ensure: Player P1 learns x1 · x2 + r2.
1: procedure k-MP

2: Player P1 generates m polynomials (x1i
$←− Rq)

m
i=1, such that

∑m
i=1 x1i = x1.

3: Player P2 samples m polynomials (r2i
$←− Rq)

m
i=1 such that

∑m
i=1 r2i = r2.

4: for i = 1, . . . , m do

5: Player P1 generates a random bit b $←− {0, 1}, polynomials (v0, v1)
$←− R2

q

and sets vb = x1i.
6: Player P1 sends (v0, v1) to P2.
7: Player P2 computes (e0, e1) = (v0 · x2 + r2i, v1 · x2 + r2i).
8: With a

(
2
1

)
-OT protocol, player P1 extracts eb from P2.

9: Let ê1, . . . , êm be the polynomials extracted by P1 in each of the m steps. Player
P1 computes

∑m
i=1 êi = x1 · x2 + r2.

Algorithm 2. Multiparty multiplication of k elements in Rq

Require: A number of players k ≥ 3. Player P1 holds x1 ∈ Rq and each other player
P� holds a pair (x�, r�) ⊂ R2

q . Let m ∈ N be such that it is unfeasible to compute
2m additions in Rq.

Ensure: Player P1 learns
∏k

�=1 x� +
∑k

�=2 r�.
1: procedure k-MP

2: Player P1 generates m polynomials (x1i
$←− Rq)

m
i=1, such that

∑m
i=1 x1i = x1.

3: Each player P� in P\{P1} samples (r�i
$←− Rq)

m
i=1 such that

∑m
i=1 r�i = r�,

and 2m polynomials (r̂b
�i

$←− Rq)
m
i=1 for b = 0, 1. Let sb

�i = r�i + r̂b
�i.

4: for i = 1, . . . , m do

5: Player P1 generates a random bit b $←− {0, 1}, and polynomials (v0, v1)
$←− R2

q

such that vb = x1i.
6: Player P1 sends (v0, v1) to P2.
7: for j = 0, 1 do
8: Players P2, . . . , Pk perform [k-1]-MP(vj · x2, (x3, s

j
3i), . . . , (xk, sj

ki)).

P2 learns vj · ∏k
�=2 x� +

∑k
�=3 sj

�i.

9: Player P2 adds sj
2i to this output, obtaining ej = vj ·∏k

�=2 x� +
∑k

�=2 sj
�i

10: With a
(
2
1

)
-OT protocol, player P1 extracts eb from P2.

Note that eb = x1i · ∏k
�=2 x� +

∑k
�=2 sb

�i.

11: Let êi be the polynomials extracted in each of these m steps, and bi the random

bits. P1 computes θ :=
∑m

i=1 êi =
∏k

�=1 x� +
∑k

�=2 r� +
∑k

�=2

(∑m
i=1 r̂bi

�i

)
.

12: for � = 2, . . . , k do
13: P1 extracts ŝ� =

∑m
i=1 r̂bi

�i from P� with SP (b, (r0
� , r

1
�)),

where b = (b1, . . . , bm) and rj
� = (r̂j

�1, . . . , r̂
j
�m).

14: Finally, P1 computes θ − ∑k
�=2 ŝ� =

∏k
�=1 x� +

∑k
�=2 r�.

k -Shared Multiplication Protocol(k-sMP). In this protocol every participant
starts with a pair of additive shares (xi, yi) of elements x, y ∈ Rq, and in the end
learns an additive share πi of the product π = x · y, i.e. ,

∑
πi = (

∑
xi) · (∑ yi).

110 L. Goubin et al.

The details of this protocol are shown in Algorithm3. Players perform k(k − 1)
pair-wise multiplications of shares using 2-MP (steps 3–5). The random noise
added by 2-MP serves us to mask the value of the correct shares, and it is then
cancelled out when adding up all polynomials (step 6).

5.2 Excalibur Key Generation Protocols

In out key-generating protocols, players P2, . . . , Pk start with their secret keys
βi, and all players sample a random polynomial si from GB . These polynomials
act as additive shares of P1’s secret, called α (thus P1 does not know α either).
Upon finishing, participant P1 learns the secret key sk1 = α

∏k
i=2 βi, as well as

its public key pk1. On the other hand, all other participants only learn pk1. As
advised in [4], parties generate the public key first, and P1 commits to it.

Public Key Generation (Excpk). Protocol Excpk is used to generate the public
key for participant P1. Every participant Pi apart from P1 holds a key pair
(ski, pki) = (βi, 2hiβ

−1
i). Player P2 plays a special role computing some products.

Upon finishing, a public key pk1 is broadcast to everyone. This public key is a
polynomial of the form 2g(α

∏k
i=2 βi)−1, for additively shared elements α =

2(
∑k

i=1 si) + 1 and g =
∑k

i=1 gi.
The protocol is shown as Algorithm 4. It begins with participants sampling a

gaussian share gi, and random elements ri, tij used to additively mask polyno-
mials, as in protocol 3. Once the joint secret

∏k
i=2 βi is shared, P2 has the task

of inverting it in the ring, multiplying by α−1, g and broadcasting. To avoid P2

extracting or using these secrets, they are separated into multiplicative factors
that do not leak secrets (or, more precisely, such that extracting secrets from
them needs to solve SF or Special GCD problems).

Secret Key Generation (Excsk). Protocol Excsk is used to generate the secret
key sk1 for participant P1, given secret keys β2, . . . , βk of the other partici-
pants. This protocol needs the same additive share of α of the Excpk protocol
(hence the need of semi-honest players). Upon finishing, P1 receives the secret
key sk1 = α

∏k
i=2 βi. The protocol is shown as Algorithm 5, and again it uses our

multiplication protocols together with carefully selected random noise (Fig. 1).

Algorithm 3. Multiparty shared multiplication of k elements in Rq

Require: Each participant Pi holds a pair (xi, yi) of elements from Rq.
Ensure: Each Pi ∈ P learns an element πi, such that

∑k
j=1 πj = (

∑k
j=1 xj)·(∑k

j=i yj).
1: procedure k-sMP

2: Each Pi samples Ri = {rij
R←− Rq | j = [1, k] ∧ i �= j}.

3: for i = 1, . . . , k do
4: for j = 1, . . . , k, j �= i do
5: Pi, Pj perform 2-MP(xi, (yj , rji)). Thus Pi learns uij = xi · yj + rji

6: Each participant Pi computes πi = xiyi +
∑k

j=1,j �=i uij − ∑
r∈Ri

r.

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 111

Algorithm 4. Excalibur Public Key Generation
Require: Participant P1 holds an element s1 ← GB and each other participant holds

βi = ski and si ← GB . Let α = 2(
∑k

i=1 si) + 1.

Ensure: A public key pk1 = 2g(α
∏k

i=2 βi)
−1 for P1.

1: procedure Excpk

2: Each Pi ∈ P samples gi ← GB , ri
$←− Rq and tij

$←− Rq, for j = 1, ..., k.
Let r =

∑k
i=1 ri and g =

∑k
i=1 gi.

3: All participants perform (k)-MP(r1, (β2, t21), . . . , (βk, tk1)). Thus,
P1 learns r′

1 = r1 · ∏k
i=2 βi +

∑k
i=2 ti1.

4: for i = 2, . . . , k do
5: Pi and the rest of participants in P \ {P1, Pi} perform (k-1)-MP. Pi gives

riβi as input, and each other player Pj ∈ P \ {P1, Pi} gives (βj , tji).
Pi learns ui = ri·∏k

j=2 βk+
∑k

j=2,j �=i tji and computes r′
i = ui−∑k

j=1,j �=i tij .

6: With gi, ri and si, r
′
i, all players perform Shared k-MP twice to obtain shares

of w = g · r and z = α · r′ = α
∏k

i=2 βi · r.
Each participant reveal their shares to P2, thus P2 learns z, w.

7: P2 checks: if z is not invertible in Rq, restart the protocol.
8: P2 computes 2w(zβ2)

−1 = 2g(α
∏k

j=2 βj)
−1 and publishes it as pk1.

Algorithm 5. Excalibur Secret Key Generation
Require: Let α = 2(

∑k
i=1 si) + 1 be the same additive share as in protocol 4: Partic-

ipant P1 holds s1 ∈ Rq and each other participant holds a pair (βi, si) ∈ R2
q .

Ensure: A secret-key sk1 = α
∏k

i=2 βi for P1.
1: procedure Excsk

2: Each participant Pi in P \ {P1} samples rij
R←− Rq, with j = 2, . . . , k and j �= i.

Let ri =
∑k

j=2,j �=i rij .
3: for i = 2, . . . , k do
4: Pi and the rest of players from P \ {P1, Pi} perform (k-1)-MP,

with Pi holding 2siβi and each other P� holding (β�, r�i).
Pi learns ui = 2si

∏k
j=2 βj +

∑k
j=2,j �=i rji and computes

Ri = ui − ∑k
j=2,j �=i rij .

5: All participants perform k-MP(2s1 + 1, (β2, R2), . . . , (βk, Rk)), and P1 obtains
sk1 := ((2s1 + 1)

∏k
i=1 βi) +

∑k
i=2

(
2si

∏k
j=2 βj

)
= α

∏k
i=2 βi ∈ Rq

Fig. 1. Steps 4 and 5 from Algorithm 5 for 4 players.

112 L. Goubin et al.

6 Security Analysis

In this section we inspect the security of the proposed scheme against semi-
honest adversaries. Throughout this section, parties {P1, . . . , Pk} participate in
the protocol, player P1 receives the powerful key at the end, and P2 has the
special role of inverting a polynomial in protocol Excpk.

6.1 Extracting Keys After the Protocol

Recall that P1 is provided an Excalibur key pair of the form (sk1, pk1) =
(α · ∏k

i=2 ski, 2g · sk−1
1) ∈ Rq × Rq, and assume that some set of colluded parties

P ′ try and deduce secrets. Note that extracting α is a successful attack, as sk1/α
can be leaked as a valid NTRU key decrypting messages intended to all parties
excepting party P1. Also, extracting a product of secret keys is also an attack
even if individual keys are unknown, because of the multikey property.

Proposition 2. Let P ′
� {P1, . . . , Pk} be a set of colluded parties. The problem

of extracting α, g, r, r′ or any secret key skj of a party Pj /∈ P ′ from public
values, views of the protocol and secret keys of parties in P ′ reduces to instances
of G×

B -GCD or Special Factors problems. The same holds for the problem of
extracting a product of secret keys of honest parties.

Recall that the output of the proposed protocol is a key-pair of the form

(sk1, pk1) = (α ·
k∏

i=2

ski, 2g · sk−1
1) ∈ Rq × Rq,

where for i = 2, . . . , k, (ski, pki) ← NTRU − Keygen() and α = 2(f1 + · · · +
fk) + 1 for polynomials fj sampled from G×

B . The ring elements available to the
uncolluded adversary are given by the output secret key, and public keys. Let
pi = pk−1 ∈ Rq for i ∈ {1, . . . , k}. Note that pi = gi · ski for some gi ∈ Rq.
The task of the adversary that receives sk1 is to extract any element of the set
{α, sk2, . . . , skk} from the view

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sk1 = α · ∏k
i=2 ski,

p1 = g1 · α · ∏k
i=2 ski,

p2 = g2 · sk1,
...
pk = gk · skk.

We proceed by a series of claims. Without loss of generality, we assume
that the attacker intends to extract an individual secret key, since keys can be
grouped together in the view and equations are equivalent, but with different
size parameters. For instance, an attacker extracting sk2 · sk3 can reformulate
the instance defining sk′ = sk2 · sk3, p′ = p2 · p3 and extract sk′ from a wider
distribution.

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 113

Claim. Extracting α from sk1 is an instance of the special factors problem.

Proof. Let β =
∏k

i=2 ski. The task is to extract α from α · β. ��
Claim. Extracting ski for i ∈ {2, . . . , k} from sk1 is an instance of the special
factors problem.

Proof. Let γ = α · ∏k
j=2,j �=i skj . The task is to extract ski from ski · γ. ��

Claim. Extracting ski for i ∈ {2, . . . , k} from the whole view is an instance of
G×

B -GCD problem, for some bound B.

Proof. Write sk1 = δ · ski for some δ ∈ Rq and consider pi = gi · ski. There are
no other equations depending on ski or gi, therefore solving for ski is exactly
solving G×

B -GCD. ��
Claim. Extracting secret keys from the whole view and information from collu-
sion with other parties are G×

B -GCD or special factors problems.

Proof. If the attacker learns ski for i ∈ {2, . . . , k} by collusion, then defining
sk′

∗ = sk∗/ski, p
′
1 = p1/pi reduces to an equivalent instance of the problem of

extracting another secret key. In other words, the view is now
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ski

sk′
∗ = α · ∏k

j=2,j �=i skj , (∗)
p∗ = g′

∗ · α · ∏k
j=2,j �=i skj ,

p2 = g1 · sk1,
...
pk = gk · skk,

and the only equations involving another secret-key skl for l �= i are (∗) and
pl = gl · skl, defining an instance of G×

B -GCD. The same holds for a larger set of
colluded parties. ��
Claim. Extracting α, g, r or any βi from z, w and all public values is an instance
of the special factors problem.

Proof. The task is to extract α, g, r from w = g · r and z = α · r′ with z′ =
r
∏k

i=2 βi. ��

6.2 Extracting Secrets During the Protocols

We address here the security of all our algorithms against semi-honest adver-
saries, during and after the execution.

Definition 8. Consider the following functionalities. All variables are in Rq:

Fk-MP : (x1, (x2, r2), . . . , (xk, rk)) �→ ((
∏k

i=1 xi +
∑k

i=2 ri), , , . . . ,),
Fk-sMP : ((x1, y2), . . . , (xk, yk)) �→ (π1, . . . , πk) where

∑
i πi = (

∑
i xi)·(

∑
i yi);

FExcpk : (s1, (β2, s2), . . . , (βk, sk)) �→ (pk1, pk1, · · · , pk1);
FExcsk : (s1, (β2, s2), . . . , (βk, sk)) �→ (α

∏k
j=2 βj , , · · · ,).

114 L. Goubin et al.

Proposition 3. For ρ ∈ {k-MP, k-sMP,Excpk,Excsk}, ρ securely computes Fρ.

The proof of this result relies heavily on Proposition 1, as we need to show
first that k-MP securely computes Fk-MP, then use this result to show that k-sMP
securely computes Fk-sMP, and so forth. The proof of k-MP is also interesting
because we need to perform an induction on k. In [4], authors discussed intuitive
proofs of the base case of the above proposition, namely k = 2.

Proposition 4 (Simulation-based proof of [4], Sect. 7.1). The protocol
2-MP securely computes F2-MP.

Proof. We first point out that the views of the protocol are semantically secure,
that is, they do not leak any secrets from the protocol if our SF assumption
holds. This is straightforward to see and is detailed in the proof of [4], Sect. 7.1.

As in Sect. 3.1 let x = {x1, (x2, r2)} and S � P be a set of corrupted parties.
Note that, as k = 2, we have S ∈ {∅, {P1}, {P2}}. Now, according to Definition 2,
for every possible set S we construct a PPT algorithm IS such that

(IS(1λ,xS ,F2-MP
S (x)),F2-MP(x))

s≈ (view2-MP
S (x, λ), output2-MP(x, λ)).

Case 1: S = {P1}. The view of corrupt P1 in 2-MP protocol is:

view2-MP
S (x, λ) =

{
x1, x11, x12, . . . , x1m,
(b1, v1

0 , v
1
1 , ê1), · · · , (bm, vm

0 , vm
1 , êm).

Recall that x1 is P1’s input. The values x1i are random polynomials such
that they add up to x1. The random bits bi and the random polynomials vi

j are
such that vi

bi
is equal to x1i. Finally, êi is the output of the oblivious transfer

functionality and
∑m

i=1 êi = x1 · x2 + r2.

Algorithm 6. Simulator for 2-MP corresponding to S = {P1}
Require: 1λ, x1, x1 · x2 + r2
1: procedure IP1

2: Sample m random polynomials (x̃1i
$←− Rq)

m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . . m do
4: Sample b̃i

$←− {0, 1} and (ṽi
0, ṽ

i
1)

$←− R2
q . Set ṽb̃i

= xIi.

5: Sample m random polynomials (ẽi
$←− Rq)

m
i=1, such that

∑m
i=1 ẽi = x1 · x2 + r2.

6: Return x1 together with all the values generated.

We define IS , a simulator of the view of P1, in Algorithm 6. Its output is

IS(1λ,x) =
{

x1, x̃11, x̃12, . . . , x̃1m, (b̃1, ṽ1
0 , ṽ

1
1 , ẽ1), · · · , (b̃m, ṽm

0 , ṽm
1 , ẽm).

Recall that F2-MP(x) and output2-MP(x, λ) are both equal to x1 · x2 + r2.
Therefore, we only need to verify that IS(1λ,xS ,F2

S(x))
s≈ view2-MP

S (x, λ).

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 115

First, both views share x1. The polynomials x11, x12, . . . , x1m are uniformly
generated by P1 in 2-MP. On the other hand, x̃11, x̃12, . . . , x̃1m are uniformly
generated by IS . Also, we have that

∑m
i=1 x1i =

∑m
i=1 x̃1i = x1, yielding that

these sets of polynomials are indistinguishable.
In the same fashion, each bi is a random bit and (vi

0, v
i
1) are random polyno-

mials in Rq chosen by P1. On the other hand, b̃i is a random bit and (ṽi
0, ṽ

i
0) are

random polynomials in Rq generated by IS .
Finally ẽi is chosen at random, while êi equals x1i ·x2+r2i. Note that this last

value is indistinguishable from uniform because of the additive uniformly random
polynomial r2i selected by the honest player P2. We conclude that view2-MP

S (x, λ)
and IS(1λ,xS , y1) are statistically indistinguishable when S = {P1}.
Case 2: S = {P2}. The view of P2 in 2-MP protocol is

view2-MP
S (x, λ) =

{
x2, r2, r21, r22, . . . , r2m, (v1

0 , v
1
1 , e

1
0, e

1
1), · · · , (vm

0 , vm
1 , em

0 , em
1)}

Algorithm 7. Simulator for 2-MP corresponding to S = {P2}
Require: 1λ, (x2, r2).
1: procedure IP2

2: Generate m random polynomials (r̃2i
$←− Rq)

m
i=1 such that

∑m
i=1 r̃2i = r2.

3: for i = 1 . . . m do
4: Generate random polynomials (ṽi

0, ṽ
i
1)

$←− R2
q and compute

(ẽi
0, ẽ

i
1) = (ṽi

0 · x2 + r2i, ṽ
i
1 · x2 + r2i).

5: Return (x2, r2) together with all the values generated.

We define IS in Algorithm 7. Note that F2-MP
P2

(x1, (x2, r2)) is empty. The
output of IS is:

I{P2}(1λ,xP2) =
{

x2, r2, r̃21, r̃22, . . . , r̃2m, (ṽ1
0 , ṽ

1
1 , ẽ

1
0, ẽ

1
1), · · · , (ṽm

0 , ṽm
1 , ẽm

0 , ẽm
1)}

Analogously as before, is it clear that IS(1λ,xS)
s≈ view2-MP

S (x, λ). ��
The rest of the proof is similar to the above case, with an inductive step. We

address the secure computation of k-MP here for the sake of completeness.

Proposition 5. The protocol k-MP securely computes Fk-MP.

Remember that k-MP uses a functionality FSPm for the scalar product as in
algorithm SPm. We proceed with an inductive argument. First, assume that for
all k′ such that 2 ≤ k′ < k, k’-MP securely computes Fk′

. The inductive step
is to show that k-MP(k-1)-MP→Fk−1,SPm→FSPm

securely computes Fk-MP, as we
already established the base case in Proposition 4.

116 L. Goubin et al.

What follows are the views of parties P1 (the key receiver), P2, and P� for
 > 2.

viewk-MP
P1

(x, λ) =

⎧
⎪⎪⎨

⎪⎪⎩

x1,
x11, x12, . . . , x1m,
(b1, v1

0 , v
1
1 , ê1), . . . , (bm, vm

0 , vm
1 , êm),

θ, ŝ1, . . . , ŝk

The elements x1i, bi, v
i
j and êi are as in the proof of Proposition 4. On the

other hand, the polynomial θ is the sum of êi and ŝ� the sum of some random
values rj

�i of player P�.

viewk-MP
P2

(x, λ) =

⎧
⎪⎪⎨

⎪⎪⎩

x2, r2,
r21, r22, . . . , r2m,
(r̂021, . . . , r̂

0
2m), (r̂121, . . . , r̂

1
2m),

(v1
0 , v

1
1 , e

1
0, e

1
1), · · · , (vm

0 , vm
1 , em

0 , em
1)

In P2’s view, the polynomials r2i, r̂
j
2i are uniformly random values in Rq.

viewk-MP
P�

(x, λ) =

⎧
⎨

⎩

x�, r�,
r�1, r�2, . . . , r�m

(r̂0�1, . . . , r̂
0
�m), (r̂1�1, . . . , r̂

1
�m)

Note that the view of P� is a subset of the view of P2. The tuple (x�, r�) is
the party’s input, while r�i and r̂j

�i are uniformly random polynomials.
For the construction of the algorithm IS , we consider the four cases: (i)

P1, P2 ∈ S, (ii) P1 ∈ S, P2 /∈ S, (iii) P1 /∈ S, P2 ∈ S and (iv) {P1, P2} ∩ S = ∅.
Proceeding as in the proof of Proposition 4, for each case we construct a simulator
algorithm and then show indistinguishability between this simulator and the
corresponding view. The complete proof for all claimed functionalities is available
in the full version of this paper. �

6.3 Parameters and Efficiency

The parameters n, q,B control the semantic (and multikey-homomorphic) secu-
rity of the underlying NTRU encryption scheme, and the hardness of our new
problems in Rq of Sect. 4. We consider them fixed and according to the sug-
gested values in [4,8,9] for at least λ = 128 bits of security. The computational
complexity of our key-generation protocol amounts to O((2λ)k−1) instances of(
2
1

)
-OT and O((2λ)k−1) multiplications in Rq (see Appendix B for detailed com-

putations). As a heuristic estimation, in order to securely generate an Excalibur
key pair between 4 participants and with 128 bits of security (this is, create a
key pair that inherits decryption of three parties), there is the need to perform
approximatively 224 OT’s and 224 products in Rq, which is feasible for secure
n, q. With FFT or Karatsuba methods, polynomial multiplication can be carried
out in time Õ(n, q), and oblivious transfers can be efficiently performed using
techniques as OT extensions. For instance, [1] reports computation of 700,000

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 117

(
2
1

)
-OT per second over Wi-Fi, and [5] reduces an OT to three cryptographic

hash computations. In a regular, commercially available laptop, 224 products in
Rq with n = 512 and log2(q) ≈ 256 took us around fifteen minutes (in C++ with
the bignum library GMP (https://gmplib.org/). Although there are relatively
simple efficiency improvements to our protocols, on future work we will focus
on attaining security against malicious adversaries before addressing efficiency
concerns. We point out that, while our protocols may not be efficient enough for
practical applications with a large number of parties, once key-generation pro-
cedures are finished, the resulting keys behave as regular NTRU keys without
extra complexity other than coefficient size (which does not dramatically affect
the efficiency of the NTRU scheme, and is analized in [9]).

7 Conclusion

Our paper extends the original Excalibur key-generation protocols for an arbi-
trary hierarchy of keys, and presents formal proofs for the security of these
protocols. While we have defined our protocols with respect to a participant P1

that aims to obtain a key that decrypts messages of participants P2, . . . , Pk, we
can immediately extend these for any DAG-like hierarchy, as follows. Starting
from the leaves, which already have their key pairs, first generate the keys of
their parents. For a parent with k children, these keys are of the form α

∏
βi,

with α = 2(
∑

si) + 1 a sum of k elements sampled from GB , and each βi the
secret key of one of the leaves. In turn, these keys are used to generate the keys
for nodes at higher levels, and so forth. Note that keys generated in this fashion
are of the form α

∏
γj , where α is as above and γ is itself a product of secret

keys of lower levels (which are either leaves or keys of the same form). Thus,
secret keys for members of higher hierarchies are again products of elements
distributing according to a gaussian distribution, so all of our security proofs
can be extended for more complex hierarchies; we only need to update our hard-
ness assumptions so that they hold with wider gaussian distributions, that is,
bounded by 2kB + 1 instead of B, where k is the outdegree of the hierarchy.

The problem of key-generation in the presence of malicious adversaries is an
interesting direction for future work. In particular, we note that this case is not
immediate form our results, as Definition 2 and Proposition 1 must be tightened
when considering the malicious case, because tampering with intermediate values
may affect the input of other protocols, even if they involve honest players only.

Acknowledgements. We would like to thank the anonymous reviewers for their
comments. This work was supported by Instituto Milenio Fundamentos de los Datos,
Vicuña Mackenna 4860, Santiago, Chile, and Fondecyt Chile (project number 1170866).
The fourth author would like to thank Claudio Orlandi for his insight and for providing
references on simulation-based proofs, and Mart́ın Ugarte for his helpful comments.

A Scalar Product Protocol SPm

In our k-Multiplication protocol (Algorithm2), parties rely on a multiparty
scalar product protocol as a subroutine to cancel additive noise.

https://gmplib.org/

118 L. Goubin et al.

Definition 9. For m ∈ N, let SPm be a two-party protocol performing the fol-
lowing. Party A has a sequence of bits ordered in a binary vector b = (b1, . . . , bm).
For each i = 1, . . . , m, party B has a pair of polynomials (p(0)i , p

(1)
i) of Rq. In

the end, party A learns γ = p
(b1)
1 + p

(b2)
2 + · · · + p

(bm)
m and nothing more. Party

B learns nothing.

We refer to this functionality as a scalar product1, since it computes

γ =
m∑

i=1

p
(bi)
i = (p01, . . . , p

0
m) · bc + (p11, . . . , p

1
m) · b,

where bc = (b̄1, . . . , b̄m) is the binary complement of b. The protocol is outlined
in Algorithm 8 below.

Remark: This protocol can be restated as a
(
2m

1

)
-OT protocol, as follows. For

each x ∈ {0, 1}m, party B computes a mapping x �→ ∑m
i=1 p

(x[i])
i where x[i] is

the i-th bit of x. Then, party A extracts the polynomial corresponding to x′ = b
with a

(
2m

1

)
-OT protocol. We point out that this is highly inefficient, because

B needs to compute O(2m) additions in Rq.

Algorithm 8. Scalar product protocol
Require: Alice holds b = (b1, . . . , bm) ∈ {0, 1}m. Bob holds 2m polynomials

((p
(0)
i , p

(1)
i) ∈ R2

q)
m
i=1. Let κ be such that it is unfeasible to compute 2κ additions

in Rq.
Ensure: Alice learns (p0

1, . . . , p
0
m) · bc + (p1

1, . . . , p
1
m) · b, Bob learns nothing.

1: procedure SPm

2: Alice samples κ vectors b1, . . . , bκ
$←− Z

m such that b1 + · · · + bκ = b.
3: for i = 1 . . . κ do
4: Alice samples a bit σ and two vectors a0,a1

$←− {0, 1}m. She sets aσ ← bi.
5: Alice sends the pair (a1,a2) to Bob.
6: Bob computes

d0 = (p0
1, . . . , p

0
m) · ac

0 + (p1
1, . . . , p

1
m) · a0

d1 = (p0
1, . . . , p

0
m) · ac

1 + (p1
1, . . . , p

1
m) · a1

7: With a
(
2
1

)
-OT protocol, Alice extracts γi := dσ from Bob.

8: Alice computes γ =
∑κ

i=1 γi = (p0
1, . . . , p

0
m) · bc + (p1

1, . . . , p
1
m) · b.

B Algorithmic Complexity

In this appendix we develop expressions for the computational complexity of our
key generation protocols. In this section, let n, q,B be secure NTRU parameters,

1 In the vector space Rm
q . Recall that Rq � Fqn , the field of characteristic qn.

Excalibur Key-Generation Protocols for DAG Hierarchic Decryption 119

m be such that it is unfeasible to compute 2m additions in Rq, and k parties are
involved in the key generation procedure.

As we show below, an Excalibur key pair (sk, pk) can be generated in
O((2m)k) products in Rq and O((2m)k−1) basic

(
2
1

)
-OT protocols. While this is

certainly prohibitive for a large amount of parties and reasonable security, with
fast polynomial multiplication and OT-extension techniques it is possible to gen-
erate a key pair with k = 4 and m = 128 in some minutes. Let us also mention
that this key acts as other keys of the system, that is, after key generation is
completed, no extra complexity is to be expected for encryption, decryption or
homomorphic procedures (other than coefficient size, whose impact in complex-
ity is analyzed in [8]).

Definition 10. Let θ (resp. π) be the computational cost of performing a(
2
1

)
-OT protocol (resp. performing a multiplication in Rq).

Proposition 6. The computational cost of performing k-MP is approximatively
(2m)k−1π + (2m)k−1θ. The computational cost of performing k-sMP is approxi-
matively mk(k − 1)(2π + θ).

Proof. First, note that the computational cost of performing SPm (with κ = m)
is mθ (see Algorithm 8 from AppendixA and note that the scalar product is
not expressed in terms of full Rq products), and the cost of performing 2-MP
is (2π + θ)m. Let uk be the computational cost of performing k-MP. Given the
description of the protocol in Algorithm2, we have the following recurrence:

{
uk = 2muk−1 + kmθ,
u2 = (2π + θ)m.

To see this, note that parties first perform 2m instances of (k-1)-MP, then m(
2
1

)
-OT extractions, and finally (k − 1) scalar products SPm. The solution to

this equation for k ≥ 3 is given by

uk = (2m)k−2u2 + mθ

k∑

i=3

i(2m)k−i,

and therefore the cost of k-MP is approximately (2m)k−1 products in Rq and
(2m)k−1

(
2
1

)
-OT protocols.

Let now vk be the computational cost of performing k-sMP. Parties perform
k(k − 1) instances of 2-MP (Algorithm 3), therefore we have

vk = mk(k − 1)(2π + θ).

��
Proposition 7. The cost of performing both Excpk and Excsk between k parties
is O(uk), that is, O((2m)k−1) products in Rq and O((2m)k−1)

(
2
1

)
-OT protocols.

120 L. Goubin et al.

Proof. In Excpk (Algorithm 4), parties perform one k-MP and (k − 1) instances
of (k-1)-MP. Also, in Excsk (Algorithm 5) parties perform (k − 1) instances of
(k-1)-MP and one final k-MP. The leading term of computational cost in both
cases is therefore O((2m)k−1) products and ((2m)k−1) oblivious transfers. ��
Remark: With m = 128 bits of security against brute force additions in Rq, four
parties need to compute around 224 products in Rq and 224 1-out-of-2 oblivious
transfer protocols.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation, November 2013

2. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 2001 Proceedings of 42nd IEEE Symposium on Foundations of Com-
puter Science, pp. 136–145. IEEE (2001)

3. Canetti, R.: Security and composition of cryptographic protocols: a tutorial (part
I). SIGACT News 37(3), 67–92 (2006)

4. Goubin, L., Vial Prado, F.J.: Blending FHE-NTRU keys – the excalibur property.
In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095,
pp. 3–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4 1

5. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

6. Li, S.-D., Dai, Y.-Q.: Secure two-party computational geometry. J. Comput. Sci.
Technol. 20(2), 258–263 (2005)

7. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography. ISC, pp. 277–346. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57048-8 6

8. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp.
1219–1234. ACM, New York (2012)

9. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

10. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 10

https://doi.org/10.1007/978-3-319-49890-4_1
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-30057-8_10
https://doi.org/10.1007/978-3-642-30057-8_10

Secure Multiparty Computation

The Six-Card Trick: Secure Computation
of Three-Input Equality

Kazumasa Shinagawa1,2(B) and Takaaki Mizuki3

1 Tokyo Institute of Technology, Meguro, Japan
shinagawakazumasa@gmail.com

2 Institute of Advanced Industrial Science and Technology (AIST), Kōtō, Japan
3 Tohoku University, Sendai, Japan

Abstract. Secure computation enables parties having secret inputs to
compute some function of their inputs without revealing inputs beyond
the output. It is known that secure computation can be done by using
a deck of physical cards. The five-card trick proposed by den Boer in
1989 is the first card-based protocol, which computes the logical AND
function of two inputs. In this paper, we design a new protocol for the
three-input equality function using six cards, which we call the six-card
trick.

1 Introduction

Suppose that during the two-candidate election, Alice, Bob, and Charlie wish to
talk about the candidates only if they are supporting the same candidate. Unfor-
tunately, they do not know each other’s supporting candidate. If their supporting
candidates do not coincide, they wish to hide their supporting candidates from
each other in order not to break their friendship. Due to this secrecy condition,
just revealing supporting candidates to others does not work. How can we solve
this problem?

Secure computation, which is one of cryptographic techniques, serves a solu-
tion to such a situation in which parties wish to compare secret information
without leaking it. Specifically, it enables a set of parties to compute some func-
tion of their inputs without leaking the inputs beyond the output. In the above
situation, for the inputs a, b, c ∈ {0, 1} indicating the candidates that Alice,
Bob, and Charlie support, respectively, it is sufficient to securely compute a
three-input function f such that f(a, b, c) = 1 if a = b = c and 0 otherwise.
When the output of the function is 1, they can start to talk about the election
since in this case their supporting candidates are the same. When the output
of the function is 0, they should talk about a topic which is not related to the
election campaigns. In the latter case, thanks to the security of secure compu-
tation, their supporting candidates are hidden from each other. For example,
Alice cannot obtain Bob’s and Charlie’s supporting candidates. The only thing
obtained by Alice is that at least one of Bob and Charlie supports the opposite

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 123–131, 2019.
https://doi.org/10.1007/978-3-030-12146-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_8

124 K. Shinagawa and T. Mizuki

candidate from hers, but this is not problematic since it can be computable from
the output of the function.

Secure computation is one of very active research areas in cryptography. In
this paper, we focus on secure computation using a deck of cards, which is often
called card-based cryptography, while most of secure computation is designed to
be executed on computers. The reason why we choose card-based cryptography
instead of secure computation running on computers, is that it is suitable to a
situation in which all parties gather together in the same place. This is in contrast
to secure computation running on computers which is designed to be executed
among parties whose locations are physically separated. Card-based cryptogra-
phy often provides a simple solution to such an everyday situation since the
participants can watch each other to prevent malicious behavior. For example,
in card-based cryptography, secret information is encoded by a sequence of face-
down cards on a dinning table, instead of encryption as in the standard secure
computation. This is sufficient to enforce honest behavior on parties since any
malicious behavior can be detected by the parties. Moreover, due to its simplic-
ity of model of card-based cryptography, it is easy to understand correctness
and security even for non-experts, compared to secure computation running on
computers. Therefore, this provides a solution such that all parties are convinced
how their secret inputs are protected.

The first research on card-based cryptography is the five-card trick proposed
by den Boer [2]. It provides a very simple solution to the case that two parties
Alice and Bob having a, b ∈ {0, 1}, respectively, wish to securely compute the
logical AND a ∧ b (see Sect. 3). It has two nice properties. The first one is that
it requires only a single shuffle, especially, a random cut. Since a random cut
is accepted1 as the most basic shuffle, this property means that it is the most
efficient in terms of shuffle operation. We call a protocol that only requires a
random cut a single-cut protocol. The second nice property is that at the end of
an execution, all cards are face-up. We call such a protocol a gabage-free protocol.

Despite of these nice properties, as far as we know, no single-cut garbage-free
protocols have been proposed except for the five-card trick. Are these proper-
ties special for the logical AND computation? In this paper, we show that the
answer is NO by constructing a single-cut garbage-free protocol for the three-
input equality function using six cards, which we call the six-card trick.

1.1 Related Works

Card-based protocol begins with the five-card trick proposed by den Boer [2]
in 1989. Crépeau and Killian [1] showed that every function can be securely
computed by applying a number of random cuts. A number of subsequent works
[6,9,10,13,14,16] improved upon the protocols [1] in terms of numbers of cards
and shuffles. While these works [1,6,9,13,14,16] aimed to achieve the feasibility

1 A random cut is securely implemented by a Hindu cut [17], while most of other
shuffles do not have a (direct) secure implementation. Koch and Walzer [5] showed
that every uniform and closed shuffles are reduced to a number of random cuts.

The Six-Card Trick: Secure Computation of Three-Input Equality 125

and the efficiency of general secure computation, there is another line of research
which focuses on a specific problem [2–4,7,8,11,12,15]. Our work focuses on
a specific problem, specifically, the three-input equality function for Boolean
inputs.

There are two types of card-based protocols: “committed format” protocols
(e.g. [1,9]) and “non-committed format” protocols (e.g. [2,8]). The former pro-
duces a sequence of face-down cards that follows the input encoding. Thus, an
output sequence of a committed format protocol can be used to be inputted
to another protocol. In contrast, the latter outputs the result value directly.
A committed format protocol implies a non-committed format protocol for the
same function, by just turning over the output sequence. On the other hand, in
general, non-committed format protocols can be more efficient in terms of the
number of cards and shuffles, compared to committed format protocols. Our pro-
tocol, the six-card trick, is a non-committed format protocol for the three-input
equality function.

1.2 Organization

In Sect. 2, we present basic definitions of card-based cryptography. In Sect. 3,
we review a previous work called the five-card trick. In Sect. 4, we design our
protocol for the three-input equality function, which we call the six-card protocol.
In Sect. 5, we present some open problems. In Sect. 6, we conclude this paper.

2 Card-Based Cryptography

In this section, we present basic definitions of card-based cryptography. Although
the first three subsections provide very common definitions of card-based cryp-
tography, the last subsection defines new properties, which we call single-cut and
garbage-free.

2.1 Basic Setting of Card-Based Protocols

Suppose that Alice, Bob, and Charlie having secret inputs a, b, c ∈ {0, 1}, respec-
tively, wish to compute some function on their inputs without revealing the
inputs beyond the output. (In the two-party case as in Sect. 3, Charlie is ignored.)
They are in the same room together. There are a deck of cards and a flat space
(e.g. dinner table) in the room. Cards will be arranged on the flat space. The
deck of cards in our use contains two types of cards, ♣ and ♥ , whose back
sides are the same pattern ? . All cards having the same type (♣ or ♥) are
indistinguishable. We say that ♣ and ♥ lying on the flat space are face-up cards
and ? is a face-down card.

126 K. Shinagawa and T. Mizuki

2.2 Commitment

We use the following encoding rule for Boolean inputs:

♣ ♥ = 0, ♥ ♣ = 1.

For a bit x ∈ {0, 1}, two face-down cards ? ? having a value x according to
the above encoding is called a commitment to x, denoted by

? ?
︸ ︷︷ ︸

x

.

2.3 Random Cut

A random cut is a random cyclic shift operation. Let X be a sequence of face-
down cards (x0, x1, · · · , xn−1) as follows:

X = ?
x0

?
x1

· · · ?
xn−1

.

For a sequence of cards X, a random cut generates a randomly shifted sequence
(xi, xi+1, · · · , xi+n−1) for a uniformly distributed random integer i, 0 ≤ i ≤ n−1,
denoted by 〈·〉, as follows:

〈

? ? ? ? ?

〉

→ ? ? ? ? ? .

It must satisfy that the random number i is hidden from all parties. Ueda
et al. [17] experimentally showed that a random cut is securely implementable
by applying Hindu cut, which is a kind of shuffling operations widely used in
card games.

2.4 Single-Cut and Garbage-Free Protocols

We say that a card-based protocol is single-cut if it requires only one random
cut and does not require other shuffles. We say that a card-based protocol is
garbage-free if at the end of the protocol, all cards are face-up.

In this paper, we focus on single-cut and garbage-free protocols of the fol-
lowing type:

1. Each party having two cards ♣ ♥ privately places them in the face-down for-
mat according to his/her input. These pairs of cards (possibly with additional
cards) are arranged according to a predetermined permutation.

2. Apply a random cut to the sequence of cards.
3. Turn over all of the cards. The output can be obtained from the pattern of

the resulting sequence.

The Six-Card Trick: Secure Computation of Three-Input Equality 127

For ease of explanation, we define a term cyclic set. For a sequence of face-
up cards, we define its cyclic set as a set of all its cyclic shifted sequences. For
example, the cyclic set of ♥ ♣ ♣ is the set of three sequences:

{

♥ ♣ ♣ , ♣ ♥ ♣ , ♣ ♣ ♥
}

.

We say that a single-cut garbage-free protocol computes a function f :
{0, 1}n → {0, 1} if there exists two cyclic sets C0 and C1 such that for every
input x ∈ {0, 1}n, a sequence of cards after the final step of the protocol is
always contained in Cf(x). For such a protocol, a proof of security is trivial since
all cards are face-down except at the end of the protocol.

3 Five-Card Trick

Before presenting our construction of the six-card trick, we review the seminal
work called the five-card trick proposed by den Boer [2]. This is a secure two-
party protocol computing the logical AND function a∧ b for inputs a, b ∈ {0, 1}.
As the name suggests, it only requires five cards: ♣ ♣ ♥ ♥ ♥ .

Now we are ready to explain the five-card trick. Suppose that Alice and Bob
having a, b ∈ {0, 1}, respectively, wish to securely compute the logical AND
function. The five-card trick [2] proceeds as follows.

1. Alice privately arranges a commitment to negation ā of bit a, and Bob pri-
vately arranges a commitment to b. These two commitments together with
♥ are arranged as follows:

? ?
︸ ︷︷ ︸

ā

♥ ? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

ā

? ? ?
︸ ︷︷ ︸

b

.

It should be noted that the three middle cards would be ♥ ♥ ♥ only if
a = b = 1. (See Table 1.)

2. A random cut is applied to the five cards as follows:
〈

? ? ? ? ?

〉

→ ? ? ? ? ? .

3. Turn over all cards; then, we can consider cyclic sets of two sequences:

♣ ♥ ♥ ♥ ♣ or ♥ ♣ ♥ ♣ ♥ .

The left cases, three (cyclically) consecutive ♥ ’s, imply a ∧ b = 1 and the
right imply a ∧ b = 0.

The correctness of the five-card trick can be observed by Table 1 showing
all possible sequences after Step 1. As described in Sect. 2.4, the security of the
five-card trick is trivial because all cards are face-down except at the end of
protocol.

128 K. Shinagawa and T. Mizuki

Table 1. All possibilities of the sequence after Step 1 of the five-card trick.

(a, b) Sequence

(0, 0) ♥ ♣ ♥ ♣ ♥
(0, 1) ♥ ♣ ♥ ♥ ♣
(1, 0) ♣ ♥ ♥ ♣ ♥
(1, 1) ♣ ♥ ♥ ♥ ♣

4 Six-Card Trick

In this section, we present the six-card trick.
The six-card trick is a protocol that securely computes the three-input equal-

ity function that takes three bits as inputs and outputs 1 if they are the same and
0 otherwise. As the name suggests, it only requires six cards: ♣ ♣ ♣ ♥ ♥ ♥ .
Suppose that Alice, Bob, and Charlie have a, b, c ∈ {0, 1}, respectively, and wish
to securely compute the three-input equality function. The protocol proceeds as
follows:

1. Alice, Bob, and Charlie privately arrange commitments to the inputs a, b,
and c, respectively:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

? ?
︸ ︷︷ ︸

c

.

2. The six cards are arranged as follows:

? ? ? ? ? ?

? ? ? ? ? ? .

3. A random cut is applied to the six cards as follows:
〈

? ? ? ? ? ?

〉

→ ? ? ? ? ? ? .

4. Turn over all cards; then, we can consider cyclic sets of two sequences:

♣ ♥ ♥ ♥ ♣ ♣ or ♥ ♣ ♥ ♣ ♥ ♣ .

The output is 0 if it is the former case and 1 otherwise.

The correctness of the six-card trick can be easily observed by Tables 2 and
3 which show all possibilities of the sequence after Steps 1 and 2, respectively.
As described in Sect. 2.4, the security of the six-card trick is trivial because all
cards are face-down except at the end of protocol.

The Six-Card Trick: Secure Computation of Three-Input Equality 129

Table 2. All possibilities of the sequence after Step 1.

(a, b, c) Sequence

(0, 0, 0) ♣ ♥ ♣ ♥ ♣ ♥
(0, 0, 1) ♣ ♥ ♣ ♥ ♥ ♣
(0, 1, 0) ♣ ♥ ♥ ♣ ♣ ♥
(0, 1, 1) ♣ ♥ ♥ ♣ ♥ ♣
(1, 0, 0) ♥ ♣ ♣ ♥ ♣ ♥
(1, 0, 1) ♥ ♣ ♣ ♥ ♥ ♣
(1, 1, 0) ♥ ♣ ♥ ♣ ♣ ♥
(1, 1, 1) ♥ ♣ ♥ ♣ ♥ ♣

Table 3. All possibilities of the sequence after Step 2.

(a, b, c) Sequence

(0, 0, 0) ♣ ♥ ♣ ♥ ♣ ♥
(0, 0, 1) ♣ ♣ ♣ ♥ ♥ ♥
(0, 1, 0) ♣ ♥ ♥ ♥ ♣ ♣
(0, 1, 1) ♣ ♣ ♥ ♥ ♥ ♣
(1, 0, 0) ♥ ♥ ♣ ♣ ♣ ♥
(1, 0, 1) ♥ ♣ ♣ ♣ ♥ ♥
(1, 1, 0) ♥ ♥ ♥ ♣ ♣ ♣
(1, 1, 1) ♥ ♣ ♥ ♣ ♥ ♣

5 Open Problems

In Sect. 4, we obtained a six-card protocol for the three-input equality function.
A natural question arises: Can we construct a 2n-card protocol for the n-input
equality function? Indeed, we obtain a four-card protocol for the two-input equal-
ity function. For inputs a, b ∈ {0, 1}, the protocol just applies a random cut to
the following sequence:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

,

and outputs 1 if the resulting face-up sequence is ♣ ♥ ♣ ♥ , and 0 otherwise2.
Thus, the answer of the above question is YES for n ∈ {2, 3}.

Unfortunately, by using a computer, we found that there is no eight-card
protocol for the four-input equality function. Thus, the answer of the above

2 This technique was implicitly used in [1].

130 K. Shinagawa and T. Mizuki

question is NO in general. Our conjecture is that the answer of the above question
is NO for all n ≥ 4. We left it as an open question.

Other open problems are as follows:

– Construct a single-cut and garbage-free protocol for the n-input equality func-
tion using more than 2n cards.

– Find single-cut and garbage-free protocols for other interesting functions.

6 Conclusion

In this paper, we designed the six-card trick, which is a single-cut garbage-free
protocol for the three-input equality function. We leave several questions as open
problems.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Numbers 17J01169 and 17K00001. The authors would like to thank Osamu Watanabe
for his valuable comments.

References

1. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

3. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol.
10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72089-0 8

4. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

5. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography.
IACR Cryptology ePrint Archive, vol. 2017, p. 423 (2017)

6. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

7. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6 16

8. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 36

https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-319-72089-0_8
https://doi.org/10.1007/978-3-319-72089-0_8
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36

The Six-Card Trick: Secure Computation of Three-Input Equality 131

9. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

10. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralas. J. Comb. 36, 279–293 (2006)

11. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-
based three-input voting protocol utilizing private permutations. In: Shikata, J.
(ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-72089-0 9

12. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.
In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 30

13. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191(1–2), 173–183 (1998)

14. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
Boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 11

15. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45008-2 16

16. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2),
671–678 (2001)

17. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement
a random bisection cut. In: Mart́ın-Vide, C., Mizuki, T., Vega-Rodŕıguez, M.A.
(eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49001-4 5

https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-48965-0_30
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5

Unconditionally Secure Distributed
Oblivious Polynomial Evaluation

Louis Cianciullo(B) and Hossein Ghodosi

James Cook University, Townsville 4811, Australia
{louis.cianciullo,hossein.ghodosi}@jcu.edu.au

Abstract. Oblivious polynomial evaluation (OPE) was first introduced
by Naor and Pinkas in 1999. An OPE protocol involves a receiver, R who
holds a value, α and a sender, S with a private polynomial, f(x). OPE
allows R to compute f(α) without revealing either α or f(x). Since its
inception, OPE has been established as an important building block in
many distributed applications.

In this article we investigate a method of achieving unconditionally
secure distributed OPE (DOPE) in which the function of the sender is
distributed amongst a set of n servers. Specifically, we introduce a model
for DOPE based on the model for distributed oblivious transfer (DOT)
described by Blundo et al. in 2002. We then describe a protocol that
achieves the security defined by our model.

Our DOPE protocol is efficient and achieves a high level of security.
Furthermore, our proposed protocol can also be used as a DOT protocol
with little to no modification.

1 Introduction

Oblivious polynomial evaluation (OPE) was first introduced by Naor and Pinkas
in 1999 [20]. An OPE protocol involves two parties, a receiver, R who holds a
private value, α and a sender, S who holds a private polynomial, f(x). Informally,
an OPE protocol allows R to learn the evaluation of S’s polynomial at his private
value i.e. f(α), whilst keeping S from learning α and R from learning any more
information about f(x). A more formal definition, adapted from [7] is given
below:

Definition 1 [7]. An OPE protocol is composed of two parties, S who has a
polynomial f(x) over a finite field F and R who has an input value α ∈ F.
Correctness is achieved if, at the end of the protocol, R learns f(α). Security
is guaranteed if the following two conditions are met after the protocol has been
executed:

L. Cianciullo—This research is supported by an Australian Government Research
Training Program (RTP) Scholarship.

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 132–142, 2019.
https://doi.org/10.1007/978-3-030-12146-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_9

Unconditionally Secure Distributed Oblivious Polynomial Evaluation 133

1. S cannot reduce his uncertainty of α, i.e. the probability of S computing α is
1/|F|.

2. R does not learn any information relating to f(x), other than f(α).

OPE has been found to have a myriad of applications in such things as secure
computation [12], oblivious neural learning [7], secure set intersection [15] and
privacy preserving data mining [18]. As a result of this, an extensive amount of
research has been conducted on this topic [7,13–15,17,19,24,25].

Within the literature, OPE protocols come in two flavours, (1) computation-
ally (conditionally) secure protocols, which are secure against an adversary that
is computationally bounded, and security is based on cryptographic assump-
tions; and (2) unconditionally (information theoretic) secure protocols, where
the adversary is computationally unbounded. We limit the focus of this article
to unconditionally secure OPE protocols.

To the best of the author’s knowledge there exists only three unconditionally
secure OPE protocols in the literature. The first unconditionally secure OPE
was given by Chang and Lu [7]. To achieve information theoretic security they
use a third party who takes an active role in the protocol execution. The second
information theoretic secure OPE protocol was given by Hanaoka et al. in [14]
(and was later expanded on in [24]). Their protocol also requires the use of a
third party although, in their protocol the third party acts as an initialiser, in
that he merely distributes some (unrelated, effectively random) information at
the start of the protocol and then takes no further part in the protocol execution.
The third OPE protocol that achieves information theoretic security was given
by Li et al. [17]. Their protocol takes a different approach and instead utilises
a set of servers to collectively implement the function of the sender. We denote
such a scheme as a distributed oblivious polynomial evaluation (DOPE) protocol
in order to differentiate this type of scheme from the other three-party protocols.

In the DOPE protocol of Li et al. [17] the sender initialises the protocol by
distributing some information amongst a set of n ≥ 2 servers. Following this, S
takes no further part in the protocol. To compute his evaluation, R communicates
with a subset composed of t amount of these servers where t ≤ n is known as the
threshold. The sender’s security is guaranteed against a coalition composed of
l − 1 servers and R; whilst the receiver’s privacy is guaranteed against a subset
of b − 1 servers, where b + l < t ≤ n. Li et al. also show how to improve this
scheme allowing for the greater threshold of b = l = t by introducing some
publicly known information. However, we note that this increase in security
comes at a cost. Namely, it increases the overall complexity of their protocol
and it also allows both R and the servers to gain some extra information about
f(x). Since OPE protocols (and by extension DOPE protocols) are generally
used as building blocks in larger multi-party protocols an OPE protocol that
leaks information relating to f(x) may result in security flaws in the overlying
multi-party protocol.

As a result of this, an efficient DOPE protocol that does not leak any infor-
mation and still achieves a high level of security is needed.

134 L. Cianciullo and H. Ghodosi

1.1 Our Contribution

In this paper we develop such a protocol by first describing a model of DOPE and
then introducing an efficient DOPE protocol that achieves the security defined in
our model. Specifically, our proposed protocol allows R to compute his evaluation
by simply broadcasting some information and then receiving contact from t or
more servers. The protocol achieves security for R against a coalition of t − 1
servers and security for S against a coalition composed of t − 1 servers and R
and does not leak any information relating to either f(x) or α.

To develop a model of DOPE we simply apply a slightly modified version
of the already established and well studied security framework developed by
Blundo et al. [4,5] for the purpose of distributed oblivious transfer (DOT) [1,8–
10,21,22]. We then give the construction of a DOPE protocol that is secure
under this model. An interesting property of our protocol is that it can also be
utilised as a DOT protocol with little to no modification.

Our protocol achieves security equivalent to what Blundo et al. describe as a
strong DOT protocol [4]. That is, our DOPE protocol is secure against a coalition
composed of t − 1 servers and R even after R has received f(α).

2 Model

Similar to a DOT protocol a DOPE protocol consists of a sender, S, the receiver,
R and n servers, s1, · · · , sn. As per Definition 1 the sender has a polynomial, f(x)
of degree k ≥ 1 over F, whilst the receiver has a point α ∈ F, such that |F| = q
where q is a prime number and q > max(k, n). We assume a standard model
of communication present in many multi-party protocols [2] i.e. a synchronous
broadcast connection exists between the servers and R, such that R can privately
and simultaneously send the same message to all of the servers. Additionally,
we assume each server has a secure channel that allows them to send private
messages to R. DOPE consists of two phases:

1. Initialisation: S privately distributes some information relating to f(x) to
each of the n servers. Following this S takes no further part in the protocol.

2. Evaluation: R broadcasts some information to all of the servers. A set of
t or more servers send a response to R who then uses this information to
compute f(α).

In order to achieve both correctness and security a DOPE protocol must
satisfy the following security conditions, originally given by Blundo et al. [4] and
informally stated by Corniaux and Ghodosi [9] for the purpose of DOT:

1. Correctness: R is able to compute the requested evaluation after receiving
information from t or more servers.

2. Receiver’s Privacy: A coalition of t − 1 servers cannot compute any infor-
mation relating to α.

Unconditionally Secure Distributed Oblivious Polynomial Evaluation 135

3. Sender’s Privacy: After the initialisation phase (but before the evaluation
phase) a coalition composed of t − 1 servers and R cannot compute any
information relating to f(x).

4. Sender’s Privacy After Protocol Execution: After communication
between R and the servers has occurred and R has computed f(α), a coali-
tion composed of t−1 servers and R cannot compute any information relating
to f(x); other than what the evaluation of R’s chosen value (i.e. f(α)) has
already revealed.

In our model we assume that all participants follow the protocol exactly, i.e.
they are semi-honest. A benefit of our model is that the degree of f(x) (given
as k) is not related to the threshold parameter, t. This allows for a flexible and
easily changeable level of security. For instance, even if the degree of k is small S
can ensure security against a large number of servers by assigning a high value
to t.

In regards to the security conditions given by Blundo et al. it was shown that
a DOT protocol that achieves all four security conditions could only be achieved
in two rounds of communication between the servers and R or by allowing S to
contact R during the initialisation phase. This also proves true for our DOPE
protocol which is given in the next section. We note that, similar to Blundo’s
“Strong DOT Protocol” [4] our protocol assumes that S correctly distributes
the information to the servers and does not try to initiate any further contact
with R or the servers after the initialisation phase.

3 DOPE Protocol

In this section we describe our DOPE protocol and then evaluate the security
of the protocol against the security conditions given in the previous section.

In our proposed protocol S utilises Shamir’s secret sharing scheme to securely
distribute his polynomial among the n servers. For completeness, we will firstly
review Shamir’s secret sharing scheme.

3.1 Shamir’s Secret Sharing Scheme

In a threshold secret sharing scheme a special participant, known as the dealer,
distributes shares of his secret value, s, amongst n participants, in such a way
that any t of these participants can reconstruct s. Whilst t − 1 or fewer partici-
pants cannot compute any information relating to s. Secret sharing is a funda-
mental building block of many distributed protocols. The specific secret sharing
scheme used in this article is Shamir’s secret sharing scheme [23] which is briefly
explained below.

Denote the n participants as P1, · · · , Pn, the dealer as D and let all cal-
culations take place in the finite field F where |F| = q such that q > n is a
prime number. The scheme consists of two phases, the sharing phase and the
reconstruction phase.

136 L. Cianciullo and H. Ghodosi

Sharing Phase

1. D constructs a random polynomial, g(x), of degree at most t − 1, such that
g(0) = s.

2. Each participant, Pi, is privately assigned the share Vi = g(i).

Reconstruction Phase

1. A set of t or more participants perform Lagrange interpolation over their
shares to compute g(x).

2. The participants take g(0) as the secret.

3.2 The Proposed DOPE Protocol

The underlying idea behind our protocol is similar to the protocol given by Li
et al. [17], in that we have S utilise Shamir’s secret sharing scheme to distribute
shares of the coefficients of f(x) to each server.

To achieve privacy for R we have S distribute some semi-random information
along with the shares of the coefficients. Each server receives shares of this infor-
mation whilst R receives the information in its entirety. Using the distributed
information R can then easily distribute his value α among the servers, who
then perform a computation and send the output back to R. Following this, R
computes a polynomial of which the free term is his desired evaluation.

The actual method utilised to distribute shares of α was originally given in
[11] as a means to securely introduce input values under a shared MAC key in
multi-party computation. We specifically use it to allow the contacted servers
to efficiently compute a share of α multiplied by a given coefficient of f(x). The
full OPE protocol is given in Fig. 1.

In Sect. 2 we stated the result of Blundo et al. [4] which proved that a strong
DOT protocol can only be achieved in two rounds. The same is true for our
DOPE protocol, we merely circumvented this limitation by allowing S to contact
R in the initialisation phase. Specifically, in our protocol we have S directly send
the values r1, · · · , rk to R in the initialisation phase. This is actually not strictly
necessary, and to limit direct contact between S and R we could instead have S
distribute shares of r1, · · · , rk to each server. At the start of the evaluation phase
a set of t or more servers would then send R their shares of these values. This
results in a two round protocol in which R only has to be present during the
evaluation phase. This is, of course, the exact same approach taken by Blundo
et al. [4] for their strong DOT protocol.

In fact, due to the similarity of the models our DOPE protocol can easily be
converted to a strong

(
1
m

)
DOT protocol. In a

(
1
m

)
DOT protocol the receiver

wishes to learn 1 of m secrets held by S. If we define S’s secrets as ω1, · · · , ωm

then we can achieve DOT by having S compute f(x) so that f(i) = ωi for
i = 1, · · · ,m. In this case the degree of the polynomial is then k = m − 1. To
learn the ith secret R sets α = i and then executes the rest of the protocol as
before.

Unconditionally Secure Distributed Oblivious Polynomial Evaluation 137

Input: S has the polynomial f(x) = a0 + a1x + · · · + akxk and R the value α.
Output: R receives f(α) and S gets nothing.

Initialisation

1. S creates a set of random values r1, · · · , rk and computes k values of the form
γi = ri · ai for i = 1, · · · , k.

2. For each coefficient, ah (h = 0, · · · , k), S computes a random polynomial,
Ah(x) of degree at most t − 1 such that Ah(0) = ah. He does the same for
each γi value, computing k polynomials of the form Γi(x) with free term
Γi(0) = γi.

3. Using Shamir’s secret sharing scheme S distributes these values among the
servers, giving server sj (j = 1, · · · , n) the following information:

– k shares of the form γij = Γi(j)
– k + 1 shares of the form ahj = Ah(j)

4. S privately sends to R the values r1, · · · , rk and then takes no further part in
the protocol.

Evaluation

1. R broadcasts to all servers a set of k values of the form εi = αi − ri.
2. A set of t or more servers, denoted as W respond to R’s broadcast values.

Each server, sj ∈ W, computes and sends to R the share:

zj = a0j +
k∑

i=1

(aij · εi + γij)

3. R performs Lagrange interpolation across each zj value to compute the poly-
nomial Z(x) with free term Z(0) = f(α).

Fig. 1. The proposed DOPE protocol

Where our protocol differs from many DOT protocols [5] however, is that our
proposed DOPE protocol allows the receiver to contact more than the threshold
amount of t servers. In fact, in our protocol R actually contacts all n servers,
and we require t or more servers to respond to R. The specific servers that do
respond to R can be chosen in any arbitrary fashion, as long as there are t or
more of them. This allows for a fairly robust protocol, in that the protocol can
tolerate up to n − t servers not responding to R.

138 L. Cianciullo and H. Ghodosi

3.3 Evaluation

In this section we evaluate the security of the proposed DOPE protocol by
proving that it meets the conditions given in Sect. 2.

Correctness

Theorem 1. If all participants follow the protocol correctly the receiver obtains
f(α) by contacting t or more servers.

Proof. At the end of the evaluation phase R will have received t or more (up to
n) shares of the form:

zj = a0j +
k∑

i=1

(aij · εi + γij)

Where the share zj is from server sj . Due to the homomorphic nature of Shamir’s
secret sharing scheme linear operations performed on shares also correspond to
the secrets and polynomials these shares are computed from [3]. In other words
the shares correspond to the polynomial:

Z(x) = A0(x) +
k∑

i=1

(Ai(x) · εi + Γi(x))

The free term of each Ai(x) is Ai(0) = ai, similarly Γi(0) = ri · ai, therefore:

Z(0) = a0 +
k∑

i=1

(ai · εi + ri · ai)

Since εi = αi − ri this becomes:

Z(0) = a0 +
k∑

i=1

(ai · αi − ai · ri + ri · ai)

= a0 +
k∑

i=1

ai · αi

= a0 + a1 · α + a2 · α2 + · · · + ak · αk

= f(α)

Receiver’s Privacy

Theorem 2. A coalition of t−1 servers cannot compute any information relat-
ing to α.

Unconditionally Secure Distributed Oblivious Polynomial Evaluation 139

Proof. Suppose that a set of t − 1 servers, who were all contacted by R, form a
coalition. The goal of this coalition is to compute some information relating to
α. Collectively the servers have a set of t − 1 shares relating to each coefficient
of f(x), (i.e. a0, · · · , ak) as well as t − 1 shares relating to the product of each
random value and a coefficient, i.e. γi = ai · ri for i = 1, · · · , k. Additionally,
the servers also have k values of the form εi = αi − ri which gives the following
system of equations:

ε1 = α − r1

ε2 = α2 − r2

...

εk = αk − rk

From the above system we can see that to compute α the coalition would
first need to compute a given ri value. However, due to the perfectly secure
nature of Shamir’s secret sharing scheme [6,23], t − 1 shares does not reveal any
information relating to a given secret. As a result of this, the coalition of servers
cannot compute any information relating to any of the coefficients of f(x), the
γi or the ri values. Since each ri value is chosen at random, and they cannot
compute any information relating to these values the above system is composed
of k independent equations and k + 1 unknowns (each ri value in addition to α)
which results in every possible value of α being equally likely.

Sender’s Privacy

Theorem 3. A coalition composed of t − 1 servers and R cannot compute any
information relating to f(x) during initialisation.

Proof. At the end of the initialisation phase a coalition of t − 1 servers and R
will have the following information:

1. The values r1, · · · , rk.
2. t− 1 shares corresponding to each coefficient polynomial (A0(x), · · · , Ak(x)),

which gives (k + 1)(t − 1) shares.
3. t−1 shares relating to the each of other set of polynomials (Γ1(x), · · · , Γk(x)),

giving k(t − 1) collective shares.

As per the proof of Theorem 1 it is impossible to compute any information about
a given polynomial, of degree t−1, with only t−1 shares. However, the free term
of each polynomial of the form Γi(x) for 1 = 1 · · · k is Γi(0) = riai where ri is a
known quantity. The coalition can use this knowledge to compute a polynomial
with free term ai. This allows them to hold two polynomials with the free term ai.

We note that even with this extra knowledge they cannot achieve anything as
ai is unknown to them and furthermore, holding two sets of t− 1 shares relating
to two different polynomials with the same free term does not actually reveal
any information [16,23].

140 L. Cianciullo and H. Ghodosi

Sender’s Privacy After Protocol Execution

Theorem 4. A coalition composed of t − 1 servers and R cannot compute any
information relating to f(x) after the execution of the protocol, other than what
the evaluation of R’s chosen value, f(α), gives them.

Proof. The proof of this is analogous to the previous proof with the addition
of some extra information, namely the information given to R by the other
servers who contacted him. For the sake of the proof we will assume the worst,
i.e. that all n servers contact R. Without loss of generality and for the sake
of convenience, assume that the coalition is composed of R and the first t − 1
servers, s1, · · · , st−1. This coalition has the exact same information as before,
this time however, they also have the added knowledge of the other n− t server’s
responses to R. That is:

zt = a0t +
k∑

i=1

(ait · εi + γit)

zt+1 = a0t+1 +
k∑

i=1

(ait+1 · εi + γit+1)

...

zn = a0n +
k∑

i=1

(ain · εi + γin)

If the coalition are able to compute any of the polynomials used to distribute
the coefficients of the senders polynomial, A0(x), · · · , Ak(x), or even the polyno-
mials used to distribute the product of the random values and the coefficients,
Γ1(x), · · · , Γk(x), then they can easily compute the value of a given coefficient
of f(x). We must therefore prove that this is not possible.

First, let h = 0, · · · , k and let i = 1, · · · , k then any given server, sj , contacted
by R has k + 1 shares of the form ahj

corresponding to Ah(x) and k shares of
the form γij corresponding to Γh(x). We can write these polynomials as:

Ah(x) = ah + Ah1x + Ah22x2 + · · · + Aht−1x
t−1

Γi(x) = riai + Gi1x + Gi2x
2 + · · · + Git−1x

t−1

Using this notation the response of each server, zj for j = 1, · · · n, can be written
as:

zj =
k∑

y=1

ayα
y +

k∑

h=0

(
εh

(t−1∑

v=1

Ahv
jv

)
)

+
k∑

i=1

(t−1∑

v=1

Givjv
)

Therefore, from n responses R obtains a system composed of n equations
and t(k +1)+k(t−1) unknowns, specifically, t unknowns from each of the k +1
polynomials of the form Ah(x) and t − 1 unknowns from each of the k amount
of polynomials of the form Γi(x).

Unconditionally Secure Distributed Oblivious Polynomial Evaluation 141

However, we note that each zj is composed of a linear combination of polyno-
mials of degree t − 1. Therefore, the system that R constructs is only composed
of, at most, t independent equations. We note that t ≥ 2 and k ≥ 1, meaning
that the amount of unknowns will always be greater than the amount of inde-
pendent equations. As a result of this, R and the coalition of t−1 servers cannot
compute anything from just the responses.

In fact, even with the direct shares of each of the t−1 servers in the coalition
they still cannot compute any information. This is because the equation used
to describe a given share is not linearly independent to the equation used for a
given zj i.e. each zj is simply a linear combination of a given participant’s share
and thus, is not a separate (independent) equation.

The net result for the coalition is a system composed of only t independent
equations and t(k + 1) + k(t − 1) unknowns, resulting in each value of a given
coefficient of f(x) being equally likely.

References

1. Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient dis-
tributed oblivious transfer. J. Comput. Syst. Sci. 78(4), 1142–1157 (2012)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988. ACM, New
York (1988)

3. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

4. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.: On unconditionally secure
distributed oblivious transfer. J. Cryptol. 20(3), 323–373 (2007)

5. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New results on uncondi-
tionally secure distributed oblivious transfer. In: Nyberg, K., Heys, H. (eds.) SAC
2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36492-7 19

6. Corniaux, C.L.F., Ghodosi, H.: An entropy-based demonstration of the security of
Shamir’s secret sharing scheme. In: 2014 International Conference on Information
Science, Electronics and Electrical Engineering, vol. 1, pp. 46–48, April 2014

7. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural
learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 22

8. Cheong, K.Y., Koshiba, T., Nishiyama, S.: Strengthening the security of dis-
tributed oblivious transfer. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009.
LNCS, vol. 5594, pp. 377–388. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02620-1 26

9. Corniaux, C.L.F., Ghodosi, H.: A verifiable distributed oblivious transfer protocol.
In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 444–450.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22497-3 33

10. Corniaux, C.L.F., Ghodosi, H.: An information-theoretically secure threshold dis-
tributed oblivious transfer protocol. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.)
ICISC 2012. LNCS, vol. 7839, pp. 184–201. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37682-5 14

https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/3-540-36492-7_19
https://doi.org/10.1007/3-540-36492-7_19
https://doi.org/10.1007/3-540-45682-1_22
https://doi.org/10.1007/978-3-642-02620-1_26
https://doi.org/10.1007/978-3-642-02620-1_26
https://doi.org/10.1007/978-3-642-22497-3_33
https://doi.org/10.1007/978-3-642-37682-5_14
https://doi.org/10.1007/978-3-642-37682-5_14

142 L. Cianciullo and H. Ghodosi

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

12. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: Efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, pp. 2263–2276. ACM, New York (2017)

13. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

14. Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Win-
ter, A.: Information theoretically secure oblivious polynomial evaluation: model,
bounds, and constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 62–73. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27800-9 6

15. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 4

16. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–
64 (1989)

17. Li, H.D., Yang, X., Feng, D.G., Li, B.: Distributed oblivious function evaluation
and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004)

18. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

19. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

20. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC 1999,
pp. 245–254. ACM, New York (1999)

21. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 16

22. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure dis-
tributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002.
LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-36231-2 31

23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
24. Tonicelli, R., et al.: Information-theoretically secure oblivious polynomial evalua-

tion in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–84 (2015)
25. Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its

applications. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 222–230. Springer, Heidelberg (2005). https://doi.org/
10.1007/11555827 13

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-540-27800-9_6
https://doi.org/10.1007/978-3-540-27800-9_6
https://doi.org/10.1007/978-3-662-46497-7_4
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44448-3_16
https://doi.org/10.1007/3-540-36231-2_31
https://doi.org/10.1007/3-540-36231-2_31
https://doi.org/10.1007/11555827_13
https://doi.org/10.1007/11555827_13

An Efficient Private Evaluation
of a Decision Graph

Hiroki Sudo1,2 , Koji Nuida3 , and Kana Shimizu1(B)

1 Waseda University, Tokyo, Japan
hsudo108@ruri.waseda.jp, shimizu.kana@waseda.jp
2 AIST-Waseda University CBBD-OIL, Tokyo, Japan

3 The University of Tokyo, Tokyo, Japan
nuida@mist.i.u-tokyo.ac.jp

Abstract. A decision graph is a well-studied classifier and has been
used to solve many real-world problems. We assumed a typical scenario
between two parties in this study, in which one holds a decision graph
and the other wants to know the class label of his/her query without
disclosing the graph and query to the other. We propose a novel protocol
for this scenario that can obliviously evaluate a graph that is designed
by an efficient data structure called the graph level order unary degree
sequence (GLOUDS). The time and communication complexities of this
protocol are linear to the number of nodes in the graph and do not include
any exponential factors. The experiment results revealed that the actual
runtime and communication size were well concordant with theoretical
complexities. Our method can process a graph with approximately 500
nodes in only 11 s on a standard laptop computer. We also compared
the runtime of our method with that of previous methods and confirmed
that it was one order of magnitude faster than the previous methods.

Keywords: Decision graph · Homomorphic encryption · GLOUDS

1 Introduction

Classification is a central topic in machine learning (ML), which is aimed at
training a classifier on a set of labeled samples so that the trained classifier can
correctly assign one of the class labels to an input query, and has been success-
fully applied to various real-world problems such as credit scoring, drug discov-
ery, and disease diagnostics [17,20,22]. One of the typical online services using
ML is a classification service where a service provider has a trained classifier and
a user can obtain classification results for his/her data. In fact, software plat-
forms that easily achieve such scenario are already available [1–3], which enables
service providers to publish the application programming interfaces (APIs) of the
trained classifiers on the cloud server. Although both service providers and ser-
vice users can benefit from such classification services, there are certain privacy
concerns about the data. A natural scenario for an online classification service is
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 143–160, 2019.
https://doi.org/10.1007/978-3-030-12146-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_10&domain=pdf
http://orcid.org/0000-0003-2222-3371
http://orcid.org/0000-0001-8259-9958
http://orcid.org/0000-0001-6452-9091
https://doi.org/10.1007/978-3-030-12146-4_10

144 H. Sudo et al.

for a user to send his/her query (an input to a classifier) to a server and the server
to return the classification results based on the classifier. Suppose the online ser-
vice involves disease diagnostics, where the input to the classifier includes the
user’s private information such as health records and genetic information. The
server’s classifier also includes data on donors’ private information because the
classifier was trained on private data. Various model-inversion attacks are pos-
sible [15,16] in this scenario; they can infer sensitive information being used for
training by accessing the trained classifier. Therefore, it is necessary to conceal
both the user’s query and the server’s classifier.

We focused on a decision graph (DG) as a classifier and tackled the problem
of private evaluations of the decision graphs. A decision graph is an efficient
data structure for the classification rules. It is also described as a decision dia-
gram [7] in the logic synthesis literature and as a branching program (BP) [23]
in computer science theory. Compared to complex models such as neural net-
works, the decision graph is easier to interpret and is therefore often preferred
for problems like clinical diagnosis where the interpretation of decision-making is
important. We assumed the underlying graph was a binary graph and defined a
binary decision graph (BDG) as follows. BDG is a rooted directed acyclic graph
(DAG) that consists of a set of nodes of in-degree ≥ 1 and the out-degree of
two or zero. A node with the out-degree of zero is called a leaf and has a class
label. Each internal node contains a split function that decides whether a query
that reaches the node should visit a node connected to the right edge or the
node connected to the left edge, depending on the corresponding attribute of
the query. We assumed in our study that each split function computed whether
or not the input was greater than a threshold t.

The problem setup for this study was as follows: one party (a server) has a
BDG and the other party (a user) wants to obtain a classification result. The
user’s input is a private attribute vector, x = (x0, . . . , xn−1). The length of
the vector and the ordering of the attributes are common information between
the server and the user. The user only knows common information and the
height of the graph (maximum path length from a root node to a leaf). After
computation, the user learns the classification result (a class label); he/she does
not learn anything more than what he/she already knows.

1.1 Related Works

Many studies have addressed the problem of private evaluation of classifiers [13,
21,32]. Brickell et al. [6] and Barni et al. [4] respectively proposed methods
which combine Yao’s garbled circuit [36] and additively homomorphic encryption
(AHE) for private evaluation of the BDG. We will present a detailed comparison
of our method with those approaches in Sect. 4.2. Mohassel et al. [25] have also
proposed a method of private evaluation of BDG; however, they assumed that a
user knew all the outputs of all split functions of a server’s internal nodes, which
differs from our scenario.

Since the decision graph is regarded as a generalized form of a decision
tree (DT), we also describe a series of studies for a private evaluation of DTs.

An Efficient Private Evaluation of a Decision Graph 145

Bost et al. [5] proposed a secure decision tree evaluation protocol as part of
their work. Their method evaluated a decision tree as a polynomial of Boolean
variables using leveled fully homomorphic encryption. Although this method
improved efficiency compared to other conventional methods, it still suffered
from the problem of computation and communication costs. A recent work by
Wu et al. [35] achieved more practical computational time and communication
size. Their method was only based on AHE and performed efficiently for shallow
trees; however, it did not perform well for the evaluation of deep trees because of
its exponential time and communication complexity for the height of the trees.
Cock et al. [10] proposed a protocol that achieved time complexity that was
similar to Wu et al.’s algorithm and improved runtime by using arithmetic shar-
ing to avoid heavy modular exponentiation. However, their protocol assumed a
different problem setup where a trusted initializer participated in the protocol
to generate multiplication triplets. The trusted initializer could be removed, but
the additional costs of generating the multiplication triplets by the two parties
was exponential to the height of the tree, which greatly deteriorated the run-
time. Tai et al. [30] formulated a decision tree evaluation as a compact linear
function to attain a protocol in which time complexity was only dependent on
the number of internal nodes and was independent of the exponential of the tree
height.

Protocols for DTs can theoretically be applied to private evaluations of BDG
if the underlying graph is transformed into a tree. However, the number of nodes
in the tree, that is equivalent to the graph, becomes very large. As we will discuss
in Subsect. 2.4, two in-coming edges to an internal node cause a copy of all
the subordinates of the node on transformation, which leads to the exponential
growth in total tree size.

We also noted that a BDG achieved accurate predictions while it achieved
lower model complexity than DT [19,26,27,29], and it even achieved consider-
ably improved generalization [29]. A BDG with 3,000 nodes achieved the same
accuracy as a DT with 22,000 nodes in the classification of a Kinect dataset in
a study by Shotton et al. [29].

1.2 Our Contribution

The five main contributions of this paper are summarized below:

– We propose an efficient protocol for the oblivious evaluation of a BDG. More
precisely, the protocol allows two parties, one holding a BDG T , and the other
holding an attribute vector, x, to determine the class label of x, without
revealing T and x to the other party in a semi-honest setting.

– The time and communication complexities of our protocol are linear to the
number of nodes and the height of T and exclude any exponential factors.

– The DAG of the BDG in our protocol is represented by a look-up vector V ,
and the other party obliviously refers to V . We demonstrate how the length
of V is reduced by using a succinct data structure called GLOUDS to achieve
linear complexity.

146 H. Sudo et al.

– An oblivious evaluation of a split function in each internal node is conducted
before graph traversal. We propose a novel protocol called eROT that enables
the correct edges to obliviously be chosen during traversal.

– We implemented our protocol and tested it on BDGs of various sizes; we found
that its actual runtime and communication size were concordant with the
theoretical complexities. We also compared the runtime and communication
size of our protocol to those in previous studies [4,6] to confirm that our
protocol was an order of magnitude faster.

The rest of the paper is organized as follows. Section 2 describes impor-
tant building blocks for the proposed method and the security model that was
assumed for this study. We detail our method in Sect. 3 and evaluate it on various
datasets in Sect. 4. Section 5 concludes the paper.

2 Preliminary

2.1 Notation

We denote vector v as (v0, . . . , vn−1) and the i-th element of v as v[i]. The
{a0, . . . , an−1} represents a set of size n. The {ai}n−1

i=0 stands for {a0, . . . , an−1}.
We define the “rotation” of a vector as: given n dimensional vector v, the r-
rotation of v results in vector v̂, each of whose elements is v̂[(i + r)mod n] = v[i].
The 〈P (x)〉 returns 1 if predicate P (x) is true given x, otherwise 0. The notation,
r ∈R A, means r is a uniformly chosen random value from a set A. We define λ-
bit unary representation of x ∈ {0, . . . , λ−1} as a λ-bit vector that has 1 at x-th
least significant bit and has 0 at the other bits, and denote it as UNARYλ(x).

2.2 Additively Homomorphic Encryption

We used a semantically secure additively homomorphic public-key encryption
scheme in our protocol and especially assumed a lifted-ElGamal cryptosys-
tem [11] with plaintext space Zp whose message in a ciphertext is located in
the exponent. The public-key encryption scheme is equipped with three algo-
rithms:

1. KeyGen: outputs a public/private key pair (pk, sk).
2. Encpk(m): outputs a ciphertext [[m]], by encrypting a plaintext m, with pk.
3. Decsk([[m]]): outputs a plaintext m, by decrypting a ciphertext [[m]], with sk.

[[m]] represents a ciphertext of a plaintext m. Likewise, [[v]] represents a ciphertext
vector, each of whose elements is an encryption of each element of a vector v. A
public key of AHE has ⊕, ⊗, � operations on ciphertexts described as follows.
Given two plaintexts m1,m2, we can compute [[m1+m2]] = [[m1]]⊕[[m2]] by using
⊕ operation. We can also compute multiplication by a constant k ([[k · m]] =
k ⊗ [[m]]). Negation on a ciphertext is represented by �[[m]]. In our setting, the
user generates and holds a public/private key pair (pk, sk), and the server only
receives a public key pk so that only the user can decrypt ciphertexts and the
server can only conduct encryption and additively homomorphic computation.

An Efficient Private Evaluation of a Decision Graph 147

2.3 Oblivious Transfer

Oblivious transfer (OT) is a secure two-party protocol between a sender and
a chooser. A chooser in 1-out-of-N OT specifies an index i ∈ {0, . . . , N − 1},
and only obtains the i-th element of the sender’s vector v, without disclosing
i to the sender. We denote the execution of OT with an index i, and a vector
v by OTN

1 (i,v). While there are several efficient implementations that achieve
OTN

1 functionality, we use simple protocols based on additively homomorphic
operation which require O(N) computational cost and communication size. For
the space limitation, we omit the implementation detail.

2.4 GLOUDS

The graph level order unary degree sequence (GLOUDS) [14] is the succinct
data structure of a DAG, which is a query-time efficient data structure that uses
the space close to information-theoretic lower bound. GLOUDS regards a DAG
as an integration of a spanning tree and “non-tree” edges that are not included
in the tree, and introduces the idea of “shadow nodes”, which are duplicates of
non-tree nodes (nodes with incoming edges > 1) to virtually treat a graph as
a tree, while it avoids unnecessary copies of nodes. When we transform a DAG
into an equivalent tree, it is necessary to repeat copying of a subtree rooted from
a non-tree node for all the incoming edges to the node, which causes exponential
growth in total tree size. Since GLOUDS generates as many shadow nodes as
the number of non-tree edges, it is considered to be efficient when there are not
too many non-tree edges.

More precisely, GLOUDS consists of a trit (0, 1, 2) sequence B of length N
and an auxiliary vector H, where N is the sum of the number of nodes and the
number of edges + 1. The nodes in the DAG are numbered in level order (from
top to bottom and left to right) and the root is numbered 0. The nodes are visited
in level order during construction of GLOUDS. When each node is visited, 0 is
stored in B, and all the children of the node are stored in left-to-right order. If a
child is already observed, a trit 2 is stored in B, and 1 otherwise. The root node
is considered as a child of an unshown supernode, and hence 1 is stored in B as
the first element (i.e., B[0] = 1). H memorizes numbers of shadow nodes in the
order in which they appear in B as 2. For the case of the DAG in Fig. 1, after
storing B[0] = 1, B[1] = 0 is stored when the node “0” is visited. Since the node
“1” and “2” are the children of the node “0” and they are not observed, B[2] = 1
and B[3] = 1 are stored. Similarly, B[4] = 0, B[5] = 1 and B[6] = 1 are stored
for the visit of the node “1”, and B[7] = 0, B[8] = 2 and B[9] = 1 are stored for
the visit of the node “2”. Note that B[8] = 2 because the node “4”, which is the
left child of the node “2”, is already observed. 4 is recorded in H[0] = 4. After
visiting all the nodes, B and H are described as B = 10110110210110210000
and H = [4, 7]. Either 1 or 2 in vector B corresponds to any one of the nodes
in the DAG, and 0 is regarded as a delimiter between groups of siblings. Note
that 0 is also considered as a parent node of a right-neighbour group of siblings;
therefore, the same node appears more than once in B.

148 H. Sudo et al.

Here, we define two operations on sequence B as:

Definition 1. Operations on trit sequence B
Rankc(B, p): returns the number of c ∈ {0, 1, 2} in the prefix B[0, p) (0 ≤ p < N)
Selectc(B, i): returns the position of the i-th c ∈ {0, 1, 2} in B (i starts from 0.)

One can move from a position p in B that stores a trit 1 or 2 (a parent node),
to another position p′ (x-th child of the node) by carrying out the equation below.

p′ =

{
Select0(B,Rank1(B, p)) + x (if B[p] = 1)
Select0(B,H[Rank2(B, p)]) + x (if B[p] = 2)

(1)

For simplicity, we let SelRan(B, p) be the first term of Eq. 1. The SelRan(B, p)
computes a position in B of the left delimiter of B[p]’s children. Since the siblings
are stored sequentially, one can specify the x-th child by adding an offset x to
SelRan(B, p). Figure 1 has an example of SelRan. For example, let us consider
the case of p = 2. B[2] corresponds to the node “1”. The children of the node
“1” are “3” and “4”, and they correspond to B[5] and B[6]. SelRan(B, 2) returns
4 and B[4] = 0 is the left delimiter of them. We define a map of a position in B
and a node id, such that ID(p) returns id of the node that corresponds to B[p].
For example, ID(2) = 1 and ID(4) = 1. Note that ID(p) = ID(SelRan(B, p)).
GLOUDS can be regarded as a generalization of the level order unary degree
sequence (LOUDS) [18], which is a succinct data structure for ordered trees;
hence, our protocol can be immediately applied to DT.

GLOUDS

DAG
SelRan vector
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 4 7 4 10 13 7 13 16 10 17 18 13 18 19 16 17 18 19

0

1 2

43

7 8

5

6

Fig. 1. Example of a BDG, corresponding GLOUDS and SelRan vector.

2.5 BDG and Efficient Design Principle of a Look-Up Vector by
GLOUDS

BDG consists of a rooted DAG and a set of split functions {Spliti}m−1
i=0 , where m

is the number of internal nodes. Given an attribute X ∈ Z, a split function that
is assigned to an internal node performs a greater than operation: Spliti(X) =
〈ti < X〉 to choose either a right or left child. BDG in our protocol is mainly
represented by a look-up vector v of length N (also referred to as the SelRan
vector), and a vector of ciphertexts [[o]] that encrypts an offset vector o of length
N . v represents the DAG, and o represents outputs of all the split functions
taking a query (a set of attributes). Both v and [[o]] are held by the party holding
the BDG, and the other party traverses the BDG by obliviously referring to those
vectors. v and o are described as:

An Efficient Private Evaluation of a Decision Graph 149

v[i] =

{
SelRan(B, i) (if B[i]
= 0)
i (else)

and o[i] =

{
〈θ[i] < Xi〉 + 1 (if τ [i] = I)
0 (else)

,

where Xi is a user’s attribute for the split function that is associated with node
ID(i), τ is a type vector storing the types of each position and θ is a threshold
vector. τ [i] = L(eaf) if node ID(i) is a leaf, τ [i] = Z(ero) if node ID(i) is not
a leaf and B[i] = 0. τ [i] = I(nternal) otherwise. θ[i] is a threshold of a split
function that is associated with node ID(i) when τ [i] = I. θ[i] is set to empty
otherwise. v[p] returns the position of the left delimiter of node ID(p)’s children
and o[p] returns the choice of a child. Therefore, one can compute the position
of next node in B by:

p′ = v[p] + o[p].

Note that the outputs of split functions include both parties’ privacy; hence, the
two parties need to jointly compute [[o]] without revealing their private param-
eters. We will describe how this is accomplished in Subsect. 3.4. v and o allow
self-loop at positions {i | B[i] = 0, 0 ≤ i < N} by setting v[i] = i and o[i] = 0.
If one reaches such position i and node ID(i) is a leaf, one can stay on the same
leaf to conceal the path length from the root toward each leaf. The self-loop
at a non-leaf node can avoid incorrect traversal. The party holding BDG also
prepares label vector z. z[i] is set to a class label associated with node ID(i) if
τ [i] = L and B[i] = 0. Otherwise, z[i] is a random value within the possible range
of class labels. Figure 2 has an example of these data structures that represent
a BDG. The nodes and edges that are colored in orange show an example of a
traversal from the root node to the node 7 when 〈t0 < x0〉 = 1, 〈t2 < x2〉 = 0
and 〈t4 < x4〉 = 0. The corresponding elements in the table in Fig. 2 are also
colored in orange. The traversal starts by referring to v[0] = 1 to know the
next position is v[0] + d0 = 3. Similarly, one can know the next position by
v[3] + d2 = 8, and visits the node 7 by v[8] + d4 = 14. Finally, one reaches the
position v[14] + 0 = 18 where a self-loop is allowed, and stays at the position
while computing v[18] + 0 = 18.

It is possible to design more space-efficient SelRan vector and auxiliary vec-
tors, and we used it for the experiments in Sect. 4, however, we do not describe
how we designed such vectors due to the space limitation. See the forthcoming
full version of this paper for the details.

3 Method

3.1 Problem Setting

We assumed a party A had a private attribute vector x, and a party B had
a private BDG T , in our protocol. A and B are referred to as a user and a
server in previous sections. Both x and T must be concealed from the other
party. A and B participate in the two-party secure BDG evaluation protocol.
A only obtains an output of BDG T (x), while he/she gains no information
about B’s private information except for T (x). B obtains nothing. We assumed

150 H. Sudo et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ID 0 0 1 2 1 3 4 2 4 5 3 6 7 4 7 8 5 6 7 8

1 0 1 1 0 1 1 0 2 1 0 1 1 0 2 1 0 0 0 0

1 1 4 7 4 10 13 7 13 16 10 17 18 13 18 19 16 17 18 19

I Z I I Z I I Z I L Z L L Z L L L L L L

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. Example of a BDG (left graph) and data structures for the BDG described in
Subsect. 2.5 (right table). ri is a random value. (Color figure online)

A and B shared three kinds of information: (1) length of the SelRan vector,
(2) height of the BDG, and (3) length of the attribute vector. We considered a
standard adversarial model in this work: a semi-honest model [8], in which even
a corrupted party adheres to the specifications of a protocol.

3.2 Overview of Our Protocol

Our protocol is composed of following phases.

Comparison Phase (for Constructing Offset Vector): B eventually constructs
and stores the encrypted offset vector without decrypting A’s inputs in this
phase. A and B securely calculate split functions associated with nodes to achieve
this purpose. B stores all the decisions on which branch will be selected as cipher-
texts. We used a secure comparison protocol to calculate split functions.

Evaluation Phase (for Computing Class Label on BDG): Two parties descend
from the root to a leaf in the evaluation phase by recursively referring to
the SelRan vector and [[o]] constructed in the comparison phase. After a leaf
is reached, A retrieves a label associated with the leaf from z.

We will first describe several secure two party protocols that will be build-
ing blocks in Subsect. 3.3, and then explain how to construct the comparison
phase and evaluation phase in detail in Subsect. 3.4. Our protocol can be seen
as a sequential composition of the two protocols, Comparison Phase and Evalu-
ation Phase. Therefore, security of our protocol is obvious if the underlying two
protocols are secure.

3.3 Building Blocks

Comparison Protocol. A two-party secure comparison protocol that securely
computes 〈x < y〉, is required to calculate split functions in Comparison phase.
We used a variant [34] of the DGK comparison protocol [12] in our implemen-
tation, which is based on additively homomorphic encryption.

While problem settings of comparison protocols vary, we assumed the fol-
lowing setting: A and B had a plaintext input x and y. Only B acquired the
encrypted comparison result [[〈x < y〉]]. Since we simply used the protocol and

An Efficient Private Evaluation of a Decision Graph 151

did not modify it, we will not go into details about the specification of the com-
parison protocol here. When x and y are � bit integers, the time complexity and
communication of both A and B are O(�) in the DGK comparison protocol.

Recursive Oblivious Transfer. A recursively accesses B’s SelRan vector v,
in the evaluation phase, i.e., A repeats querying an element of v and sets the
next query depending on the query result. Not only queries but also intermediate
results sent from B need to be hidden to protect private information for both
parties. We used a known secure two-party protocol called recursive oblivious
transfer (ROT) [28,31] for this problem.

Assuming B has a plaintext vector v of length N and A specifies a query
p0, ROT ensures that A obtains v[v[. . . v[p0] . . .]] and B obtains nothing after an
arbitrary number of iterations. ROT consists of σ steps, where σ is a common
parameter between A and B. Except for the initial and the last steps, rest of
the steps repeat the same protocol. The initial step computes the next position
starting from the initial position p0 specified by A. At the end of the initial
step, A and B gain shares of the next position p1 = v[p0]. The k-th step (k =
1, . . . , σ − 2) updates the position using the shares of the k-th position pk. i.e.,
A and B gain shares of the next position pk+1 = v[pk], p′

k+1 and rk+1 where
rk+1 ∈R Z is a random value. In the last step, the final value v[pσ] is not divided
into shares and only A knows the value.

For convenience, we denote (p′
k+1, rk+1) ← ROT(p′

k, rk,v) for the k-th step
of ROT, which takes shares of a query pk (i.e., p′

k, rk), and a vector v as inputs,
and outputs p′

k+1 to A and rk+1 to B. The initial step can also be represented
by this notation by setting 0 to r0. The time complexity and communication size
of one round in ROT is O(N) on both A’s and B’s sides due to the cost of OT.

eROT. The goal of eROT is recursive references to the offset vector o when it is
encrypted. Specifying a query p0, A obtains o[o[. . . o[p0] . . .]] after an arbitrary
number of iterations, and B obtains nothing. To achieve this goal, we assumed
B had an N × λ ciphertext matrix Ω, instead of [[o]]. Each row Ω[i] is meant
to represent o[i]. More concretely, Ω[i] is a vector, each of whose elements is
an encrypted bit of UNARYλ(o[i]). For example, o[i] = 0 is represented by
Ω[i][0] = [[1]], Ω[i][1] = [[0]] and Ω[i][2] = [[0]] when λ = 3.

Initial (0-th) step:

1. B generates a random value r1 ∈R Z, and prepares a vector u′ whose i-th
element is masked by r1: u′[i] =

⊕λ−1
j=0 (Ω[i][j] ⊗ (j + r1)mod N) (namely,

u[i] = [[o[i]]],u′[i] = [[(o[i] + r1)mod N]].) B stores r1.
2. A (chooser) and B (sender) engage in OTN

1 (p0,u′). A obtains (p1 + r1)mod N

decrypting u′[p0] = [[(p1 + r1)mod N]].

152 H. Sudo et al.

k-th (k = 1, . . . , σ − 2) step:
A holds p′

k = (pk + rk)mod N and B holds rk.

1. B generates a random value rk+1 ∈R Z. Then, B prepares a vector u′ whose
i-th element is masked by rk+1: u′[i] =

⊕λ−1
j=0 (Ω[i][j] ⊗ (j + rk+1)mod N). B

stores rk+1.
2. B rotates u′ by rk elements to obtain û′.
3. A (chooser) and B (sender) engage in OTN

1 (p′
k, û′), and A obtains (pk+1 +

rk+1)mod N decrypting u′[pk] = [[(pk+1 + rk+1)mod N]].

Last step:
B does not mask u[i](=

⊕λ−1
j=0 (Ω[i][j] ⊗ j mod N)) in the last step to send a true

value to A.

1. B rotates u by rσ−1 elements to obtain û.
2. A (chooser) and B (sender) engage in OTN

1 (p′
σ−1, û), and A obtains u[pσ−1] =

[[pσ]]. A obtains o[o[. . . o[p0] . . .]] = pσ by decrypting [[pσ]].

For convenience, we denote (p′
k+1, rk+1) ← eROT(p′

k, rk,Ω) for the k-th step
of eROT, which takes shares of a query pk (i.e., p′

k, rk) and a matrix Ω as
inputs, and outputs p′

k+1 to A and rk+1 to B. The initial step can also be
represented by this notation setting from 0 to r0. Since the major part of the
time complexity is the inner product and OT, the time complexity on B’s side
in one round is O(Nλ). The time complexity on A’s side is O(N) per iteration.
The communication size per iteration is O(N) due to the communication size
for OT.

We state that the following security theorem is established for eROT.

Theorem 1. eROT correctly outputs o[o[. . . o[p0] . . .]] and is secure in the semi-
honest setting.

Proof. Correctness: Each row of Ω is an unary representation of a value, and
hence conducting u′[i] =

⊕λ−1
j=0 (Ω[i][j]⊗(j+r)mod N) correctly yields an encryp-

tion of (p+r)mod N , where p is the value stored at Ω[i]. Therefore, by performing
the initial step of eROT, the two parties can obtain shares (p1 + r1)mod N and r1
of the true position p1. In the k-th step, A’s input p′

k = (pk +rk)mod N to OT is a
share of the true position pk, and the two parties can obtain a correct element by
rotating u′ by rk before conducting OT. After decrypting the encrypted value
obtained by OT, A knows the share of the next position pk+1. In the last step, B
does not mask u′ and, therefore by induction it holds that the protocol correctly
outputs o[o[. . . o[p0] . . .]] to A.

Security: All the messages are exchanged by OT. Considering that secure OT is
used, it is guaranteed that no information of A is leaked to B. Security against a
semi-honest user is established by secret sharing. Shares of intermediate results
received by A are indistinguishable from uniformly distributed random values
due to the property of modular addition. Thus, a semi-honest user cannot acquire
any information from intermediate results. �

An Efficient Private Evaluation of a Decision Graph 153

Algorithm 1. Detailed description of comparison phase
– Public inputs: length of GLOUDS N ; height d; length of attribute vector n
– Private input of B: threshold vector θ; type vector τ
– Private input of A: attribute vector x

Step (1): A and B conduct comparison protocol coorperatively and B obtains
[[〈θ[j] < Xj〉]]. Xj is an element of attribute vector corresponding to the
position j. B constructs a flag matrix F .

for j ∈ {0, . . . , N − 1} do
if τ [j] = I then

F [j][0] ← [[1]], F [j][1] ← [[〈θ[j] < Xj〉]], F [j][2] ← [[0]]

Step (2): B constructs W from F

for j ∈ {0, . . . , N − 1}, k ∈ {1, 2} do
if τ [j] = I then

W [j][k] ← F [j][k − 1] ⊕ (�F [j][k]) � [[UNARY2(〈θ[j] < Xj〉)]]
Step (3): B constructs an encrypted offset matrix Ω based on W .

for j ∈ {0, . . . , N − 1} do
if τ [j] = Z or τ [j] = L then

Ω[j][0] ← [[1]], Ω[j][1] ← [[0]], Ω[j][2] ← [[0]] � [[UNARY3(0)]]
else if τ [j] = I then

Ω[j][0] ← [[0]], Ω[j][1] ← W [j][1], Ω[j][2] ← W [j][2]
� [[UNARY3(〈θ[j] < Xj〉 + 1)]]

3.4 Secure BDG Evaluation Using GLOUDS and AHE

Comparison Phase. A and B construct an encrypted matrix Ω, which cor-
responds to offset vector o. The comparison phase ensures that no information
from B or A will be disclosed, other than the number of comparisons. The fol-
lowing describes how we constructed Ω. The detailed algorithm is provided in
Algorithm 1.

Construction of F : Each split function is associated with one of positions
{j | τ [j] = I ∧ 0 ≤ j < N}. A and B conduct a secure comparison proto-
col in Step (1) of Algorithm 1 to securely compute all the comparison results
between attributes and thresholds. B finally constructs a flag matrix F . We do
not need to compute F [j] if τ [j]
= I.

Construction of W : B constructs a matrix W , each of whose rows is an
encrypted 2-bit unary vector that represents an output of a split function.

Construction of Ω: B constructs Ω in Step (3) based on W and τ . To make
an encryption of UNARY3(〈θ[j] < Xj〉 + 1), we set Ω[j][0] = [[0]] if τ [j] = I. If
τ [j]
= I, Ω[j] stores UNARY3(0). Note that the lengths of rows of Ω can be
reduced to 1 when τ [j]
= I (because the offset is 0). This is because B knows the
offsets that do not rely on any user information and can minimize the bit length.
To use the reduced form of the offset matrix, we modify the inner product in

154 H. Sudo et al.

each step of eROT to
⊕uj

j=0(Ω[i][j] ·(j +r)mod N), where uj ∈ {1, 3} is the length
of the row. As a result, we can also reduce the time complexity to O(N), where
N is the length of GLOUDS.

Also note that the calculation of an offset can be omitted when the node is
a shadow node. A new type of position for shadow nodes should be defined to
do that to distinguish them from other internal nodes.

We state that the following security theorem is established for Algorithm 1.

Theorem 2. Algorithm 1 correctly outputs Ω and is secure in the semi-honest
setting.

Proof. Correctness: When an attribute Xj is less than an threshold θ[j],
(W [j][1],W [j][2]) becomes ([[1]], [[0]]), otherwise ([[0]], [[1]]) assuming the correct-
ness of the underlying secure comparison protocol. Therefore, all the rows of Ω
satisfy the condition that they represent offsets in encrypted unary vectors.

Security: We have assumed that the underlying secure comparison protocol is
secure in the semi-honest setting. Since the procedures after the secure compar-
ison protocol only require server side operations on ciphertext, the security of
the comparison phase is guaranteed by the security of the secure comparison
protocol. �

Evaluation Phase. This section describes the evaluation phase in which the
participants securely descend a BDG using ROT and eROT.

We need to recursively refer to v and Ω by starting from an initial position
p0 = 0 to move from the root to the leaf. The next position pi+1, given a starting
position pi on GLOUDS, which corresponds to the child, is calculated by adding
the pi-th elements of a SelRan vector v, and an encrypted offset matrix Ω. The
next iteration will be executed after the next position pi+1 is set.

The private information of both parties must simultaneously be protected.
There are two main security requirements: (1) B should not know the positions
specified by A or the results of the protocol, and (2) v and Ω held by B should be
concealed from A. We used ROT and eROT to recursively refer to v and Ω con-
cealing private information. Algorithm 2 describes the details of the evaluation
phase satisfies the previously explained functionality and security requirements.

First, A and B start initialization in Step (1). B sets r1 = r2 = r′ = 0. The
r1, r2 store random values used in the previous iterations of ROT and eROT, and
r′ is sum of r1 and r2 modulo N . A sets the initial position p′

0 = 0. The two
parties engage in ROT and eROT in Step (2) to update the position on GLOUDS
by recursively referring to v and Ω. The (β′

k+1, r1) and (ω′
k+1, r2) correspond to

random shares of v[pk+1] and an offset o[pk+1], which can be recovered by using
B’s random values r1, r2, and rotating v and Ω (without knowing these values
due to the security of OT). Since the position of the x-th child is determined by
SelRan(B, p) + x, the next query is p′

k+1 = (β′
k+1 + ω′

k+1)mod N . This iteration is
conducted d times regardless of the depth of a leaf, which should be reached. It
should be noted that a position is fixed once it is reached at a position in B with

An Efficient Private Evaluation of a Decision Graph 155

Algorithm 2. Detailed description of evaluation phase
– Public input: length of GLOUDS N ; height d
– Private input of B: SelRan vector v, encrypted offset matrix Ω, label vector z

Step (1): Initialization

B conducts: r1 ← 0, r2 ← 0, r′ ← r1 + r2

A conducts: p′
0 ← 0

Step (2): Update the position in GLOUDS by iterating ROT, eROT.

for k = 0 to d − 1 do
A and B engage in ROT and eROT.
(β′

k+1, r1) ← ROT(p′
k, r′, v), (ω′

k+1, r2) ← eROT(p′
k, r′, Ω)

B conducts: r′ ← (r1 + r2)mod N

A conducts: p′
k+1 ← (β′

k+1 + ω′
k+1)mod N

Step (3): Get the output of BDG T (x) from z using OTN
1 (p′

d, z).

trit 0, which ensures that the last position is in the position that corresponds to
the leaf due to the definition of v and Ω. Finally, A obtains the output of the
BDG T (x) from z using OTN

1 (p′
d,z) in Step (3).

We state that the following security theorem is established for Algorithm 2.

Theorem 3. Algorithm 2 correctly outputs T (x) and is secure in the semi-
honest setting.

Proof. Correctness: Due to the way the look-up vector v and Ω are con-
structed, it is obvious that the evaluation phase can correctly compute v[pk] +
o[pk] in k-th step, if v and Ω are not randomized. v is randomized by r1 and Ω
(i.e., o) is randomized by r2. Since following equation is established by consid-
ering the property of modular addition,

{p′
k+1 − r′}mod N = {(β′

k+1 − r1) + (ω′
k+1 − r2)}mod N

= v[pk] + o[pk] = pk+1,

p′
k+1 = (β′

k+1 +ω′
k+1)mod N and r′ = (r1 + r2)mod N are the shares of pk+1, hence

one can obtain shares of v[pk+1] and o[pk+1] by conducting ROT and eROT with
the same arguments p′

k+1 and r′. The label corresponding to the leaf is obtained
by OT in Step (3). Therefore, by induction it holds that the evaluation phase
correctly outputs T (x).

Security: For the space limitation, we will only sketch out a proof. In Algo-
rithm2, all the messages are exchanged through OT in the subroutines ROT
and eROT. Considering secure OT is used, it is guaranteed that no informa-
tion of A is leaked to B. All the messages sent from B are random share of B’s
information. Therefore, it is guaranteed that no information of B is leaked to A
except for the final output T (x). �

156 H. Sudo et al.

3.5 Complexity

This subsection discusses the asymptotic time complexity and communication
complexity of our protocol. The majority of computational and communication
costs in the comparison phase are due to the comparison protocol and the con-
struction of an encrypted offset matrix. The time complexity of the comparison
protocol on the whole is O(�m) on B’s side. It is O(�(n + m)) on A’s side by
considering the encryption of an attribute vector and decryption of intermediate
results. The construction of an encrypted offset matrix requires O(N) compu-
tational cost as the computational cost is linear to the sum of the lengths of its
rows. Therefore, the total time complexity of the comparison phase is O(�m+N)
on B’s side and O(�(n + m)) on A’s side. Since an encrypted offset matrix is
constructed offline, all of the communication cost is required by the secure com-
parison protocol. The communication cost for B is O(�m) and that for A is
O(�n + m) in the comparison phase. The time complexities of both A and B
are O(dN) for the evaluation phase. This is because ROT and eROT require
O(dN) computational cost. The communication cost is also O(dN). We have
summarized the time and communication complexity in Table 1.

Table 1. Time complexity and Communication of each phase of our method. d is the
height of a DAG, � is the bit length of A’s and B’s inputs, m is the number of split
functions, n is the number of nodes in a DAG and N is the length of B.

Phase Time Communication # rounds

Comparison (A) O(�(n + m)) O(�n) 2

Comparison (B) O(�m + N) O(�m)

Evaluation (A) O(dN) O(dN) d + 1

Evaluation (B) O(dN) O(dN)

4 Experiments

We evaluated the efficiency of our protocol with experiments under various set-
tings. We implemented our protocol, which is secure against the semi-honest
model using the C++ library of elliptic curve ElGamal encryption [24]. We used
secp256k1 for the security parameters of lifted-ElGamal, which is secure at the
128-bit security level [9]. We used a standard desktop PC with a Xeon 3.40-GHz
processor for a party B (a server) and a standard desktop PC with a Xeon 2.40-
GHz processor for a party A (a user) (1 thread each). Both the server and the
user were in the same local area network (LAN) in our experiments.

An Efficient Private Evaluation of a Decision Graph 157

Fig. 3. CPU time (s) of server and user, and communication size (MB) on simulated
datasets. We varied d from 16 to 20 while fixing other parameters (m = 557, n = 95,
and N = 1110.)

4.1 Experiment on Simulated Dataset

First, we will present the results obtained from experiments on the simulated
dataset. The dataset was composed of pairs of BDGs and attribute vectors.
We varied the height d of the BDGs from 16 to 20 one by one, while fixing
the number of nodes to 1110 (the number of comparisons m was 557.) and the
lengths of attribute vectors n to 395. These parameters (except for d) were taken
from Brickell et al. [6] to enable performance to be later compared in Sect. 4.2.
Figure 3 plots the CPU time and communication size of the server and the user
in our protocol. We observed that even when d was 20, our protocol finished
within a practical timeframe and communication size (27 s and 14MB). We also
confirmed that the CPU time and communication size of both the server and
the user were linear to d, which is consistent with theoretical complexity. We
also confirmed that runtime overhead caused by network latency was not too
large. When the round trip time (RTT) was 45ms, which is regional RTT within
North America [33], the increase in runtime was only 6 s.

4.2 Comparison to Conventional Methods

Brickell et al. [6] proposed a O(n + �N + d) time BP (BDG) evaluation method
based on AHE and Garbled Circuit. [6] reported the performance of their pro-
tocol on a BDG (1107 nodes and 395 attributes) as 302 s in CPU time and
25MB in communication size. Since the exact topology of the BDG they used
was unshown, we conducted an experiment on BDGs that have the same num-
ber of nodes and attributes with various heights for fair comparison. The results
revealed that our method maintained 11 times better performance in runtime
(26 s) than that of [6] and required 1.8 times less communication size (14MB)
even when the DAG is as high as d = 20. Barni et al. proposed a privacy-
preserving evaluation method of LBP which is a generalization of BP. The time
complexity of this method is O(n+m�′ +d) where �′(> �) is bit length of thresh-
old. Barni et al.’s [4] performance on the ECG dataset (d = 4,m = 6 and n = 4)

158 H. Sudo et al.

was 6.8 s in computation (without network communication) and 0.1122MB in
communication size. The performance of our method with the same parameters
was about 8.85 times better (0.768 s) than [4] in terms of computational cost,
although our method incurred slightly more cost in communication (0.156MB).
Additionally, the security level in our experimental setting was higher than that
of [4,6]. (They conducted experiment at a 80 bit security).

We also conducted experiments on DTs trained using several real datasets
used by conventional methods [5,30,35]. Even compared to the methods spe-
cialized in DT, the experimental results showed that the performance of our
method exceeds that of Bost et al.’s method [5] and is almost equivalent to
those of Wu et al.’s and Tai et al.’s methods [30,35]. Additionally, our protocol
had an advantage on deep decision trees over [35] whose complexity is exponen-
tial to d. When d = 17,m = 58, and n = 57, our method achieved about a 4 fold
faster runtime. The methods specialized in DTs can be used for BDGs by trans-
forming a BDG into an equivalent DT. Their computational cost increases along
with the increase of redundant nodes and edges incurred by the transformation.
Therefore, while the state-of-the-art method by Tai et al. [30] performed slightly
better than our method for DT evaluation, its runtime became worse than our
method’s runtime when it is tested on complex BDGs.

5 Conclusion

We proposed an efficient protocol for evaluating BDGs, which was designed by
AHE and did not use heavy cryptographic primitives, such as fully homomor-
phic encryption. The protocol obliviously evaluated a look-up vector that was
constructed based on GLOUDS to achieve linear time and communication com-
plexities. We also proposed a design principle for the look-up vector to further
reduce the vector size. The results obtained from the experiments indicated that
the actual runtime and communication size were well concordant with theoreti-
cal complexities and that the runtime of our method was an order of magnitude
faster than that in the previous approaches [4,6]. We also confirmed that our
method was even faster for the DT evaluations compared to a previous approach
that specialized in DT [35] when the tree was deep. Our method demonstrated
a runtime in an experiment with BDGs that was faster than the state-of-the-art
method of DT evaluation [30] that took advantage of the fact that a graph with
information equivalent to that in a tree was much more compact than the tree.
These results confirmed the efficiency of our method, and we also hope that it
will contribute to secure utilization of valuable classifiers that aggregate knowl-
edge extracted from abundant data resources. Another remarkable feature of
our protocol is that it directly simulates step-by-step graph traversal, whereas
other efficient methods [30,35] reformulate the graph traversal as an evaluation
of polynomial equations. By using an additional look-up vector, our protocol
enables traversals both to ascendant and to descendant. Such a feature could be
useful for various applications that require more complex graph traversal (i.e.
searching on DFA).

An Efficient Private Evaluation of a Decision Graph 159

Acknowledgements. A part of this work is supported by Okawa Foundation
Research Grant and JST CREST grant numbers: JPMJCR1503, JPMJCR1688,
JPMJCR14D6.

References

1. Amazon machine learning - predictive analytics with AWS (2017). https://aws.
amazon.com/aml/

2. Google cloud machine learning at scale — google cloud platform (2017). https://
cloud.google.com/products/machine-learning/

3. Microsoft Azure: Machine learning (2017). https://azure.microsoft.com
4. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:

Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 26

5. Bost, R., Popa, R., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS, pp. 1–14 (2015)

6. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: CCS. pp. 498–507. ACM Press, New York (2007)

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
TC 100(8), 677–691 (1986)

8. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Information Security
and Cryptography, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14303-8

9. Certicom Research: Standards for Efficient Cryptography 2 (SEC 2): Recom-
mended elliptic curve domain parameters (2010). http://www.secg.org/sec2-v2.
pdf

10. Cock, M.D., et al.: Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation. Cryptology
ePrint Archive, Report 2016/736 (2016). https://eprint.iacr.org/2016/736

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

12. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

13. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML, pp. 201–210. JMLR (2016)

14. Fischer, J., Peters, D.: GLOUDS: representing tree-like graphs. Discrete Algo-
rithms 36, 39–49 (2016)

15. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: CCS, pp. 1322–1333. ACM
Press, New York (2015)

16. Fredrikson, M., Lantz, E., Jha, S., Lin, S.: Privacy in pharmacogenetics: an end-
to-end case study of personalized warfarin dosing. In: USENIX, pp. 17–32 (2014)

17. Huang, C.L., Chen, M.C., Wang, C.J.: Credit scoring with a data mining approach
based on support vector machines. Expert Syst. Appl. 33(4), 847–856 (2007)

https://aws.amazon.com/aml/
https://aws.amazon.com/aml/
https://cloud.google.com/products/machine-learning/
https://cloud.google.com/products/machine-learning/
https://azure.microsoft.com
https://doi.org/10.1007/978-3-642-04444-1_26
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://eprint.iacr.org/2016/736
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30

160 H. Sudo et al.

18. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554. IEEE
Press, New York (1989)

19. Kohavi, R., Li, C.H.: Oblivious decision trees graphs and top down pruning. In:
IJCAI, pp. 1071–1077. Morgan Kaufmann, San Francisco (1995)

20. Lavecchia, A.: Machine-learning approaches in drug discovery: methods and appli-
cations. Drug Discov. Today 20(3), 318–331 (2015)

21. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: CCS, pp. 619–631. ACM Press, New York (2017)

22. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology:
challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

23. Meinel, C.: Modified branching programs and their computational power. LNCS,
vol. 370. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0017563

24. Mitsunari, S.: C++ library implementing elliptic curve Elgamal crypto system.
https://github.com/herumi/mcl

25. Mohassel, P., Niksefat, S.: Oblivious decision programs from oblivious transfer:
efficient reductions. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 269–
284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 20

26. Oliveira, A.L., Sangiovanni-Vincentelli, A.: Using the minimum description length
principle to infer reduced ordered decision graphs. Mach. Learn. 25(1), 23–50
(1996)

27. Oliver, J.J.: Decision graphs: an extension of decision trees. Technical report,
Department of Computer Science, Monash University (1992)

28. Shimizu, K., Nuida, K., Ratsch, G.: Efficient privacy-preserving string search and
an application in genomics. Bioinformatics 32(11), 1652–1661 (2016)

29. Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., Criminisi, A.: Decision
jungles: compact and rich models for classification. In: Burges, C.J.C., Bottou, L.,
Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) NIPS, pp. 234–242. Curran
Associates Inc., New York (2013)

30. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: Foley, S., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66399-9 27

31. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: CCS, pp. 519–528. ACM
Press, New York (2007)

32. Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf.
Syst. 14(2), 161–178 (2008)

33. Verizon Enterprise Solutions: Verizon: IP latency statistics (2017). http://www.
verizonenterprise.com/about/network/latency/

34. Veugen, T.: Improving the DGK comparison protocol. In: WIFS, pp. 49–54. IEEE
Press, New York (2012)

35. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees
and random forests. PoPETS 4, 1–21 (2016)

36. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS, pp. 162–167. IEEE
Press, New York (1986)

https://doi.org/10.1007/BFb0017563
https://github.com/herumi/mcl
https://doi.org/10.1007/978-3-642-32946-3_20
https://doi.org/10.1007/978-3-319-66399-9_27
https://doi.org/10.1007/978-3-319-66399-9_27
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/

Post-Quantum Cryptography

Key Reuse Attack on NewHope Key
Exchange Protocol

Chao Liu1(B), Zhongxiang Zheng2, and Guangnan Zou3

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, People’s Republic of China

liu chao@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, People’s Republic of China
zhengzx13@mails.tsinghua.edu.cn

3 Space Star Technology Co., Ltd., Beijing, People’s Republic of China
zouguangnan@spacestar.com.cn

Abstract. In recent years, Ring Learning with Errors (RLWE) key
exchange has been recognized for its efficiency and is considered a poten-
tial alternative to Diffie-Hellman (DH) key exchange protocol. We focus
on RLWE key exchange protocols in the context of key reuse. In 2016
(ePrint 085), Fluhrer firstly presented an attack aiming at the case where
party B reuse his secret key. In key reuse attack, the adversary plays the
role of A with the abilities to initiate any number of key exchange ses-
sions with party B. The adversary initiates a sequence of key exchange
sessions with a malformed key, then looks for the signal variations sent
by party B. In this work, we describe a new key reuse attack against
the NewHope key exchange protocol proposed by Alkim et al. in 2016.
We give a detailed analysis of the signal function of the NewHope and
describe a new key recovering technique based on the special property of
NewHope’s signal.

Keywords: RLWE · Key exchange · Post quantum · Key reuse ·
Active attack

1 Introduction

In 1994, Shor [16] devised that the discrete log problem can be solved in polyno-
mial time by quantum computers. The fact that currently used Diffie-Hellman
(DH) key exchange algorithms are mainly based on the hardness of the discrete
log problem, leads to the search for cryptographic protocols with resistance to
all known quantum algorithms. Lattice based constructions which appear to be
resistant to attack by both classical and quantum computers, have been regarded
as an important candidate for post-quantum cryptography. Recent progress in
the development of Learning With Errors (LWE) and its variants puts lattice
cryptography in an excellent position for use in practice. The Learning With

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 163–176, 2019.
https://doi.org/10.1007/978-3-030-12146-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_11

164 C. Liu et al.

Errors (LWE) problem was first introduced by Regev in [15] and then Lyuba-
shevsky, Peikert and Regev [11] proposed an algebraic variant of LWE called
Ring Learning With Errors (RLWE), which is of better efficiency.

Key exchange is a fundamental cryptographic primitive where cryptographic
keys are allowed to exchanged between two or more participants. LWE and
RLWE based key exchange protocols are considered to be a desirable replacement
for DH protocols. Ding et al. firstly introduced such key exchange in [8] and
several recent key exchange variants [2–5,14,18] that rely on the hardness of
the LWE problem or RLWE problem have been proposed and implemented. In
RLWE based key exchange, the two parties A and B firstly compute approximate
values using the public key of the other’s, then party B sends an additional
information about the interval in which the approximately equal value lies, to
party A. Finally, both two parties compute a shared secret using this additional
information which we refer to as the signal. In this paper, we consider the case
that party B reuses his secret key. Since key reuse is widely adopted for efficiency
reasons (see [7], Sect. 4), attack analysis on such case will reveal some potential
danger of the key exchange protocol.

In this work, we focus on NewHope key exchange proposed by Alkim et al.
in [2]. NewHope implementation is very rapid, and is tested in Google Chrome
Canary browser for its post quantum experiment [9]. And it was awarded the
2016 Internet Defense Prize [17].

Previous Work. The first attack on RLWE key exchange for reused public keys
was described by Fluhrer in [10]. A detailed description of key reuse attack is
presented by Ding et al. in [6] on key exchange proposed in [8]. The idea of their
attacks is to deviate from the key exchange in generating the adversary’s public
key, then the adversary uses the variations of the signal to extract information
about the party B’s secret key.

Ding et al. [7] also described a new attack on Ding’s one pass case key
exchange [8]. This attack doesn’t rely on the signal function output but use
only the information of whether the final key of two parties agree.

Our Contribution. An error-reconciliation mechanism allows two parties with
two “approximately agreeing” secret values to reach exact agreement. NewHope’s
error-reconciliation mechanism is more complex than Ding’s key exchange’s
error-reconciliation mechanism presented in [8]. For details, its signal function is
constructed based on a special lattice D̃4 and the signal doesn’t change regularly
as Ding’s key exchange does. Hence Fluhrer or Ding’s attack can’t be adopted
directly. We analysis the signal function of NewHope and find that for every sig-
nal, there is one special vector corresponding to it. Let ak,l[i] be one of dimension
of this special vector, then we find that the sequence (ak,l[i])k=0,1,...,q−1 have
“periodic” property. We show that the number of period of (ak,l[i])k=0,1,...,q−1

equals to the absolute value of one coefficient of the secret key. We introduce
a technique to select sequence (ak,l[i])k=0,1,...,q−1 and construct algorithm to
compute the number of the period of this sequence, also we use a new way to

Key Reuse Attack on NewHope Key Exchange Protocol 165

eliminate the ambiguity of the ± sign of the coefficients. Experiments have been
conducted to verify the correctness of our attack.

Organization. In Sect. 2 we discuss some notations used in this paper and back-
ground on RLWE. The NewHope key exchange and key reuse attack is reviewed
in Sect. 3. And our attack is described in Sect. 4. The conclusion is presented in
Sect. 5.

2 Preliminaries

2.1 Notation

Let n be an integer which is a power of 2. Define the ring of integer polynomials
R := Z[x]/(xn + 1). For any positive integer q, define Rq := Zq[x]/(xn + 1) as
the ring of integer polynomials modulo xn +1 where every coefficient is reduced
modulo q. We define for x ∈ R the rounding function �x� = �x + 1

2� ∈ Z. For
an even (resp. odd) positive integer α, we define r′ = r mod±α to be the unique
element r′ in the range −α

2 < r′ ≤ α
2 (resp. −α−1

2 ≤ r′ ≤ α−1
2) such that

r′ = r mod α. Sometimes for v = v0 + v1x + v2x
2 + . . . vn−1x

n−1 ∈ R, we write

v[i] as vi. Suppose χ is a probability distribution over R, x
$←− χ means the

sampling of x ∈ R according to χ. For a probabilistic algorithm A, we write
y

$←− A to represent that the output of A is assigned to y randomly.
We write (column) vectors in bold face as v = (v0, v1, . . . , vn−1)T , where vT

denotes the transpose of the vector, and matrices in bold face as A. For a vector
v = (v0, . . . , vn−1)T in R

n, define the l1 norm as ||v||1 =
∑n−1

i=0 |vi| and the l2
norm as ||v||2 = (

∑n−1
i=0 |vi|2)1/2. In this paper || · || denote the l2 norm.

For any positive real s ∈ R, we write ρs(x) = exp(−π ||x||2
s2) as the Gaussian

function which is scaled by a factor s. Let ρs(Zn) =
∑

x∈Zn ρs(x). Then for
x ∈ Z

n, we let DZn,s(x) = ρs(x)
ρs(Zn) to indicate the n-dimensional discrete Gaussian

distribution.
In applying the norms, we assume the coefficient embedding of elements from

R to R
n. For any element y =

∑n−1
i=0 yix

i of R, we can embed this element into
R

n as the vector (y0, . . . , yn−1). Also we define the ring of integer polynomials
R̄ := Z[x]/(x4 + 1). For any y(x) = y0 + y1x + · · · + yn−1x

n−1 ∈ R, define a
mapping:

φ :R →R̄
n
4

y(x) 	→(ȳ0(x), ȳ1(x), · · · , ȳn
4 −1(x))

(1)

where ȳi(x) = yi + yi+n
4
x + yi+2·n4 x2 + yi+3·n4 x3 ∈ R̄. Assume the coefficient

embedding of ȳi to vi = (yi, yi+n
4
, yi+2· n4 , yi+3·n4)T , then we call vector vi a split

vector of y.

166 C. Liu et al.

2.2 Ring Learning with Errors

The learning with Errors (LWE) problem is first introduced by Regev [15] who
shows that under a quantum reduction, solving LWE in the average cases is as
hard as solving certain Lattice problems in the worst cases. But LWE based
cryptosystems is not efficient for practical applications for its large key sizes
of O(n2). In 2010, Lyubashevsky, Peikert, and Regev [11] introduced the Ring
Learning with Errors (RLWE), which is the version of LWE in the ring setting

and can drastically improve the efficiency. For a uniform random a, s
$←− Rq and

error distribution χ, let As,χ denote the distribution of the RLWE pair (a, as+e),

where error e
$←− χ. Given (a, as+e) for polynomial number of samples, the search

version of RLWE is to find a secret s in Rq, and the decision version of the RLWE
problem, denote R-DLWEq,χ is to distinguish As,χ from the uniform distribution
on Rq × Rq. Like LWE, RLWE enjoys a worst case hardness guarantee, and we
state in the following:

Theorem 1 ([11], Theorem 3.6). Let R = Z[x]/(xn + 1) where n is a power
of 2. Let α = α(n) <

√
logn/n, and q = 1 mod 2n be a ploy(n)-bounded prime

such that αq ≥ ω(
√

logn). There exists a ploy(n)-time quantum reduction from
Õ(

√
n/α)-SIVP (Short Independent Vectors Problem) on ideal lattices in R to

solving R-DLWEq,χ with l − 1 samples, where χ = DZn,s is discrete Gaussian
distribution with s = αq · (nl/log(nl))1/4.

3 The Protocol and Key Reuse Attack

The Newhope Key Exchange. The NewHope key exchange protocol proposed by
Alkim in [2] is an instantiation of Peikert’s RLWE based passively secure key-
exchange protocol [14]. Firstly, we recall NewHope protocol. Let n be a power
of 2, R = Z[X]/(Xn +1) and Rq = R/qR. In NewHope key exchange parameter
(n, q) = (1024, 12289). NewHope protocol is listed in Table 1.

The RLWE secret and error is sampled from ψk which is a centered binomial.
We note that one can sample from ψk by computing

∑k
i=0 bi − b′

i where the
bi, b

′
i ∈ {0, 1} are uniform independent bits, hence this way of sampling is very

easy and efficient. NewHope uses the parameter k = 16.

HelpRec and Rec. In NewHope, party B firstly mapping φ(vB) =
(v0, v1, . . . , vn

4 −1), then coefficient embed vi to xi. NewHope’s error reconcili-
ation is based on finding the closest vector in D̃4 with basis

B =

⎛

⎜
⎜
⎝

1 0 0 1/2
0 1 0 1/2
0 0 1 1/2
0 0 0 1/2

⎞

⎟
⎟
⎠

and we define gt := (1/2, 1/2, 1/2, 1/2). HelpRec(xi; b) function to compute 2-bit
reconciliation information as:

HelpRec(xi; b) = CVPD̃4

(
4
q
(xi + bg)

)

mod 4, (2)

Key Reuse Attack on NewHope Key Exchange Protocol 167

Table 1. NewHope scheme from [2].

Parameter: q = 12289, n = 1024
Error distribution: ψ16

Party A Party B

seed
$ {0, 1}n

4

a Parse(SHAKE-128(seed))∈ Rq

sA, eA
$

ψn
16 sB , e1, e2

$
ψn

16

pA asA + eA ∈ Rq
(pA,seed)

a Parse(SHAKE-128(seed))
pB asB + e1∈ Rq

vB pAsB + e2∈ Rq

vA pBsA∈ Rq
(pB ,r)

r $ FullHelpRec(vB) ∈ Z
n
4

c FullRec(vA, r) c FullRec(vB , r)∈ {0, 1}n
4

μ SHA3-256(c) μ SHA3-256(c)

where b ∈ {0, 1} is a uniformly chosen random bit. Then compute

r $←−FullHelpRec(vB) where r = (r0, r1, . . . , rn−1)T by computing ri
$←−

HelpRec(xi) where ri = (ri, ri+n
4
, ri+2· n4 , ri+3· n4)T ∈ {0, 1, 2, 3}4.

We call the output vector r $←−FullHelpRec(vB) a signal. Vector r =
(r0, r1, . . . , rn−1)T is split into vectors ri = (ri, ri+n

4
, ri+2· n4 , ri+3· n4)T ∈

{0, 1, 2, 3}4, and Rec function

Rec(xi, ri) = Decode
(

1
q
xi − 1

4
Bri

)

(3)

computes one key bit from a vector xi and a reconciliation vector ri. To
compute c ←FullRec(vB , r) where c = (c0, . . . , cn

4 −1)T , one need compute
ci ← Rec(xi, ri). CVPD̃4

and Decode are listed as Algorithms 1 and 2,
respectively.

Algorithm 1. CVPD̃4

Require: v := (v0, v1, v2, v3) ∈ R
4

Ensure: An vector z∈ Z
4 such that Bz is a closest vector to v

1: if (||v − �v�||1) < 1 then
2: return (�v0�, �v1�, �v2�, 0)T + �v3� · (−1,−1,−1, 2)T

3: else
4: return (�v0�, �v1�, �v2�, 1)T + �v3� · (−1,−1,−1, 2)T

5: end if

Key Reuse Attack. For a key exchange protocol, suppose that an active adversary
A has the ability to initiate any number of key exchange sessions with party

168 C. Liu et al.

Algorithm 2. Decode
Require: v ∈ R

4/Z4

Ensure: A bit c such that cg is a closest vector to v + Z
4

1: x = v − �v�
2: return 0 if ‖x‖1 ≤ 1 and 1 otherwise

B who reuses his secret key sB . An adversary plays the role of party A in the
protocol and aims to recover sB . The adversary A can set pA adaptively by
deviating from the protocol. Then in a key reuse attack on NewHope, once A

has collected enough sequences of (p(i)B , r(i)) from party B, he can recover sB .

4 Key Reuse Attack on NewHope

In this Section, we describe our key reuse attack on NewHope. We firstly give
a general overview of the attack in Sect. 4.1. In Sect. 4.2, we introduce a special
sequence which will be used in our attack techniques. In Sect. 4.3, we describe the
sequence selecting and period counting techniques which are aimed to recover
the secret.

4.1 General Overview of Our Attack

We denote the deviated public key of the adversary as pA , and the secret and
error terms of the adversary as sA and eA respectively. To explain our attack
strategy, we firstly consider the simpler case when the error term e2 is not added
to the key computation of vB of party B.

Choice of sA and eA : The attacker chooses sA to be 0 in Rq. The attacker
chooses eA to be the identity element 1 in Rq, and computes pA = keA = k,
where k takes values in Zq.

If we look at the key computation of B, we have vB = pA sB = ksB . This
results in the signal r $←−FullHelpRec(vB) sent by the party B leaks the infor-
mation of sB , which is explained in the Sect. 4.2.

Oracle S: There exists an oracle S which can be used to simulate party B’s
response. S performs the action of B and the adversary A has access to this
oracle to make multiple queries. Assume that sB is fixed for party B and S
has access to the secret sB . The input of S is pA from A . Oracle S computes
vB = pA sB and outputs r = FullHelpRec(vB) ∈ Z

n
4 .

We give the attack steps in the following.
Key reused attack by the adversary A :

1. For every k ∈ {0, 1, . . . , q − 1}:
a. Set pA = k.
b. Invoke the oracle S with pA , and obtain S’s output rk =

(rk,0, . . . , rk,n−1).

Key Reuse Attack on NewHope Key Exchange Protocol 169

Fig. 1. One key exchange session of our key reused attack on NewHope key exchange.

2. For every l ∈ {0, 1, . . . , n
4 − 1}:

a. For every k ∈ {0, 1, . . . , q − 1}, set rk,l := (rk,l, rk,l+n
4
, rk,l+2· n4 , rk,l+3· n4)

and set vectors: uk,l := Brk,l mod 4; vk,l := (Brk,l + 4g) mod 4.
b. For every i ∈ {0, 1, 2, 3}:

i. Set two sequences: Ul+n
4 ·i := {u0,l[i],u1,l[i], . . . ,uq−1,l[i]};

Zl+n
4 ·i := {v0,l[i],v1,l[i], . . . ,vq−1,l[i]}.

ii. Use Ul+n
4 ·i and Zl+n

4 ·i to compute secret coefficient sB [l + n
4 · i].

Figure 1 is one instance of query of our attack. The most important step of our
attack is in step (2.b.ii). In next several sections, we focus on how to compute
secret’s coefficient sB [l + n

4 · i] using sequences Ul+n
4 ·i and Zl+n

4 ·i.

4.2 Preparation

For fixed l ∈ {0, 1 . . . , n
4 − 1} and i ∈ {0, 1, 2, 3}. In this section we describe

that a special sequence can be selected from two sequences Ul+n
4 ·i and Zl+n

4 ·i.
We show that this special sequence has “periodic” property, which is the key of
our attack. And we define two periodic function to analysis the property of this
special sequence.

The Special Sequence. Here, we describe a special sequence. If we look at
oracle S’s computation of the key vB , we have vB = pA sB = k · sB mod q
where k ∈ Z. This results in the split vector of vB to be: xk,l = (ksB [l], ksB [l +
n
4], ksB [l + 2 · n

4], ksB [l + 3 · n
4])T mod q. For function HelpRec(xk,l; b) in oracle

S, we firstly consider the case when b = 0 (The case when b is randomly selected

170 C. Liu et al.

from {0, 1} is described in Sect. 4.4). Then suppose rk,l = HelpRec(xk,l; 0) ∈ Z
4
4,

we can set

r̂k,l := CVPD̃4
(
4
q
xk,l) ∈ Z

4 and ak,l := Br̂k,l ∈ R
4.

By the definition of Algorithm 1, it’s easy to find that ak,l is the closest vector
of vector 4

qxk,l in lattice D̃4 and there is equation:

ak,l[i] =

{
� 4

q (ksB [l + n
4 · i] mod q)� || 4qxk,l − � 4

qxk,l�||1 < 1
� 4

q (ksB [l + n
4 · i] mod q) − 1

2� + 1
2 others.

(4)

Obviously, the sequence (ak,l[i] mod 4)k=0,1,...,q−1 has some “periodic” property.
And here we describe the relationships between (ak,l[i] mod 4)k=0,1,...,q−1 and

the two sequences Ul+n
4 ·i and Zl+n

4 ·i. Since rk,l = r̂k,l mod 4, it’s easy to verify
that:

ak,l mod 4 = Brk,l mod 4 or ak,l mod 4 = (Brk,l + 4g) mod 4.

Note that in the step (2.a) of the attack, the adversary sets uk,l := Brk,l mod 4;
vk,l := (Brk,l + 4g) mod 4. Thus, one of vectors uk,l and vk,l is ak,l mod 4 and
the other is (ak,l +4g) mod 4. Hence every element in (ak,l[i] mod 4)k=0,1...,q−1

is in one of sequences Ul+n
4 ·i and Zl+n

4 ·i.

Two Periodic Function. Here we say that (ak,l[i] mod 4)k=0,1,...,q−1 reveals
some information of the secret sB . To analysis the “periodic” property of
(ak,l[i] mod 4)k=0,1,...,q−1, we can define the following two functions:

f0,x(h) := �4
q

· (h · x mod q)� mod 4;

f1,x(h) :=
(

�4
q

· (h · x mod q) − 1
2
� +

1
2

)

mod 4.

where x ∈ Z, h ∈ R. When x = 0, f0,0(h) = 0 and f1,0(h) = 0.5.
When x �= 0, f0,x(h) and f1,x(h) are periodic functions with the fundamen-
tal period N := q

|x mod±q| . We denote the number of period for function f(h)

in domain [0, q) as Pf,[0,q). Then Pf0,x,[0,q) = Pf1,x,[0,q) = |x mod±q|. One
instance of function f0,x(k) and f1,x(k) is illustrated by Fig. 2. For sequence
(ak,l[i] mod 4)k=0,1,...,q−1, equation

ak,l[i] mod 4 = f0,sB [l+n
4 ·i](k) or ak,l[i] mod 4 = f1,sB [l+n

4 ·i](k) (5)

holds for every k ∈ {0, 1, . . . , q − 1}. Then for such sequence (ak,l[i] mod
4)k=0,1,...,q−1, we define its number of period as Pak,l[i] mod 4,[0,q) :=
Pf0,sB [l+n

4 ·i],[0,q) = |sB [l + n
4 · i] mod±q|. Thus, the attacker can compute

|sB [l + n
4 · i] mod±q| by computing Pf0,sB [l+n

4 ·i],[0,q) or Pf1,sB [l+n
4 ·i],[0,q) once he

has obtained (ak,l[i] mod 4)k=0,1,...,q−1.

Key Reuse Attack on NewHope Key Exchange Protocol 171

Fig. 2. Left figure represent f0,3(k) and the right figure represent f1,3(k), where k ∈
[0, 12289], N = 12289

3
which is defined in Sect. 4.2. The Vertical Axis for the value of

function, and the Horizontal Axis for k.

4.3 Recover the Secret Key

In this section, we describe how to compute every coefficient of sB using sequence
Ul+n

4 ·i and Zl+n
4 ·i. This section is divided into two parts. The first part aims

to select the sequence (ak,l[i] mod 4)k=0,1,...,q−1 described in above section, and
the second part aims to compute every coefficient of sB using the sequence we
select.

Select Sequence. Here, we describe how to obtain (ak,l[i] mod 4)k=0,1,...,q−1

using 2q values (uk,l[i])k=0,1,...,q−1 and (vk,l[i])k=0,1,...,q−1.
In order to obtain (ak,l[i] mod 4)k=0,1,...,q−1, we have to find the relationships

between the two adjacent elements ak,l[i] mod 4 and ak+1,l[i] mod 4. By Eq. (5),
if sB[l + n

4 · i] mod±q > 0, there may exists some k = �nN
8 � where n ∈ Z, such

that:
(ak+1,l[i] mod 4 − ak,l[i] mod 4) mod 4 = 1; (6)

and if sB [l + n
4 · i] mod±q < 0, there may exists some k = �nN

8 � where n ∈ Z

such that:
(ak+1,l[i] mod 4 − ak,l[i] mod 4) mod 4 = −1; (7)

and for others k in above two cases, there are:

− 0.5 ≤ (ak+1,l[i] mod 4 − ak,l[i] mod 4)mod±4 ≤ 0.5. (8)

We can select the sequence (ak,l[i] mod 4)k=0,1,...,q−1 using relations (6), (7) and
(8). Firstly, to ensure the sequence we select is (ak,l[i] mod 4)k=0,1,...,q−1, we set
the first number of the sequence:

w0 =

{
u0,l[i] if |u0,l[i] − 2| > |v0,l[i] − 2|;
v0,l[i] else.

Here, we will select two sequences - the sequence W for the case when sB [l+n
4 ·

i] mod±q > 0 and the other sequence T for the case when sB [l+ n
4 ·i] mod±q < 0.

Define a mapping:
ψ :R2q →R

2q,

(Ul+n
4 ·i, Zl+n

4 ·i) 	→(W,T)
(9)

172 C. Liu et al.

where the elements in sequence W = (wk)k=0,...,q−1 satisfy:

wk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0 when k = 0;

uk,l[i]
when k > 0 and (−0.5 ≤ (uk,l[i] − wk−1)mod±4 ≤ 0.5 or
(uk,l[i] − wk−1) mod 4 = 1);

vk,l[i] others.

and the elements in sequence T = (tk)k=0,...,q−1 satisfy:

tk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0 when k = 0;

uk,l[i]
when k > 0 and (−0.5 ≤ (uk,l[i] − tk−1)mod±4 ≤ 0.5 or
(uk,l[i] − tk−1) mod 4 = −1);

vk,l[i] others.

Note that if Eq. (8) holds for every k ∈ [0, q), W = T = (ak,l[i] mod

Fig. 3. An experimental data when one split vector of vB is xk,l = k · (5,−7, 3, 4) mod
q. We put all values of (uk,l[2])k=0,1,...,q−1 and (vk,l[2])k=0,1,...,q−1 in the figure (a).
Our selected sequence W is illustrated in the figure (b). And selected sequence T is
illustrated in the figure (c). We can note that W has “period” property, while T is
“out-of-order”. The Vertical Axis for the value of the elements in sequence, and the
Horizontal Axis for k.

4)k=0,1,...,q−1. If W �= T , one of the two sequences W and T is (ak,l[i] mod
4)k=0,1,...,q−1. And if sB [l + n

4 · i] mod±q > 0, W is (ak,l[i] mod 4)k=0,1,...,q−1,
while if sB [l + n

4 · i] mod±q < 0, T is (ak,l[i] mod 4)k=0,1,...,q−1. One instance of
experimental data of our selecting technique is illustrated by Fig. 3, and we note
that in this instance sB [l + n

4 · i] mod±q = 3, so W = (ak,l[i] mod 4)k=0,1,...,q−1.

Compute the Coefficients. Now, we show how to compute sB[l+ n
4 ·i] mod±q

using sequences W and T . In Sect. 4.2, we know that Pak,l[i] mod 4,[0,q) = |sB [l +
n
4 ·i] mod±q|. Construct an algorithm Counting to compute the number of period
of sequence W (or T). Algorithm Counting is listed as Algorithm 3.

We note that computing Pak,l[i] mod 4,[0,q) means that to compute
Pf0,sB [l+n

4 ·i],[0,q) or Pf1,sB [l+n
4 ·i],[0,q). Since |sB [l + n

4 · i]| ≤ 16, for periodic func-
tions f0,sB [l+n

4 ·i] and f1,sB [l+n
4 ·i], there exists h′ in every period, such that

Key Reuse Attack on NewHope Key Exchange Protocol 173

f0,sB [l+n
4 ·i](h′) = 0 or f1,sB [l+n

4 ·i](h′) = 0.5 or 3.5. In Algorithm 3, the count
number c plus 1 at the point when the element in sequence W firstly equals to
0 or 0.5 or 3.5 in one period interval. Thus every period of function f0,sB [l+n

4 ·i]
or f1,sB [l+n

4 ·i] in domain [0, q) can be counted.

Algorithm 3. Counting
Require: W = {w0, w1, . . . , wq−1} ∈ R

q

Ensure: The number of period of sequence W .
1: k ← 0; c ← 0
2: while (wk �= 0 or wk �= 0.5 or wk �= 3.5) do
3: k ← k + 1
4: end while
5: c ← c + 1
6: while (wk �= 2 or wk �= 2.5) do
7: k ← k + 1
8: end while
9: if k < q − 1 then

10: goto step 2
11: end if
12: return c

Suppose c1 ← Counting(W) and c2 ← Counting(T). If W = T , c1 = c2 =
|sB [l + n

4 · i] mod±q|. Then to determine the sign of sB [l + n
4 · i] mod±q, define:

sign =
∑

k ∈ [0, q/c];
|wk+1 − wk| < 3

(wk+1 − wk).

where c is the output of Counting(W) and wk ∈ W . Note that [0, q/c] is one
periodic interval. If sB [l + n

4 · i] mod±q > 0, it is easy to verified that sign > 0,
and if sB [l + n

4 · i] mod±q < 0, there is sign < 0.
When W �= T , we want to figure out that which one of c1 and c2 equals to

|sB [l + n
4 · i] mod±q|. We need a parameter to measure the degree of approxima-

tion of the sequence we select and (ak,l[i] mod 4)k=0,1,...,q−1. Suppose the input
sequence of Algorithm 3 is W . Let the value of k be kj at the point when the
Algorithm 3 loops to steps 5 for the j-th times (0 < j ≤ c1). Then the domina
size of j-th periodic interval of W is Nj = |kj+1 − kj | (j ∈ {1, 2, . . . , c1 − 1}).
Define parameter

varW =

∑c1−1
j=1 |Nj −

∑c1−1
j=1 Nj

c1−1 |
c1 − 1

, (10)

which is the variance of N1, . . . , Nc1−1. Similarly, we can define varT for sequence
T . If W = (ak,l[i] mod 4)k=0,1,...,q−1, varW should be very small because every
two number in {N1, . . . , Nc1−1} are almost equal. Meanwhile sequence T hasn’t
“periodic” property (one instance is illustrated by Fig. 3c), which results in
varT > varW . Similarly, the case when T = (ak,l[i] mod 4)k=0,1,...,q−1, varT <

174 C. Liu et al.

varW . This property is verified in our experiments. Then if varW < varT , the
sign of coefficient sB [l + n

4 · i] mod±q is “+” and |sB [l + n
4 · i] mod±q| = c1,

otherwise the sign of sB [l + n
4 · i] is “−” and |sB [l + n

4 · i] mod±q| = c2. Thus we
can compute every coefficient of sB .

4.4 Effect of e2 and Parameter b

In our experiments, for the case where e2 is added to vB and b is chosen randomly
from {0, 1} in function HelpRec(xk,l;b), we can still get the secret key correctly
using algorithm described above. And the following analysis is only theoretical.
Firstly, we analysis the case when e2 is added to vB. The key computation of
B is vB = pA sB + e2. Let x̃k,l = (ksB [l] + g0, ksB [l + n

4] + g1, ksB [l + 2 · n
4] +

g2, ksB [l + 3 · n
4] + g3)T mod q where gi

$←− ψ16 is one of split vector of vB . Then
if sB[l + n

4 · i]mod±q > 0, for Eq. (4), there may exists k such that

||4
q
x̃k,l − �4

q
x̃k,l�||1 < 1; ||4

q
x̃k+1,l − �4

q
x̃k+1,l�||1 < 1

and

�4
q
(ksB [l +

n

4
· i] + gi mod q)� − �4

q
((k + 1)sB [l +

n

4
· i] + g′

i mod q)� = 1 (11)

where gi, g
′
i

$←− ψ16. Equation (11) is equivalent to: (ak+1,l[i] mod 4−ak,l[i] mod
4) mod 4 = −1. Thus the two sequences selected by mapping (9) will be
both wrong. Similarly, if sB [l + n

4 · i]mod±q < 0, equation (ak+1,l[i] mod 4 −
ak,l[i] mod 4) mod 4 = 1 may occurs. We hope to eliminate such wrong points
in mapping (9). Our idea of improvement is to detect such wrong point and
“delete” it. We add the following two steps to the mapping (9): (1) when
selecting the sequence W , for k such that |(uk,l[i] − wk−1) mod±4| = 1 and
|(uk,l[i]−uk+1,l[i]) mod±4| = 1, let wk = wk−1; (2) when selecting the sequence
T , for k such that |(uk,l[i]−tk−1) mod±4| = 1 and |(wk,l[i]−wk+1,l[i]) mod±4| =
1, let tk = tk−1. Since such wrong points are sparse in [0, q) (actually in our
experiments we failed to found such wrong points), the “periodic” property of
sequence we select by this way doesn’t change, hence this improvement hasn’t
influence to the algorithm Counting. Other steps of the attack is all the same
with the case when e2 is not added to vB.

Similarly, we consider the case when b is chosen randomly from {0, 1} in
function HelpRec(xk,l;b). Firstly consider the case when sB[l + n

4 · i]mod±q > 0.
Suppose two inputs for function HelpRec(x;b) is (xk,l, 1) and (xk+1,l, 0). Then
for Eq. (4), there may exists k such that:

||4
q
(xk,l + g) − �4

q
(xk,l + g)�||1 < 1; ||4

q
xk+1,l − �4

q
xk+1,l�||1 < 1

and

�4
q
((ksB [l +

n

4
· i] + 2) mod q))� − �4

q
((k + 1)sB [l +

n

4
· i] mod q)� = −1

Key Reuse Attack on NewHope Key Exchange Protocol 175

hold. This equals to (ak+1,l[i] mod 4 − ak,l[i] mod 4) mod 4 = −1. Similarly for
the case when sB [l+ n

4 ·i]mod±q < 0, (ak+1,l[i] mod 4−ak,l[i] mod 4) mod 4 = 1.
Note that such wrong points is same with the case when e2 is added to vB

described in above paragraph, and we can use the same way to eliminate such
wrong points in mapping (9).

4.5 Adversary Time Complexity

From the above description of our attack, it is clear that the adversary needs q
queries to recover every coefficient of sB . The time complexity of selecting the
sequence W and T for every coefficient of sB is 2q and there needs about 2q
times to compute the exact value of the coefficient using sequences W and T .
Suppose times of once querying is t. Since q is O(n), the query complexity of the
complete attack is q = O(n) and times complexity is qt + n · (2q + 2q) = O(n2).

5 Conclusion

In this work, we have presented an detailed key reused attack on NewHope key
exchange in recovering the secret of a reused key with q queries. We show that for
NewHope key exchange, when the public key is fixed for a long term, an active
adversary can collect a sequence of the signal and construct a sequence with
“periodic” property, which reveals the information of the secret. The adversary
can exploits the “periodic” property of the sequence and recovers the secret key
of the honest party. We believe that such strategy of the key reuse attack can
also be adapted to NISTPQC submission NewHope IND-CPA KEM [1]. But the
NewHope IND-CCA KEM would stop the attack. This version of key exchange
applies the Fujisaki-Okamoto transform and achieves CCA security.

Acknowledgments. This article is supported by The National Key Research and
Development Program of China (Grant No. 2017YFA0303903). Authors thank Yang
Yu for discussions and the anonymous ICISC’18 reviewers for helpful comments.

References

1. Alkim, E., Avanzi, R., Bos, J.W., Ducas, L.: NewHope, algorithm specifcations and
supporting documentation. Version 1.0. Submission to NIST, 30 November 2017.
https://newhopecrypto.org/data/NewHope 2017 12 21.pdf

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Proceedings Of the 25th USENIX Security Symposium, pp.
327–343. USENIX Association

3. Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings Of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1006–1018. ACM Press (2016)

4. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570. IEEE Computer Society Press, May
2015

https://newhopecrypto.org/data/NewHope_2017_12_21.pdf

176 C. Liu et al.

5. Bos, J., et al.: CRYSTALS-Keyber: a CCA-secure module-lattice-base KEM. Cryp-
tology ePrint Archive, Report 2017/634 (2017). http://eprint.iacr.org/2017/634

6. Ding, J.T., Alsayigh, S., Saraswathy, R.V., Fluhrer, S., Lin, X.D.: Leakage of Signal
function with reused keys in RLWE key exchange. In: 2017 IEEE International
Conference on Communications (ICC)

7. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 27

8. Ding, J.T., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012). http://eprint.iacr.org//2012/688.pdf

9. Experimenting with post-quantum cryptography, July 2016. https://security.
googleblog.com/2016/07/experimenting-with-post-quantum.html

10. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016). http://eprint.iacr.org/2016/
085

11. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

12. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37, 267–302 (2007)

13. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of the 2009 ACM Symposium on Theory of Computing, Series.
STOC 2009, pp. 333-342. ACM, New York (2009)

14. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

15. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing. STOC 2005, pp. 84–93. ACM, New York (2005)

16. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 1484–1509 (1997)

17. The Internet Defense Prize. https://internetdefenseprize.org/
18. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key

exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46803-6 24

http://eprint.iacr.org/2017/634
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
http://eprint.iacr.org//2012/688.pdf
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://internetdefenseprize.org/
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/978-3-662-46803-6_24

Supersingular Isogeny Diffie–Hellman
Authenticated Key Exchange

Atsushi Fujioka1(B), Katsuyuki Takashima2, Shintaro Terada3,
and Kazuki Yoneyama3

1 Kanagawa University, Kanagawa, Japan
fujioka@kanagawa-u.ac.jp

2 Mitsubishi Electric, Kanagawa, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

3 Ibaraki University, Ibaraki, Japan
{17nm713n,kazuki.yoneyama.sec}@vc.ibaraki.ac.jp

Abstract. We propose two authenticated key exchange protocols from
supersingular isogenies. Our protocols are the first post-quantum one-
round Diffie–Hellman type authenticated key exchange ones in the fol-
lowing points: one is secure under the quantum random oracle model and
the other resists against maximum exposure where a non-trivial combi-
nation of secret keys is revealed. The security of the former and the
latter is proven under isogeny versions of the decisional and gap Diffie–
Hellman assumptions, respectively. We also propose a new approach for
invalidating the Galbraith–Vercauteren-type attack for the gap problem.

Keywords: One-round authenticated key exchange ·
Supersingular isogeny decisional Diffie–Hellman assumption ·
Degree-insensitive supersingular isogeny gap Diffie–Hellman
assumption · CK model · CK+ model · Quantum adversary

1 Introduction

All conventional cryptosystems from discrete logarithm and/or factorization
intractability assumptions would be totally broken by the emergence of quan-
tum computers, i.e., by Shor’s algorithm [27]. In the post-quantum era, it is
important to confirm whether classical cryptographic techniques are still secure
against quantum adversaries. Recently, strong security notions and constructions
against quantum computers have been intensively studied (e.g., [1,3,10,32,33]).
Moreover, National Institute of Standards and Technology has initiated a pro-
cess to standardize quantum-resistant public-key cryptographic algorithms [24],
so, to study quantum-resistant cryptosystems is a hot research area.

Key establishing over insecure channels is one of important cryptographic
techniques. In a key establishing protocol, two parties exchange some messages,
and then, they can share a key. Recent researches on this have lead to authenti-
cated key exchange (AKE). In the post-quantum era, it is preferable to have an
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 177–195, 2019.
https://doi.org/10.1007/978-3-030-12146-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_12

178 A. Fujioka et al.

AKE protocol secure based on a problem which resists against quantum adver-
saries. We then propose two quantum-resistant AKE schemes from a (relatively)
new mathematical foundation, i.e., supersingular isogenies.

Supersingular Isogeny Diffie–Hellman (SIDH). Computing a sequence
of isogenies of elliptic curves is a new cryptographic basic operation in some
applications. For example, a cryptographic hash function from expander graphs,
proposed in [6], consists of computing an isogeny sequence, which is based on the
hardness of constructing an isogeny between two (randomly chosen) isogenous
curves. Diffie–Hellman (DH) type key exchange protocols based on isogenies
are given by Rostovtsev and Stolbunov [26] and De Feo et al. [11], which were
considered as candidates for post-quantum public-key primitives.

Childs et al. [7] considered the isogeny computation problem for ordinary
elliptic curves, and obtained a subexponential-time quantum algorithm. In con-
trast, the algorithm cannot be applied to the supersingular case (because of non-
commutativity of endomorphism rings). Therefore, both applications above, i.e.,
hash function and key exchange, need to employ supersingular elliptic curves
(and the graph consisting of them). In particular, supersingular isogeny Diffie–
Hellman (SIDH) protocol proposed by De Feo et al. [11] has short public keys
compared to other post-quantum candidates, and has been intensively studied
for serving as a drop-in replacement to existing Internet protocols [2,8,9].

Very recently, Petit [25] proposed a mathematical attack for the security of
SIDH, but also showed that the security is not affected by the attack if we use
appropriate public parameters as is given in Sect. 3.

Authenticated Key Exchange. In an AKE protocol, two parties have own
static public keys, exchange ephemeral public keys, and compute a session key
based on the public keys and the related secret keys. AKE protocols achieve
that honest parties can establish a session key, and any malicious party cannot
guess the session key. The latter condition is formulated in an indistinguishability
game.

Regarding to this security game, several models have been invented, and
the Canetti–Krawczyk (CK) model was proposed to capture leakage of the ses-
sion state [5]. After the proposal, several security requirements have been indi-
cated such as key compromise impersonation (KCI), weak perfect forward secrecy
(wPFS), and maximal exposure attacks (MEX) (refer to [21] for KCI, wPFS, and
MEX). The CK model has been integrated with KCI, wPFS, and MEX to the
CK+ model [13].

Recently, several SIDH AKE protocols have been proposed [14,22,23,31].
Galbraith proposed a one-round1 protocol (SIDH TS2) in [14] based on the

Unified Model DH protocol by Jeong, Katz, and Lee [18]. The protocol is CK-
secure under a decisional problem in classical random oracle model (ROM).
1 Galbraith claims that the protocol is one-round however the description shows that

it is two-round as the responder generates the response after receiving the first
message [14].

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 179

Longa shows a two-round SIDH AKE protocol (AKE-SIDH-SIKE) which is
CK+-secure from a KEM scheme [23]. However, it is based on a generic con-
struction known already.

LeGrow, Jao, and Azarderakhsh defined a security model in which the adver-
sary is allowed to make quantum queries, and proposed a quantum CK secure
(qCK secure) protocol [22]. The protocol, we call it LJA, is secure in the quantum
random oracle model (QROM) however it is two-round.

Xu et al. proposed a two-round protocol (AKESIDH-2) in [31], and the proto-
col is CK+-secure under a decisional problem in classical random oracle model
(ROM).

It is worth to note here that all the existing SIDH AKE protocols shown
above only achieve two-pass protocols except the SIDH TS2 protocol. In a one-
round protocol, two parties can simultaneously exchange their ephemeral keys,
while in a two-pass one, a party has to wait for the ephemeral key from the other
party. Moreover, a one-round AKE protocol has several advantages of efficiency,
e.g., each party can pre-compute ephemeral keys in advance.

Supersingular Isogeny Gap DH Problem. Traditional DH AKE proto-
cols have been constructed from several forms of DH assumptions, i.e., com-
putational, decisional and gap DH assumptions, for attaining various trade-offs
between security and efficiency. Recently, Galbraith and Vercauteren [16] and
Thormarker [29] independently proposed attacks, called GV-type attack in this
paper, on the supersingular isogeny computational DH (SI-CDH) problem with
access to decision degree oracle, which determines whether two supersingular
curves are isogenous of some specific degree or not. While the attack can be
extended to some form of SI version of gap DH (SI-GDH) problem, still, there
exist possible approaches to formulate a secure form of SI-GDH problem (and
assumption) for which the above attack is ineffective. Therefore, it is impor-
tant to find and establish such secure SI-GDH assumptions to rescue (a wide
range of) SIDH-based AKE schemes on the gap assumptions. (For surveys on
SIDH-related computational problems, refer to [16,30].)

Contributions. We propose two one-round authenticated key exchange pro-
tocols from supersingular isogenies: one is a protocol secure in the CK model
with a quantum adversary under a supersingular isogeny version of the DDH
assumption, and the other is a protocol secure in the CK+ model with a classi-
cal adversary under a supersingular isogeny version of the gap DH assumption.

We call the latter assumption degree-insensitive (di-)SI-GDH assumption in
which an adversary has access to a degree-insensitive SI-DDH oracle, and then
cannot employ the GV-type attack for which degree distinction is crucial. We
expect that the new assumption is of independent interest. Then, both protocols
have several advantages of efficiency and wide applicability in practical situations
as they retain a simple one-round Diffie–Hellman structure, and are realized in
exchanging a single elliptic curve with an auxiliary smooth-order torsion basis,

180 A. Fujioka et al.

which can be efficiently compressed [2,8]. We give a comparison table of the
existing SIDH AKE protocols and our proposals in Table 1.

Table 1. Comparison of SIDH AKE protocols.

Assumption Model Action Proof

SIDH TS2 [14] SI-CDH CK One-round (see footnote 1) ROM

AKE-SIDH-SIKE [23] SI-DDH CK+ Two-round ROM

LJA [22] SI-DDH qCK Two-round QROM

AKESIDH-2 [31] SI-DDH CK+ Two-round ROM

SIDH UM SI-DDH CK One-round QROM

Biclique SIDH di-SI-GDH CK+ One-round ROM

Notations. When A is a set, y ∈R A denotes that y is uniformly selected from
A. When A is a random variable, y ←R A denotes that y is randomly selected
from A according to its distribution. We denote the finite field of order q by Fq.

2 Security Models: CK-Security and CK+-Security

This section outlines the CK and CK+ security definitions for two-pass PKI-
based authenticated key exchange protocols. Note that, in our post-quantum CK
and CK+ models, all parties are modeled by probabilistic polynomial-time (ppt)
Turing machines while the adversary is modeled by a polynomial time quantum
machine. For further CK and CK+ details and explanations, see [12,21]. It is
worth to note here that the proposed protocols are one-round and thus, it is
enough to describe the security model as for two-pass AKE because a two-pass
model includes a one-round one.

We denote a party’s identity Â, B̂, Ĉ, . . . , where the ID space is IDS. A
party honestly generates its own keys, static public and static secret ones, and
the static public key is linked with the party’s identity in some systems like
PKI.2 The maximum numbers of parties and sessions are polynomially bound
in the security parameter.

We outline our models for a two-pass AKE protocol where parties, Â and B̂,
exchange ephemeral public keys, X and Y , i.e., Â sends X to B̂ and B̂ sends
Y to Â, and thereafter derive a session key. The session key depends on the
exchanged ephemeral keys, identifiers of the parties, the static keys, and the
protocol instance that is used.

2 Static public keys must be known to both parties in advance. They can be obtained
by exchanging them before starting the protocol or by receiving them from a certifi-
cate authority. This situation is common for all PKI-based AKE protocols.

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 181

Keys. The public key owned by each party and its secret key are called static
public key and static secret key, respectively. The one-time use session informa-
tion exchanged in the protocol is called ephemeral public key as the information
is generated from a temporary secret called ephemeral secret key.

Session. An invocation of a protocol is called a session. A session is activated
via an incoming message of the forms (Π, I, Â, B̂) or (Π, R, Â, B̂, Y), where
Π ∈ PRS is a protocol identifier in the protocol ID space, PRS. If Â is activated
with (Π, I, Â, B̂), then Â is the session initiator, otherwise it is the session
responder. We say that Â is the owner (resp. peer) of session sid if the third
(resp. fourth) coordinate of sid is Â. After activation, session initiator Â creates
ephemeral public key X and a new session identified with (Π, I, Â, B̂, X, ⊥),
and sends (Π, R, B̂, Â, X) to the session responder B̂, who then prepares
ephemeral public key Y and a new session identified with (Π, R, B̂, Â, X, Y),
computes the session key and sends (Π, I, Â, B̂, X, Y) to Â. Upon receiving
(Π, I, Â, B̂, X, Y), Â updates the session identifier (Π, I, Â, B̂, X, ⊥) with
(Π, I, Â, B̂, X, Y) and computes a session key for that session. We say that a
session is completed if its owner computes a session key.

If Â is the initiator of a session, the session is identified via sid = (Π, I, Â,
B̂, X, ⊥) or sid = (Π, I, Â, B̂, X, Y). If B̂ is the responder of a session, the
session is identified via sid = (Π, R, B̂, Â, X, Y). The matching session of the
session identified via (Π, I, Â, B̂, X, Y) is a session with identifier (Π, R, B̂,
Â, X, Y) and vice versa.

Adversary. Adversary M is modeled as a probabilistic Turing machine that
controls all communications including session activation. Activation is performed
via a Send(message) query. The message has one of the following forms: (Π,
I, Â, B̂), (Π, R, Â, B̂, X), or (Π, I, Â, B̂, X, Y). Each party submits its
responses to adversary M, who decides the global delivery order.

The secret information of a party is not accessible to adversary M; however,
leakage of secret information is obtained via the following adversary queries.

– SessionKeyReveal(sid): M obtains the session key for the session with session
identifier sid, provided that the session is completed.

– SessionStateReveal(sid): M obtains the session state of the owner of session
sid if the session is not completed (the session key is not established yet). The
session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the
static secret key.

– Corrupt(Â): The query allows M to obtain all information of party Â. If a
party, Â, is corrupted by a Corrupt(Â) query issued by M, then we call the
party, Â, dishonest. If not, we call the party honest.

Definition 1 (Freshness). Let sid∗ be the session identifier of a completed
session, owned by an honest party Â with an honest peer B̂. If the matching

182 A. Fujioka et al.

session exists, then let sid∗ be the session identifier of the matching session of
sid∗. Define sid∗ to be fresh if none of the following conditions hold:

– M issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if sid∗ exists.
– sid∗ exists and M makes either of the following queries

• SessionStateReveal(sid∗) or SessionStateReveal(sid∗),
– sid∗ does not exist and M makes the following query

• SessionStateReveal(sid∗).

Security Experiment. Initially, adversary M is given a set of honest par-
ties, for whom M selects identifiers. Then the adversary makes any sequence of
the queries described above. During the experiment, M makes a special query
Test(sid∗), where sid∗ is the session identifier of a fresh session, and is given
with equal probability either the session key held by sid∗ or a random key; the
query does not terminate the experiment. The experiment continues until M
makes a guess whether the key is random or not. The adversary wins the game
if the test session sid∗ is still fresh and if the guess by M was correct. The
advantage of quantum adversary M in the AKE experiment with AKE protocol
Π is defined as

AdvAKE
Π (M) = Pr[M wins] − 1

2
.

Definition 2 (Post-quantum CK security). We say that an AKE protocol
Π is post-quantum secure in the CK model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any polynomial-time quantum adversary M, AdvAKE
Π (M) is negligible

in security parameter λ for the test session sid∗,
(a) if sid∗ does not exist, or
(b) if sid∗ exists, and the static secret key of the owner of sid∗ and the static

secret key of the owner of sid∗ are given to M.

Definition 3 (Post-quantum CK+ security). We say that an AKE protocol
Π is post-quantum secure in the CK+ model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any polynomial-time quantum adversary M, AdvAKE
Π (M) is negligible

in security parameter λ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is

given to M,
(b) if sid∗ does not exist, and the ephemeral secret key of the owner of sid∗

is given to M,
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the static

secret key of the owner of sid∗ are given to M,
(d) if sid∗ exists, and the ephemeral secret key of the owner of sid∗ and the

ephemeral secret key of the owner of sid∗ are given to M,

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 183

(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the
ephemeral secret key of the owner of sid∗ are given to M, or

(f) if sid∗ exists, and the ephemeral secret key of the owner of sid∗ and the
static secret key of the owner of sid∗ are given to M.

The static and ephemeral public keys of our schemes include supersingular
curves and points on them. We can test supersingularity of curves in polynomial
time, e.g., [28]. We make an important remark: While Krawczyk mentions a
strong adversary model where a corrupted party can choose to register any public
key of its choice at any point during the protocol as a variant of the CK(+) model
in [21], we do not allow the re-registration of static public key (similar to the
CK(+) model), and the initial public key is honestly generated and has been
used until the end of the protocol. It is because that an active attack which
Galbraith et al. [15] proposed for revealing static keys might be considered as
an effective attack when we adopt the above flexible key re-registration.

3 Supersingular Isogeny Diffie–Hellman (SIDH)

We describe the SIDH protocol, whose implementation is investigated in detail
in [9] and subsequently in [2,4,8,19,20]. The security is studied in [15,25]. For
making user secret keys short, we follow the description in the SIKE docu-
ment [17], that is, the user key is given as just one scalar, e.g., kA ∈ Z/�eA

A Z.

3.1 Original (Concrete) Description of SIDH

For two small primes �A, �B (e.g., �A = 2, �B = 3), we choose a large prime p such
that p ± 1 = f · �eA

A �eB

B for a small f and �eA

A ≈ �eB

B = 2Θ(λ), where λ is a security
parameter. Then, we also choose a random supersingular elliptic curve E over
Fp2 with E(Fp2) � (Z/(p ± 1)Z)2 ⊇ (Z/�eA

A Z)2 ⊕ (Z/�eB

B Z)2. We use isogenies,
φA and φB, with kernels of orders, �eA

A and �eB

B , respectively, and the following
commutative diagram for the SIDH key exchange between Alice and Bob.

E
φA−−−−→ EA = E/〈RA〉

φB

⏐
⏐
�

⏐
⏐
�φAB

EB = E/〈RB〉 φBA−−−−→ E/〈RA, RB〉

for kerφA = 〈RA〉 ⊂ E[�eA

A],
ker φB = 〈RB〉 ⊂ E[�eB

B],
ker φBA = 〈φB(RA)〉 ⊂ EB[�eA

A],
ker φAB = 〈φA(RB)〉 ⊂ EA[�eB

B].

Below we first choose generators PA, QA, PB, QB such that E[�eA

A] = 〈PA, QA〉,
E[�eB

B] = 〈PB, QB〉 and then set the random curve E/Fp2 and the above gen-
erators as public parameters, i.e., we define the generator as pksidh = (g =
(E; PA, QA, PB, QB), e = (�A, �B, eA, eB)) ←R Gensidh(1λ). Secret-key spaces for
Alice and Bob are given as SK A = Z/�eA

A Z and SK B = Z/�eB

B Z, respectively. DH-
type key exchange is given as below (Fig. 1). Here, since 〈φB(PA) + kA φB(QA)〉 =
〈φB(RA)〉 = ker φBA and 〈φA(PB) + kB φA(QB)〉 = 〈φA(RB)〉 = ker φAB hold, we
have the equality of the j-invariants KAlice = j(EB/ ker φBA) = j(E/〈RA, RB〉) =
j(EA/ ker φAB) = KBob, and K = KAlice = KBob is a shared key. Alice’s out-
put includes φA(PB) and φA(QB) as well as EA, and the security is based on the
hardness of isogeny problem with the auxiliary inputs.

184 A. Fujioka et al.

Fig. 1. Outline of SIDH protocol (original description).

3.2 Crypto-Friendly Description of SIDH

We prepare an alternative crypto-friendly description of SIDH for a simple pre-
sentation of our proposed AKE.

We set

g = (E; PA, QA, PB, QB), a = kA, and b = kB.

Let the sets of supersingular curves and those with an auxiliary torsion basis be

SSEC p = {supersingular elliptic curve E over Fp2

with E(Fp2) � (Z/(p ± 1)Z)2 ⊇ (Z/�eA

A Z)2 ⊕ (Z/�eB

B Z)2},

SSEC p,A = {(E; P ′
B, Q′

B) |E ∈ SSEC p, (P ′
B, Q′

B) : basis of E[�eB

B]},

SSEC p,B = {(E; P ′
A, Q′

A) |E ∈ SSEC p, (P ′
A, Q′

A) : basis of E[�eA

A]}.

Thus, SIDH public keys of A and B are given elements of SSEC p,A and SSEC p,B,
respectively. Then, we define

ga = (EA; φA(PB), φA(QB)) ∈ SSEC p,A,

where RA = PA + kAQA, φA : E → EA = E/〈RA〉,
gb = (EB; φB(PA), φB(QA)) ∈ SSEC p,B,

where RB = PB + kBQB, φB : E → EB = E/〈RB〉,
(

gb
)a

= j(EBA),
where RBA = φB(PA) + kAφB(QA), φBA : EB → EBA = EB/〈RBA〉,

(ga)b = j(EAB),
where RAB = φA(PB) + kBφA(QB), φAB : EA → EAB = EA/〈RAB〉.

We describe SIDH using this notation below (Fig. 2). Public parameters are
g = (E; PA, QA, PB, QB) and e = (�A, �B, eA, eB). Here, shared secret is given as
KAlice =

(

gb
)a = (ga)b = KBob, which shows correctness of the SIDH protocol.

4 Post-quantum Assumptions from SIDH

We define SI-CDH, SI-DDH, ds- and di-SI-GDH assumptions against quantum
adversaries based on the notation in Sect. 3.2. The SI-DDH assumption is needed

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 185

for indistinguishability security of SIDH shared keys. Moreover, all of the follow-
ing assumptions excluding ds-SI-GDH (see Proposition 1) are considered reason-
able at present.

Fig. 2. Outline of SIDH protocol (crypto-friendly description).

Definition 4 (SI-CDH Assumption). Let S be a quantum machine adver-
sary. For pksidh = (g = (E; PA, QA, PB, QB), e = (�A, �B, eA, eB)) ←R Gensidh(1λ)
and a ∈R SK A, b ∈R SK B, S receives (pksidh, ga, gb), and S outputs h ∈ Fp2 .
If h = (ga)b (=

(

gb
)a), S wins. We define the advantage of S for the SI-CDH

problem as AdvSI-CDH
g,e (S) = Pr[S wins]. The SI-CDH assumption is: For any

polynomial-time quantum machine adversary S, the advantage of S for the SI-
CDH problem is negligible in security parameter λ.

Definition 5 (SI-DDH Assumption). Let S be a quantum machine adver-
sary. For pksidh = (g = (E; PA, QA, PB, QB), e = (�A, �B, eA, eB)) ←R Gensidh(1λ)
and a, r ∈R SK A, b, s ∈R SK B, S receives Xb for b ∈R {0, 1}, that is defined by

X0 = (pksidh, ga, gb, (ga)b) and X1 = (pksidh, ga, gb, (gr)s),

S outputs a guess bit b′. If b = b′, S wins. We define the advantage of S for the
SI-DDH problem as AdvSI-DDH

g,e (S) = Pr[S wins]−1/2. The SI-DDH assumption
is: For any polynomial-time quantum machine adversary S, the advantage of S
for the SI-DDH problem is negligible in security parameter λ.

Definition 6 (ds- and di-SI-GDH Assumption). Let S be a quan-
tum machine adversary. For pksidh = (g = (E; PA, QA, PB, QB), e =
(�A, �B, eA, eB)) ←R Gensidh(1λ) and a ∈R SK A, b ∈R SK B, S receives
(pksidh, g, ga, gb), and S access SI-DDH oracle for any input X =
(pksidh, (E′

A;P
′
AB, Q

′
AB), (E′

B;P
′
BA, Q′

BA), h′) where P ′
AB, Q

′
AB (resp. P ′

BA, Q
′
BA) are

points in E′
A(Fp2) (resp. E′

B(Fp2)) and h′ ∈ Fp2 , and then outputs h ∈ Fp2 . If
h = (ga)b (=

(

gb
)a), S wins. According to the behavior of SI-DDH oracle, we

have two types of SI-GDH problem, i.e.,

– degree-sensitive SI-GDH (ds-SI-GDH) problem. The ds-SI-DDH ora-
cle answers true if there exist a supersingular elliptic curve E′

AB and isogenies
(φ′

A, φ′
B, φ′

AB, φ′
BA) among E,E′

A, E
′
B, E

′
AB which form a commutative diagram

as in Fig. 3 such that
• degree d′

A of φ′
A (and φ′

BA) is equal to �eA

A and degree d′
B of φ′

B (and φ′
AB)

is equal to �eB

B and

186 A. Fujioka et al.

• P ′
AB = φ′

A(PB), Q′
AB = φ′

A(QB) and P ′
BA = φ′

B(PA), Q′
BA = φ′

B(QA) where
points (PA, QA, PB, QB) are given in public key pksidh, and h′ = j(E′

AB),
and false otherwise. We call this case degree-sensitive SI-GDH (ds-SI-GDH)
problem.

– degree-insensitive SI-GDH (di-SI-GDH) problem. The di-SI-DDH
oracle answers true if there exist a supersingular elliptic curve E′

AB and iso-
genies (φ′

A, φ′
B, φ′

AB, φ′
BA) among E,E′

A, E
′
B, E

′
AB which form a commutative

diagram as in Fig. 3 such that
• degree d′

A of φ′
A (and φ′

BA) is a power of �A and degree d′
B of φ′

B (and φ′
AB)

is a power of �B and
• P ′

AB = φ′
A(PB), Q′

AB = φ′
A(QB) and P ′

BA = φ′
B(PA), Q′

BA = φ′
B(QA) where

points (PA, QA, PB, QB) are given in public key pksidh, and h′ = j(E′
AB),

and false otherwise. We call this case degree-insensitive SI-GDH (di-SI-GDH)
problem.

We define the advantage of adversary S for the ds–SI-GDH and di-SI-
GDH problems as Advds-SI-GDH

g,e (S) = Pr[S wins] and Advdi-SI-GDH
g,e (S) =

Pr[S wins], respectively. The ds-SI-GDH (resp. di-SI-GDH) assumption is: For
any polynomial-time quantum machine adversary S, the advantage of S for the
ds-SI-GDH (resp. di-SI-GDH) problem is negligible in security parameter λ.

Fig. 3. Commutative diagram for true instances of SI-DDH oracles, in which it holds
that ker(φ′

BA) = φ′
B(ker(φ′

A)) and ker(φ′
AB) = φ′

A(ker(φ′
B)).

Proposition 1 (adapted from [16]). The ds-SI-GDH assumption does not
hold, i.e., there exists a ppt adversary against the ds-SI-GDH problem.

Proof Sketch. Very recently, Galbraith and Vercauteren proposed an attack
on the SI-CDH problem with access to the decision degree (DD) oracle [16],
which determines whether two supersingular curves are isogenous of some spe-
cific degree or not. As a basic building block, first, we describe an attack
on the SI-CDH problem using the DD oracle. The input of the problem is
(pksidh = (g = (E; PA, QA, PB, QB), e = (�A, �B, eA, eB)), EA, PAB, QAB), where
φA : E → EA is an �eA

A -isogeny, PAB = φA(PB), and QAB = φA(QB). The goal of the
adversary S is to reveal φA. For that, S calculates integer u such that u · �A ≡ 1
(mod �B), and then one �A-isogeny ψ : EA → E′. S send

(p̃k
sidh

= (g, ẽ = (�A, �B, eA − 1, eB), E′, u · ψ(PAB), u · ψ(QAB))

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 187

to the DD oracle. Here, we note that the exponent eA − 1 is used instead of eA
for the implicitly defined �A-power isogeny. That is, the oracle distinguishes the
degree (or length) of the isogeny, in other words, whether E′ is �eA−1

A -isogenous
to E or �eA+1

A -isogenous to E. See the left hand side of Fig. 4. Then, the adversary
reveals all the isogeny by repeating this �A-backtracking decision.

Next, we extend the above strategy to solve the ds-SI-GDH prob-
lem. Namely, an ds-SI-GDH adversary obtains an input (pksidh = (g =
(E; PA, QA, PB, QB), e = (�A, �B, eA, eB)), EA, PAB, QAB, . . .), where φA : E → EA

is an �eA

A -isogeny, PAB = φA(PB), and QAB = φA(QB). The goal of the adversary
S is to reveal φA. For that, S calculates one �A-isogeny ψ : EA → E′ as before.
Moreover, S calculates degree �eB

B -isogenies E → E′
B and E′ → E′

AB that makes
commutative SIDH diagram (E,E′, E′

B, E
′
AB). Then, S send

(p̃k
sidh

= (g, ẽ = (�A, �B, eA − 1, eB), E′, E′
B, . . . , j(E

′
AB))

to the ds-SI-DDH oracle and determine whether ψ is a backtracking step in φA

or not. See the right hand side of Fig. 4. From here on, repeating this procedure,
S can reveal φA. Also, S can compute EAB by using EB and φA, which solves the
ds-SI-GDH problem. ��

Fig. 4. Diagrams for the GV-type attack. The right (resp. left) hand side shows the
strategy for the ds-SI-GDH problem (resp. the SI-CDH problem with access to the DD
oracle). The attacker distinguishes which one of the eA + 1 left arrows of �A-isogenies
from EA is backtracking by using the ds-SI-DDH (resp. the DD) oracle.

As described in the above proof, to distinguish the degree of isogeny (or
distance between two elliptic curves in the �A-isogeny graph) is crucial for the
GV-type attack. Since the ability for the distinction is given by the ds-SI-DDH
oracle, the GV-type attack adversaries have no advantages in the di-SI-GDH
problem. Therefore, in contrast to the ds-SI-GDH problem, we may assume that
the di-SI-GDH problem cannot be solved by any efficient adversaries, and can
be used for the basis of the security of our biclique scheme.

Note that auxiliary points φ′
A(PB), φ′

A(QB), φ′
B(PA), φ′

B(QA) in true instance X
for di-SI-DDH oracle impose some restrictions on implicitly defined isogenies
φ′
A, φ

′
B (and φ′

AB, φ
′
BA) used in Fig. 3. However, since degrees d′

A and d′
B of φ′

A and
φ′
B can be chosen as any powers of �A and �B respectively, a wide range of tuples

(E′
A, E

′
B, E

′
AB) can be accepted for forming the commutative diagram in Fig. 3.

Therefore, as an extreme possible case, any tuple of supersingular elliptic curves

188 A. Fujioka et al.

(E′
A, E

′
B, E

′
AB) might form the commutative diagram in Fig. 3, that is, any tuple

of such curves would be true instances in the hypothetical case. We cannot
exclude such possibility from our present knowledge of the di-SI-GDH problem. A
satisfiable analysis of the di-SI-GDH problem seems to need more understanding
of the Ramanujan graph of �-isogenies of supersingular curves.

Lemma 3.2 and Theorem 3.3 in [30] also show some interesting connection
between computational and decisional SIDH problems. However, we notice that
answers of all the oracles (OE,1)�e , (OE,2)�e and (OE,3)�e (for �e = �e1

1 or �e2
2) are

related to isogenies of degrees dividing �e, which is defined by public parameters.
In particular, all the isogeny degrees have smaller or equal than �e. Our di-SI-
GDH problem is related to unbounded degrees which are just a power of �. Thus,
Lemma 3.2 and Theorem 3.3 in [30] are now unrelated with our situation, but,
we think seeking relationships between the di-SI-GDH problem and the results
in [30] is an interesting research direction.

5 Proposed SIDH UM Protocol

In this section, we propose the SIDH UM protocol, where it can be proved in
the quantum random oracle model under the SI-DDH assumption.

Before describing the protocol, we explain that each party needs to have two
static public keys. The public parameter, g, contains two parameters, (P1, Q1)
and (P2, Q2). A party has a key on (P1, Q1) and the other key on (P2, Q2).
Then, (P1, Q1) is used to generate the ephemeral public key of the initiator and
(P2, Q2) is used to generate the ephemeral public key of the responder. When
the role is exchanged, each party uses the other static key which is not used
before.

This double construction in public parameter and static public keys gives
resistance to reflection attacks. To the best of our knowledge, the previous
researches of key exchange on supersingular isogenies have lacked this consider-
ation.

5.1 Useful Techniques for Quantum Random Oracle Model

A problem on security proofs in the quantum random oracle model is how to
generate random values for exponentially many positions in order to simulate
outputs of the hash function. For a hash function H : Dom → Rng , in the quan-
tum random oracle model, the adversary poses a superposition |φ〉 = Σαx|x〉 and
the oracle returns Σαx|H(x)〉. If Rng is large for a quantum polynomial-time
simulator, it is difficult to generate all random output values of H to compute
Σαx|H(x)〉. Zhandry [33] showed a solution with the notion of k-wise indepen-
dent function.

A weight assignment on a set X is a function D : X → R such that
Σx∈X D(x) = 1. A distribution on X is a weight-assignment D such that
D(x) ≥ 0 for all x ∈ X . Consider the set of functions H : X → Y for sets
X and Y, denoted by HX ,Y . We define the marginal weight assignment DW of

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 189

D on HX ,Y where the weight of a function HW : W → Y is equal to the sum of
the weights of all H ∈ HX ,Y that agree with HW on W.

Definition 7 (k-wise equivalence). We call two weight assignments D1 and
D2 on HX ,Y k-wise equivalent if for all W ⊆ X of size k, the marginal weight
assignments D1,W and D2,W (of D1 and D2) over HX ,Y are identical.

Definition 8 (k-wise independent function). We call a function f k-wise
independent function if f is k-wise equivalent to a random function.

Lemma 1 (Theorem 3.1 in [33]). Let A be a quantum algorithm making q
quantum queries to an oracle H : X → Y. If we draw H from some weight
assignment D, then for every z, the quantity PrH←D[AH() = z] is a linear
combination of the quantities PrH←D[H(xi) = ri∀i ∈ 1, . . . , 2q] for all possible
settings of the xi and ri.

Lemma 2 (Theorem 6.1 in [33]). If there exists 2qi-wise independent func-
tion, then any quantum algorithm A making qi quantum queries to random ora-
cles Oi can be efficiently simulated by a quantum algorithm B, which has the
same output distribution, but makes no queries.

Hence, a quantum algorithm B can simulate quantum random oracles in a
polynomial-time. We use this simulation technique to simulate outputs of the
hash function in the security proof of the SIDH UM protocol.

On the other hand, the other problem on security proofs in the quantum
random oracle model is how to insert intended random values as the outputs of
corresponding oracle inputs. Zhandry [33] showed a solution with the notion of
semi-constant distributions SCω.

Definition 9 (Semi-constant distribution). Define SCω, the semi-constant
distribution, as the distribution over HX ,Y resulting from the following process:

– First, pick a random element y from Y.
– For each x ∈ X , do one of the following:

• With probability ω, set H(x) = y. We call x a distinguished input to H.
• Otherwise, set H(x) to be a random element in Y.

Lemma 3 (Corollary 4.3 in [33]). The distribution of outputs of a quantum
algorithm making h queries to an oracle drawn from SCω is at most a distance
3
8h4ω2 away from the case when the oracle is drawn from the uniform distribu-
tion.

We suppose that the simulation succeeds with probability ε if the adversary
uses an inserted random value as the outputs of corresponding oracle inputs.
If the probability that the adversary uses one of the points is ω, then the sim-
ulation succeeds with probability εω − 3

8h4ω2. By choosing ω to maximize the
success probability, the simulation succeeds with probability O(ε2/h4). We use
this simulation technique to insert a SI-DDH instance into the hash function in
the security proof of the SIDH UM protocol.

190 A. Fujioka et al.

5.2 Description of SIDH UM Protocol

We give our SIDH UM protocol using the notation in Sect. 3.2. Public parameters
are g = (E; P1, Q1, P2, Q2) and e = (�1, �2, e1, e2). We set Π = SIDHUM, that
is, the protocol ID is “SIDHUM.” Static and ephemeral keys are the same as our
biclique SIDH protocol. Let two secret-key spaces for initiators and responders
be given as SK 1 = Z/�e1

1 Z and SK 2 = Z/�e2
2 Z, respectively.

User Â has two static public keys, A1 = ga1 and A2 = ga2 , where a1 = kA,1 ∈R

SK 1, a2 = kA,2 ∈R SK 2, and a1 and a2 are Â’s static secret keys. User B̂, also,
has two static public keys, B1 = gb1 and B2 = gb2 , where b1 = kB,1 ∈R SK 1,
b2 = kB,2 ∈R SK 2, and b1 and b2 are B̂’s static secret keys. Here, ephemeral
secret keys for Â and B̂ are given as

x = kX ∈R SK 1, and y = kY ∈R SK 2,

respectively. Â sends a ephemeral public key X as X = gx to B̂, B̂ sends back
a ephemeral public key Y as Y = gy to Â.

Â computes Z1 = Ba1
2 , and Z2 = Y x, and then, obtains the session key K as

K = H(Π,Z1, Z2, Â, B̂, X, Y), where H is a hash function.
B̂ can computes the session key K as K = H(Π,Z1, Z2, Â, B̂,X, Y) from

Z1 = Ab2
1 , and Z2 = Xy.

It is clear that the session keys of both parties are equal (Fig. 5).

Fig. 5. Outline of SIDH UM protocol. Fig. 6. Outline of Biclique SIDH protocol.

5.3 Security

Theorem 1. Suppose that H is modeled as a quantum random oracle and that
the SI-DDH assumption hold for (g, e). Then the SIDH UM protocol is a post-
quantum CK-secure authenticated key exchange protocol in the quantum random
oracle model.

In particular, for any AKE quantum adversary M against the SIDH UM pro-
tocol that runs in time at most t, involves at most n honest parties and activates
at most s sessions, and makes at most h queries to the quantum random oracle

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 191

and q SessionKeyReveal queries, there exists an SI-DDH quantum adversary S
such that

AdvSI-DDH
g,e (S) ≥ 2AdvAKE

SIDHUM(M)2

n2s2(8hq + 3(h + q + 1)4)
,

where S runs in time t plus time to perform O(

(n + s)λ
)

low-degree isogeny
operations.

An intuition of the security proof is given in Sect. 5.1. The SI-DDH assump-
tion used in Theorem 1 can be degree-sensitive. Hence, it implies security under
the SI-CDH assumption by using the reduction in Proposition 1. However, an
additional reduction cost is necessary. It is not trivial to directly prove security
under the SI-CDH assumption because of the no-cloning theorem. Specifically,
in the reduction to the CK security, the SI-CDH solver wants to extract the
answer of the SI-CDH problem from a random oracle query by the AKE adver-
sary. However, the query is a quantum state, and the solver cannot record a copy
of the input. Thus, this proof strategy does not work. Recently, Zhandry [34]
introduced a technique to record quantum queries. How to apply this technique
to the proof is an open problem.

6 Proposed Biclique SIDH Protocol

In this section, we propose the biclique SIDH protocol, where it can be proved
in the random oracle model under the di-SI-GDH assumption.

It is worth to note here that the SIDH UM protocol is secure in the quan-
tum random oracle model under the SI-DDH assumption, and therefore, the
SIDH UM protocol is superior than the biclique SIDH protocol in the following
points: the computational model of adversaries and the assumption relaying to
the security. However, the biclique SIDH protocol can be shown to be secure in
the CK+ model, that is, the protocol resists against maximum exposure where
a non-trivial combination of secret keys is revealed. This shows that the biclique
SIDH protocol is superior than the SIDH UM protocol in this sense.

As our SIDH UM protocol in Sect. 5, the public parameter, g, contains two
parameters, (P1, Q1) and (P2, Q2) in our biclique SIDH protocol. A party has
a key on (P1, Q1) and the other key on (P2, Q2).

6.1 Description of Biclique SIDH Protocol

We give our biclique SIDH protocol using the notation in Sect. 3.2. Public param-
eters are g = (E; P1, Q1, P2, Q2) and e = (�1, �2, e1, e2). We set Π = BCSIDH,
that is, the protocol ID is “BCSIDH.” Let two secret-key spaces for initiators
and responders be given as SK 1 = Z/�e1

1 Z and SK 2 = Z/�e2
2 Z, respectively.

User Â has two static public keys, A1 = ga1 and A2 = ga2 , where a1 = kA,1 ∈R

SK 1, a2 = kA,2 ∈R SK 2, and a1 and a2 are Â’s static secret keys. User B̂, also,
has two static public keys, B1 = gb1 and B2 = gb2 , where b1 = kB,1 ∈R SK1,

192 A. Fujioka et al.

b2 = kB,2 ∈R SK2, and b1 and b2 are B̂’s static secret keys. Here, ephemeral
secret keys for Â and B̂ are given as

x = kX ∈R SK 1, and y = kY ∈R SK 2,

respectively. Â sends an ephemeral public key X as X = gx to B̂, B̂ sends back
an ephemeral public key Y as Y = gy to Â.

Â computes the non-trivial combinations of the ephemeral and static public
keys as Z1 = Y a1 , Z2 = Bx

2, Z3 = Ba1
2 , and Z4 = Y x, and then, obtains

the session key K as K = H(Π,Z1, Z2, Z3, Z4, Â, B̂,X, Y), where H is a hash
function.

B̂ can computes the session key K as K = H(Π,Z1, Z2, Z3, Z4, Â, B̂,X, Y)
from Z1 = Ay

1, Z2 = Xb2 , Z3 = Ab2
1 , and Z4 = Xy.

It is clear that the session keys of both parties are equal (Fig. 6).
Charles et al. [6] proposed a hash function secure against quantum adversaries

from the isogeny computation intractability. Hence, we can use the isogeny-based
hash function in the real implementation for H, however, H is modeled as a
random oracle in the security proof below.

6.2 Security

Theorem 2. Suppose that H is modeled as a random oracle and that the di-
SI-GDH assumption hold for (g, e). Then the biclique SIDH protocol is a post-
quantum CK+-secure authenticated key exchange protocol in the random oracle
model.

In particular, for any AKE quantum adversary M against the biclique SIDH
protocol that runs in time at most t, involves at most n honest parties and
activate at most s sessions, and makes at most h queries to the random oracle,
there exists a di-SI-GDH quantum adversary S such that

Advdi-SI-GDH
g,e (S) ≥ min

{ 1
sn

,
1
n2

,
1
s2

}

· AdvAKE
BCSIDH(M),

where S runs in time t plus time to perform O(

(n + s)λ
)

low-degree isogeny
operations and make O(h + s) queries to di-SI-DDH oracle.

As we consider a case where the security model is CK+, an adversary may
access to a non-trivial combination of secret keys. However, it means that the
adversary cannot access to the other combination of the secret key. Thus, the
di-SI-GDH solver can embedded an instance to the public keys where secret key
are not revealed. As we assume the random oracle model, the adversary has to
make a query which contains the di-SI-GDH answer, and then, the theorem can
be proved. Note here that the di-SI-DDH oracle is necessary to keep consistency
between the answers by the di-SI-GDH solver on adversary’s questions.

We consider how to extend our security proof in the random oracle model
to that in the quantum random oracle model as in the SIDH UM protocol.
For completing the simulation, we need to extend the di-SI-GDH assumption

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 193

(Definition 6). Namely, in random oracle simulation, S first checks compatibility
of input elements using di-SI-DDH oracle. Hence, in the quantum ROM situation,
since inputs are given in quantum superposition form, we should extend the di-
SI-DDH oracle to take as input the superpositions. If the di-SI-GDH quantum
adversary allows the extended di-SI-DDH oracle access, then our security proof
can be converted to quantum ROM secure one.

7 Conclusion

We proposed two authenticated key exchange protocols from supersingular iso-
genies: SIDH UM and biclique SIDH. We also discussed a new approach for
invalidating the Galbraith–Vercauteren attack for the gap problem on the super-
singular isogeny Diffie–Hellman, and defined the di-SI-GDH assumption.

The SIDH UM protocol is secure in the CK and quantum random oracle
models under the SI-DDH assumption. The biclique SIDH protocol is secure in
the CK+ and random oracle models under the di-SI-GDH assumption.

Our protocols are the first post-quantum one-round Diffie–Hellman type
authenticated key exchange ones in the following points: one is secure under the
quantum random oracle model and the other resists against maximum exposure
where a non-trivial combination of secret keys is revealed.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: FOCS 2014, pp. 474–483 (2014)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: AsiaPKC 2016, pp. 1–10 (2016)

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

4. Bos, J.W., Friedberger, S.: Fast arithmetic modulo 2x py±1. In: ARITH 2017, pp.
148–155 (2017)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

6. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander
graphs. J. Crypt. 22(1), 93–113 (2009)

7. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Crypt. 8(1), 1–29 (2014)

8. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 24

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24

194 A. Fujioka et al.

9. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

10. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The fiat–shamir transformation in a
quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42045-0 4

11. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

12. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
ASIACCS 2013, pp. 83–94 (2013)

13. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Crypt. 76(3), 469–504
(2015). A preliminary version appeared in PKC 2012 (2012)

14. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint
Archive 2018, 266 (2018). http://eprint.iacr.org/2018/266

15. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

16. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. IACR Cryptology ePrint Archive 2017, 774 (2017). http://eprint.
iacr.org/2017/774

17. Jao, D., et al.: Supersingular Isogeny Key Encapsulation (SIKE). Submission to
NIST Post-Quantum Cryptography Standardization (2017)

18. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24852-1 16

19. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography
on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuits Syst. 64–I(1),
86–99 (2017)

20. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 6

21. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

22. LeGrow, J., Jao, D., Azarderakhsh, R.: Modeling quantum-safe authenticated key
establishment, and an isogeny-based protocol. IACR Cryptology ePrint Archive
2018, 282 (2018). http://eprint.iacr.org/2018/282

23. Longa, P.: A note on post-quantum authenticated key exchange from supersingular
isogenies. IACR Cryptology ePrint Archive 2018, 267 (2018). http://eprint.iacr.
org/2018/267

24. National Institute of Standards and Technology: Post-Quantum crypto standard-
ization: Call for Proposals Announcement, December 2016. http://csrc.nist.gov/
groups/ST/post-quantum-crypto/cfp-announce-dec2016.html

https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/978-3-642-42045-0_4
http://eprint.iacr.org/2018/266
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
http://eprint.iacr.org/2017/774
http://eprint.iacr.org/2017/774
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/11535218_33
http://eprint.iacr.org/2018/282
http://eprint.iacr.org/2018/267
http://eprint.iacr.org/2018/267
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html

Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange 195

25. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006, 145 (2006). http://eprint.iacr.org/2006/145

27. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

28. Sutherland, A.: Identifying supersingular elliptic curves. LMS J. Comput. Math.
15, 317–325 (2012)

29. Thormarker, E.: Post-quantum cryptography: supersingular isogeny Diffie-Hellman
key exchange. Master’s thesis, Stockholm University (2017)

30. Urbanik, D., Jao, D.: SoK: the problem landscape of SIDH. In: APKC 2018, pp.
53–60 (2018)

31. Xu, X., Xue, H., Wang, K., Tian, S., Liang, B., Yu, W.: Strongly secure authenti-
cated key exchange from supersingular isogeny. IACR Cryptology ePrint Archive
2018, 760 (2018). http://eprint.iacr.org/2018/760

32. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, pp.
679–687 (2012)

33. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

34. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. IACR Cryptology ePrint Archive 2018, 276 (2018). http://eprint.
iacr.org/2018/276

https://doi.org/10.1007/978-3-319-70697-9_12
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2018/760
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
http://eprint.iacr.org/2018/276
http://eprint.iacr.org/2018/276

On the Complexity of the LWR-Solving
BKW Algorithm

Hiroki Okada1(B), Atsushi Takayasu2, Kazuhide Fukushima1,
Shinsaku Kiyomoto1, and Tsuyoshi Takagi2

1 KDDI Research, Inc., Saitama, Japan
ir-okada@kddi-research.jp

2 The University of Tokyo, Tokyo, Japan

Abstract. Duc et al. applied the Blum-Kalai-Wasserman (BKW) algo-
rithm to the learning with rounding (LWR) problem. The number of
blocks is a parameter of the BKW algorithm. By optimizing the number
of blocks, we can minimize the time complexity of the BKW algorithm.
However, Duc et al. did not derive the optimal number of blocks theo-
retically, but they searched it for numerically. In this paper, we theoret-
ically derive the asymptotically optimal number of blocks and show the
minimum time complexity of the algorithm. Furthermore, we derive an
equation that relates the Gaussian parameter σ of the LWE problem and
the modulus p of the LWR problem. When σ and p satisfy the equation,
the asymptotic time complexity of the BKW algorithm to solve the LWE
and LWR problems are the same.

Keywords: Lattice · Learning with errors · Learning with rounding ·
Blum-Kalai-Wasserman algorithm

1 Introduction

Background. In December 2016, the National Institute of Standards and Tech-
nology (NIST) initiated post-quantum cryptography (PQC) standardization.
In the list of the round 1 submissions [33], there are several lattice-based
schemes whose security are based on learning with errors (LWE) problem (e.g.,
[5,6,13,17,18]) and learning with rounding (LWR) problem (e.g., [9,21,24,34]).
Therefore, studies of the algorithm to solve the LWE and LWR problems are
important for design and security analysis of post-quantum cryptosystems.

The LWE problem, which is an extension of the learning parity with noise
(LPN) problem, is introduced by Regev [42]. An adversary of the LWE problem
receives samples (aj , 〈aj , s〉+ ej) ∈ Z

n
q ×Zq (j = 1, 2, . . .) from the LWE oracle,

where aj is a uniformly random vector in Z
n
q , s is a fixed secret vector in Z

n
q , and

ej ∈ Zq is a noise (usually, discrete Gaussian noise). The goal of the adversary is
to recover secret vector s. We note that the LPN problem has a fixed modulus
q = 2 and the noise follows the Bernoulli distribution. In [42], Regev presents a
reduction from worst-case lattice problems to the average-case LWE problem.
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 196–214, 2019.
https://doi.org/10.1007/978-3-030-12146-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_13

On the Complexity of the LWR-Solving BKW Algorithm 197

We can classify algorithms for solving the LWE problem into two families.
The first family uses lattice reduction techniques, which have been extensively
studied (see, e.g., [14,20,26,30,31,38–41]). The expected complexity of these
algorithms is often considered when parameters for LWE-based schemes are
discussed, such as in [3]. The second family is tailor-made for the LPN and
LWE problems without lattice reduction, which includes the main subject of this
paper: the Blum-Kalai-Wasserman (BKW) algorithm [15]. The BKW algorithm
can be described as a “block-wise” and addition-only variant of the standard
Gaussian elimination. First, we separate the vector aj ∈ Z

n
q into a blocks: We

can write aj = (aj,1||aj,2|| . . . ||aj,a), where aj,1, . . . ,aj,a ∈ Z
n/a
q , and then, by

adding the samples together like the Gaussian elimination, we obtain “reduced”
samples a′

j = (a′
j,1||0|| . . . ||0). As reported in [32], improved variants of the

BKW algorithm such as [29,36] are some of the asymptotically fastest algo-
rithms. Although some algorithm [37] based on lattice reduction outperforms
these BKW algorithms for some parameter-sets (q, σ), it allows a heuristic [32].

The LWR problem is proposed by Banerjee et al. [12] with its reduction
from the LWE problem. We can consider the LWR problem as a determinis-
tic variant of the LWE problem in which the noise additions are replaced with
deterministic rounding operations. An adversary of the LWR problem receives
samples (aj , �p

q 〈aj , s〉�) ∈ Z
n
q × Zp (j = 1, 2, . . .) from the LWR oracle, where

p is a rounding modulus such that p < q. Compared with LWE-based crypto-
graphic schemes, LWR-based schemes can be simply implemented because they
replace the rich Gaussian error sampling process of the LWE-based schemes
with the rounding operations (which can be simply implemented by rounding
off the lower-order bits). The LWR problem was initially applied to low-depth
pseudorandom functions [10–12,16], and there have been a number of applica-
tions, cf. lossy trapdoor functions [7], public-key cryptosystems [9,21,43] and
key exchange protocol [34].

However, few studies have been performed on the complexity of the LWR
problem, while the complexity of the LWE problem has been extensively studied.
The complexity of the LWR problem is often estimated by adopting the LWE-
solving algorithms to the LWR problem. In [3], Albrecht et al. estimates the
cost of running primal and dual lattice attacks, which is based on lattice reduc-
tion techniques, against lattice-based schemes including LWE-based schemes and
LWR-based schemes in the list of the round 1 submissions for the NIST PQC
standardization [33]. They consider that the cost of lattice attacks for the LWR
and LWE problem are the same when an equation σ = q

2
√
3p

holds, as consid-
ered in [22,24]. This equation is simply derived by comparing the variance of the
Gaussian noise of the LWE problem and the “rounding error” of the LWR prob-
lem. Note that the equation, which relates the hardness of the LWR problem and
the LWE problem, is limited to attacks based on lattice reduction techniques,
and it is not shown that the conversion equation can be applied for the BKW
algorithm.

198 H. Okada et al.

Previous Works. The BKW algorithm initially targeted the LPN problem, and
its time complexity is sub-exponential in 2O(n/ log n). Albrecht et al. [2] expanded
it to solve the LWE problem whose time complexity is qO(n/ log n). Duc et al.
improved Albrecht et al.’s BKW algorithm and also introduced its variant for
the LWR problem, which was the first algorithmic analysis of the LWR prob-
lem. They showed that the time complexity of the LWR-solving algorithm is
qO(n/ log n) when we choose the number of the block as a = O(log n). However,
they did not show this choice of a is optimal; thus the minimum time complexity
of the algorithm is not shown.

After the BKW algorithm proposed by Albrecht et al., new variants of the
BKW algorithm [1,4,28,29,36] for solving a small-secret LWE problem, whose
secret vector s is extremely small (e.g. s ∈ {0, 1}n), are proposed. These algo-
rithms can be applied to the general LWE problem, whose secret vector s is
uniform in Z

n
q , by transforming the general LWE problem to small-secret LWE

problem with a technique called secret-error switching [8,19,36], and it is shown
that some of these algorithms [29,36] solve the general LWE problem faster.
However, it is not shown that these new type of the BKW algorithm can be
applied to the LWR problem. In order to apply the secret-error switching tech-
nique to the LWR problem, we need to convert LWR samples into LWE sam-
ples with uniform error by substituting the LWR samples (aj , �p

q 〈aj , s〉�) with
(aj ,

q
p�p

q 〈aj , s〉�), and, as mentioned in [36], solving this converted LWR problem
with their algorithm is out of reach. On the other hand, Duc et al.’s LWR-solving
BKW algorithm does not need to convert LWR samples into LWE samples; the
algorithm is tailor-made for solving the LWR problem.

Our Contribution. We first review Duc et al.’s LWR-solving BKW algorithm,
and then derive the time complexity in a simpler form. Subsequently, we theo-
retically derive the optimal choice of the number of blocks a that asymptotically
minimize the time complexity, while Duc et al. searched numerically for the opti-
mal a in [25]. Thus, an entirely theoretical analysis of the time complexity of the
algorithm is shown in this paper: We show that the minimum time complexity
of the BKW algorithm is t = qO(n/ log n) and the required number of samples
is m = qO(n/ log n). We also confirm that the derived parameter is accurately
optimal by showing the results of some concrete instances of the LWR problem,
and that they fit the results given by Duc et al.

Furthermore, we derive a conversion equation between the Gaussian param-
eter σ in the LWE problem and the rounding modulus p in the LWR problem,
by comparing the time complexity of the BKW algorithm for the LWE and
LWR problems: We show that the time complexity of the BKW algorithm to
solve the LWE problem and that to solve the LWR problem are the same when
σ and p satisfy equation σ = q

2
√
3p

. This equation coincides with the equation
derived from the complexity analysis of the attacks based on lattice reduction
techniques. Thus, our result means that the equation is applicable also for the
complexity analysis based on the BKW algorithm.

On the Complexity of the LWR-Solving BKW Algorithm 199

2 Preliminaries

Notations. We denote the logarithm of base 2 and the natural logarithm as
log(·) and ln(·), respectively. We denote the imaginary unit as i, and a real part
of x ∈ C as Re(x). We let �·� : R → Z be the rounding function that rounds to the
closest integer. (In the case of equality, we take the floor.) We define θq := e

2πi
q

and also θp := e
2πi

p . We write vectors in bold. By aj we denote the j-th vector
of the list of vectors. We denote a partial vector of a vector a = (a1, a2, . . . , an)
by a(k,l) := (ak, ak+1, . . . , al), where 1 ≤ k ≤ l ≤ n. By (a||b) we denote the
concatenation of two vectors a and b. We denote by 〈·, ·〉 the usual dot product
of two vectors, and we define 〈·, ·〉q := 〈·, ·〉 (mod q). We write s

U←− S to denote
the process of sampling s uniformly at random over S, and we write e ← χ to
denote the process of sampling e according to a probability distribution χ.

2.1 LWE and LWR Problem

The LWE Problem. We define the LWE oracle and the LWE problem.

Definition 1 (LWE oracle). Let n, q be positive integers. Learning with Error
(LWE) oracle LWEs,χ for a fixed vector s ∈ Z

n
q and probability distribution χ

over Zq is an oracle returning
{

(a, c)
∣∣∣ c = 〈a, s〉 + e mod q, a

U←− Z
n
q , e ← χ

}
.

For the distribution of noise χ, variants of the Gaussian distribution that is
discretized into Zq are used. In this paper, we consider two types of Gaussian
distributions that are considered in [25]; the rounded Gaussian distribution Ψ̄σ,q

and the discrete Gaussian distribution Dσ,q. The rounded Gaussian distribution
Ψ̄σ,q is proposed in the initial LWE problem by Regev [42], and is also considered
in [2,27]. Its probability mass function for integer x in the interval] − q

2 , q
2], is

given by Pr[x ← Ψ̄σ,q] =
∫ x+ 1

2
x− 1

2
g(θ; q, σ)dθ, where g(θ; q, σ) is the probability

density function of the wrapped Gaussian distribution Ψ̄σ,q, which is defined by

g(θ; q, σ) :=
∑∞

l=−∞
1

σ
√
2π

exp
(

−(θ+lq)2

2σ2

)
, for θ ∈

]
− q

2 , q
2

]
. The discrete Gaus-

sian distribution Dσ,q is used in most of the cryptographic applications of the
LWE problem and in the classical LWE problem reduction [19]. This distribution

is, for x an integer in] − q
2 , q

2], Pr[x ← Dσ,q] =
exp(− x2

2σ2)
∑

y∈]− q
2 ,

q
2] exp(− y2

2σ2)
.

Definition 2 (Search-LWE). The Search-LWE problem is the problem of recov-
ering the hidden secret s given m samples (aj , cj) ∈ Z

n
q × Zq (j = 1, 2, . . . ,m)

received from LWEs,χ.

The LWR Problem. We define the LWR problem which is the main focus of this
paper. For the purpose, we define an LWR Oracle in advance.

Definition 3 (LWR oracle). Let n, q be natural numbers. Learning with Round-
ing (LWR) oracle LWRs,p for a hidden vector s ∈ Z

n
q and rounding modulus p is

an oracle returning
{

(a, c)
∣∣∣ c =

⌈
p
q 〈a, s〉q

⌋
, a

U←− Z
n
q

}
.

200 H. Okada et al.

Definition 4 (LWR problem). The LWR problem is the problem of recovering
the hidden secret s given m samples (aj , cj) ∈ Z

k
q ×Zq (j = 1, 2, . . . ,m) received

from LWRs,p.

The rounding calculation in the LWR sample generates a “rounding error,” which
is similar to the Gaussian noise added in the LWE sample. Duc et al. proved
that “rounding error” follows a uniform distribution, in Lemma 19 in [25].

Lemma 1 (Lemma 19 in [25]). Let n and q > p ≥ 2 be positive integers, q
prime. Let (a, c) be a random sample from an LWR oracle LWRs,p. Then, the
“rounding error,” given by

ξ =
p

q
〈a, s〉q − c, (1)

follows the uniform distribution in a discrete subset of [− 1
2 , 1

2] with mean zero.
Furthermore, the characteristic function of ξ, for t ∈ R�=0, is

φξ(t) := E[e±itξ] =
sin(t

2)
q sin(t

2q)
. (2)

Banerjee et al., showed a reduction from the LWE problem to the LWR problem,
in the paper [12] in which they first introduced the LWR problem. Note that
the decision version of the LWE (or LWR) problem can be described as follows:
given m samples of the form (a, c) ∈ Z

n
q ×Zq (or Zp), where a

U←− Z
n
q , distinguish

whether c
U←− Zq (or Zp) or c = 〈a, s〉 + e (or c =

⌈
p
q 〈a, s〉q

⌋
), for a fixed secret

s ∈ Z
n
q .

Theorem 1 (Theorem 3.2 in [12]). Let β ∈ R+, χ be any efficiently samplable
distribution over Z such that Prx←χ[|x| > β] is negligible, and let q ≥ p ·β ·nω(1).
Then, solving decision-LWR with secrets of size n and parameters p and q is at
least as hard as solving decision-LWE over Z

n
q with noise distribution χ.

Alwen et al. [7] also showed the reduction without the super-polynomial param-
eters, but it limits the number of samples that the LWR oracle allows the adver-
sary to receive.

Theorem 2 (Theorem 4.1 from [7]). Let λ be the security parameter. Let n, l,
m, p, γ be positive integers, pmax be the largest prime divisor of q, and pmax ≥
2βγnmp. Let χ be the probability distribution over Z such that the average abso-
lute value of x ← χ is less than β. Then, if n ≥ (l + λ + 1) log(q)/ log(2γ) + 2λ
and if gcd(q, q/pmax) = 1, the decision-LWR with secrets of size n, parameters p
and q and limited to m queries is at least as hard as solving decision-LWE over
Z

l
q with noise distribution χ and limited to m queries.

2.2 Duc et al .’s BKW Algorithm for the LWR Problem

We recall Duc et al.’s BKW algorithm to solve the LWR problem. The BKW
algorithm consists of three stages: (1) Sample reduction, (2) Hypothesis testing,

On the Complexity of the LWR-Solving BKW Algorithm 201

Algorithm 1. The BKW algorithm to solve the LWR problem [25]
Input: natural numbers a, b (ab = n), m, and samples (aj , cj), (j = 1, 2, . . . , m). We

represent the set of samples as S := {(aj , cj)}m
j=1.

Output: s.

(Stage 1: Sample reduction.)
for l = 0 to a − 2 do

S ′ ← φ : empty set
Tl ← φ
repeat

extract one sample (a, c) from S.
if a(b(a−l−1)+1,b(a−l)) = 0 then

S ′ ← S ′ ∪ (a, c)
else if there is (a′, c′) ∈ Tl such that (a ± a′)(b(a−l−1)+1,b(a−l)) = 0 then

S ′ ← S ′ ∪ (a ± a′, c ± c′)
else

Tl ← Tl ∪ (a, c)
end if

until S = φ
S ← S ′

end for
Ta−1 ← S
for l = a − 1 to 0 do
(Stage 2: Hypothesis testing.)

Let ml := #Tl, and we denote by (al
j , c

l
j) the samples included in Tl.

Calculate f(y) :=
∑ml

j=1 1{a l
j=y }θ

cl
j

p for all y ∈ Z
b
q

Calculate the DFT of f , which is f̂(z) =
∑ml

j=1 θ
−(p

q
〈a l

j ,z 〉−cl
j)

p .

Calculate s(b(a−l−1)+1,b(a−l))) ← argmaxz Re(f̂(z)).
(Stage 3: Back substitution.)

Using the obtained s(bl+1,b(l+1))), update sets Tl′ for 0 ≤ l′ < l.
end for
return (s(1,b)||s(b+1,2b)|| . . . ||s((a−1)b+1,ab))

and (3) Back substitution. For simplicity, in this paper, we consider only the case
that the number of blocks a and the block length b satisfy ab = n. Algorithm 1
shows an overview of the algorithm.

Stage 1: Sample Reduction. We receive m samples {(aj , cj)}m
j=1 from LWR

oracle LWRs,p, and represent the set of samples as S := {(aj , cj)}m
j=1. We

separate the vector aj ∈ Z
n
q into a blocks whose length are b: We can write

aj = (aj(1,b)||aj(b+1,2b)|| . . . ||aj((a−1)b+1,ab)). In Stage 1, our goal is to produce
samples whose elements are all zero except for the first block, with addition or
subtraction of pairs of samples. For l = 0, we extract a sample (a, c) from S, and
search another sample (a′, c′) such that (a ± a′)((a−1)b+1,ab) = 0, then we store
the sample (a ± a′, c ± c′) in the temporary set S ′. If a sample (a, c) already
holds a((a−1)b+1,ab) = 0, we directly store it in S ′. If we cannot find the sample

202 H. Okada et al.

(a′, c′) such that (a±a′)((a−1)b+1,ab) = 0, we store the sample (a, c) in T0. After
we finish extracting samples and empty the set S, we renew S ← S ′ and move
on to the next step for l = 1. In this manner, we recursively generate the sets Tl

for 0 ≤ l ≤ a − 2, and then we set Ta−1 ← S in the end. Note that the samples
(a, c) in Tl hold a((a−l)b+1,ab) = 0 (except for l = 0). In particular, the samples
(a, c) in Ta−1 hold a(b+1,ab) = 0. We may think of the reduced samples in Ta−1

as the set of samples of the b-dimensional LWR problem, although the variance
of their noise is larger than those of the original samples. Hereinafter, the sam-
ples in Tl are termed “reduced samples”, and represent Tl = {(al

j , c
l
j)}ml

j=1, where
ml := #Tl. Note that the maximum number of samples whose (a − l)-th block
cannot vanish is qb−1

2 , and the minimum (worst) number of reduced samples in
Ta−1 (i.e. minimum value of ma−1) is

m′ = m − (a − 1)
qb − 1

2
. (3)

Stage 2: Hypothesis Testing. For simplicity, we explain Stage 2 and Stage 3 only
for l = a − 1. (In Sect. 3.1, we only consider the time complexity to recover
s(1,b) because the whole time complexity of the algorithm is at most a positive
constant multiple of it). For simplicity of notation, we define a b-dimensional
vector aj := (aa−1

j)
(1,b)

, and denote cj := ca−1
j . The goal of this stage is to

estimate the first b elements of s, denoted as s(1,b). We define the function

f(y) :=
∑m′

j=1 1{aj=y}θ
cj
p , where y ∈ Z

b
q, θp := e

2πi
p , and 1{aj=y} is 1 when

aj = y is true and 0 otherwise. The discrete Fourier transform of f is

f̂(z) :=
∑
y∈Zb

q

f(y)θ−〈y ,z〉
q =

m′∑
j=1

θ
−(p

q 〈aj ,z〉−cj)
p . (4)

Then, we search the max Re(f̂(z)), and output s(1,b) = argmaxz Re(f̂(z)). We
explain how the output argmaxz Re(f̂(z)) estimates the secret vector. We define
the “rounding error” of the reduced samples {(aj , cj)}m′

j=1 by ξj := p
q 〈aj , s(1,b)〉−

cj , as like (1). Recall that the aj is produced by a − 1 times of the “tree-like”
addition of the original samples in the process of Stage 1, i.e. aj is the sum of the
2a−1 original samples, thus we can write aj = (aj,1 ± aj,2 ± · · · ± aj,2a−1)(1,b),
where aj,1, . . . ,aj,2a−1 are the original samples. Similarly, we can write cj =
cj,1 ± cj,2 ± · · · ± cj,2a−1 , and obtain

ξj =
p

q
〈aj,1 ± aj,2 ± · · · ± aj,2a−1 , s〉 − (cj,1 ± cj,2 ± · · · ± cj,2a−1)

=
2a−1∑
k=1

p

q
〈aj,k, s〉 − cj,k =

2a−1∑
k=1

ξj,k,

where the ξj,k are independent rounding errors from original samples. From
the above equation and (4), when z = s(1,b), we obtain f̂(s(1,b)) =
∑m′

j=1 θ
−(

∑2a−1
k=1 ξj,k)

p . On the other hand, when z �= s(1,b),
p
q 〈aj ,z〉−cj distribute

uniformly in]0, p].

On the Complexity of the LWR-Solving BKW Algorithm 203

Thus, when we select an appropriate value of parameter a such that the sum
of the rounding errors

∑2a−1

k=1 ξj,k does not grow too large, Re(f̂(s)) is so much
larger than Re(f̂(z)) that the hypothesis test succeeds with high probability.

Stage 3: Back Substitution. Using the obtained s(1,b), update the sets Tl by
zeroing-out b elements in each sample: Replace all (a, c) ∈ Tl′ for 0 ≤ l′ < a − 1
with (a′, c′), where a′ = (0||a(b+1,n)) ∈ Z

n
q , c′ = c− p

q 〈a(1,b), s(1,b)〉q ∈ Zp. Then
back to Stage 2 to obtain s(b+1,2b).

Repeating a rounds of Stages 2 to 3, we estimate s(1,b), s(b+1,2b), . . . ,
s(a(b−1)+1,ab), and obtain s = (s(1,b)||s(b+1,2b)|| . . . ||s((a−1)b+1,ab)).

3 Analysis of BKW Algorithm for the LWR Problem

We derive the minimum time complexity and the minimum number of required
samples, by optimizing the number of blocks a which is a parameter of the BKW
algorithm.

As with Duc et al. in this paper, we consider only the case that the block
length b satisfy n = ab, for simplicity. Therefore, the block length b is determined
by the number of blocks a, as b = n/a. Note that the complexity of the BKW
algorithm for the general case, where n = (a − 1) · b + n′ and n′ < b, is asymp-
totically the same with that for the case where ab = n. We always consider q to
be a prime, and q > p > 4 because we need the condition to prove Lemma 3.

In Sect. 3.1, we analyze the time complexity of the BKW algorithm for solving
the LWR problem, using a as a parameter. In Sect. 3.2, we derive the optimal
value of a that asymptotically minimizes the asymptotic time complexity. In
Sect. 3.3, we calculate the concrete time complexity of the BKW algorithm for
several LWR instances, and confirm that the optimal value of a minimizes the
time complexity of the algorithm. Furthermore, in Sect. 4.1, we derive a equation
that relates σ of the LWE problem and p of the LWR problem. When σ and p
satisfy the equation, the asymptotic time complexity of the BKW algorithm to
solve the LWE and LWR problems are the same.

3.1 Complexity Analysis

We analyze the time complexity and required number of samples to solve the
LWR problem. We asymptotically analyze the time complexity and make it in a
simple form so that we can theoretically derive the optimal number of blocks a
in Sect. 3.2. We first refer to Lemma 2 (Theorem 23 in [25]), which is the analysis
of the minimum number of samples needed to solve the LWR problem.

Lemma 2 (Theorem 23 in [25]). We define the probability that the algorithm
cannot recover the correct answer ε := Pr

[
argmaxzRe

(
f̂(z)

)
�= s(1,b)

]
. Then,

the number of samples required to solve the LWR problem with oracle LWRs,p is

204 H. Okada et al.

mLWR =
8n

a
ln

(q

ε

) (
(Rq,p)2

a−1 −
(

3
p

)2a−1)−2

+ (a − 1)
qn/a − 1

2
, (5)

where Rq,p :=
sin(π

p)
q sin(π

pq) .

Note that Rq,p is derived based on the characteristic function of the “rounding
error” given in (2): Rq,p = φξ(2π

p) holds. As discussed later, this mLWR in (5) is
the main term of the time complexity of the algorithm.

In the following Lemma 3, we analyze the asymptotic behavior of the compli-
cated part of the mLWR. We describe it in a simpler form in order to enable the
analysis of the minimum time complexity, which will be given later in Sect. 3.2.
Note that we use the error rate of the LWR sample αlwr := 1

p

√
π
6 [21] to describe

the time complexity for simplicity of notation.

Lemma 3. Let αlwr := 1
p

√
π
6 . When q > p > 4, we have

(
(Rq,p)2

a−1 −
(

3
p

)2a−1)−2

= exp(πα2
lwr2

a) + O

(
1

p2q2

)
. (6)

Proof. First, we prove that
(

(Rq,p)2
a−1 −

(
3
p

)2a−1)−2

= (Rq,p)−2a

+ O

(
1

p2a−1

)
(7)

holds. Note that q > p > 4. We obtain Rq,p =
p
π sin(π

p)
pq
π sin(π

pq) ≥ p
π sin

(
π
p

)
. Since

p
π sin

(
π
p

)
is monotonically increasing when p > 4, we obtain Rq,p > 4

π sin
(

π
4

)
=

0.9003 · · · , and Rq,p > 3
p . Let x = (Rq,p)2

a−1
and y =

(
3
p

)2a−1

, then we have
y
x < 1. Using Taylor expansion, we obtain (x−y)−2 = 1

x2

(
1 + O(y

x)
)
. Therefore,

(7) holds.
Next, we derive (6) from (7). Using Taylor expansion, we obtain Rq,p =

1− π2

6p2 +O
(

1
p2q2

)
= 1−πα2

lwr+O
(

1
p2q2

)
, and Rq,p −exp

(
−πα2

lwr

)
= O

(
1

p2q2

)
.

Consequently, from this equation, we obtain

(Rq,p)
−2a

=
(

exp
(
−πα2

lwr

)
+ O

(
1

p2q2

))−2·2a−1

=
(

exp
(
πα2

lwr · 2
) (

1 + O

(
1

p2q2

)))2a−1

= exp
(
πα2

lwr2
a
) (

1 + O

(
1

p2q2

))2a−1

= exp
(
πα2

lwr2
a
)

+ O

(
1

p2q2

)
. (8)

Thus, using (7) and (8), we have (6). �

On the Complexity of the LWR-Solving BKW Algorithm 205

We can now derive the number of required samples and the time complexity of
the algorithm.

Theorem 3. Let n and q > p > 4 be positive integers, q prime, and a be a nat-
ural number. Fix ε ∈ (0, 1). When at least mLWR = poly(exp(πα2

lwr2
a), qn/a)

samples are given by LWR oracle LWRs,p, the time complexity of the BKW
algorithm to recover secret s with a probability of at least 1 − ε is tLWR =
poly(exp(πα2

lwr2
a), qn/a), where αlwr = 1

p

√
π
6 .

Proof. From Lemmas 2 and 3, the number of required samples to solve the LWR
problem is mLWR = 8n

a ln
(

q
ε

) (
exp(πα2

lwr2
a) + O

(
1

p2q2

))
+(a−1) qn/a−1

2 . Recall
that the number of the “reduced” samples we obtain after Stage 1 is m′ =
mLWR − (a − 1) qn/a−1

2 = 8n
a ln

(
q
ε

) (
exp(πα2

lwr2
a) + O

(
1

p2q2

))
, which is defined

in (3).
In Stage 1, since we apply the addition for O(mLWR) samples in Z

n
q for a − 1

times, the time complexity is t1 = O(anmLWR). In Stage 2, We first calcu-
late f(y) :=

∑m′

j=1 1{aj=y}θ
cj
p , for all y ∈ Z

b
q. Since we need only to calculate

f(y) for y ∈ {aj}m′
j=1, the time complexity for calculating f(y) is O(m′) =

O(exp(πα2
lwr2

a)(n/a) ln q). After that, we compute the DFT of f , the complex-
ity of which is O(qn/a(n/a) ln q). Finally, we search max f̂(z) defined in (4) for all
z ∈ Z

n/a
q , the time complexity of which is O(qn/an/a). Therefore, the time com-

plexity of Stage 2 is t2 = O(exp(πα2
lwr2

a)(n/a) ln q)+O(qn/a(n/a) ln q). In Stage
3, since we update all samples stored in Tl′ (0 ≤ l′ < a − 1) (the total number
of these samples is mLWR − m′) with inner product calculation of the vectors in
Z

n/a
q , the time complexity of Stage 3 is t3 = O((mLWR −m′)n/a) = O(qn/an/a).

Therefore, the time complexity of the BKW algorithm is tLWR = t1 + t2 + t3 =
O(exp(πα2

lwr2
a)(n/a) ln q) + O(qn/a(n/a) ln q) = poly(exp(πα2

lwr2
a), qn/a). �

3.2 Parameter Optimization

We analyze the optimal choice for input parameter a to asymptotically mini-
mize the asymptotic time complexity of the BKW algorithm to solve the LWR
problem. Furthermore, we analyze the minimum time complexity.

Theorem 4 (Optimal choice of a). The optimal parameter a that asymptotically
minimizes the asymptotic time complexity of the algorithm to solve the LWR
problem is

a =
⌊

1
ln 2

W

(
n ln q ln 2

πα2
lwr

)⌋
(9)

where W is Lambert W function [23].

206 H. Okada et al.

Proof. From Theorem 3, we obtain the time complexity t = O(exp(πα2
lwr2

a)
(n/a) ln q) + O(qn/a(n/a) ln q). Note that exp(πα2

lwr2
a) monotonically increases

and qn/a monotonically decreases, as a increases. Therefore, the time complexity
is asymptotically minimized1 when a satisfies

exp(πα2
lwr2

a) = qn/a. (10)

From (10), by simple arithmetic, we obtain (ln 2)ae(ln 2)a = n ln q ln 2
πα2

lwr
. To solve

this equation for a, we use the Lambert W function, which satisfies W (zez) = z.
We obtain W ((ln 2)ae(ln 2)a) = (ln 2)a, and we obtain (9). �

Since the Lambert function W (x) has an asymptotic form as W (x) = ln(x) −
ln(ln(x))+o(1), we can evaluate a = 1

ln 2

(
ln

(
n ln q ln 2

πα2
lwr

)
− ln ln

(
n ln q ln 2

πα2
lwr

))
+o(1).

Furthermore, when we consider q to be at most exponential of n (this range of
q includes most of q used in LWE cryptosystems), we obtain log q = O(n), and
a = O(log n). Using this value, (10), and Theorem3, we obtain the corollary
below.

Corollary 1 (Minimum time complexity). Let n and q > p > 4 be positive
integers, q prime. Let a =

⌊
1

ln 2W
(

n ln q ln 2
πα2

lwr

)⌋
, where αlwr = 1

p

√
π
6 . Fix ε ∈

(0, 1). When at least qO(n/ log n) samples are given by LWR oracle LWRs,p, the
time complexity of the BKW algorithm to recover secret s with a probability of
at least 1 − ε is qO(n/ log n).

3.3 Concrete Analysis

Table 1 shows the concrete time complexity of the BKW algorithm. We denote
the time complexity of the LWR-solving BKW algorithm by CLWR. Then, similar
to Theorem 17 in [25], we obtain

CLWR =
1
4
(a − 2)(a − 1)(2n/a + 1)(qn/a − 1) + nqn/a log(q)

+
a−1∑
j=0

m′LWR
j,ε

(
a − 1 − j

2
(n + 2) + 2

)
, (11)

where m′LWR
j,ε := 8n

a ln
(

q
ε

) (
R2a−1−j

q,p −
(

3
p

)2a−1−j)−2

. We use the same param-

eters n, q and p as in Table 2 in [25]: For type (a), q = nextprime(�(2σn)3�),

1 Let ã satisfies exp(πα2
lwr2

ã) = qn/ã, and Let tã be the time complexity with a =
ã, namely tã = O(exp(πα2

lwr2
ã)(n/a) ln q). If we set a > ã, then we obtain ta =

O(exp(πα2
lwr2

a)(n/a) ln q), and ta > tã since exp(πα2
lwr2

a) > exp(πα2
lwr2

ã). If we
set a < ã, then we obtain t = O(qn/a(n/a) ln q), and ta > tã since qn/a > qn/ã.
Therefore, ã is asymptotically optimal.

On the Complexity of the LWR-Solving BKW Algorithm 207

p = nextprime(� 3
√

q�) and for type (b), p = 13, q = nextprime(�2σnp�), where
σ = n2√

2πn(log(n))2
. These parameters are selected based on Corollary 4.2 in [7],

which follows Theorem 2. Type (a) parameters maximize the efficiency, and type
(b) parameters minimize the modulus to error ratio (q/σ). Note that we also
ignored the constraint on the number of samples m as Duc et al. did. We set
a =

⌊
1

ln 2W
(

n ln q ln 2
πα2

lwr

)⌋
and calculate mLWR and CLWR in (5) and (11), respec-

tively. We also set ε = 0.01 in Table 1, following the setting given in Table 2
of [25].

Table 1. The worst case time complexity (CLWR) and the number of required samples
(mLWR) for the LWR-solving BKW algorithm. We also provide the value of a theoreti-
cally derived in (9), which asymptotically approaches the optimal value that minimizes
the complexity. In this table, “∗” means the value is optimal, and “†” means the value
is not optimal. The optimal values are shown in parenthesis.

(type) n q p a log(CLWR) log(mLWR)

(a) 32 6318667 191 19∗ 51.00 42.70

40 23166277 293 20∗ 60.66 52.18

64 383056211 733 24† (23) 92.70† (92.10) 83.08† (82.80)

80 1492443083 1151 25∗ 110.82 101.11

96 4587061889 1663 26∗ 132.17 122.15

112 11942217841 2287 28∗ 148.00 137.68

128 27498355153 3023 29∗ 167.44 156.88

(b) 32 2411 13 11∗ 44.53 37.00

40 3709 13 11∗ 53.24 45.44

64 9461 13 12∗ 81.48 72.92

80 14867 13 12∗ 103.76 94.86

96 21611 13 12∗ 126.83 117.66

112 29717 13 13∗ 140.08 130.63

128 39241 13 13∗ 162.50 152.84

In Table 1, we can observe that our choice of the number of blocks a asymptot-
ically (but almost completely) minimizes the time complexity of the algorithm.

4 Comparison Between the LWE and LWR Problems

4.1 Relation Between σ and p

In this section, we compare the time complexity of the BKW algorithm to solve
the LWE and LWR problem, and then derive a relation between p in the LWR
problem and σ in the LWE problem.

208 H. Okada et al.

In Theorem 3, we showed that the time complexity of the BKW algorithm to
solve the LWR problem is poly(exp(πα2

lwr2
a), qn/a). On the other hand, based on

Theorem 16 in [25], Kaminakaya et al. [35] analyzed the time complexity of the
BKW algorithm to solve the LWE problem, and showed that the complexity is
poly(exp(πα2

lwe2
a), qn/a), where αlwe :=

√
2πσ
q . We will describe the result later

in Lemma 5 and refer to the proof given in [35]. As a preparation, we refer to
the Theorem 16 in [25], which shows the number of samples required to solve
the LWE problem:

Lemma 4 (Theorem 16 in [25]). Let ε := Pr
[
argmaxzRe

(
f̂(z)

)
�= s(1,b)

]
be

the probability that the algorithm does not recover the correct answer. Then, the
number of samples required to solve the LWE problem with oracle LWEs,χ is

mLWE =
8n

a
ln

(q

ε

)
(Rq,σ,χ)−2a

+ (a − 1)
qn/a − 1

2
, (12)

where

Rq,σ,χ =

⎧
⎨
⎩

q
π sin

(
π
q

)
e−2π2σ2/q2

when χ = Ψ̄q,σ,

1 − 2π2σ2

q2 when χ = Dq,σ.

Based on this Lemma 4, we can show the time complexity of the BKW algorithm
for the LWE problem:

Lemma 5 ([35]). Let a and b be natural numbers such that ab = n. There
is an algorithm to solve the LWE problem whose oracle is LWEs,χ, with the
number of samples m = poly(exp(πα2

lwe2
a), qn/a), and the time complexity

t = poly(exp(πα2
lwe2

a), qn/a), where αlwe :=
√
2πσ
q , both when χ = Dσ,q and

χ = Ψ̄σ,q.

Proof. Here, we refer the proof given in [35]. Similar to the proof of
Theorem 3, using Lemma 4, we can prove that there is an algorithm to solve
the LWE problem whose oracle is LWEs,χ, with number of samples m =
poly((Rq,σ,χ)−2a

, qn/a), and time complexity t = poly((Rq,σ,χ)−2a

, qn/a). Thus,
we need only prove that

Rq,σ,χ = O(exp(−πα2
lwe)) (13)

holds, both when χ = Ψ̄σ,q and when χ = Dσ,q. When χ = Ψ̄σ,q, since sin
(

π
q

)
<

π
q , we obtain Rq,σ,χ < e−2π2σ2/q2

= exp(−πα2
lwe), which means (13) holds. Next,

we prove that (13) holds when χ = Dσ,q. Using Taylor expansion, we obtain
Rq,σ,χ − exp(−πα2

lwe) = 1 − πα2
lwe − exp(−πα2

lwe) = −α4
lwe
2 + O(α6

lwe), thus we
obtain Rq,σ,χ = exp(−πα2

lwe) + O(α4
lwe). �

We now can derive the relation between the parameters of the LWE problem
and the LWR problem.

On the Complexity of the LWR-Solving BKW Algorithm 209

Corollary 2. The time complexity of the BKW algorithm to solve the LWE
problem over Z

n
q with Gaussian parameter σ and that to solve the LWR problem

over Z
n
q with rounding modulus p are asymptotically the same, when q, p and σ

satisfy
σ =

q

2
√

3p
. (14)

Proof. The time complexity of the BKW algorithm to solve the LWE and LWR
problems are given in Theorem 3 and Lemma 5, respectively. Solving the equation
παlwe = παlwr for σ, we obtain (14).

4.2 Noise Distribution of Concrete Instances

We confirm that, when σ of the LWE problem and p of the LWR problem
satisfy (14), the distribution of the Gaussian noise of LWE samples and the
rounding error of LWR samples after sample reduction are similar by showing
concrete examples. From the similarity of the LWR and LWE problems, the
LWE-solving BKW algorithm in [25] is almost the same as the LWR-solving
algorithm: Only the hypothesis testing stage is different. In the LWE-solving
algorithm, (4) is replaced by f̂(z) =

∑m′

j=1 θ
−(〈aj ,z〉−cj)
q , where θq := e

2πi
q . We

define ej := 〈aj , s〉 − cj , and denote aj = aj,1 ± aj,2 ± · · · ± aj,2a−1 , cj =
cj,1 ± cj,2 ± · · · ± cj,2a−1 , then we obtain

ej = 〈aj,1 ± aj,2 ± · · · ± aj,2a−1 , s〉 − (cj,1 ± cj,2 ± · · · ± cj,2a−1)

=
2a−1∑
k=1

〈aj,k, s〉 − cj,k =
2a−1∑
k=1

ej,k,

where ej,k is the independent Gaussian noise from the original LWE samples.

When z = s, we obtain f̂(s) =
∑m′

j=1 θ
−(〈aj ,s〉−cj)
q =

∑m′

j=1 θ
−(

∑2a−1
k=1 ej,k)

q .
Figure 1 shows examples of the distribution of the Gaussian noise of LWE

samples and the rounding error of LWR samples after sample reduction. The two
figures on the left show histograms of θ

−(〈aj ,s〉q−cj)
q on a complex plane, where

(aj , cj), j ∈ {1, 2, . . . ,m′} are LWE samples obtained after the sample reduction

stage. The two figures on the right show histograms of θ
−(p

q 〈aj ,s〉−cj)
p , where

(aj , cj), j ∈ {1, 2, . . . ,m′} are LWR samples obtained after the sample reduction
stage. In these figures, we used n = 128, q = 16411, a = 8,m = 220,m′ = 212 and
l = 0. In type (a) figure, we used σ = q/(

√
2πn(log(n))2), which is for Regev

cryptosystem [42]. For type (b), we used σ = 4q/(
√

2πn(log(n))2). Parameter p
is calculated from σ according to (14). From Fig. 1, we can observe that those
distributions are similar when parameter σ and p satisfy (14).

210 H. Okada et al.

Fig. 1. Distribution of the noises of the LWE and LWR samples obtained after the
sample reduction stage. Parameter p for the LWR sample is calculated from σ according
to (14), which relates the complexity of the BKW algorithm for the LWE problem and
the LWR problem.

4.3 Time Complexity of Concrete Instances

We denote the time complexity of the LWE-solving BKW algorithm by CLWE.
Then, similar to Theorem 17 in [25], we obtain

CLWE =
1
4
(a − 2)(a − 1)(2n/a + 1)(qn/a − 1) + nqn/a log(q)

+
a−1∑
j=0

m′LWE
j,ε

(
a − 1 − j

2
(n + 2) + 2

)

where m′LWE
j,ε := 8n

a ln
(

q
ε

)
· (Rq,σ,χ)−2a−j

. The number of samples of the LWE-
solving BKW algorithm mLWE is given in (12). Table 2 shows the time com-
plexity of the LWE problem for various parameters of the Regev cryptosystem
[42], and the time complexity of the LWR problem whose parameter p is cal-
culated by (14). Concretely, in Table 2, q = nextprime(n2), σ = n2√

2πn(log(n))2
,

On the Complexity of the LWR-Solving BKW Algorithm 211

p = nextprime
(

q

2
√
3σ

)
, ε = 0.01. From this table, we can confirm that the com-

plexity of the LWE problem and the LWR problem whose parameters satisfy
(14) are almost the same.

Table 2. The time complexity and the required number of samples of the LWE-solving
BKW algorithm and the LWR-solving BKW algorithm, when p = q

2
√
3σ

.

n q LWE (Regev [42]) LWR (p = q

2
√
3σ

)

σ a log(CLWE) log(mLWE) p a log(CLWR) log(mLWR)

64 4099 5.67 19 49.74 43.61 211 19 49.70 43.60

80 6421 7.14 20 60.22 53.85 263 20 60.20 53.84

96 9221 8.65 21 71.72 63.79 311 21 71.03 63.65

112 12547 10.20 21 82.73 75.94 359 21 82.73 75.94

128 16411 11.79 22 91.84 84.86 409 22 91.84 84.86

5 Conclusion

We analyzed the time complexity of the BKW algorithm for the LWR problem
and theoretically derived the optimal number of blocks a that asymptotically
(but almost completely) minimizes the time complexity of the algorithm, while
Duc et al. numerically searched for the optimal value of a [25].

Furthermore, we derived the relation between the parameters of the LWE and
LWR problems with the same time complexity of the BKW algorithm, which is
σ = q

2
√
3p

. This equation coincides with the equation derived by the complexity
analysis of the lattice attacks: We showed that the conversion equation can also
be applied for complexity analysis based on the BKW algorithm.

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

2. Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354
(2015)

3. Albrecht, M.R., et al.: Estimate all the {LWE, NTRU} schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

4. Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching
for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 429–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 25

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-54631-0_25

212 H. Okada et al.

5. Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly secure
ring-LWE based key encapsulation with short ciphertexts. In: Foley, S.N., Goll-
mann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 29–46.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 4

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)

7. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 4

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

9. Baan, H., et al.: Round2: KEM and PKE based on GLWR. Cryptology ePrint
Archive, Report 2017/1183 (2017). https://eprint.iacr.org/2017/1183

10. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 2

11. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 20

12. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

13. Bansarkhani, R.E.: LARA - a design concept for lattice-based encryption. Cryp-
tology ePrint Archive, Report 2017/049 (2017). https://eprint.iacr.org/2017/049

14. Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. LMS J.
Comput. Math. 17(A), 49–70 (2014)

15. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

16. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

17. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367
April 2018

18. Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2016, pp. 1006–1018. ACM (2016)

19. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC 2013, pp. 575–584. ACM (2013)

20. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

https://doi.org/10.1007/978-3-319-66402-6_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-03356-8_35
https://eprint.iacr.org/2017/1183
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://eprint.iacr.org/2017/049
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-25385-0_1

On the Complexity of the LWR-Solving BKW Algorithm 213

21. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! a practical post-
quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 160–177. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0 9

22. Cheon, J.H., et al.: Lizard. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/

23. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lam-
bert W function. Adv. Comput. Math. 5, 329–359 (1996)

24. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

25. Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–
202. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 8

26. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

27. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Innovations in Computer Science (ICS 2010).
Tsinghua University Press (2010)

28. Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW with sieving.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 323–346.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 12

29. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 2

30. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
159–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-
7 10

31. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

32. Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of solving
LWE. Des. Codes Cryptogr. 86(1), 55–83 (2018)

33. Information Technology Laboratory, National Institute of Standards and Technol-
ogy: Post-Quantum Cryptography. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography. Accessed 31 Jan 2018

34. Jin, Z., Zhao, Y.: Optimal key consensus in presence of noise. CoRR
abs/1611.06150 (2016)

35. Kaminakaya, K., Kunihiro, N., Takayasu, A.: BKW algorithm for solving LWE
Problem. In: Symposium on Cryptography and Information Security, SCIS 2016.
IEICE (2016 in Japanese)

36. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 3

https://doi.org/10.1007/978-3-319-98113-0_9
https://csrc.nist.gov/
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-662-46800-5_8
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-319-70694-8_12
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3

214 H. Okada et al.

37. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

38. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

39. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

40. Nguyen, P.Q.: Lattice reduction algorithms: theory and practice. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 2–6. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 2

41. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. In:
Buell, D. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338–357. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24847-7 26

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

43. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-
based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32928-9 1

https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-642-20465-4_2
https://doi.org/10.1007/978-3-540-24847-7_26
https://doi.org/10.1007/978-3-642-32928-9_1

Secret Sharing and Searchable
Encryption

A Hierarchical Secret Sharing Scheme
Based on Information Dispersal

Techniques

Koji Shima(B) and Hiroshi Doi

Institute of Information Security, Yokohama, Japan
{dgs164101,doi}@iisec.ac.jp

Abstract. Hierarchical secret sharing schemes are known for how they
share a secret among a group of participants partitioned into levels. In
this study, we consider using a systematic information dispersal algo-
rithm (IDA). We then apply the general concept of hierarchy to the
generator matrix used in a systematic IDA and propose an ideal hierar-
chical secret sharing scheme applicable at any level. For perfect privacy,
secret sharing schemes depend on the fact that an adversary can only
pool at most k − 1 shares. However, in our hierarchical scheme, we need
to consider an adversary can also pool k or more shares of lower-level par-
ticipants. Moreover, considering practical use, we present our evaluation
of our software implementation.

Keywords: Secret sharing scheme · Hierarchical access structure ·
IDA · Ideal scheme · Software implementation

1 Introduction

In today’s modern information society, there is a strong need to securely store
large amounts of secret information and both prevent information theft or leak-
age and avoid information loss. Secret sharing schemes are known to simulta-
neously satisfy the need to distribute and manage secret information so as to
prevent such information theft and loss. [1] and [2] independently introduced the
basic idea of a (k, n) threshold secret sharing scheme almost four decades ago
in 1979. In Shamir’s (k, n) threshold scheme, n shares are generated from the
secret, and each of these shares is distributed to a participant. Next, the secret
can be recovered using any subset k of the n shares, but it cannot be recov-
ered with fewer than k shares. Furthermore, every subset comprising less than
k participants cannot obtain any information regarding the secret. Therefore,
the original secret is secure even if some of the shares are leaked or exposed.
Conversely, the secret can be recovered even if a few of the shares are missing.

Several hierarchical secret sharing schemes are known for how they share the
given secret among a group of participants who are partitioned into levels. In
such schemes, often, a minimal number of higher-level participants are required
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 217–232, 2019.
https://doi.org/10.1007/978-3-030-12146-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_14

218 K. Shima and H. Doi

to recover the secret. For example, opening a bank vault may require, say, three
employees, at least one of whom must be a department manager. In this scenario,
we have what is called a ({1, 3}, n) hierarchical secret sharing scheme. In [3,4],
Tassa introduced polynomial derivatives to generate shares and focused on ques-
tions related to Birkhoff interpolation problems.

1.1 Secret Sharing Schemes and Hierarchical Schemes

Kurihara et al. [5–7] proposed (3, n) and (k, n) threshold schemes that use only
XOR operations to distribute and recover the secret. In [8], they then presented a
faster technique for realizing field operations not over GF(qL) but over GF(q) by
using the construction mechanisms of Feng et al. [9] and Blömer et al. [10] for the
matrix representation of finite fields. Chen et al. [11] proposed a (k, n) threshold
scheme that constructs shares based on a systematic IDA. All above-mentioned
schemes are ideal.

Next, in [12] and [13], Yamamoto and Blakley et al. each introduced a ramp
secret sharing scheme, which exhibited a trade-off between security and space
efficiency. In [14], Krawczyk proposed a secret sharing scheme called Secret Shar-
ing Made Short, which provides computational security, meaning that it encrypts
data with a key-based encryption algorithm, then distributes the encrypted
data using an IDA and the key via a secret sharing scheme. In [7], Kurihara
et al. briefly introduced a ramp scheme based on their XOR-based (k, n) thresh-
old scheme. In [15], they then proposed a fast (k, L, n) ramp scheme. In [16],
Resch et al. proposed a dispersal scheme that provides computational security;
this scheme enriches Rabin’s IDA [17], then combines the All-or-Nothing Trans-
form [18] with the systematic Reed-Solomon code. In [19], Béguin et al. showed
how to realize computational secret sharing schemes for general access structure.
Their approach reduced the problem to an optimization problem.

Tassa [3,4] proposed a (k, n) hierarchical secret sharing scheme in which
a minimal number of higher-level participants are required for recovering the
secret. Tassa’s scheme is ideal. Tassa used the derivative of a polynomial to
achieve hierarchy and recover the secret via Birkhoff interpolation. In [20], Selçuk
et al. proposed a function called the truncated version to achieve the described
hierarchy. This truncated version truncates the polynomial from to the lowest-
order term depending on the level. In [29], Shima et al. proposed a hierarchical
secret sharing scheme over finite fields of characteristic two.

In addition, Tassa [3,4] showed other hierarchical settings studied by other
authors. Shamir [2] suggested accomplishing a hierarchical scheme by assign-
ing capable participants a large number of shares. However, when any subset of
lower-level participants is sufficiently large, only the lower-level participants are
needed to recover the secret. Simmons [21] and Brickell [22] considered other hier-
archical settings. However, the necessary number of participants is the highest
of the thresholds associated with the various levels. Therefore, their hierarchical
settings are unsuitable for the scenario in which a minimal number of higher-level
participants must be involved in recovery of the secret.

Tassa then defined a (k, n) hierarchical secret sharing scheme as follows.

A HSSS Based on Information Dispersal Techniques 219

Definition 1. Let k = {ki}m
i=0, 0 < k0 < · · · < km, and let k = km be the

maximal threshold. A (k, n) hierarchical secret sharing scheme where a minimal
number of higher-level participants are required for any recovery of the secret is
defined as the following access structure Γ :

Γ =

⎧
⎨

⎩
V ⊂ U :

∣
∣
∣
∣
∣
∣
V ∩

⎛

⎝
i⋃

j=0

Uj

⎞

⎠

∣
∣
∣
∣
∣
∣
≥ ki,∀i ∈ {0, 1, · · · ,m}

⎫
⎬

⎭
.

Here, let U be a set of n participants and assume that U is composed of levels,
that is, U =

⋃m
i=0 Ui, where Ui

⋂ Uj = ∅ for all 0 ≤ i < j ≤ m. The scheme then
generates each share of the participants u ∈ U to satisfy the access structure.

Given k = {1, 3} as an example, we have a ({1, 3}, n) hierarchical scheme that
consists of two levels and requires at least one indispensable participant from U0

and three or more participants from U0

⋃ U1 to recover the secret.

1.2 Example Scenarios of Hierarchical Schemes

Tassa presented the opening of a bank vault as an example scenario. In this sce-
nario, a fast ({1, 3}, n) hierarchical secret sharing scheme is required. Castiglione
et al. [23,24] presented other scenarios; the project manager and team members
can access a project workspace according to their levels of authority; nurses may
access a subset of patients’ clinical data, while a doctor can access all data.

Here, we present a file management system as an example scenario. We store
the indispensable participant’s share in local storage such as smartphones, and
we store the remaining two shares in external storage such as USB mass storage
and cloud storage. Only the owner of the smartphone can recover this data by
using either of the two external storage devices, and data cannot be recovered
using only the two external storage devices. Considering practical use in this
scenario, there is a need for a fast ({1, 2}, 3) hierarchical secret sharing scheme.
In general, a fast ({1, k}, k + 1) hierarchical secret sharing scheme would be
useful.

1.3 Our Contributions

In this paper, we introduce our hierarchical IDA, which is a hierarchical secret
sharing scheme applicable to any level. Our scheme is both perfect and ideal.
We use operations with GF(2L). For perfect privacy, Chen et al.’s (k, n) thresh-
old scheme [11] depends on the fact that an adversary can only pool at most
k − 1 shares. However, in our hierarchical scheme, we need to consider an adver-
sary can also pool k or more shares of lower-level participants. Therefore, Chen
et al.’s scheme cannot be directly applied to hierarchical schemes, which we
present in more detail in Sect. 4.2. Our overall contributions are summarized as
follows:

– We apply hierarchy to the generator matrix used in an IDA and realize a
hierarchical secret sharing scheme applicable to any level. We solve the afore-
mentioned issues and provide mathematical proof.

220 K. Shima and H. Doi

– In a single hierarchy, or a non-hierarchical secret sharing scheme, our scheme
is more efficient in implementation than Chen et al.’s scheme [11] because in
our scheme, all matrices G′ used by RecoverIDA of the corresponding rows
are the same.

– We achieve a ({1, k}, k + 1) hierarchical scheme using only XOR operations.
As a result, we can use simple 64-bit XOR operations instead of GF(2L).
Then, this scheme is much faster than an approach by Tassa [3,4].

2 Preliminaries

2.1 Notations and Definitions

We use the following notations and definitions throughout this paper.

– ⊕ denotes a bitwise XOR operation.
– ⊕b

j=acj denotes ca ⊕ · · · ⊕ cb.
– || denotes a concatenation of bit sequences.
– ||bj=acj denotes ca|| · · · ||cb.
– H(X) denotes the Shannon entropy of a random variable X.
– v[j] denotes the j-th element in vector v.
– v[0][1] · · · [n − 1] denotes vector v with exactly n elements.
– Elements in GF(2L) can be identified with polynomials fL(X) =

∑L−1
i=0 fiX

i.
fi ∈ GF(2). They can also be represented by decimal numbers or hexadecimal
numbers of fL−1 · · · f1f0 binary. For example, f8(X) = X5 + 1 ∈ GF(2)[X]
can be represented by 33 or 21 h of 00100001 binary.

2.2 Perfect and Ideal Secret Sharing Schemes

In this subsection, we refer to Beimel [25] for a perfect secret sharing scheme and
refer to Blundo et al. [26,27] and Kurihara et al. [5–7] for an ideal secret sharing
scheme. Let S be a random variable in a given probability distribution on the
secret, SB be a random variable in a given probability distribution on the shares
in each authorized set B, and ST be a random variable in a given probability
distribution on the shares of each unauthorized set T . A perfect secret sharing
scheme would satisfy the following conditions:

Correctness, Accessibility H(S|SB) = 0.
Perfect privacy, Perfect security H(S|ST) = H(S).

A secret sharing scheme is called ideal if it is perfect and the information rate
equals one. In other words, if the size of every bit of the shares equals the bit
size of the secret, the scheme is ideal. As Tassa [4] mentioned in Definition 1.1,
we may apply the information rate to a hierarchical secret sharing scheme.

A HSSS Based on Information Dispersal Techniques 221

2.3 Systematic IDA

A (k, n) systematic IDA constitutes two more specific algorithms, i.e., ShareIDA

and RecoverIDA.
ShareIDA takes as input data message D and outputs a codeword to dis-

tribute D among n participants. D is parsed into column vector D that
has k elements, with each element in GF(2L). Generator matrix or dispersal
matrix G = [g(i,j)] n k

i=1,j=1 is a publicly known n × k matrix with the following
conditions:

– The first k rows form the k × k identity matrix.
– Any subset k of the n rows of G is linearly independent.

Column vector C with n elements is then output as codeword C = G ·D. Since
the first k rows of G form the identity matrix, we obtain

C = G ·

⎛

⎜
⎝

D[0]
...

D[k − 1]

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D[0]
...

D[k − 1]
C[k]

...
C[n − 1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where each element D[i],C[i] ∈ GF(2L). Then, G is derived from a Vandermonde
matrix using a sequence of elementary matrix transformations. In [28], Plank
et al. describe how to prepare an n × k Vandermonde matrix in which g(i,j) =
(i − 1)j−1 and we turn the first k rows into the identity matrix using a sequence
of elementary matrix transformations. This satisfies the conditions of G since
elementary matrix operations do not change the rank of a matrix. Furthermore,
a square Vandermonde matrix with g(i,j) = xj−1 is invertible if all x are distinct.

RecoverIDA takes as input the remaining k elements C′ for codeword C
and outputs data message D. Here, C′ is a column vector that has k elements.
Through this process, new k × k matrix G′ is formed from G and corresponds to
the remaining k elements. After G′ is inverted, we obtain D via D = (G′)−1 ·C′.

Employing a (k, n) systematic IDA instead of a (k, n) non-systematic IDA
improves performance because it does not need to encode the first k codeword
elements and similarly does not need to decode codeword elements that are equal
to message data elements.

3 Related Work

From [11], Chen et al. presented a scheme that constructs an ideal threshold
scheme with a systematic IDA. Since an IDA is essentially a ramp scheme, their
scheme generates dummy keys at random, passing both these dummy keys and
the secret values XORed with these dummy keys to the systematic IDA. Their
scheme then applies some cyclic shifts to each of the outputs to generate shares.

222 K. Shima and H. Doi

Let Px for x = 0, · · · , n − 1 be n participants for the (k, n) threshold scheme
over F = GF(2L). Then, generator matrix G is publicly known and has elements
in GF(2L), as remarked in Sect. 3.3. Furthermore, let the secret be given by
s ∈ {0, 1}λ, λ = L · k. Secret s is parsed into s ∈ F k with k elements of length L
bits. Here, s must be padded to λ bits if s is less than λ bits.

3.1 Chen et al.’s Distribution Algorithm

Table 1 shows their distribution algorithm. Step 1 generates random values called
dummy keys r1, · · · , rk−1 ∈ {0, 1}λ. These values are parsed into r1, · · · , rk−1 ∈
F k. In Step 2, s and the dummy keys are XORed to produce s′ ∈ {0, 1}λ, then s′

is parsed into r0 ∈ F k. In Step 3, each ri is passed into ShareIDA. As a result, we
obtain each column vector R0, · · ·Rk−1 ∈ Fn, each of which has n elements. In
Steps 4 and 5, each participant Px securely receives share wx ∈ {0, 1}λ. To shed
further light on this algorithm, we detail Steps 3 and 4. In Step 3, we illustrate
k × n matrix

M =

⎛

⎜
⎜
⎜
⎝

RT
0

RT
1
...

RT
k−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

R0[0][1] · · · [n − 1]
R1[0][1] · · · [n − 1]

...
Rk−1[0][1] · · · [n − 1]

⎞

⎟
⎟
⎟
⎠

.

Next, in Step 4, we illustrate matrix

M′ =

⎛

⎜
⎜
⎜
⎝

R0[0] [1] · · · [n − 2] [n − 1]
R1[1] [2] · · · [n − 1] [0]

...
...

...
...

Rk−1[k − 1] [k] · · · [k − 3] [k − 2]

⎞

⎟
⎟
⎟
⎠

,

applying j −1 left cyclic shifts to elements of the j-th row of M for j = 1, · · · , k.
Further, wx concatenates the elements in the x + 1-th column of M′.

3.2 Chen et al.’s Recovery Algorithm

Table 2 shows the corresponding recovery algorithm. The algorithm takes as
input shares of participants Pi for i = t0, · · · , tk−1 that cooperate to recover the
secret. Step 1 parses each participant’s share wi into its k elements. More specif-
ically, k of the n elements for each row are given in the distribution algorithm.
Since elements in each row are cyclically shifted when the shares are generated,
indexes of the k elements are different in each row, implying that all matrices G′

i

passed into RecoverIDA for the corresponding row differ. In Step 2, each column
vector R′

i for i = 0, · · · , k − 1 has the k elements of the i + 1-th row in Step 1,
and these column vectors are passed into RecoverIDA. In Steps 3 and 4, s′ and
r1, · · · , rk−1 are then recovered from the available shares. Finally, in Steps 5 and
6, these recovered values are XORed to retrieve secret s.

A HSSS Based on Information Dispersal Techniques 223

Table 1. Distribution algorithm

Input: s ∈ {0, 1}λ

Output: (w0, · · ·wn−1)

1: for i ← 1 to k − 1:

ri ← ri
$←− {0, 1}λ

2: r0 ← s′ ← s ⊕ {⊕k−1
j=1 rj}

3: for i ← 0 to k − 1:
Ri ← ShareIDA(ri,G)

4: for i ← 0 to n − 1:
wi ← ||k−1

j=0Rj [i+ j (mod n)]
5: return (w0, · · ·wn−1)

Table 2. Recovery algorithm

Input: (wt0 , · · ·wtk−1)
Output: s

1: for i ← 0 to k − 1:
||k−1

j=0Rj [ti + j (mod n)] ← wti

2: for i ← 0 to k − 1:
ri ← RecoverIDA(R′

i,G
′
i)

3: for i ← 0 to k − 1:
ri ← ri

4: s′ ← r0
5: s ← s′ ⊕ {⊕k−1

j=1 rj}
6: return s

3.3 Remark

Chen et al. showed generator matrix G as an n×k binary matrix. Any subset k
of the n rows of G should be linearly independent, but not all of the parameters
with k and n can satisfy the condition. Given k = 3 and n = 5 as an example,
we cannot find any combinations of g0, g1, g2 ∈ GF(2) in

G =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
1 1 1
g0 g1 g2

⎞

⎟
⎟
⎟
⎟
⎠

.

In general, G has elements in GF(2L). With n = k, k + 1, G has elements in
GF(2).

4 Our Proposed Scheme

In this section, we describe our proposed (k, n) hierarchical secret sharing scheme
that satisfies Definition 1. We use operations with F = GF(2L). Let the secret
be given by s ∈ {0, 1}λ, λ = L · k. Secret s is parsed into s ∈ F k with k elements
of length L bits. Note that s must be padded to λ bits if s is less than λ bits.
We use n × k generator matrix G with the following properties:

– G has a defined hierarchy such that only an authorized subset can recover
the secret.

– G does not have any row of (y · · · y), where y ∈ F .

G is publicly known. Since it is a uniquely determined table in a fixed system,
we are able to recover the secret only from shares. We may describe G before
using elementary matrix transformations required for the systematic IDA. This
G is hereinafter referred to as a hierarchical generator matrix, and the IDA using
this G is also hereinafter referred to as a hierarchical IDA.

224 K. Shima and H. Doi

4.1 Participant Identities and Hierarchical Generator Matrix

Let Px ∈ U for x = 0, · · · , n − 1 define n participants and let 0 ≤ l0 ≤ · · · ≤
lm = n. Each participant Px has identity x ∈ F . Without loss of generality, we
may assume that each Px belongs to the following levels:

P0, · · · , Pl0−1 ∈ U0, Pl0 , · · · , Pl1−1 ∈ U1, · · · , Plm−1 , · · · , Plm−1 ∈ Um.

For example, l0 = 0 means no participants belong to U0. Furthermore, let 0 ∈ U0

be the phantom participant and let ux (described later) always be assigned to
zero.

Px corresponds to the x + 1-th row of G. In other words, we can view the
n × k matrix as G = [g(x,j)]n−1 k

x=0, j=1. Then, we introduce a hierarchy to G, con-
structing G such that k×k matrix G′ satisfies det(G′) = 0 for any unauthorized
k participants, where G′ is generated from the rows of G corresponding to the
k participants. Here, Px ∈ Ui for i = 0, · · · ,m generates G with

g(x,j) =
{

u
j−1−ki−1
x (j > ki−1)

0 (j ≤ ki−1)
,

where g(x,j) ∈ F and k−1 = 0. Given a ({2, 3, 5}, n) hierarchical secret sharing
scheme as an example, we obtain

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 u0 u2
0 u3

0 u4
0

...
...

...
...

...
1 ul0−1 u2

l0−1 u3
l0−1 u4

l0−1

0 0 1 ul0 u2
l0

...
...

...
...

...
0 0 1 ul1−1 u2

l1−1

0 0 0 1 ul1
...

...
...

...
...

0 0 0 1 un−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Intuitively, shares of lower-level participants are not generated from the secret
and some random values. Here, ux for G can be assigned from 2L−1 values except
zero over F . However, depending on the assignment of ux, there is a specific case
in which the secret cannot be recovered in spite of the presence of an authorized
subset. Given G for a ({1, 3}, 5) hierarchical scheme over GF(28) as an example
to understand the meaning of det(G′) = 0, one of the matrices G

′
1 derives

det(G
′
1) = 0 when G1 is given by ux = 1, 2, 3, 4, 5. G2 given by ux = 1, 2, 4, 5, 6

is required. Note that elements are represented by decimal numbers following
Sect. 2. It is sufficient to find one G, such as G2 for this scheme, i.e.,

G1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1
1 2 4
0 1 3
0 1 4
0 1 5

⎞

⎟
⎟
⎟
⎟
⎠

,G
′
1 =

⎛

⎝
1 1 1
1 2 4
0 1 3

⎞

⎠ ,G2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1
1 2 4
0 1 4
0 1 5
0 1 6

⎞

⎟
⎟
⎟
⎟
⎠

.

A HSSS Based on Information Dispersal Techniques 225

Therefore, there is a case in which det(G′) = 0, where the corresponding G′ to
the authorized subset. As Tassa described in Sect. 3.2 of [4] regarding probability,
we can make the same argument for this issue. In other words, Tassa stated that
the p used to allocate participant identities over GF(p) should be usually very
large. Similarly, the L used to allocate ux of G over GF(2L) can be large in our
scheme. To keep the paper compact, we do not discuss it further.

4.2 An Issue with Applying Hierarchy to IDA

A (k, n) IDA recovers not only data message D, but also all n elements if any
k elements are given because the remaining n − k elements can be calculated
from publicly known generator matrix G. A (k, n) hierarchical IDA also has
a similar property. We consider a ({1, 3}, 8) hierarchical IDA as an example.
Let d1, d2, d3 be passed into the systematic hierarchical IDA and let the eight
codeword elements be d1, d2, d3, c1, · · · , c5. Furthermore, let d1, d2 be used for
U0 and let d3, c1, · · · , c5 be used for U1. If three elements in U1 are given, such as
c1, c2, c3, we need to consider all elements not only in U1 but also in U0 can be
calculated. As we described in Sect. 1.3, secret sharing schemes depend on the
fact that an adversary can only pool at most k−1 shares. In Chen et al.’s scheme,
the cyclic shifts after ShareIDA work well to satisfy perfect privacy. However, in
our hierarchical scheme, the cyclic shifts after ShareIDA have no effect to satisfy
perfect privacy because we need to consider no elements in U0 can be calculated
when three elements in U1 are given in the example.

4.3 Distribution Algorithm

The dealer securely distributes each share wx ∈ {0, 1}λ to participant Px. Table 3
shows this specific algorithm. The underlined portions show differences between
the algorithm of Table 1 and our algorithm. More specifically, with each column
vector r0, · · · , rk−1 transposed, Step 3 constructs matrix

Mr =

⎛

⎜
⎝

r0[0] · · · r0[k − 1]
...

. . .
...

rk−1[0] · · · rk−1[k − 1]

⎞

⎟
⎠ =

⎛

⎜
⎝

r′
0[0] · · · r′

k−1[0]
...

. . .
...

r′
0[k − 1] · · · r′

k−1[k − 1]

⎞

⎟
⎠

and defines r′
0, · · · , r′

k−1 as column vectors. In Step 5, no cyclic shifts are used
after ShareIDA. Through Steps 1 through 5 of our algorithm, we can illustrate
k × n matrix

U0
︷ ︸︸ ︷ · · ·

Um
︷ ︸︸ ︷

M =

⎛

⎜
⎝

RT
0
...

RT
k−1

⎞

⎟
⎠ =

⎛

⎜
⎝

R0[0] · · · [l0 − 1] · · · [lm−1] · · · [n − 1]
...

...
...

...
...

Rk−1[0] · · · [l0 − 1] · · · [lm−1] · · · [n − 1]

⎞

⎟
⎠ .

Each participant Px securely receives share wx concatenating the elements in
the x + 1-th column of M.

226 K. Shima and H. Doi

Table 3. Our distribution algorithm

Input: s ∈ {0, 1}λ

Output: (w0, · · ·wn−1)

1: for i ← 1 to k − 1:

ri ← ri
$←− {0, 1}λ

2: r0 ← s′ ← s ⊕ {⊕k−1
j=1 rj}

3: Mr = (r′
0 · · · r′

k−1) ← (r0 · · · rk−1)T

4: for i ← 0 to k − 1:
Ri ← ShareIDA(r′

i,G)
5: for i ← 0 to n − 1:

wi ← ||k−1
j=0Rj [i]

6: return (w0, · · ·wn−1)

Table 4. Our recovery algorithm

Input: (wt0 , · · ·wtk−1)
Output: s

1: for i ← 0 to k − 1:
||k−1

j=0Rj [ti] ← wti

2: for i ← 0 to k − 1:
r′

i ← RecoverIDA(R′
i,G

′)
3: (r0 · · · rk−1)T ← Mr = (r′

0 · · · r′
k−1)

4: for i ← 0 to k − 1:
ri ← ri

5: s′ ← r0
6: s ← s′ ⊕ {⊕k−1

j=1 rj}
7: return s

4.4 Recovery Algorithm

Table 4 shows our recovery algorithm. This algorithm takes as input shares of
participants Pi for i = t0, · · · , tk−1 that cooperate to recover the secret. The
underlined portions show differences between the algorithm of Table 2 and our
algorithm. Since there are no cyclic shifts after ShareIDA, all matrices G′ used
by RecoverIDA of the corresponding rows are the same. Step 1 parses each
participant’s share wi into its k elements. In Step 2, each column vector R′

i

for i = 0, · · · , k − 1 has the k elements of the i + 1-th row from Step 1, and
these column vectors are passed into RecoverIDA. In Steps 3 through 5, s′ and
r1, · · · , rk−1 are recovered from the available shares. Finally, in Steps 6 and 7,
these recovered values are XORed to retrieve secret s.

4.5 Security Analysis

Theorem 1 proves the correctness and perfect privacy of our proposed scheme.
We obtain secret s if all elements of Mr are recovered with G′. Without loss of
generality, we may focus on k elements of each j-th row of MT

r , recovered from
the j-th row of M with RecoverIDA, because each j-th row can be processed
independently from the others. We then apply this argument to every other row.

Next, the j-th row of MT
r has k−1 random values r′

j−1[1], · · · , r′
j−1[k−1] ∈ F

and the value r′
j−1[0] XORed with those random values and secret s[j − 1] ∈ F .

Therefore, any k−1 of the k values cannot reveal anything about the secret. We
then pass the k values into ShareIDA and obtain Rj−1. Lemma 1 proves that
Rj−1 cannot reveal anything about the secret.

Lemma 1. Assume that any set of L′ participants T = {Pt0 , · · · , PtL′−1
}
∈ Γ

agrees to recover the secret. Let y ∈ F\{0}. Then, if n × k generator matrix G
whose j-th row is (y · · · y) is not used, we receive no information regarding the
secret. In information theoretic terms, H(S|ST) = H(S), shown in Sect. 2.2.

A HSSS Based on Information Dispersal Techniques 227

Proof. Suppose that s and r1, · · · , rk−1 are mutually independent and that
r1, · · · , rk−1 are selected from the finite set {0, 1}λ with uniform probability
1/2λ. We define k × k matrices X, A, and A′ as

X =

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎝

sT

rT1
...

rTk−1

⎞

⎟
⎟
⎟
⎠

, A′ =

⎛

⎜
⎜
⎜
⎝

0 · · · 0
rT1
...

rTk−1

⎞

⎟
⎟
⎟
⎠

,

respectively. Here, X−1 = X. Steps 1 through 3 of Table 3 can be represented as
Mr = X · A. With ShareIDA, we obtain n × k matrix MT = G · Mr. We then
define n × k matrix Y = G · X, we obtain

MT = G · Mr = G · X · A = Y · A.

Here, let G(i) be a matrix constructed by any subset i of the n rows of G for
i = 1, · · · , L′ and let Y(i) = G(i) ·X. Furthermore, let MT

(i) = Y(i) ·A. Without
loss of generality, we may assume that rank(G(i)) = i because we can consider
G(α) such that rank(G(i)) = α < i. Then, rank(Y(i)) = rank(G(i)) because
X is regular. Consider i = 1. It is apparent that the corresponding participant
receives share w ∈ {0, 1}λ regarding secret s if Y(1) = (y 0 · · · 0), i.e.,

w ← MT
(1) = Y(1) · A =

(
y · sT)

, G(1) = Y(1) · X−1 =
(
y · · · y

)
.

If Y(1)
= (y 0 · · · 0), the vector Y(1) · A′ is uniformly distributed over {0, 1}λ

because all elements of the vector are L-bit random numbers that are mutu-
ally independent and distributed uniformly over {0, 1}L. Then, we suppose w′

denotes a fixed value of w. w = w′ can be obtained with uniform probability 1/2λ

from any selected s. Because s is independent of w, we have H(S|ST) = H(S).
Next, we prove that vector (y, 0, · · · , 0) is not expressed by linear combination

of the row vectors of Y(i) for i ≥ 2. Here, we may assume that none of the rows
of G(i) are equal to (y · · · y) because we already prove G(1) = (y · · · y). Matrix

Y(i) =

⎛

⎜
⎝

y1 a(1,1) · · · a(1,k−1)

...
...

. . .
...

yi a(i,1) · · · a(i,k−1)

⎞

⎟
⎠ = G(i) · X

can be represented. If yj = 0 for j = 1, · · · , i, we receive no information regarding
the secret because the j-th row of Y(i) is formed by (0 ∗). Consider yj
= 0 for
all j = 1, · · · , i. There exist matrices A(i) and B(i) such that

G(i) = Y(i) · X−1 =

⎛

⎜
⎝

y1 · · · y1
...

. . .
...

yi · · · yi

⎞

⎟
⎠ +

⎛

⎜
⎝

0 a(1,1) · · · a(1,k−1)

...
...

. . .
...

0 a(i,1) · · · a(i,k−1)

⎞

⎟
⎠ = A(i) + B(i).

Since rank is subadditive and rank(A(i)) = 1,

rank(A(i) + B(i)) ≤ rank(A(i)) + rank(B(i)) = 1 + rank(B(i))

228 K. Shima and H. Doi

and the rank of B(i) is either i − 1 or i. If rank(B(i)) = i,
∑i

j=1 aj · a(j,t)
= 0 for
at least one of t = 1, · · · k − 1, where a1, · · · ai are scalars. Therefore, the vector
expressed by linear combination of the row vectors of Y(i) is not (y, 0, · · · , 0).
Next, if rank(B(i)) = i − 1, there exists matrix G(i) of rank i − 1. Furthermore,
the remaining row of G(i) should be assigned for the highest level U0 because
yj
= 0. However, in our scheme, rows of G in the highest level are derived
from a Vandermonde matrix. In such a condition, rank(G(i)) should be i, i.e.,
rank(B(i))
= i − 1 by proof by contradiction. The proof is thus complete. �
Theorem 1. Assume that corresponding square matrix MV , or namely, the G′

required to recover the secret, is regular for any minimal authorized subset V ∈ Γ ,
i.e., |V| = k. Then both correctness and perfect privacy hold.

Proof. Theorem 1 is based on an approach by Tassa [3,4]. We first consider
correctness. Each participant Px receives a part of the share σ(x)j generated by
elements of the j-th row of MT

r that are passed into the IDA. Here, let G(x)
denote the x + 1-th row of G. We then obtain σ(x)j = G(x) · r′

j−1. When all
participants V = {Pt0 , · · · , Ptk−1} pool their shares σj together, they need to
solve σj = MV · r′

j−1, i.e.,

σj =

⎛

⎜
⎝

σ(t0)j

...
σ(tk−1)j

⎞

⎟
⎠ =

⎛

⎜
⎝

G(t0)
...

G(tk−1)

⎞

⎟
⎠

⎛

⎜
⎝

r′
j−1[0]

...
r′

j−1[k − 1]

⎞

⎟
⎠ = G′ · r′

j−1

in unknown vector r′
j−1. Since MV is regular by the assumption noted above,

we are able to uniquely solve unknown vector r′
j−1 for every j-th row of MT

r .
Next, we consider perfect privacy. For the j-th row of MT

r , we may view
r′

j−1[0] in the unknown vector r′
j−1 as a secret. Furthermore, a square matrix

is regular if and only if its determinant is nonzero. Equivalently, the rows of
MV are linearly independent. Let Vu
∈ Γ be an unauthorized subset and MVu

be the corresponding matrix. We aim to show that even if all participants in
Vu pool their shares together, they cannot reveal anything regarding the secret.
This also implies that any value of the secret is accepted from their shares. The
proof here is that the secret is not included in the row space of MVu

, in the set
of all possible linear combinations of the rows of MVu

.
Without loss of generality, we may assume that Vu is missing only one par-

ticipant to become authorized, and we may simplify the process by adding to
Vu phantom participant 0 ∈ U0 such that we can obtain an authorized subset.
Then the square matrix corresponding to the authorized subset is regular by the
assumption, and the rows of the square matrix are linearly independent. As a
result, the share of participant 0 ∈ U0 cannot be generated from Vu, and the
share is equivalent to r′

j−1[0]. In addition, even when Vu is missing only one par-
ticipant at the j-th level, the access structure holds by adding one higher-level
participant, i.e., the highest-level participant 0 ∈ U0.

The proof is thus complete and we conclude that det(MV)
= 0 is required
for both correctness and perfect privacy. �

A HSSS Based on Information Dispersal Techniques 229

5 Software Implementation

We evaluated our scheme using one general purpose machine, as described in
Table 5. We then used a file size of 888,710 bytes as an example. For operations
with GF(2L), the additive operation is replaced by the XOR operation, the
multiplication operation uses the Russian peasant multiplication method, the
division operation uses x−1 = x2L−2, and the shift operation uses only the shift
operation by one bit. In our experiments, we only used GF(28) and a lookup
table that was precomputed for the multiplication and division operations over
GF(28). More specifically, all results of the multiplication operations were pre-
stored in an array of 216 bytes, while those for the division operations were
stored in another array of 216 bytes. When each of the multiplication and division
operations actually took place, the operation consisted of a lookup in each array.
No cryptographic libraries were used. Then, the primitive polynomial used for
GF(28) is x8 + x4 + x3 + x2 + 1. Table 6 shows our experimental results.

Table 5. Test environment

CPU/RAM Intel R© Celeron R© Processor G1820
2.70 GHz × 2, 2MB cache/3.6 GB

OS CentOS 7 Linux 3.10.0-229.20.1.el7.x86 64

Programing language/Compiler C/gcc 4.8.3 (-O3 -flto -DNDEBUG)

Table 6. Results of our experiments for recovery

Level k Number of participants (|U0|, · · · , |Um|) Throughput (Mbps)

{1, 3} (2, 3) 857

{2, 4} (3, 4) 562

{2, 3, 5} (3, 3, 3) 373

{2, 4, 6, 10} (2, 3, 6, 4) 108

{3, 7, 11, 14, 17} (3, 4, 5, 4, 4) 34.9

In terms of optimization, we can construct a scheme using only XOR opera-
tions with (k + 1) × k binary generator matrix

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

This matrix requires no multiplication operations. We then used simple 64-bit
XOR operations. With k = 3, we achieved approximately 6.3 Gbps for recovery.

230 K. Shima and H. Doi

5.1 Computational Costs

Tassa’s Approach. Table 7 shows the computational costs of the recovery algo-
rithm. In general, the size of the secret, for example, a file size of 1 MB, exceeded
L bits. In our analysis, we refer to such an initial computation processed once for
that recovery as a precomputation. Here, a t×t determinant required O(t3) when
we used LU decomposition. Converting a matrix to a triangular matrix required
some division operations. Furthermore, a t× t matrix inverse also required O(t3)
and some division operations when we used Gaussian elimination. Finally, t × t
matrix multiplication required O(t3) if carried out naively. Note that Tassa’s
scheme can be applied only to GF(p), where p is a prime number. Arithmetic
operations, using multiple-precision arithmetic, required higher computational
costs than operations over GF(2L). Therefore, our scheme was much faster than
Tassa’s approach.

Table 7. Computational costs for recovery

Tassa’s approach

Precomputation One k × k determinant

Recovery per time One k × k determinant, one division operation

Our scheme

Precomputation One k × k matrix inverse

Recovery per time One k × k matrix product, k − 1 XOR operations

Blömer et al.’s Technique. We consider applying Blömer et al.’s technique
to our scheme because Kurihara et al. [8] reported that any secret sharing
scheme over GF(2L) could be converted to a scheme over GF(2). As Blömer
et al. [10] mentioned in Sect. 4, we stored all coefficient vectors of field elements
in a table and used table look-ups to compute τ . This operation required O(1).
Furthermore, matrix-vector multiplication required at most L XOR operations.
In our implementation using a lookup table for the multiplication operation over
GF(28), a multiplication operation only required O(1).

6 Conclusions

In this paper, we focused on a fast (k, n) hierarchical secret sharing scheme appli-
cable to any level. To achieve this, we applied a hierarchy to the generator matrix
used in an IDA. Our scheme is both perfect and ideal. Given the implementation
used in our experiments applicable to any level, we found our implementation
on a general purpose PC was able to recover the given secret with k = {1, 3}
at a processing speed of approximately 850 Mbps. With our ({1, 3}, 4) optimized
scheme, we achieved approximately 6.3 Gbps for recovery.

Acknowledgments. The authors thank the anonymous reviewers for their helpful
comments. This work was supported by JSPS KAKENHI Grant Number JP18K11306.

A HSSS Based on Information Dispersal Techniques 231

References

1. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS, vol. 48, pp. 313–317
(1979)

2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
3. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004.

LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24638-1 26

4. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)
5. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (3, n)-threshold

secret sharing scheme using Exclusive-OR operations. IEICE Trans. Fundam. E91-
A(1), 127–138 (2008)

6. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: On a fast (k, n)-threshold
secret sharing scheme. IEICE Trans. Fundam. E91-A(9), 2365–2378 (2008)

7. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold
secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee,
D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85886-7 31

8. Kurihara, J., Uyematsu, T.: A novel realization of threshold schemes over binary
field extensions. IEICE Trans. Fundam. E94-A(6), 1375–1380 (2011)

9. Feng, G.-L., Deng, R.-H., Bao, F.: Packet-loss resilient coding scheme with only
XOR operations. IEE Proc. Commun. 151(4), 322–328 (2004)

10. Blömer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.:
An XOR-based erasure-resilient coding scheme. ICSI Technical report TR-95-048
(1995)

11. Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal (t, n)−threshold
schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 28

12. Yamamoto, H.: On secret sharing system using (k, L, n) threshold scheme. IEICE
Trans. Fundam. (Jpn. Ed.) J68-A(9), 945–952 (1985). Secret sharing system using
(k, L, n) threshold scheme. Electron. Commun. Jpn. (Engl. Ed.) Part I 69(9), 46–54
(1986)

13. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 20

14. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

15. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (k, L, n)-threshold
ramp secret sharing scheme. IEICE Trans. Fundam. E92-A(8), 1808–1821 (2009)

16. Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dis-
persed storage systems. In: 9th USENIX Conference on File and Storage Tech-
nologies, pp. 191–202 (2011)

17. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM 36(2), 335–348 (1989)

18. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052348

19. Béguin, P., Cresti, A.: General short computational secret sharing schemes. In:
Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp.
194–208. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X 16

https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-85886-7_31
https://doi.org/10.1007/978-3-319-48965-0_28
https://doi.org/10.1007/3-540-39568-7_20
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/BFb0052348
https://doi.org/10.1007/3-540-49264-X_16

232 K. Shima and H. Doi

20. Selçuk, A.A., Kaşkaloğlu, K., Özbudak, F.: On hierarchical threshold secret shar-
ing. IACR Cryptology ePrint Archive 2009, 450 (2009)

21. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/
10.1007/0-387-34799-2 30

22. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 45

23. Castiglione, A., De Santis, A., Masucci, B.: Hierarchical and shared key assignment.
In: NBiS-2014, pp. 263–270 (2014)

24. Castiglione, A., et al.: Hierarchical and shared access control. IEEE Trans. Inf.
Forensics Secur. 11(4), 850–865 (2016)

25. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7 2

26. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. TCS 154, 283–306 (1996)

27. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
148–167. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 11

28. Plank, J.S., Ding, Y.: Note: correction to the 1997 tutorial on reed-solomon coding.
Softw.-Pract. Exp. 35(2), 189–194 (2005)

29. Shima, K., Doi, H.: A hierarchical secret sharing scheme over finite fields of char-
acteristic 2. J. Inf. Process. 25, 875–883 (2017)

https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/3-540-48071-4_11

Cheating-Immune Secret Sharing
Schemes from Maiorana-McFarland

Boolean Functions

Romar B. dela Cruz1(B) and Say Ol2

1 Institute of Mathematics, University of the Philippines Diliman,
Quezon City, Philippines

rbdelacruz@math.upd.edu.ph
2 Teacher Education College, Phnom Penh, Cambodia

say ol@yahoo.com

Abstract. We consider cheating-immune secret sharing schemes pro-
posed by Pieprzyk and Zhang. This type of secret sharing scheme keeps
dishonest participants from having a better chance (over the honest ones)
of knowing the secret using their incorrect shares. We show that the class
of Maiorana-McFarland Boolean functions can be used to construct such
schemes. Consequently, new cheating-immune secret sharing schemes are
presented.

Keywords: Secret sharing scheme · Boolean function ·
Error-correcting code

1 Introduction

A secret sharing scheme (SSS) is a technique of allocating access to a secret
among a set of participants in such a way that only certain subsets are allowed
to determine the secret. It was introduced independently by Shamir [30] and
Blakley [1] for the protection of cryptographic keys. It is now a fundamental
primitive as it is used to construct cryptographic protocols such as for secure
multiparty computation [12] and oblivious transfer [32].

In general, an SSS starts with the share distribution phase followed by the
secret reconstruction phase. In the share distribution phase, there is a dealer who
produces the shares to be given to the participants. In the secret reconstruction
phase, a subset of participants attempt to determine the secret using their shares.
We consider the setting wherein the participants submit their shares to a trusted
combiner who reconstructs the secret. We assume that the dealer and combiner
are honest but the participants can cheat during secret reconstruction.

Tompa and Woll [33] showed that if a secret sharing scheme is linear, then
it can be subjected to an attack from dishonest participants. During the secret
reconstruction phase, the cheaters can submit invalid shares to the combiner.
As a result, the combiner returns an invalid secret and the cheaters are able to
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 233–247, 2019.
https://doi.org/10.1007/978-3-030-12146-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_15&domain=pdf
http://orcid.org/0000-0003-3563-2262
https://doi.org/10.1007/978-3-030-12146-4_15

234 R. B. dela Cruz and S. Ol

compute the valid secret using their valid shares and the invalid secret. This
attack also prevents the honest participants from knowing the valid secret. Sev-
eral approaches to counter this attack can be found in the literature (for instance
see [2,6,11,19,21,25,29]). The survey article by Martin [24] is a comprehensive
analysis of the different types of SSS that handle dishonest participants, dealers
and combiners.

This work deals with cheating-immune secret sharing schemes proposed by
Pieprzyk and Zhang [28]. This type of SSS is capable of preventing the dishonest
participants of gaining an advantage over the honest ones in the attack described
above. In a cheating-immune scheme, the cheaters will not be able to determine
the secret even if they submit invalid shares during reconstruction. If we compare
with the other SSS that deal with cheating, there is no detection or identification
of cheaters in a cheating-immune scheme. There is also no correction of the
submitted invalid shares which means that the honest participants also do not
recover the secret. A nice property of cheating-immune schemes is that the share
size is the same as the secret size (in other schemes, either we have large shares
or the recovery of the secret requires more than the minimum number of shares).
The main problem in the theory of cheating-immune schemes is the construction
of such schemes for any access structure. Properties and constructions of such
schemes are studied in [4,13,14,22,23,26,27].

In this paper, we show that the class of Maiorana-McFarland Boolean func-
tions can be used to construct cheating-immune schemes and we present new
schemes. We used the techniques in the work of Carlet [9]. Our method of con-
struction can be seen as a generalization of the method in [14]. This paper
is organized as follows. Section 2 contains the definition and model of binary
cheating-immune schemes. In Sect. 3, we present the relation between cheating-
immune schemes and Boolean functions. Sections 4, 5 and 6 contain the main
results of the paper. We summarize the work in the last section.

2 Cheating-Immune Secret Sharing Schemes

Let P = {P1, P2, . . . , Pn} be the set of n participants. The set of all authorized
or qualified subsets Γ ⊆ 2P is called the access structure.

Definition 1. A secret sharing scheme realizing an access structure Γ is a
method to distribute shares of a secret K such that

i. if a subset of participants A ∈ Γ then A can reconstruct the secret K
ii. if a subset of participants B /∈ Γ then B cannot reconstruct the secret K.

We say that a secret sharing scheme is perfect if unauthorized subsets obtain
no information about the secret. Otherwise, the scheme is non-perfect, that is,
it is possible for an unauthorized subset to obtain partial information about
the secret. A measure of efficiency of a secret sharing scheme is the so-called
information rate which is the ratio of the size of the secret and the size of the
shares. We assume that the dealer selects the secrets uniformly at random.

CI-SSS from Maiorana-McFarland Boolean Functions 235

We use the model of a cheating-immune (n, n)-SSS over F2 introduced in
[26]. The scheme is represented by a defining function f : Fn

2 → F2 that maps
each possible vector of shares α = (α1, α2, . . . , αn) to a secret K. All participants
must submit their shares to the combiner in order to reconstruct the secret. Let
α, β ∈ F

n
2 . We say that β covers α, denoted by α � β, if whenever αi �= 0 then

βi �= 0, 1 ≤ i ≤ n. The Hamming weight of a vector α will be denoted by wt(α).
We represent the cheaters by a cheating vector δ with δi = 1 if Pi is a cheater

and 0 otherwise. Hence, wt(δ) gives the number of cheaters. Given two vectors
x and δ, we distinguish the shares of the cheaters from the honest participants
using the following vectors:

i. x+
δ = (x+

1 , . . . , x+
n) with x+

i = xi if δi = 1 and x+
i = 0 if δi = 0

ii. x−
δ = (x−

1 , . . . , x−
n) with x−

i = xi if δi = 0 and x−
i = 0 if δi = 1

The vector x+
δ represents the cheaters’ valid shares while x−

δ represents the
honest participants’ shares.

Recall that when cheaters submit invalid shares during reconstruction, they
will use the secret (sent by the combiner) to determine the true secret. Consider
now the following sets of shares:

R(δ, α+
δ ,K) = {x−

δ | f(x−
δ ⊕ α+

δ) = K}
R(δ, α+

δ ⊕ δ,K∗) = {x−
δ | f(x−

δ ⊕ α+
δ ⊕ δ) = K∗}

The set R(δ, α+
δ ,K) consists of all possible shares of honest participants such

that combined with the cheaters’ valid shares, will produce the original secret
K. On the other hand, the set R(δ, α+

δ ⊕ δ,K∗) contains all the possible shares
of honest participants such that combined with the cheaters’ incorrect shares,
will produce the secret K∗. The probability of successful cheating with respect to
δ, α is given by

ρδ,α = |R(δ, α+
δ ⊕ δ,K∗) ∩ R(δ, α+

δ ,K)|/|R(δ, α+
δ ⊕ δ,K∗)|.

We now define a k-cheating-immune (n, n)-SSS or k-CI (n, n)-SSS. Note that
we assume that all cheaters submit invalid shares during reconstruction.

Definition 2. An (n, n)-SSS over F2 is k-cheating-immune if for every α, δ ∈
F

n
2 with 1 ≤ wt(δ) ≤ k, we have ρδ,α = 1/2.

The general case where not all cheaters submit invalid shares is handled by
the so-called strictly cheating-immune secret sharing schemes. In this type of
scheme, we use two vectors δ, τ ∈ F

n
2 such that δ represents the cheaters while τ

represents the cheaters who submitted fake shares. Note that τ � δ. The value

ρδ,τ,α = |R(δ, α+
δ ⊕ τ,K∗) ∩ R(δ, α+

δ ,K)|/|R(δ, α+
δ ⊕ τ,K∗)|

is the probability of successful cheating with respect to δ, τ, α.

Definition 3. An (n, n)-SSS over F2 is strictly k-cheating-immune if, for every
α, δ, τ ∈ F

n
2 such that 1 ≤ wt(δ) ≤ k and τ � δ, we have that ρδ,τ,α = 1/2.

236 R. B. dela Cruz and S. Ol

3 Cheating-Immune Schemes and Boolean Functions

We now describe the connection between Boolean functions and cheating-
immune secret sharing schemes. The defining function of an (n, n)-SSS over
F2 is a Boolean function on F

n
2 . We recall some basic concepts in the theory of

Boolean functions (for reference, see [8,10]).
A Boolean function f is affine if f(x1, x2, . . . , xn) = a1x1 ⊕ a1x2 ⊕ . . . ⊕

anxn ⊕ c. The affine function f is linear if c = 0. We say that f is balanced on
F

n
2 if |f−1(0)| = |f−1(1)| = 2n−1. A nonconstant affine function is balanced.

A Boolean function f is said to be k-resilient if for every subset
{j1, j2, . . . , jk} of {1, 2, . . . , n} and every (a1, a2, . . . , ak) ∈ F

k
2 , the restricted

function
f(x1, x2, . . . , xn)|xj1=a1,xj2=a2,...,xjk

=ak

is balanced on F
n−k
2 . We note that if f is k-resilient then it is also l-resilient for

0 ≤ l ≤ k.
We say that a Boolean function f satisfies the strengthened propagation of

degree k or SP (k) if for any δ ∈ F
n
2 such that 1 ≤ wt(δ) ≤ k, and for any τ � δ,

the function f(x−
δ ⊕τ)⊕f(x−

δ ⊕τ ⊕δ) is balanced. A function f satisfying SP (k)
also satisfies SP (l) for 1 ≤ l ≤ k.

The following theorems characterize cheating-immune (n, n)-SSS:

Theorem 1 ([27]). An (n, n)-SSS over F2 with defining function f is k-CI if
and only if f is k-resilient and satisfies SP (k).

Theorem 2 ([27]). An (n, n)-SSS over F2 with defining function f is strictly
k-CI if and only if the following conditions are satisfied:

1. f is k-resilient.
2. For any integer l with 0 ≤ l ≤ k − 1, every function obtained from f by fixing

any l input variables satisfies SP (k − l).

A bound on the number of cheaters is given by the following result:

Theorem 3 ([4]). An (n, n)-SSS over F2 with defining function f can be k-
cheating-immune only if 2k ≤ n − 2.

4 Cheating-Immune SSS from Maiorana-McFarland
Boolean Functions

Theorem 1 states that constructing a k-CI (n, n)-SSS over F2 is equivalent to con-
structing a Boolean function satisfying resiliency and strengthened propagation.
In this section, we will show that a class of Maiorana-McFarland Boolean func-
tions can be used to construct cheating-immune SSS. The Maiorana-McFarland
Boolean functions are well-studied and these functions are used to build Boolean
functions with cryptographic properties.

CI-SSS from Maiorana-McFarland Boolean Functions 237

Let s, t be positive integers and φ be a vectorial Boolean function from F
t
2 to

F
s
2, or a (t, s)-vectorial function given by

φ(x1, x2, . . . , xt) = (φ1(x1, x2, . . . , xt), φ2(x1, x2, . . . , xt), . . . , φs(x1, x2, . . . , xt))

where its coordinate functions φ1, φ2, . . . , φs are t-variable Boolean functions.
Let g be a t-variable Boolean function. An (s + t)-variable Boolean function f
defined by

f(x, y) = x · φ(y) ⊕ g(y),

where x ∈ F
s
2, y ∈ F

t
2 is said to be of Maiorana-McFarland form. We call f an

MM function for short.
The next theorem gives a condition under which a Maiorana-McFarland func-

tion satisfies resiliency.

Theorem 4 ([7]). An MM function f(x, y) = x ·φ(y)⊕ g(y) is k-resilient if for
every y ∈ F

t
2, we have wt(φ(y)) ≥ k + 1.

We now show that this class of functions also satisfies strengthened propa-
gation criterion. We will use the following lemma.

Lemma 1. A Boolean function f is balanced on F
n
2 if there exists a subset

{i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such that for every a = (a1, a2, . . . , ak) ∈ F
k
2 ,

the restricted function fa obtained from f by substituting xi1 = a1, xi2 =
a2, . . . , xik = ak is balanced.

Proof. For every a ∈ F
k
2 , by assumption, fa is balanced on F

n−k
2 . Hence, we

have |f−1
a (0)| = |f−1

a (1)| = 2n−k−1. Since there are 2k possibilities for a, then
|f−1(0)| = |f−1(1)| = 2k × 2n−k−1 = 2n−1. Thus, f is balanced on F

n
2 .

A modification of the construction of Boolean functions satisfying propa-
gation criterion using Maiorana-McFarland Boolean functions considered by [9]
gives us a construction of Boolean functions satisfying strengthened propagation.

Theorem 5. An MM function f(x, y) = x · φ(y) ⊕ g(y) satisfies SP (k) if the
following conditions are satisfied:

1. For any a ∈ F
s
2 such that 1 ≤ wt(a) ≤ k, the function a · φ(y) is balanced on

F
t
2.

2. For any y, z ∈ F
t
2 such that wt(y ⊕ z) ≥ 1, we have wt(φ(y) ⊕ φ(z)) ≥ k.

Proof. Let z = (x, y) = (x1, x2, . . . , xs, y1, y2, . . . , yt). For any δ, τ ∈ F
s+t
2 such

that 1 ≤ wt(δ) ≤ k and τ � δ, we denote by δ = (δx, δy) and τ = (τx, τy)
where δx = (δ1, δ2, . . . , δs), τx = (τ1, τ2, . . . , τs), δy = (δs+1, δs+2, . . . , δs+t) and
τy = (τs+1, τs+2, . . . , τs+t).

Define h(z−
δ) = f(z−

δ ⊕ τ) ⊕ f(z−
δ ⊕ τ ⊕ δ). Then,

h(z−
δ) = f(x−

δx ⊕ τx, y−
δy ⊕ τy) ⊕ f(x−

δx ⊕ τx ⊕ δx, y−
δy ⊕ τy ⊕ δy)

= a(y−
δy) · x−

δx ⊕ b(y−
δy)

238 R. B. dela Cruz and S. Ol

where

a(y−
δy) = φ(y−

δy ⊕ τy) ⊕ φ(y−
δy ⊕ τy ⊕ δy)

b(y−
δy) = τx · φ(y−

δy ⊕ τy) ⊕ (τx ⊕ δx) · φ(y−
δy ⊕ τy ⊕ δy)⊕

g(y−
δy ⊕ τy) ⊕ g(y−

δy ⊕ τy ⊕ δy)

Case 1. If δy = 0 then τy = 0, y−
δy = y and wt(δx) = wt(δ). Hence, h(z−

δ) =
δx · φ(y) is balanced by the first condition.

Case 2. If δy �= 0 then 0 ≤ wt(δx) ≤ k − 1. In other words, the number of
constant coordinates of x−

δx is less than or equal to k−1. For every substitution
of t−wt(δy) variables in y−

δy , by the second condition, wt(a(y−
δy)) ≥ k. Hence,

the function obtained from h(z−
δ) by the substitution is a non-constant affine

function which is balanced. Therefore, h(z−
δ) is balanced by Lemma 1.

In conclusion, the function f satisfies SP (k).

5 Construction of CI-SSS Using Binary Systematic Codes

Similar to what was done on [9], we use binary systematic codes to come up with
concrete examples of functions satisfying the conditions in Theorems 4 and 5.
This method of construction is a generalization of [14] which uses linear codes.
The technique used here allows us to use nonlinear codes. We start with a dis-
cussion of some basic concepts on binary codes (the reader is referred to [18,20]
for a complete treatment of codes).

A nonempty subset C ⊆ F
n
2 is called a binary code of length n. The Hamming

distance between two vectors x, y ∈ F
n, denoted by d(x, y), is the number of

positions where x and y differ. The minimum distance of C is defined as

d(C) = min{d(x, y) | x, y ∈ C, x �= y}.

A binary code of length n having M codewords and minimum distance d is
called an (n,M, d)-code. The distance from a vector α ∈ F

n
2 to a code C is given

by d(α,C) = min{d(α, c) | c ∈ C}. The covering radius of C is defined to be
ρ = max{d(x,C) |x ∈ F

n
2}.

Definition 4. A binary code C is said to be k-systematic if there exists k posi-
tions i1, . . . , ik such that every element of Fk

2 appears in exactly one codeword of
C in the specified positions. The set {i1, i2, . . . , ik} is called an information set
of C.

Let C be a binary k-systematic code. It follows from the definition that C
has 2k codewords. Let c = (c1, c2, . . . , cn) ∈ C. The coordinates ci1 , ci2 , . . . , cik

are called information bits and the remaining coordinates are called parity-check
bits. Hence, if all of the parity-check bits of a binary k-systematic code are
deleted, we obtain the code F

k
2 .

A binary linear code C is a k-dimensional subspace of Fn
2 . A binary linear

code of length n, dimension k and minimum distance d is called an [n, k, d]-code.

CI-SSS from Maiorana-McFarland Boolean Functions 239

A k×n matrix whose rows form a basis of C is called a generator matrix. The dual
code of C is its (n−k)-dimensional dual space C⊥ = {x ∈ F

n
2 | c ·x = 0,∀c ∈ C}.

Note that a binary linear code is k-systematic.
Let C be an (n,M, d) binary code and let

Bi =
1

|C|
∑

c∈C

|{x ∈ C | d(c, x) = i}|.

The list B1, B2, . . . , Bn is called the distance distribution of C. The homogeneous
polynomial DC(x, y) =

∑n
i=0 Bix

n−iyi is called the distance enumerator of C.
The dual distance of an (n,M, d) binary code C is the smallest positive integer
d′ such that the coefficient of xn−d′

yd′
of DC(x+y, x−y) is nonzero. In the case

that C is linear, the dual distance is the same as the minimum distance of C⊥.
Due to the notion of equivalence of codes, we can assume that the information

set of a given systematic code is the set {1, . . . , k}. We also assume that the
generator matrix of a given linear code is in standard form, i.e. [Ik | A] where
Ik is the identity matrix of order k and A is a k × (n − k) binary matrix.

We now proceed with the construction of cheating-immune schemes using
binary systematic codes.

Lemma 2 ([9]). Let C be a binary code of length s with dual distance d′. Then,
for every a ∈ F

s
2 such that 1 ≤ wt(a) ≤ d′ − 1, the s-variable Boolean function

ψ(x) = a · x is still balanced when its domain is restricted to C.

Theorem 6. An MM function f(x, y) = x · φ(y) ⊕ g(y) satisfies SP (k) if the
(t, s)-vectorial function φ is injective and the code φ(Ft

2) has minimum distance
d ≥ k and dual distance d′ ≥ k + 1.

Proof. We will show that the conditions of Theorem 5 are satisfied. For any
a ∈ F

s
2 such that 1 ≤ wt(a) ≤ k, the s-variable Boolean function ψ(x) = a · x is

balanced on φ(Ft
2) (because k ≤ d′ − 1) thanks to Lemma 2. Since φ is injective,

for any z ∈ φ(Ft
2), there is a unique y ∈ F

t
2 such that z = φ(y). Thus, the

composition (ψ ◦ φ)(y) = a · φ(y) is balanced on F
t
2. For any y, z ∈ F

t
2 with

wt(y⊕z) ≥ 1, wt(φ(y)⊕φ(z)) ≥ k because φ is injective and φ(Ft
2) has minimum

distance d ≥ k.

Theorem 7. Let C be an (s, 2t, d) binary t-systematic code with dual distance
d′ and covering radius ρ. Let k = min{d, d′ − 1, ρ − 1} and α ∈ F

s
2 such that

d(α,C) ≥ k + 1. Define the (t, s)-vectorial function φ(x) = α ⊕ (x, u(x)) where
u(x) is vector of (s− t) parity-check bits of a codeword of C whose t information
bits are represented by the vector x. Let g be an arbitrary t-variable Boolean
function. Then the MM function f(x, y) = x · φ(y) ⊕ g(y) defines a k-CI (s +
t, s + t)-SSS.

Proof. For every y ∈ F
t
2, wt(φ(y)) ≥ d(α,C) = k + 1. By Theorem 4, f is k-

resilient. The code φ(Ft
2) = α ⊕ C has the same minimum distance d ≥ k and

the same dual distance d′ ≥ k + 1 as C. By Theorem 5, f satisfies SP (k). Due
to Theorem 1, the (s + t, s + t)-SSS defined by f is k-CI.

240 R. B. dela Cruz and S. Ol

We present examples of schemes obtained using the preceding theorem. The
computations were performed using Magma [5]. In case that C is linear with
generator matrix G, the function φ can be written as φ(y) = α ⊕ yG. Then the
defining function f will be f(x, y) = x · (α ⊕ yG) ⊕ g(y).

Example 1 (a new scheme). Let C be the [12, 5, 4] binary linear code with
dual distance d′ = 4, covering radius ρ = 4 and generator matrix

G =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 1 0 1 1 1
0 1 0 0 0 1 0 1 1 0 1 1
0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Using α = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0) with d(α,C) = 4, we obtain a 3-CI
(17, 17)-SSS.

Example 2 (using some classes of linear codes)

a. 1-CI (m + 1,m + 1)-SSS: For m ≥ 4, let C = Rm, the [m, 1,m] binary
repetition code with dual distance d⊥ = 2 and covering radius ρ = n

2 �.
Choose α such that d(α,C) = 2.

b. 2-CI (2m+m−1, 2m+m−1)-SSS: For m ≥ 3, let C = Sm, the [2m−1,m, 2m−1]
binary Simplex code with dual distance d⊥ = 3 and covering radius ρ =
2m−1 − 1. Choose α such that d(α,C) = 3.

c. 3-CI (2m +m+1, 2m +m+1)-SSS: For m ≥ 4, let C = R(1,m), the [2m,m+
1, 2m−1] first-order Reed-Muller code with dual distance d⊥ = 4 and covering
radius 2m−1 − 2�m/2�−1 ≤ ρ ≤ 2m−1 − 2m/2−1 [17]. Choose α such that
d(α,C) ≥ 4.

Example 3 (using nonlinear codes). For even integer m ≥ 4, there exists two
well-known classes of binary nonlinear systematic codes [20]:

i. (2m, 22m, 2m−1−2
m
2 −1) Kerdock code K(m) with dual distance 6 and covering

radius 2m−1 − 2
m
2 −1

ii. (2m, 22
m−2m, 6) Preparata code P(m) with dual distance 2m−1 − 2

m
2 −1 and

covering radius 3.

We use these codes to obtain the following schemes:

a. 2-CI (2m+1 − 2m, 2m+1 − 2m)-SSS: For even integer m ≥ 4, let C = P(m)
and choose α ∈ F

m
2 such that d(α,P(m)) = 3.

b. 5-CI (2m + 2m, 2m + 2m)-SSS: For even integer m ≥ 6, let C = K(m) and
choose α ∈ F

m
2 such that d(α,K(m)) = 6.

CI-SSS from Maiorana-McFarland Boolean Functions 241

6 Strictly Cheating-Immune SSS

Here we consider the construction of strictly cheating-immune SSS from the class
of Maiorana-McFarland Boolean functions. The goal is to construct functions
satisfying the conditions given by Theorem2. The next theorem talks about the
strengthened propagation property.

Theorem 8. Let f(x, y) = x · φ(y) ⊕ g(y) be an MM function satisfying the
following conditions:

1. for any a ∈ F
s
2 with 1 ≤ wt(a) ≤ k, the function a · φ(y) on F

t
2 is (k − 1)-

resilient;
2. for any y, z ∈ F

t
2 if 1 ≤ wt(y ⊕ z) ≤ k, we have wt(φ(y) ⊕ φ(z)) ≥ k.

Then, for any integer l with 0 ≤ l ≤ k − 1, every function obtained from f by
keeping any l input variables constant satisfies SP (k − l).

Proof. Let z = (x, y). For any integer l with 0 ≤ l ≤ k − 1, we denote by x and
y the vectors obtained from x and y by fixing u and v coordinates constant such
that u + v = l. If we let z = (x, y) then f(z) is the (s + t − l)-variable Boolean
function obtained from f by fixing l input variables.

Now we show that f(z) satisfies SP (k− l). Let δ, τ ∈ F
n
2 , n = s+ t, such that

τ � δ, 1 ≤ wt(δ) ≤ k− l and the set of nonzero coordinates of δ is a subset of the
nonconstant coordinates of z. We write δ = (δx, δy) and τ = (τx, τy) where δx

and τx are the first s coordinates of δ and τ , and δy and τy are the remaining t
coordinates of δ and τ , respectively.

Define h(z−
δ) = f(z−

δ ⊕ τ)⊕f(z−
δ ⊕ τ ⊕ δ). Then h(z−

δ) = x−
δx ·a(y−

δy)⊕ b(y−
δy)

where

a(y−
δy) = φ(y−

δy ⊕ τy) ⊕ φ(y−
δy ⊕ τy ⊕ δy)

b(y−
δy) = τx · φ(y−

δy ⊕ τy) ⊕ (τx ⊕ δx) · φ(y−
δy ⊕ τy ⊕ δy) ⊕

g(y−
δy ⊕ τy) ⊕ g(y−

δy ⊕ τy ⊕ δy)

Case 1. If δy = 0 then y−
δy = y, τy = 0 and 1 ≤ wt(δx) = wt(δ) ≤ k − l ≤ k. By

the first condition, δx·φ(y) is (k−1)-resilient. In addition, v = l−u ≤ l ≤ k−1.
Hence, h(z−

δ) = δx · φ(y) is balanced because it is obtained from the function
δx · φ(y) by fixing v input variables constant.

Case 2. If δy �= 0 then 0 ≤ wt(δx) < wt(δ) ≤ k−l. Hence, the number of constant
coordinates of x−

δx is u+wt(δx) ≤ l+(k−l−1) = k−1. For every substitution
of the t−v−wt(δy) variables in y−

δy , by the second condition, wt(a(y−
δy)) ≥ k.

Hence, the function obtained from h(z−
δ) by the substitution is a non-constant

affine function which is balanced. Therefore, h(z−
δ) is balanced by Lemma 1.

In conclusion, the function f(z) satisfies SP (k − l).

An (s, t)-vectorial function φ is balanced if for every y ∈ F
t
2, |φ−1(y)| = 2s−t.

The function φ is said to be k-resilient if it is balanced and every function
obtained from φ by keeping k input variables constant is balanced.

242 R. B. dela Cruz and S. Ol

Lemma 3 ([3]). Let φ be a (t, r)-vectorial k-resilient function and ψ be an (r, s)-
vectorial balanced function. Then the (t, s)-vectorial function ψ ◦φ is k-resilient.

We now look at the construction of a function φ satisfying the conditions of
Theorem 8. Similar to [9], we split φ into a composition of two simpler vectorial
functions.

Theorem 9. Suppose that φ = φ2 ◦ φ1 where φ1 is a (t, r)-vectorial function
and φ2 is an (r, s)-vectorial function with the following properties:

1. (a) φ1 is (k − 1)-resilient;
(b) for any y, z ∈ F

t
2 with 1 ≤ wt(y ⊕ z) ≤ k, we have wt(φ1(y) ⊕ φ1(z)) ≥ 1;

2. (a) for any a ∈ F
s
2 with 1 ≤ wt(a) ≤ k, the function a · φ2(y) is balanced;

(a) for any y, z ∈ F
r
2 with wt(y ⊕ z) ≥ 1, we have wt(φ2(y) ⊕ φ2(z)) ≥ k.

Then φ satisfies the condition of Theorem8.

Proof. From 1(a) and 2(a), for any a ∈ F
s
2 with 1 ≤ wt(a) ≤ k, a · φ(y) =

a · (φ2 ◦ φ1)(y) = (a · φ2) ◦ φ1(y) is (k − 1)-resilient thanks to Lemma 3. Hence,
the first condition of Theorem8 is satisfied. The 1(b) and 2(b) trivially imply the
second condition of Theorem 8.

Next, we use binary systematic codes to construct φ1 and φ2. First we recall
a connection between codes and orthogonal arrays. A binary (n, k, λ)-orthogonal
array is a λ2k × n array such that for any k columns, every element of F

k
2

appears in exactly λ rows. A binary orthogonal array is said to be simple if no
two rows are identical. A large set of binary (n, k, λ)-orthogonal arrays is a set of
2n−k/λ simple (n, k, λ)-orthogonal arrays such that every element of Fn

2 appears
in exactly one of the (n, k, λ)-orthogonal arrays in the set.

Lemma 4 [15]. An (n, 2k, d)-binary k-systematic code C with dual distance d′

is also a binary (n, d′ − 1, 2k−d′+1)-orthogonal array.

A relation between resilient functions and orthogonal arrays is given by the
following lemma:

Lemma 5 [31]. A k-resilient (t, r)-vectorial function is equivalent to a large set
of binary (t, k, 2t−r−k)-orthogonal arrays.

The next two results concern the functions φ1 and φ2.

Theorem 10. Let C1 be a (t, 2t−r, d1)-binary (t − r)-systematic code with d1 ≥
k + 1 and dual distance d′

1 ≥ k. Let φ1(x, y) = u(x) ⊕ y be a (t, r)-vectorial
function where x ∈ F

t−r
2 , y ∈ F

r
2 and u(x) is vector of parity-check bits of a

codeword of C1 whose information bits are represented by the vector x. Then φ1

has the following properties:

1. φ1 is (k − 1)-resilient; and
2. for any y, z ∈ F

t
2 with 1 ≤ wt(y ⊕ z) ≤ k, we have wt(φ1(y) ⊕ φ1(z)) ≥ 1.

CI-SSS from Maiorana-McFarland Boolean Functions 243

Proof. For any z ∈ F
r
2, consider φ−1

1 (z) = {(x, y) |φ1(x, y) = z, x ∈ F
t−r and y ∈

F
r}. Since φ1(x, y) = z ⇔ y = u(x) ⊕ z, we get φ−1

1 (z) = {(x, u(x) ⊕ z) |x ∈
F

t−r
2 }. Let 0 ∈ F

t−r
2 be the zero vector of length t−r. Then φ−1

1 (z) = (0, z)⊕C1 is
a (t, 2t−r, d1)-binary (t−r)-systematic code with dual distance d′

1. By Lemma 4,
φ−1
1 (z) is a binary (t, d′

1 − 1, 2t−r−d′
1+1)-orthogonal array. It is also a binary

(t, k − 1, 2t−r−k+1)-orthogonal array since k ≤ d′
1. By Lemma 5, φ1 is (k − 1)-

resilient.
For any y, z ∈ F

t
2 with 1 ≤ wt(y⊕z) ≤ k, suppose that wt(φ1(y)⊕φ1(z)) = 0.

It follows that y, z ∈ φ−1
1 (w) for some w ∈ F

r
2. Since φ−1

1 (w) = (0, w) ⊕ C1 has
minimum distance d1 ≥ k + 1, we obtain wt(y ⊕ z) ≥ k + 1, a contradiction.
Consequently, wt(φ1(y) ⊕ φ1(z)) ≥ 1.

Theorem 11. Let C2 be an (s, 2r, d2)-binary r-systematic code with d2 ≥ k and
dual distance d′

2 ≥ k + 1. Let φ2(y) = α ⊕ (y, v(y)) where y ∈ F
r
2, α ∈ F

s
2 and

v(y) is a vector of parity-check bits of a codeword of C2 whose information bits
are represented by the vector y. Then φ2 has the following properties:

1. for any a ∈ F
s
2 with 1 ≤ wt(a) ≤ k, the function a · φ2(y) is balanced; and

2. for any y, z ∈ F
r
2 with wt(y ⊕ z) ≥ 1, we have wt(φ2(y) ⊕ φ2(z)) ≥ k.

Proof. For an arbitrary α ∈ F
s
2, φ2 is injective (see the proof of Theorem 6).

We now present a construction of strictly cheating-immune schemes from
Maiorana-McFarland functions.

Theorem 12. Let C1 = {(x, u(x)) |x ∈ F
t−r
2 } be a (t, 2t−r, d1)-binary (t − r)-

systematic code with dual distance d′
1 and let φ1(x, y) = u(x) ⊕ y be a (t, r)-

vectorial function where x ∈ F
t−r
2 , y ∈ F

r
2. Suppose that C2 = {(x, v(x)) |x ∈

F
r
2} is an (s, 2r, d2)-binary r-systematic code with dual distance d′

2 and covering
radius ρ. Let k = min{d1 − 1, d′

1d2, d
′
2 − 1, ρ − 1} and let φ2(y) = α ⊕ (y, v(y))

be a (r, s)-vectorial function where y ∈ F
r
2, α ∈ F

s
2 such that d(α,C2) ≥ k + 1.

Define φ = φ2 ◦ φ1 and f(x, y, z) = x · φ(y, z) ⊕ g(y, z) where x ∈ F
s
2 and g is an

arbitrary t-variable Boolean function. Then the MM function f defines a k-CI
(s + t, s + t)-SSS.

Proof. Since φ(Ft
2) = α⊕C2 then for any (y, z) ∈ F

t
2 we must have wt(φ(y, z)) ≥

k + 1. By Theorem 4, f is k-resilient. The functions φ1 and φ2 satisfy the condi-
tions of Theorems 10 and 11 respectively. Hence, they also satisfy the conditions
of Theorem 9. Thus, φ satisfies the conditions of Theorem 8. Due to Theorem 2,
the (s + t, s + t)-SSS defined by f is k-CI.

If C1 and C2 are linear codes with generator matrices G1 = [It−r | A] and G,
respectively, then φ1(y, z) = yA⊕z and φ2(y) = yG. Thus, the defining function
f can be written as f(x, y, z) = x · (α ⊕ (yA ⊕ z)G) ⊕ g(y, z).

244 R. B. dela Cruz and S. Ol

Example 4 (new schemes)

a. Strictly 2-CI (13, 13)-SSS: Let C1 be a [6, 3, 3] binary self-dual code and C2

be the [7, 3, 4] binary Simplex code with d⊥
2 = 3 and covering radius ρ = 3.

Consider a generator matrix G1 = [I3 | A] of C1 and a generator matrix G of
C2 where

A =

⎡

⎣
0 1 1
1 0 1
1 1 1

⎤

⎦ and G =

⎡

⎣
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

⎤

⎦ .

Choose α = (0, 0, 1, 0, 1, 1, 0), then d(α,C2) = 3.
b. Strictly 3-CI (21, 21)-SSS: Let C1 be a [9, 4, 4] binary linear code with d⊥

1 = 3
and C2 be a [12, 5, 4] binary linear code with d⊥

2 = 4 and covering radius
ρ = 4. We use generator matrices G1 = [I4 | A] and G where

A =

⎡

⎢⎢⎣

0 1 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0

⎤

⎥⎥⎦ and G =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 1 0 1 1 1
0 1 0 0 0 1 0 1 1 0 1 1
0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Choose α = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0), then d(α,C2) = 4.
c. Strictly 3-CI (22, 22)-SSS: Let C1 be a [10, 5, 4] binary self-dual code and C2

be a [12, 5, 4] binary linear code with d⊥
2 = 4 and covering radius ρ = 4. We

use generator matrices G1 = [I5 | A] and G where

A =

⎡

⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 0 0
1 1 0 0 1

⎤

⎥⎥⎥⎥⎦
and G =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 1 0 1 1 1
0 1 0 0 0 1 0 1 1 0 1 1
0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Choose α = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0), then d(α,C2) = 4.
d. Strictly 3-CI (23, 23)-SSS: Let C1 be an [11, 6, 4] binary linear code with d⊥

1 =
3 and generator matrix G1 = [I6 | A] and C2 be a [12, 5, 4] binary linear code
with d⊥

2 = 4, covering radius ρ = 4 and generator matrix G where

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
and G =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 1 0 1 1 1
0 1 0 0 0 1 0 1 1 0 1 1
0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Choose α = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0), then d(α,C2) = 4.

CI-SSS from Maiorana-McFarland Boolean Functions 245

Example 5 (using nonlinear codes)

a. Strictly 2-CI (2m+1, 2m+1)-SSS: For even integer m ≥ 4, let C1 = K(m) and
C2 = P(m). Choose α ∈ F

m
2 such that d(α,C2) = 3.

b. Strictly 5-CI (2m+1, 2m+1)-SSS: For even integer m ≥ 6, let C1 = P(m) and
C2 = K(m). Choose α ∈ F

m
2 such that d(α,C2) ≥ 6.

7 Concluding Remarks

We showed that cheating-immune secret sharing schemes can be obtained from
the class of Maiorana-MacFarland Boolean functions. We presented one new
cheating-immune scheme, k = 3 for n = 17 and four new strictly cheating-
immune schemes, k = 2 for n = 13 and k = 3 for n = 21, 22, 23. We also
gave constructions of (strictly) cheating-immune secret sharing schemes from
some well-known classes of binary nonlinear codes. There are still open cases
in the construction of (n, n) cheating-immune secret sharing schemes. Another
open problem is the construction of cheating-immune schemes for other access
structures.

Acknowledgments. The authors would like to thank the reviewers for their com-
ments and suggestions. The first author would like to thank the University of the
Philippines Diliman for the financial support. The second author’s work is supported
by CIMPA and IMU.

References

1. Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference, New York, vol. 48, pp. 313–317 (1979)

2. Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified
account of classical secret-sharing goals. In: ACM Conference on Computer and
Communications Security, pp. 172–184. ACM (2007)

3. Bierbrauer, J., Gopalakrishnan, K., Stinson, D.R.: Bounds for resilient functions
and orthogonal arrays. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 247–256. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-
5 24

4. Braeken, A., Nikov, V., Nikova, S.: On cheating immune secret sharing. In: Pro-
ceedings of 25th Symposium on Information Theory in the Benelux, pp. 113–120
(2004)

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24, 235–265 (1997)

6. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters
for general access structures. Des. Codes Cryptogr. 25, 175–188 (2002)

7. Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On Correlation-immune func-
tions. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 86–100.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 6

https://doi.org/10.1007/3-540-48658-5_24
https://doi.org/10.1007/3-540-48658-5_24
https://doi.org/10.1007/3-540-46766-1_6

246 R. B. dela Cruz and S. Ol

8. Carlet, C.: Boolean functions for cryptography and error-correcting codes. In:
Boolean Models and Methods in Mathematics, Computer Science, and Engineer-
ing (Encyclopedia of Mathematics and its Applications), pp. 257–397. Cambridge
University Press (2010)

9. Carlet, C.: On the propagation criterion of degree l and order k. In: Nyberg, K.
(ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 462–474. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054146

10. Carlet, C.: Vectorial Boolean functions for cryptography. In: Boolean Models
and Methods in Mathematics, Computer Science, and Engineering (Encyclopedia
of Mathematics and its Applications), pp. 398–470. Cambridge University Press
(2010)

11. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: FOCS 1985, pp. 383–395 (1985)

12. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

13. D’Arco, P., Kishimoto, W., Stinson, D.: Properties and constraints of cheating-
immune secret sharing schemes. Discret. Appl. Math. 154, 219–233 (2006)

14. dela Cruz, R., Wang, H.: Cheating-immune secret sharing schemes from codes and
cumulative arrays. Cryptogr. Commun. 5, 67–83 (2013)

15. Delsarte, P.: Four fundamental parameters of a code and their combinatorial sig-
nificance. Inf. Control 23, 407–438 (1973)

16. Guo-Zhen, X., Massey, J.: A spectral characterization of correlation-immune com-
bining functions. IEEE Trans. Inf. Theory 34(3), 569–571 (1988)

17. Helleseth, T., Klove, T., Mykkeltveit, J.: On the covering radius of binary codes.
IEEE Trans. Inf. Theory 24(5), 627–628 (1978)

18. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University Press, Cambridge (2003)

19. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater identifiable (k, n) threshold secret
sharing schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp.
410–423. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 33

20. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-
Holland Publishing Company, Amsterdam (1977)

21. McEliece, R., Sarwate, D.: On sharing secrets and Reed-Solomon codes. Commun.
ACM 24, 583–584 (1981)

22. Ma, W.P., Lee, M.H.: New methods to construct cheating immune functions. In:
Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 79–86. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6 7

23. Ma, W.P., Zhang, F.T.: New methods to construct cheating-immune multisecret
sharing scheme. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822,
pp. 384–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11599548 33

24. Martin, K.: Challenging the adversary model in secret sharing schemes. In: Coding
and Cryptography II, Proceeidngs of the Royal Flemish Academy of Belgium for
Science and the Arts, pp. 45–63 (2008)

25. Ogata, W., Kurosawa, K., Stinson, D.: Optimum secret sharing scheme secure
against cheating. SIAM J. Discret. Math. 20, 79–95 (2006)

26. Pieprzyk, J., Zhang, X.-M.: Cheating Prevention in Secret Sharing over GF (pt).
In: Rangan, C.P., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 79–90.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45311-3 8

https://doi.org/10.1007/BFb0054146
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-44750-4_33
https://doi.org/10.1007/978-3-540-24691-6_7
https://doi.org/10.1007/11599548_33
https://doi.org/10.1007/3-540-45311-3_8

CI-SSS from Maiorana-McFarland Boolean Functions 247

27. Pieprzyk, J., Zhang, X.-M.: Constructions of cheating-immune secret sharing. In:
Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 226–243. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45861-1 18

28. Pieprzyk, J., Zhang, X.M.: On cheating immune secret sharing. Discret. Math.
Theor. Comput. Sci. 6, 253–264 (2004)

29. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority. In: Proceedings of 21st ACM Symposium on Theory of Computing,
pp. 73–85 (1989)

30. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
31. Stinson, D., Massey, J.: An infinite class of counterexamples to a conjecture con-

cerning nonlinear resilient functions. J. Cryptol. 8(3), 167–173 (1995)
32. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptogr.

58(1), 11–21 (2011)
33. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1, 133–138

(1988)
34. Wei, Y., Hu, Y.: New Construction of resilient functions with satisfying multi-

ple cryptographic criteria. In: Proceedings of the 3rd International Conference on
Information Security InfoSecu 2004, pp. 175–180. ACM (2004)

https://doi.org/10.1007/3-540-45861-1_18

A New Privacy-Preserving Searching
Model on Blockchain

Meiqi He, Gongxian Zeng, Jun Zhang, Linru Zhang, Yuechen Chen,
and SiuMing Yiu(B)

The University of Hong Kong, Pok Fu Lam, Hong Kong
{mqhe,gxzeng,jzhang3,lrzhang,ycchen,smyiu}@cs.hku.hk

Abstract. It will be convenient for users if there is a market place that
sells similar products provided by different suppliers. In physical world,
this may not be easy, in particular, if the suppliers are from different
regions or countries. On the other hand, this is more feasible in the virtual
world. The Global Big Data Exchange in Guiyang, China, which provides
a market place for traders to buy and sell data, is a typical example.
However, these virtual market places are owned by third parties. The
security/privacy is a concern in addition to the expensive service charges.
In this work, we propose a new privacy-preserving searching model on
blockchain which enables a decentralized and secure virtual search-and-
match market place. The core technical contribution is a new searchable
encryption scheme for blockchain. We adopt the similarity preserving
hash and leverage smart contracts to protect the system from the forgery
attack and double-rewarding attack. We formally prove the security and
privacy of our protocol, and evaluate our scheme on the private net of
Ethereum platform. Our experimental results show that our protocol can
work efficiently.

Keywords: Security and privacy · Privacy-preserving searching ·
Blockchain

1 Introduction

As a customer, we all have the experience of looking for a product or a service.
It would be convenient if there is a market place where we can find multiple
suppliers of the same or similar product/service. In physical world, there are
examples of this market place in different parts of the world (e.g. there is a
building in Hong Kong selling wedding accessories, a tea street in Beijing, China
selling different kinds of tea, and an Italian region in New York with many Italian
restaurants etc.). However, it is not easy to have one that allows suppliers from
different regions or countries to participate, except those organized by a third
party (e.g. governments, trade organizations) which only open for a short period
of time as the traders need to physically attend the event. On the other hand,
it is more feasible to have such a market place in the virtual world. However,
these virtual market places are usually owned by third parties. The security and
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 248–266, 2019.
https://doi.org/10.1007/978-3-030-12146-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_16

A New Privacy-Preserving Searching Model on Blockchain 249

privacy may be a major concern to the suppliers and customers in addition to
expensive membership fees and service charges.

To further motivate our study, let us consider the following remarkable appli-
cation: love matching service. There are multiple service providers. In order to
use the actual service to find potential candidates for dating, in most cases, a
customer needs to pay membership fees and other service charges. If we want to
increase the chance of having a match, one may need to join multiple providers.
The privacy of the customers (e.g. customers may not want others to know their
criteria for choosing a partner) will totally rely on service providers. A more
convenient and secure scenario is as follows. We have a market place allowing
traders (service providers or product suppliers, we refer them as data owners in
the rest of the paper) and customers to join. The market place is not owned by
any third party. In our new model, customers can issue (or broadcast) a search
query in this platform. Data owners can make a profit by finding a match for the
customers. Instead of having the customer to join multiple providers or check
the products from every supplier, now the customer only needs to issue one
query, all data owners in the platform can help to locate the appropriate pro-
duct/service for him. Ideally, the criteria in the search query is not revealed to
the data owner to protect the privacy of the customers. The customers are only
charged if matches are found. To realize this virtual market place, in this paper,
we plan to explore a new “search-and-match” model on blockchains. The use of
blockchains has the fundamental benefit that it does not require a trusted third
party nor a centralized authority while it can provide a transparent and trusted
platform for trading with low transaction fees (and service charges). Note that
this platform can be extended for many applications such as data trading, job
matching, finding rental apartment, and searching matched marrow.

The Abstract Problem: We model the problem as a privacy-preserving key-
word matching problem on blockchains. The data of a data owner is represented
as documents (e.g. product descriptions). Each document is characterized by
a set of keywords. The user (or customer) query is in the form of a keyword.
A data owner can earn a reward from a user for each document that matches
the keyword in the query. Since all transactions occur in blockchain, which is
transparent, the platform needs to satisfy the following basic requirements to
guarantee the privacy of transactions.

1. The query is hidden from all data owners and other users. But then, the same
query can be used by all data owners to search their documents.

2. The documents returned by a data owner are revealed only to the user who
issued the query.

3. Miners of the blockchain (see Sect. 2 for a description of miners) are able to
verify if the returned document indeed contains the keyword of the query, but
they are not able to reveal the content of the document.

Besides the basic requirements, we also consider the following risks/attacks.

250 M. He et al.

1. Double-rewarding attack: Greedy data owner may try to generate dupli-
cate/similar documents to get double rewards once he knows which document
can match the query.

2. Forgery attack: Only the data owner of the document that matches a query
can reply to the query and get the reward.

3. Fair exchange: A customer cannot skip paying the reward as promised after
receiving the document.

Highlights of Our Solutions and Contributions: At a first glance, the
problem is similar to the traditional searchable encryption (SE) problem [6,
7,10,13,20], which allows a data owner to outsource a dataset onto a server
allowing other customers to search it with a token while preserving the privacy
of both the data and the query. However, there are major differences between
our problem and the traditional SE problem. In traditional SE, the token for the
customer is generated by the data owner. In our case, the customer will generate
the token without any help from the data owner as the token needs to be used
by multiple data owners. For traditional SE, the search is done by a third party,
while in our case the search is done by the owner while the results need to be
checked by a miner. Documents provided by different data owners are encrypted
using different keys, i.e., the same encrypted query is required to search multiple
documents encrypted by different keys.

To solve this problem, we propose a new multi-key searchable encryption
scheme in the public key setting that enables a user to provide one search token,
but allows multiple data owners to search documents encrypted with different
keys. To achieve this, we are motivated by the multi-key searchable encryption
scheme proposed in [18] to let each data owner transform the token to match its
own documents. Each document is parsed into a set of distinct keywords and a
proof for each keyword will be produced that can be verified by a miner. Note
that [18] cannot be used directly in our case as [11,21] have shown that [18]
has a leakage problem in keyword access pattern (for details, see Sect. 4). We
thus propose new encryption and matching methods in our scheme. In partic-
ular, to eliminate this leakage problem, we enhance our encryption method so
that the data owner can update the ciphertext of the keyword every time the
corresponding document has been replied to a query.

To make sure that others cannot reply to a query if the document does
not belong to him, we embed the owner’s public key into the encryption of the
document. For the problems of forgery and double-rewarding attacks, we propose
the followings. We adopt smart contracts to regulate the behaviors of owner and
user. We use hash value to record the existence of documents while creating.
Miners of the blockchain will only consider the document created before query.
In brief, contracts, hash values and search tokens are all treated as transactions
to be recorded into blockchain as undeniable proof. To avoid dishonest data
owners conducting double-rewarding attack, we adopt TLSH [15], which is a
similarity preserving hash used in digital forensics. In this way, data owners are

A New Privacy-Preserving Searching Model on Blockchain 251

required to provide the similarity hash values of their documents when replying
a query and miners can detect duplication before mining it into blockchain1

In summary, the contributions of our paper are listed as follows.

– We propose a new privacy-preserving searching model for searching over
encrypted data. The model can be used on blockchains. To realize this model,
we design a novel multi-key searching encryption scheme.

– We identify several possible attacks in the new model and provide solutions
to prevent these attacks, e.g. we carefully design smart contracts to handle
the forgery attack and adopt similarity preserving hash to deal with double-
rewarding problem.

– We formally prove the security of our scheme and evaluate our protocol in
the private net of the existing Ethereum platform. Experimental results show
that our protocol can run efficiently.

2 Background

2.1 Blockchain and Smart Contract

Please refer to [14] for an overview of blockchain. Here, we want to highlight an
important role in blockchain, which is miner. They are responsible for verifying
and adding new transactions, creating a new block by solving a puzzle (referred
as the Proof of Work (PoW)) and receive some benefit in return. Once a block
is added to the chain, it is extremely difficult for anyone to modify it, the cor-
rectness of the network can be guaranteed. In our case, all queries and replies
are treated as transactions. Miners will be responsible to check if a reply from a
data owner actually contains the keyword of the query before the reply can be
added into the chain.

Smart contract is supported in some blockchain based platforms (e.g.
Ethereum [4]). It is widely used in many complicated functions [8,9,12,17]. Smart
contracts are computer programs that act as agreements where the terms of the
agreement can be preprogrammed with the ability to be executed and enforced.
With the decentralized setting, smart contracts are public to all users in the net-
work. Once deployed, it is difficult to modify the contract, even by the creator,
due to the Proof of Work. We leverage smart contracts in our construction to
make sure that all parties would follow the defined actions.

2.2 Basics of Multi-key Searchable Encryption (MKSE)

The multi-key keyword matching scheme used in our system consists of the
following steps.

1 Note that in case two honest data owners have the same document or two very similar
documents, it depends on the probability, the one whose document is confirmed by
the miner first will get the reward.

252 M. He et al.

– Setup: Generate the system parameters.
– Encryption: For each file, the data owner creates an encrypted keyword index

so that it can be used in matching a query.
– Retoken: For each file, data owner computes a value for the user based on his

public key if he is authorized to search the data. This protocol works as an
access control so that token from the authorized user can be transformed to
match the encrypted index.

– Documents encryption: Data owner encrypts the documents.
– Search token: User generates the query token for a keyword.
– Match: Data owner searches the query over the encrypted index.
– Documents decryption: User can decrypt the result documents if he pays for

it.

2.3 Bilinear Map

Let G1, G2, GT be groups of prime order p and e : G1 × G2 → GT be a bilin-
ear map. g1, g2 are the generators of G1, G2. The map satisfies the following
properties:

1. Computable: given x ∈ G1, y ∈ G2 there is a polynomial time algorithms to
compute e(x, y) ∈ GT .

2. Bilinear: for any integers a, b ∈ [1, p], we have e(ga
1 , gb

2) = e(g1, g2)ab.
3. Non-degenerate: if g1, g2 are the generators of G1, G2 then e(g1, g2) is a gen-

erator of GT .

2.4 Similarity Preserving Hash

Hash functions are well-known and commonly used for proving integrity and file
identification. Traditional hashes (MD5, SHA-1, SHA-2) are used to check if a file
has been modified or tampered (even one bit change). However, for some other
applications such as identifying new versions of documents and software, locating
variants of malware families, finding similar infringing copies, deduplication on
storage system, we cannot use traditional hashes. Similarity-preserving hash [1–
3,15] was developed to handle these applications. In our case, we will adopt this
technique to help miners to check duplicate/similar documents and only accept
the first one to avoid the user double-paying for the same similar document.

Similarity-preserving hash aims at detecting similarity between objects by
creating a digest in a way that similar objects will produce similar digests. When
comparing two digests, a score related to the amount of content shared between
them is given. There are several criteria to reflect the effectiveness and efficiency
of different hash functions: (1) Efficiency: efficiency includes the comparison
efficiency and space efficiency. (2) Sensitivity and robustness: sensitivity refers
to the granularity at which an algorithm can detect similarity; robustness is a
metric of how an algorithm can be in the midst of noise and plain transformations
such as insertion/deletion.

A New Privacy-Preserving Searching Model on Blockchain 253

The final decision on selecting an algorithm depends on the applications. In
our case, we use the TLSH [15] algorithm for approximate matching as we pay
more attention to the sensitiveness and robustness. Sdhash [3] and mvhash-B
[1] suffer from active manipulation or anti-blacklisting. According to the authors
[15], TLSH is more robust. It is reported that file can be deliberately modified
by an adversary using randomization so that Ssdeep and Sdhash may fail, but
TLSH still has a high chance to identify similar files. Additional experiments
[16] showed that TLSH can detect strings which have been manipulated with
adversarial intentions.

Blockchain

SHcontract

UserData owner

Deploy DOcontract
DOcontract

Deploy SHcontract

Send response Tx to SHcontract

Pre-reward to DOcontract

Response Tx

 Send Document

 Add file by Tx

Confirm

 Match over dataset

 Miner verify the validity

Fig. 1. System model

3 System Overview

In Fig. 1, we outline the architecture of our model. We summarize the challenges
within these steps and present our ideas of how to resolve them in the following
sections.

3.1 Method to Ensure Fair Exchange

To ensure fair data exchange, we regulate the allocation of deposits and rewards
by issuing DOcontract. It works as a fair intermediary to ensure that the pro-
cessing of exchanging money with data between an owner and a user is carried
out properly like a safe remote purchase between a seller and a buyer. To publish
the search token and collect the search results, we design the SHcontract. The
followings are the two smart contracts we proposed:

(1) DOcontract: Smart contract to exchange data with money
To guarantee that no one can cheat for money during the trading, we have the
following consideration. First, when data owners initialize the contract, they have
to transfer some deposit to the contract. Before each response, the data owner

254 M. He et al.

are required to pledge an amount of money from the funding of the contract.
Therefore, we define the contract state to control the procedure of contract
initialization. Specifically, when the DOcontract is sent to the blockchain, the
state is set to Created and will change after each operation. As long as the data
owner transfers the deposit, the contract state will be set to Active. The other
functions can be executed if and only if the contract is active. Also, similar idea
can be used to make sure they have pledge when response and the user has frozen
the rewards before sending file. We restrict the access control of each function to
guarantee that no one can cheat for money. The contract are designed to have
the following functions.

– Funding: The owner must pledge a certain amount of money as an initial
fund so that it can be used as deposit when answering search queries.

– Deposit: After sending response transactions, data owner pledges a certain
amount of fund so that if they fail to provide valid document after response,
the user who searches can get the deposit.

– Reward: This function allows the user to send the rewards to the contract.
The money is locked until user receives the document from data owner.

– Terminate: As long as the owner would like to terminate the contract and
there is no search work in process, he can activate the function to get back
the funding in the contract.

(2) SHcontract: Smart contract to maintain search results
This smart contract is deployed by the user to collect and maintain the search
results. SHcontract publishes the information about the query including search
token, rewards for each response and maximum response number.

Data owners that would like to answer the query can interact with the con-
tract by sending a response transaction. The function Response embedded in
this contract requires the validation proof as input involving:

– Proof information indicating the correctness of matching;
– Similarity hash of the document.
– Block number and transaction index that contain the hash record.

Sending transactions to call a function in smart contract will embed the input
arguments in the transaction. With this property, miners can easily extract and
verify the proof provided by the data owner and determine whether to include it
into block. And the SHcontract can receive and accept the response only when
the miners accept and include the transaction.

3.2 Method to Resist Double-Rewarding

As introduced before, in our model, malicious data owner can produce a set of
identical or similar documents to gain the rewards multiple times. We refer this
as double-rewarding attack. To deal with the problem above, we propose to use
duplication detection techniques in digital forensics called similarity-preserving
hash to identify identical and similar documents to decrease the probability

A New Privacy-Preserving Searching Model on Blockchain 255

of having double-rewarding attack. In our design, data owners are required to
include the similarity hash values in the response transaction. The miners who
want to include this transaction have the responsibility to do the verification
and then the SHcontract can receive and record the response after mining is
completed. During the verification, miners compare the distance between this
response with all the previous accepted responses. To generate and compare the
hash values, we use the TLSH algorithm [15]. TLSH uses the following 4 steps
to construct the digest.

– Process the input using a sliding window to populate an array of bucket
counts;

– Calculate the quartile points;
– Construct the digest header values based on the quartile points, the length

of the file and a checksum;
– Construct the digest body by generating a sequence of bit pairs, which depend

on each bucket’s value in relation to the quartile points.

4 Construction with SE

In this section, we show how to search on blockchain with a specific keyword
search scheme. We first highlight our design technique for this part.

Hiding Keyword Access Pattern: Recently, the problem of leakage-abuse
attack over searchable encryption has been widely investigated [5,11,21]. In [5],
Cash et al. presented a characterization of the leakage profiles of in-the-wild
searchable encryption products and SE schemes in the literature. In [11], Grubbs
et al. presented many ways of attacking a software framework named Mylar [19]
whose building blocks include a SE scheme protocol [18]. However, most of the
attacks only leverage implementation issues of Mylar and are not related to the
cryptographic protocols. In [21], the authors also mentioned that the leakage
abuse attack in [11] could not be extended to cover any application using the
underlying SE scheme and gave a deeper analysis to the MUSE (multi-user SE,
also known as MKSE) scheme, in particular for [18]. Their work showed that in
the case of MUSE, there is a new leakage problem named keyword access pattern
and can result in serious attack if some users can collude with the server. In their
following work [22], they proposed a secure and scalable MUSE scheme without
this leakage. However, their scheme is based on two non-colluding parties which
cannot be used in our setting. In our model, given that blockchain is a public
network which is transparent to any users, without a careful design, publishing
index ciphertext is likely to reveal such leakage so that attacks using keyword
access pattern leakage are easier to be conducted. It is essential to get rid of the
leakage of keyword access pattern. We thus require the data owner to update
the ciphertext of the keyword after response, with low computational overhead,
so that there will not be keyword access pattern leakage.

256 M. He et al.

Unforgeable Identity: Another innovative elements in our keyword matching
scheme is that, each data owner is linked with a secrete parameter x and publish
y = gx

2 as unforgeable identity. And x is involved in the index encryption proto-
col, y is included in the matching scheme. In this way, even if other user obtains
your proof information, they cannot make use of it to gain profit. Let us consider
the following case. Data owner A has a pre-knowledge about B’s database that
their data set have similar background. Then A can stay passive and observe B’s
responses. Upon B’s releasing a proof for response, A will copy it and answer
the query as well. Without our unforgeable identity x, y, the proof definitely
can match the query, and A has high possibility to gain rewards without search.

4.1 System Setup

(1) At the beginning of setup, Param(λ) is called to input the security parameter
and output system parameters.

Param(λ): Input the security parameter λ. Let G1, G2, GT be groups of prime
order p and e : G1×G2 → GT be a bilinear map. g1, g2, gT are the generators
of G1, G2 and GT respectively. Let H1 : {0, 1}∗ → G1 be a collision resistant
hash function. Let sp = (p,G1, G2, GT , g1, g2,H1) be the system parameters.

(2) User who wants to publish search queries calls SearchKey(sp) to generate a
pair of public key and secrete key pk, sk. Keep sk as a secret key and publish
pk.

SearchKey(sp): User chooses a random number α ∈ Z
∗
p and computes pk =

gα
2 . Keep sk = α−1 mod p as a secret key and publish pk.

(3) Data owner deploys a DOcontract and generates a secret parameter x ∈ Z
∗
p

and publish y = gx
2 as unforgeable identity which we mentioned before.

4.2 Add File

(1) Data owner parses document d into distinct keywords: {w1, · · · , wm}. For
each keyword, Data owner runs Enc(d,wi) and outputs (kd,wi

, cd,wi
).

Enc(d,wi):

(1) Data owner chooses a new key for his new files: kd ∈ Z
∗
p.

(2) Data owner chooses a random number t ∈ Z
∗
p, and computes r = gt

2.
(3) Data owner chooses a new key for wi: kd,wi

, and computes s = (kdkd,wi
−

xh)t−1 mod p, where h ∈ Z
∗
p is a random number.

(4) cd,wi
= (H1(wi)h,H1(wi)s, r).

(5) Output (kd,wi
, cd,wi

).

A New Privacy-Preserving Searching Model on Blockchain 257

(2) Data owner chooses new keys for his new files and if the file is authorized to
user u with public key pk, Data owner will compute Delta(d, pk, kd)=Δd,u.

Delta(d, pk, kd):

1) Data owner computes Δd,u = (pk)kd .
2) Output Δd,u.

(3) Finally, DO encrypts the document d using SKE(d) and outputs the cipher-
text.

SKE(d, kd):

(1) Encrypt d by computing Cd = d ⊕ f(ID(d), kd), where f is a pseudoran-
dom function, ID(d) is the identity of the document.

(2) Output Cd.

(4) Data owner publishes a transaction including the new hash value hash new =
SHA-1(hash old||Cd). hash old denotes the hash value of the data set before
uploading this document.

4.3 Keyword Search

(1) As long as the user u wants to search for a keyword w, he computes the
search token tkw = H1(w)sk. and setup a SHcontract to collect the response.
(2) Data owner follows Match(tkw, kd,wi

, cd,wi
) to checks the equality and gives

the output.

Match(tkw, kd,wi
, cd,wi

):

(1) Data owner parses cd,wi
into three parts as (u1, u2, u3).

(2) Check if e(u1, y)e(u2, u3) equals to e(tkw,Δ
kd,wi

d,u).
(3) If so, output ‘match’, if not, output ‘no’.

(4) Data owner sends a response transaction to the SHcontract with simi-
larity hash of this file and proof = (Δ

kd,wi

d,u , cd,wi
, BlockNum, Index), where

BlockNum and Index are the block number and transaction index that contains
the hash value when uploading. After posting the proof , Data owner updates
cd,wi

by running Enc(d,wi) with new parameters.
(5) Finally, Data owner is required to give deposit in the DOcontract.

258 M. He et al.

4.4 Response Verification

After the response transaction is sent into the mining pool, the miners can get
the proof and do verifications to determine whether to include it into his blocks.
(1) The response verification mainly consists of 3 steps:

– Check if e(tkw,Δ
kd,wi

d,u) = e(H1(wi)h, y)e(H1(wi)s, r).
– Analyze the hash value in transaction (using BlockNum and Index to locate)

to test if the new hash value is equal to SHA-1(hash old||Cd).
– Check the similarity with previous responses.

(2) If the transaction passes the verification, miners will include it into his block
so that the response is published on the blockchain and SHcontract will receive
the transaction.

4.5 File Retrieval and Decryption

(1) After receiving the response, the user will call Reward() function in DOcon-
tract to pledge the rewards, then the user computes C ′

d = Cd ⊕f(ID(d), sk)
and sends it to the data owner to decrypt.

(2) Data owner computes C ′′
d = C ′

d ⊕f(ID(d), kd) and sends it back to the user.
User can obtain the plaintext of d by C ′′

d ⊕ f(ID(d), sk) = d.
(3) As long as the deal is completed successfully, Data owner will get back the

deposit and rewards, otherwise, the user will resume the rewards and get
the deposit.

5 Security Analysis

We define the privacy of our keyword matching scheme using the simulation
paradigm in searchable encryption, following [6,7], that is based on the notion of
leakage. We first clarify the difference between keyword matching in our setting
and previous SE setting. In previous SE scheme, data owners outsource the
index and encrypted database onto a cloud server where the server is believed
to have the most knowledge over the protocol and encrypted dataset. However,
in our setting, there is no centralized server while all queries and responses are
published on the blockchain which is a globally visible ledger. The users in this
blockchain are supposed to be the ones who can obtain all the leakage and be
curious to the dataset of the data owners and queries of the other users. Also,
there is no “beginning leakage”, including the length of the index and the size
of the database compared to the previous SE scheme. All the leakage are query-
revealed. In order to characterize the leakage in our scheme, we give the following
definitions:

Definition 1. (Leakage function L) Given a search input w,
L={ap(w,D),sp(w), rl(w), tku(w), proof = (Δ

kd,wi

d,u , cd,wi
, BlockNum, Index),

A New Privacy-Preserving Searching Model on Blockchain 259

Cd}, where ap(w,D) denotes the access pattern, sp(w) denotes the search pat-
tern and rl(w) represents the number of documents matching each query. tku(w)
is the search token post by user u for keyword w, and proof is leaked in each
response, where d is the matched document.

Theorem 1. Our keyword match scheme has leakage profile L against the
adversary if there exits a polynomial-time simulator S, that for all polynomial-
time adversary A, the output of real execution and simulated execution are com-
putationally indistinguishable.

Due to the page limit, the formal proof is included in the AppendixA.

6 Experiments

While the construction of the previous sections gives an overview of our model
and approach, we have yet to describe how our techniques integrate with existing
blockchain platform. In this section, we show the evaluation results of our scheme
on the private net of Ethereum platform, which is known as an open-source
blockchain-based distributed computing platform and supports smart contract.
We set up the go-ethereum from https://github.com/ethereum/go-ethereum,
which is the official golang implementation of the Ethereum protocol. We built
private Ethereum chain on a single server node with Intel(R) Core(TM) i5-3570
CPU, using single core processor.

6.1 Ethereum Platform

The basic functions are provided by the Ethereum, such as creating an
account and sending transactions. Besides, it provides Ethereum Virtual Machine
(EVM), which is part of the block verification protocol and can run the func-
tions defined in the contracts. From the view point of developers, a contract has
a specific address on the Ethereum blockchain, where we can store the contract
code and data. Thus, we only need to send the Ethereum-specific binary format
code onto the chain. When doing practically Turing complete computation, we
can pass messages (contained in a transaction) to the contracts, which is exactly
what we need. To reach consensus, all nodes in Ethereum would go through the
transactions listed in the blocks and runs codes in the EVM. The Ethereum
protocol charges a fee per computational step that is executed in a contract or
transaction to prevent deliberate attacks and abuse on the Ethereum network.
Every transaction is required to include a gas limit and a fee that it is willing to
pay per gas. If the total amount of gas used by the computational steps spawned
by the transaction, including the original message and any sub-messages that
may be triggered, is less than or equal to the gas limit, then the transaction is
processed.

https://github.com/ethereum/go-ethereum

260 M. He et al.

6.2 Simulation Design

To measure the performance of our scheme, we deployed the DOcontract and
SHcontract and implemented the verification protocol including the process of
similarity comparison, hash checking and checking if the response matches the
query. Also, since the new response transactions require verification before being
mined into a block, we studied the impact of such kind of transactions on the
normal Ethereum network.

For the two smart contracts, the functions overview has been introduced in
Sect. 3.1. In this section, we address the specific challenges that we come up
when we deploy them in Ethereum. Due to page limitation, we will not show the
detailed pseudocode of DOcontract and SHcontract here.

As a matter of fact, in live Ethereum, the number of transactions a miner
decide to include into his block depends on many factors. For instance, each
miner will set a minimum gas unit before mining. Only transactions with gas
above this level will be accepted. To simplify the experiment and simulate our
protocol in the same standards, we assume that the miners all adopt greedy
algorithm and the transaction with higher transaction fee has priority. In other
words, they would mine a block that contains as many transactions as possible
and the transaction that offers higher gas fee would be firstly to be included in
a block.

In our experiment, the contracts are developed in Solidity language and the
verification is implemented with Go language. We use the “crypto” package of
golang and package “bn256” to implement the bilinear group.

6.3 Metrics

We test our protocols mainly according to the following criteria:

– Response transaction verification time is the average running time, over 1000
tests, required to verify a response transaction. Since the verification step is
set before the miners mine the transaction into blocks, if the verification is
not efficient, it will slow the miner down in comparison with mining normal
transactions. We will also include the time for every sub-step. (You can refer
the verification algorithm to Sect. 4.4 and one more step (i.e. check deposit)
introduced in the above simulation design.)

– Transaction waiting time in blockchain denotes the interval between a trans-
action’s creation and its inclusion in a block. It is an important measurement
when designing a blockchain application. We want to know that how much
influence our response transactions have on the average waiting time of all
types of transactions and on the average waiting time of current existing nor-
mal transactions. We simulate the relationship between the waiting time and
the instantaneous transactions number.

For different blockchain platforms, they have different block interval (i.e. the
time to generate a new block), e.g. 10 min for Bitcoin and 12 s for Ethereum.
Thus, we count the verification time by block numbers so that it is easier for
readers to assess our scheme across different platforms.

A New Privacy-Preserving Searching Model on Blockchain 261

6.4 Results

From Table 1, we can see that it takes about 50 ms to verify a response transac-
tion and most of time is spent on performing bilinear map computation. From
the websites that have the statistical performance of current live Ethereum (e.g.
ETH Gas Station2, Etherscan3, etherchain4), we can know that each block usu-
ally contains about 70 transactions. Thus, it would be about 0.35 s to verify these
transactions even all of them are our response transactions. We have known that,
the block interval for Ethereum is around 12 s and 10 min for Bitcoin, thus, the
verification time is negligible compared to the mining time.

Table 1. Verification time

Verification steps Sub-steps Time

Read Tx Get Tx from pending pool 361.206µs

Analyze data from Tx 11.987µs

Verification details Check Match 52.234123 ms

Check similarity (100 times) 6.4µs

Get Tx with new hash record 500.109µs

Extract new hash from Tx 58.483µs

Get Tx with old hash record 376.23µs

Extract old hash from Tx 300.333µs

Check file hash 350.162µs

Check deposit Check state in DOcontract 547.93µs

Total: 54.746963 ms

Table 2. Transaction input size

Transaction Size (Bytes) Estimated gas usage

Tx to deploy DOcontract 4825 735044

Tx to deploy SHcontract 1543 268391

Response Tx 970 120190

For the reason that the contracts implement lots of functions in our scheme
and require many parameters to ensure the protocol works fairly and correctly
from setup to completion, it can be inferred that the response transactions in our

2 https://ethgasstation.info/index.php.
3 https://etherscan.io/.
4 https://etherchain.org/.

https://ethgasstation.info/index.php
https://etherscan.io/
https://etherchain.org/

262 M. He et al.

Table 3. Running time of keyword search scheme

Algorithm Token Delta Enc ReToken Match

Time (ms) 2.2528 5.0599 9.8592 23.0500 31.0791

scheme are larger than the normal transfer transactions. To make it clearer, we
further investigate the contracts size, transaction size and gas usage in Ethereum.
The results are shown in Table 2.

The transactions to deploy smart contracts are one-time consuming so we
pay more attention to the response transactions, which need 4825 Bytes for
each one in Table 2. At the time of writing this paper, the average block size
in Ethereum is 16192 Bytes so the response transactions would occupy much
space in a block. Also, a normal transaction uses about 43000 units gas on
average but our response transaction costs about 120190 units gas. If comparing
to an ether transfer transaction, which costs only 21000 units gas, the gas usage
of our response transaction is about 6 times. However, from etherchain (See
footnote 4), we know that, the current gas limit for each block is about 6800000
units, thus it has enough resource for our application while one block would
contain less transactions and it takes longer waiting time when dealing with
our response transactions. We do the following experiments to evaluate how
much influence our response transactions have on the average waiting time of all
types of transactions and on the average waiting time of current existing normal
transactions.

Fig. 2. Number of transactions per second

The evaluation on waiting time is displayed in Fig. 3(a) and (b). From
Fig. 3(a), we can know that the average waiting time of all transactions increases
with the increase of the percentage of response transactions among all transac-
tions. Even there are 500 response transactions, the waiting time is no more than
6 blocks from Fig. 3(a). And from Fig. 3(b), we can see that the lines go up first
and drop later, of which the reason is that we adopt greedy algorithm for miners
and there are less normal transactions when the percentage is higher. In fact,
in live Ethereum, we can estimate that the peak value of transactions generated

A New Privacy-Preserving Searching Model on Blockchain 263

Fig. 3. Waiting time

within a block interval is about 100 to 200. From etherchain (See footnote 4),
the number of transactions generated per second since 01/01/2017 is plotted in
Fig. 2. It is clearly that, even the quantity increases rapidly, the average level
recently is about 7.4 transaction per second (88.8 per block interval). Under
this background, the two figures present quite good results, that is, the average
waiting time is about 2 to 3 blocks. In other words, our response transactions
can integrate well with the existing blockchain-base network.

Last but not least, we evaluate the running time of algorithms in the keyword
search scheme using go language. The results are summarized in Table 3. The
time is averaged over 1000 tests with randomly generated keywords. We can
conclude that the scheme has a modest overhead.

7 Conclusions

In this work, we propose and formulate a new model for privacy-preserving
searching on blockchains. We present a keyword search scheme for searching
over text data. We focus on single keyword search. It is desirable to extend our
scheme to handle multiple keyword search with boolean operators, approximate
matching for the keywords, and non-text files.

Acknowledgement. This project is partially supported by a RGC Project (CityU
C1008-16G) funded by the HK Government.

A Proof of Theorem1

Proof. The simulator S is given leakage L to simulate the view of the adver-
sary via imitating the real protocol. We generate the proof string proof ′ =
((Δ

kd,wi

d,u)′, (cd,wi
)′, BlockNum, Index) and (Cd)′ as follows:

1. Simulating (Δ
kd,wi

d,u)′: Given L, A choose a composite random key ks that

ks = ks1 · ks2 , and compute (Δ
kd,wi

d,u)′ = (Δ
kd,wi

d,u)ks .
2. Simulating (cd,wi

)′: For each keyword query wi, (cd,wi
)′ is consist of three

parts.

264 M. He et al.

– Simulating (H(wi)h)′: compute (H(wi)h)′ = (H(wi)h)ks .
– Simulating (H(wi)s)′: compute (H(wi)s)′ = (H(wi)s)ks1 .
– Simulating r′: compute r′ = rks2 .

3. Simulating (Cd)′, BlockNum′, Index′: Use the same value in the response
of real execution.

It follows by construction that response with proof ′ will also match the search
token tkw if proof does because:

e(tkw, (Δ
kd,wi

d,u)′) ?= e((H(wi)h)′, y)e((H(wi)s)′, r′)

Left = e(H(wi), (Δ
kd,wi

d,u)ks)

= e(H(wi), g2)kdkd,wi
ks

Right = e((H(wi)h)′, y)e((H(wi)s)′, r′)

= e(H(wi)hks , gx
2)e(H(wi)sks1 , g

tks2
2)

= e(H(wi), g2)xhks+stks1ks2

= e(H(wi), g2)(st+xh)ks

Therefore, Left = Right if proof matches tkw.
We now claim that no polynomial-size distinguisher can distinguish between

the distributions proof ′ and proof . Note that in the simulation above, Δ
kd,wi

d,u

and (Δ
kd,wi

d,u)′ as well as all the components in cd,wi
and (cd,wi

)′ can be regarded
as the problem to distinguish between gab and gabc. For example, c1 in cd,wi

equals to H(wi)h = gah
1 and c′

1 in (cd,wi
)′ equals to H(wi)hks = gahks

1 . Then, we
make the following Lemma 1.

Lemma 1. If gab and gabc are indistinguishable from random numbers in the
same groups respectively, then gab and gabc are indistinguished from each other.

Since gab and gabc are of the same structure, we only need to prove the
distinguishability of anyone of them. For contradiction, we assume that there is
a PPT adversary D that distinguishes gab and R

$←− G, then we show how to
construct a PPT reduction B that can use Exp to break the DDH assumption.
breaks DDH.
Experiment

– Given a (multiplicative) cyclic group G of order p, and with generator g.

– B receives (ga, gb, gab) and (ga, gb, R), R
$←− G. B passes gab and R to D.

– B guesses the same as D.

Finally, (Cd), BlockNum, Index and (Cd)′, BlockNum′, Index′ are identical,
therefore, no polynomial-size distinguisher can distinguish between the outputs
of real execution and simulated execution.

A New Privacy-Preserving Searching Model on Blockchain 265

References

1. Breitinger, F., Astebøl, K.P., Baier, H., Busch, C.: mvHash-B-A new approach
for similarity preserving hashing. In: 2013 Seventh International Conference on IT
Security Incident Management and it Forensics (IMF), pp. 33–44. IEEE (2013)

2. Breitinger, F., Baier, H.: Similarity preserving hashing: eligible properties and a
new algorithm mrsh-v2. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 167–182. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39891-9 11

3. Breitinger, F., Baier, H., Beckingham, J.: Security and implementation analysis of
the similarity digest sdhash. In: First International Baltic Conference on Network
Security & Forensics (nesefo) (2012)

4. Buterin, V.: Ethereum: a next-generation smart contract and decentralized applica-
tion platform (2014). https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-
White-Paper

5. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 668–679. ACM (2015)

6. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data struc-
tures and implementation. In: NDSS, vol. 14, pp. 23–26 (2014)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

8. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

9. Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
IACR Cryptology ePrint Archive, p. 460 (2015)

10. Goh, E.J., et al.: Secure indexes. IACR Cryptology ePrint Archive, p. 216 (2003)
11. Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov, V.: Breaking

web applications built on top of encrypted data. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1353–1364.
ACM (2016)

12. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous on-
blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 43–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53357-4 4

13. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 965–976. ACM (2012)

14. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
15. Oliver, J., Cheng, C., Chen, Y.: TLSH-a locality sensitive hash. In: 2013 Fourth

Cybercrime and Trustworthy Computing Workshop (CTC), pp. 7–13. IEEE (2013)
16. Oliver, J., Forman, S., Cheng, C.: Using randomization to attack similarity digests.

In: Batten, L., Li, G., Niu, W., Warren, M. (eds.) ATIS 2014. CCIS, vol. 490, pp.
199–210. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45670-
5 19

https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-642-39891-9_11
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-45670-5_19
https://doi.org/10.1007/978-3-662-45670-5_19

266 M. He et al.

17. Poon, J., Dryja, T.: The bitcoin lightning network (2015)
18. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. IACR Cryptology

ePrint Archive, p. 508 (2013)
19. Popa, R.A., et al.: Building web applications on top of encrypted data using Mylar.

In: NSDI, pp. 157–172 (2014)
20. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: 2000 IEEE Symposium on Security and Privacy, S&P 2000, Proceedings,
pp. 44–55. IEEE (2000)

21. Van Rompay, C., Molva, R., Önen, M.: A leakage-abuse attack against multi-user
searchable encryption. Proc. Priv. Enhancing Technol. 2017(3), 168–178 (2017)

22. Van Rompay, C., Molva, R., Önen, M.: Secure and scalable multi-user searchable
encryption (2018)

Storage Security and Information
Retrieval

ELSA: Efficient Long-Term Secure Storage
of Large Datasets

Matthias Geihs(B) and Johannes Buchmann

TU Darmstadt, Darmstadt, Germany
mgeihs@cdc.tu-darmstadt.de

Abstract. An increasing amount of information today is generated,
exchanged, and stored digitally. This also includes long-lived and highly
sensitive information (e.g., electronic health records, governmental doc-
uments) whose integrity and confidentiality must be protected over
decades or even centuries. While there is a vast amount of cryptography-
based data protection schemes, only few are designed for long-term pro-
tection. Recently, Braun et al. (AsiaCCS’17) proposed the first long-
term protection scheme that provides renewable integrity protection and
information-theoretic confidentiality protection. However, computation
and storage costs of their scheme increase significantly with the number
of stored data items. As a result, their scheme appears suitable only for
protecting databases with a small number of relatively large data items,
but unsuitable for databases that hold a large number of relatively small
data items (e.g., medical record databases).

In this work, we present a solution for efficient long-term integrity
and confidentiality protection of large datasets consisting of relatively
small data items. First, we construct a renewable vector commitment
scheme that is information-theoretically hiding under selective decom-
mitment. We then combine this scheme with renewable timestamps and
information-theoretically secure secret sharing. The resulting solution
requires only a single timestamp for protecting a dataset while the state
of the art requires a number of timestamps linear in the number of data
items. We implemented our solution and measured its performance in a
scenario where 12 000 data items are aggregated, stored, protected, and
verified over a time span of 100 years. Our measurements show that our
new solution completes this evaluation scenario an order of magnitude
faster than the state of the art.

1 Introduction

1.1 Motivation and Problem Statement

Today, huge amounts of information are generated, exchanged, and stored digi-
tally and these amounts will further grow in the future. Much of this data con-

This work has been co-funded by the DFG as part of project S6 within CRC 1119
CROSSING. This is the proceedings version as published at ICISC’18. An extended
version can be found at arXiv.org [8].

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 269–286, 2019.
https://doi.org/10.1007/978-3-030-12146-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_17

270 M. Geihs and J. Buchmann

tains sensitive information (e.g., electronic health records, governmental doc-
uments, enterprise documents) and requires protection of integrity and confi-
dentiality. Integrity protection means that illegitimate and accidental changes
of data can be discovered. Confidentiality protection means that only autho-
rized parties can access the data. Depending on the use case, protection may be
required for several decades or even centuries. Databases that require protection
are often complex and consist of a large number of relatively small data items
that require continuous confidentiality protection and whose integrity must be
verifiable independent from the other data items.

Today, integrity of digitally stored information is most commonly ensured
using digital signatures (e.g., RSA [21]) and confidentiality is ensured using
encryption (e.g., AES [19]). The commonly used schemes are secure under certain
computational assumptions. For example, they require that computing the prime
factors of a large integer is infeasible. However, as computing technology and
cryptanalysis advances over time, computational assumptions made today are
likely to break at some point in the future (e.g., RSA will become insecure once
quantum computers are available [24]). Consequently, computationally secure
cryptographic schemes have a limited lifetime and are insufficient to provide
long-term security.

Several approaches have been developed to mitigate long-term security risks.
Bayer et al. [1] proposed a technique for prolonging the validity of a digital sig-
nature by using digital timestamps. Based on their idea, a variety of long-term
integrity protection schemes have been developed. An overview of existing long-
term integrity schemes is given by Vigil et al. in [25]. In contrast to integrity
protection, confidentiality protection cannot be prolonged. There is no protection
against an adversary that stores ciphertexts today, waits until the encryption is
weakened, and then breaks the encryption and obtains the plaintexts. Thus, if
long-term confidentiality protection is required, then strong confidentiality pro-
tection must be applied from the start. A very strong form of protection can be
achieved by using information theoretically secure schemes, which are invulner-
able to computational attacks. For example, key exchange can be realized using
quantum key distribution [11], encryption can be realized using one-time pad
encryption [23], and data storage can be realized using proactive secret shar-
ing [14]. An overview of information theoretically secure solutions for long-term
confidentiality protection is given by Braun et al. [4].

Recently, Braun et al. proposed LINCOS [3], which is the first long-term
secure storage architecture that combines long-term integrity with long-term
confidentiality protection. While their system achieves high protection guaran-
tees, it is only designed for storing and protecting a single large data object,
but not databases that consist of a large number of small data items. One app-
roach to store and protect large databases with LINCOS is to run an instance
of LINCOS for each data item in parallel. However, with this construction the
amount of work scales linearly with the number of stored data items. Especially,
if the database consists of a large number of relatively small data items, this
introduces a large communication and computation overhead.

ELSA: Efficient Long-Term Secure Storage of Large Datasets 271

1.2 Contribution

In this paper we propose an efficient solution to storing and protecting large and
complex datasets over long periods of time. Concretely, we present the long-term
secure storage architecture ELSA that uses renewable vector commitments in
combination with renewable timestamps and proactive secret sharing to achieve
this.

Our first contribution (Sect. 3) is to construct an extractable-binding and
statistically hiding vector commitment scheme. Such a scheme allows for com-
mitting to a large number of data items by a single short commitment. The
extractable binding property of the scheme enables renewable integrity protec-
tion [6] while the statistical hiding property ensures information theoretic con-
fidentiality. Our construction is based on statistically hiding commitments and
hash trees [18]. We prove that our construction is extractable binding given that
the employed commitment scheme and hash function are extractable binding.
Furthermore, we prove that our construction is statistically hiding under selec-
tive opening, which guarantees that by opening the commitments to some of the
data items no information about unopened data items is leaked. The construc-
tion of extractable-binding and statistically hiding vector commitments may be
of independent interest, for example, in the context of zero knowledge protocols
[10].

Our second contribution (Sect. 4) is the construction of the long-term secure
storage architecture ELSA, which uses our new vector commitment scheme con-
struction to achieve efficient protection of large datasets. While protecting a
dataset with LINCOS requires the generation of a commitment and a timestamp
for each data item separately, ELSA requires only a single vector commitment
and a single timestamp to protect the same dataset. Hence, the number of times-
tamps is decreased from linear in the number of data items to constant and
this drastically reduces the communication and computation complexity of the
solution. Moreover, as the vector commitment scheme is hiding under selective
decommitment, the integrity of stored data items can still be verified individually
without revealing information about unopened data items. ELSA uses a sepa-
rate service for storing commitments and timestamps, which allows for renewing
the timestamp protection without access to the stored confidential data. The
decommitments are stored together with the data items at a set of shareholders
using proactive secret sharing. We show that the long-term integrity security of
ELSA can be reduced to the unforgeability security of the employed timestamp
schemes and the binding security of the employed commitment schemes within
their usage period. Long-term confidentiality security is based on the statistical
hiding security of the employed commitment and secret sharing schemes.

Finally, we experimentally demonstrate (Sect. 5) the performance improve-
ments achieved by ELSA in a scenario where 12 000 data items of size 10 kB
are aggregated, stored, protected, retrieved, and verified during a timespan of
100 years. For this, we implemented ELSA and the state of the art long-term
secure storage architecture LINCOS. Our measurements show that ELSA com-
pletes the evaluation scenario 17x faster than LINCOS and integrity protection

272 M. Geihs and J. Buchmann

consumes 101x less memory. In particular, protection renewal is significantly
faster with ELSA. Renewing the timestamps for approximately 12 000 data items
takes 21.89 min with LINCOS and only 0.34 s with ELSA. Furthermore, storage
of the timestamps and commitments consumes 1.75 GB of storage space with
LINCOS and only 17.27 MB with ELSA at the end of the experiment. These
improvements are achieved at slightly higher storage costs for the shareholders.
Each shareholder consumes 559 MB with LINCOS and 748 MB with ELSA. The
storage costs for integrity protection are independent of the size of the data
items. Storage, retrieval, and verification of a data item takes less than a second.
Overall, our evaluation shows that ELSA provides practical performance and
is suitable for storing and protecting large and complex databases that consist
of relatively small data items over long periods of time (e.g., health record or
governmental document databases).

1.3 Related Work

Our notion of vector commitments is reminiscent of the one proposed by Cata-
lano and Fiore [7]. However, they do not consider the hiding property and there-
fore do not analyze hiding under selective opening security. Also, they do not
consider extractable binding security. Hofheinz [15] studied the notion of selec-
tive decommitment and showed that schemes can be constructed that are sta-
tistically hiding under selective decommitment. However, they do not consider
constructions of vector commitments where a short commitment is given for a set
of messages. In [2], Bitansky et al. propose the construction of a SNARK from
extractable collision-resistant hash functions in combination with Merkle trees.
While their construction is similar to the extractable-binding vector commitment
scheme proposed in Sect. 3.2, our construction relies on a weaker property (i.e.,
extractable-binding hash functions) and our security analysis provides concrete
security estimates.

Weinert et al. [26] recently proposed a long-term integrity protection scheme
that also uses hash trees to reduce the number of timestamps. However, their
scheme does not support confidentiality protection, lacks a formal security anal-
ysis, and is less efficient than our construction. Only few work has been done
with respect to combining long-term integrity with long-term confidentiality pro-
tection. The first storage architecture providing these two properties and most
efficient to date is LINCOS [3]. Recently, another long-term secure storage archi-
tecture has been proposed by Geihs et al. [9] that provides access pattern hid-
ing security in addition to integrity and confidentiality. On a high level, this is
achieved by combining LINCOS with an information theoretically secure ORAM.
While access pattern hiding security is an interesting property in certain scenar-
ios where meta information about the stored data is known, it is achieved at the
cost of additional computation and communication and it is out of the scope of
this work.

ELSA: Efficient Long-Term Secure Storage of Large Datasets 273

2 Preliminaries

2.1 Notation

For a probabilistic algorithm A and input x, we write A(x) →r y to denote that
A on input x produces y using random coins r. For a vector V = (v1, . . . , vn),
n ∈ N, and set I ⊆ [n], define VI := (vi)i∈I , and for i ∈ [n], define Vi := vi. For
a pair of random variables (A,B), we define the statistical distance of A and B
as Δ(A,B) :=

∑
x |PrA(x) − PrB(x)|.

2.2 Cryptographic Primitives

We briefly introduce the cryptographic primitives that are used in this paper.
A more extensive description can be found in the full version [8].

Digital Signature Schemes. A digital signature scheme SIG is defined by a
message space M and algorithms Setup, Sign, and Verify. Algorithm Setup →
(sk, pk) for generating a secret signing key sk and a public verification key pk.
Algorithm Sign(sk,m) → s gets as input a secret key sk and a message m ∈ M
and outputs a signature s. Algorithm Verify(pk,m, s) → b gets as input a public
key pk, a message m, and a signature s, and outputs b = 1, if the signature is
valid, and 0, if it is invalid. A signature scheme is ε-unforgeable-secure if the
probability of a t-bounded adversary A forging a signature is bounded by ε(t).

Timestamp Schemes. A timestamp scheme [12] is a protocol between a client
and a timestamp service. The timestamp service initializes itself using algorithm
Setup. The client uses protocol Stamp to request a timestamp from the timestamp
service. Furthermore, there exists an algorithm Verify that allows anybody to
verify the validity of a message-timestamp-tuple. Here, we consider signature-
based timestamping, where the timestamp is a signature on the timestamped
document and the current time. In this case, the timestamp service generating
the signature must be trusted to use the correct time value.

Commitment Schemes. A (non-interactive) commitment scheme COM is
defined by a message space M and algorithms Setup, Commit, and Verify.
Algorithm Setup → pk generates a public commitment key pk. Algorithm
Commit(pk,m) → (c, d) gets as input a public key pk and a message m ∈ M and
outputs a commitment c and a decommitment d. Algorith Verify(pk,m, c, d) → b
gets as input a public key pk, a message m, a commitment c, and a decommit-
ment d, and outputs b = 1, if the decommitment is valid, and 0, if it is invalid.
A commitment scheme is considered secure if it is hiding (i.e., a commitment
does not leak information) and binding (i.e., the committer cannot change his
mind about the committed message). There exist different flavors of defining
binding security. Here, we are interested in extractable binding commitments as
this enables renewable and long-term secure commitments [6].

274 M. Geihs and J. Buchmann

Keyed Hash Functions. A keyed hash function is a tuple of algorithms (K,H)
where K is a probabilistic algorithm that generates a key k and H is a deter-
ministic algorithm that on input a key k and a message x ∈ {0, 1}∗ outputs a
short fixed length hash y ∈ {0, 1}l, for some l ∈ N. We say a keyed hash function
(K,F) is ε-extractable-binding if for any t1-bounded algorithm A1, there exists
a tE -bounded algorithm E , such that for any t2-bounded algorithm A2,

Pr
K→k

[
H(k, x) = H(k, x∗) ∧ x �= x∗ :

A1(k) →r y, E(k, r) → x∗,A2(k, r) → x

]

≤ ε(t1, tE , t2).

Secret Sharing Schemes. A proactive secret sharing scheme [14] is protocol
between a data owner and a set of shareholders. It has a protocol Setup for gen-
erating system parameters, a protocol Share for sharing a data object, a protocol
Reshare for refreshing the shares, and a protocol Reconstruct for reconstructing a
data object from a given set of shares. In this work, we consider threshold secret
sharing schemes, for which there exists a threshold parameter t (chosen by the
data owner) such that any set of t shareholders can reconstruct the secret, but
any set of less than t shareholders has no information about the secret.

3 Statistically Hiding and Extractable Binding Vector
Commitments

In this section, we define statistically hiding and extractable binding vector com-
mitments, describe a construction, and prove the construction secure. This con-
struction is the basis for our performance improvements that we achieve with
our new storage architecture presented in Sect. 4. The proofs of the presented
theorems can be found in the full version [8].

3.1 Definition

A vector commitment scheme allows to commit to a vector of messages
[m1, . . . ,mn]. It is extractable binding, if the message vector can be extracted
from the commitment and the state of the committer and it is hiding under
partial opening if an adversary cannot infer any valuable information about
unopened messages, even if some of the committed messages have been opened.
Our vector commitments are reminiscent of the vector commitments introduced
by Catalano and Fiore [7]. However, neither do they require their commitments
to be extractable binding nor do they consider their hiding property.

Definition 1 (Vector commitment scheme). A vector commitment scheme
is a tuple (L,M,Setup,Commit,Open,Verify), where L ∈ N is the maximum
vector length, M is the message space, and Setup, Commit, Open, and Verify are
algorithms with the following properties.

Setup() → k: This algorithm generates a public key k.

ELSA: Efficient Long-Term Secure Storage of Large Datasets 275

Commit(k, [m1, . . . ,mn]) → (c,D): On input key k and message vector
[m1, . . . ,mn] ∈ Mn, where n ∈ [L], this algorithm generates a commitment c
and a vector decommitment D.

Open(k,D, i) → d: On input key k, vector decommitment D, and index i, this
algorithm outputs a decommitment d for the i-th message corresponding to
D.

Verify(k,m, c, d, i) → b: On input key k, message m, commitment c, decom-
mitment d, and an index i, this algorithm outputs b = 1, if d is a valid
decommitment from position i of c to m, and otherwise outputs b = 0.

A vector commitment scheme is correct, if a decommitment produced by
Commit and Open will always verify for the corresponding commitment and
message.

Definition 2 (Correctness). A vector commitment scheme (L,M,Setup,
Commit,Open,Verify) is correct if for all n ∈ [L], M ∈ Mn, k ∈ Setup, i ∈ [n],

Pr
[

Verify(k,Mi, c, d) = 1 :
Commit(k,M) → (c,D),Open(k,D, i) → d

]

= 1.

A vector commitment scheme is statistically hiding under selective open-
ing, if the distribution of commitments and openings does not depend on the
unopened messages. For any public key k and message m, define Ck(m) as the
random variable that takes the value of c when sampling Commit(k,m) → (c, d).
A commitment scheme is ε-statistically-hiding if for any k ∈ Setup, any pair of
messages (m1,m2), Δ(Ck(m1), Ck(m2)) ≤ ε.

Definition 3 (Statistically hiding (under selective opening)). Let S =
(L,M,Setup,Commit,Open,Verify) be a vector commitment scheme. For n ∈
[L], I ⊆ [n], M ∈ Mn, k ∈ Setup, we denote by CDk(M, I) the random variable
(c, D̄I), where (c,D) ← Commit(k,M) and D̄ ← (Open(D, i))i∈[n]. Let ε ∈ [0, 1].
We say S is ε-statistically-hiding, if for all n ∈ N, I ⊆ [n], M1,M2 ∈ Mn with
(M1)I = (M2)I , k ∈ Setup,

Δ(CDk(M1, I),CDk(M2, I)) ≤ ε.

A vector commitment scheme is extractable binding, if for every efficient
committer, there exists an efficient extractor, such that for any efficient decom-
mitter, if the committer gives a commitment that can be opened by a decom-
mitter, then the extractor can already extract the corresponding messages from
the committer at the time of the commitment.

Definition 4 (Extractable binding). Let ε : N
3 → [0, 1]. We say a vec-

tor commitment scheme (L,M,Setup,Commit,Open,Verify) is ε-extractable-
binding, if for all t1-bounded algorithms A1, tE -bounded algorithms E, and t2-
bounded algorithms A2,

Pr

⎡

⎣
Verify(p,m, c, d, i) = 1 ∧ mi �= m :

Setup() → k,A1(k) →r c,
E(k, r) → [m1,m2, . . .],A2(k, r) → (m, c, d, i)

⎤

⎦ ≤ ε(t1, tE , t2).

276 M. Geihs and J. Buchmann

3.2 Construction: Extractable Binding

In the following, we show that the Merkle hash tree construction [18] can be
casted into a vector commitment scheme and that this construction is extractable
binding if the used hash function is extractable binding.

Construction 1. Let (K,H) denote a keyed hash function and let L ∈ N. The
following is a description of the hash tree scheme by Merkle cast into the defini-
tion of vector commitments.

Setup() → k: Run K → k and output k.
Commit(k, [m1, . . . ,mn]) → (c,D): Set l ← min{i ∈ N : n ≤ 2i}. For i ∈

{0, . . . , n−1}, compute H(k,mi) → hi,l, and for i ∈ {n, . . . , 2l−1}, set hi,l ←
⊥. For i ∈ {l−1, . . . , 0}, j ∈ {0, . . . , 2i−1}, compute H(k, [hi−1,2j , hi−1,2j+1]).
Compute H(k, [l, h0,0]) → c. Set D ← [hi,j]i∈{0,...,l},j∈{0,...,2i−1}, and output
(c,D).

Open(k,D, i∗) → d: Let D → [hi,j]i∈{0,...,l},j∈{0,...,2i−1}. Set al ← i∗. For j ∈
{l, . . . , 1}, set bj ← aj + 2(aj mod 2)− 1, gj ← hj,bj , and aj−1 ←
aj/2�. Set
d = [g1, . . . , gl] and output d.

Verify(k,m, c, d, i∗) → b∗: Let d = [g1, . . . , gl]. Set al ← i∗ and compute
H(k,m) → hl. For i ∈ {l, . . . , 1}, if ai mod 2 = 0, set bi ← [hi, gi], and
if ai mod 2 = 1, set bi ← [gi, hi], and then compute H(k, bi) → hi−1 and set
ai−1 ←
ai/2�. Compute H(k, [l, h0]) → c′. Set b∗ ← (c = c′). Output b∗.

Theorem 1. The vector commitment scheme described in Construction 1 is cor-
rect.

Theorem 2. Let (K,H) be an ε-extractable-binding hash function. The vector
commitment scheme described in Construction 1 instantiated with (K,H) is ε′-
extractable-binding with ε′(t1, tE , t2) = 2L ∗ ε(t1 + tE/L, tE/L, t2).

3.3 Construction: Extractable Binding and Statistically Hiding

We now combine a statistically hiding and extractable binding commitment
scheme with the vector commitment scheme from Construction 1 to obtain a
statistically hiding (under selective opening) and extractable binding vector com-
mitment scheme. The idea is to first commit with the statistically hiding scheme
to each message separately and then produce a vector commitment to these
individually generated commitments.

Construction 2. Let COM be a commitment scheme and VC be a vector com-
mitment scheme.

Setup() → k: Run COM.Setup() → k1, VC.Setup() → k2, set k ← (k1, k2), and
output k.

Commit(k, [m1, . . . ,mn]) → (c,D): Let k → (k1, k2). For i ∈ {1, . . . , n}, com-
pute COM.Commit(k1,mi) → (ci, di). Then compute
VC.Commit(k2, [c1, . . . , cn]) → (c,D′), set D ← ([(c1, d1), . . . , (cn, dn)],D′),
and output (c,D).

ELSA: Efficient Long-Term Secure Storage of Large Datasets 277

Open(k,D, i) → d: Let k → (k1, k2) and D → ([(c1, d1), . . . , (cn, dn)],D′). Com-
pute VC.Open(k2,D′, i) → d′, set d ← (ci, di, d′), and output d.

Verify(k,m, c, d, i) → b: Let k → (k1, k2) and d → (c′, d′, d′′). Compute
COM.Verify(k1,m, c′, d′) → b1 and then compute VC.Verify(k2, c′, c, d′′, i) →
b2, set b ← (b1 ∧ b2), and output b.

Theorem 3. The vector commitment scheme described in Construction 2 is cor-
rect if COM and VC are correct.

Theorem 4. The vector commitment scheme described in Construction 2 is Lε-
statistically-hiding (under selective opening) if the commitment scheme COM is
ε-statistically-hiding.

Theorem 5. If COM and VC of Construction 2 are ε-extractable-binding,
Construction 2 is an ε′-extractable-binding vector commitment scheme with
ε′(t1, tE , t2) = L ∗ ε(t1 + tE/L, tE/L, t2).

4 ELSA: Efficient Long-Term Secure Storage Architecture

Now we present ELSA, a long-term secure storage architecture that efficiently
protects large datasets. It provides long-term integrity and long-term confi-
dentiality protection of the stored data. ELSA uses statistically-hiding and
extractable-binding vector commitments (as described in Sect. 3) in combination
with timestamps to achieve renewable and privacy preserving integrity protec-
tion. The confidential data is stored using proactive secret sharing to guaran-
tee confidentiality protection secure against computational attacks. The data
owner communicates with two subsystems (Fig. 1), where one is responsible for
data storage with confidentiality protection and the other one is responsible for
integrity protection. The evidence service is responsible for integrity protection
updates and the secret share holders are responsible for storing the data and
maintaining confidentiality protection. The evidence service also communicates
with a timestamp service that is used in the process of evidence generation.

Data owner ShareholdersEvidence
Service

Timestamp
Service

Secret Shares
Commitments,

Timestamps

Fig. 1. Overview of the components of ELSA.

278 M. Geihs and J. Buchmann

4.1 Construction

We now describe the storage architecture ELSA in terms of the algorithms Init,
Store, RenewTs, RenewCom, RenewShares, and Verify. Algorithm Init initializes
the architecture, Store allows to store new files, RenewTs renews the protection
if the timestamp scheme security is weakened, RenewCom renews the protection
if the commitment scheme security is weakened, RenewShares renews the shares
to protect against a mobile adversary who collects multiple shares over time,
and Verify verifies the integrity of a retrieved file.

We use the following notation. When we write SH.Store(name, dat) we mean
that the data owner shares the data dat among the shareholders using protocol
SHARE.Share associated with identifier name. If the shared data dat is larger
then the size of the message space of the secret sharing scheme, dat is first split
into chunks that fit into the message space and then the chunks are shared
individually. Each shareholder maintains a database that describes which shares
belong to which data item name. When we write SH.Retrieve(name), we mean
that the data owner retrieves the shares associated identifier name from the
shareholders and reconstructs the data using protocol SHARE.Reconstruct.

Initialization. The data owner uses algorithm ELSA.Init to initialize the storage
system. The algorithm gets as input a proactive secret sharing scheme SHARE,
a set of shareholder addresses (shURLi)i∈[N], a sharing threshold T , and an
evidence service address esURL. It then initializes the storage module SH by
running protocol SHARE.Setup and the evidence service module ES by setting
ES.evidence as an empty table and ES.renewLists as an empty list.

Data Storage. The client uses algorithm ELSA.Store (Algorithm 1) to store a
set of data files [filei]i∈[n], which works as follows. First a signature scheme SIG,
a vector commitment scheme VC, and a timestamp scheme TS are chosen. Here,
we assume that SIG is supplied with the secret key necessary for signature gener-
ation and VC is supplied with the public parameters necessary for commitment
generation. The algorithm first signs each of the data objects individually. It then
stores the file data, the public key certificate of the signature scheme instance,
and the generated signature at the secret sharing storage system. Afterwards,
the algorithm generates a vector commitment (c,D) to the file data vector and
the signatures. For each file, the corresponding decommitment is extracted and
stored at the shareholders. The file names filenames, the commitment scheme
instance VC, the commitment c, and the chosen timestamp scheme instance TS
are sent to the evidence service.

When the evidence service receives (filenames,VC, c,TS), it does the fol-
lowing in algorithm AddCom (Algorithm 2). It first timestamps the commitment
(VC, c) and thereby obtains a timestamp ts. Then, it starts a new evidence list
l = [(VC, c,TS, ts)] and assigns this list with all the file names in filenames.
Also, it adds l to the list renewLists, which contains the lists that are updated
on a timestamp renewal.

ELSA: Efficient Long-Term Secure Storage of Large Datasets 279

Algorithm 1. ELSA.Store([filei]i∈[n],SIG,VC,TS)

filenames ← {};
for i ∈ [n] do

SIG.Sign(filei.dat) → si;
SH.Store([’data’, filei.name], [filei.dat, SIG.Cert, si]);
filenames += filei.name;

VC.Commit([filei.dat, SIG.Cert, si]i∈[n]) → (c,D);
for i ∈ [n] do

VC.Open(D, i) → d;
SH.Store([’decom’, filei.name, i], d);

ES.AddCom(filenames,VC, c,TS);

Algorithm 2. ES.AddCom(filenames,VC, c,TS)
TS.Stamp((VC, c)) → ts;
l ← [(VC, c,TS, ts)];
for name ∈ filenames do

evidence[name] ← l;
renewLists += l;

Timestamp Renewal. Algorithm ES.RenewTs (Algorithm 3) is performed by
the evidence service regularly in order to protect against the weakening of the
currently used timestamp scheme. The algorithm gets as input a vector commit-
ment scheme instance VC′ and a timestamp scheme instance TS. It first creates
a vector commitment (c′,D′) for the list of renewal items renewLists. Here, we
only require the extractable-binding property of VC′, while the hiding property
is not required as all of the data stored at the evidence service is independent
of the secret data due to the use of unconditionally hiding commitments by the
data owner. For each updated list item i, the freshly generated timestamp, com-
mitment, and extracted decommitment are added to the corresponding evidence
list renewLists[i].

Algorithm 3. ES.RenewTs(VC′,TS)
VC′.Commit(renewLists) → (c′, D′);
TS.Stamp((VC′, c′)) → ts;
for i ∈ [|renewLists|] do

VC′.Open(D′, i) → d′;
renewLists[i] += (VC′, c′, d′,TS, ts);

280 M. Geihs and J. Buchmann

Commitment Renewal. The data owner runs algorithm ELSA.RenewCom
(Algorithm 4) to protect against a weakening of the currently used commitment
scheme. It chooses a new commitment scheme instance VC and a new times-
tamp scheme instance TS and proceeds as follows. First the table of evidence
lists ES.evidence are retrieved from the evidence service and complemented
with the decommitment values stored at the shareholders. Next, a list with
the data items, the signatures, and the current evidence for each data item is
constructed. This list is then committed using the vector commitment scheme
VC. The decommitments are extracted and stored at the shareholders, and the
commitment is added to the evidence at the evidence service using algorithm
ES.AddComRenew.

Algorithm 4. ELSA.RenewCom(VC,TS)
comIndices ← {}; comCount ← {}; L ← [];
for name ∈ ES.evidence do

SH.Retrieve([’data’, name]) → (dat, SIG, s);
ES.evidence[name] → e;
for i ∈ |e| do

if ei.VC �= ⊥ then
SH.Retrieve([’decom’, name, i]) → ei.d;

L += (dat, SIG, s, e);
comIndices[name] ← |L|;
comCount[name] ← |e|;

VC.Commit(L) → (c,D);
for name ∈ ES.evidence do

VC.Open(D, comIndices[name]) → d;
SH.Store([’decom’, name, comCount[name]], d);

ES.AddComRenew(VC, c,TS);

Algorithm 5. ES.AddComRenew(VC, c,TS)
TS.Stamp((VC, c)) → ts;
l ← [(VC, c,TS, ts)];
renewLists ← [l];
for name ∈ evidence do

evidence[name] += l;

Secret Share Renewal. There are two types of share renewal supported by
ELSA. The first type (ELSA.RenewShares()) triggers the share renewal protocol

ELSA: Efficient Long-Term Secure Storage of Large Datasets 281

of the secret sharing system (i.e., the protocol SHARE.Reshare). This interac-
tive protocol refreshes the shares at the shareholders so that old shares, which
may have leaked already, cannot be combined with the new shares, which are
obtained after the protocol has finished, to reconstruct the stored data. The sec-
ond type (Algorithm6) replaces the proactive sharing scheme entirely. This may
be necessary if the scheme has additional security properties like verifiability
(see proactive verifiable secret sharing [14]), whose security may be weakened.
In this case, the data is retrieved, shared to the new shareholders, and finally
the old shareholders are shutdown.

Algorithm 6. ELSA.RenewSharing(SHARE, (shURLi)i∈[N], T)

SH′.Init(SHARE, (shURLi)i∈[N], T);
I ← ES.itemInfos;
for name ∈ I do

SH.Retrieve(’data/’ + name) → dat;
SH′.Store(’data/’ + name, dat);

SH.Shutdown();
SH ← SH′;

Data Retrieval. The algorithm ELSA.Retrieve (Algorithm 7) describes the data
retrieval procedure of ELSA. It gets as input the name of the data file that
is to be retrieved. It then collects the evidence from the evidence service and
the data from the shareholders. Next, the evidence is complemented with the
decommitments and then the algorithm outputs the data with the corresponding
evidence.

Algorithm 7. ELSA.Retrieve(name)
e ← ES.evidence[name];
for i ∈ [|e|] do

if ei.VC �= ⊥ then
SH.Retrieve([’decom’, name, i]) → ei.d;

SH.Retrieve([’data’, name]) → (dat, SIG, s);
E ← (SIG, s, e);
return (dat, E);

Verification. Algorithm ELSA.Verify (Algorithm 8) describes how a verifier can
check the integrity of a data item using the evidence produced by ELSA. Here

282 M. Geihs and J. Buchmann

we denote by NTT(i, e, tverify) the time of the next timestamp after entry i of
e and by NCT(i, e, tverify) the time of the timestamp corresponding to the next
commitment after entry i, and we set NTT(i, e, tverify) = tverify if i is the last
timestamp and NCT(i, e, tverify) = tverify if i is the last commitment in e. The
algorithm gets as input a reference to the considered PKI (e.g., a trust anchor),
the current verification time tverify, the data to be checked dat, the storage time
tstore, and the corresponding evidence E = (SIG, s, e). The algorithm returns
true, if dat is authentic and has been stored at time tstore.

In more detail, the verification algorithm works as follows. It first checks
whether the signature s is valid for the data object dat under signature scheme
instance SIG at the time of the first timestamp of the evidence list e. It also checks
whether the corresponding commitment is valid for (dat,SIG, s) at the time of
the next commitment and the timestamp is valid at the next timestamp. Then,
for each of the remaining |e| − 1 entries of e, the algorithm checks whether the
corresponding timestamp is valid at the time of the next timestamp and whether
the corresponding commitments are valid at the time of the next commitments.
The algorithm outputs 1 if all checks return valid, and it outputs 0 in any other
case.

Algorithm 8. ELSA.Verify(PKI, tverify : dat, tstore, E) → b

(SIG, s, e) ← E;
((VC, c, d), (VC′, c′, d′), (TS, ts)) ← e1;

tnt ← NTT(1, e, tverify); tnc ← NCT(1, e, tverify);
b ← SIG.Verify(PKI, ts.t : dat, s);
b ∧= VC.Verify(PKI, tnc : (dat, SIG, s), c, d);
b ∧= TS.Verify(PKI, tnt : c, ts, tstore);
L ← (VC, c,TS, ts);

for i ∈ [2, . . . , |e|] do
((VC, c, d), (VC′, c′, d′), (TS, ts)) ← ei;
tnt ← NTT(i, e, tverify); tnc ← NCT(i, e, tverify);
if VC = ⊥ then

b ∧= VC′.Verify(PKI, tnt : L, c′, d′);
b ∧= TS.Verify(PKI, tnt : c′, ts, ts.t);
L += (VC′, c′, d′,TS, ts);

else
dat′ ← (dat, Cert, s, e[1, i − 1]);
b ∧= VC.Verify(PKI, tnc : dat′, c, d);
b ∧= TS.Verify(PKI, tnt : c, ts, ts.t);
L ← (VC, c,TS, ts);

return b;

ELSA: Efficient Long-Term Secure Storage of Large Datasets 283

4.2 Security Analysis

The security analysis can be found in the full version [8].

5 Performance Evaluation

We compare the performance of our new architecture ELSA with the performance
of the storage architecture LINCOS [3], which is the fastest existing storage archi-
tecture that provides long-term integrity and long-term confidentiality.

5.1 Evaluation Scenario

For our evaluation we consider a scenario inspired by the task of securely storing
electronic health records in a medium sized doctor’s office. The storage time
frame is 100 years. Every month, 10 new data items of size 10 kB (e.g., prescrip-
tion data of patients) are added. Every year, one document from each of the
previous years is retrieved and verified (e.g., historic prescription data is read
from the archives).

We assume the following renewal schedule for protecting the evidence against
the weakening of cryptographic primitives. The signatures are renewed every 2
years, as this is a typical lifetime of a public key certificate, which is needed
to verify the signatures. While signature scheme instances can only be secure
as long as the corresponding private signing key is not leaked to an adversary,
commitment scheme instances do not involve the usage of any secret parameters.
Therefore, their security is not threatened by key leakage and we assume that
they only need to be renewed every 10 years in order to adjust the cryptographic
parameter sizes or to choose a new and more secure scheme. Secret shares are
renewed every 5 years, which we believe could be a typical shareholder life cycle.

In our architecture we instantiate the cryptographic schemes as follows. As
signature scheme, we first use the RSA Signature Scheme [21] and then switch to
the post-quantum secure XMSS signature scheme [5] by 2030, as we anticipate
the development of large-scale quantum computers. As the vector commitment
scheme we use Construction 2 with the statistically hiding commitment scheme
by Halevi and Micali [13] whose security is based on the security of the used
hash function which we instantiate with members of the SHA-2 hash function
family [20]. If we model the hash functions as random oracles, they provide the
necessary extractable-binding property. We adjust the signature and commit-
ment scheme parameters over time as proposed by Lenstra and Verheul [16,17].
The resulting parameter sets are shown in Table 1. For the storage system, we use
the secret sharing scheme by Shamir [22]. We run this scheme with 4 sharehold-
ers and a threshold of 3 shareholders are required for reconstruction. Resharing
is carried out centrally by the data owner.

284 M. Geihs and J. Buchmann

Table 1. Overview of the used commitment and signature scheme instances and their
usage period.

Years Signatures Commitments

2018–2030 RSA-2048 HM-256

2031–2090 XMSS-256 HM-256

2091–2118 XMSS-512 HM-512

Fig. 2. Running time of the experiment and storage space consumption of the evidence
service and per shareholder.

5.2 Results

We now present the results of our performance analysis. Figure 2 compares the
computation time and storage costs of the two systems, ELSA and LINCOS. Our
implementation was done using the programming language Java. The experi-
ments were performed on a computer with a quad-core AMD Opteron CPU
running at 2.3 GHz and the Java virtual machine was assigned 32 GB of RAM.

We observe that ELSA is much more computationally efficient compared to
LINCOS. Completing the experiment using LINCOS took approximately 6.81 h,
while it took only 24 min using ELSA. The biggest difference in the timings
is observed when renewing timestamps. Timestamp renewal with LINCOS for
year 2116 takes 21.89 min, while it takes only 0.34s with ELSA. Data storage
performance is also considerably faster with ELSA than with LINCOS. The same

ELSA: Efficient Long-Term Secure Storage of Large Datasets 285

holds for the commitment renewal procedure. Data retrieval and verification
performance is similar for the two systems.

Next, we observe that ELSA is also more efficient compared to LINCOS
when it comes to the consumed storage space at the evidence service. This is,
again, because ELSA requires fewer timestamps to be generated and stored than
LINCOS. After running for 100 years, the evidence service of ELSA consumes
only 17.27 MB while the evidence service of LINCOS consumes 1.75 GB of stor-
age space. We observe by Fig. 2 that ELSA consumes slightly more storage space
at the shareholders than LINCOS. This is because additional decommitment
information for the vector commitments must be stored. After running for 100
years, a shareholder of ELSA consumes about 748 MB while a shareholder of
LINCOS consumes about 559 MB of storage space.

References

1. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II: Methods in Communication, Security, and Computer Science, pp. 329–334.
Springer, New York (1993). https://doi.org/10.1007/978-1-4613-9323-8 24

2. Bitansky, N., et al.: The hunting of the snark. J. Cryptol. 30(4), 989–1066 (2017).
https://doi.org/10.1007/s00145-016-9241-9

3. Braun, J., et al.: Lincos: a storage system providing long-term integrity, authen-
ticity, and confidentiality. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ASIA CCS 2017, pp. 461–468. ACM,
New York (2017)

4. Braun, J., Buchmann, J., Mullan, C., Wiesmaier, A.: Long term confidentiality: a
survey. Des. Codes Cryptogr. 71(3), 459–478 (2014)

5. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

6. Buldas, A., Geihs, M., Buchmann, J.: Long-term secure commitments via
extractable-binding commitments. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017.
LNCS, vol. 10342, pp. 65–81. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-60055-0 4

7. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

8. Geihs, M., Buchmann, J.: Elsa: Efficient long-term secure storage of large datasets
(full version). arXiv:1810.11888 (2018)

9. Geihs, M., Karvelas, N., Katzenbeisser, S., Buchmann, J.: Propyla: privacy preserv-
ing long-term secure storage. In: Proceedings of the 6th International Workshop
on Security in Cloud Computing, SCC 2018, pp. 39–48. ACM, New York (2018).
https://doi.org/10.1145/3201595.3201599

10. Gennaro, R., Micali, S.: Independent zero-knowledge sets. In: Bugliesi, M., Pre-
neel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 34–45.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 4

https://doi.org/10.1007/978-1-4613-9323-8_24
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-319-60055-0_4
https://doi.org/10.1007/978-3-319-60055-0_4
https://doi.org/10.1007/978-3-642-36362-7_5
http://arxiv.org/abs/1810.11888
https://doi.org/10.1145/3201595.3201599
https://doi.org/10.1007/11787006_4

286 M. Geihs and J. Buchmann

11. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod.
Phys. 74, 145–195 (2002)

12. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991). https://doi.org/10.1007/BF00196791

13. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 16

14. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

15. Hofheinz, D.: Possibility and impossibility results for selective decommitments. J.
Cryptol. 24(3), 470–516 (2011). https://doi.org/10.1007/s00145-010-9066-x

16. Lenstra, A.K.: Key lengths. In: The Handbook of Information Security. Wiley,
Hoboken (2004)

17. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4),
255–293 (2001)

18. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

19. National Institute of Standards and Technology: FIPS 197: Announcing the
advanced encryption standard (AES) (2001)

20. National Institute of Standards and Technology: FIPS PUB 180–4: Secure hash
standard (SHS) (2015)

21. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
23. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),

656–715 (1949)
24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

25. Vigil, M.A.G., Buchmann, J.A., Cabarcas, D., Weinert, C., Wiesmaier, A.:
Integrity, authenticity, non-repudiation, and proof of existence for long-term archiv-
ing: a survey. Comput. Secur. 50, 16–32 (2015)

26. Weinert, C., Demirel, D., Vigil, M., Geihs, M., Buchmann, J.: Mops: a modular
protection scheme for long-term storage. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS 2017, pp. 436–
448. ACM, New York (2017)

https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/s00145-010-9066-x
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1137/S0097539795293172

How to Block the Malicious Access
to Android External Storage

Sisi Yuan1,2,3, Yuewu Wang2,3, Pingjian Wang2,3(B), Lingguang Lei2,3,
Quan Zhou2,3, and Jun Li4

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 Institute of Information Engineering, CAS, Beijing, China
wangpingjian@iie.ac.cn

3 Data Assurance and Communication Security Research Center, CAS,
Beijing, China

4 Zhongxing Telecommunication Equipment Corporation, Shenzhen, China

Abstract. External storage (e.g., SD card) is an important component
of the Android mobile terminals, commonly used for storing of the user
information (including sensitive data such as photos). However, current
protection mechanisms (e.g., the permission mechanism) on the exter-
nal storage are somehow coarse-grained, where the external storage is
controlled as a whole, which means all files on the external storage are
accessible once the permission is assigned to an APP. This coarse-grained
control weakness could be easily leveraged by the attackers. For exam-
ple, the ransomware can obtain the access permission of the external
storage and encrypt the files on external storage stealthily for ransom.
In this paper, we introduce an Access Control List (ACL) mechanism
to enforce the fine-grained control on the external storage. With ACL,
the access control policy can be defined at the file granularity, and the
access permissions will only be granted to legitimate APPs specified in a
white list. First, we activate the Linux ACL mechanism on Android sys-
tem and extend it to the Filesystem in Userspace (FUSE). Because the
external storage is built on the FUSE filesystem, which is different from
the traditional Linux filesystems (e.g., EXT4) and thus not supported
by the traditional Linux ACL mechanism. Second, we introduce ACL-
policy configuration interface in the Android framework, which enables
the device owner and APP developers to set the fine-grained ACL access
policies for their files on the external storage. Finally, we implement
a prototype based on the Nexus 6 devices deployed Android 6.0.1 and
Linux kernel 3.10.4, and evaluate it on the stability, effectiveness and
performance. The results show our prototype system can effectively pre-
vent illegal access to the files on the external storage with negligible
performance overhead. As far as we know, this is the first work that can
really enforce ACL access control on the external storage of Android.

Keywords: Access Control List · Android access control ·
External storage · Ransomware

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 287–303, 2019.
https://doi.org/10.1007/978-3-030-12146-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_18

288 S. Yuan et al.

1 Introduction

External storage is indispensable in Android system. Data communications
between Android and PC system are mainly via external storage. Furthermore,
external storage is a cheap way to extend Android storage. Even today, APP
developers are still willing to store large data on external storage and share those
data with others.

However, Android security mechanism towards external storage is inade-
quate. Based on Linux kernel, Android inherits some features of the Linux
architecture and mainly utilizes Linux discretionary access control (DAC) named
user/group/other (UGO) to protect external storage. UGO enforces access con-
trol policies according to APP’s Linux user ID (UID) and Linux group IDs
(GIDs). Each APP will be assigned a unique Linux UID at install-time, and
granted some Linux GIDs consistent with the permissions it requested. For exter-
nal storage access, this kind of mechanism is rather coarse-grained. Device owner
can only determine whether an APP could read or write all the files on exter-
nal storage, while the range of accessible files is uncontrollable. SEAndroid is
another important Android security mechanism, but this mandatory access con-
trol (MAC) mechanism cannot work well on external storage protection, because
the policies of external storage access need to be changed frequently.

The lack of effectiveness protection on external storage makes it easy to
become an object of attacks. In recent years, external storage has become one of
ransomware’s major targets. Since external storage is accessible after obtaining
certain permissions, ransomware may encrypt all the files on external storage
stealthily for ransom. This attack mode has been adopted by many ransomware
such as Simplocker family [17] and DoubleLocker [8]. Moreover, malware may
analyze the data on external storage, such as geographic information of photos,
then user’s sensitive information may be exposed [24].

If we can restrict the access to the files on external storage at the file-level,
we can block the malicious access effectively while sharing files as we want.
Linux ACL is such a mechanism that can support fine-grained access control
policies on file access. It is hooked in the path of permission check after UGO
mechanism, and cannot be bypassed by userspace code. For each file, the ACL
can set different access permissions for different UIDs. The policies of ACL is
richer than that of UGO, and more fine-grained access may be enforced by it.
In addition, because every APP has a unique UID, ACL mechanism is suitable
for Android.

Unfortunately, it is not simple to implement ACL access control on current
Android external storage. Firstly, starting with Android 4.4, FUSE filesystem is
adopted to realize access control for external storage. Unlike traditional Linux
filesystems, FUSE does not support ACL well. Secondly, there are two types of
external storage filesystem format in Android, that is, the built-in SD card is
EXT4 format and the removable SD card is mostly VFAT format. VFAT format
does not support ACL at all. Thirdly, we have to make the policies of ACL only
be modified by the specific subject.

How to Block the Malicious Access to Android External Storage 289

In this paper, we overcome foregoing difficulties and present a complete solu-
tion to enforce ACL access control on Android external storage. We first acti-
vate the ACL mechanism in Android Linux kernel. Then, the ACL mechanism
is extended to FUSE filesystem through introducing ACL features into sdcard
daemon that in charge of FUSE based external storage access control. We also
add hooks into VFAT filesystem to make it support ACL features. Finally, ACL-
policy configuration interface is implemented to enable device owner and APP
developers to set ACL policies of their files on external storage. The interface
can effectively prevent ACL-policy tampering.

In summary, we make following contributions in this paper.

– We presented an ACL access control mechanism for Android external storage.
Although ACL mechanism has been introduced into Linux kernel success-
fully to enforce fine-grained access control on system file, the FUSE used by
Android external storage management does not support the ACL mechanism
well. Our solution is the first work that implements the extension of ACL to
FUSE based Android external storage. With the ACL mechanism, we can set
fine-grained policies for every APP to block the potential malicious access to
these files on external storage.

– We design and implement the ACL-policy configuration interface compatible
with Android permission mechanism. The interface allows device owner and
APP developers to create customizable ACL policies. For device owner, a
system-level APP is provided, by using which the owner can modify the ACL
policies. For APP developers, a set of APIs is provided to customize the ACL
policies of files created by the APP. Android permission mechanism is used
to assure that only authorized policies configuration operations are allowed.

– We develop a prototype system based on Nexus 6 devices with Android 6.0.1,
and Linux kernel 3.10.4 to evaluate the effectiveness and efficiency. Exper-
imental results demonstrate that our work may work well with negligible
performance overhead.

The rest of paper is organized as follows. Section 2 describes the related back-
ground knowledge. Section 3 shows the design of our system. Section 4 introduces
how we implement our prototype in detail. Section 5 presents the evaluation of
our prototype system. Section 6 shows related work. In Sect. 7, we summarize
our work.

2 Background

2.1 Access Control List

Access control list (ACL) is a kind of access control mechanism adopted by
many systems. Linux has implemented complete ACL package [2]. Compared
with Linux default filesystem access control mechanism-UGO, ACL can pro-
vide an additional and more flexible permission mechanism. UGO access control
mechanism just uses 9 bits to represent subject’s (that is, owner, group and

290 S. Yuan et al.

others) permissions towards a certain file. Take rwxrw-r– for example, the file
owner can read, write and execute it, the group that the file belongs to can read
and write it, and others can only read it. UGO is more or less coarse-grained.
Android introduced Permission mechanism based on UGO to implement fine-
grained authority assignment at the APP level [28]. Permission mechanism can
only make sure whether an APP can access external storage, and cannot cover
access control for every file on Android external storage.

ACL allows us to give permissions for any user or group to any file. ACL
policy is a white list of permissions attached to a file. Each entry in the list
specifies what permissions a UID is granted when accessing the file. For example,
an entry user:BOB:rwx means BOB can read, write and execute the file. ACL
mechanism is very suitable for enforcing access control on Android APP, because
every APP has a unique UID.

The ACL mechanism is compatible with the UGO mechanism. ACL is an
optional mechanism after UGO mechanism. If ACL mechanism is enabled, a file
access will be confronted with ACL check after passing UGO check. Thus, intro-
ducing ACL into Android will not affect existing Android security mechanisms.

2.2 FUSE Filesystem

Filesystem in Userspace (FUSE) [18] is a software module for Unix-like OSes
that enables non-privileged user to create his own filesystem without modifying
kernel code. This is achieved by running user’s filesystem code in userspace while
the FUSE module provides a “bridge” to the actual kernel-level filesystem.

Figure 1 shows how Android works with FUSE filesystem. As shown in Fig. 1,
raw external storage devices are mounted as EXT4 filesystem (built-in SD card)
or VFAT filesystem (removable SD card). Android uses FUSE to wrap the raw
external storage devices. Thus, any access to external storage has to go through
FUSE first, and then uses userspace filesystem called sdcard daemon to access
real filesystems.

It can be seen that external storage access in Android is actually done by
sdcard daemon. Sdcard daemon masks the details of the actual filesystem of
external storage. If we want to achieve functionality on FUSE based external
storage, we need to enable certain feature on sdcard daemon too.

2.3 Access Control for External Storage in Android

In Android versions before 1.5, an APP was permitted to write and read the
entire external storage freely. Since Android 1.6, an APP has to apply for some
permissions statically to access external storage. From Android 4.4, a UGO-like
permission management was adopted for external storage access [33]. All the
files on external storage are set up separately with the UGO policy. Although
Android 6.0 adopted the dynamic external storage access permission applying,
granularity of access control is still very coarse.

As mentioned above, Android external storage permission management is
fixed and coarse-grained. There is no way to set permissions of a certain file on

How to Block the Malicious Access to Android External Storage 291

Fig. 1. Operation flow when APP accesses external storage.

external storage for a specific APP. As long as the device owner grants external
storage related permissions to a third party APP, the APP can read and write
all the public files on external storage as it wants.

3 System Design

3.1 Design Principles and Architecture Overview

Threat Model. Our work mainly aims at the attacks on external storage in
Android framework. The prevailing forms of attacks are malwares. Malwares we
discuss may take advantage of the inflexible coarse-grained permission manage-
ment to utilize or damage the files on external storage, such as dig out user’s
sensitive information, encrypt files and modify files.

Assumption. In our work, we assume the Linux kernel of the Android plat-
form is trustworthy. The attack will not destroy the security mechanisms of the
Linux kernel. We also assume the Android security mechanisms, such as Android
permission and sandbox, are effective and cannot be bypassed.

Goals. Our work is designed to provide ACL access control at the file-level for
external storage of Android. Only when the certain permissions are granted to
the UID attached to an APP, the APP is able to access the file on external
storage in a way specified by the permissions.

Thus, we propose a complete solution that enables ACL access control on
Android external storage so as to customize ACL policies for files on external
storage. Our system consists of following three modules: ACL policy management
module, ACL enabled module and ACL policy storage module, as shown in Fig. 2.

3.2 ACL Policy Management Module

ACL policy management module is designed to support ACL management. This
module consists of three parts: shared library, system-level APP and APIs.

292 S. Yuan et al.

Fig. 2. Architecture overview of our system.

This module enriches the Android shared library. Since POSIX ACL [21]
generally saves as extended attributes (so-called xattrs), ACL entries and xattrs
need to convert each other. Android does not support that conversions, so this
module imposes a shared library called libacl-devel [3] library into Android to
support that transformation.

In addition, a system-level APP is designed to interact with device owner
to customize ACL policies for the files on the external storage. Because most
of the files on the external storage are owned by root, a system service called
SDACLService attached with signatureOrSystem-level permission is designed to
communicate with Zygote to manage ACL policies using root privileges. Then,
our system-level APP uses this service to achieve ACL policies management.

Moreover, a set of APIs for APP developers is designed to customize ACL
policies for APP’s files on external storage. APP developers can use APIs to block
any other APP’s access to their APP’s files that may leak user’s information.
These APIs include wrapper functions that perform the ACL-related operations
provided by implanted libacl-devel library. The permission check embedded in
Linux kernel will determine whether the APP has capabilities to set ACL policies
on certain object.

3.3 ACL Policy Storage Module

ACL policies are stored in this module. Typical formats of external storage are
VFAT and EXT4. If we enforce ACL access control for these two filesystems, we
may need to store corresponding ACL policies in the filesystem. It is generally
known that EXT4 filesystem stores ACL information with the format of xattrs
as a part of inode. Once ACL features of EXT4 filesystem are enabled, we can

How to Block the Malicious Access to Android External Storage 293

utilize xattrs-related operations of EXT4 to store ACL policies. As for VFAT
filesystem, it does not support ACL features in essence, so additional ACL poli-
cies storage recorded in this module is necessary for this kind of filesystem to
realize the ACL access control.

In addition, except for specific directories, the owner of the files on Android
external storage is root, even if the files are created by an APP. In order to achieve
the APP’s ACL management towards its files on external storage, we need to
change the owner of those files. Thus, we record the corresponding relationship
between APP and its files in the uid.list, and use hooks to modify the owner of
files on external storage. The entity recorded in uid.list contains three parts: the
path of the file, the uid of file’s creator, and effectiveness of the entity (“Y” for
valid, “N” for invalid). For example, an entity /data/media/A Alice Y means
the file /data/media/A is created by Alice, and Y means this entity is valid.

3.4 ACL Enabled Module

ACL enabled module is the central part of our work, since all permission setting,
querying and checking have to base on it. Three major functions are included in
this module.

Enable embedded ACL of Linux kernel. Any ACL-related operation gener-
ated in ACL policy management module will finally turn into a system call for
Linux kernel. Linux kernel has embedded ACL supports disabled by Android for
some reasons. So this module will enable the embedded POSIX ACL features.

Extend ACL features to FUSE filesystem. Android uses FUSE filesystem to
wrap the real filesystems external storage based on, and uses a userspace daemon
to operate real filesystems external storage based on. Since current Android does
not implement the ACL or xattrs features for foregoing parts, this module will
extend ACL features from FUSE filesystem to the filesystems external storage
based on.

Enrich SEAndroid policies. Android has introduced a security mechanism
based on SELinux [30], called SEAndroid [32], to enhance system security. Any
additional function to Android system must be declared in the SEAndroid poli-
cies before being enabled. So, as we enhance the security module, we must syn-
chronously add the corresponding SEAndroid policies.

4 Implementation

In this section, the implementation details of some critical components of our
work are described.

4.1 Enabling ACL Features in Linux Kernel

First of all, we enable the embedded ACL features of Linux kernel. Although
Android disables some features of the Linux kernel, the entire functions related
to POSIX ACL still can be found in the source code of Linux kernel that Android

294 S. Yuan et al.

uses. Thus, in our work, we modify the build configuration file of the Linux kernel
corresponding to the Android Open Source Project (AOSP) [5] version we use,
to enable embedded POSIX ACL features. Table 1 shows modified arguments.

Table 1. Configuration file modification

Argument name Original value Value after modification

CONFIG EXT4 FS POSIX ACL Not set y

CONFIG FS POSIX ACL Not set y

CONFIG GENERIC ACL Not set y

Then, we enable the ACL features for FUSE filesystem. To be specific, we
add source code of xattr-related functions (e.g., setxattr and getxattr) into a new
file called xattr.c. Then, we backport ACL-related functions (such as setacl and
getacl) into a file called acl.c to handle ACL-related operations. With these two
files, FUSE can call the ACL mechanism in kernel to complete ACL operations.

Furthermore, we enable ACL features on the real filesystems that external
storage based on to handle the ACL-related operations sent by FUSE. After
modifying the kernel build configuration, we enable the ACL features of EXT4
filesystem. Because VFAT filesystem dose not support ACL at all, we have to
introduce additional code into VFAT filesystem to make it support ACL features.
The ACL related code is hooked in the control-flow of VFAT filesystem.

After making the above modifications, we recompile the modified kernel
source code, and package it into the image. The new kernel image will support
the ACL operations towards external storage.

4.2 Introducing ACL Features into Userspace Daemon

The FUSE filesystem uses a userspace daemon called sdcard daemon to handle
the file operation requests acquired from FUSE Request Queue shown in Fig. 2.
Therefore, while modifying Linux kernel, we need to enable ACL-related features
in sdcard daemon, especially xattrs-related opertaions. Because FUSE will con-
vert ACL-related requests to xattrs-related requests and transfer the requests to
sdcard daemon.

We add xattrs-related operations into the source code of sdcard daemon
called sdcard.c to make sdcard daemon handle xattrs-related requests from kernel
FUSE filesystem. By tracking call flow, we found that it is handle fuse request()
function in sdcard.c that handles opcode of fuse in header structure gotten from
FUSE Request Queue and calls the corresponding function to complete the spe-
cific operation. Thus, we add extra opcodes and corresponding functions, as
shown in Listing 1.1, to complete the specific operation.

How to Block the Malicious Access to Android External Storage 295

Listing 1.1. Handle Additional Opcodes

1 switch opcode do

2

3 case FUSE_GETXATTR

4 call handle_getxattr

5 case FUSE_SETXATTR

6 call handle_setxattr

To enforce ACL at the file level, the ownership of the files on external storage
need to be various. However, as mentioned above, the default owner of the files
on external storage is root. We use the uid.list stored on ACL policy storage
module to make the owner of the files on external storage be specified. Following
steps are adopted to complete this function.

(i) We add a hook into the sdcard daemon’s function that parses packages.list.
Whenever FUSE based external storage is mounted or packages.list is
changed, this function will be invoked. As List 1.2 shows, the added hook
parses uid.list and stores the file’s ownership information in the hashmap,
if the entity is valid. If the entity is invalid, it will be removed from uid.list.

(ii) We add a judgment into permission-deriving function of sdcard daemon. As
shown in List 1.3, the judgment will assign the uid gotten from one hashmap
entity to the node.uid of the file, if the path of the file matches with that
of the hashmap entity.

(iii) We also add modifications into functions, such as file creation and deletion
in sdcard daemon, to make them dynamically modify the uid.list and the
hashmap.

Listing 1.2. Parse the uid.list

1 for all item in uid.list do

2 if entity is invalid then

3 remove the entity from uid.list

4 else

5 hashmapPut(hashmap , entity.path , entity.uid)

6 end if

7 end for

Listing 1.3. Derive Permissions for Node

1 derive all attributes from the node.parent

2 if node.path exists in hashmap then

3 node.uid ← hashmapGet(hashmap , node.path)

4 end if

4.3 SEAndroid Configuration

SEAndroid is a mandatory access control mechanism, so-called MAC. In SEAn-
droid, each process and file is associated with a security context. When every

296 S. Yuan et al.

process and file is attached with a security context, the system administrator can
make the security access policies based on the security context, that is, decides
what kind of process can access the given file.

Due to the lack of rules in SEAndroid configuration, system will block the
functions we added. That is, SDACLService and sdcard daemon cannot operate
files’ attributes as well as read or write files on external storage, even after what
we do above. To make what we added available, we add rules into SEAndroid
configuration, showed in Table 2.

Table 2. Added SEAndroid configuration

File name Policy

sdcardd.te allow sdcardd storage file:lnk file {read write getattr}
zygote.te allow zygote storage file:lnk file {read write}

allow zygote fuse:file {getattr setattr}
service context SDACLService u:object r:system server service:s0

5 Evaluation

In this section, we will evaluate our work. In order to evaluate our work, we
compare our prototype system (named as “Modified” in the tables) with the
unmodified system (named as “Original” in the tables) that based on same
AOSP version and kernel version as ours. We build the AOSP images from
version 6.0.1 for Nexus 6 devices, and build kernel images from version 3.10.4.
Then, we evaluate the systems based on following metrics.

(i) Test the impact on system’s stability.
(ii) Verify effectiveness of our work.
(iii) Evaluate performance overhead.

5.1 Stability

We downloaded 50 APPs that may read or write external storage from the
Android official market [20] for this test. Then, we manually run those APPs in
our system as well as in unmodified system. After properly granting permissions,
those APPs can read and write external storage as their functionality design.

Thus, we believe that our system is rather stable and does not affect the
legitimate operations towards external storage.

5.2 Effectiveness

Effectiveness Towards Malicious APP. To test effectiveness of our system,
we develop a testing tool to simulate the behavior of ransomware Simplocker
family, that is, the testing tool can stealthily encrypt the files on external storage.

How to Block the Malicious Access to Android External Storage 297

Then, we apply the testing tool on both unmodified system and our system.
In our system, we disable group privileges of external storage and set proper
ACL policies for external storage before starting the testing tool. After running
the testing tool, both of testing systems grant the runtime permissions towards
external storage to the tool.

As a result, barely all files on external storage are encrypted without notifying
the device owner in unmodified system. On the contrary, the testing tool do
nothing harmful to external storage except for its own files in our system.

Effectiveness of System APP’s Functionality. In this part, we will illus-
trate the effectiveness of the system APP (named as “ManagementAPP”) men-
tioned in Sect. 3.2, as shown in Figs. 3 and 4.

Firstly, we show the case that no permission is granted to the given APP, as
shown in Fig. 3. Above all, we select a folder named “Ringtones”, as shown in
Fig. 3(a), and click the button named “GRANT PERMISSION”. Then, in the
permission-granting interface as shown in Fig. 3(b), we input “rootexplorer” the
name of an APP (if no input, it means to set the permission for the group to
which the file or folder belongs), and we do not select any permission. As shown
in Fig. 3(c), the APP cannot access the data inside the selected folder because
the APP does not have any permission towards the folder.

(a) Select What You
Want to Set Permissions
for

(b) No Permission is
Granted to Given APP

(c) the Given APP Can-
not Access

Fig. 3. No permission is granted.

Secondly, we show the case that all permissions are granted to the given APP,
as shown in Fig. 4. The first two steps shown in Figs. 4(a) and (b) are similar to
those shown in Figs. 3(a) and (b) above. As shown in Fig. 4(c), since the APP
obtains permissions, the APP can access the data in the selected folder.

In conclusion, our prototype can effectively block the malicious access
towards external storage.

298 S. Yuan et al.

(a) Select What You
Want to Set Permissions
for

(b) All Permissions are
Granted to the Given
APP

(c) the Given APP Can
Access

Fig. 4. All permissions are granted.

5.3 Performance Overhead

Overall Performance Overhead. We use three common overall performance
testing sets to evaluate our work’s overall performance overhead, that is, Quad-
rant, AnTuTu Benchmark [4] and Geekbench4 [19].

The scores and results of above benchmark tools are shown in Table 3. From
the table, we can see that the overhead produced by our system in Quadrant
Benchmark is no more than 5.26%, in AnTuTu Benchmark is no more than 5.6%
and in GeekBench4 is less than 2.08%, all of which can be negligible.

So we reach a conclusion that our system has little impact on overall perfor-
mance.

Table 3. Benchmark result

Testing item Original Modified Diff. Diff. (%)

Quadrant: CPU 46699 45680 1019 2.18

Quadrant: MEM 14715 14715 0 0.00

Quadrant: I/O 5585 5291 294 5.26

Quadrant: Total 13780 13545 235 1.71

Antutu: GPU 5265 5118 147 2.79

Antutu: MEM 29348 29320 28 0.10

Antutu: UX 21327 20132 1195 5.60

Geekbench4: Single-Core Score 1009 988 21 2.08

Geekbench4: Multi-Core Score 2837 2827 10 0.352

How to Block the Malicious Access to Android External Storage 299

External Storage Performance Overhead. We use an external storage per-
formance testing tool called A1 SD Bench [1] to evaluate the performance of
external storage.

We performed A1 SD Bench 10 times on unmodified system and our system,
then we calculated the average and standard deviation of the results. As results
of A1 SD Bench shown in Table 4, we find out that additional performance
overhead that our system introduces is acceptable.

Table 4. A1 SD bench

Original Modified

Mean (MB/s) SD (MB/s) Mean (MB/s) SD (MB/s)

Random I/O: Read 27.629 3.411 26.284 3.802

Random I/O: Write 0.845 0.019 0.828 0.058

Accurate: Read 50.241 1.107 49.82 1.617

Accurate: Write 63.789 1.495 58.349 1.729

Long Time: Read 47.887 0.399 47.437 1.282

Long Time: Write 63.269 1.302 57.867 1.328

6 Related Work

This section shows the overview of the related work. There are plenty of secu-
rity extensions proposed enhancing Android security, most of which are for
the Android middleware layer or kernel layer. Section 6.1 introduces improve-
ments that mainly resolved the access control problem at the middleware layer.
Section 6.2 shows solutions that introduced MAC access control into Android.
Section 6.3 presents some solutions for Android external storage.

6.1 Android Middleware Layer Improvements

TaintDroid [15] allows users to track and analyze flows of sensitive data and
potentially identify suspicious APPs. Saint [27] enforces policies that leverage the
relationship between the caller APP and the callee APP. Apex [26] allows users
to accept a subset of the permissions declared by APPs. Kirin [16] alarms users
when APP’s declared permissions violate predefined policies. SPAC [36] scheme
provides fine-grained permission enforcement at component level. [6,7,13,23,29]
are based on context to enhance Android security. Cai et al. [12] modify both
Android middleware layer and kernel layer to enforce ACL access control on
Android platform, but they do not offer an effective access control scheme for
Android external storage.

300 S. Yuan et al.

6.2 Android MAC Access Control Enhancements

There has been a lot of work to harden the Linux kernel with MAC based sys-
tems that exercise the principle of least privilege more strictly. There has been
prior studies [25,31,32] on integrating and applying SELinux [30] in Android.
Besides, TrustDroid [10] and XManDroid [9] provide MAC at both middle-
ware layer and kernel layer, relying upon pathname-based security model of
TOMOYO Linux [34]. And FlaskDroid [11] is a generic kernel and middleware
MAC based architecture that can support multiple fine-grained security policies
and use cases.

6.3 Android Improvements for External Storage

Currently, there are few improvements to enhance the security of Android exter-
nal storage. Wang et al. [35] implemented an encryption filesystem on Android
utilizing FUSE, and can only protect external storage from the attacks from
outside the device. Our work can intercept internal APPs’ illegal access to files
on external storage. Do et al. [14] enforced filesystem permission on external
SD card by reformatting it to the EXT4 filesystem format. Our work does not
need that reformation. Liu et al. [24] carried out an empirical study on the data
stored on external storage of Android. They presented several attacks based on
these data and proposed a defense framework. The limitation of their solution
is that it only works at framework/API layer. Huang et al. [22] introduced an
external storage data sharing GID (ESDS-GID) into current Android security
model. This work extends the GID used to manage external storage, but it can-
not set flexible access control policies for a certain file on external storage as
we did.

7 Conclusions and Future Work

In this paper, we introduced the Access Control List (ACL) for external storage.
We allow APP developers and device owner to create customized ACL policies for
resources they can manage on external storage. We present a customized system
by modifying source code of framework layer, middleware layer and Linux kernel.
Besides, we provide APIs for APP developers to enable them to use ACL policies
to protect APP’s resources on external storage, and offer a system-level APP for
device owner to create customized ACL policies. Evaluation results suggest that
the system can efficiently prevent the unauthorized APP from accessing external
storage as well as offer a stable environment with negligible cost.

Since Android 8.0 Oreo, SDCardFS replaces FUSE and avoids extra round
trip by being an in-kernel FAT32 emulation layer, and it is newly integrated into
AOSP. Since SDCardFS was not the mainstream when we started our work, so
our work aims at FUSE filesystem. In the future, we may introduce our work
into SDCardFS and simplify the process of granting permission.

How to Block the Malicious Access to Android External Storage 301

Acknowledgements. We would like to thank our anonymous reviewers for their valu-
able comments and suggestions. This work is supported by the National Key Research
and Development Program of China under Grant No. 2016YFB0800102, the National
Cryptography Development Fund under Award No. MMJJ20170215, and the Youth
Innovation Promotion Association CAS.

References

1. A1 sd bench. http://a1dev.com/sd-bench/
2. Access control list. https://en.wikipedia.org/wiki/Access control list
3. Acl open source community. http://savannah.nongnu.org/projects/acl
4. Antutu benchmark. http://www.antutu.com/en/index.htm
5. Aosp. https://source.android.com/
6. Arena, V., Catania, V., Torre, G.L., Monteleone, S., Ricciato, F.: Securedroid:

an android security framework extension for context-aware policy enforcement. In:
2013 International Conference on Privacy and Security in Mobile Systems, PRISMS
2013, Atlantic City, NJ, USA, 24–27 June 2013, pp. 1–8 (2013). https://doi.org/
10.1109/PRISMS.2013.6927185

7. Bai, G., Gu, L., Feng, T., Guo, Y., Chen, X.: Context-aware usage control for
android. In: Proceedings 6th International ICST Conference Security and Privacy
in Communication Networks - SecureComm 2010, Singapore, 7–9 September 2010,
pp. 326–343 (2010). https://doi.org/10.1007/978-3-642-16161-2 19

8. Beware of ransomware and high risks threats on android devices. https://
www.symantec.com/connect/articles/beware-ransomware-and-high-risks-threats-
android-devices

9. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A., Shastry, B.: Towards
taming privilege-escalation attacks on android. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012, San Diego, California, USA, 5–8
February 2012 (2012). http://www.internetsociety.org/towards-taming-privilege-
escalation-attacks-android

10. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A., Shastry, B.: Practical
and lightweight domain isolation on android. In: SPSM 2011, Proceedings of the
1st ACM Workshop Security and Privacy in Smartphones and Mobile Devices,
Co-located with CCS 2011, 17 October 2011, Chicago, pp. 51–62 (2011). https://
doi.org/10.1145/2046614.2046624

11. Bugiel, S., Heuser, S., Sadeghi, A.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: Proceedings of
the 22th USENIX Security Symposium, Washington, DC, USA, 14–16 August
2013, pp. 131–146 (2013). https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/bugiel

12. Cai, X., Gu, X., Wang, Y., Zhou, Q., Cao, Z.: Enforcing ACL access control on
android platform. In: Proceedings 20th International Conference Information Secu-
rity - ISC 2017, Ho Chi Minh City, Vietnam, 22–24 November 2017, pp. 366–383
(2017). https://doi.org/10.1007/978-3-319-69659-1 20

13. Conti, M., Crispo, B., Fernandes, E., Zhauniarovich, Y.: Crêpe: a system for enforc-
ing fine-grained context-related policies on android. IEEE Trans. Inf. Forensics
Secur. 7(5), 1426–1438 (2012). https://doi.org/10.1109/TIFS.2012.2204249

http://a1dev.com/sd-bench/
https://en.wikipedia.org/wiki/Access_control_list
http://savannah.nongnu.org/projects/acl
http://www.antutu.com/en/index.htm
https://source.android.com/
https://doi.org/10.1109/PRISMS.2013.6927185
https://doi.org/10.1109/PRISMS.2013.6927185
https://doi.org/10.1007/978-3-642-16161-2_19
https://www.symantec.com/connect/articles/beware-ransomware-and-high-risks-threats-android-devices
https://www.symantec.com/connect/articles/beware-ransomware-and-high-risks-threats-android-devices
https://www.symantec.com/connect/articles/beware-ransomware-and-high-risks-threats-android-devices
http://www.internetsociety.org/towards-taming-privilege-escalation-attacks-android
http://www.internetsociety.org/towards-taming-privilege-escalation-attacks-android
https://doi.org/10.1145/2046614.2046624
https://doi.org/10.1145/2046614.2046624
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://doi.org/10.1007/978-3-319-69659-1_20
https://doi.org/10.1109/TIFS.2012.2204249

302 S. Yuan et al.

14. Do, Q., Martini, B., Choo, K.R.: Enforcing file system permissions on android
external storage: android file system permissions (AFP) prototype and owncloud.
In: 13th IEEE International Conference on Trust, Security and Privacy in Comput-
ing and Communications, TrustCom 2014, Beijing, China, 24–26 September 2014,
pp. 949–954 (2014). https://doi.org/10.1109/TrustCom.2014.53

15. Enck, W., et al.: TaintDroid: an information flow tracking system for real-time
privacy monitoring on smartphones. Commun. ACM 57(3), 99–106 (2014). https://
doi.org/10.1145/2494522

16. Enck, W., Ongtang, M., McDaniel, P.D.: On lightweight mobile phone application
certification. In: Proceedings of the 2009 ACM Conference on Computer and Com-
munications Security, CCS 2009, Chicago, Illinois, USA, 9–13 November 2009, pp.
235–245 (2009). https://doi.org/10.1145/1653662.1653691

17. Eset analyzes simplocker. https://www.welivesecurity.com/2014/06/04/
simplocker/

18. Filesystem in userspace. https://en.wikipedia.org/wiki/Filesystem in Userspace
19. Geekbench4. http://www.geekbench.com
20. Google play. https://play.google.com/store
21. Grünbacher, A.: POSIX access control lists on linux. In: Proceedings of the

FREENIX Track: 2003 USENIX Annual Technical Conference, San Antonio,
Texas, USA, 9–14 June 2003, pp. 259–272 (2003). http://www.usenix.org/events/
usenix03/tech/freenix03/gruenbacher.html

22. Huang, F., Wu, W., Yang, M., Luo, J.: A fine-grained permission control mecha-
nism for external storage of android. In: 2016 IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2016, Budapest, Hungary, 9–12 October
2016, pp. 2911–2916 (2016). https://doi.org/10.1109/SMC.2016.7844682

23. Jung, C., Feth, D., Seise, C.: Context-aware policy enforcement for android. In:
IEEE 7th International Conference on Software Security and Reliability, SERE
2013, Gaithersburg, MD, USA, 18–20 June 2013, pp. 40–49 (2013). https://doi.
org/10.1109/SERE.2013.15

24. Liu, X., Zhou, Z., Diao, W., Li, Z., Zhang, K.: An empirical study on android
for saving non-shared data on public storage. In: Proceedings 30th IFIP TC 11
International Conference, ICT Systems Security and Privacy Protection - SEC
2015, Hamburg, Germany, 26–28 May 2015, pp. 542–556 (2015). https://doi.org/
10.1007/978-3-319-18467-8 36

25. Nakamura, Y., Sameshima, Y.: SELinux for consumer electronics devices. In: 2008
Proceedings of the Linux Symposium OLS, Ottawa, Ontario, Canada, 23–26 July
2008, pp. 125–134 (2008)

26. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2010, Beijing, China, 13–16 April 2010, pp. 328–332 (2010). https://doi.org/10.
1145/1755688.1755732

27. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.D.: Semantically rich
application-centric security in android. Secur. Commun. Netw. 5(6), 658–673
(2012). https://doi.org/10.1002/sec.360

28. Permissions overview. https://developer.android.com/guide/topics/permissions
29. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-

driven access control: rethinking permission granting in modern operating systems.
In: IEEE Symposium on Security and Privacy, SP 2012, San Francisco, California,
USA, 21–23 May 2012, pp. 224–238 (2012). https://doi.org/10.1109/SP.2012.24

https://doi.org/10.1109/TrustCom.2014.53
https://doi.org/10.1145/2494522
https://doi.org/10.1145/2494522
https://doi.org/10.1145/1653662.1653691
https://www.welivesecurity.com/2014/06/04/simplocker/
https://www.welivesecurity.com/2014/06/04/simplocker/
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
http://www.geekbench.com
https://play.google.com/store
http://www.usenix.org/events/usenix03/tech/freenix03/gruenbacher.html
http://www.usenix.org/events/usenix03/tech/freenix03/gruenbacher.html
https://doi.org/10.1109/SMC.2016.7844682
https://doi.org/10.1109/SERE.2013.15
https://doi.org/10.1109/SERE.2013.15
https://doi.org/10.1007/978-3-319-18467-8_36
https://doi.org/10.1007/978-3-319-18467-8_36
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1145/1755688.1755732
https://doi.org/10.1002/sec.360
https://developer.android.com/guide/topics/permissions
https://doi.org/10.1109/SP.2012.24

How to Block the Malicious Access to Android External Storage 303

30. Security-enhanced linux. http://www.nsa.gov/research/selinux
31. Shabtai, A., Fledel, Y., Elovici, Y.: Securing android-powered mobile devices using

selinux. IEEE Secur. Priv. 8(3), 36–44 (2010). https://doi.org/10.1109/MSP.2009.
144

32. Smalley, S., Craig, R.: Security enhanced (SE) android: bringing flexible MAC to
android. In: 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, 24–27 February 2013 (2013). https://
www.ndss-symposium.org/ndss2013/

33. Storage. https://source.android.com/devices/storage/
34. Tomoyo linux home page. http://tomoyo.sourceforge.jp/
35. Wang, Z., Murmuria, R., Stavrou, A.: Implementing and optimizing an encryption

filesystem on android. In: 13th IEEE International Conference on Mobile Data
Management, MDM 2012, Bengaluru, India, 23–26 July 2012, pp. 52–62 (2012).
https://doi.org/10.1109/MDM.2012.31

36. Wu, L., Du, X., Zhang, H.: An effective access control scheme for preventing per-
mission leak in android. In: International Conference on Computing, Networking
and Communications, ICNC 2015, Garden Grove, CA, USA, 16–19 February 2015,
pp. 57–61 (2015). https://doi.org/10.1109/ICCNC.2015.7069315

http://www.nsa.gov/research/selinux
https://doi.org/10.1109/MSP.2009.144
https://doi.org/10.1109/MSP.2009.144
https://www.ndss-symposium.org/ndss2013/
https://www.ndss-symposium.org/ndss2013/
https://source.android.com/devices/storage/
http://tomoyo.sourceforge.jp/
https://doi.org/10.1109/MDM.2012.31
https://doi.org/10.1109/ICCNC.2015.7069315

A Novel Tamper Evident Single Database
Information-Theoretic Private

Information Retrieval for User Privacy
Applications

Radhakrishna Bhat(B) and N. R. Sunitha

Department of Computer Science and Engineering,
Siddaganga Institute of Technology, Visvesvaraya Technological University,

B H Road, Tumakuru 572103, Karnataka, India
rsb567@gmail.com, nrsunithasit@gmail.com

Abstract. Providing perfect privacy to the user against analytics
enabled trusted-but-curious type of database server during private infor-
mation retrieval has gained major attention. The major problem with
the existing user privacy preserving information retrieval methods is
that either server has adopted its own privacy preserving policy (i.e.,
user privacy is guaranteed through the server privacy policy) or user
has conveyed to use intractability assumption based user privacy pre-
serving techniques. Due to this, user privacy is not completely assured
till date. We have successfully constructed a perfect user privacy pre-
serving information retrieval scheme in a single database setting called
sitPIR using the concept of Private Information Retrieval (PIR). In
the proposed scheme, the identically distributed O(5 log N) bits query
exhibit perfect privacy where N is the RSA composite. Note that the
proposed scheme preserves user privacy (i.e., user interest) using an
information-theoretic query against the curious server and preserves data
privacy through O(o(n)+2 log N) response bits against computationally
bounded intermediate adversary using Quadratic Residuosity Assump-
tion (QRA) where n is the database size. We have also extended the pro-
posed scheme to a tamper-evident single database information-theoretic
Private Block Retrieval (PBR) scheme called sitPBR.

Keywords: Private Information Retrieval · Information-theoretic ·
Perfect privacy · Quadratic residuosity · Private Block Retrieval ·
Tamper evident retrieval

1 Introduction

Consider a scenario where the user wants to retrieve a record of information
(may be a single bit or block) from a single database server privately without
revealing any information about the record retrieved.

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 304–321, 2019.
https://doi.org/10.1007/978-3-030-12146-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_19

A Novel Tamper Evident Single Database Information-Theoretic PIR 305

Private Information Retrieval (PIR) [10] is one of the user privacy preserving
techniques and involves two participating entities: the User and Server in which
the User wants to retrieve or read a bit from the Server without revealing his
interest. Hence, PIR is the way of retrieving the required information through
the database reference (the reference may be the index or the address of the
information stored on the server) from the Server by hiding the reference. The
primary concern in any PIR protocol is to hide the reference from the server
along with reading the required bit from the database server. This concept was
introduced in a replicated database setting and coined as private information
retrieval by Chor et al. [10,12]. Private Block Retrieval (PBR) is the realistic
version of PIR in which the user retrieves a block from the set of blocks main-
tained by the server.

If the PIR protocol involves a computationally bounded (or computationally
intractable) database server entities then such scheme is considered as compu-
tationally bounded PIR (cPIR) in which the user privacy is preserved based
on the well-defined cryptographic intractability assumption(s) based queries. If
the PIR protocol involves non-colluding replicated database server entities then
such scheme is considered as information-theoretic PIR (itPIR) in which the user
privacy is preserved based on information-theoretically private queries.

Most of the existing computationally bounded PIR schemes including φ-
hiding assumption based scheme proposed by Cachin et al. [6], Paillier’s cryp-
tosystem based scheme proposed by Chang [9], one-way function based scheme
proposed by Chor and Gilboa [11], decision subgroup problem called φ-hiding
assumption based scheme proposed by Gentry and Ramzan [14], the multi-query
scheme introduced by Groth et al. [17], anonymity technique based scheme
proposed by Ishai et al. [18], quadratic residuosity assumption based scheme
introduced by Kushilevitz and Ostrovsky [19], one-way trapdoor permutation
based scheme proposed by Kushilevitz and Ostrovsky [20], composite residu-
osity assumption based scheme presented by Lipmaa [22], Coding theory and
Lattice assumption based PIR scheme is also presented by Aguilar-Melchor and
Gaborit [24], trapdoor group based scheme presented by Jonathan and Andy
[25], Lattice based scheme presented by Aguilar-Melchor et al. [1] and prepro-
cessing based scheme presented by Canetti et al. [7] are all involved a single
intractability assumption to preserve both user privacy and data privacy.

Several information-theoretic schemes [2–4,8,15,16,23] and PBR extension
schemes [5,12,14,21,22] proposed in PIR environment are also suffering from the
imbalance between the communication cost and resource utilization, involvement
of additional techniques (like pre-processing, caching etc.) and multiple rounds,
inability to achieve the non-trivial communication cost in a single database envi-
ronment.

Problems With Existing PIR Schemes: There are two major problems in
the existing single database PIR schemes as described below.

– Much attention is given on computationally protecting the privacy of the
user using a well-defined intractability assumption that the database server is
computationally bounded (i.e., the database server has limited computation

306 R. Bhat and N. R. Sunitha

capability). All such cryptographic intractability assumption based privacy
preserving techniques fail to provide user privacy if the database server
attains high computational power.

– All the single database PIR schemes rely on a single intractability assumption
(like Phi-hiding, Lattice, QRA, Composite Residuosity and n-th residuosity,
one-way Functions etc.) to preserve both user privacy (assuming that the
curious server is computationally bounded) and data privacy (assuming that
the intermediate adversary is computationally bounded). Intuitively, if the
adversary is able to reveal any one of them, he/she will get the other without
any extra effort.

In order to provide perfect user privacy preserving single database PIR solu-
tion, the best way is that all the successively generating queries must be iden-
tically distributed. Therefore, all the existing single database PIR schemes have
clearly failed to generate the identically distributed queries due to the existence
of underlying intractability assumption.

Perfect User Privacy Preserving PIR Solution: Conventionally, we use the
term “server” for the database server, we use the term “privacy” for user privacy,
we use the term “perfect privacy” for perfect user privacy unless and until exter-
nally stated. We also use the terms “perfect privacy” and “information-theoretic
privacy” interchangeably.

We have constructed an information-theoretic query which takes identically
distributed random input from the quadratic residuosity set Z

+1
N for preserv-

ing user privacy (Note that in the QRA based Kushilevitz and Ostrovsky [19]
scheme, the query input for the interested bit is always drawn from quadratic
non-residue. Therefore, all such randomly generated queries are not identically
distributed.) and new QRA based recursive 2-bit encryptions called pair-link
encryption (PLF) (which encrypts two bits and decrypts one bit at a time) for
preserving the data privacy. Also, we have introduced new methods of selection
and encryption of database bits called criss-cross encryption (CCE) and snake-
walk encryption (SWE) using the pair-link encryption as the basic building block
during PIR invocation.

With the aid of the proposed pair-link encryption and CCE/SWE methods,
we have successfully constructed the perfect privacy preserving single database
PIR scheme with the following results.

– All the random queries generated in the proposed scheme are identically dis-
tributed over Z

+1
N and hence, exhibit information-theoretic privacy over the

trusted-but-curious server (i.e., user privacy is always guaranteed and inde-
pendent of the security parameter). That is, an individual query or a randomly
selected pair of queries gives no information (not even a partial information)
about the user interest.

– The proposed scheme uses quadratic residuosity as the underlying data pri-
vacy primitive to preserve the communicating data over the intermediate
adversary.

A Novel Tamper Evident Single Database Information-Theoretic PIR 307

– The overall communication cost is (o(n) + 2 log N) where n is the database
size, N is the RSA composite modulus. The communication cost can reach
non-triviality (i.e., less than the database size) for all c0 > c and n = 2c0

where c is an integer constant.
– Inbuilt tamper evidence for the communicating data (from server to user)

when the PBR version of the proposed scheme is used.
– The proposed scheme can easily be extended to oblivious transfer and com-

putationally bounded PIR schemes.

Organization: All the necessary preliminaries and notations are described in
Sect. 2. The proposed information-theoretic PIR scheme along with required
building blocks, security proofs, the performance details and the PBR version
are described in Sect. 3. Finally, the open problems are described along with the
conclusion in Sect. 4.

2 Preliminaries and Notations

2.1 Notations

Let [u] � {1, 2, · · ·, u}, Let k denote the security parameter, N
R←− {0, 1}k = pq

be the RSA composite modulus where p ≡ 3 (mod 4), q ≡ 3 (mod 4), Z+1
N denote

the set of all elements with Jacobi Symbol (JS) 1. Let QR and QR denote the
quadratic residue and quadratic non-residue sets with JS = 1 respectively. Let
<a, b> be two components set where a ∈ Z

+1
N and b = {i : i ∈ {0, 1}}.

2.2 Preliminaries

Quadratic Residuosity: For any element a ∈ Z
∗
N if there exists an element

b2 congruent to a modulo N then a is called the quadratic residue otherwise
quadratic non-residue modulo N . Intuitively, JS is equal to 1 for all elements
that belongs to Z

+1
N and JS is equal to −1 for all elements that belongs to Z

−1
N

where JS(·) is the Jacobi Symbol modulo N .

Quadratic Residuosity Predicate (QRP): ∀a ∈ Z
∗
N , QRP is a function to

return a value (0 or 1) to indicate whether a is QR if QRPp,q(a) = 0 or QR if
QRPp,q(a) = 1.

Quadratic Residuosity Assumption (QRA): For all N ∈ {0, 1}k, for all
R ∈ Z

+1
N , for all probabilistic polynomial time intermediate adversary Ad,

PROB[Ad(N,R) = QRPN (R)] < pQR where pQR = (1/2) + (1/kc) and c is
a constant.

Quadratic Residuosity Based Lossy Trapdoor Function of Freeman
et al. [13] (LTDF): For all α ∈ Z

∗
N , s ∈ QR and r ∈ Z

−1
N , the lossy trapdoor

function T : Z
∗
N → Z

∗
N is T = (α2 · rjx · shx ≡ z (mod N)) such that jx is

equal to 1 if JS(α) = −1 otherwise jx is equal to 0. The value of hx is equal
to 1 if α > N/2 otherwise hx is equal to 0. The respective inverse function is
T −1 = (

√
(z · s−hx) · r−jx ≡ α (mod N)). We use the alternative square root

syntax as T −1 = (jx,hx
√

z ≡ α (mod N)).

308 R. Bhat and N. R. Sunitha

3 A Single Database Information-Theoretic Private
Information Retrieval (sitPIR)

Definition 1 (A Single database information-theoretic PIR (sitPIR)): It is
a 4-tuple (KG,QF,RC, IE) protocol that involves two communicating par-
ties: user Upir and server Spir in which Spir maintains n bit single dimensional
matrix database DB = {b1, b2, · · · , bn}. User Upir requests the interested bit bi,
i ∈ [n], privately from Spir by generating information-theoretic query Q such
that ∀bi, bj ∈ DB, i, j ∈ [n], any two random generated queries Qi and Qj

exhibit same level of information-theoretic privacy equivalent to perfect privacy
as described by Chor et al. [12] and the server Spir in-turn generates the response
R with the communication O(o(n) + 2 log N). The setting consists of the fol-
lowing polynomial time algorithms.

1. Key Generation (KG): Upir calculates RSA modulus N
R←− {0, 1}k. Upir then

generates (public, private) key pair (pk, sk) R←− KG(1k) where pk = (N ,
(PK 1, PK 2) ∈ Z

+1
N) and sk = (p, q).

2. Query Formulation (QF): Upir generates (pk, sk) from the key generation
algorithm KG. Upir then generates the perfect privacy preserving query as

{(Q = (α, pk), sk) ← QF (1k) : α
R←− Z

+1
N } and keeps sk secret. Importantly,

the random generation of the index (or reference) independent input α from
either QR or QR always exhibits perfect privacy (Note: All the query input α
randomly selected from Z

+1
N are always domain independent. Also, note that

the “domain” here is the quadratic residuosity sets like QR and QR).
3. Response Creation (RC): Spir generates the response R using the query Q and

the database DB as R ← RC(Q, DB, n, 1k).
4. Interest Extraction (IE): Using the response R and the secret sk, Upir extracts

the required bit bi, i ∈ [n], as bi ← IE(R, sk, n, 1k).

Definition 2 (Single database information-theoretic PIR (sitPIR)): Let DB =
{b1, b2, · · ·, bn} be n bit server database. Let query formulation QF , response cre-
ation RC of Definition 1 be the Probabilistic Polynomial Time (PPT) algorithms
and interest extraction IE be the deterministic polynomial time algorithm. We
say that 4-tuple (KG,QF,RC, IE) protocol of Definition 1 is a single database
perfect privacy PIR scheme or single database itPIR scheme if the following
conditions hold.

1. Perfect user privacy: For any two identically distributed random queries Qi

and Qj , i, j ∈ [n],

PROB[(Qi, sk) R←− QF (1k) : Adv(n,Qi, 1k) = 1] = PROB[(Qj , sk) R←− QF
(1k) : Adv(n,Qj , 1k) = 1]

2. Correctness: ∀z ∈ [n],PROB[IE((R, sk, n, 1k) : R R←− RC(Qz,DB, n, 1k),
(Qz, sk) R←− QF (1k)) = bz] = 1

3. Data privacy: For any two randomly selected queries Q1 and Q2, for all
security parameter k and for all ciphertexts R1, R2,

A Novel Tamper Evident Single Database Information-Theoretic PIR 309

|PROB[(Q1, sk) R←− QF (1k), R1
R←− RC(Q1,DB, n, 1k) : Ad(n, R1, 1k) = 1]

− PROB[(Q2, sk) R←− QF (1k), R2
R←− RC(Q2,DB, n, 1k) : Ad(n, R2, 1k)=1]|

< (pQR + pR + pC)

where PROB[·] is the privacy revealing probability, Adv(·) is the trusted-but-
curious server, Ad(·) is the polynomial time intermediate adversary, k is the
security parameter, pQR is the QRA probability, pR is the single fair coin toss
probability, pC is some combination identification probability.

Let n bit 1-dimensional matrix database be DB = {b1, b2, ..., bn}. Consider
Sa, So ⊆ DB × DB where Sa is viewed as the subset of ordered pairs {B1, B2,
· · ·, Bh} where B1 = (b1, b2), B2 = (b3, b4), and so on till Bh = (bn−1, bn) and
So is viewed as the subset of ordered pairs {B′

1, B′

2,· · ·, B′

h−1} where B′

1 = (b2,
b4), B′

2 = (b4, b6), and so on till B′

h−1 = (bn−2, bn) and h = n
2 is the total

number of ordered pairs of Sa. Let the communication bit sets for Sa and So be
Ta = {i : i ∈ {0, 1}} and To = {j : j ∈ {0, 1}} respectively with |Ta| = n

2 − 1
and |To| = n

2 − 2.
Note that the bits are arranged in Sa and So in such a way that second bit

of each Bi, 1 ≤ i ≤ h − 1, is same as first bit of B′

i. All the following subsections
use this database (i.e., DB) definition only.

3.1 Building Blocks

Communication Bit: It is a special bit (i.e., hx ∈ {0, 1}) used as a “trapdoor”
to inverse the LTDF (T) described in Sect. 2. If the input α of the LTDF (T) of
Sect. 2 is restricted to Z

+1
N , then the value of “jx” of α is always zero. Then, the

modified function would be T = (α2 ·r0 ·shx ≡ z (mod N)) ⇒ T
′
= (α2 ·shx ≡ z

(mod N)). Therefore, we have considered this modified function T
′

to define a
reduced new communication bit function MT : Z+1

N → Z
+1
N . For all α ∈ Z

+1
N , the

communication bit function is

MT (α) = (α2 · wδ%2 ≡ z (mod N)) = <z, hxα> (1)

where α ∈ Z
+1
N , w ∈ QR, δ ∈ {0, 1, 2}, the value of “hxα” is considered as the

“communication bit”. The value of hxα is 1 if α > N/2 otherwise hxα is 0. The
respective inverse is MT −1(z, hxα) = (0,hxα

√
z · (wδ%2)−1 ≡ α(mod N)).

QRA Based Single Bit Encryption (SBE): For all bit b ∈ {0, 1}, for all
random x, y, PK 1, PK 2 ∈ Z

+1
N with QRP (PK 1) �= QRP (PK 2), for all random

PK 3 ∈ Z
−1
N , the single bit encryption Es(b, N , x, y, PK 1, PK 2, PK 3) is given in

Eq. 2. Each input x, y ∈ Z
+1
N consists of their respective jx, hx values as described

in LTDF. There are four jx, hx combinations (listed in the first column of Eq. 2)
possible for any x, y ∈ Z

+1
N . Use the respective pair of equations to encrypt the

bit b. For instance, if jxx = 0, hxx = 0 and jxy = 0, hxy = 1, then for all b = 0
use the pair of equations defined in second row and second column of Eq. 2; for
all b = 1 use second row and third column of Eq. 2.

310 R. Bhat and N. R. Sunitha

Table 1. Possible residuosity property
combinations of ciphertext y when the
input x ∈ QR.

a b (x · PK l) · PK l
′ ≡ y (mod N)

0 0 (x · PK 1) · PK 1 ≡ y ∈ QR

0 1 (x · PK 1) · PK 2 ≡ y ∈ QR

1 0 (x · PK 2) · PK 1 ≡ y ∈ QR

1 1 (x · PK 2) · PK 2 ≡ y ∈ QR

Table 2. Possible residuosity property
combinations of ciphertext y when the
input x ∈ QR.

a b (x · PK l) · PK l
′ ≡ y (mod N)

0 0 (x · PK 2) · PK 2 ≡ y ∈ QR

0 1 (x · PK 2) · PK 1 ≡ y ∈ QR

1 0 (x · PK 1) · PK 2 ≡ y ∈ QR

1 1 (x · PK 1) · PK 1 ≡ y ∈ QR

Es =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jx, hx If b = 0 If b = 1
0, 0 x2 · PK 1 ≡ c1 x2 · PK 1 ≡ c1
0, 0 y2 · PK 3 ≡ c2 y2 · PK 2 ≡ c2

}
if x ≤ N/2, y ≤ N/2

0, 0 x2 · PK 1 ≡ c1 x2 · PK 3 ≡ c1
0, 1 y2 · PK 1 ≡ c2 y2 · PK 1 ≡ c2

}
if x ≤ N/2, y > N/2

0, 1 x2 · PK 3 ≡ c1 x2 · PK 2 ≡ c1
0, 0 y2 · PK 2 ≡ c2 y2 · PK 2 ≡ c2

}
if x > N/2, y ≤ N/2

0, 1 x2 · PK 2 ≡ c1 x2 · PK 2 ≡ c1
0, 1 y2 · PK 1 ≡ c2 y2 · PK 3 ≡ c2

}
if x > N/2, y > N/2

(2)
The decryption of Es to get the bit b involves the identification of respective
quadratic residuosity properties of the ciphertexts c1 and c2 as follows.

Step-1 : Identify QRP (c1) and QRP (c2). Output the respective b and (jx, hx)
combinations of x, y.

Step-2 : Find x2, y2 using the respective public key inverses. Then, given x2

and (jxx, hxx) values, identify x as described in Eq. 1. Similarly, given y2 and
(jxy, hxy) values, identify y as described in Eq. 1.

Axiom 1. For all RSA composite N = pq where |p| = |q| = k, |QR| = |QR| =
1/|Z+1

N |.

Pair-Link Encryption (PLE): It is newly constructed quadratic residuosity
based encryption method which encrypts two bits at a time and its respective
decryption function decrypts only a single bit (Note: PLE is analogous to logical
“xor” operation).

For any ordered bit pair (a, b) ∈ Bi, i ∈ [h], of Sa or (a, b) ∈ B′

j , j ∈ [h − 1],
of So of n bit database DB where h = n/2 and for all the random input t ∈ QR

and for all the public key PK 1, PK 2 ∈ Z
+1
N with QRP(PK 1) �= QRP(PK 2), the

encryption function E : Z+1
N → Z

+1
N is given as

E((a, b), x = tρ, PK 1, PK 2) = ((x · PK l) · PK l′ ≡ y (mod N)) (3)

where l, l
′ ∈ [2] and ρ ∈ {1, 2}.

A Novel Tamper Evident Single Database Information-Theoretic PIR 311

In order to understand this method, let us look at the encryption Tables 1
and 2. For instance, let us consider Table 1 and the input pair a = 0, b = 1 and
the random input x ∈ QR. Let PK1 ∈ QR, PK2 ∈ QR. Now, the encryption of
a = 0 and b = 1 is E((0, 1), x, PK 1, PK 2) = ((x · PK l) · PK l′ ≡ y (mod N)) where
l = 1, l

′
= 2 and the ciphertext y is always a quadratic non-residue. Similarly,

the encryption of a = 1 and b = 1 is E((1, 1), x, PK 1, PK 2) = ((x ·PK l) ·PK l′ ≡ y

(mod N)) where l = 2, l
′
= 2 and the ciphertext y is always a quadratic residue

and so on.
In order to find the decryption of PLE, one should know the value of the sec-

ond bit b in advance (bit b acts as an inverse factor) and the quadratic residuosity
properties of the ciphertext y and the input x. On identifying the residuosity
property of the ciphertext y and given b (Note: there is some means to get the
second bit b when this isolated encryption instance is used in combination with
other encryption instances in CCE or SWE methods. At this point, assume that
the second bit b is given), the decryption of PLE to get the first bit a is calculated
as

E−1(y, b, SK 1, SK 2) = ((y · SK l) · SK l′ ≡ x (mod N)) = <x, a> (4)

where l, l
′ ∈ [2] and PK l · SK l ≡ PK l′ · SK l′ ≡ 1 (mod N).

If the quadratic residuosity properties of the ciphertext y and the input
x (Note: the quadratic residuosity property of a number should be calculated
using the private key p, q) and the second bit b is known then the first bit a
can easily be calculated. Initially, using the private key p, q, identify quadratic
residuosity property of y. Then, given QRP(y) and b, identify the corresponding
first bit a and the public key inverse combinations SK l, SK l′ for the unique
quadratic residuosity property combinations of the ciphertext y (i.e., QRP(y))
and the input x (i.e., QRP(x)). Finally, using the identified public key inverse
combinations SK l, SK l′, l, l

′ ∈ [2], get back the input x. For example, if the pair
a = 0, b = 1 is encrypted then the ciphertext y is always a quadratic non-residue
i.e., QRP(y) = 1 and let the input x is a quadratic residue i.e., QRP(x) = 0.
Now, it is clear that, for QRP(y) = 1,QRP(x) = 0 and b = 1, a is equal to
0 and l = 2, l

′
= 1. Finally, get the input x as (y · SK 2) · SK 1 ≡ x(mod N).

Similarly, if the pair a = 1, b = 1 is encrypted then the ciphertext y is always
a quadratic residue i.e., QRP(y) = 0 and let the input x is a quadratic residue
i.e., QRP(x) = 0. Now, it is clear that, for QRP(y) = 0, QRP(x) = 0 and b = 1, a
is equal to 1 and l = 1, l

′
= 1. Finally, get the input x as E−1(y, b, SK 1, SK 2) =

(y · SK 1) · SK 1 ≡ x (mod N). Note that, for a single encryption-decryption
instance and for a given ρ ∈ {1, 2}, use any one of the Tables 1 and 2.

Lemma 1. Let N ∈ {0, 1}k be the RSA composite. Let pR be a single fair
coin toss probability, pC be a combination selection probability and pQR be a QRA
probability. For all given E((a, b), ·) where a, b,∈ {0, 1}, public key (N , PK 1 ∈
Z
+1
N , PK 2 ∈ Z

+1
N), for all probabilistic polynomial time intermediate adversary

Ad(·), for any random number x ∈ Z
+1
N , for all security parameter k,

PROB[E((a, b), x, PK 1, PK 2) : Ad(N, PK 1, PK 2, E) = (a, b)] < (pQR + pR + pC)
(5)

312 R. Bhat and N. R. Sunitha

Proof. Since the pair-link encryption described in Eq. 3 is based on quadratic
residuosity, the adversary has minimum probability equivalent to pQR = (1/2 +
p(k)) where p(k) is some inverse polynomial in k. Also, for any two equal plain-
text bits, the pair-link function in Eq. 3 always produces with the same property
ciphertext (Refer the Tables 1 and 2). By this approach, the intermediate adver-
sary has additional pR = 1/2 probability to get the correct plaintext along with
pQR. In addition to that, the encryption of Eq. 3 uses eight combination tables
for any input x ∈ Z

+1
N and public key PK 1, PK 2. Hence, probability of getting

the exact combination is pC = 1/8. Therefore, the total success probability to
know the exact plaintext bits (a, b) would always be less than pQR + pR + pC .

Axiom 2. For all a, b ∈ Z
+1
N , the equation ax ≡ b (mod N) always has a unique

solution if gcd(a,N) = 1.

Lemma 2. Every pair-link encryption described in Eq. 3 has unique solution.

Proof. It is clear from the Axiom 2 that if the gcd of participating equation vari-
ables w.r.t the modulus is 1, then there exists a unique modular solution. There-
fore, for every unique one-to-one mapping function E (as given in Eq. 3) there
exists a unique inverse mapping function E−1 (as given in Eq. 4). In other words,
for all the pair (a, b) and the random input x ∈ Z

+1
N and public key PK 1, PK 2,

the encryption of Eq. 3 always maps to unique y since gcd(PK 1, N) = 1 and
gcd(PK 2, N) = 1 and p, q ≡ 3 (mod 4). Similarly, for all the given ciphertext
y and QRP(x) and the second bit b, the decryption of Eq. 4 always gives the
unique bit a and the input x. That means, for any given encryption table i.e.,
Tables 1 and 2, the encryption E always maps to the unique property ciphertext
(though the value of the ciphertext may be different) and for any given corre-
sponding decryption, the decryption E−1 always maps to the unique bit and the
unique input. This implies that Eq. 3 has unique solution.

Connective Function (C): Since the individual PLE described in Eq. 3 alone
can encrypt only two bits at a time, connect any two successive pair-link encryp-
tions with the aid of the communication bit function MT of Eq. 1 to encrypt
two pair of bits (instead of a single pair). Therefore, either select the input
bits a, b, c, d ∈ {0, 1} where (a, b) ∈ Bi and (c, d) ∈ Bi+1, with the condition
b �= c, 1 ≤ i ≤ (h − 1), from Sa or select the input bits a, b, c, d ∈ {0, 1}
where the ordered pairs (a, b) ∈ B′

j and (c, d) ∈ B′

j+1, with the condition b = c,
1 ≤ j ≤ (h − 2), from So of the n bit database DB.

For all bit pairs (a, b), (c, d) as selected above and input x and the public
key PK 1, PK 2 ∈ Z

+1
N with QRP(PK 1) �= QRP(PK 2) and for any two successive

pair-link encryptions E and F as each described in Eq. 3, the connective function
C: Z+1

N → Z
+1
N is given as

C((a, b), (c, d), E ,F) = F ((c, d),MT (E((a, b), x, PK 1, PK 2) = y) = <y2, t>, PK 1,
PK 2) = z

(6)

A Novel Tamper Evident Single Database Information-Theoretic PIR 313

where l, l
′ ∈ [2], t is equal to 1 if y > N/2 otherwise t is equal to 0. We treat

this “t” as “communication bit” equivalent to the “hx” value described in com-
munication bit function MT .

In the connective function of Eq. 6, the preceding pair-link encryption E
receives the ordered pair of bits (a, b), the input x, the public key PK 1, PK 2

with QRP(PK 1) �= QRP(PK 2) and encrypts (a, b) and generates the cipher-
text y. Further, the communication bit function MT receives the ciphertext y
as input and produces the ciphertext y2 and the communication bit t where
t = 1 if y > N/2 otherwise t = 0. Finally, the succeeding pair-link encryption
F receives the ordered pair of bits (c, d), the ciphertext y2 as input, the public
key PK 1, PK 2 and encrypts (c, d) and generates the final ciphertext z. Therefore,
any two successive pair-link encryptions connected using connective function C
always encrypt four bits and produce one communication bit in between them.

Types of Connection: We define two types of successive pair-link encryption
connections as follows.

– Criss-cross: In this, every successive ordered pairs Bi and Bi+1, 1 ≤ i ≤ (h −
1), of Sa are encrypted using connective function. Similarly, every successive
ordered pairs B′

j and B′

j+1, 1 ≤ j ≤ (h − 2), of So are encrypted using
connective function (C).

– Snake-walk : Let Sf ⊆ DB × DB where Sf is viewed as a set of ordered pairs
{B′′

1 ,B′′

2 , · · ·,B′′

h−1} where B′′

1 = (b2, b3), B′′

2 = (b4, b5), and so on till B′′

h−1 =
(bn−2, bn−1). In this, every successive pair Bi and Bi+1, 1 ≤ i ≤ (h − 1), of Sa

are encrypted using connective function. Similarly, every successive pairs B′′

j

and B′′

j+1, 1 ≤ j ≤ (h− 2), of Sf are encrypted using connective function (C).

In order to decrypt the connective function of Eq. 6, the seconds bits d, b that
were encrypted using F and E are essential along with the quadratic residuosity
properties of z and x. How to get these second bits? or Who will provide these
second bits?

By careful observation, in the criss-cross connection type, it is clear that the
decryption of every connective function involving encryption of successive pairs
B′

j and B′

j+1, 1 ≤ j ≤ (h−2), of So provides the second bits for the decryption of
every connective function involving encryption of successive pairs Bi and Bi+1,
1 ≤ i ≤ (h − 1), of Sa (since every first bit of B′

j and B′

j+1 are same as every
second bit of Bi and Bi+1). Similarly, in the snake-walk connection type, it is
clear that the decryption of every connective function involving encryption of
successive pairs Bi and Bi+1, 1 ≤ i ≤ (h − 1), of Sa provides the second bits for
the decryption of every connective function involving encryption of successive
pairs B′′

j and B′′

j+1, 1 ≤ j ≤ (h − 2), of Sf since every first bit of Bi and Bi+1

are same as every second bit of B′′

j and B′′

j+1.

Definition 3 (Chain of successive connective function (CHAIN)): It is the
chain of successive connective functions of the form CHAIN (N,S, α, PK 1, PK 2) =
([α−→ C1 ⇒ o1]

o1−→ [C2 ⇒ o2]
o2−→ ·· og−2−−−→ [Cg−1 ⇒ og−1]

og−1−−−→ [Cg ⇒ og]) =
<og, TB> where 1 ≤ g ≤ h, h = n/2, (α, PK 1, PK 2) ∈ Z

+1
N , S ⊆ DB × DB and

314 R. Bhat and N. R. Sunitha

og is the final output ciphertext and TB is the communication bit set and each
connective function C is drawn from Eq. 6. Let CHAIN −1(og, TB, (p, q)) is the
respective inverse chain.

Remark: For the CCE encryption, there are two concurrently executing chains
CHAIN 1(N,Sa, α, PK 1, PK 2) with g = h − 1 and CHAIN 2(N,So, α, PK 1, PK 2)
with g = h−2 in which the subset Sa is encrypted using CHAIN 1 and the subset
So is encrypted using CHAIN 2 resulting in the generation of g number of com-
munication bits from each chain along with each chain ciphertexts. Similarly,
for the SWE type of encryption, there are two concurrently executing chains
CHAIN 1(N,Sa, α, PK 1, PK 2) with g = h and CHAIN 2(N,Sf , α, PK 1, PK 2) with
g = h − 1 in which the subset Sa is encrypted using CHAIN 1 and the subset Sf

is encrypted using CHAIN 2 resulting in the generation of g number of commu-
nication bits from each chain along with each chain ciphertexts.

3.2 Proposed sitPIR Scheme

In order to generate the response from the server, the main trick here is to exe-
cute two chain of successive connective functions (individual connective function
C is described in Subsect. 3.1 and the chain of successive connective functions
is described in Definition 3) in parallel on the database and produce the respec-
tive ciphertexts. Also, encrypt the last database bit using QRA based single
bit encryption (SBE) of Sect. 3.1 and produce the final ciphertexts. Consider
the criss-cross type of encryption for instance. The detailed description of the
algorithms is as follows.

– Query Generation (QG): Let N
R←− {0, 1}k. User Upir sends information-

theoretic query Q = (α,N, PK 1, PK 2, PK 3) to the server where PK 1, PK 2 ∈
Z
+1
N with QRP(PK 1) �= QRP(PK 2), PK 3 ∈ Z

−1
N and α

R←− Z
+1
N .

– Response Creation (RC): Server Spir generates the response R consisting
of two ciphertexts and two communication bit sets as follows.
Initially, using the query Q, server executes two parallel chain of successive
connective functions CHAIN 1 and CHAIN 2 (each chain is described in Def-
inition 3) on either using CCE or SWE type of the database and produces
respective chain ciphertexts β1, β2 and respective communication bit sets Ta

and To as follows. Consider CCE type for instance. All the ordered pairs of
the subset Sa are encrypted using CHAIN 1 as

CHAIN 1(N,Sa, α, PK 1, PK 2) = Ci(N,MT (Ci−1), PK 1, PK 2)
= <β1, (Ta = (t1, ··, ti−1))>
= <β1, Ta>

(7)

where δ = ρ = 2, i ∈ [h, 2], h = n/2, β1 is the output ciphertext generated
from CHAIN 1, Ta is the communication bit set with (h−1) number of commu-
nication bits and C1((b1, b2), (b3, b4), E1, E2) = E2((b3, b4), MT (E1((b1, b2), α,
PK 1, PK 2) = y) = <y2, t1>, PK 1, PK 2).

A Novel Tamper Evident Single Database Information-Theoretic PIR 315

Similarly, all the ordered pairs of the subset So are encrypted using CHAIN 2

as
CHAIN 2(N,So, α, PK 1, PK 2) = Ci(N,MT (Ci−1), PK 1, PK 2)

= <β2, (To = (t
′

1, ··, t
′

i−1))>
= <β2, To>

(8)

where i ∈ [h − 1, 2], h = n/2, β2 is the output ciphertext generated from
CHAIN 2, To is the communication bit set with (h − 2) number of commu-
nication bits and C1((b2, b4), (b4, b6), E1, E2) = E2((b4, b6), MT (E1((b2, b4), α,
PK 1, PK 2) = y) = <y2, t

′

1>, PK 1, PK 2).
It is evident that both the chains CHAIN 1 and CHAIN 2 interlock the database
bits (we call this type of encryption as “criss-cross encryption” and the
cipher generated from it as criss-cross cipher alternative to substitution or
transposition ciphers) and hence, all the ordered pairs of subsets Sa and So

should be retrieved alternatively using the respective inverse chains CHAIN −1
1

and CHAIN −1
2 . That means, every second bit of each ordered pair of Sa is

encrypted as a first bit of each pair of So. Hence, during retrieval, it is impos-
sible to retrieve the required bit(s) of the subset Sa or So alone without the
aid of other inverse chain.
Further, the last bit bn is encrypted using the single bit encryption SBE as
Es(bn, N , β1, β2, PK 1, PK 2, PK 3) = (γ1, γ2). Finally, the PIR response R is
generated as R = {C1 = (γ1, Ta), C2 = (γ2, To)}. Therefore, for the whole
database, there are two constant k size ciphertexts and (2h − 3) number of
communication bits generated in total. This response R is sent back to the
user.

– Interest Extraction (IE): Using the response R and the private key (p, q),
user Upir privately reads the required bit of the database DB as follows.
Initially, using the ciphertext (γ1, γ2), find the last bit bn as Es(γ1, γ2) = bn.
Since both the chains were adopted criss-cross encryption during response
creation on the server, exact reverse order should be maintained to get the
required bit using the obtained last bit bn and chain specific ciphertexts β1,
β2 and Ta, To.
It is intuitive that the last bit bn of the database DB is always same as the
second bit of Bh ∈ Sa and B′

h−1 ∈ So. Since both the chains CHAIN 1 and
CHAIN 2 have adopted criss-cross encryption, it is also clear that the first bit of
each B′

i ∈ So is always equal to second bit of each Bi ∈ Sa where h−1 ≥ i ≥ 1.
Hence, find the first bits of Bh ∈ Sa and B′

h−1 ∈ So by inverting respective
chains CHAIN 1 and CHAIN 2 and continue the inverse process till the required
bit of interest.

3.3 A Toy Example

Let us consider N = 133, p = 19, q = 7 and database DB = {1, 1, 0, 0, 1, 1, 1, 1}
where |DB| = n = 8. Therefore, Sa = {(1, 1), (0, 0), (1, 1), (1, 1)} and So =
{(1, 0), (0, 1), (1, 1)}. Let α = 25, PK 1 = 44, PK 2 = 48, PK 3 = 15. Let us assume
that the user is interested in b5. An illustrative example is given in Table 3.

316 R. Bhat and N. R. Sunitha

Table 3. An illustrative example of response creation (RC) and interest extraction
(IE) algorithms of the proposed sitPIR scheme.

Response Creation (RC)

Step-1 Step-2

CHAIN 1(N, Sa, α, PK 1, PK 2) CHAIN 2(N, So, α, PK 1, PK 2) Es(·)
1 E(1, 1, 25, 133, 44, 48) = 11

MT (11) = <121, 0>

E(1, 0, 25, 133, 44, 48) = 132

MT (132) = <1, 1>

922 · 48 ≡ 90

1022 · 15 ≡ 51

2 E(0, 0, 121, 133, 44, 48) = 43

MT (43) = <120, 0>

E(0, 1, 1, 133, 44, 48) = 117

MT (117) = <123, 1>

3 E(1, 1, 120, 133, 44, 48) = 106

MT (106) = <64, 1>

E(1, 1, 123, 133, 44, 48) = 102

4 E(1, 1, 64, 133, 44, 48) = 92

β1 = 92, Ta = (0, 0, 1) β2 = 102, T0 = (1, 1) γ1 = 90, γ2 = 51

Therefore, C1 = <90, (0, 0, 1)>, C2 = <51, (1, 1)>

Interest Extraction (IE)

Step-2 Step-1

CHAIN −1
1 (β1, Ta, p, q) CHAIN −1

2 (β2, To, p, q) E−1
s (·)

1 E−1(1, 92, 19, 7, 130, 97) = <64, 1>

MT −1(64, 0, 1) = 106

E−1(1, 102, 19, 7, 130, 97) = <123, 1> 90 ∈ QR

51 ∈ Z
−1
N

2 E−1(1, 106, 19, 7, 130, 97) = <120, 1>

b5 = 1 bn = 1

3.4 Security Proofs

Lemma 3. For all pair-link encryption (E) described in Lemma 2, the input
x ∈ Z

+1
N is identically distributed over QR and QR (or identically distributed

over Z
+1
N).

Proof. Case-1 : Let us consider x ∈ QR and the public key PK 1, PK 2 ∈ Z
+1
N

where PK 1 and PK 2 belong to different subsets either QR or QR (i.e., (PK 1 ∈
QR, PK 2 ∈ QR) or (PK 1 ∈ QR, PK 2 ∈ QR)) from Tables 1 and 2. For all the
pair a, b ∈ {0, 1} with a = b, E successfully generates a unique quadratic residue
ciphertext y ∈ QR. Similarly, for all the pair a, b ∈ {0, 1} with a �= b, E success-
fully generates a unique quadratic non residue ciphertext y ∈ QR.

Case-2 : Let us consider x ∈ QR and the public key PK 1, PK 2 ∈ Z
+1
N

where PK 1 and PK 2 belong to different subsets either QR or QR (i.e., (PK 1 ∈
QR, PK 2 ∈ QR) or (PK 1 ∈ QR, PK 2 ∈ QR)). For all the pair a, b ∈ {0, 1}
with a = b, E successfully generates a unique quadratic non residue ciphertext
y ∈ QR. Similarly, for all the pair a, b ∈ {0, 1} with a �= b, E successfully gener-
ates a unique quadratic residue ciphertext y ∈ QR.

Therefore, for all x ∈ Z
+1
N (whether x ∈ QR or x ∈ QR) and for all the input

pair a, b ∈ {0, 1}, the ciphertext generated from E encryption function is always
identically distributed over Z

+1
N . Therefore, it is now intuitive that the input x

drawn from Z
+1
N is “identically distributed” over QR and QR.

A Novel Tamper Evident Single Database Information-Theoretic PIR 317

Theorem 1. Any two randomly generated PIR queries from the proposed sit-
PIR scheme as described in Definition 1 are identically distributed and hence are
information-theoretically indistinguishable.

Proof. From the response creation algorithm RC of the proposed PIR scheme
described in Sect. 3.2, it is clear that each response creation process involves
the execution of two parallel chains of successive connective functions and input
number to each connective function is always identically distributed over Z+1

N as
described in Lemma 3. Since the input of each E function is identically distributed
over Z+1

N , any two randomly generated PIR queries Qi and Qj , i, j ∈ [n], with the
respective inputs (say) r ∈ Z

+1
N and s ∈ Z

+1
N are always identically distributed.

Since the queries Qi and Qj are identically distributed over Z
+1
N ,

PROB[(Qi, sk) R←− QF (1k) : Adv(n,Qi, 1k) = 1] = PROB[(Qj , sk)
R←− QF (1k) : Adv(n,Qj , 1k) = 1]

(9)

Hence any two randomly selected queries Qi and Qj from query generation
algorithm are always independent to each other and consist of “identically dis-
tributed” input numbers.

If the queries are identically distributed, then the privacy leak through
the mutual information is always zero. Therefore, let any two independent
random variables X and Y be [(Qi, sk) R←− QF (1k) : Adv(n,Qi, 1k) = 1]
and [(Qj , sk) R←− QF (1k) : Adv(n,Qj , 1k) = 1] respectively. Intuitively
PROB(XY) = PROB(X,Y) = PROB(X) · PROB(Y) = PROB(Y X). Then
the conditional distribution of X and Y is calculated as

PROB(X |Y) =
PROB(XY)
PROB(Y)

=
PROB(X) · PROB(Y)

PROB(Y)
= PROB(X)

PROB(Y |X) =
PROB(Y X)
PROB(X)

=
PROB(Y) · PROB(X)

PROB(X)
= PROB(Y)

(10)

Then, the mutual information of X and Y is calculated as

I(X,Y) =
∑

X

∑
Y PROB(X,Y) log

PROB(X,Y)
PROB(X) · PROB(Y)

= 0 = I(X,Y)

(11)
Intuitively, X and Y are information-theoretically indistinguishable. Therefore,
all such queries exhibit perfect privacy i.e, leaks no information about the user
interest on the curious server side.

Theorem 2. For all the single database information-theoretically indistinguish-
able PIR (sitPIR) scheme defined in Definition 1, the server communication cost
is always guaranteed to be O(o(n)+2 log N) where (2 log N) is the fixed size
chain specific ciphertexts.

Proof. By referring the Eqs. 7 and 8, it is clear that the PIR response cre-
ation involves two chain of successive connective functions CHAIN 1 and CHAIN 2.

318 R. Bhat and N. R. Sunitha

There are (h−1) number of connective functions used in CHAIN 1 and each con-
nective function generates one communication bit. Therefore, there are (h − 1)
number of communication bits generated from CHAIN 1 where h = n/2. Similarly,
there are (h−2) number of connective functions used in CHAIN 2 and each connec-
tive function generates one communication bit. Therefore, there are (h−2) num-
ber of communication bits generated from CHAIN 2. In total, considering both
CHAIN 1 and CHAIN 2, there are (h−1)+(h−2) = 2h−3 ⇒ (2·n/2)−3 ⇒ (n−3)
number of communication bits generated from the database which is clearly less
than the database size i.e., o(n). Also, there are two fixed log N size chain
ciphertexts β1, β2. The overall server communication would be (n − 3 + 2
log N) which is slightly greater than the trivial communication (without any
optimization). But, the scheme will achieve non-trivial communication when
((o(n) + 2 log N)/n) = 0 for all c0 > c and n = 2c0 where c is an integer
constant.

Correctness Proof: When the underlying standard quadratic residuosity prod-
uct is correct and the LTDF function of Freeman et al. [13] is successfully
invertible and the communication bit sets Ta, To and the ciphertexts set R
sent from the server are unchanged during transmission, the proposed sitPIR
scheme always generates the required bit of the database. Therefore, ∀z ∈ [n],
for all the security parameter k (∀k ∈ N), for all the RSA composite N , for the
database DB,

IE((R, sk) : R ← RC(Q,DB, n, 1k), (Q, sk) R←− QF (1k)) = bz

Proof. By the Lemma 2, it is clear that each pair-link function of Eq. 3 has unique
solution. That means, for all the given ciphertext, the inverse pair-link function
always produces the unique plaintext. It is intuitive that each chain described
in Definition 3 is composed of combination of pair-link functions described in
Eq. 3 and LTDFs. Since the underlying components produces, unique solution,
the chain also produces the unique solution. Additionally, the criss-cross encryp-
tion ensures that one chain (CHAIN 2) supplies the required bits to the other
chain (CHAIN 1) during retrieval process. Therefore, for all the given ciphertext
and communication bits, CHAIN 2 always gives the unique plaintext bits of So.
For all the given ciphertext and communication bits and the bits supplied by
CHAIN 2, CHAIN 1 always gives the unique plaintext bits of Sa. Hence, for all the
given response and the private key, the interest extraction (IE) algorithm always
produces the required bit of interest.

3.5 Performance

privacy: Since the proposed scheme generates information-theoretic queries,
privacy is evenly distributed over Z

+1
N . This information-theoretic query makes

the curious server to achieve only fair coin toss probability to reveal user privacy.
One of the greatest advantages of the proposed scheme is that the data privacy
level can be adjusted from (pQR + pR) to (pQR + pR + pC).

A Novel Tamper Evident Single Database Information-Theoretic PIR 319

Fig. 1. A single block response creation (RC) and interest extraction (IE) algorithm
execution for the proposed sitPBR scheme.

communication: For the given database of size n, the proposed scheme gener-
ates O(5 log N) number of user query bits, generates O(n − 3 + 2 log N) server
response bits. If the caching is enabled by storing all the communication bits
generated during response creation, then the succeeding PIR invocations gener-
ate only constant size response (i.e., 2 log N bits). Also, note that the non-trivial
communication can be achieved when ((o(n) + 2 log N)/n) = 0 for all c0 > c
and n = 2c0 where c is an integer constant. For example, if k = 2048, the non-
trivial communication can be achieved for all c0 = 18. Similarly, if k = 4096, the
non-trivial communication can be achieved for all c0 = 20.

computation: In the proposed scheme, server executes O((3n/2)−1) number of
modular multiplications from CHAIN 1 function, O((3n/2) − 4) number of mod-
ular multiplications from CHAIN 2 function and two modular multiplications.
User executes minimum two modular multiplications and maximum O(3n − 5)
+ 2 number of modular inverse multiplications. In the criss-cross method,
response creation can be executed with two parallel sub-processes (in which
each sub-process executes each chain in parallel) and interest extraction cannot
be assigned to sub-processes due to the dependency of one chain on the other. In
the snake-walk method, both response creation and interest extraction processes
can be assigned to two sub-processes.

3.6 A Single Database Information-Theoretic Private Block
Retrieval (sitPBR)

The proposed sitPIR scheme is easily extended to sitPBR scheme as follows. Let
a two dimensional matrix n = uv bit database D = {DB1, ··,DBu} where |DBi| =
v, i ∈ [1, u]. The QG algorithm generates identically distributed random queries
{Q1, ··,Qu} and the RC algorithm generates {R1, ··,Ru} responses. Finally, IE

320 R. Bhat and N. R. Sunitha

algorithm retrieves the specific block j ∈ [u] by selecting the respective response
Rj and private key (p, q). The detailed response creation and interest extraction
execution for a single database block is given in Fig. 1. Without extra effort, it
is evident that the integrity of the response sent by the server is verified when
the IE algorithm produces the same residue which was sent in the query.

4 Conclusion

We have successfully constructed the single database information-theoretic
PIR scheme using information-theoretic queries to preserve user privacy and
quadratic residuosity assumption to preserve data privacy. The newly con-
structed pair-link encryption and the criss-cross and snake-walk methods of
PIR encryptions using CHAIN 1, CHAIN 2 in RC algorithm together support the
information-theoretic single database PIR solution. Even though the proposed
scheme fully supports perfect privacy, for practical large database applications, it
is required to reach reasonable communication cost. Hence, the proposed scheme
is only the stepping stone and can further be modified to attain efficient commu-
nication cost using pre-processing techniques. There are several additional open
problems like considering bandwidth utilization, robustness, fault-tolerance etc.
in a single database information-theoretic PIR and among them the construc-
tion of communication efficient perfect privacy preserving single database PIR
solution for privacy critical applications is still an open problem.

References

1. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: Xpir: private informa-
tion retrieval for everyone. Cryptology ePrint Archive, Report 2014/1025 (2014).
https://eprint.iacr.org/2014/1025

2. Beimel, A., Ishai, Y., Kushilevitz, E.: General constructions for information-
theoretic private information retrieval. J. Comput. Syst. Sci. 71(2), 213–247 (2005)

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private infor-
mation retrieval: PIR with preprocessing. In: 20th Annual International Cryptology
Conference Advances in Cryptology - CRYPTO 2000, Santa Barbara, California,
USA, pp. 55–73 (2000)

4. Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval.
J. Crypt. 20(3), 295–321 (2007)

5. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Cryp-
tology ePrint Archive, Report 1998/003 (1998). http://eprint.iacr.org/1998/003

6. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

7. Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private informa-
tion retrieval. Cryptology ePrint Archive, Report 2017/568 (2017). https://eprint.
iacr.org/2017/568

8. Chakrabarti, A., Shubina, A.: Nearly private information retrieval. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 383–393. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74456-6 35

https://eprint.iacr.org/2014/1025
http://eprint.iacr.org/1998/003
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://eprint.iacr.org/2017/568
https://eprint.iacr.org/2017/568
https://doi.org/10.1007/978-3-540-74456-6_35

A Novel Tamper Evident Single Database Information-Theoretic PIR 321

9. Chang, Y.-C.: Single database private information retrieval with logarithmic com-
munication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27800-9 5

10. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of the 36th FOCS, FOCS 1995, pp. 41–50. IEEE Computer Society
(1995)

11. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: Proceedings of 29th STOC, STOC 1997, pp. 304–313. ACM (1997)

12. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

13. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More construc-
tions of lossy and correlation-secure trapdoor functions. Cryptology ePrint Archive,
Report 2009/590 (2009). http://eprint.iacr.org/2009/590

14. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 65

15. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In STOC 1998, pp. 151–160. ACM (1998)

16. Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE
Symposium on Security and Privacy, pp. 131–148 (2007)

17. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private informa-
tion retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 7

18. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: Proceedings of 47th FOCS, FOCS 2006, pp. 239–248. IEEE Computer Society
(2006)

19. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of 38th FOCS,
FOCS 1997, p. 364. IEEE Computer Society (1997)

20. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for
non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 9

21. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992 23

22. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D.,
Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14423-3 14

23. Liu, T., Vaikuntanathan, V.: On basing private information retrieval on NP-
hardness. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
372–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 16

24. Aguilar-Melchor, C., Gaborit, P.: A lattice-based computationally-efficient private
information retrieval protocol (2007)

25. Trostle, J., Parrish, A.: Efficient computationally private information retrieval from
anonymity or trapdoor groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić,
I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18178-8 10

https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-540-27800-9_5
http://eprint.iacr.org/2009/590
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/978-3-642-13013-7_7
https://doi.org/10.1007/3-540-45539-6_9
https://doi.org/10.1007/3-540-45539-6_9
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-642-14423-3_14
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-642-18178-8_10

Attacks and Software Security

Practical Algebraic Side-Channel Attacks
Against ACORN

Alexandre Adomnicai1,2(B) , Laurent Masson1 ,
and Jacques J. A. Fournier3

1
Trusted Objects, Aix-en-Provence, France

{a.adomnicai,l.masson}@trusted-objects.com
2

Mines Saint-Étienne, CEA-Tech, Centre CMP, Gardanne, France
3

Univ. Grenoble Alpes, CEA-LETI, DSYS, Grenoble, France
jacques.fournier@cea.fr

Abstract. The authenticated cipher ACORN is one of the two finalists
of the CAESAR competition and is intended for lightweight applica-
tions. Because such use cases require protection against physical attacks,
several works have been undertaken to achieve secure implementations.
Although dedicated threshold and masked schemes have been proposed,
no practical side-channel attack against ACORN has been published in
the literature yet. It has been theoretically demonstrated that ACORN
is vulnerable against differential power analysis but the feasibility of the
attack has not been validated in a practical manner. This paper details
the results obtained when putting the attack into practice against a soft-
ware implementation running on a 32-bit micro-controller. Especially,
these practical results led us to propose two optimizations of the ref-
erence attack: one that requires less knowledge of initial vectors and
another one that is less prone to errors and requires fewer acquisitions.

Keywords: ACORN · Authenticated encryption ·
Side-channel attacks

1 Introduction

In January 2013, the competition for authenticated encryption: security, appli-
cability, and robustness (CAESAR) has been launched with the objective to
push for the adoption of authenticated encryption schemes that offer advantages
over AES-GCM and are suitable for widespread adoption. In March 2018, the
finalists for different use cases were announced. Among them, ACORN is still
competing for lightweight applications. This category is defined by various cri-
teria such as compactness of the implementation (in software and hardware), a
low overhead for short messages and an intrinsic ability to protect against phys-
ical attacks. While several studies have been carried out in order to investigate
the last point, most of them discuss the susceptibility of ACORN towards fault
attacks [4,14,19]. The first work with regards to side-channel attacks has been
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 325–340, 2019.
https://doi.org/10.1007/978-3-030-12146-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_20&domain=pdf
http://orcid.org/0000-0003-1210-8046
http://orcid.org/0000-0002-5835-4616
http://orcid.org/0000-0001-8185-892X
https://doi.org/10.1007/978-3-030-12146-4_20

326 A. Adomnicai et al.

recently published [5]. In this paper, the authors propose threshold implementa-
tions of some CAESAR candidates, including ACORN, in order to compare their
ability to integrate countermeasures against differential power analysis (DPA)
in hardware. To justify the need of such countermeasures, they apply the non-
specific t-test [13] to each unprotected implementation on a Spartan 6 FPGA in
order to detect the presence of leakages. Their results show that ACORN seems
to be the most leakage resilient candidate in the unprotected setting and has the
lowest area when implemented with countermeasures. The second work dealing
with side-channel attacks follows the same approach by studying the integration
of the masking countermeasure to the finalists ACORN and Ascon in software [1].
This latter also introduces the first theoretical DPA against ACORN but does
not provide any practical results. Therefore, the only two available studies on
the susceptibility of ACORN towards side-channel analysis only deal with leakage
detection and theoretical attacks.

Our Contribution. Although leakage assessment methodologies give a good
overview of the resilience of an implementation against side-channel attacks, it
might not be sufficient to guarantee its security level [16]. Because such statistic
tools are not meant to perform a key recovery, it is recommended to run addi-
tional tests (e.g. DPA) in order to assess the security of an implementation in
an accurate manner. However, the only DPA against ACORN reported in the
literature has not been validated in practice. To fill the gap, we run the attack
described in [1] on a software implementation of ACORN on a 32-bit microcon-
troller. In addition to bringing information on the effectiveness of the attack and
the difficulties that might be encountered in practice, our results allow us to
introduce more efficient attack paths.

Outline. The rest of this paper is organised as follows. Section 2 briefly recalls
the specification of ACORN and the principle of correlation eletromagnetic anal-
ysis. Section 3 recalls the theoretical attack against this algorithm and provides
some missing elements in order to put it into practice. Subsequently, Sect. 4
details how the attack was applied in a practical manner and presents the results
obtained. Section 5 introduces two optimized variants of the reference attack,
each one having its own advantages. Finally, we summarise our main results and
provide some perspectives in Sect. 6.

2 Preliminaries

2.1 ACORN

ACORN [18] is a stream cipher based authenticated encryption with associated
data (AEAD) algorithm designed by Hongjun Wu. ACORN uses a 128-bit key,
a 128-bit initialization vector (IV) and produces a 128-bit authentication tag.
Its internal state is 293-bit long and consists of the concatenation of six LFSRs
in addition to a 4-bit register, as shown in Fig. 1. We note Si the state after i
updates and Sj the jth bit of the state.

Practical Algebraic Side-Channel Attacks Against ACORN 327

0 23 60

⊕

⊕

61 66 106

⊕

⊕

107 111 153

⊕

⊕

154 160 192

⊕

⊕

193 196 229

⊕

⊕

230 235 288

⊕

⊕

289 292

⊕
mi

fi

Fig. 1. The concatenation of 6 LFSRs in ACORN. fi and mi indicate the overall feed-
back bit and the message bit for the i

th
step, respectively.

ACORN relies on three main functions: an output keystream generation func-
tion, a nonlinear feedback function, and a state update function. The keystream
generation function is defined by

κ(S) = S12 ⊕ S154 ⊕ Maj(S235, S61, S193) ⊕ Ch(S230, S111, S66) (1)

where Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) and Ch(x, y) = (x ∧ y) ⊕
(¬x ∧ z). The nonlinear feedback function is defined by

ϕ(S, k, ca, cb) = S0 ⊕ ¬S107 ⊕Maj(S244, S23, S160)⊕ (ca∧S196)⊕ (cb ∧ k). (2)

The variables ca and cb allow to define different variants of the feedback func-
tion for the four phases of the cipher: initialization, additional data processing,
encryption and tag generation. All of them rely on the state update function,
defined in Algorithm 1, which is the core of ACORN.

Algorithm 1. StateUpdate(Si,mi, ca, cb)

S
i
289 ← S

i
289 ⊕ S

i
235 ⊕ S

i
230 � Update using six LFSRs

S
i
230 ← S

i
230 ⊕ S

i
196 ⊕ S

i
193

S
i
193 ← S

i
193 ⊕ S

i
160 ⊕ S

i
154

S
i
154 ← S

i
154 ⊕ S

i
111 ⊕ S

i
107

S
i
107 ← S

i
107 ⊕ S

i
66 ⊕ S

i
61

S
i
61 ← S

i
61 ⊕ S

i
23 ⊕ S

i
0

ksi ← κ(S
i
)

ci ← ksi ⊕ mi � Encryption of the input
fi ← ϕ(S

i
, ksi, ca, cb) � Nonlinear feedback bit generation

for j from 0 to 291 do
S

i+1
j ← S

i
j+1 � Shift the state

S
i+1
292 ← fi ⊕ mi � Injection of the input

Initialization. The initialization phase takes as input the encryption key and
the IV. First, the entire state is initialized to zero. Then the cipher is run for
1792 steps as described in Algorithm 2.

Additional Data Processing. After the initialization step, the associated data
is used to update the state. The cipher is run for at least 256 steps, even if there
is no associated data to process.

328 A. Adomnicai et al.

Algorithm 2. AcornInit(S0,K, IV)

(S
0
0 , ..., S

0
292) ← (0, ..., 0) � Initialize the state to zero

for i from 0 to 127 do
S

i+1 ← StateUpdate(S
i
, Ki, 1, 1) � Update the state with key bits as input

for i from 0 to 127 do
S

129+i ← StateUpdate(S
128+i

, IVi, 1, 1) � Update the state with IV bits as
input

S
257 ← StateUpdate(S

256
, K0 ⊕ 1, 1, 1)

for i from 1 to 1535 do
S

257+i ← StateUpdate(S
256+i

, Ki mod 128, 1, 1) � Update the state with key bits
as input

Encryption. At each step of the encryption, one bit from the plaintext is
encrypted. The cipher is run for at least 256 steps, even if there is no plain-
text to encrypt.

Finalization. At the end, an n-bit authentication tag is computed. The state is
updated 768 times and the tag consists of the last n keystream bits generated.

2.2 Correlation Electromagnetic Analysis

Since the publication of DPA [9], it is common knowledge that the analysis of
the power consumed by the execution of a cryptographic primitive might reveal
information about the secret involved. A few years later, correlation power anal-
ysis (CPA) has been widely adopted over DPA as it requires fewer traces and has
been shown to be more efficient [3]. The principle is to target a sensitive inter-
mediate state of the algorithm which depends on a subpart of the key, and try to
predict its value for all hypotheses. The function that defines the intermediate
state from the known input and the subkey is called selection function. Then, to
uncover the link between these predictions and the leakage measurements, the
Pearson correlation coefficient between these two variables is computed using
an appropriate leakage model. The Hamming weight (HW) and the Hamming
distance (HD) models are the most commonly used models to simulate the leak-
age of a cryptographic device. For each subkey hypothesis, it results in a value
between −1 and 1, indicating how much it correlates with the recorded values
for every point in time. Finally, the hypothesis which matches with the real sub-
key should return a significantly higher coefficient than the other hypotheses.
The procedure is described in details in Algorithm3. This attack remains valid
when analyzing electromagnetic emanations [6,11] instead of power consump-
tion, since they are mainly due to the displacement of current through the rails
of the metal layers. In this case, we refer to it as correlation electromagnetic
analysis (CEMA).

Practical Algebraic Side-Channel Attacks Against ACORN 329

Algorithm 3. CEMA(ϕ, L, D1···n, [a, b], M1···n)

Require: Selection function ϕ ; Leakage model L ; Data acquisitions D
1···n

; Interval
of samples to consider [a, b] ; Input messages M

1···n

Ensure: subkey candidate k̄
for i from 1 to n do

for k from 0 to |K − 1| do � K denotes the key search space

H
i
k ← L

(
ϕ(k, M

i
)
)

� Prediction of the intermediate state leakage

for i from a to b do � For each sample to consider
for k from 0 to |K − 1| do

C
i
k ← Corr

([
H

1
k , · · · , H

n
k

]
,
[
D

0
i , · · · , D

n
i

])

Ck̄ ← max(C) � Most likely subkey among all samples in [a, b]

3 Reference Attack Against ACORN

3.1 Theoretical Basics

The attack introduced in [1] details how a DPA can be mounted against leakages
caused by the calculation of Si+1

292 ← fi ⊕ mi when updating the state update
during the initialization phase for 128 ≤ i ≤ 255. More precisely, it assumes
the knowledge of the input mi = IVi−128 and thus targets the feedback bits fi.
However, because feedback bits are defined by nonlinear combinations of several
key bits, the attack does not lead to a direct key recovery but returns a system
of Boolean equations to be solved. This kind of attack is called algebraic side-
channel attack (ASCA) [12] and has already been applied to other stream ciphers
such as Trivium and Grain [8].

In the case of ACORN, the state is first updated 128 times with the key.
Especially, after the 128th initialization step, the state is as follows

(
S

128
0 , ..., S

128
164

)
= (0, ..., 0)

(
S

128
165 , ..., S

128
198

)
= (¬K0, ...,¬K33)

(
S

128
199 , ..., S

128
201

)
= (K34 ⊕ K0, ..., K36 ⊕ K2)

(
S

128
202 , ..., S

128
218

)
= (¬K37 ⊕ K3 ⊕ K0, ...,¬K53 ⊕ K19 ⊕ K16)

(
S

128
219 , ..., S

128
223

)
= (K54 ⊕ K20 ⊕ K17 ⊕ K0, ..., K58 ⊕ K24 ⊕ K21 ⊕ K4)

(
S

128
224 , ..., S

128
229

)
= (¬K59 ⊕ K25 ⊕ K22 ⊕ K5 ⊕ K0, ...,¬K64 ⊕ K30 ⊕ K27 ⊕ K10 ⊕ K5)

(
S

128
230 , ..., S

128
261

)
= (¬K65 ⊕ K11 ⊕ K6, ...,¬K96 ⊕ K42 ⊕ K37)

(
S

128
262 , ..., S

128
272

)
= (K97 ⊕ K43 ⊕ K38 ⊕ f97, ...,K107 ⊕ K53 ⊕ K48 ⊕ f107)

(
S

128
273 , ..., S

128
288

)
= (¬K108 ⊕ K54 ⊕ K49 ⊕ K0 ⊕ f108, ...,¬K123 ⊕ K69 ⊕ K64 ⊕ K15 ⊕ f123)

(
S

128
289 , ..., S

128
292

)
= (¬K124 ⊕ f124, ...,¬K127 ⊕ f127)

(3)

330 A. Adomnicai et al.

where fi defines the nonlinear feedback bit.

fi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ i ≤ 96

Ki−97 if 97 ≤ i ≤ 99

(¬Ki−58) ∧ (¬Ki−100) ⊕ Ki−97 if 100 ≤ i ≤ 111

(Ki−58 ⊕ Ki−112) ∧ (¬Ki−100) ⊕ Ki−97 if 112 ≤ i ≤ 116

¬ (Ki−58 ⊕ Ki−112 ⊕ Ki−117) ∧ (¬Ki−100) ⊕ Ki−97 if 117 ≤ i ≤ 127

(4)

Then, the state is updated with the IV as input for the next 128 steps. As a
result, one can run a DPA by targeting the result of the XOR between IV bits
and feedback bits in order to get a system of Boolean equations to be solved.
However, fi is constant for a given key if and only if i ≤ 176. Indeed, from
i = 177, IV bits that have been injected into the internal state have been shifted
to such an extent that they are involved in the computation of fi. Therefore, the
use of XOR as selection function is only possible from f128 to f176, which results
in a Boolean system F that depends on all key bits.

The task of recovering the key bits from F can be reduced to a variant of
the Boolean satisfiability (SAT) problem, which decides whether a given propo-
sitional formula in conjunctive normal form (CNF) is satisfiable. As the CNF
derived from F is satisfiable at least by the encryption key K, the purpose of the
attack is to get all of the truth assignments of SAT. Because F defines a system
of 49 equations with 128 unknowns, there are so many solutions that we were
not able to determine the number of truth assignments by means of 600 core-
hours. In order to reduce the number of solutions, it is possible to extend F by
recovering the next feedback bits using more sophisticated selection functions.

Actually, the DPA should not target the next fi themselves but their com-
ponent parts that are IV-independent. The principle is to isolate the key bit
combinations from the IV bits so that they can be recovered through a DPA
and then be added to the Boolean system. As a result, each DPA against fi
for i ≥ 177 adds n + 1 equations to the Boolean system where n is the number
of IV bits involved in the calculation of fi. The authors computed the value of
each equation of F for a random key and investigated how many equations are
necessary to return a single key hypothesis. Their experimentations led to the
conclusion that F has a unique truth assignment only if it results from the leak-
age of at least the first 82 updates (i.e. from f128 to f209). Therefore, ACORN
is theoretically vulnerable to DPA and it is only necessary to have knowledge of
the first 82 IV bits to recover the entire encryption key.

3.2 Remarks and Clarifications

Although [1] clearly exhibits how to proceed in order to isolate the key bit
combinations when a single IV bit interferes in the recovery of fi with i ≥ 177,
the case where multiple IV bits are involved is left to the reader as an exercise.
Thanks to the distributive property of AND over XOR, fi can be rewritten in
terms of IV bits as shown in Table 1, where f ′

i refers to fi for the null IV.

Practical Algebraic Side-Channel Attacks Against ACORN 331

Table 1. Intermediate bit βi∈I to consider when running a DPA against f128+i ⊕ IVi

I βi∈I
[0, 48] f128+i ⊕ IVi

[49, 57] f
′
128+i ⊕

(
S
128+i
160 ∧ IVi−49

)
⊕ IVi

[58, 62] f
′
128+i ⊕

(
S
128+i
160 ∧ IVi−49

)
⊕

(
S
128+i
193 ∧ IVi−58

)
⊕ IVi

[63, 96] f
′
128+i ⊕

(
S
128+i
160 ∧ IVi−49

)
⊕

(
S
128+i
193 ∧ IVi−58

)
⊕

(
S
128+i
111 ∧ IVi−63

)
⊕ IVi

It straightforwardly follows the definition of the selection function ϕi∈I to
use for a given feedback bit index.

ϕi :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x �→ x ⊕ IVi if 0 ≤ i ≤ 48

(x, y) �→ x ⊕ (
y ∧ IVi−49

) ⊕ IVi if 49 ≤ i ≤ 57

(x, y, z) �→ x ⊕ (
y ∧ IVi−49

) ⊕ (
z ∧ IVi−58

) ⊕ IVi if 58 ≤ i ≤ 62

(x, y, z, t) �→ x ⊕ (
y ∧ IVi−49

) ⊕ (
z ∧ IVi−58

) ⊕ (
t ∧ IVi−63

) ⊕ IVi if 63 ≤ i ≤ 96

(5)

Throughout this paper, FI refers to the system resulting from the leakage of
βi∈I . In order to express the values of FI in terms of key bits, we implemented a
software version of ACORN which operates on strings instead of numeric values
(i.e. ‘a’ ⊕ ‘b’ = ‘a ^ b’). For instance, F[0,81] which should return a unique
solution according to [1], is defined in Eq. 6.

F[0,81]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(¬K70 ⊕ K11 ⊕ K16) ∧ ¬K28 ⊕ K31 = f128

.

.

.
.
.
.

(¬ (K69 ⊕ K10 ⊕ K15) ∧ ¬K27 ⊕ K30 ⊕ K127 ⊕ K68 ⊕ K9 ⊕ · · ·) ∧ · · · = f176

(f128 ⊕ K69 ⊕ K10 ⊕ K74 ⊕ K20) ∧ S
177
160 ⊕ ¬ (K61 ⊕ K2 ⊕ K7) ⊕ · · · = f

′
177

.

..
.
..

(f160 ⊕ (¬K44 ∧ ¬K2) ⊕ K5 ⊕ K102 ⊕ K43 ⊕ K48) ∧ (¬K60 ⊕ · · ·) ⊕ · · · = f
′
209

¬K44 ⊕ K7 ⊕ K10 ⊕ K5 ⊕ K11 = S
177
160

.

.

.
.
.
.

K76 ⊕ K17 ⊕ K22 ⊕ K39 ⊕ K2 ⊕ K42 ⊕ K8 ⊕ K37 ⊕ K0 ⊕ K3 ⊕ · · · = S
209
160

¬K86 ⊕ K27 ⊕ K32 ⊕ K49 ⊕ K12 ⊕ K14 ⊕ K52 ⊕ K15 ⊕ K18 = S
186
193

.

..
.
..

(¬K51 ∧ ¬K9) ⊕ K21 ⊕ K109 ⊕ K50 ⊕ K55 ⊕ K1 ⊕ K72 ⊕ K13 ⊕ · · · = S
209
193

¬K9 = S
191
111

.

.

.
.
.
.

¬K27 = S
209
111

(6)

Because the equations resulting from the recovery of S128+i
111 depend on a

single key bit, they are especially useful to solve F[0,81]. As a result, it might be
interesting to ignore leakages related to f128+i for i ∈ [0, 62] and rather focus on
F[63,96].

332 A. Adomnicai et al.

4 From Theory to Practice

4.1 Targeted Implementation

Although ACORN is designed to process one bit per step, because its smallest
LFSR is 37-bit long, up to 37 steps can be processed in parallel. Within the
scope of the CAESAR contest, Hongjun Wu provided an optimized software
implementation which processes 32 steps at once. In this way, each function
defined in Sect. 2 should be seen as operating on 32-bit words instead of bits. Its
implementation dedicates a 64-bit register to each LFSR. Although it consumes
more memory than needed, since all LFSRs contains less than 64 bits, it increases
the performances by saving some instructions in order to build the 32-bit working
variables. An ARM assembly implementation of the state update function based
on the same principle is provided in [1]. We chose to run the attack against
this specific implementation, as it is the most appropriate for 32-bit platforms.
The hard-coded 128-bit encryption key K = ‘Encryption key K’ was used to
encrypt and authenticate 5 000 messages, using random IVs.

4.2 Experimental Setup

All practical experiments presented below were done using a microcontroller
equipped with an ARM Cortex-M3 running at 24 MHz. Note that the device
under test does not embed any hardware countermeasure against side-channel
attacks. A trigger signal was inserted at the beginning and the end of the initial-
ization phase in order to guarantee a proper synchronization. EM emanations
were measured using a Langer HF-U 5 near-field probe (30 MHz–3 GHz) com-
bined with a Langer PA 303 BNC preamplifier providing a gain of 30 dB. The
sampling acquisition was performed using a PicoScope 6404D sampled at 1 GS/s.
We recorded the leakage from state updates where IV words are given as input,
but also from five further ones in case they would also contain information to
exploit. As shown in Fig. 2, state updates are clearly discernible and each of
them are roughly made up of 10 000 samples.

Fig. 2. Data acquisition of nine 32-bit state updates during the initialization phase

Practical Algebraic Side-Channel Attacks Against ACORN 333

4.3 Practical Correlation Electromagnetic Analysis

Even if the targeted feedback bits are actually stored in 32-bit registers, it has
been proven that one can compute a partial correlation of the entire variable in
order to reduce the computational complexity [17]. Therefore we chose to apply
the attack as defined above, in a mono-bit manner, using the Hamming weight
leakage model and the Pearson’s correlation coefficient as distinguisher. In order
to precisely target leakages related to the insertion of f128+i into the state, the
window on which the attack is run depends on the feedback bit index. More
precisely, an attack against f128+i ⊕ IVi is managed by executing

CEMA

(
ϕi,HW,D1···5 000,

[
10 000 ×

⌈
i

32

⌉
+1, 10 000 ×

⌈
i + 32

32

⌉]
, IV 1···5 000

)
.

As suggested in the theoretical specification, we run the attack for i from 0
to 81. After assigning the CEMA results to the corresponding equations within
F[0,81], they are converted into CNF formulas using the bc2cnf tool [7] and
finally given as input to the SAT solver CryptoMiniSat5 [15]. On the first try,
it turns out that the input system is not satisfiable and therefore does not lead
to a key recovery. Because this issue can be due to many factors (e.g. some erro-
neous CEMA results or ineffectiveness of some selection functions), we carried
out investigations starting by visually examining the CEMA output for various
feedback bits.

Figure 3 illustrates the points of interests (POI) for some of them. The first
observation that can be made is that information leakage is not identical for all
feedback bits. For instance, Fig. 3a shows three samples (5 913, 7 245 and 9 160)
that might reveal information about f128 while Fig. 3b shows only two (5 913
and 9 329) regarding f157.

Time sample
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) f128 ⊕ IV0

Time sample
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(b) f157 ⊕ IV29

Time sample
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(c) f159 ⊕ IV31

Fig. 3. POI for several feedback bits during the first state update

Because the implementation processes 32 steps at once, all but the last four –
stored in the 4-bit register – feedback bits have already been updated using S230

and S235 before being added to the state. For instance, after the state update of
S128 with IV0···31 as input, the last 32 bits of S160 are as follows.

334 A. Adomnicai et al.

(
S

160
261 , · · · , S

160
288

)
=

(
f128 ⊕ S

132
230 ⊕ S

132
235 ⊕ IV0, · · · , f155 ⊕ S

159
230 ⊕ S

159
235 ⊕ IV27

)
(
S

160
289 , · · · , S

160
292

)
= (f156 ⊕ IV28, · · · , f159 ⊕ IV31)

(7)

Especially, the implementation computes (fi ‖ · · · ‖ fi+31) ⊕ (IVi ‖ · · ·
‖IVi+31) before finally updating its 28 most significant bits and adding it into
the state. Therefore, ϕi∈[0,48] should not only return a candidate for f128+i, but
also for f1

128+i = f128+i ⊕ S132+i
230 ⊕ S132+i

235 when i < 28 mod 32. Moreover, the
implementation of the state update function is generic in the sense that the input
is always encrypted using the keystream, even during the initialization phase.
Although encryption is not necessary during this phase, it allows the use of the
same code through all the authenticated encryption process. As a result, the
selection function ϕi∈[0,48] also targets ksi ⊕ IVi unintentionally.

These remarks highlight the first difficulty when putting the attack into prac-
tice. Because selection functions can lead to the recovery of several key bit com-
binations (keystream, feedback and updated feedback bits), an attacker has to
associate each leakage to an intermediate value. Indeed, if the highest correla-
tion coefficient is reached for the keystream bit but its value is assigned to the
feedback bit equation, then the ASCA will fail because of an erroneous Boolean
system. For instance, this scenario is depicted in Fig. 3c where the highest corre-
lation peak is reached for the leakage of ks159 ⊕ IV31 instead of f159 ⊕ IV31. The
methodology that was used to clearly identify each leakage is described below.

When targeting software implementations on load/store architectures, data
transfers due to memory accesses are known to leak the most information com-
pared to arithmetic and logic operations, which only occur between registers
and are usually more difficult to exploit in practice [2,10]. Especially, on top of
memory accesses that store the last 32 bits into the state as described in Eq. 7,
the assembly code under test performs two additional store instructions that are
likely to be critical. It consists of (ksi ‖ · · · ‖ ksi+31) ⊕ (IVi ‖ · · · ‖ IVi+31) as
computation of the ciphertext, and (f1

128+i ‖ · · · ‖ f1
155+i) ⊕ (IVi ‖ · · · ‖ IVi+27) as

computation of the updated feedback word in a temporary register. Therefore,
attacks using ϕi∈[0,48] should lead to three leakages for i < 28 mod 32 and only
two for i ≥ 28 mod 32, which is consistent with the results from Fig. 3.

As a result, our first attempt to run the attack in practice led to an unsat-
isfiable system because some CEMA results did not match the expected key bit
combinations. More generally, our investigations highlight that the theoretical
DPA against ACORN as described in Sect. 3 does not necessarily apply to all
unprotected implementations. However, a tweaked version of the attack can still
be applied in order to deal with exploitable leakages on the device under test.
We chose to ignore leakages related to ciphertext computations as they can be
easily avoided during the initialization phase.

The required modifications affect some of the selection functions. Indeed, even
if they remain valid when i ≥ 28 mod 32, this is not the case anymore from i = 54
since S132+i

235 depends on IV0. In this case, additional IV bits have to be considered.
The tweaked selection functions are noted ϕ1

i and are defined in Eq. 8.

Practical Algebraic Side-Channel Attacks Against ACORN 335

ϕ1
i =

⎧⎪⎨
⎪⎩

ϕi if i ≥ 28 mod 32 or i ≤ 54
ϕi−54 ◦ ϕi if 54 ≤ i ≤ 58
ϕi−59 ◦ ϕi−54 ◦ ϕi otherwise

(8)

Of course, the Boolean system F has to be modified in order to be compliant
with the intermediate bits defined by ϕ1

i , and we refer to this variant as F 1. As
leakages related to keystream words are not taken into consideration, the attack
is run on the last 3 000 samples of each state update window, by executing for i
from 0 to 81,

CEMA

(
ϕ

1
i , HW, D

1···5 000
,

[
10 000 ×

⌈
i

32

⌉
+ 7 000, 10 000 ×

⌈
i + 32

32

⌉]
, IV

1···5 000

)
.

This time, the attack is successful as the resulting system F 1
[0,81] is satisfiable

and returns the expected key as the unique solution. Moreover, unlike F[0,n] that
requires n ≥ 81 to return a unique solution, n ≥ 78 is enough for F 1

[0,n]. For
each kind of selection function, Fig. 4 shows a CEMA result and the maximum
correlation coefficient reached for each key hypothesis, depending on the number
of acquisitions.

Key hypothesis
0 1

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Number of acquisitions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) ϕ
1
0 returns f

1
128 = 1

Key hypothesis
0 1 2 3

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Number of acquistions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) ϕ
1
49 returns f

1
177 S

177
160 = (10)2

Key hypothesis
0 1 2 3 4 5 6 7

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Number of acquisitions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt
s

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) ϕ
1
58 returns

f
1
186 ‖ S

186
160 ‖ S

186
193 = (100)2

Key hypothesis
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Number of acquisitions
0 1000 2000 3000 4000 5000

C
or

re
la

tio
n

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) ϕ63 returns
f191||S191

160 ||S191
193 ||S191

111 = (0110)2

‖

Fig. 4. Experimental results for the different selection functions

4.4 Lessons Learned

Several conclusions can be drawn from these experimentations. First, although
the practical application does not exactly follows the theoretical specification, it

336 A. Adomnicai et al.

still validates the reference attack in the sense that the evaluation of selection
functions remains the same. Indeed, the XOR of additional IV bits does not
change the way the hypothetical bits interact with each other as detailed in
Eq. 9.

ϕ65(x, y, z, t) = x ⊕ (y ∧ IV16) ⊕ (z ⊕ IV7) ⊕ (t ∧ IV2) ⊕ IV65

ϕ
1
65(x, y, z, t) = x ⊕ (y ∧ IV16) ⊕ (z ⊕ IV7) ⊕ (t ∧ IV2) ⊕ (IV65 ⊕ IV11 ⊕ IV6)

(9)

Second, since f128+i has to be XORed with IVi at some point, it might
be tempting to perform this calculation during the encryption step in order
to achieve a generic implementation of the state update function. However, as
shown by our practical experiments, it can lead to additional leakages that an
attacker could exploit. Therefore, we argue that the encryption computation
should be removed during the initialization phase and that the XOR with IVi

should only occur once f128+i has been entirely computed.
Third, some of the selection functions can be used to recover several inter-

mediate values during the initialization phase (e.g. keystream and feedback bits
for ϕi∈[0,48]). On the one hand, it introduces the fact that several variants of the
attack can be defined depending on the leakage available to the attacker. On the
other hand, it requires to clearly identify the points of interests in order to avoid
misinterpretation of the results. Finally, some of the selection functions perform
better than others. In the next section, we discuss how to take advantage of
these results in order to propose more efficient attack paths.

5 Other Attack Variants

5.1 Minimizing the Knowledge of Initial Vectors

Because the knowledge of plaintexts (or IVs in the case of ACORN) is sometimes
an unrealistic assumption in practice, it might be interesting to identify the most
efficient attack path given the fewer input bits to consider.

In this case, focusing on ϕi∈[0,48] is of great interest as knowledge of a single
IV bit allows to recover several key bit combinations. Because ACORN is defined
by the concatenation of six LFSRs, each feedback bit is updated six times before
being thrown from the internal state. Therefore, regardless of a potential leakage
related to the keystream computation, ϕi∈[0,48] could theoretically be used to
target up to seven key bit combinations: the feedback bit itself f128+i and its
six updated values, noted from f1

128+i to f6
128+i and defined in Eq. 10, which are

computed just before being shifted in each LFSR.

Practical Algebraic Side-Channel Attacks Against ACORN 337

f1
i = fi ⊕ Si+4

235 ⊕ Si+4
230

f2
i = f1

i ⊕ Si+63
196 ⊕ Si+63

193

f3
i = f2

i ⊕ Si+100
160 ⊕ Si+100

154

f4
i = f3

i ⊕ Si+139
111 ⊕ Si+139

107

f5
i = f4

i ⊕ Si+186
66 ⊕ Si+186

61

f6
i = f5

i ⊕ Si+232
23 ⊕ Si+232

0

(10)

In order to investigate whether this statement is verified in practice, we ran
attacks using ϕi∈[0,48] on the same acquisitions but this time, on the entire
window of 90 000 samples. Indeed, focusing on the state updates with IV as input
only allows to exploit leakages related to the update of three LFSRs. Therefore,
also considering five further 32-bit state updates gives access to leakages of all
LFSRs’ updates. As shown in Fig. 5, each state update leads to several leakages
in time (usually two). In addition to the leakage produced by the final store
instruction, we suspect that the other peak is due to a previous memory access
that loads the state from RAM to registers. Note that a 32-bit shift does not
necessarily imply an LFSR update and thus, several leakages may refer to the
same intermediate value. Therefore, the window to consider when targeting a
specific feedback bit depends on its index. For instance, Fig. 5 indicates for each
state update the key bit combination targeted by ϕ29.

Fig. 5. Leakage in time from CEMA
(
ϕ29, HW, D

1···5 000
, [1, 90 000] , IV

1···5 000
)

We tried to apply this attack to our acquisitions. Because the device under
test does not leak f128+i ⊕ IVi when i < 28 mod 32, we were able to exploit
six leakages in this case and seven otherwise. The resulting Boolean system is
noted F 1→6

[0,n] where n refers to the number of IV bits considered. Finally, the
SAT solver returned the correct key hypothesis as the unique truth assignment
for n ≥ 18. However, the resulting system required more than one hour to be
solved on a commonly available laptop while previous systems required less than
a second. Indeed, the more an intermediate value is updated, the more terms are
involved in its definition, significantly increasing the number of CNF clauses in
the resulting system.

338 A. Adomnicai et al.

5.2 Maximizing the Practical Efficiency

In cases where the attacker has full knowledge of the IVs, other leakages should be
preferred. As mentioned in Sect. 3.2, leakages related to f128+i for i ∈ [63, 96] are
of particular interest as some components targeted by ϕi∈[63,96] refer to single
key bits, not combinations of them, allowing to simplify the Boolean system.
Moreover, focusing on F[63,96] brings additional benefits from a practical point
of view.

First, it results from Fig. 4 that ϕ64 shows better results than the other selec-
tion functions. Especially, it seems that the more IV bits involved in the selection
function, the more efficient it is. This can be explained by the fact that selec-
tion functions make IV bits interact with hypotheses through the bitwise AND
operator, which is nonlinear. Nonlinearity is a valuable property for selection
functions as it ensures a good distinguishability between the correct and incor-
rect hypotheses and reduces the risk of false positives in practice. As a result,
ϕi∈[63,96] requires fewer acquisitions than other selection functions for the correct
hypothesis to stand out.

Second, attacking an intermediate bit using ϕi∈[63,96] returns a result for four
Boolean equations at once. This allows to build a meaningful system by targeting
fewer intermediate values and thus, making this attack path less prone to errors.
For instance, F[64,95] is composed of 32×4 = 128 equations and has only six truth
assignments. Another benefit from this variant is the fact that all the leakages
take place during the same state update. Therefore, it is of great interest for
32-bit implementations since it does not require to carefully choose the window
to attack given the index of the targeted feedback bit. We ran this attack on
our acquisitions, using still ϕ1

i∈[64,95] to be compliant with the implementation
under test. Solving F 1

[64,95] led to the correct key as the only solution. In order
to highlight all the differences and subtleties between the different attack paths
discussed above, Table 2 summarizes all the practical results reported in this
paper.

Table 2. Summary and comparison of our practical experiments

F 1
[0,78] F 1

[64,95] F 1→6
[0,18]

IV bits to consider IVi∈[0,78] IVi∈[0,95] IVi∈[0,18]

of required acquisitions ≥4 000 ≥2 000 ≥4 000

of attacked bits 79 32 114

of equations 148 128 114

of CNF clauses 2165 1804 4251

Solving time (i5-6200U CPU) 0.05 s 0.04 s 87 min17 s

Practical Algebraic Side-Channel Attacks Against ACORN 339

6 Conclusion and Perspectives

The main objective of this paper was to validate the practical feasibility of side-
channel attacks against ACORN. To do so, we first defined all selection functions
required to put the attack introduced in [1] into practice. Because our experi-
mental setup did not allow us to exploit some leakages required by the theoretical
specification, we had to make some minor changes in the selection functions and
thus in the resulting Boolean system, in order to achieve a successful attack
against the 32-bit implementation under test. However, it does not call into
question the reference attack as the results of the selection functions’ evalua-
tion remain valid in both cases. Among the different observations made during
our experimentations, two of them allowed us to propose optimized variants of
the attack. First, one of the selection functions can actually be used to recover
several intermediate values, not just the feedback bit itself. It led to an attack
that minimizes the number of IV bits to consider. On the device under test,
we were able to recover the encryption key with only knowledge of 19 IV bits.
Second, another selection function shows significantly better results as it pro-
vides a higher distinguishability of the correct hypothesis for fewer acquisitions.
This observation led to an attack path that requires to target fewer intermediate
values, and is therefore is less prone to errors. On the device under test, we were
able to recover the encryption key by targetting 32 intermediate values with half
as many acquisitions than other attack paths.

Further work should be undertaken on protected implementations in order
to determine whether the selection functions discussed in this paper are efficient
enough to deal with high-order side channel analyses. Moreover, the integration
of countermeasures such as hiding and shuffling in the specific case of ACORN
has not been studied yet and could be of great benefit as some selection functions
require to clearly identify specific points of interests.

References

1. Adomnicai, A., Fournier, J.J., Masson, L.: Masking the lightweight authenticated
ciphers ACORN and Ascon in software. In: Tiplea, F.L., Warinschi, B. (eds.)
Cryptography and Information Security in the Balkans. Springer, Cham (2018).
https://eprint.iacr.org/2018/708

2. Biryukov, A., Dinu, D., Großschädl, J.: Correlation power analysis of lightweight
block ciphers: from theory to practice. In: Manulis, M., Sadeghi, A.-R., Schnei-
der, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 537–557. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39555-5 29

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of acorn with a single fault. J.
Inf. Secur. Appl. 29(C), 57–64 (2016). https://doi.org/10.1016/j.jisa.2016.03.003

5. Diehl, W., Abdulgadir, A., Farahmand, F., Kaps, J.P., Gaj, K.: Comparison of cost
of protection against differential power analysis of selected authenticated ciphers.
In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 147–152, April 2018. https://doi.org/10.1109/HST.2018.8383904

https://eprint.iacr.org/2018/708
https://doi.org/10.1007/978-3-319-39555-5_29
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1016/j.jisa.2016.03.003
https://doi.org/10.1109/HST.2018.8383904

340 A. Adomnicai et al.

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

7. Junttila, T.A., Niemelä, I.: Towards an efficient tableau method for boolean circuit
satisfiability checking. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 553–567. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-
4 37

8. Kazmi, A.R., Afzal, M., Amjad, M.F., Abbas, H., Yang, X.: Algebraic side channel
attack on trivium and grain ciphers. IEEE Access 5, 23958–23968 (2017). https://
doi.org/10.1109/ACCESS.2017.2766234

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

10. McCann, D., Eder, K., Oswald, E.: Characterising and comparing the energy con-
sumption of side channel attack countermeasures and lightweight cryptography on
embedded devices. In: 2015 International Workshop on Secure Internet of Things
(SIoT), pp. 65–71, September 2015. https://doi.org/10.1109/SIOT.2015.11

11. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

12. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

13. Schneider, T., Moradi, A.: Leakage assessment methodology. J. Cryptogr. Eng.
6(2), 85–99 (2016). https://doi.org/10.1007/s13389-016-0120-y

14. Siddhanti, A., Sarkar, S., Maitra, S., Chattopadhyay, A.: Differential fault attack on
grain v1, ACORN v3 and lizard. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.)
SPACE 2017. LNCS, vol. 10662, pp. 247–263. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71501-8 14

15. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

16. Standaert, F.X.: How (not) to use welch’s t-test in side-channel security evalua-
tions. Cryptology ePrint Archive, Report 2017/138 (2017). https://eprint.iacr.org/
2017/138

17. Tunstall, M., Hanley, N., McEvoy, R., Whelan, C., Murphy, C., Marnane, W.:
Correlation Power Analysis of Large Word Sizes (2007). http://www.geocities.ws/
mike.tunstall/papers/THMWMM.pdf

18. Wu, H.: ACORN: A Lightweight Authenticated Cipher (v3). Submission to the
CAESAR competition (2016). https://competitions.cr.yp.to/round3/acornv3.pdf

19. Zhang, X., Feng, X., Lin, D.: Fault attack on ACORN v3. Comput. J. (2018).
https://doi.org/10.1093/comjnl/bxy044

https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44957-4_37
https://doi.org/10.1007/3-540-44957-4_37
https://doi.org/10.1109/ACCESS.2017.2766234
https://doi.org/10.1109/ACCESS.2017.2766234
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/SIOT.2015.11
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/978-3-319-71501-8_14
https://doi.org/10.1007/978-3-319-71501-8_14
https://doi.org/10.1007/978-3-642-02777-2_24
https://eprint.iacr.org/2017/138
https://eprint.iacr.org/2017/138
http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf
http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://doi.org/10.1093/comjnl/bxy044

A Closer Look
at the Guo–Johansson–Stankovski Attack

Against QC-MDPC Codes

Tung Chou(B), Yohei Maezawa, and Atsuko Miyaji

Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,
Osaka 565-0871, Japan

blueprint@crypto.tw, maezawa@cy2sec.comm.eng.osaka-u.ac.jp,

miyaji@comm.eng.osaka-u.ac.jp

Abstract. In Asiacrypt 2016, Guo, Johansson, and Stankovski pre-
sented a reaction attack against QC-MDPC McEliece. In their attack,
by observing the difference in failure rates for various sets Φd of error
vectors, the attacker obtains the distances between 1’s in the secret key
and can thus recover the whole secret key. While the attack appears to be
powerful, the paper only shows experiment results against the bit-flipping
algorithm that uses precomputed thresholds, and the explanation of why
the attack works does not seem to be convincing.

In this paper, we give some empirical evidence to show that the Guo–
Johansson–Stankovski attack, to some extent, works independently of
the way that the thresholds in the bit-flipping algorithm are chosen.
Also, by viewing the bit-flipping algorithm as a variant of “statistical
decoding”, we point out why the explanation of the Guo–Johansson–
Stankovski paper is not reasonable, identify some factors that can affect
the failure rates, and show how the factors change for different Φd.

1 Introduction

In 1978, McEliece presented in his seminal paper [6] the first code-based public-
key encryption system. The paper opens the area of code-based cryptography,
which is considered as an important branch of the post-quantum cryptography
today. The McEliece crpytosystem has stood firmly for 40 years and is thus
considered rather confidence-inspiring. However, the public-key size (typically at
the scale of 1 megabyte) makes it hard to deploy the scheme in some scenarios.

This work is partially supported by JSPS KAKENHI Grant (C) (JP15K00183),
Microsoft Research Asia, CREST (JPMJCR1404) at Japan Science and Technology
Agency, the Japan-Taiwan Collaborative Research Program at Japan Science and Tech-
nology Agency, and Project for Establishing a Nationwide Practical Education Network
for IT Human Resources Development, Education Network for Practical Information
Technologies. Permanent ID of this document: eac422391e669b6d7bbaf8d29c49d2ad.
Date: 2018.11.2.

c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 341–353, 2019.
https://doi.org/10.1007/978-3-030-12146-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-12146-4_21

342 T. Chou et al.

In order to solve the problem of key size, in 2013, Misoczki, Tillich, Sendrier,
and Barreto introduced the usage of QC-MDPC codes for McEliece [7]. Com-
pared to the conventional McEliece system, QC-MDPC enjoys much smaller
key sizes (typically at the scale of a few kilobytes). Despite the large advantage
in key size, the decoding algorithm, the so-called “bit-flipping algorithm”, is a
probabilistic algorithm. Even worse, there is no satisfying way to evaluate the
decoding failure rate when using the bit-flipping algorithm.

In 2016, Guo, Johansson, Stankovski presented in their paper [8] a reaction
attack against QC-MDPC McEliece. In their attack, by observing the difference
in failure rates for various sets Φd of error vectors, the attacker obtains the
distances between 1’s in the secret key and can thus recover the whole secret
key. The Guo–Johansson–Stankovski attack appears to be quite effective as long
as the decoding failures can be observed.

To show the effectiveness of the attack, [8] uses one specific variant of the bit-
flipping algorithm: the variant that uses precomputed thresholds. As shown in
some papers (e.g., [9]), there are many variants which performs better (in terms
of decoding failure rate) than the one with precomputed thresholds. This invokes
the natural questions: is the Guo–Johansson–Stankovski attack still effective
when applied to other variants? Also, although some arguments are given in [8]
to show why the attack works, the arguments are unfortunately not convincing
to us.

In this paper, we first show that the Guo–Johansson–Stankovski attack works
against a rather conservative variant of the bit-flipping algorithm. From the
results, we conclude that there might be some factor that naturally causes dif-
ferent failure rates for different Φd’s. We then discuss about one such factor and
show the corresponding experiment results. Furthermore, we also discuss how to
view the bit-flipping algorithm as statistical decoding. From such a viewpoint,
it can be seen why the explanation in [8] does not seem to be reasonable, and
it is shown in detail how the various factors which can affect the failure rates
change between different Φd.

The organization of the paper is as follows. Section 2 gives a review on some
basic concept related to the Guo–Johansson–Stankovski attack. Section 3 dis-
cusses about the effectiveness of Guo–Johansson–Stankovski attacks against dif-
ferent variants of the bit-flipping algorithm. Section 4 discusses how the bit-
flipping algorithm can be viewed as statistical decoding and identifies two fac-
tors that can affect the failure rate. Section 5 tries to give a unified view of how
Guo–Johansson–Stankovski attack works in the CPA case and the CCA case.

2 Preliminaries

In this section, we give a brief review on the basic concepts of QC-MDPC codes,
the bit-flipping algorithm, and the Guo–Johansson–Stankovski attack.

A Closer Look at the Guo–Johansson–Stankovski Attack 343

2.1 QC-MDPC Codes

“MDPC” stands for “moderate-density-parity-check”. As the name implies, an
MDPC code is a linear code with a “moderate” number of non-zero entries in
a parity-check matrix H. In some sense, MDPC codes are simply LDPC codes
with H with sufficiently high density such that H cannot be easily recovered
when used in code-based cryptography (which is a rather ambiguous definition).

For ease of discussion, in this paper it is assumed H ∈ F
r×n
2 where n = 2r,

even though some parameter sets in [7] allow n = 3r or n = 4r. H can be viewed
as the concatenation of two square matrices, i.e.,

H =
[
H(0)|H(1)

]
,

where H(i) ∈ F
r×r
2 . Each row of H contains a moderate number of 1’s.

“QC” stands for “quasi-cyclic”. Being quasi-cyclic means that each H(i) is
cyclic. For ease of discussion, one may consider

H
(k)
(i+1) mod r,(j+1) mod r = H

(k)
i,j ,

even though [7] allows a row permutation on H. Note that being quasi-cyclic
implies that H has a fixed row weight w. The following is a quasi-cyclic matrix
with r = 5 and w = 4: ⎛

⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

One can use QC-MPDC codes for the McEliece (as in [7]) or Niederreiter [10]
(as in [11]) cryptosystem. One noticeable difference between the QC-MDPC
McEliece/Niederreiter and traditional McEliece/Niederreiter is that there is no
need to permute the columns to obtain the public keys; the public keys are just
systematic generating matrices or systematic parity-check matrices. This allows
us to maintain the quasi-cyclic structure and thus save the public-key size.

The number of errors a code is able to correct is often denoted as t. Since
there is no good way to figure out the minimum distance for a given QC-MDPC
code, t is usually merely an estimated value. In this paper, unless explicitly
stated otherwise, we will consider the parameter set (r, w, t) = (4801, 90, 84).
This parameter set is evaluated to have a 80-bit security level in [7], and it is
the one targeted by [8].

For the discussion in this paper, we reintroduce the concept of “distance
spectrum” presented in [8]. The distance spectrum D(v) for v ∈ F

r
2 is defined as

the multi-set that contains distances of 1’s in the vector, where the distance is
defined in a cyclic way:

D(v) = {min(j − i, i − j + r) | v[i] = v[j] = 1, i < j}.

The distance spectrum of a r × r cyclic matrix is defined to be the distance
spectrum of any row of the matrix. We use D(v)[d] to denote the multiplicity of
d ∈ {1, . . . , �r/2�} in the distance spectrum.

344 T. Chou et al.

2.2 The Bit-Flipping Algorithm

As described in [7], the bit-flipping algorithm is a probabilistic, iterative algo-
rithm for decoding LDPC codes. The algorithm takes a noisy codeword y = c+e
as input. In each iteration, some of the entries of (the current version of) the
noisy codeword y′ are considered to be more likely to be erroneous, and the bits
are flipped to obtain a new (possibly) noisy codeword. In the simplest version of
the algorithm, iterations are repeated until a codeword c′ is reached. Our hope
is that c = c′ so that decoding is successful.

Each iteration starts with computing the syndrome s of the current noisy
codeword. Each entry si then indicates whether the noisy codeword satisfies the
corresponding parity-check equation or not: if si = 1, the noisy codeword does
not satisfy the parity check defined by the i-th row of H (denoted by Hi). The
number of unsatisfied parity checks

uj = |{Hi,j | si = 1}|

for each position of the n positions are then collected to form a vector u. The
vector u serves as an indicator of how likely it is for the positions to be in error:
the larger uj is, the more likely the position is presumed to be in error. Then,
y′

j is flipped if the corresponding uj is considered to be “large enough”. Note
that a simple way to compute u is to sum up all Hi such that si = 1, where the
summation is done in Z

n.
Now the remaining problem is, which bits should be flipped given the vector

u? In [7] two possibilities are given:

– Flip y′
i if ui ≥ Tj , where Tj is a precomputed threshold for the iteration j.

– Flip y′
i if ui ≥ max(u) − δ, where δ is a predefined small value ([7] proposed

to use δ = 5).

We note that, as shown in [9], there are also many other ways to set the thresh-
olds. In particular, [9] proposed to modify y′

i in an “in-place” fashion; one can
consider this as allowing to flip at most one y′

i in each iteration. In the remaining
of this paper, we will focus on “out-of-place” decoders such as the ones given
in [7], where in each iteration we flip all the y′

i with ui greater or equal to the
threshold.

2.3 The Guo–Johansson–Stankovski Attack

In [8], Guo, Johansson, and Stankovski presented an attack against the QC-
MDPC McEliece scheme [7]. Their attack is a reaction attack: the attacker sends
a bunch of ciphertexts to the private-key holder, and by observing whether the
decodings are successful or not, the attacher is able to recover the secret key.
They showed that the attack works in two settings, the “CPA case” and the
“CCA case”.

The CPA case essentially means that the sender is able to choose the error
vector for each ciphertext. The attack works as follows.

A Closer Look at the Guo–Johansson–Stankovski Attack 345

1. For each distance d in {1, . . . , �r/2�}, generate a set Φd of weight-t error
vectors. Each element e ∈ Φd has about t/2 pairs on 1’s that are separated
by distance d, and all the 1’s lie in the first block of e.

2. Send the vectors in all Φd to the secret-key holder and observe the failure rate
Pd for each Φd.

3. Generate a figure that shows the points (d, Pd). Pd will then form several non-
overlapping groups, and each d will then be classified into one of the group
based on Pd. The group with the highest failure rate will then contain all the
distances with multiplicity 0, and the group with the second highest failure
rate will contain distances with multiplicity 1, and so on.

4. With the multiplicities for each d, which essentially shows D(H(0)), run [8,
Algorithm 2] to obtain H(0). The algorithm essentially enumerates all candi-
dates of H(0) that fit the distance spectrum. Once H(0) is obtained, H(1) can
also be obtained easily.

In the CCA case, the sender does not have the ability to choose the error
vector. One can consider that the error vectors are hash outputs. The attack
works as follows.
1. Generate a bunch of ciphertext and let Φ be the corresponding set of error

vectors. For each distance d in {1, . . . , �r/2�}, define Φd to be the set that
contains all elements in Φ that has distance d; that is,

Φd = {e ∈ Φ | d ∈ D(e(0))}
2. Send the vectors in all Φ and observe the failure rate Pd for each Φd.
3. Generate a figure that shows the points (d, Pd). Pd will then form several non-

overlapping groups, and each d will then be classified into one of the group
based on Pd. The group with the highest failure rate will then contain all the
distances with multiplicity 0, and the group with the second highest failure
rate will contain distances with multiplicity 1, and so on.

4. With the multiplicities for each d, which essentially shows D(H(0)), run [8,
Algorithm 2] to obtain H(0). Once H(0) is obtained, H(1) can also be obtained
easily.

Note that, to demonstrate the effectiveness of the attack, [8] uses the bit
flipping algorithm with precomputed thresholds (without specifying the actual
thresholds). There is no evidence in [8] that the attack can work when the
thresholds are chosen in other ways, e.g., when thresholds are set to be max(u)−
δ. In [8] some arguments are given to show why the attack works, but as we will
discuss in Sect. 4.2 the explanation has some flaws.

3 Effectiveness of the Guo–Johansson–Stankovski Attack

In [8], it is shown that the attack works when the thresholds are predefined fixed
values. This naturally causes the doubt that whether the attack can really works
when the thresholds are chosen in other ways (in particular, in more conservative
ways). In this section, we try to give some empirical evidence and argue that the
Guo–Johansson–Stankovski attack, to some extent, is independent of the way
the thresholds are chosen.

346 T. Chou et al.

0.000610

0.000615

0.000620

0.000625

0.000630

0.000635

 0 500 1000 1500 2000

de
co

di
ng

 fa
ilu

re
 ra

te

distance

(a) CPA case

0.000445

0.000450

0.000455

0.000460

0.000465

0.000470

 0 500 1000 1500 2000

de
co

di
ng

 fa
ilu

re
 ra

te

distance

(b) CCA case

Fig. 1. Decoding failure rates for Φd’s. For the CPA case (n, r, w, t) =
(9602, 4801, 90, 84). For the CCA case (n, r, w, t) = (9602, 4801, 90, 90). For the CPA
case |Φd| = 106. For the CCA case we generate is 2.4 · 109 error vectors in total.

3.1 Experiment Results

To understand how the Guo–Johansson–Stankovski attack behaves when the
thresholds are chosen in other ways, we consider the other option described
in [7]: to use max(u) − δ as the thresholds. In particular, we use δ = 0, as this
is more conservative than any δ > 0. Using max(u) as thresholds is apparently
the most conservative strategy among the “out-of-place” decoders. The results
are in Fig. 1. Note that, for the CCA case, in order to increase the failure rate,
we increase t to 90. As shown in the figure, the failure rate decreases as the
multiplicity increases. Such phenomena has been shown in [8] for precomputed
thresholds.

3.2 An Indicator of the Hardness of Decoding

The experiment result in the previous subsection causes the following questions to
rise: can it be that the Guo–Johansson–Stankovski attack actually works indepen-
dent of the thresholds? In other words, is there some reason that makes it intrin-
sically easier to decode vectors in Φd when the multiplicity of d gets larger? To
answer the question, we would like to have an (possibly heuristic) indicator for
the hardness of decoding when given in H and e. Our hope is that the indicator
shows that Φd gets harder to decode as the multiplicity of d gets larger.

Recall that in each iteration of the bit-flipping algorithm, the ri’s with larger
ui’s are flipped. As some non-erroneous positions ri might have ui that are
greater than the threshold, it is possible that some non-erroneous positions are
flipped. Roughly speaking, how much the ui’s for the erroneous positions and the
non-erroneous positions are separated from each other determines how likely it is
to distinguish the two cases. To quantify the idea, we thus consider the differences
of the erroneous positions and the difference of non-erroneous positions. In other
words, we define

Δu =
∑

ei=1

ui/t −
∑

ei=0

ui/(n − t)

and use it as the indicator.

A Closer Look at the Guo–Johansson–Stankovski Attack 347

9.2

9.4

9.6

9.8

0 1 2 3 4

Δ

multiplicity

(a) The CPA case

9.295

9.300

9.305

9.310

9.315

0 1 2 3 4

Δ

multiplicity

(b) The CCA case

Fig. 2. Relationship between Δu and multiplicity.

The experiment results are given in Fig. 2. As shown in the figure, in both
CPA and CCA cases, Δu increases as the multiplicity increases. Therefore, when
Δu is considered, it seems that it should be easier to decode when the multiplicity
increases. This matches our experiment results in the previous subsection and
the results shown in [8].

4 A Deeper Look

In this section, we take a deeper look at the behaviour of the bit flipping algo-
rithm to see what makes the difference in Δu. In particular, we will consider
the bit-flipping algorithm in the view of “statistical decoding” and identify the
factors that affect Δu.

4.1 Statistical Decoding

The statistical decoding algorithm described in [12] works as follows. Given a
noisy codeword y = c + e ∈ F

n
2 and a reasonably-large set Hw ⊂ F

n
2 of weight-w

vectors, the algorithm starts with computing

u =
∑

h∈Hw, hyT=1

h ∈ Z
n.

Then a set I = {i1, . . . , ik} is chosen such that ui1 , . . . , uik are the smallest
entries in u. The set I is then considered as the “information set” (which means
eij are all 0), which can be used to decode y easily. Note that finding Hw can
be a hard problem itself.

At this moment the reader should notice that statistical decoding is quite
similar to the bit-flipping algorithm. Indeed, by letting Hw be the set of rows
of the sparse parity-check matrix, the bit-flipping algorithm works essentially
in the same way as statistical decoding. Therefore, the two algorithms can be
considered to work in the same spirit: the only difference is that the bit-flipping

348 T. Chou et al.

Fig. 3. The values for |s| and Δu/|s| for each multiplicity.

algorithm works in an iterative way, and instead of the smallest entries in u the
bit-flipping algorithm consider the largest entries in order to locate the positions
in error.

In [12], it was discussed why such a simple algorithm actually works. For each
h such that hyT = 1, since the weight of h is only w, the non-zero entries are
more likely to be in error. Let i be a nonzero position in h and hyT = 1, let p+w
be the probability that ei = 1 and q+w be the probability that ei = 0, [12] pointed
out that, as long as w < n/2, we have p+w > q+w . Such bias means that we can
obtain a small amount of information about e for each h that satisfies hyT = 1,
and summing up all such h’s results in the vector u where the erroneous positions
tend to have larger values and the non-erroneous positions tend to have smaller
values.

We can view such a bias in a different but equivalent way. For each h with
hyT = 1, the entries in u which correspond to the non-zero entries in h will be
increases. The bias stated above indicates that, on average, the increase in the
erroneous positions (ui with ei = 1) must be larger than the increase in the
non-erroneous positions (ui with ei = 0). To be more precise, let

� = |{j | hj = ej = 1}|;
∑

ei=1 ui/t would increase by �/t, while
∑

ei=0 ui/(n − t) would increase by
(w − �)/(n − t). Taking (n, r, w, t) = (9602, 4801, 90, 84) as example, this means
that each h would create a difference of at least

A Closer Look at the Guo–Johansson–Stankovski Attack 349

1/84 − (90 − 1)/(9602 − 84) ≈ 0.00255.

By summing up all such h’s, a noticeable difference in
∑

ei=1 ui/t and∑
ei=0 ui/(n − t) can be created.
From the view above, there are two important factors that would affect the

result.

– The first factor is the size of Hw. It is apparently desirable to have a larger
Hw so that we can make Δu larger. In the bit flipping algorithm, the size of
Hw corresponds to the syndrome weight |s|, as each row of the parity-check
matrix can be considered as h in statistical decoding.

– The second important factor is how much we can separate the two cases for
each h, on average for each h with hrT = 1. Note that the larger � is, the more
we can separate the two cases. From the view of the bit-flipping algorithm,
this is simply Δu/|s|.

We thus look at the relationship between |s|, Δu/|s| and the multiplicity; the
result is shown in Fig. 3. As shown in the figure, when the multiplicity increases,
|s| decreases while Δu/|s| increases. Since Δu also increases with the multiplicity,
it is clear that Δu/|s| increases at a faster rate than |s| decreases. From the view
of statistical decoding, when considering |s| only, it seems that the failure rate
should get higher as the multiplicity increases. However, the increase in Δu/|s|
probably compensates for the decrease in |s|, and thus eventually we still have a
lower failure rate for hight multiplicity. We note that similar observation on |s|
has been presented in [13], so we do not take the credit for this part.

The results in Figs. 2 and 3 do not depend on the thresholds of the bit-
flipping algorithm. However, as the change in the distribution of u for different
multiplicity is visible to the decoder, it seems possible to design the thresholds
such that the failure rate increases as the multiplicity increases. We thus stress
that the discussion above on the easiness of decoding with respect to |s| and
Δu/|s| does not take into account how the thresholds are determined.

4.2 Explanation of Guo–Johansson–Stankovski Paper

In [8], in addition to the description of the attack itself, the authors also tried
to give some arguments about why the attack works. Similar to the discussion
in the previous subsection, for each row (say row i) of H, we can define

�i = |{j | Hi,j = ej = 1}|.

Then �i indicates how many entries of u will be correctly changed (and thus
how many will be wrongly changed), after adding Hi into u. Indeed, assum-
ing that si = 0, w − �i entries would be correctly changed and �i would be
wrongly changed; Assuming that si = 1, �i entries would be correctly changed
and w − �i would be wrongly changed. One can thus obtain the following table
(essentially [8, Table 2]).

350 T. Chou et al.

�i #(right change) #(wrong change)

0 w 0

1 1 w − 1

2 w − 2 2

3 3 w − 3
...

...
...

[8] thus concludes that Hi’s with an even �i help to decode, while Hi’s with an
odd �i gives a negative effect on decoding. [8] also concludes that it is desirable
to have more Hi’s with smaller, even �i.

To show the relationship of the argument above and the attack, they consider
two cases in the CPA scenario:

– In CASE-0, the error vectors are from Φd where d /∈ D(H(0)), while
– in CASE-1, the error vectors are from Φd where d ∈ D(H(0)).

Their experiment results are shown in the following table (essentially
[8, Table 3]).

�i CASE-0 CASE-1

0 0.4485 0.4534

1 0.3663 0.3602

≥2 0.1852 0.1864

As shown in the table, in CASE-1 the ratio of �i = 0 increases and the ratio of
�i = 1 decreases. It is argued in [8] that both changes are in favor of decoding, and
this is why we see a lower failure rate for larger multiplicity. It is not discussed
in [8] the impact of �i ≥ 2.

From the perspective of statistical decoding, the explanation in [8] does not
make sense. In particular, from the perspective of statistical decoding, the Hi’s
with odd �i’s are the ones which help to decode, while those with even �i’s do
not help. As an extreme example, if all �i ∈ {0, 2}, then u = 0, which does not
help to decode.

Nevertheless, we follow the approach in [8] to collect the ratios for all possible
values for �i. The results are given in Table 1. The CASE-0 and CASE-1 in [8,
Table 3] corresponds to multiplicity 0 and non-zero multiplicities. Also, in [8,
Table 3] all the cases with � ≥ 2 are considered as one case. Therefore Table 1 is
much more detailed than [8, Table 3].

We note that it is possible to derive |s| and Δu/|s| from Table 1. Let T (m, �)
be the entry of Table 1 for multiplicity m and �i = � (for one of the CPA and
CCA case). Then it is easy to see that, for multiplicity m, |s| is simply

(T (m, 1) + T (m, 3) + T (m, 5) + T (m, 7)) · r,

A Closer Look at the Guo–Johansson–Stankovski Attack 351

while Δu/|s| is simply

T (m, 1) · δ(1) + T (m, 3) · δ(3) + T (m, 5) · δ(5) + T (m, 7) · δ(7)
T (m, 1) + T (m, 3) + T (m, 5) + T (m, 7)

,

where δ(i) = i/t−(w−i)/(n−t). It is probably not so easy to see directly how the
|s| changes when multiplicity increases. However, as the ratio of Hi with �i = 1
decreases and all the ratio of Hi with �i = 3, 5, 7 increases (and as T (m, 1)
dominates T (m, 3), T (m, 5), T (m, 7)), it is clear that Δu/|s| also increases.

Table 1. Relationship between ratios of �i and the multiplicity.

Case mult. �i=0 1 2 3 4 5 6 7 8

CPA 0 0.450502 0.365833 0.141735 0.034886 0.006130 0.000819 0.000087 0.000007 0.000000

1 0.454535 0.360821 0.140756 0.035992 0.006771 0.000994 0.000118 0.000012 0.000000

2 0.458623 0.355647 0.139898 0.037070 0.007395 0.001171 0.000152 0.000016 0.000000

3 0.462740 0.350338 0.139189 0.038161 0.008007 0.001354 0.000187 0.000022 0.000000

4 0.466780 0.345376 0.138350 0.039124 0.008576 0.001527 0.000240 0.000029 0.000000

CCA 0 0.451770 0.362290 0.141901 0.036170 0.006754 0.000985 0.000117 0.000011 0.000001

1 0.451843 0.362204 0.141877 0.036192 0.006767 0.000988 0.000118 0.000012 0.000001

2 0.451934 0.362088 0.141858 0.036218 0.006779 0.000992 0.000118 0.000012 0.000001

3 0.452020 0.361981 0.141838 0.036241 0.006792 0.000997 0.000119 0.000012 0.000001

4 0.452088 0.361898 0.141819 0.036260 0.006802 0.001000 0.000120 0.000012 0.000001

5 A Unified View Between the CPA and CCA Cases

In [8], and also in the experiments for Figs. 1, 2, 3 and Table 1, we consider Φd

with difference definitions in the CPA and the CCA case, but eventually we
observe similar changes in the failure rates, Δu, |s|, and Δu/|s|. This makes us
wonder if there is a unified way to consider the results for the CPA and the CCA
case. In other words, perhaps increasing the multiplicity of d causes some factor
to change in a similar way for the CPA and CCA case, and the factor is what is
really causing the change in Δu, |s|, and Δu/|s|.

From the experiments for the CPA case, it appears that Δu increases, |s|
decreases, and Δu/|s| increases roughly linearly as the multiplicity in D(H(0))
increases. In addition, as the syndrome can be considered as

h(0)(x) · e(0)(x) + h(1)(x) · e(1)(x)

where h(i)(x) and e(i)(x) are corresponding polynomials of H(i) and e(i) in
F2[x]/(xr +1) (as explained in [11]), it seems that the role of e(0)(x) and h(0)(x)
are interchangeable. Therefore, it seems reasonable to assume that Δu would
increase, |s| would decrease, and Δu/|s| would increase roughly linearly as the
multiplicity in D(e(0)) increases. One evidence that supports this assumption is
that we observe similar but much smaller changes in Δu, |s|, and Δu/|s| in the

352 T. Chou et al.

Fig. 4. Relationship between Δu, |s|, Δu/|s| and D(H(0)) ⊗ D(e(0))

CCA case compared to the CPA, and in the CCA case the multiplicity of d in
some e ∈ Φd is much smaller than that for the CPA case (at least �t/2�).

Based on the discussion above, as increasing the multiplicity of d in H(0) and
multiplicity in e(0) should both have help to increase the change in Δu, |s|, and
Δu/|s|, it seems reasonable to assume that the factors change linearly with

D(H(0)) ⊗ D(e(0)) =
∑

i

D(H(0))[i] · D(e(0))[i].

Based on this assumption, we carried out experiments and present the results
in Fig. 4. Interestingly, as shown in the figure, as D(H(0)) ⊗ D(e(0)) increases,
similar linear changes in Δu, |s|, and Δu/|s| can be observed as in Figs. 2 and 3.

The experiment results in [13, Fig. 3] might seem a bit similar to our results.
We note that |s|,Δu/|s|, and Δu are all threshold-independent, while numbers
of iterations in [13, Fig. 3] are threshold-dependent.

References

1. Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. LNCS, vol. 10031. Springer,
Berlin (2016). https://doi.org/10.1007/978-3-662-53887-6. ISBN 978-3-662-
53886-9

2. Bertoni, G., Coron, J.-S. (eds.): CHES 2013. LNCS, vol. 8086. Springer, Berlin
(2013). https://doi.org/10.1007/978-3-642-40349-1. ISBN 978-3-642-40348-4

https://doi.org/10.1007/978-3-662-53887-6
https://doi.org/10.1007/978-3-642-40349-1

A Closer Look at the Guo–Johansson–Stankovski Attack 353

3. Gierlichs, B., Poschmann, A.Y. (eds.): CHES 2016. LNCS, vol. 9813. Springer,
Berlin (2016). https://doi.org/10.1007/978-3-662-53140-2. ISBN 978-3-662-
53139-6

4. Batten, L.M., Safavi-Naini, R. (eds.): ACISP 2006. LNCS, vol. 4058. Springer,
Berlin (2006). https://doi.org/10.1007/11780656. ISBN 3-540-35458-1

5. Lange, T., Steinwandt, R. (eds.): PQCrypto 2018. LNCS, vol. 10786. Springer,
Berlin (2018). https://doi.org/10.1007/978-3-319-79063-3. ISBN 978-3-319-
79062-6

6. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory, pp.
114–116. JPL DSN Progress Report (1978). http://ipnpr.jpl.nasa.gov/progress
report2/42-44/44N.PDF

7. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: IEEE Interna-
tional Symposium on Information Theory, pp. 2069–2073 (2013). http://eprint.
iacr.org/2012/409.pdf

8. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

9. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryp-
tography: QC-MDPC McEliece implementations on embedded devices. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–
292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 16.
http://eprint.iacr.org/2015/425.pdf

10. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory 15, 159–166 (1986)

11. Chou, T.: QcBits: constant-time small-key code-based cryptography. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 280–300. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 14

12. Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006).
https://doi.org/10.1007/11780656 24

13. Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: QC-MDPC: a timing attack
and a CCA2 KEM. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 47–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 3

https://doi.org/10.1007/978-3-662-53140-2
https://doi.org/10.1007/11780656
https://doi.org/10.1007/978-3-319-79063-3
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://eprint.iacr.org/2012/409.pdf
http://eprint.iacr.org/2012/409.pdf
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-642-40349-1_16
http://eprint.iacr.org/2015/425.pdf
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1007/11780656_24
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1007/978-3-319-79063-3_3

Recurrent Neural Networks for Fuzz
Testing Web Browsers

Martin Sablotny(B) , Bjørn Sand Jensen, and Chris W. Johnson

School of Computing Science, University of Glasgow, Glasgow, Scotland
m.sablotny.1@research.gla.ac.uk,

{bjorn.jensen,christopher.johnson}@glasgow.ac.uk

Abstract. Generation-based fuzzing is a software testing approach
which is able to discover different types of bugs and vulnerabilities in
software. It is, however, known to be very time consuming to design and
fine tune classical fuzzers to achieve acceptable coverage, even for small-
scale software systems. To address this issue, we investigate a machine
learning-based approach to fuzz testing in which we outline a family of
test-case generators based on Recurrent Neural Networks (RNNs) and
train those on readily available datasets with a minimum of human fine
tuning. The proposed generators do, in contrast to previous work, not
rely on heuristic sampling strategies but principled sampling from the
predictive distributions. We provide a detailed analysis to demonstrate
the characteristics and efficacy of the proposed generators in a chal-
lenging web browser testing scenario. The empirical results show that
the RNN-based generators are able to provide better coverage than a
mutation based method and are able to discover paths not discovered
by a classical fuzzer. Our results supplement findings in other domains
suggesting that generation based fuzzing with RNNs is a viable route
to better software quality conditioned on the use of a suitable model
selection/analysis procedure.

Keywords: Software security · Fuzz testing · Browser security

1 Introduction

Fuzz testing has recently enjoyed increased popularity in theoretical and practi-
cal software testing. This can be primarily attributed to the apparent capability
to trigger unintended behaviour in complex software systems, e.g. the summary
of bugs found by American Fuzzy Lop (AFL) [28] and further evidenced by the
use of fuzz testing in software companies like Microsoft and Google (e.g. through
their open-source tool ClusterFuzz [12]) which shows success and applicability in
many different domains. However, the standard approach of combining mutation
on a set of input examples with an evolutionary approach has its limitation with
increasing necessity of keywords and compliance to syntactic rules (e.g. HTML
as considered in this work). Those problems can be tackled by generation-based
c© Springer Nature Switzerland AG 2019
K. Lee (Ed.): ICISC 2018, LNCS 11396, pp. 354–370, 2019.
https://doi.org/10.1007/978-3-030-12146-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12146-4_22&domain=pdf
http://orcid.org/0000-0002-9836-8254
https://doi.org/10.1007/978-3-030-12146-4_22

Recurrent Neural Networks for Fuzz Testing Web Browsers 355

fuzzers that are able to comply to those rules, use the correct keywords and gen-
erate novel inputs. Traditionally, the time needed to develop generation-based
fuzzers is dependent on the input specification’s complexity. For example it is
less time consuming to develop a generator for a network protocol, which has
a single field with three different possible values compared to implementing the
File Transfer Protocol (FTP) [16] with it various fields and states. In addition,
it is necessary to find the right balance between introduced errors and overall
correctness to trigger code paths that lead to unintended behaviour.

The main bottleneck in the development of generation-based fuzzers is the
need for a strict understanding and implementation of the input file format.
Therefore, the potentially complex input specification has to be studied carefully
to transfer it into a test case generator, which then needs to be fine tuned in
order to find the right balance between correctness and introduced errors into the
test cases. This implicit optimization process looks to maximize code coverage
by generating test cases that deviate in certain areas from the given specification
and therefore are capable of exercising different low-level execution paths. Thus,
it is clear that methods which could automatically derive or lean the input
specification would be able to speed up software testing by faster deployment of
generation-based fuzzing techniques. This would potentially lead to an increase
in software security and stability.

Learning an input specification (e.g. syntactic rules) is obviously not triv-
ial, especially due to the long time dependencies input specifications can apply.
Those dependencies have an direct impact on the possible outputs at a cer-
tain position and therefore have to be captured by a learning algorithm to pro-
duce specification adhering outputs. However, recent advancements in generative
machine learning models ([2,3,6,26]) have demonstrated how machine learning
models can be use to learn complex rules and distributions from examples and
generate new examples from acquired knowledge.

These advancements have been previously explored for fuzz testing by Gode-
froid et. al. [11]. They demonstrated the use of deep neural networks to generate
PDF-objects, which were used as input for a rendering engine. Those input files
were able to trigger new instructions in the rendering engine. However, they
focused on the tension between learning the correct input structure and fuzzing
- or in other words, finding the balance between adhering to the learned speci-
fication and deviating from it. They did not provide an analysis of the learning
process itself and gave no comparison to a naive mutation based baseline. In
addition, they have not provided any information about the overlap between the
baseline and their proposed sampling strategies. In order to use deep learning
models during fuzz testing, it is important to see whether it is worth the devel-
opment and training. Therefore, it is necessary to compare it with an easy to
implement approach, like a naive mutation algorithm. The analysis of an existing
overlap between different approaches also gives more insight into the model and
sampling choice, since it is important to trigger as much new execution paths as
possible during testing to find the ones that trigger unintended behaviour.

356 M. Sablotny et al.

In this work, we investigate how Recurrent Neural Networks (RNNs) with
different types of cells can be trained and used as a HTML-fuzzers. The mod-
els are trained on a dataset created by a generation based HTML-fuzzer, which
allowed us to adjust the dataset size and complexity in a fast and systematic
way. We use the models to generate new HTML-tags from the resulting prob-
ability distribution, which were used to form test cases. Those were executed
with Firefox [19] to gather their code coverage data and compared to a baseline
generated by the HTML-tags from the dataset and a naive mutated dataset.
Thus, the contribution of the paper includes:

– A systematic and robust approach for training and evaluating recurrent neural
networks with different types of cells for HTML fuzz testing.

– A procedure and metrics for model-selection and comparison of machine
learning fuzzers against standard and a vanilla mutation-based methods
including a similarity-based analysis.

– An extensive empirical evaluation on a web browser, demonstrating that
learned fuzzers are able to outperform standard test methodologies.

– Open-source implementation and data available via Github1.

Fig. 1. Classic fuzzing workflow for finding security related flaws

2 Background

2.1 Fuzzing

Fuzz testing is a dynamic software testing approach, hereby dynamic means the
software under test is actually executed in contrast to statically analysed. The
goal of the fuzz test is to provoke unintended behaviour that was not detected in
earlier testing stages, therefore software under test is executed with inputs cre-
ated by a so-called fuzzer. Those inputs do not fully comply with the underlying
input specification in order to find paths that lead to a state that triggers unin-
tended behaviour. We adopt a broad definition of unintended behaviour, which
makes it applicable for various kinds of software and devices [27]. For example,
1 Code and data is available from https://github.com/susperius/icisc rnnfuzz.

https://github.com/susperius/icisc_rnnfuzz

Recurrent Neural Networks for Fuzz Testing Web Browsers 357

during fuzz testing desktop software, unintended behaviour can be the termina-
tion of a running process or even the possibility to take control over a process.
Whereas during the test of a web application unintended behaviour might be
defined as an information leak or the circumvention of access restriction both
cases might happen due to a SQL-injection vulnerability, where arbitrary input
is used as a valid SQL-statement.

As those examples highlight, a case of unintended behaviour becomes more
severe if it could provide an attacker with an advantage. Here advantage can
mean everything from accessing restricted information to taking over control of
a device. In order to find those vulnerabilities fuzz testing is utilised. The gen-
eral workflow during fuzz testing is shown in Fig. 1. The testing itself is split in
two parts first the test case generation and secondly the behaviour analysis. In
general, the creation of test cases during fuzzing can be divided into the two cat-
egories: mutation based and generation based [27], [8] and [20]. First mutation
based fuzzing uses a valid input set and a mutation fuzzing in order to derive new
test cases from the input set. This type of fuzzing can be implemented quickly
if the input examples are available (e.g. JPG files). The main disadvantage is
that test cases created by plain mutation based fuzzing are not able to quickly
discover code paths deep in the call tree because many created test cases are
filtered out in early program execution stages. A very prominent and successful
example of this category is the aforementioned fuzzer AFL with its evolutionary
mutation approach. Secondly, generation based fuzzing uses an approach where
test cases are created from scratch, for example through grammar based cre-
ation. This method needs a lot of effort during studying the input structure and
developing the generator but in general it is able to discover deeper lying code
paths. However, a balance between complying to the rules and breaking them
has to be found in order to provoke unintended behaviour in the target.

2.2 Recurrent Neural Networks

The input data for many software products is readily available on the inter-
net (e.g. HTML, JPG, PNG) and deep learning algorithms have shown their
performance in different use cases especially where they are trained on a large
available dataset, for example text generation [26], program creation [3] and
machine translation [2,6]. This led us to the use of a generative model for the
test case creation during fuzz testing. In addition the structure of HTML and
other input formats, where the actual character or byte is dependant on the
previous positions in a sequence led to the use of RNNs.

RNNs are used to model sequential data, e.g. for text generation [26], lan-
guage modelling and music prediction [21]. They use a hidden state as short
term memory which carries information between time steps. The conventional
RNN with input xt is defined through a hidden state vector ht and an output
ŷt at time step t as follows

ht = fh(xt,ht−1) , ŷt = fo(ht),

358 M. Sablotny et al.

with fh and fo being the hidden transformation and output function respectively.
Hereby, the input xt can be a N -dimensional vector, representing the input
structure, e.g. a single pixel’s RGB values at position t.

As described by Hochreiter [13] and later by Bengio et al. [4], RNNs suffer
from either the vanishing or exploding gradient problem. This means that the
weight updates are becoming infinitesimal during training, which consumes a
lot of time but does not lead to a better optimised network. Hochreiter and
Schmidhuber introduced the concept of Long-Short Term Memory (LSTM) cells
[14] RNNs using those cells do not suffer from the vanishing (exploding) gradient
problem. LSTM cells use a hidden state, a candidate value and three gates
namely a forget gate, an input gate and an output gate. The gates control how
much information is forgotten, used from the input and controlling the flow into
the new hidden state respectively. They are default feed forward neural networks
and each have their own trainable parameters.

Another popular RNN cell, the Gated Recurrent Unit (GRU) was introduced
by Cho et al. [6]. This unit only uses two gates, a reset and an update gate. Here
the reset gate controls what information from the past hidden state is forgotten
and the update gate controls the information flow into the new hidden state.
This simpler model arguably makes it easier to train than a standard LSTM
based model.

The capability to learn sequential structures, where dependencies to former
inputs exist, is obviously an important characteristic when learning input format
structures for test case generation. This is especially evident in for example
HTML where there are long term dependencies between an opening-tag and the
corresponding closing-tag.

Fig. 2. Model overview for a stacked RNN with 2 recurrent layers (either LSTM or
GRU)

3 Stacked RNN for HTML-Fuzzing

The basic concept of the model used in this work is shown in Fig. 2. The model
consists of three modules. First, the input module, let X = {x1, x2, . . . xN}
be the sequence of input values with xt ∈ N0 | 1 ≤ t ≤ N , where xt is the

Recurrent Neural Networks for Fuzz Testing Web Browsers 359

natural number representing the character at position t in the input sequence.
For example the character ‘f’ is at position t in the input sequence, its assigned
number is 17 and xt = 17.

The input module then takes such a xt and transforms it into a one-hot coded
vector x̂t ∈ R

I with I = max(X) + 1, the one is added to account for the zero.
Let x̂t = (x̂1, x̂2, . . . , x̂I)ᵀ then

x̂j = 0 ∀ 1 ≤ j ≤ I : j �= xt ∨ x̂j = 1 ⇔ j = xt,

and for the former example character ’f’ all x̂j = 0, except for x̂17, which equals 1.
This conversion from integer values is necessary as interpret our input as cate-
gorical data (each character is its own category) and those categories are handled
as features during the training process.

Secondly, the recurrent module consists of LSTM or GRU nodes as described
in Sect. 2.2 with s, l ∈ N hereby s is the internal size of the nodes and l the
amount of layers used, e.g. l = 2 for the LSTM based model shown Fig. 2.
LSTM cells have demonstrated a high performance gain compared to the basic
RNN approach as demonstrated by Chung et al. [7]. Gated Recurrent Units
(GRUs) introduced by Cho et al. [6] perform similar to LSTM cells [7], however
Jozefowicz et al. [17] have shown that LSTM cells perform better during XML
modelling. We decided to evaluate the performance of both cells to analysis
whether the XML modelling results are transferable to HTML modelling.

Finally, the output layer consists of a default feed forward network with I
nodes. It takes the output of the last recurrent layer hl

t ∈ R
s as input value and

after computing its output the softmax function is applied. The resulting ŷt

provides the probability distribution for predicting the next value of the input
sequence. The goal during training is to minimise the cross entropy loss function

L(Θ) = − 1
N

N∑

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi),

where Θ denotes the model’s parameters (i.e. a collection of W’s and b’s). In
order to find a Θ that minimises the above loss L the ADAM [18] optimisation
algorithm is applied. It is a gradient-based optimisation algorithm which only
needs first order gradients and has a reduced memory footprint compared to
other algorithms. Additionally, Dropout (30% dropout probability) [25] is used
as regularisation.

4 Experiments

The following sections present the methodology that was used to validate our
application of RNNs to generate test cases for fuzz testing of cyber security in
complex systems.

The basic idea is to train the aforementioned neural networks with different
depths on a large collection of HTML-tags. After training those models are used

360 M. Sablotny et al.

to generate HTML-tags directly using the probability distribution over charac-
ters given the sequence. The generated output is then used as input for a web
browser. This browser is instrumented in order to gather the code coverage data
during execution on a basic blocks basis. The collected code coverage data is then
used to compare the models’ performances with code coverage data collected by
executing the dataset’s HTML-tags and a naive mutation strategy performed on
this HTML-tags.

4.1 Environmental Setup and Implementation

The model training took place on a Ubuntu 16.04 system equipped with a single
NVIDIA GeForce 1080 Ti and a NVIDIA GeForce TITAN Xp, which shortens
the necessary training time by utilising their parallel computational capabilities.
The models were implemented using Google’s TensorFlow framework [1] along
with its Python bindings. This frameworks already provides the necessary cell
types, optimisation algorithm and loss function for our model, which shortens
the development time.

The code coverage data was collected on a Virtual Machine (VM) also run-
ning Ubuntu 16.04 and Firefox 57.0.1, which allows to run in so-called headless
mode. In this mode Firefox does not display the graphical user interface, but it
still renders the webpage. We also modified the standard configuration in order
to disable internal services to avoid as much false code coverage data as possible.
Furthermore safe mode was disabled, because during the automated code cover-
age collection Firefox was not closed correctly and therefore might tries to start
in safe mode after just a few test cases. The use of the headless mode also saves
time during the code coverage collection, which was collected by DynamoRIO’s
drcov tool (see Subsect. 4.4). The VM itself utilises 16 GB of RAM and a Solid
State Disk. A VM was used to facilitate parallel data collection via cloning and
deploying onto multiple host systems.

4.2 Data Set Generation

In order to provide a reproducible and controlled experiment, the training (and
ground-truth) data set was generated by an existing HTML-fuzzer included in
PyFuzz2 [24]. It provides a controllable generator thus ensuring less uncertainty
about the variation within the training dataset in comparison to collecting a
dataset from the Internet. Therefore, it was possible to control the complexity
of the generated HTML on a per tag basis, whereas a collected set would have
to be parsed and then filtered for unwanted HTML-tags to control the resulting
dataset.

The pre-existing fuzzer was modified in order to avoid nesting of HTML tags,
remove all Cascading Style Sheets and output exactly one HTML tag per line.
Due to the restriction of not having nested HTML-tags some like td or th are
excluded because they need an outer tag in this example table. Those restrictions
were introduced to reduce to focus on the fundamental problem by reducing the

Recurrent Neural Networks for Fuzz Testing Web Browsers 361

overall data set complexity. This further reduced the necessary model complexity
and effectively the time needed to train those models.

Listing 1.1 shows an excerpt from the data set used for training the models,
which highlights the modification mentioned above. The created file consisted of
409,000 HTML-tags, which results in a total size of 36 MB.

4.3 Training

All models were trained to predict the input shifted by one on a per character
basis. For example take “< h2 i” from line 1 in Listing 1.1 as input sequence
of length 5 then the label for that particular input sequence would be “h2 id”.
The actual sequence length used during training was 150 characters and each
model was trained for 50 epochs, which has shown sufficient for the models to
converge. In order to train the models we used the previously mentioned ADAM
[18] optimisation algorithm. The starting learning rate was set to 0.001 and
halved every 10 epochs. The models were trained with a batch size of 512. The
internal size of the LSTM and GRU cells was set to 256 for all models trained and
the number of layers varied from 1 to 6. The weights of the layer were initialised
by the Glorot uniform initializer [10]. So the weights are drawn from a uniform
distribution in the interval (−

√
6√

nj+nj+1
,

√
6√

nj+nj+1
), with nj being the internal

size of layer j.
The first 30 MB of the data set were used for training and an additional gen-

erated 1MB for validation. All models were trained on 5 different training/vali-
dation splits repeated 3 times with different initialization (to mitigate extremely
poor local minima) which results in a total of 90 trained models per cell type.
The splits were chosen randomly without overlapping parts.

4.4 Data Collection

The code coverage data was collected by executing Firefox instrumented by
DynamoRIO’s drcov [9]. This tool gathers data about the executed basic blocks
of the program under test. The collected code coverage data was parsed for
uniquely executed basic blocks inside of Firefox’s libxul.so library, which
includes the whole web engine responsible for HTML rendering. It is possible
to identify those basic blocks even when the process is restarted because the
recorded data uses the offset of the basic block from the base address of the

1 <h2 id="id0" style="style" spellcheck="false" dir="rtl"

title="eval(n1, $)"> 2e100 </h2>

2 <ul id="id3" style="style" translate="no"

contenteditable= "true" tabindex="4400000000">

4400000000

Listing 1.1. Example from the training set.

362 M. Sablotny et al.

library in memory and this offset is always the same for a fixed version. Hereby
a basic block is defined as a linear sequence of machine instructions with a single
entry (branch target) and single exit (branch instruction).

All test cases consisted of a basic HTML-template with the HTML-tags
inserted into the body tag. Initial experiments showed that executing the same
test case multiple times returns different code coverage data. This is due to the
other functions that are bundled into the libxul.so library, which are not part
of the web engine itself. Those functions might for example only be executed
after a number of restarts or in fixed time intervals. In order to identify the
corresponding basic blocks the blank HTML-template was executed 1, 024 times
and the resulting code coverage was store for later use.

The comparison baseline was established by using the HTML fuzzer to create
6 × 16, 384 HTML-tags Each collection of 16, 384 HTML-tags was then used to
create two datasets, one containing 64 files with 256 HTML-tags each and a
second one with 128 files containing 128 HTML-tags. This resulted in twelve
datasets.

In order to establish a second baseline for comparison, additional test sets
were created by mutating the dataset test cases and collecting the code coverage
from those. A simple mutation function was applied with a fixed chance that a
position is replaced by a randomly chosen character (only characters that were
already present in the dataset). The results were 20 additional test case sets, 10
sets consisting of 128 cases with 128 HTML-tags each and 10 sets consisting of
64 cases with 256 HTML-tags each, resulting in a total of 1, 920 additional cases.
The replacement probability varied between 0.1% and 51.2%. This was done to
ensure that there is difference and therefore an incentive to use a trained model
for test case creation instead of implementing a naive mutation based approach.

For each trained model, a total 16, 384 HTML-tags were generated and then
used to create two different sets of test cases. The first set used 128 HTML-tags
per case, which resulted in 128 cases per model trained, whereas the second set
used 256 HTML-tags per case, which resulted in 64 cases per model. This was
done to analyse the impact of HTML-tags on code coverage and to observe the
relationship with the model performance. The HTML-tags were generated by
using the “<” character as starting input, sampling the next character from the
resulting probability distribution, which was then used as new input. This was
repeated until a “\n” (newline character) was sampled, since it marks the end
of a HTML-tag.

Finally, the set difference between the collections of basic block sets from the
test cases and the blank cases was computed to filter out the aforementioned
irrelevant basic blocks.

1 <war id="id55804" scellcheck="false" tpalleaeck="false"

class="style_class_0" title="50000000"> null</sab>

Listing 1.2. Example HTML-tag from a 1-layer LSTM model

Recurrent Neural Networks for Fuzz Testing Web Browsers 363

(a) LSTM (b) GRU

Fig. 3. Average validation loss for models of different complexity (i.e. number of layers)
models and dataset splits. Error-bars indicate the standard deviation.

4.5 Results

The training phase already showed a difference in behaviour between the two
cell types. The LSTM based models showed a decrease in average validation loss
and standard deviation up to three layers, as shown in Fig. 3a, with an increase
afterwards. Especially, the 6-layer models show a large standard deviation and
a huge increase in average validation loss compared to the other models This
indicates that those models have too many parameters in order to be trained on
our problem and training set. This behaviour is to be expected from a general
machine learning perspective and since the training process is the same compared
to other similar applications using generative neural networks, like generating
text.

In contrast the training of the GRU based models showed a small increase
from the 1-layer models to the 2-layers case, but a decrease afterwards with
overall small differences in the standard deviation. This indicates that the GRU
based models are either better suited to reproduced the input structure or do
not reach the overall complexity of the 6-layer LSTM based model, which is also
supported by comparing the trainable parameters of those models. The GRU
based model has 2, 276, 971 compared to 3, 026, 795.

Overall, a small numeric difference in validation loss can lead to a big differ-
ence in the quality of the resulting HTML-tags. For example Listing 1.2 shows an

1 <p id="id38564" lang="mk">

BB< /p>

2 <head id="id240801" sang="al" style="style" class="

style_class_0" dir="rtl"> 7500000000</pre>

Listing 1.3. Example HTML-tag form a 3-layer LSTM model

364 M. Sablotny et al.

Fig. 4. Average error rate per HTML-tag generated by the LSTM and GRU based
model in comparison to the datasets.

excerpt generated by a 1-layer LSTM model. It is barely recognisable as HTML
and the model did not generate existing HTML-opening and closing tags and two
of the generated HTML-attributes are misspelled in this particular example. In
contrast to that Listing 1.3 shows two HTML-tags generated by a 3-layer LSTM
model. Both use only existing HTML-tags, however the second one does not
use the correct closing tag and misspelled one attribute name. Further evidence
regarding the quality differences between the models of both cell types is pro-
vided by Fig. 4. It shows how the HTML error rate per tag follows the trend of
the validation loss and highlights how small differences has a large effect on the
HTML quality. The high spread of the 6-layer LSTM HTML error rate reflect
the large standard deviation observed during training.

Test Cases with 128 HTML-Tags
In terms of code coverage performance the overall trend also follows the vali-

dation loss and standard deviation, where a smaller validation loss and standard
deviation indicates a better performance. Figure 5a shows the total discovered
basic blocks of both cell types per layer. It highlights that both types of 4-layer
models and the GRU 5 and 6-layer models are able to discover basic blocks in
the range of the datasets or even outperform it.

In addition, Fig. 6a shows the difference in number of basic blocks to the
best performing dataset. It shows that all models were able to discover basic
blocks not triggered by the dataset, with the 5-layer GRU models performing
best on average. In comparison with the different mutation sets the maximum
overlap reaches 90% with a mutation chance of 1.6%, which is not surprising
because the same mutation set has an overlap of 87.6% with the best performing
dataset, as also shown in Fig. 7. The best performing 5-layer GRU models have
an overlap of 78% with the union of different mutation chances, highlighting the
models ability to discover basic blocks, which can not be triggered by the naive
mutation approach. The overall best performing models are also those with the
largest overlap with the dataset.

Recurrent Neural Networks for Fuzz Testing Web Browsers 365

(a) 128 HTML-tags per case (b) 256 HTML-tags per case

Fig. 5. Total number of uniquely discovered basic blocks on a per model basis. The
dataset coverage area and the different mutation sets are included as baselines with
the mutation probability indicated on the right vertical axis.

Test Cases with 256 HTML-Tags
The code coverage results for the test cases with 256 HTML-tags each showed

a similar development, but a slightly lower overall performance, as shown in
Figs. 5b and 6b. The lower overall performance was expected, because both runs
basically use the same HTML-tags and only the number of inserted HTML-tags
is different.

In terms of absolute basic blocks the 4-layer model was the best LSTM
based model, however in this setting it did not reach the dataset coverage area.
However, the 4-, 5- and 6-layer GRU based models were able to reach the dataset
coverage area with the 6-layer model having the highest number of uniquely
triggered basic blocks.

Considering the overlap with the mutation test cases the overall result is
the same as in the 128 HTML-tags case. The best performing four layer models
have an average overlap with the mutation sets of 74.6%. This shows that the 256
HTML-tags cases were also able to trigger new code paths in the web rendering
engine.

5 Discussion

The results demonstrate that is is indeed possible to successfully train models
and generate test HTML cases using the RNN based model. However, it is crucial
to monitor this process to get robust results, e.g., the 6-layer LSTM model was
not trainable in a reliable way. This may very well have been due to a lack of
training data, or the high amount of parameters involved in the optimisation.

366 M. Sablotny et al.

(a) 128 HTML-tags per case (b) 256 HTML-tags per case

Fig. 6. Number of uniquely discovered basic blocks that were not triggered by the best
performing dataset.

Once the models have been trained the results indicates that the average
validation loss can be used as good initial selection criteria for choosing a good
model for generation of test cases despite the implicit coupling with the code
coverage metric. This is particularly interesting, since there is no code coverage
data available during the model selection phase and covering as many code
paths as possible during fuzz testing is important to discover software bugs. The
results also have shown that the HTML error rate can be used to determine
a good generative model and therefore augment the selection process. This is
especially helpful, since the average validation loss and standard deviation alone
might indicate a low difference between two models, see for example the Listings
1.2 and 1.3. The highest average validation loss difference between those models
is ≤0.02, but the difference in the HTML error rate is 0.3. This means that the
worst performing 1-layer LSTM model has twice as many error per tag than the
best performing 3-layer LSTM model.

Overall the best performing models generated more valid HTML-tags than
the other models, which leads to the use of existing HTML-tags. Those generated
and generally valid HTML-tags are not always closed with right corresponding
HTML-tag. This results in the best performing models building nested valid
HTML-tags by accident, because those models use a valid opening HTML-tag,
but do not generate the corresponding closing HTML-tag. However, this might
still be generated at a later stage in the file. The assumed rendering behaviour
and the creation of nested HTML-tags trigger code paths that have not been
triggered by the baseline set, since in the baseline set every opened tag is closed
with the corresponding closing tag in each line.

Recurrent Neural Networks for Fuzz Testing Web Browsers 367

The similarity in terms of overlapping basic blocks (see Fig. 7a) between the
LSTM models and the baseline set is lower than the overlap with the mutation
sets and the models between each other in the 128 HTML-tag case. This might
indicate that the models are not able to fully replicate the given input structure
and therefore another model choice would be better suited to learn this structure
or the provided training set was too small to capture the input structure with
the chosen model architecture. For the GRU models the best performing models
also show that the overlap with dataset is higher than the one with the mutation
sets (see Fig. 7b). This further strengthens the assumption that a certain quality
has to be reached by the models in order perform well.

Overall, we were able to demonstrate that especially GRU-based RNNs are
capable of creating HTML-tags, which then can be used during fuzz testing
a browser. Critically, the generated HTML test cases are also able to trigger
a significant number of unique basic blocks, which were not reached by the
dataset’s baseline and the naive mutation approach.

(a) LSTM (b) GRU

Fig. 7. The similarity between all the models, the dataset and mutation-based fuzzer
in terms of their overlapping basic blocks for test cases with 128 HTML-tags.

6 Related Work

The closest related work was done by Godefroid et al. [11]. They studied the
achievable code coverage using a two layer stacked RNN to sample PDF-objects
and focused on the effects the training duration has on this. The code coverage
results they achieved were compared against a baseline, which was randomly
selected from the training set. In contrast to that we used data not seen by the
models during the training phase to establish our baseline for comparison. In
addition, they analysed different approaches of creating test cases and compared

368 M. Sablotny et al.

those. They also highlighted an observed tension between learning and fuzzing
and proposed an algorithm called SampleFuzz. This algorithm uses the lowest
predicted probability, if the model’s highest predicted probability is above a
certain threshold value and a random coin toss is successful. Whereas our work
studied a different input format, namely HTML, which is a more structure-
reliant input format compared to PDF-objects. We also researched the effects of
the model depth on the resulting code coverage. We were not able to observe the
former described tension between learning and fuzzing. This might be connected
to the relative large size of our training set or indicate that their models started
to overfit to the training examples, thus requiring additional stochasticity to
produce novel test cases. Regardless, we did not identify the need to introduce
additional random values (e.g. through the use of SampleFuzz).

Other related works make use of the control and data flow during the execu-
tion in order to generate new test cases. Rawat et al. [23] utilise so-called evolu-
tionary algorithms to derive new test cases. Whereas Höschele et al. [15] derives
an input grammar from the collected execution information. Both approaches
need direct access to the program under test to instrument it and to collect the
necessary data. In contrary, our approach is able to learn the input structure
directly from input examples, which shortens the design and learning process.

A different approach utilising code coverage and mutation-based fuzzing was
presented by Böhme et al. [5]. They augmented AFL with Markov Chains in
the mutation process. Their AFLFast called approach uses Markov Chains to
determine the state transitions into new test inputs. They have shown that they
shorten the time necessary for finding bugs in an ensemble of tested software.
However, they have not provided any information on highly structure dependent
input formats like HTML, which is described as a shortfall in the general AFL
approach.

Another way of combining deep learning in order to find bugs in software
was evaluated by Pradel et al. [22]. They used trained models in order classify
potential buggy source code. Hereby they trained their models as individual
classifiers for a certain bug category. In contrast to them we trained our models to
generate inputs, which then can be used to trigger and observe bugs in software.
Furthermore, their approach needs direct access to the source code, whereas we
need access to enough input examples to train a RNN model.

7 Conclusion and Future Work

Our work provides evidence that it is possible to use a stacked RNN to generate
HTML-tags in order generate novel test cases for fuzz testing a browser’s render-
ing engine. The results also clearly show that the GRU based models are able to
outperform LSTM ones even with less trainable parameters. Furthermore, the
proposed evaluation procedure and similarity-based analysis demonstrates that
the overlap in basic blocks between the dataset and the model generated test
cases are very low on average. In addition, the overlap with the naively mutated
sets is approximately 70% on average, which indicates that the trained networks

Recurrent Neural Networks for Fuzz Testing Web Browsers 369

are able to discover new code paths formerly not discovered by the naive muta-
tion approach with different mutation chances. This provides amble evidence
that RNNs can be trained and used as an effective HTML-fuzzer provided that
a suitable model-selection and analysis procedure is applied.

We are currently looking to extent the present work in least three ways:
Firstly, investigating more complex/suitable neural network models is necessary
to improve the overall quality of the generated HTML as other prevalent web
technologies, like JavaScript, cannot be used on broken HTML-tags. Secondly,
it is important to validate the generalisation of the current work on real-world
HTML-examples in contrast to the fuzzer generated training data considered
here. Lastly, we are exploring ways to utilise the gathered code coverage data
during the training process and rewarding the learning algorithm when discov-
ering unintended behaviour or new code paths. We speculate that this can be
achieved with the help of reinforcement learning to systematically trade-off the
model fit vs exploration.

Acknowledgements. We gratefully acknowledge the support of NVIDIA Corpora-
tion with the provision of the GeForce 1080 Ti and the GeForce TITAN Xp used for
this research. We also like to thank Chris Schneider from NVIDIA for his ongoing
interest in our research and his support.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). http://tensorflow.org/

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. arXiv preprint arXiv:1611.01989 (2016)

4. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

5. Böhme, M., Pham, V., Roychoudhury, A.: Coverage-based Greybox Fuzzing as
Markov Chain. IEEE Trans. Softw. Eng., 1 (2018). https://doi.org/10.1109/TSE.
2017.2785841. ISSN 0098-5589

6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

8. DeMott, J.: The evolving art of fuzzing. DEF CON 14 (2006)
9. DynamoRIO: Dynamorio, June 2017. http://dynamorio.org/

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of The Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

11. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: machine learning for input fuzzing.
In: Automated Software Engineering (ASE 2017) (2017)

12. Google: Using clusterfuzz. http://dev.chromium.org/Home/chromium-security/
bugs/using-clusterfuzz

http://tensorflow.org/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1611.01989
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://dynamorio.org/
http://dev.chromium.org/Home/chromium-security/bugs/using-clusterfuzz
http://dev.chromium.org/Home/chromium-security/bugs/using-clusterfuzz

370 M. Sablotny et al.

13. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen. Diploma Tech-
nische Universität München 91 (1991)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

15. Höschele, M., Zeller, A.: Mining input grammars from dynamic taints. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pp. 720–725. ACM (2016)

16. Postel, J., Reynolds, J.: File transfer protocol. Technical report, October 1985.
https://tools.ietf.org/html/rfc959

17. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recur-
rent network architectures. In: International Conference on Machine Learning, pp.
2342–2350 (2015)

18. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

19. Mozilla Corporation: Firefox, August 2018. https://www.mozilla.org/en-US/
firefox/

20. Oehlert, P.: Violating assumptions with fuzzing. IEEE Secur. Priv. 3(2), 58–62
(2005)

21. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent
neural networks. arXiv preprint arXiv:1312.6026 (2013)

22. Pradel, M., Sen, K.: Deep learning to find bugs (2017)
23. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:

application-aware evolutionary fuzzing. In: Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS) (2017)

24. Sablotny, M.: Pyfuzz2 - fuzzing framework (2017). https://github.com/susperius/
PyFuzz2

25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

26. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(ICML 2011), pp. 1017–1024 (2011)

27. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education (2007)

28. Zalewski, M.: American fuzzy lop (2017). http://lcamtuf.coredump.cx/afl/

https://tools.ietf.org/html/rfc959
http://arxiv.org/abs/1412.6980
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
http://arxiv.org/abs/1312.6026
https://github.com/susperius/PyFuzz2
https://github.com/susperius/PyFuzz2
http://lcamtuf.coredump.cx/afl/

Author Index

Adomnicai, Alexandre 325
An, Kyuhwang 55

Bhat, Radhakrishna 304
Buchmann, Johannes 269

Chen, Yuechen 248
Chou, Tung 341
Cianciullo, Louis 132

dela Cruz, Romar B. 233
Doi, Hiroshi 217

Fournier, Jacques J. A. 325
Fujioka, Atsushi 177
Fukushima, Kazuhide 196

Geihs, Matthias 269
Ghodosi, Hossein 132
Goubin, Louis 103

He, Meiqi 248
Hu, Zhi 55

Jensen, Bjørn Sand 354
Johnson, Chris W. 354

Kim, Duhyeong 85
Kiyomoto, Shinsaku 196
Koshiba, Takeshi 3
Kowalczyk, Lucas 23
Kunihiro, Noboru 37
Kwon, Hyeokdong 55

Lei, Lingguang 287
Li, Jun 287
Lin, Dongdai 69
Liu, Chao 163
Liu, Jiahui 23

Ma, Xuecheng 69
Maezawa, Yohei 341
Malkin, Tal 23

Masson, Laurent 325
Meiyappan, Kailash 23
Miyaji, Atsuko 341
Mizuki, Takaaki 123
Monsalve, Geraldine 103

Nuida, Koji 143

Okada, Hiroki 196
Ol, Say 233
Oonishi, Kento 37

Reutter, Juan 103

Sablotny, Martin 354
Seo, Hwajeong 55
Shima, Koji 217
Shimizu, Kana 143
Shinagawa, Kazumasa 123
Song, Yongsoo 85
Sudo, Hiroki 143
Sunitha, N. R. 304

Takagi, Tsuyoshi 196
Takashima, Katsuyuki 3, 177
Takayasu, Atsushi 196
Terada, Shintaro 177

Vial-Prado, Francisco 103

Wang, Pingjian 287
Wang, Yuewu 287

Yiu, SiuMing 248
Yoneyama, Kazuki 177
Yuan, Sisi 287

Zeng, Gongxian 248
Zhang, Jun 248
Zhang, Linru 248
Zheng, Zhongxiang 163
Zhou, Quan 287
Zou, Guangnan 163

	Preface
	Organization
	Abstracts of Invited Talks
	Tweakable Block Ciphers: Construction and Applications
	Security Against Quantum Superposition Attacks
	Contents
	Invited Talk
	New Assumptions on Isogenous Pairing Groups with Applications to Attribute-Based Encryption
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Key Techniques
	1.4 Notations

	2 Isogenous Pairing Groups (IPG) and Assumptions
	2.1 Definition of Isogenous Pairing Groups (IPG)
	2.2 Assumptions on IPGs and Their Relationships
	2.3 On Validity of the N-Isog-DDH Assumption

	3 Proposed Basic IBE and KP-ABE
	3.1 Proposed Basic IBE in the Standard Model
	3.2 Large Universe KP-ABE

	References

	Public-Key Encryption and Implementation
	Mitigating the One-Use Restriction in Attribute-Based Encryption
	1 Introduction
	1.1 Our Result
	1.2 Comparing Perfomance
	1.3 Technical Details
	1.4 Related Work

	2 Preliminaries
	2.1 Prime Order Bilinear Groups
	2.2 Dual Pairing Vector Spaces
	2.3 Complexity Assumptions
	2.4 Background for ABE

	3 Construction
	4 Correctness
	5 Proof of Security
	References

	Attacking Noisy Secret CRT-RSA Exponents in Binary Method
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Our Contribution

	2 Preliminaries
	2.1 Encryption and Decryption of the CRT-RSA Scheme
	2.2 Exponentiation (Binary Method)
	2.3 Leakage Model
	2.4 Notations

	3 Previous CRT-RSA Secret Key Recovery Algorithm HMM
	4 Proposed CRT-RSA Secret Key Recovering Algorithm
	4.1 Proposed Algorithm
	4.2 Analysis of the Proposed Algorithm

	5 Numerical Experiments with the Proposed Algorithm
	6 Conclusion
	A Appendix: Proof of Lemma 2
	A.1 Tools Used for Proving Lemma 2
	A.2 Proof of Lemma 2

	References

	Compact Implementation of Modular Multiplication for Special Modulus on MSP430X
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Montgomery Multiplication
	2.2 Target Processors

	3 Proposed Montgomery Multiplication
	3.1 Constant Modular Addition/Subtraction for Special Modulus
	3.2 Interleaved Montgomery Multiplication/Squaring for Special Modulus
	3.3 Implementation of NIST P–256 on MSP430X Microprocessors

	4 Evaluation
	5 Conclusion
	References

	Homomorphic Encryption
	Multi-identity IBFHE and Multi-attribute ABFHE in the Standard Model
	1 Introduction
	1.1 Our Contributions
	1.2 Our Construction
	1.3 Other Related Work

	2 Preliminaries
	2.1 Multi-identity IBFHE

	3 Building Blocks from Previous Works
	3.1 Fully Multi-key FHE
	3.2 Leveled IBFHE

	4 Multi-identity IBFHE
	4.1 Construction
	4.2 Main Results

	5 Multi-attribute ABFHE
	References

	Approximate Homomorphic Encryption over the Conjugate-Invariant Ring
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Number Fields and Ideal Lattices
	2.3 Ring Learning with Errors

	3 RLWE over the Conjugate-Invariant Ring
	3.1 Reduction from SIVP
	3.2 Cryptanalysis

	4 Approximate Homomorphic Encryption over the Real Numbers
	4.1 Canonical Embedding and Packing Technique
	4.2 Scheme Description
	4.3 Implications of the Conjugate-Invariant Ring
	4.4 Application to Fixed-Point Operation

	5 Discussions
	5.1 Comparison with HEAAN
	5.2 Full RNS Variant

	References

	Excalibur Key-Generation Protocols for DAG Hierarchic Decryption
	1 Introduction
	2 Preliminaries
	3 Security Definitions
	3.1 Simulation-Based MPC Security Against Semi-honest Adversaries

	4 Hardness Assumptions
	5 MPC Key Generation Protocols
	5.1 Secure MPC Protocols for Multiplication in Rq
	5.2 Excalibur Key Generation Protocols

	6 Security Analysis
	6.1 Extracting Keys After the Protocol
	6.2 Extracting Secrets During the Protocols
	6.3 Parameters and Efficiency

	7 Conclusion
	A Scalar Product Protocol SPm
	B Algorithmic Complexity
	References

	Secure Multiparty Computation
	The Six-Card Trick: Secure Computation of Three-Input Equality
	1 Introduction
	1.1 Related Works
	1.2 Organization

	2 Card-Based Cryptography
	2.1 Basic Setting of Card-Based Protocols
	2.2 Commitment
	2.3 Random Cut
	2.4 Single-Cut and Garbage-Free Protocols

	3 Five-Card Trick
	4 Six-Card Trick
	5 Open Problems
	6 Conclusion
	References

	Unconditionally Secure Distributed Oblivious Polynomial Evaluation
	1 Introduction
	1.1 Our Contribution

	2 Model
	3 DOPE Protocol
	3.1 Shamir's Secret Sharing Scheme
	3.2 The Proposed DOPE Protocol
	3.3 Evaluation

	References

	An Efficient Private Evaluation of a Decision Graph
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution

	2 Preliminary
	2.1 Notation
	2.2 Additively Homomorphic Encryption
	2.3 Oblivious Transfer
	2.4 GLOUDS
	2.5 BDG and Efficient Design Principle of a Look-Up Vector by GLOUDS

	3 Method
	3.1 Problem Setting
	3.2 Overview of Our Protocol
	3.3 Building Blocks
	3.4 Secure BDG Evaluation Using GLOUDS and AHE
	3.5 Complexity

	4 Experiments
	4.1 Experiment on Simulated Dataset
	4.2 Comparison to Conventional Methods

	5 Conclusion
	References

	Post-Quantum Cryptography
	Key Reuse Attack on NewHope Key Exchange Protocol
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Ring Learning with Errors

	3 The Protocol and Key Reuse Attack
	4 Key Reuse Attack on NewHope
	4.1 General Overview of Our Attack
	4.2 Preparation
	4.3 Recover the Secret Key
	4.4 Effect of e2 and Parameter b
	4.5 Adversary Time Complexity

	5 Conclusion
	References

	Supersingular Isogeny Diffie–Hellman Authenticated Key Exchange
	1 Introduction
	2 Security Models: CK-Security and CK+-Security
	3 Supersingular Isogeny Diffie–Hellman (SIDH)
	3.1 Original (Concrete) Description of SIDH
	3.2 Crypto-Friendly Description of SIDH

	4 Post-quantum Assumptions from SIDH
	5 Proposed SIDH UM Protocol
	5.1 Useful Techniques for Quantum Random Oracle Model
	5.2 Description of SIDH UM Protocol
	5.3 Security

	6 Proposed Biclique SIDH Protocol
	6.1 Description of Biclique SIDH Protocol
	6.2 Security

	7 Conclusion
	References

	On the Complexity of the LWR-Solving BKW Algorithm
	1 Introduction
	2 Preliminaries
	2.1 LWE and LWR Problem
	2.2 Duc et al.'s BKW Algorithm for the LWR Problem

	3 Analysis of BKW Algorithm for the LWR Problem
	3.1 Complexity Analysis
	3.2 Parameter Optimization
	3.3 Concrete Analysis

	4 Comparison Between the LWE and LWR Problems
	4.1 Relation Between and p
	4.2 Noise Distribution of Concrete Instances
	4.3 Time Complexity of Concrete Instances

	5 Conclusion
	References

	Secret Sharing and Searchable Encryption
	A Hierarchical Secret Sharing Scheme Based on Information Dispersal Techniques
	1 Introduction
	1.1 Secret Sharing Schemes and Hierarchical Schemes
	1.2 Example Scenarios of Hierarchical Schemes
	1.3 Our Contributions

	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Perfect and Ideal Secret Sharing Schemes
	2.3 Systematic IDA

	3 Related Work
	3.1 Chen et al.'s Distribution Algorithm
	3.2 Chen et al.'s Recovery Algorithm
	3.3 Remark

	4 Our Proposed Scheme
	4.1 Participant Identities and Hierarchical Generator Matrix
	4.2 An Issue with Applying Hierarchy to IDA
	4.3 Distribution Algorithm
	4.4 Recovery Algorithm
	4.5 Security Analysis

	5 Software Implementation
	5.1 Computational Costs

	6 Conclusions
	References

	Cheating-Immune Secret Sharing Schemes from Maiorana-McFarland Boolean Functions
	1 Introduction
	2 Cheating-Immune Secret Sharing Schemes
	3 Cheating-Immune Schemes and Boolean Functions
	4 Cheating-Immune SSS from Maiorana-McFarland Boolean Functions
	5 Construction of CI-SSS Using Binary Systematic Codes
	6 Strictly Cheating-Immune SSS
	7 Concluding Remarks
	References

	A New Privacy-Preserving Searching Model on Blockchain
	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contract
	2.2 Basics of Multi-key Searchable Encryption (MKSE)
	2.3 Bilinear Map
	2.4 Similarity Preserving Hash

	3 System Overview
	3.1 Method to Ensure Fair Exchange
	3.2 Method to Resist Double-Rewarding

	4 Construction with SE
	4.1 System Setup
	4.2 Add File
	4.3 Keyword Search
	4.4 Response Verification
	4.5 File Retrieval and Decryption

	5 Security Analysis
	6 Experiments
	6.1 Ethereum Platform
	6.2 Simulation Design
	6.3 Metrics
	6.4 Results

	7 Conclusions
	A Proof of Theorem1
	References

	Storage Security and Information Retrieval
	ELSA: Efficient Long-Term Secure Storage of Large Datasets
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Primitives

	3 Statistically Hiding and Extractable Binding Vector Commitments
	3.1 Definition
	3.2 Construction: Extractable Binding
	3.3 Construction: Extractable Binding and Statistically Hiding

	4 ELSA: Efficient Long-Term Secure Storage Architecture
	4.1 Construction
	4.2 Security Analysis

	5 Performance Evaluation
	5.1 Evaluation Scenario
	5.2 Results

	References

	How to Block the Malicious Access to Android External Storage
	1 Introduction
	2 Background
	2.1 Access Control List
	2.2 FUSE Filesystem
	2.3 Access Control for External Storage in Android

	3 System Design
	3.1 Design Principles and Architecture Overview
	3.2 ACL Policy Management Module
	3.3 ACL Policy Storage Module
	3.4 ACL Enabled Module

	4 Implementation
	4.1 Enabling ACL Features in Linux Kernel
	4.2 Introducing ACL Features into Userspace Daemon
	4.3 SEAndroid Configuration

	5 Evaluation
	5.1 Stability
	5.2 Effectiveness
	5.3 Performance Overhead

	6 Related Work
	6.1 Android Middleware Layer Improvements
	6.2 Android MAC Access Control Enhancements
	6.3 Android Improvements for External Storage

	7 Conclusions and Future Work
	References

	A Novel Tamper Evident Single Database Information-Theoretic Private Information Retrieval for User Privacy Applications
	1 Introduction
	2 Preliminaries and Notations
	2.1 Notations
	2.2 Preliminaries

	3 A Single Database Information-Theoretic Private Information Retrieval (sitPIR)
	3.1 Building Blocks
	3.2 Proposed sitPIR Scheme
	3.3 A Toy Example
	3.4 Security Proofs
	3.5 Performance
	3.6 A Single Database Information-Theoretic Private Block Retrieval (sitPBR)

	4 Conclusion
	References

	Attacks and Software Security
	Practical Algebraic Side-Channel Attacks Against ACORN
	1 Introduction
	2 Preliminaries
	2.1 ACORN
	2.2 Correlation Electromagnetic Analysis

	3 Reference Attack Against ACORN
	3.1 Theoretical Basics
	3.2 Remarks and Clarifications

	4 From Theory to Practice
	4.1 Targeted Implementation
	4.2 Experimental Setup
	4.3 Practical Correlation Electromagnetic Analysis
	4.4 Lessons Learned

	5 Other Attack Variants
	5.1 Minimizing the Knowledge of Initial Vectors
	5.2 Maximizing the Practical Efficiency

	6 Conclusion and Perspectives
	References

	A Closer Look at the Guo–Johansson–Stankovski Attack Against QC-MDPC Codes
	1 Introduction
	2 Preliminaries
	2.1 QC-MDPC Codes
	2.2 The Bit-Flipping Algorithm
	2.3 The Guo–Johansson–Stankovski Attack

	3 Effectiveness of the Guo–Johansson–Stankovski Attack
	3.1 Experiment Results
	3.2 An Indicator of the Hardness of Decoding

	4 A Deeper Look
	4.1 Statistical Decoding
	4.2 Explanation of Guo–Johansson–Stankovski Paper

	5 A Unified View Between the CPA and CCA Cases
	References

	Recurrent Neural Networks for Fuzz Testing Web Browsers
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 Recurrent Neural Networks

	3 Stacked RNN for HTML-Fuzzing
	4 Experiments
	4.1 Environmental Setup and Implementation
	4.2 Data Set Generation
	4.3 Training
	4.4 Data Collection
	4.5 Results

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Author Index

