
Materialized View Selection
for Aggregate View Recommendation

Humaira Ehsan(B) and Mohamed A. Sharaf

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, QLD, Australia

{h.ehsan,m.sharaf}@uq.edu.au

Abstract. Data analysts arduously rely on data visualizations for draw-
ing insights into huge and complex datasets. However, finding interesting
visualizations by manually specifying various parameters such as type,
attributes, granularity is a protracted process. Simplification of this pro-
cess requires systems that can automatically recommend interesting visu-
alizations. Such systems primarily work first by evaluating the utility of
all possible visualizations and then recommending the top-k visualiza-
tions to the user. However, this process is achieved at the hands of high
data processing cost. That cost is further aggravated by the presence
of numerical dimensional attributes, as it requires binned aggregations.
Therefore, there is a need of recommendation systems that can facilitate
data exploration tasks with the increased efficiency, without compro-
mising the quality of recommendations. The most expensive operation
while computing the utility of the views is the time spent in executing
the query related to the views. To reduce the cost of this particular oper-
ation, we propose a novel technique mView, which instead of answering
each query related to a view from scratch, reuses results of the already
executed queries. This is done by incremental materialization of a set of
views in optimal order and answering the queries from the materialized
views instead of the base table. The experimental evaluation shows that
the mView technique can reduce the cost at least by 25–30% as compared
to the previously proposed methods.

1 Introduction

With the unprecedented increase in the volume of data, the challenge of finding
efficient ways to extract interesting insights is critical. As such, data visualization
has become the most common and effective tool for exploring such insights. Gen-
erally, the visualizations are generated using user-driven tools like Tableau, Qlik,
Microsoft Excel, etc. However, the use of these tools is of limited effectiveness
for large datasets, as it is very difficult for the user to manually determine the
best data visualization by sequentially browsing through the available represen-
tations. Research efforts are therefore being directed to propose recommendation
systems that automatically recommend visualizations [3,4,8–10,13]. These sys-
tems automatically manipulate the user selected dataset, generate all possible
c© Springer Nature Switzerland AG 2019
L. Chang et al. (Eds.): ADC 2019, LNCS 11393, pp. 104–118, 2019.
https://doi.org/10.1007/978-3-030-12079-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12079-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-12079-5_8

Materialized View Selection for Aggregate View Recommendation 105

visualizations, and recommend the top-k interesting visualizations, where inter-
estingness is quantified according to some utility function such as deviation,
similarity, diversification, etc. The generation of these all possible visualizations
is challenged by a wide range of possible factors. This include user-driven factors
such as individual user preferences, data of interest, information semantics and
tangible factors such as chart type, possible attribute combinations and available
transformations (e.g. sorting, grouping, aggregation and binning).

Recent studies have focused on automatically generating all possible aggre-
gate views of data and proposing search strategies for finding the top-k views
for recommendation, based on the deviation based utility metric [3,4,13]. The
search space of all possible visualizations is huge and it explodes even further in
the presence of numerical dimensions, as binned aggregation is required to group
the numerical values along a dimension into adjacent intervals. In our previous
work [3,4] on visualization recommendation, binning for numeric dimensions was
introduced and efficient schemes (named as MuVE) to recommend the top-k
binned views were proposed.

The most expensive operation while computing the utility of views is the
time spent in executing the queries related to the views. To reduce the cost of
this particular operation, a novel technique mView is proposed, which instead
of answering each query related to a view from scratch, reuses results from the
already executed queries. In summary, this is done by materializing views and
answering queries from the materialized views instead of the base table. The idea
of materializing views for reducing the query-processing time is well studied in
the literature [2,6,11] and has proven significant relevance to a wide variety
of domains, such as query optimization, data integration, mobile computing
and data warehouse design [6,11]. However due to prohibitively large number
of views, the blind application of materialization may result in even further
degradation of the cost [2]. Substantial amount of work has already been done
to select an appropriate set of views to materialize that minimize the total query
response time and the cost of maintaining the selected views, given a limited
amount of resource, e.g., materialization time, storage space etc. [5].

In this work our proposed technique mView first defines a cost benefit model
to decide which views are the best to reuse. Later, in an optimal order it mate-
rializes the best set of views, which reduce the overall cost of the solution.

The main contributions of this work are as follows:

– We formulate and analyze the problem of selecting views to materialize for
efficiently generating aggregate views in the presence of numerical attribute
dimensions (Sect. 3).

– We propose the mView technique, which introduces a novel search algorithm,
particularly optimized to leverage the specific features of the binned views
(Sect. 4).

– We conduct extensive experimental evaluation, which illustrate the benefits
achieved by mView (Sects. 5.1 and 5.2).

106 H. Ehsan and M. A. Sharaf

2 Preliminaries

2.1 Aggregate View Recommendation

The process of visual data exploration is typically initiated by an analyst speci-
fying a query Q on a database DB . The result of Q, denoted as DQ, represents
a subset of the database DB to be visually analyzed. For instance, consider the
following query Q:

Q: SELECT ∗ FROM DB WHERE T;

In Q, T specifies a combination of predicates, which selects a portion of DB for
visual analysis. A visual representation of Q is basically the process of generating
an aggregate view V of its result (i.e., DQ), which is then plotted using some of
the popular visualization methods (e.g., bar charts, scatter plots, etc.). Similar
to traditional OLAP systems and recent data visualization platforms [8,9,12,13],
our model is based on a multi-dimensional database DB , consisting of a set of
dimension attributes A and a set of measure attributes M. Additionally, F is
the set of possible aggregate functions over the measure attributes M, such as
SUM, COUNT, AVG, STD, VAR, MIN and MAX. Hence, an aggregate view Vi over DQ

is represented by a tuple (A,M,F) where A ∈ A, M ∈ M, and F ∈ F. That
is, DQ is grouped by dimension attribute A and aggregated by function F on
measure attribute M . A possible view Vi of the example query Q above would
be expressed as:

Vi: SELECT A, F(M) FROM DB WHERE T GROUP BY A;

where the GROUP BY clause specifies the dimension A for aggregation, and F (M)
specifies both the aggregated measure M and the aggregate function F .

Typically, a data analyst is keen to find visualizations that reveal some inter-
esting insights about the analyzed data DQ. However, the complexity of this task
stems from: (1) the large number of possible visualizations, and (2) the interest-
ingness of a visualization is rather subjective. Towards automated visual data
exploration, recent approaches have been proposed for recommending interesting
visualizations based on some objective, well-defined quantitative metrics (e.g.,
[8,9,13]). Among those metrics, recent case studies have shown that a deviation-
based metric is able to provide interesting visualizations that highlight some of
the particular trends of the analyzed datasets [13].

In particular, the deviation-based metric measures the distance between
Vi(DQ) and Vi(DB). That is, it measures the deviation between the aggregate
view Vi generated from the subset data DQ vs. that generated from the entire
database DB , where Vi(DQ) is denoted as target view, whereas Vi(DB) is denoted
as comparison view. The premise underlying the deviation-based metric is that
a view Vi that results in a higher deviation is expected to reveal some interest-
ing insights that are very particular to the subset DQ and distinguish it from
the general patterns in DB . To ensure that all views have the same scale, each
target view Vi(DQ) is normalized into a probability distribution P [Vi(DQ)] and
each comparison view into P [Vi(DB)].

Materialized View Selection for Aggregate View Recommendation 107

For a view Vi, given the probability distributions of its target and comparison
views, the deviation D(Vi) is defined as the distance between those probability
distributions. Formally, for a given distance function dist (e.g., Euclidean dis-
tance, Earth Mover’s distance, K-L divergence, etc.), D(Vi) is defined as:

D(Vi) = dist(P [Vi(DQ)], P [Vi(DB)]) (1)

Consequently, the deviation D(Vi) of each possible view Vi is computed, and the
k views with the highest deviation are recommended (i.e., top-k) [13]. Hence,
the number of possible views to be constructed is N = 2×|A|× |M|× |F|, which
is clearly inefficient for a large multi-dimensional dataset.

2.2 Binned Views

In the previous section we discussed about aggregate view recommendation
specifically for categorical dimensions. However, for continuous numerical dimen-
sions, typically the numerical values along a dimension require grouping into
adjacent intervals over the range of values. For example, consider a table of
employees, which has Age as a numerical dimension attribute. Particularly, one
of the aggregate views on this attribute is count the number of employees grouped
by Age. For this type of views, it is more meaningful if adjacent intervals are
grouped together and shown in a summarized way. For example, Fig. 1a shows
the whole range grouped in 8 bins.

Fig. 1. Generating Vi,2 by performing aggregation on Vi,4 or Vi,8

To enable the incorporation and recommendation of visualizations that are
based on numerical dimensions, in our previous work [3,4], we introduced the
notion of a binned view. A binned view Vi,b simply extends the basic definition
of a view to specify the applied binning aggregation. Specifically, given a view
Vi represented by a tuple (A,M,F), where A ∈ A, M ∈ M, F ∈ F, and A is
a continuous numerical dimension with values in the range L = [Lmin − Lmax],
then a binned view Vi,b is defined as:

Binned View: Given a view Vi and a bin width of w, a binned view Vi,b is
a representation of view Vi, in which the numerical dimension A is partitioned
into a number of b equi-width non-overlapping bins, each of width w, where
0 < w ≤ L, and accordingly, 1 ≤ b ≤ L

w .

108 H. Ehsan and M. A. Sharaf

For example, Fig. 1a shows a binned view Vi,8, in which the number of bins
b = 8 and the bin width w = 5, while Fig. 1c shows a binned view Vi,2, in which
the number of bins b = 2 and the bin width w = 20. Note that this definition
of a binned view resembles that of an equi-width histogram in the sense that
a bin size w is uniform across all bins. While other non-uniform histograms
representations (e.g., equi-depth and V-optimal) often provide higher accuracy
when applied for selectivity estimation, they are clearly not suitable for standard
bar chart visualizations. Given our binned view definition, a possible binned bar
chart representation of query Q is expressed as:

Vi,b : SELECT A, F(M) FROM DB WHERE T GROUP BY A

NUMBER OF BINS b

The deviation provided by a binned view Vi,b is computed similar to that in
Eq. 1. In particular, the comparison view is binned using a certain number of
bins b and normalized into a probability distribution P [Vi,b(DB)]. Similarly, the
target view is binned using the same b and normalized into P [Vi,b(DQ)]. Then
the deviation D(Vi,b) is calculated as:

D(Vi,b) = dist(P [Vi,b(DQ)], P [Vi,b(DB)]) (2)

2.3 View Processing Cost

Recall that in the absence of numerical dimensions, the number of candidate
views N to be constructed is equal to 2 × N , where N = |A| × |M| × |F|. In
particular, |A| × |M| × |F| queries are posed on the data subset DQ to create
the set of target views, and another |A| × |M| × |F| queries are posed on the
entire database DB to create the corresponding set of comparison views. For
each candidate non-binned view Vi over a numerical dimension Aj , the number
of target and comparison binned views is equal to: |M|×|F|×Bj each, where Bj is
the maximum number of possible bins that can be applied on dimension Aj (i.e.,
number of binning choices). Hence, in the presence of |A| numerical dimensions,
the total number of binned views grows to NB which is simply calculated as:

NB = 2 ×
|A|∑

j=1

|M| × |F| × Bj (3)

Furthermore, each pair of target and comparison binned views incur query exe-
cution time and deviation computation time. Query execution time is the time
required to process the raw data to generate the candidate target and compar-
ison binned views, where the cost for generating the target view is denoted as
Ct(Vi,b), and that for generating the comparison view is denoted as Cc(Vi,b).
Moreover, deviation computation time is the time required to measure the
deviation between the target and comparison binned views, and is denoted as:
Cd(Vi,b). Notice that this time depends on the employed distance function dist.

Materialized View Selection for Aggregate View Recommendation 109

Putting it together, the total cost incurred in processing a candidate view Vi is
expressed as:

C(Vi) =
B∑

b=1

Ct(Vi,b) + Cc(Vi,b) + Cd(Vi,b) (4)

We note that the cost of computing deviation is negligible as compared to query
execution cost, as it involves no I/O operations. Furthermore, for simplicity in
the next sections we assume C(Vi,b) = Ct(Vi,b) + Cc(Vi,b). Therefore, Eq. 4 is
reduced to:

C(Vi) =
B∑

b=1

C(Vi,b) (5)

Hence, the total cost incurred in processing all candidate binned views is
expressed as:

C =
N∑

i=1

C(Vi) (6)

The goal of this study is to propose schemes that reduce the cost Ct(Vi,b)
and Cc(Vi,b), which will consequently reduce the overall cost C of the solution.

3 Problem: Materialized View Selection

As mentioned in Sect. 2, the view recommendation process involves the gener-
ation of a huge number of the comparison and the target views. Particularly,
these views are the result of executing their corresponding aggregate queries.
Section 2.3 outlines how colossal the cost is for the binned view recommenda-
tion problem. However, we notice that for binned aggregate queries, the result
of certain queries can be used to answer other queries. For instance, consider a
view Vi,2 = (A,M,F, 2) can be answered from a number of other views such as
Vi,4, Vi,6, Vi,8, etc., by performing aggregation on these views instead of the base
table. We term this relationship as dependency. For instance, view Vi,2 depends
on Vi,4, Vi,6 and Vi,8.

Definition: View Dependency: a binned view Vi,b depends on another binned
view Vi,b′ , if Vi,b can be answered using Vi,b′ , where b′ is a multiple of b i.e.,
b′ = xb.

For any non-binned view Vi, all the possible binned views Vi,b can be directly
generated from the base table. Therefore, every Vi,b at least depends on the
base table, and at most depends on B

b − 1 other views Vi,b′ . The dependency
relationship between the candidates can be represented by a lattice. Figure 2
shows the lattice for a particular non-binned view Vi that can have a maximum
of 8 bins. Each node in the lattice represents a binned view, e.g. node 5 is binned
view Vi,5, while node 0 represents the base table. A view can be generated using
any of its ancestors in the lattice. For instance, the ancestors of node 3 (i.e., Vi,3)
are node 6 (i.e., Vi,6) and node 0 (i.e., base table).

110 H. Ehsan and M. A. Sharaf

Fig. 2. Lattice for view Vi with B = 8

Every Vi,b′ is a candidate view that can be reused to generate some other
views. Specifically, Vi,b can be cached in the memory or stored on the disk for
later reuse. However, because of the limited memory it is practical to store the
view on the disk. Therefore, we propose to materialize the views that are later
required to be reused. For instance, in Fig. 2, every view that is an ancestor of
at least one other view is a candidate view to be materialized. A key problem is
how to decide which views should be reused? The three possible options are:

1. Reuse nothing: This is the baseline case in which all the queries are answered
from the base table. Consequently, this would incur the query processing time
for each binned view from scratch.

2. Reuse the whole lattice: In this case all views should be materialized. This
would reduce the query processing time of each binned view but the over-
all execution time of the solution will increase because it would include the
additional cost of materializing the views.

3. Reuse a set of views: Choose an optimal set of views T to reuse and materi-
alize them. This will incur the cost of materialization but reduce the overall
cost of the solution because a number of queries will be answered from the
materialized views instead of the base table.

The best option is to reuse a set of views, which has a possibility of reducing
the overall cost. However, a cost benefit analysis between answering the views
directly from the base tables vs. materializing the views and answering some
views from those materialized ones is required. For that purpose, let Cb(Vi,b) be
the cost of answering a binned view Vi,b from the base table. Then in Eq. 5, the
cost of finding the top-1 binned view (C(Vi)), for the non-binned view Vi, can
be rewritten as:

C(Vi) =

L
w∑

b=2

Cb(Vi,b) (7)

Notice C(Vi) actually specifies the cost for option 1, where nothing is reused. For
the other options, where reuse is involved, let Cm(Vi,b) be the cost of answering
Vi,b from a materialized view. Additionally, let the views be divided into two
sets: (1) Dependent Set: the views that can be answered from T belong to the
dependent set P, and (2) Independent Set: the views that cannot be answered
from T belong to the independent set I. Particularly, the views in I need to

Materialized View Selection for Aggregate View Recommendation 111

Fig. 3. Example of cost model for HashAggregate operator where bm = 8 and b = 4

be answered from the base table. Let the cost of materializing a view Vi,b′ is
CM (Vi,b′), then Eq. 8 specifies the cost for option 3:

C(Vi) =
∑

Vi,bεP

Cm(Vi,b) +
∑

Vi,bεT

CM (Vi,b) +
∑

Vi,bεI

Cb(Vi,b) (8)

Definition: Materialized View Selection for View Recommendation:
Given all the binned views Vi,b for a non-binned view Vi, find a set T of views
to materialize, which minimize the cost C(Vi) of finding the top-1 binned view.

4 Methodology

Our proposed schemes in this section adapt and extend algorithms of material-
ized view selection towards efficiently solving the aggregate view recommenda-
tion problem.

4.1 mView: Greedy Approach

As explained int Sect. 2, the large number of possible binned views, makes the
problem of finding the optimal binning for a certain view Vi highly challenging.
An exhaustive brute force strategy is that given a certain non-binned view Vi,
all of its binned views are generated and the utility of each of those views is
evaluated. Consequently, the value of b that results in the highest utility is
selected as the binning option for view Vi. However, this involves massive cost
of processing all possible binned views.

In this work, we propose a novel technique mView, which instead of answer-
ing each query related to a view from scratch, reuses results from the already
executed queries through view materialization. Particularly, mView maintains
two sets of views; (1) T: the views that are finalized to be materialized, (2)
Cand: set of candidate views that can be added to T and consequently get mate-
rialized. The proposed technique mView adapts a greedy approach to determine
T for materialization. Initially, Cand and T are empty. Then for a non-binned
view Vi, a lattice as shown in Fig. 2 is constructed, using an adjacency list after
identifying dependencies among the views. The search for the top-1 binned view
starts from the binned view Vi,b where b = 1. All of the views that are ancestors

112 H. Ehsan and M. A. Sharaf

of Vi,b in the lattice are added to the set Cand. Next, the benefit of materializing
each view in Cand is computed.

We study in detail how to compute the benefit of materializing a view in the
next paragraph. After benefit calculation, from the set Cand, a view Vm, which
provides the maximum benefit is selected. Vm is added in T if it is not already
in T. Consequently, Vm is materialized and Vi,b is generated from Vm. In next
iteration Cand is set to empty again and the ancestors of the next binned view
are added to Cand. This process goes on until all of the Vi,b have been generated.
Initial experiments show this approach reduced cost of Linear search by 25–30%
Clearly, for this technique to work efficiently, a cost model is required to estimate
the benefit of materializing views without actual materialization. Therefore, next
we define that cost and benefit model.

Cost Benefit Analysis. As mentioned earlier, to decide which views are the
best candidates for materialization, the cost and benefit of materialization needs
to be analyzed. Specifically, we use processing time as our cost metric to measure
performance of the schemes. In the linear cost model, the time to answer a query
is taken to be equal to the space occupied by the underlying data from which
the query is answered [1,7]. In this work, the same model is adopted with some
modifications. Assume that the time to answer the aggregate query Q is related
to two factors; (1) the number of tuples of the underlying view from which Q is
answered, which is actually the number of bins of the ancestor view, and (2) the
amount of aggregation required to answer Q. Normally, a relational DBMS uses
HashAggregate as query execution plan for group-by queries. Particularly, in
this study PostgreSQL is used as backend database, which uses HashAggregate
as query execution plan for group-by queries. Hence, the cost model used by the
query optimizer, particularly PostgreSQL consists of a vector of five parameters
to predict the query execution time [14]; (1) Sequential page cost (cs), (2) Ran-
dom page cost (cr), (3) CPU tuple cost (ct), (4) CPU index tuple cost (ci), and
(5) CPU operator cost (co). The cost CHA of the HashAggregate operator in a
query plan is then computed by a linear combination of cs, cr, ct, ci, and co:

CHA = nscs + nrcr + ntct + nici + noco

Where the values n = (ns, nr, nt, ni, no)T represent the number of pages sequen-
tially scanned, the number of pages randomly accessed, and so forth, during the
execution.

Generally, for estimating cost of an operator, the values in vector n are esti-
mated. However, in our case, the already known number of rows of a materialized
view (i.e., number of bins of that view) and target view can be used for vector n.
For instance, Fig. 3 shows the steps of the HashAggregate operator for generating
a view with 4 bins from a view with 8 bins, and the cost incurred. Specifically,
The operation of generating a view with b bins from a view with bm bins has
the following parameters:

– nscs & nrcr: cs and cr are the I/O costs to sequentially access a page and
randomly access a page, while ns and nr are the number of sequentially and

Materialized View Selection for Aggregate View Recommendation 113

randomly accessed pages respectively. Generally, size of a page is 8 KB. Con-
sequently, ns depends on the page size, size of each row (let it be r), and the
number of rows read, which is equal to the number of bins of the materialized
view, i.e., ns = 8KB

r×bm
. Furthermore, cs and cr depends on whether the data

is fetched from the disk or it is already in cache. Particularly, this cost is
negligible for the later case and that is the case in our model.

– ntct : ct is the cost of scanning each row and nt is the number of rows scanned,
which is equal to the number of bins of the materialized view, i.e., nt = bm.

– nici: ci is the cost to place the row in a bucket (bin) using hashing and ni

is the number of rows hashed, which is equal to the number of bins of the
materialized view, i.e., ni = bm.

– noco: co is the cost to perform aggregate operation such as sum, count etc.,
and no is the number of aggregate operations performed. If Vi,b is answered
from Vi,bm

, then there are b buckets and each bucket will require bm

b − 1
aggregate operations, i.e., no = b(bm

b − 1) = bm − b.

Therefore, the cost of HashAggregate operator CHA is:

CHA = ntct + nici + noco

CHA = bmct + bmci + (bm − b)co

CHA = bm(ct + ci + co) + b(−co)

The costs ct, ci, and co remain same for all queries. Therefore, we replace them
with simple constants c and c′ such that: c = ct + ci + co and c′ = −co. Hence,

CHA = bm × c + b × c′

Therefore, the cost of generating Vi,b from materialized view Vi,bm
is:

Cm(vi,b) = bm × c + b × c′ (9)

Where c and c′ are learnt through multi-variable linear regression. Consequently,
the benefit of materializing a view Vi,bm

is computed by adding up the savings in
the query processing cost for each dependent view Vi,b over answering Vi,b from
the base table and subtracting the cost of materialization of Vi,bm

.

B(Vi,bm
) =

∑

Vi,b∈P

[(Cb(Vi,b) − Cm(Vi,b))] − CM (Vi,bm
) (10)

In this section, we listed the details of our proposed technique mView for
the exhaustive search, which is also called Linear search. When this scheme is
applied to a non-binned view Vi, it results in a top-1 binned view, this is termed
has horizontal search. Furthermore, applying this to every non-binned view, their
corresponding top-1 binned views are identified and from there top-k views can
be easily recommended, this is termed as vertical search. In our experiments, we
differentiate between horizontal and vertical search and the scheme applied to
each direction.

114 H. Ehsan and M. A. Sharaf

4.2 Materialized Views with MuVE

In [3,4], we argue that the deviation based utility metric falls short in com-
pletely capturing the requirements of numerical dimensions. Hence, a hybrid
multi-objective utility function was introduced, which captures the impact of
numerical dimension attributes in terms of generating visualizations that have:
(1) interestingness (D(Vi,b)): measured using the deviation-based metric, (2)
usability (S(Vi,b)): quantified via the relative bin width metric, and (3) accu-
racy (A(Vi,b)): measured in terms of Sum Squared Error (SSE). The proposed
multi-objective utility function, was defined as follows:

U(Vi,b) = αD × D(Vi,b) + αA × A(Vi,b) + αS × S(Vi,b) (11)

Parameters αD, αA and αS specify the weights assigned to each objective, such
that αD+αA+αS = 1. Furthermore, to efficiently navigate the prohibitively large
search space MuVE scheme was proposed, which used an incremental evaluation
of the multi-objective utility function, where different objectives were computed
progressively. In this section, we discuss how to achieve benefits of both the
schemes, mView and MuVE.

Selecting T while using MuVE as search strategy is non-trivial, because of
the trade-off between MuVE and mView. In the MuVE scheme, the benefit of
cost savings comes from the pruning of many views and utility evaluations.
A blind application of greedy view materialization, as in mView, may result
in materialization of views that gets pruned because of the MuVE’s pruning
scheme. The idea here is to estimate which views MuVE will eliminate and
exclude those views from the set of candidate views to materialize. To address
this issue, we introduce a penalty metric, which is added to the benefit function.
Therefore, a candidates view Vi,bm

, which has high certainty (represented as
CE(Vi,bm

)) of getting pruned by MuVE gets a high reduction in its benefit of
materialization. Particularly, a view gets pruned due to either of the two factors;
(1) short circuit of deviation objective, the certainty of this pruning is represented
as CED(Vi,bm

), and (2) early termination, certainty of getting early terminated
is represented as CEE(Vi,bm

). The certainty factor CE(Vi,bm
) is the sum of the

certainty of pruning deviation evaluation (CED(Vi,bm
)) and certainty of getting

early terminated (CEE(Vi,bm
)).

CE(Vi,bm
) = CED(Vi,bm

) + CEE(Vi,bm
)

Therefore, the benefit of materializing a view in Eq. 10 is updated as:

B(Vi,bm
) =

∑

Vi,b∈P

[Cb(Vi,b) − Cm(Vi,b)] − [CE(Vi,bm
) × CM (Vi,bm

)] (12)

The certainty of pruning deviation computation depends on the ratio of αA and
αD. MuVE uses a priority function to determine which objective to evaluate first,
in other words MuVE tries to prune the objective, which is not evaluated first.
According to that function if αA is greater than αD there is a chance of pruning

Materialized View Selection for Aggregate View Recommendation 115

the deviation objective. We are interested in pruning deviation evaluation as it
is the only objective that involves execution queries for target and comparison
views.

CED(Vi,b) =
{

0 for
αA
αD

<1
αA
αD

×10 for
αA
αD

�1

}
(13)

The certainty of early termination depends on αS and b, higher value of αS or
b means the chance of getting early termination is high.

CEE(Vi,b) =
{

0 for αS<0.5
αS× b

L for αS≥0.5

}
(14)

5 Experimental Evaluation

5.1 Experimental Testbed

We perform extensive experimental evaluation to measure the efficiency of top-k
view recommendation strategies presented in this paper. Here, we present the
different parameters and settings used in our experimental evaluation.

Setup: We built a platform for recommending visualizations, which extends the
SeeDB codebase [13] to support view materialization based schemes presented
in this paper. Our experiments are performed on a Corei7 machine with 16 GB
of RAM. The platform is implemented in Java and PostgreSQL is used as the
backend DBMS.

Schemes: We investigate the performance of the different combinations of the
vertical and horizontal search strategies presented in [3] with mView proposed
in this paper. Our naming convention for those combinations is represented as:
SearchH-SearchV, where SearchH denotes the search strategy employed for hor-
izontal search, whereas SearchV is the one for the vertical search. This leads
to the following combinations: Linear-Linear, MuVE-Linear, and MuVE-MuVE
as baseline schemes and mView(Linear-Linear), mView(MuVE-Linear), and
mView(MuVE-MuVE) as proposed schemes.

Data Analysis: As in [13], we assume a data exploration setting in which a multi-
dimensional dataset of diabetic patients1 is analyzed. The DIAB dataset has 9
attributes and 768 tuples. The independent numeric attributes of the dataset
are used as dimensions (e.g., age, BMI, etc.), whereas the observation attributes
are used as measures (insulin level, glucose concentration, etc.). In our default
setting, we select 3 dimensions, 3 measures, and 3 aggregate functions, which
results in a maximum of 2961 possible views. In the analysis, all the α values
are in the range [0 − 1], where αD + αA + αS = 1. In the default setting,
αD = 0.2, αA = 0.2, αS = 0.6, k = 5, and euclidean distance is used for
measuring deviation, unless specified otherwise.

1 https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

116 H. Ehsan and M. A. Sharaf

Performance: We evaluate the efficiency and effectiveness of the different recom-
mendations strategies in terms of two factors: (1) Cost: As mentioned in Sect. 3,
the cost of a strategy is the total cost incurred in processing all the candi-
date binned views. We use wall clock time to measure the different components
included in that cost namely, query execution time of target and comparison
views, deviation computation time, and accuracy evaluation time. (2) Relative
Difference: The ratio between cost of baseline schemes and the mV iew based
schemes, i.e., Costofbaseline−CostofmV iewScheme

Costofbaselinescheme . Each setting is executed 10 times
and then average is taken as the cost incurred.

5.2 Experiments

In the following experiments, we evaluate the performance of our technique
mView under different parameter settings. As explained in Sect. 4 that mView
scheme is used in combination with the baseline Linear scheme and optimized
MuVE scheme. Additionally it was also mentioned that the blind materializa-
tion of views while using MuVE search strategy may not be the optimal solu-
tion. Therefore, for mView(MuVE-MuVE) and mView(MuVE-Linear) schemes
an heuristic based method was proposed to predict the expected early termi-
nation and short circuit point. Figures 4 and 6 show the impact on cost, while
Figs. 5 and 7 quantifies the percentage improvement achieved in terms of relative
difference using the view materialization scheme.

Fig. 4. Impact of αA and αS on cost,
while αD = 0.2

Fig. 5. Impact of αA and αS on relative
difference, while αD = 0.2

Fig. 6. Impact of αA and αD on cost,
while αS = 0.2

Fig. 7. Impact of αA and αD on relative
difference, while αS = 0.2

Materialized View Selection for Aggregate View Recommendation 117

In Figs. 4 and 5, αD is set to constant 0.2 while αA and αS are changing.
In particular, as shown in the figures, αS is increased, while αA is implicitly
decreased and is easily computed as αA = 1 − αD − αS . Figure 4 shows that
cost mView(Linear-Linear) is less than the baseline scheme Linear-Linear. This
is because mView chooses such a set of views to materialize that saves aggrega-
tion time by generating them from the materialized views. Furthermore, Fig. 5
shows mView(Linear-Linear) reduces the cost by almost 30% as compared to the
Linear-Linear scheme. Figure 4 also shows that using our proposed heuristic in
mView(MuVE-MuVE) and the incremental view materialization of mView, the
cost is further reduced. This is due to the reason that we avoided the unnecessary
materialization of views which are eventually pruned by mView(MuVE-MuVE).
Furthermore, Fig. 5 shows mView(MuVE-MuVE) reduces the cost by almost
70% as compared to MuVE-MuVE at αS = 0.6.

In Figs. 6 and 7, αS is set to constant 0.2 while αA and αD are changing.
Figure 6 clearly shows that mView based three schemes have less cost compared
to the other three schemes. The difference in cost for the mView(MuVE-MuVE)
scheme is more than 30% at αD = 0.1 as shown in Fig. 7.

6 Conclusions

In this paper we presented a novel technique mView for recommending top-k
binned aggregate data visualizations. The proposed scheme reuses the already
executed views through materialization and answering the later queries from
the materialized views. We defined a cost benefit model to decide which views
can be reused later. We also proposed a heuristic based approach to predict
the expected early termination and short circuit for MuVE based schemes. Our
experimental results show that employing the mView technique for both Linear
and MuVE based schemes offers significant reduction in terms of data processing
costs.

References

1. Baralis, E., Paraboschi, S., Teniente, E.: Materialized views selection in a multidi-
mensional database. In: VLDB, pp. 156–165 (1997)

2. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries
with materialized views. In: ICDE, pp. 190–200 (1995)

3. Ehsan, H., Sharaf, M.A., Chrysanthis, P.K.: MuVE: efficient multi-objective view
recommendation for visual data exploration. In: ICDE, pp. 731–742 (2016)

4. Ehsan, H., Sharaf, M.A., Chrysanthis, P.K.: Efficient recommendation of aggregate
data visualizations. IEEE Trans. Knowl. Data Eng. 30(2), 263–277 (2018)

5. Gupta, H., Mumick, I.S.: Selection of views to materialize in a data warehouse.
IEEE Trans. Knowl. Data Eng. 17(1), 24–43 (2005)

6. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294
(2001)

7. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: SIGMOD, pp. 205–216 (1996)

118 H. Ehsan and M. A. Sharaf

8. Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J.M., Heer, J.: Profiler: integrated
statistical analysis and visualization for data quality assessment. In: AVI, pp. 547–
554 (2012)

9. Key, A., Howe, B., Perry, D., Aragon, C.R.: VizDeck: self-organizing dashboards
for visual analytics. In: SIGMOD, pp. 681–684 (2012)

10. Mafrur, R., Sharaf, M.A., Khan, H.A.: DiVE: diversifying view recommendation
for visual data exploration. In: CIKM, pp. 1123–1132 (2018)

11. Srivastava, D., Dar, S., Jagadish, H.V., Levy, A.Y.: Answering queries with aggre-
gation using views. In: VLDB, pp. 318–329 (1996)

12. Stolte, C., Tang, D., Hanrahan, P.: Polaris: a system for query, analysis, and visual-
ization of multidimensional relational databases. IEEE Trans. Vis. Comput. Graph.
8(1), 52–65 (2002)

13. Vartak, M., Rahman, S., Madden, S., Parameswaran, A.G., Polyzotis, N.: SEEDB:
efficient data-driven visualization recommendations to support visual analytics.
PVLDB 8(13), 2182–2193 (2015)

14. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predicting
query execution time: are optimizer cost models really unusable? In: ICDE, pp.
1081–1092 (2013)

	Materialized View Selection for Aggregate View Recommendation
	1 Introduction
	2 Preliminaries
	2.1 Aggregate View Recommendation
	2.2 Binned Views
	2.3 View Processing Cost

	3 Problem: Materialized View Selection
	4 Methodology
	4.1 mView: Greedy Approach
	4.2 Materialized Views with MuVE

	5 Experimental Evaluation
	5.1 Experimental Testbed
	5.2 Experiments

	6 Conclusions
	References

