
A Systematic Method to Describe
and Identify Security Threats

Based on Functional Requirements

Roman Wirtz(B) and Maritta Heisel

University of Duisburg-Essen, Duisburg, Germany
{roman.wirtz,maritta.heisel}@uni-due.de

Abstract. Scenarios in which the security of software-based systems is
harmed become more and more frequent. Such scenarios can lead to sub-
stantial damage, not only financially, but also in terms of loss of reputa-
tion. Hence, it is important to consider those threats to security already
in the early stages of software development. However, it is non-trivial to
identify all of them in a systematic manner. In particular, the knowledge
about threats is not documented in a consistent manner. The Common
Vulnerability Scoring System is a well known way to characterize vulner-
abilities in a structured way. Our idea is to document threats in a similar
way, using a template. A distinguishing feature of our approach is that
we relate the threats to the envisaged functionality of the software. Our
contribution is two-fold: first, we propose a general template to describe
security threats that can be used in the early stages of software develop-
ment. Second, we define a systematic and semi-automatic procedure to
identify relevant threats for a software development project, taking the
functionality of the software-to-be into account.

1 Introduction

In the last few years, the number of documented security incidents highly
increased. Such an incident causes value and reputation loss. Additionally, fixing
vulnerabilities leading to those incidents is cost intensive. A risk for a software
can be defined as the combination of the likelihood of incidents and the con-
sequence for an asset due to that incident. A risk management process defines
different steps for coordinating activities to reduce the risk. The challenge for
software engineers is to identify and control risks as early as possible. Follow-
ing the principle of security-by-design, software is built from the beginning with
regard to security.

Most knowledge about threats that might lead to a harm for assets exists for
already running software. An example of such a knowledge base is the National
Vulnerability Database (NVD)1. In these knowledge bases, it is possible to search
for vulnerabilities based on component names like MySQL Server. In the analysis

1 NVD - https://nvd.nist.gov/ (accessed on 2018-02-01).

c© Springer Nature Switzerland AG 2019
A. Zemmari et al. (Eds.): CRiSIS 2018, LNCS 11391, pp. 205–221, 2019.
https://doi.org/10.1007/978-3-030-12143-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12143-3_17&domain=pdf
https://nvd.nist.gov/
https://doi.org/10.1007/978-3-030-12143-3_17


206 R. Wirtz and M. Heisel

phase of a software development project, however, we need a more abstract view
on vulnerabilities, which is for example provided by the Open Web Application
Security Project [1]. Such abstract resources, like OWASP, are focused on specific
domains, e.g. web applications, and often do not provide a common structure to
characterize possible threats. We aim to assist software engineers in managing
risks based on the functional requirements of software systems.

In this paper, we contribute to the identification of risks. Our first contribu-
tion is a template to describe threats independently of the application domain,
specific design decisions, or implementation details. The template is based on
the Common Vulnerability Scoring System [2]. To integrate threats into models
of functional requirements, we propose a new diagram type based on Problem
Frames [3]. The extended model later supports security engineers in defining
security requirements for the software to be developed. A method to identify
relevant threats based on the template is our second contribution. The method
is semi-automatic, which means, that we want to minimize the manual interac-
tion for security engineers to perform the method as most as possible. Both, the
template and the method are applied in the early stages of software development
to ensure security-by-design.

The paper is structured as follows: In Sect. 2, we briefly summarize the con-
cepts on which our work is based. A conceptual model describing the used ter-
minology is given in Sect. 3. Section 4 introduces a general template to describe
threats. The template is exemplified by an instantiation for a sample threat. The
identification method for relevant threats is explained in Sect. 5. Related work
is discussed in Sect. 6. We conclude our work with a discussion and future work
in Sect. 7.

2 Background

In this section, we introduce the fundamentals on which our work is based.
First, we present Michael Jackson’s problem frames approach [3] to model func-
tional requirements. Afterwards, we introduce the ProCOR method [4] which is
a problem-based risk management process.

2.1 Problem Frames

To model requirements, we make use of Michael Jackson’s problem frames app-
roach [3]. Problem frames are patterns to characterize subproblems of a com-
plex software development problem. These patterns are used in the early stages
of the software development life-cycle. An instance of such a pattern is called
problem diagram (examples are given in Figs. 3, 4 and 5). It contains a func-
tional requirement FR (dashed ovals) for the system-to-be. A requirement is an
optative statement which describes how the environment should behave when
the software is installed. The entities related to a requirement are represented
as domains (gray rectangles). There are different types of domains: biddable
domains B (e.g., persons), causal domains C (e.g., technical equipment), machine



Systematic Identification of Security Threats 207

domains M (representing the piece of software to be developed), lexical domains
X (data representations) and display domains D (visual output devices). There
are symbolic phenomena, representing some kind of information or a state, and
causal phenomena, representing events, actions and so on. Each phenomenon is
controlled by exactly one domain and can be observed by other domains. A phe-
nomenon controlled by one domain and observed by another is called a shared
phenomenon between these two domains. Interfaces (solid lines) contain sets
of shared phenomena. Such a set contains phenomena controlled by the same
domain (indicated by A!{...}, where A is an abbreviation for the controlling
domain). Some phenomena are referred to by a requirement (dashed line to the
controlling domain), and at least one phenomenon is constrained by a require-
ment (dashed lines with arrowhead to the controlling domain). The domains and
their phenomena that are referred to by a requirement are not influenced by the
machine, whereas we build the machine to influence the constrained domain’s
phenomena in such a way that the requirement is fulfilled.

Faßbender et al. [5] describe a method to combine aspects with problem
frames. Aspects are considered as cross-cutting concerns for different require-
ments. To integrate aspects into problem frames, join points are defined. A
join point, is a placeholder in an aspect diagram. We mark those join points
in white, whereas normal domains are given in gray (cf. Table 2). By mapping
the join points to domains of the problem frame, the aspects are integrated into
the problem frame. Mapping means that a join point is replaced by the corre-
sponding domain contained in the problem diagram in which the aspect shall be
integrated.

2.2 ProCOR

Wirtz et al. [4] propose a risk- and problem-based method to identify security
requirements in the early stages of a software development process. According
to the principles of risk management described in ISO 31000 [6], the ProCOR
method contains steps for risk identification, risk evaluation and risk treatment.
The step for risk identification is described as a structured brainstorming with
experts. The template to describe threats and the identification method we pro-
pose in this paper assists the security engineer in risk identification step.

In ProCOR, an asset is defined as some kind of information to be protected
with regard to a security goal (confidentiality, integrity or availability). A piece
of information is described as a phenomenon used in a problem diagram. The
set of assets is the focus of the analysis. As the scope of the analysis we consider
all domains at which some information to be protected is available. Available
means that a domain controls or observes phenomena in which the information
is contained. ProCOR defines a so-called information flow graph to derive these
domains automatically, based on a set of problem diagrams. The identification
of relevant threats described in this paper is based on this scope definition.



208 R. Wirtz and M. Heisel

3 Conceptual Model

We first introduce a conceptual model, we developed in previous work based
on the ISO 27005 standard [7]. The model is shown in Fig. 1 and describes the
terminology we make use of in this paper. The ISO 27005 standard [8] has a
special focus on security and is based on the ISO 31000 standard.

Fig. 1. Conceptual model [7]

According to the standard, a risk management process consists of four steps:
(1) Establishing the context, (2) Risk Assessment, (3) Risk Treatment, and (4)
Risk Acceptance. Risk Assessment contains three sub activities: (2.1) Risk Iden-
tification, (2.2) Risk Analysis and (2.3) Risk Evaluation. In this paper, we con-
tribute to the identification of risks. The initial input is a set of Functional
Requirements which describe the desired characteristics of the System. The sys-
tem is part of the Environment which is described by Domain Knowledge. An
Asset is part of the Scope and the scope is inside the Boundaries of the analysis.
An asset has some value for an Organization. In the following, we consider a
piece of information as an asset. For an asset, there is a Security Goal which
ensures a Security Property for an asset. We consider the following types of prop-
erties: (1) Confidentiality : Some piece of information shall not be disclosed to
unauthorized third parties. (2) Integrity : Some piece of information shall not be



Systematic Identification of Security Threats 209

altered by unauthorized third parties. (3) Availability : Some piece of information
shall be available for authorized parties. A security goal might be harmed when
a Threat exploits a Vulnerability. According to ISO 27005, a threat might be
human or natural (for instance a thunderstorm), and deliberate or accidental.
In the Common Criteria [9], a Threat Agent is explicitly mentioned. A threat is
the action which has a negative influence on assets, and a threat agent performs
that action. An Incident Scenario includes a threat, a vulnerability and an asset
that might be harmed. Such a scenario has a likelihood which is further used to
evaluate risks. A Risk is related to that likelihood and the specific consequence
for the asset. A risk can be treated (e.g. modified, retained, avoided or shared)
by some Controls. After applying controls, there is still a Residual Risk, because
usually, a risk cannot be eliminated. The risk reduction is specified by a Security
Requirement which is implemented by some controls. In the following, we focus
on the description of threats. A detailed description of threats is essential for the
risk evaluation and the treatment of risks by selecting appropriate treatments.

4 Threat Description

In this section, we introduce a template to describe threats. We also describe
how to integrate these threats into the model of functional requirements. This
enables developers to consider threats along with functional requirements during
the software development life-cycle.

4.1 Template Format

The structure of the template is inspired by the Common Vulnerability Scoring
System (CVSS) [2]. The CVSS is used to score known vulnerabilities. This scor-
ing system enables the security engineers to calculate the severity of a discovered
vulnerability based on attacker information, information about the consequences
and how the vulnerability can be used. Usually, the CVSS is used to classify vul-
nerabilities according to the CVSS User Guide [10].

In Tables 1 and 2, we show the structure of the template for an example
threat. A threat is characterized by different attributes. The left-hand column
states the name of an attribute, and the right-hand column shows its correspond-
ing value. We extend the structure of the CVSS with new attributes (marked
gray). There are four sections: Basic Information, Threat Information, Relevant
Problem Diagrams and Integration.

Basic Information. The attributes contained in the section Basic Information
are used to provide an overview of the described threat. There is a name, a
context in which the threat might occur, a reference to the original document
that describes the threat, a list of keywords, and an informal description of the
threat. The Vulnerability that enables the harm of the security goal and the
Consequences are described informally.



210 R. Wirtz and M. Heisel

Table 1. Threat description: injection part 1

Basic Information
Name Injection

Context Application that provides some user input to select or edit some data.

Reference OWASP Top Ten 2017 [1]

Keywords injection, database, untrusted data

Description Data entered by users is not validated and used in queries to read or
modify data, e.g. SQL queries. An attacker needs to be able to input
data which is then used to query or modify data.

Vulnerability User input is not validated before execution.

Consequences Data is manipulated, deleted or disclosed by unauthorized persons.

Threat Information
Threat Type � Accidental �� Deliberate
Threat Agent �� Human � Technical � Natural
Threat Vector �� Network �� Adjacent �� Local � Physical

� Personal (Social Engineering)
Type of affected
domain

� causal �� machine � lexical � biddable � display

Type of target
domains

� causal � machine �� lexical � biddable � Display

Complexity �� Low � High
Privileges Re-
quired

� None �� Low � High

User Interaction �� None � Required
Threat Scope � Unchanged �� Changed
Confidentiality
Impact

� None � Low �� High

Integrity Impact � None � Low �� High
Availability Im-
pact

� None � Low �� High

Threat Information. The section Threat information is divided into several
attributes describing the characteristics of the threat. The CVSS concentrates on
attacks, but we consider threats in general. The attribute Threat Type indicates
whether a threat is accidental or deliberate. A Threat Agent might be human,
technical or natural.

The Threat Vector describes the possible ways of accessing the piece of soft-
ware to realize the threat. In the CVSS specification, it is called Attack Vector.
Network describes threats that can be realized from any network, for example
a wide area network, adjacent stands for local network access, local means that
the threat agent needs direct access to the computer, and physical describes
physical access to components such as a hard disk. To describe the communi-
cation between humans, for example by bribing an employee, we add the value
Personal (Social Engineering).

To map the threat description to the initial set of functional requirements,
we also document the types of related domains. The type of affected domain



Systematic Identification of Security Threats 211

documents the type of the domain on which the threat takes place. This domain
might differ from the domains on which the harmed asset is available. For
instance, attacking software (machine domain) might be necessary to get access
to some data (lexical domain). Hence, we need to document the type of the target
domains, as well.

The Complexity has two qualitative values: low and high. A low complexity
means that a threat agent can expect repeatable success when realizing the threat
without specialized access conditions or preparations. In contrast to that, a high
complexity is considered when the threat agent has to invest some measurable
effort in preparing the action that might harm the asset. For instance, an attacker
needs local access to the server by breaking into the server room.

There are three possible values to state whether privileges are required. None
means that no special privileges are required, low stands for a user account, and
high means that administrator rights are necessary to realize the threat.

In some cases, an additional user interaction is necessary to realize the threat,
for example an end-user has to confirm the installation of additional software.
This is indicated by the corresponding attribute.

The initial Scope of a threat is the domain on which the threat is realized.
In case that the attacker gets only access to this domain, the scope remains
unchanged. If the threat affects additional domains, the scope is considered as
changed, i.e. the target domain differs from the affected domain.

For the security goals confidentiality, integrity and availability, a qualitative
scale for the impact on the security goal is defined. None means that there is no
impact on this security goal, Low means access or manipulation only to parts
of the information to be protected and High means full access or at least major
impact to the information to be protected. However, it is hard to define the
impact independently of the concrete application. Hence, the given scale can
only be considered as a minor indicator for the risk evaluation.

Relevant Problem Diagrams. It does not suffice to consider the aforemen-
tioned attributes to decide whether a threat is relevant or not. Some threats
require a specific functionality to be realized. For example, to perform an injec-
tion, user input is required. Without such an input, the threat is not relevant.
The functional requirements of a software system can be described with problem
diagrams. To relate threats to functional requirements, we introduce the section
Relevant Problem Diagrams as shown in Table 2. The given diagrams describe
the minimal set of elements to be contained in a problem diagram for which
the threat might be relevant. In the left-hand column, we annotate the corre-
sponding consequence. The graphical representation is shown in the right-hand
column.

Integration. The section Integration describes how the threat can be integrated
into the model of functional requirements. We follow an aspect-oriented approach
(see Sect. 2.1) to consider threats along with functional requirements. Lin et al.
[11] introduce the notion of an anti-requirement (AR) to describe the undesired
behavior of software due to an attack. We make use of anti-requirements to
describe the system’s behavior when a threat becomes effective. We consider an



212 R. Wirtz and M. Heisel

anti-requirement as a special type of aspect, because the relevance of a threat
is not limited to one specific functional requirement. We introduce a new kind
of aspect diagram, called Threat diagram. Such a diagram is part of the threat
description. It is used to identify the interfaces and domains that are related to
the described threat. The anti-requirement constrains the undesired phenomena,
for example the information flow from a domain to a threat agent. It refers to
the phenomena which enable the threat, for example the injection performed by
an attacker. In the further steps of a risk management process, security engi-
neers have to ensure that the anti-requirement cannot be fulfilled by choosing
appropriate controls. Such controls have to be selected with regard to the func-
tional requirements, which means that treatments shall not interfere with the
functionality. By combining threats and functional requirements in one model,
we provide a global view for security engineers on the functionalities and threats
and help to investigate both aspects in a whole.

Table 2. Threat description: injection part 2

Relevant Problem Diagrams

Consequences:
Manipulation,
Deletion

User
B

So ware
M

Data
X

U!{modifyData}

S!{modifyData}

FR: Modifying Data

requestData

data

Consequence:
Disclosure

User
B

So ware
M

Data
X

U!{requestData}

D!{data}

FR: Reques ng Data

requestData

Display
D

S!{showData}

data

representa on

Integration

Threat Diagram

ThreatAgent
Human

DeliberateB

AffectedDomain
M

TargetDomain
X

TA!{inject}
AD!{forwardData}

AD!{modifiyData}
TD!{data}

AR: Injec on
knowledge

data

inject



Systematic Identification of Security Threats 213

4.2 Application Example

In 2017, the Open Web Application Security Project (OWASP) published a list
of the ten most critical security risks for web applications [1]. We created a threat
description with our template for all entries of that list. Tables 1 and 2 show the
instance for the entry Injection. An injection as described by OWASP can be used
to inject malicious code. Since there are different types of injections, we focus on
the case of malicious database queries via the user input. There is no validation
of the user input and the input is forwarded directly to the database. It is a
deliberate threat performed by a human threat agent and can be performed via
a wide area network, via a local network or locally. The domain to be affected
is the machine, because the injection takes place on the software level where
the user input is not validated. The target domain representing the database
is a lexical domain. The complexity of the described threat is high, because
an attacker needs deeper knowledge about the table structure of the database.
Since the attacker acts as a user, only low privileges are required without any
additional user interaction. The scope is changed because attacking the machine
leads to an impact on the lexical domain. For all security goals, the impact is
defined as high. The corresponding problem diagrams are given in Table 2. They
have in common that an input by a user is possible. Using the provided input,
a threat agent is able to inject malicious code. To integrate the threat into the
initial set of problem diagrams, we define three join points. First, the lexical
domain representing the database (target domain) needs to be mapped, as well
as the machine domain (affected domain). Since the threat agent takes the role
of user, the biddable domain of the the threat agent is a join point, too. The anti-
requirement refers to the event of injection (phenomenon inject) and constrains
the manipulated data at the target domain. The information that the threat
agent might disclose by performing an injection is indicated by the constrained
phenomena knowledge.

In the next section, we introduce a method to identify relevant threats based
on elements of ProCOR (see Sect. 2.2) and the presented template. In the appli-
cation example of the method, we make use of the instantiated template.

5 Threat Identification

In this section, we describe a semi-automatic procedure to identify relevant
threats based on the previously described template. As input, we consider the
domains in scope of the analysis that are derived with ProCOR (see Sect. 2.2).
The procedure has five steps. Figure 2 shows an overview of the steps to be car-
ried out. Steps that can be carried out automatically are shown in gray. Manual
steps are shown in white. In the following, we first describe the steps of the
procedure, and then we exemplify the procedure with a case study.

5.1 Procedure Steps

In the first step of ProCOR, we define the focus and scope of the security analysis
based on problem diagrams. The scope can be described as shown in Table 3.



214 R. Wirtz and M. Heisel

For each domain d in scope
Step 1: Iden fy those 

threats for which the type 
of target domain is the 
same as the type of d.

Step 2: Iden fy those 
threats with an impact 

on security goals 
related to d.

Step 3: Iden fy those threats for 
which problem diagrams 

containing d fit to a threat-
related diagram.

Step 4: Validate the iden fied 
threats.

Step 5: Integrate all 
relevant threats into the 

problem diagrams.

Automa c Manual

Input:
(1) Domains in scope (ProCOR)
(2) Threat templates
-----
Output:
(1) Set of possibly relevant 
threats

Input:
(1) Security goals (ProCOR)
(2) Set of threats (Step 1)
-----
Output:
(1) Reduced set of threats

Input:
(1) Problem diagrams
(2) Set of threats (Step 2)
-----
Output:
(1) Reduced set of threats
(2) Relevant problem diagrams

Input:
(1) Addi onal background knowledge
(2) Relevant problem diagrams (Step 3)
(3) Set of threats (Step 3)
-----
Output:
(1) Reduced set of threats
(2) Reduced set of problem diagrams

Input:
(1) Relevant problem diagrams (Step 3)
(2) Set of threats (Step 4)
-----
Output:
(1) Problem diagrams with integrated threats

Fig. 2. Procedure description

For each domain in scope, we document the piece of information that is in
the focus of the analysis and that is available at this domain. For each piece
of information, we also document the related security goals. Each step of our
procedure has to be carried out for each domain d that is considered to be in
scope.

Step 1: Identify those threats for which the type of target domain is the same
as the type of d .

For this step, it is necessary to compare the type of d with the documented
type of the target domain. The step can be realized automatically when using a
model for the domains and when the template is encoded in a machine-readable
way, for example XML.

Step 2: Identify those threats with an impact on security goals related to d .

All information in focus of the analysis that is available at d is documented
along with the related security goals. We compare these security goals with the
impact for confidentiality, integrity and availability documented in the template.
Only those threats remain in the reduced set of threats which have such an
impact. In this step, we do not distinguish between low and high impact for a
security goal. The impact scales are used for calculating the risk level.



Systematic Identification of Security Threats 215

Step 3: Identify those threats for which problem diagrams containing d fit to
a threat-related diagram.

As already mentioned, it does not suffice to consider the domain type and
the security goal to decide whether a threat is relevant or not. In this step, we
also take the functional requirements into account, which are expressed with
problem diagrams. For each problem diagram in which d is contained, it has
to be checked whether it is comparable with the diagrams given in the threat
description. Comparable means that the domains, interfaces and dependencies
mentioned in the threat description are also contained in the problem diagram
under investigation. The relevant problem diagrams are collected to integrate
the threats in the fifth step of the method.

Step 4: Validate the identified threats.

The previously mentioned steps can be performed automatically, based on the
requirements model and threat templates. A manual validation of the identified
threats is still necessary. For example, a threat might only be relevant for wireless
connections. The type of connection is not given in the requirements model, and
hence has to be evaluated by security engineers.

Step 5: Integrate all relevant threats into the problem diagrams.

The identified threats are integrated into the problem diagrams as described
in Sect. 4 using the integration section of the underlying templates.

5.2 Application Example

Our case study is inspired by the OPEN meter project [12]. It describes a smart
grid scenario in which an energy supplier is able to control the grid and to retrieve
information such as the power consumption of customers. We performed our pro-
cedure for eight requirements, but in this paper we only show its application for
the requirements Setup, Measuring and Change Personal Data. The communi-
cation hub is the piece of software to be developed and serves as the interface
between customer’s home and the energy supplier. The energy supplier has to
perform an initial setup of the communication hub by entering the customer
data and necessary tariff parameters, which are stored in the configuration. The
corresponding problem diagram for this requirement is shown in Fig. 3. The com-
munication hub can be used for automatic measuring and storing of the power
consumption. The measuring component is called SmartMeter and measures the
consumption in regular intervals to forward it to the communication hub. The
measured data is stored as MeterData. Figure 4 shows the problem diagram for
the requirement Measuring. A user is able to change his/her personal data using
an interface provided by the communication hub. The personal data is stored
in the configuration. The corresponding problem diagram is shown in Fig. 5. We
limit our application example to the following assets: (1) Integrity of tariffPa-
rameters, (2) Availability of measuredData and (3) Integrity of measuredData.



216 R. Wirtz and M. Heisel

Energy
SupplierB
Energy

SupplierB

Communica on
HubM

Communica on
HubM

Configura onXConfigura onX

ES!{insertConfigura on}

CH!{storeConfigura on}

FR: Ini al Setup

insertConfigura on

configura on

Fig. 3. Problem diagram Setup

SmartMeterC SmartMeterC

Communica on
HubM

Communica on
HubM

MeterData
X

MeterData
X

SM!{sendMeasuredData}

CH!{storeMeasuredData}
FR: Store Measured

Data

sendMeasuredData

meterData

Fig. 4. Problem diagram Measuring

UserB UserB

Communica on
HubM

Communica on
HubM

Configura onXConfigura onX

U!{changePersonalData}

CH!{storePersonalData}

FR: Change Data

changePersonalData

personalData

Fig. 5. Problem diagram Change Personal Data

Following the ProCOR method, we obtain the domains to be considered for the
threat identification. The list of domains is shown in Table 3.

For all domains in scope (see Table 3), we perform the steps of the introduced
procedure. We use the threat Injection described in Tables 1 and 2 as the input
for the procedure.

UserB UserB

Communica on
HubM

Communica on
HubM

Configura on
X

Configura on
X

U!{changePersonalData,inject}
CH!{forwardData}

CH!{storePersonalData,modifyData}
C!{configura on}

FR: Change Data

changePersonalData

personalData

AR: Injec on

knowledge

configura on

inject

Fig. 6. Problem diagram with integration

Configuration (X). Step 1: The domain Configuration is a lexical domain.
Comparing the domain type with the type of target domain documented for the
threat, we consider the threat as relevant. Step 2: The security goal related to
this domain is integrity. There is a high impact for integrity documented in the
template. Hence, the threat remains relevant. Step 3: The domain is contained
in the problem diagrams shown in Figs. 3 and 5. Both are comparable to the



Systematic Identification of Security Threats 217

diagrams mentioned in the threat description. Hence, the threat is considered
for the next step. Step 4: Considering the informal description of the threat,
the problem diagram for Setup is not relevant. The input is only available for
employees of the energy supplier. The threat agent acts as a user, but not as the
energy supplier. The problem diagram Change Personal Data is relevant because
the threat agent takes the role of a user. He/She can use the user interface to
inject malicious code, which violates the security goal integrity. Step 5: The
threat needs to be integrated into the problem diagram Change Personal Data.
The join point for the machine is mapped to the communication hub, and the join
point for the lexical domain is mapped to the configuration. The anti-requirement
for injection is added to the problem diagram. All phenomena described in the
threat diagram are added to the interfaces. The extended problem diagram is
shown in Fig. 6.

CommunicationHub (M). Step 1: There is no threat mentioned with a
machine as type of target domain. The other steps do not need to be carried
out.

EnergySupplier (B). Step 1: There is no threat mentioned with a biddable
domain as type of target domain. The other steps do not need to be carried out.

Table 3. Domains in scope

Domain (Type) Information Security goal

Configuration (X) tariffParameters Integrity

CommunicationHub (M) measuredData Availability

measuredData Integrity

tariffParameters Integrity

EnergySupplier (B) tariffParameters Integrity

MeterData (X) measuredData Availability

measuredData Integrity

SmartMeter (C) measuredData Availability

measuredData Integrity

MeterData (X). Step 1: The type of target domain of the threat Injection
is the same as of MeterData. Step 2: The threat violates the security goals
availability and integrity. Hence, the threat needs further consideration. Step 3:
The domain MeterData is contained in the problem diagram shown in Fig. 4.
The problem diagram is not comparable to the diagrams which are relevant for
the threat Injection, because there is no user. Hence, the threat is not relevant
for this domain, and the following steps do not need to be carried out.

SmartMeter (C). Step 1: There is no threat mentioned with a causal domain
as type of target domain. The other steps do not need to be carried out.



218 R. Wirtz and M. Heisel

As a result, we have determined that the threat Injection is relevant for the
requirement Change personal data.

6 Related Work

There are numerous resources for threats, most of them focusing on attacks with-
out using a common description format. There is also a lack of automatic identi-
fication methods for these resources. Moreover, some resources are restricted to a
specific application context, such as web applications. In the following discussion,
we use the terminology described in Sect. 3.

Lin et al. [11] propose abuse frames to analyze security requirements from
an attacker’s point of view. An anti-requirement is fulfilled when a threat initi-
ated by an attacker is realized. Domains are considered as assets. The malicious
machine of an abuse frame acts as the interface between attacker and asset
domain. Comparable to problem frames, abuse frames are patterns to describe
a typical attacker behavior. To use an abuse frame, it is composed with a base
problem which is represented by a problem frame. Composing means to map
domains from the base problem into the abuse frame. Based on the composed
abuse frame, the attacker’s behavior can then be further analyzed. In contrast,
we consider some piece of information as an asset and our contribution is not
restricted to attacks.

The Open Source Web Application Project [1] provides a list of the ten most
severe security risks for web applications. The described risks have been used to
evaluate our description template. A method to identify threats or to incorporate
them with functional requirement is not given.

The Cloud Security Alliance (CSA) [13] provides a list of top threats for
cloud computing. Threats are grouped in so called security concerns. To define
such security concerns, the CSA makes use of articles about documented security
incidents. The articles are determined using search engines, and the identified
incidents are categorized to build a set of security concerns. The description
format is informal, and the application context is restricted to cloud computing.

Uzunov and Fernandez [14] propose an extensible threat library. The library
is based on a pattern for an abstract threat description. The definition of threat
is similar to attack. The focus for this library is on distributed systems, but the
pattern can be adapted for other needs. There is a strong relation to software
architectures, whereas we focus on the relation to functional requirements.

Microsoft developed a method called STRIDE [15]. It is a popular security
framework which is used to identify security threats. Using data flow diagrams
for modeling the system and its behavior, threats are elicited based on existing
threat categories: Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service and Elevation of privilege. Each of these categories is a nega-
tive counterpart to a security goal. Using STRIDE, threats are identified based
on data flow diagrams, whereas our approach is domain-based and considers
functional requirements.

The Bundesamt für Sicherheit in der Informationstechnik [16] provides a
catalogue describing incidents that might harm IT security. Incidents are not



Systematic Identification of Security Threats 219

restricted to attacks. General aspects as fire harming the hardware are consid-
ered, too. The descriptions in this catalogues are informal and textual.

Lund et al. [17] propose a model driven risk management method, called
CORAS. The terminology used in this work differs from the one we use. The
identification of relevant threats is performed as a structured brainstorming
where analysts meet experts with a specific domain knowledge. To document
the results of the discussion, a specific graphical language has been developed.
A common description format for threats is not used, and there is no relation to
functional requirements.

Jürjens [18] describes an extension for UML to integrate security related
information into UML diagrams. To model problem diagrams with UML, Côté
et al. [19] provide a UML profile, called UML4PF to model problem frames.
The consideration of UMLSec and UML4PF for our template might support the
consistency between the requirement model and the security model.

Opdahl and Sindre [20] introduce misuse cases as an extension of use cases.
A misuse case is related to the notion of an anti-requirement (cf. Sect. 4). We
provide a more detailed view based on the software level and information flow.

7 Conclusion and Future Work

In the present paper, we propose a template to describe security threats for
software-based systems. Our template follows the principle of security-by-design
and is applicable during requirements engineering. A systematic risk identifica-
tion requires a catalogue of threats. Using our template, security engineers can
describe threats in a structured manner and a threat catalogue can be set up as
needed. We do not restrict the approach to any specific domain.

By making technical decisions, new and more concrete threats might arise.
To describe and identify those new threats, one can adapt our template for other
steps of the software development lifecycle.

The consideration of domains in the template allows the linking to a problem-
based model for functional requirements. We also showed how threats can be
identified based on functional requirements. The integration into the require-
ments model ensures the consideration of relevant threats in the further steps of
the risk management and software development process.

Currently, we consider all threats in isolation. It is obvious that there are
dependencies between different threats. For example, disclosing the credentials
of an administrator by performing an injection may lead to new relevant threats.
We plan to elaborate a way to add these relations between threats to the tem-
plate. The method to identify threats will then be carried out iteratively until
no new threats can be identified.

We extended the CVSS specification with some additional information such
as the type of threat and the types of affected and target domains. As future
work, we aim to make use of the CVSS scoring system to estimate the severity of
a threat. This estimation then supports the derivation of the risk level. We will



220 R. Wirtz and M. Heisel

also elaborate how the provided scales can be improved with regard to the level
of details, e.g. more values to define the impact of the threat.

We believe that the template can be used to capture most threats, for exam-
ple social engineering, as well. Those threats may not be related to functional
requirements but can be described using the first part of the template (see
Table 1). In that case, the second part of the template needs to be replaced
by diagrams representing domain knowledge. For the future, we plan to also
consider domain knowledge diagrams as an input for the threat identification
method. These diagrams describe for example an information flow between two
persons, which is not related to any functional requirement, but can be used to
realize a threat.

Based on our template, we defined a semi-automatic method to identify rele-
vant threats. A limitation of that method is that only threats described by such
a template can be identified. After applying the method, an additional manual
validation to identify additional threats should be considered. We aim to assist
the security engineer as best as possible in performing that validation. A possible
starting point are questionnaires which guide through the validation process.

As already mentioned in Sect. 3, controls are used to reduce a risk. We plan
to provide a comparable template to describe such controls. The selection of
relevant controls will be based on the identified threats and their integration
into the requirements model.

References

1. Open Web Application Security Project: OWASP Top 10 - The Ten Most Critical
Web Application Security Risks (2017)

2. FIRST.org: Common Vulnerability Scoring System v3.0: Specification Document
3. Jackson, M.: Problem Frames. Analyzing and Structuring Software Development

Problems. Addison-Wesley, Boston (2001)
4. Wirtz, R., Heisel, M., Meis, R., Omerovic, A., Stølen, K.: Problem-based elicitation

of security requirements - the ProCOR method. In: Proceedings of the 13th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering,
vol. 1, pp. 26–38. ENASE, INSTICC, SciTePress (2018)

5. Faßbender, S., Heisel, M., Meis, R.: Aspect-oriented requirements engineering with
problem frames. In: ICSOFT-PT 2014 - Proceedings of the 9th International Con-
ference on Software Paradigm Trends. SciTePress (2014)

6. ISO: ISO 31000 Risk Management - Principles and Guidelines. International Orga-
nization for Standardization (2009)

7. Wirtz, R., Heisel, M., Borchert, A., Meis, R., Omerovic, A., Stølen, K.: Risk-
based elicitation of security requirements according to the ISO 27005 standard.
In: Evaluation of Novel Approaches to Software Engineering 13th International
Conference, ENASE 2018. LNCS, Madeira, Portugal. Springer, Heidelberg (2018,
submitted for publication)

8. International Organization for Standardization: ISO 27005:2011 Information tech-
nology - Security techniques - Information security risk management. Standard
(2011)

9. Common Criteria: Common Criteria for Information Technology Security Evalua-
tion v3.1. Release 5. Standard (2017)



Systematic Identification of Security Threats 221

10. FIRST.org: Common Vulnerability Scoring System v3.0: User Guide
11. Lin, L., Nuseibeh, B., Ince, D.C., Jackson, M., Moffett, J.D.: Analysing security

threats and vulnerabilities using abuse frames (2003)
12. OPEN meter Consortium: Report on the identification and specification of func-

tional, technical, economical and general requirements of advanced multi-metering
infrastructure, including security requirements (2009)

13. Cloud Security Alliance: The treacherous 12 - cloud computing top threats in 2016
14. Uzunov, A., Fernandez, E.: An extensible pattern-based library and taxonomy of

security threats for distributed systems. Comput. Stand. Interfaces 36, 734–747
(2014)

15. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
16. BSI Germany: IT-Grundschutz-Katalog (2018)
17. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis. The CORAS App-

roach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12323-8
18. Jürjens, J.: Model-based security engineering with UMLsec. In: Serenity Day:

Establishing IT Security as a Full Engineering Discipline, Brussels (2009)
19. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF - a tool for problem-

oriented requirements analysis. In: Proceedings of the International Conference on
Requirements Engineering (RE). IEEE Computer Society (2011)

20. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.
Eng. 10(1), 34–44 (2005)

https://doi.org/10.1007/978-3-642-12323-8

	A Systematic Method to Describe and Identify Security Threats Based on Functional Requirements
	1 Introduction
	2 Background
	2.1 Problem Frames
	2.2 ProCOR

	3 Conceptual Model
	4 Threat Description
	4.1 Template Format
	4.2 Application Example

	5 Threat Identification
	5.1 Procedure Steps
	5.2 Application Example

	6 Related Work
	7 Conclusion and Future Work
	References




