
A Versatile Framework for Painless
Benchmarking of Database Management

Systems

Lexi Brent and Alan Fekete(B)

The University of Sydney, Sydney, NSW 2006, Australia
{lexi.brent,alan.fekete}@sydney.edu.au

Abstract. Benchmarking is a crucial aspect of evaluating database
management systems. Researchers, developers, and users utilise industry-
standard benchmarks to assist with their research, development, or pur-
chase decisions, respectively. Despite this ubiquity, benchmarking is usu-
ally a difficult process involving laborious tasks such as writing and
debugging custom testbed scripts, or extracting and transforming output
into useful formats. To date, there are only a limited number of compre-
hensive benchmarking frameworks designed to tackle these usability and
efficiency challenges directly.

In this paper we propose a new versatile benchmarking framework.
Our design, not yet implemented, is based on exploration of the bench-
marking practices of individuals in the database community. Through
user interviews, we identify major pain points these people encountered
during benchmarking, and map these onto a pipeline of processes rep-
resentative of a typical benchmarking workflow. We explain how our
proposed framework would target each process in this pipeline, potenti-
ating significant overall usability and efficiency improvements. We also
contrast the responses of engineers working in industry with those of
researchers, and examine how database benchmarking requirements dif-
fer between these two groups. The framework we propose is based around
traditional synthetic workloads, would be simple to configure, highly
extensible, could support any benchmark, and write output to any well-
defined data format. It would collect and track all generated events, data,
and relationships from the benchmark and underlying systems, and offer
simple reproducibility. Complex scenarios such as distributed-client and
multi-tenant benchmarks would be simplified by the framework’s work-
load partitioning, client coordination, and output collation capabilities.

Keywords: Benchmark · TPCC · YCSB · DBMS ·
Performance evaluation

1 Introduction

Benchmarking database management systems (DBMSes) is critical for evalu-
ating their correctness, performance, and efficacy. Organizations often employ
c© Springer Nature Switzerland AG 2019
L. Chang et al. (Eds.): ADC 2019, LNCS 11393, pp. 45–56, 2019.
https://doi.org/10.1007/978-3-030-12079-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12079-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-12079-5_4


46 L. Brent and A. Fekete

industry-standard benchmarks before making purchase decisions; researchers use
benchmarks to evaluate novel technology; and developers frequently run bench-
marks during development to identify bugs or bottlenecks in their systems.

Due to the large variety of different DBMSes, benchmarks, database
paradigms, and data formats available today, benchmarking has become an
unnecessarily complex undertaking typically involving laborious manual pro-
cesses and repetitive tasks [4,5,14]. This heterogeneity led to the development
of new tools assisting with aspects of benchmarking, such as data and workload
generation [1,2,12,13,16], precise control over request rate and transaction mix-
ture [18], collection of statistics and environment information, and workload-
or target-specific testbeds or frameworks [8,9,19]. With the rise of cloud-based
distributed DBMSes, new benchmarking frameworks such as [15] have emerged
targeting properties such as horizontal scaling, elasticity, and availability, with
support for automated provisioning of cloud resources.

Previous research has largely focused on distinct benchmarking sub-processes
or specific scenarios, rather than taking a holistic approach. For instance, OLTP-
Bench [8] provided extensible support for running industry-standard bench-
marks targeting relational DBMSes with a focus on fine-grained control over
request rates, transaction mixtures, and access distributions; YCSB [6] provided
a benchmark for large-scale distributed cloud database systems; YCSB+T [7]
extended YCSB with support for transactional workloads; the TPC [17] bench-
marks focused on performance evaluation of relational DBMSes; MTCB [20] pro-
vided a benchmark for multi-tenant OLTP systems; UDBMS [11] implemented
a data model for benchmarking multi-model database systems; and MUDD [16],
PSDG [10], PDGF [12], and NoWog [1] provided automated test data generation.

Only a few studies [3–5] have been concerned with building a comprehen-
sive, extensible framework focusing on usability and the whole benchmarking
process. Most notably, BenchFoundry [3] implemented support for deterministic
trace-based workload generation within an extensible distributed benchmarking
framework capable of supporting several SQL and NoSQL systems. Determin-
istic, trace-based workload generation makes it difficult to control the statis-
tical distribution of inputs to match real-world situations. Implementations of
traditional benchmarks within BenchFoundry may produce results inconsistent
with synthetic workloads based on random sampling from a statistical distri-
bution [5]. Additionally, BenchFoundry does not collect detailed environment
metadata from benchmark clients and servers. Such metadata is often critical for
assessing the validity of performance benchmarks, which need to be conducted
under tightly controlled conditions and should not be impacted by resource or
benchmarking bottlenecks [5].

In practice, benchmarking platforms are typically based on a series of shell
scripts and configuration files that handle everything from collecting environ-
ment information to transforming benchmark output into a useful data format,
in addition to executing the benchmark. Depending on the experiment, there
may be several different versions of each script or configuration file typically dis-
tinguished by “meaningful” filenames. Little imagination is required to realize



A Versatile Framework for Painless Benchmarking 47

this often becomes chaotic. These scripts are often developed from scratch and
specialised to specific systems or benchmarks, and therefore not easily adaptable.
As we show in Sect. 2, these custom scripts are a major time sink and source of
bugs in benchmarking workflows.

In this paper, we propose and envision a new benchmarking framework
towards solving these issues and improving practices. Unlike most previous work,
our proposal has a focus on usability. Uniquely, it is based on interviews revealing
the real benchmarking practices of several academics and industry profession-
als. The result would be a highly general, extensible, and versatile framework
incorporating the whole benchmarking process; from DBMS and benchmark con-
figuration to output processing and statistical analysis, with a focus on usability
and meeting the benchmarking needs of both industry and academia. While our
framework proposal incorporates some ideas previously presented in the OLTP-
Bench [8] and BenchFoundry [3] papers, our focus is fundamentally at a higher
level. Our vision aims to remove difficulties reported by some highly experi-
enced people; it uses traditional synthetic workloads based on sampling from a
statistical distribution, while still focusing heavily on experimental repeatability.

The main contributions of this paper are:

1. An interview-based analysis of pain points in current practices and identifi-
cation of similarities and differences between academia and industry.

2. The design of a new benchmarking framework addressing the pain points we
identified.

The remainder of this paper is structured as follows. In Sect. 2 we describe our
exploration of the benchmarking practices of academics and industry profes-
sionals. Based on this, we identify a set of major pain points in benchmark-
ing processes and contrast the responses of industry professionals with those of
academics. We show that benchmarking may be encapsulated by a pipeline of
key processes, and we map the major pain points onto this pipeline. In Sect. 3,
we describe and envision our proposed framework alongside example use cases.
Section 4 describes possible avenues for future work.

2 Current Benchmarking Practices

The design and functionality of our new benchmarking framework envisioned
in Sect. 3 is heavily informed by awareness of current benchmarking practices.
We interviewed five people in order to gain a deeper understanding of the spec-
trum of practices currently employed within the community. These interviews
focused on identifying pain points, time sinks, and potential improvements within
respondents’ existing processes.

2.1 Interview Process

Interview questions covered three broad areas: (i) systems including DBMSes
under test, benchmarking infrastructure, and benchmarking tools; (ii) processes



48 L. Brent and A. Fekete

including experiment configuration, workload, data collection, statistical anal-
ysis, transformation of raw output data, storage and management of results,
and measurement dimensions; and (iii) features/functionality desired in a
benchmarking framework. We also provided respondents with a list of poten-
tial features for our new framework, and asked which features would be most
applicable to their workflow. Finally, respondents were given an opportunity to
suggest new features to resolve existing issues they had identified in their own
benchmarking processes. Our full set of interview questions is available online1.

Interviewees included some academic researchers, and some engineers work-
ing in industry on deployed DBMS systems. All respondents were asked identical
questions regardless of their respective backgrounds, and encouraged to provide
as much detail as possible. Some additional impromptu questions were asked to
clarify responses or request further detail. Interviews were conducted verbally
in-person or via teleconference, in a single block of time between 30 and 45 min,
with responses transcribed as the respondents spoke. While the number of peo-
ple involved is small, they cover a variety of situations, and so we expect that
improving the issues they mentioned will have wide benefits.

These interviews were conducted in December 2015. In March 2018 we con-
ducted a follow-up email asking some of the original respondents from both
industry and academia if any significant changes to their benchmarking tools,
processes, or methodology had occurred since 2015. In their replies, they reported
no significant changes. Hence, we are confident that our analysis of pain points,
and our proposed framework, remain relevant to the community in 2018.

2.2 Insights of Interest

Based on interview responses, we created a summary of the key challenges faced
by each respondent in their benchmarking workflows. We then used those sum-
maries to build the following taxonomy, in which each “pain point” corresponds
to a key challenge raised by at least one respondent:

PP1. Initial setup and configuration. The deployment and configuration of
a benchmarking experiment is often time-consuming and unintuitive.

PP2. Script writing. It is often necessary to write and debug custom testbed
scripts, which is laborious and time-consuming.

PP3. Reproducibility. Repeatability and reproducibility are difficult to accom-
plish, usually involving a manual process of referring to multiple information
sources to configure and re-execute an experiment.

PP4. Debugging. Unexpected results are difficult to substantiate, usually
requiring time-consuming manual debugging.

PP5. Distributed clients. Distributed benchmarks often require manual coor-
dination of clients and collation of output.

PP6. Metadata collection. Collecting additional system metadata (e.g. sys-
tem calls) during a benchmark run requires writing custom scripts, coordi-
nating these, and manually correlating output.

1 https://github.com/lexibrent/benchfw-resources/blob/master/interview-qns.pdf.

https://github.com/lexibrent/benchfw-resources/blob/master/interview-qns.pdf


A Versatile Framework for Painless Benchmarking 49

PP7. Log correlations. Correlating events recorded by benchmark clients with
those recorded in DBMS logs requires manual inspection or custom scripts.

PP8. Statistical analysis. Statistical exploration of benchmark metrics (e.g.
computing correlation coefficients) is often fruitful but typically too laborious
and time-consuming to be feasible.

Some notable similarities and differences were observed between the responses
from researchers and industry professionals:

– Industry respondents tended to focus more on reliability and efficiency
than academic respondents. For example, industry respondents expressed a
desire to measure “consistency of throughput”, “response time variance”, and
“latency with a threshold”.

– Industry respondents tended to focus on applications surrounding debugging
and continuous integration, whereas academic respondents primarily focused
on scientific applications such as experimentation with novel technologies.

– Academic respondents were more concerned with statistical and experimental
validity and repeatability than industry respondents. For example, academic
respondents discussed conducting multiple trials, and methods of dealing with
statistical outliers. Industry respondents did not pay much attention to these
topics, with some indicating they would typically only run a benchmark mul-
tiple times to assist with debugging, rather than to improve statistical relia-
bility.

– All respondents indicated they use cloud services such as Amazon EC2 exten-
sively in their benchmarking processes.

– All respondents agreed that distributed benchmark clients are difficult to
coordinate, but industry respondents appeared to exhibit less interest in con-
ducting distributed benchmarks than academic respondents.

– Industry respondents’ processes tended to focus on short-length, single-client
workloads, whilst academic respondents emphasised the importance of longer-
running and mixed-client workloads.

2.3 Further Analysis of Benchmarking Processes

Our interviews and our own experiences suggested that benchmark execution
can be represented as a pipeline of three main processes: (i) initial configu-
ration, (ii) benchmark runs, and (iii) results processing/analysis. This
pipeline model, depicted in Fig. 1, is consistent with observations of others in
the community [5] who also approach benchmarking as a pipeline, albeit from a
different perspective.

In Table 1 we assign each identified pain point to one or more pipeline pro-
cesses. We observe that initial configuration and results processing/analysis are
the two major sources of pain and time consumption, potentiating the greatest
improvements in efficiency and usability for the overall benchmarking pipeline.
Hence, our new benchmarking framework proposed in Sect. 3 is motivated by
improving the efficiency of the pipeline by finding solutions to these pain points.



50 L. Brent and A. Fekete

Initial configuration Benchmark
runs

Results
processing/analysis

Fig. 1. Benchmarking represented as a pipeline. Initial configuration and results pro-
cessing/analysis are the most painful processes, potentiating the largest efficiency and
usability improvements (indicated by inward arrows).

Table 1. Association of identified pain points with benchmark pipeline processes.

Pipeline process Major pain points

Initial configuration PP1, PP2, PP3, PP4, PP5, PP6

Benchmark runs PP4, PP5

Results processing/analysis PP4, PP5, PP6, PP7, PP8

3 New Benchmarking Framework

In this Section, we propose and envision a new framework towards addressing
the major pain points described in Sect. 2, with the overall goal of decreasing
the inefficiency and pain associated with DBMS benchmarking. The framework
we envision is founded on several key principles:

1. Generality and versatility—no restrictions should be imposed regard-
ing the: benchmark; configuration parameters (DBMS/benchmark); target
DBMS; workload; dataset; experimental method; or outputs. A relevant
benchmarking framework should be capable of handling the heterogeneity
of modern DBMS benchmarking.

2. Extensibility and abstraction—the framework should be highly extensible
in all directions, with a modular design utilizing multiple abstraction layers.
It should be straightforward to implement or extend benchmarks, workloads,
target DBMSes, experimental methodologies, etc. This principle responds to
the rapid pace of development within the database community and it aims to
ensure the proposed framework’s ongoing relevance.

3. Usability and configurability—the framework should be simple to install,
configure, and run, painless to extend, and provide intuitive output. All
aspects of the benchmarking pipeline should be separately and extensively
configurable using a simple self-documenting configuration format. Running
traditionally complex distributed benchmarks should be as simple as specify-
ing a few configuration parameters.

4. Track everything—as much information as practically possible (i.e. without
interfering with results) should be collected about the benchmarking environ-
ment. Metadata about relationships between information and objects within
the system should also be collected. More context is better than less when
reviewing benchmarking outputs.

5. Repeatability/reproducibility—replicating an experiment for result ver-
ification and consistency should be as simple as running a command.



A Versatile Framework for Painless Benchmarking 51

6. Flexibility of output—the framework should be capable of outputting any
well-defined format specified by the user, and of re-writing output in different
formats after experiment completion. It should be straightforward to extend
the framework with custom output formats.

Through consistent focus on these key principles, our proposed framework would
make leaps in resolving the major pain points identified in Sect. 2.2. The remain-
der of Sect. 3 envisions our new framework through these key principles, and
explains how each of the major pain points would be addressed. Though not the
focus of this paper, we also developed a set of nonfunctional requirements and
UML class diagrams for our proposed framework; these are available online2.

3.1 Versatility and Extensibility

We propose a highly modular design suitable for implementation in any object-
oriented programming language. In particular, our design supports any industry-
standard benchmark or micro-benchmark. These could be implemented natively
within our framework or run as separate programs. The minimum implementa-
tion required to run an existing benchmark would be writing methods to launch
the existing benchmark’s executable, process its output, and handle its input
configuration parameters. The framework would similarly support any possible
target DBMS, either implemented natively or accessed via a separately-running
benchmark program.

Different experimental methods and repeatability (PP3) would be supported
by abstracting the concept of a benchmark from that of an experiment. In our
model, an experiment could use any benchmark or combination thereof, any
number of times, with any number of warm-up/cool-down period, termination,
and data collection triggers. This would allow expressing complex experiments
such as the hypothetical scenario in Table 2.

Since our framework would be capable of handling the whole benchmark-
ing pipeline, the need to write and debug custom testbed scripts (PP1–PP4)
would be completely eliminated. Experiments designed within our framework
could be easily ported to new scenarios without the traditional script-modifying
and re-debugging that would otherwise be required with a custom testbed. Our
framework would also provide new opportunities for collaboration and data shar-
ing because anyone who could run the framework could also load and explore
the output of any experiment performed using it.

3.2 Configuration

Simplifying configuration of benchmarks and DBMSes would be a significant
usability accomplishment. Many systems are configured by setting values for a
set of predefined configuration keys, often using a key-value configuration format
such as Java Properties files. We would take advantage of this commonality

2 https://github.com/lexibrent/benchfw-resources/.

https://github.com/lexibrent/benchfw-resources/


52 L. Brent and A. Fekete

Table 2. Hypothetical YCSB benchmarking experiment in our framework.

Benchmark config ycsb/workloads/workloada

Benchmark clients localhost

DBMS servers bench1

Method 5 trials, non-distributed

Vary YCSB thread count from 1 to 32, stepping by 1

Targets MongoDB

Warm-up until server disk I/O is stable

Output YCSB throughput and aggregates: avg, SD, min, max

Output formats CSV and JSON

Collect (from servers) disk, CPU, RAM, and network utilization every 2 s

Start condition start at 2018-02-10 00:00:00 UTC

with a simple self-documenting key-value configuration format for every aspect
of the framework. Our framework could automatically generate configuration
files for other software components based on values set in the framework’s own
configuration, provided the framework is first extended with an implementation
of the appropriate parse and generation logic (for non-key-value formats).

Any configuration file within our proposed framework can reference any other
configuration file, allowing large or complicated scenarios to be split into man-
ageable chunks. The need to copy entire configuration files to change options
between experimental runs (PP1) is eliminated because our framework would
allow all desired values to be expressed within the same configuration file using,
for example, a concise range syntax. These value set declarations would be pro-
cessed independently to the general configuration syntax, allowing custom syntax
and parse logic to “just work” when implemented as an extension.

In addition, settings could be configured at different granularity levels. In
order of granularity from course to fine, these would be: framework, DBMS,
benchmark, experiment, and run. Any key configured at a given granularity
level would override any values set for it in courser granularity levels. This design
would allow, e.g., multiple experiments to share a common base configuration,
with different sets of benchmark runs overriding specific configuration values.

Since flexibility is a major goal of our proposed framework, every component
would be extensively configurable. Resource-intensive components such as com-
prehensive real-time system monitoring could be readily disabled. This design
provides finer control of overhead and the associated trade-offs.

3.3 Distributed Benchmarks

Challenges associated with manually coordinating distributed benchmark clients
running in parallel (PP5) would be eliminated by our framework’s ability to
automatically configure and coordinate multiple DBMS server systems and



A Versatile Framework for Painless Benchmarking 53

benchmark clients. An experiment configuration could list multiple machines on
the same network that are all running the framework, partitioned into DBMS
server and benchmark client machines. If any machine in such a configuration
contains a more recent version of an experiment configuration than its peers,
all peers would update to the later version before beginning execution. This
would enable painless configuration modifications post-deployment, by simply
modifying the configuration stored on one of the connected machines.

Partitioning the benchmark workload could be accomplished by specializing
specific configuration values for each client or group of clients. For example, to
split the workload based on operation type, one group of clients could be con-
figured to perform only reads and another to perform only inserts and updates.
Any configuration options supported by the benchmark could be used, so other
examples may include partitioning based on operation count, primary key, table,
or database (for multi-tenant benchmarks).

Our framework would track time stamps for all captured events, including
error log entries and output from the benchmark and target DBMS. At the
conclusion of a distributed benchmark run, all machines running the frame-
work would collate these events based on times tamp, while still tracking which
machine captured each event. Correlation coefficients between different datasets
could be automatically computed for collected metrics, assisting the user with
post-experiment analysis and debugging unexpected results.

3.4 Repeatability/Reproducibility and Debugging

Despite being a core principle of the scientific method, reproducibility is often
overlooked by the database community. We speculate that this may be due to
factors such as experimental complexity, inability to replicate hardware configu-
rations, closed-source or proprietary software licences, and incomplete or impre-
cise descriptions of experiments in literature. Our proposed framework would
simplify reproducibility (PP1, PP3) for benchmarking by automatically config-
uring the experimental method, benchmark, and DBMS. Each DBMS under test
would simply need a corresponding adapter class implementation.

Using our framework, anyone with the necessary hardware and software envi-
ronment could replicate any previous experiment performed with the framework
by running a command and providing the output data from the experiment to
be replicated. Our framework would warn the user if any detectable differences
were found between the current environment and the environment used in the
original experiment, reducing the chance of small differences going unnoticed.
If the full output of a previous experiment is unavailable, the experiment could
still be replicated by using identical configuration files, in which case our frame-
work would be unable to report environmental differences. During replication of
an experiment, values that were originally sampled from statistical distributions
could either be re-sampled or re-used.

The comprehensive targeted metadata collection capabilities of our frame-
work (described in Sect. 3.5) would simplify debugging by providing a more con-
figurable level of detail than what is traditionally available. Debugging tools



54 L. Brent and A. Fekete

could also be attached to processes within the pipeline by setting appropriate
configuration keys. This would eliminate the need to repeat an experiment with
debugging tools manually attached, making heisenbugs easier to catch (PP4).

3.5 Metadata Collection

The framework’s general approach to environment metadata collection would
be that “more is better” provided it can be used effectively. So, it should be
traceable, comprehensive, and relevant. Environment information would be col-
lected for each system running our framework within an experiment. It would
include details of (for example) the kernel, operating system, hardware, resource
use, runtime and library versions, network connections, running processes and
threads, system calls, memory access violations, crash dumps, and exact config-
uration files used. The collection mechanism would be modular and extensible,
so additional data collection could be implemented with ease.

Traceability of collected metadata would be accomplished with a relational
model linking each piece of information to its origin and other related data. For
example, system environment information is related to the: machine on which it
was collected, benchmark being executed, configuration used in that benchmark
execution, experimental method used and its configuration, framework version,
etc. These proposed metadata collection capabilities offer significant usability
and efficiency improvements over typical benchmarking methodologies (PP6).

3.6 Output and Analysis

Industry-standard DBMS benchmarks output a variety of different formats, only
some of which are extensible and configurable. Many write directly to stdout,
relying on the user to manually perform collection and analysis (or automate it
with custom testbed scripts). Our framework would improve this (PP2, PP4)
by automatically extracting metrics of interest from raw benchmark output and
storing these internally so they can be exported to any desired format such as
CSV, JSON, or perhaps a plot. For each supported benchmark, our framework
would require logic to process the benchmark’s raw output; typically involving
running regular expressions or parsers over captured stdout. Each output format
would have its own writer implementation, so it would be straightforward to
extend the framework with support for new output formats.

Comprehensive data collection in our proposed framework would make it
possible to extract additional metrics from existing experimental output without
needing to re-run the benchmark itself. This could also be used to convert a
completed experiment’s data to a different output format.

Statistical analysis of experimental results is traditionally performed entirely
manually after data extraction (PP8). Our framework would improve the effi-
ciency of this process by automating some common calculations. For example,
the user could configure the framework to output aggregate metrics such as sum,
average, min, max, median, standard deviation, variance, confidence interval,
and correlation coefficients (PP7). As with the other aspects of our framework,



A Versatile Framework for Painless Benchmarking 55

these would be modular and extensible. The framework would also be capable
of reporting new correlations that may be of interest to the experimenter.

4 Future Work

We now need to implement and evaluate our proposed framework. Future work
could also explore developing a framework supporting both synthetic and trace-
based workloads; combining the framework described in this paper with the
functionality of BenchFoundry [3].

5 Conclusion

In this paper we proposed a new versatile and extensible framework for con-
ducting benchmarking of DBMSes, based on a survey of the benchmarking prac-
tices of several individuals in the database community from both industry and
academia. We showed that a typical benchmarking workflow is well-modelled as
a pipeline of three key processes. Based on interview responses, we developed a
set of major benchmarking “pain points” and mapped these onto the processes
in our pipeline to determine which processes potentiated the greatest overall
efficiency and usability improvements. We characterized several core principles
upon which our vision is based: extensibility, usability, configurability, extensive
data collection, and reproducibility. Our proposed framework was described,
including how it would address each of the major pain points we had identified.
A future implementation of our proposed framework could greatly improve the
coherence of benchmarking for industry and academic purposes.

References

1. Ameri, P., Schlitter, N., Mayer, J., Streit, A.: NoWog: a workload generator for
database performance benchmarking. In: 2016 IEEE 14th International Confer-
ence on Dependable, Autonomic and Secure Computing, 14th International Con-
ference on Pervasive Intelligence and Computing, 2nd International Conference
on Big Data Intelligence and Computing and Cyber Science and Technology
Congress, DASC/PiCom/DataCom/CyberSciTech 2016, Auckland, New Zealand,
8–12 August 2016, pp. 666–673 (2016)

2. Barahmand, S., Ghandeharizadeh, S.: D-Zipfian: a decentralized implementation of
Zipfian. In: Proceedings of the Sixth International Workshop on Testing Database
Systems, DBTest 2013, pp. 6:1–6:6. ACM, New York (2013)

3. Bermbach, D., Kuhlenkamp, J., Dey, A., Ramachandran, A., Fekete, A., Tai,
S.: BenchFoundry: a benchmarking framework for cloud storage services. In:
Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS,
vol. 10601, pp. 314–330. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69035-3 22

4. Bermbach, D., Kuhlenkamp, J., Dey, A., Sakr, S., Nambiar, R.: Towards an exten-
sible middleware for database benchmarking. In: Nambiar, R., Poess, M. (eds.)
TPCTC 2014. LNCS, vol. 8904, pp. 82–96. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15350-6 6

https://doi.org/10.1007/978-3-319-69035-3_22
https://doi.org/10.1007/978-3-319-69035-3_22
https://doi.org/10.1007/978-3-319-15350-6_6
https://doi.org/10.1007/978-3-319-15350-6_6


56 L. Brent and A. Fekete

5. Bermbach, D., Wittern, E., Tai, S.: Cloud Service Benchmarking. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-55483-9

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, pp. 143–154. ACM, New York (2010)

7. Dey, A., Fekete, A., Nambiar, R., Rohm, U.: YCSB+T: benchmarking web-scale
transactional databases. In: Proceedings - International Conference on Data Engi-
neering, pp. 223–230 (2014)

8. Difallah, D., Pavlo, A.: OLTP-bench: an extensible testbed for benchmarking rela-
tional databases. Proc. VLDB Endow. 7(4), 277–288 (2013)

9. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big
data analytics. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, 22–27 June 2013, pp.
1197–1208 (2013). https://doi.acm.org/10.1145/2463676.2463712

10. Hoag, J.E., Thompson, C.W.: A parallel general-purpose synthetic data generator.
SIGMOD Rec. 36(1), 19–24 (2007)

11. Lu, J.: Towards benchmarking multi-model databases. In: 8th Biennial Conference
on Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA, 8–11
January 2017, Online Proceedings (2017)

12. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale
benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417,
pp. 41–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18206-
8 4

13. Rabl, T., Poess, M., Danisch, M., Jacobsen, H.A.: Rapid development of data gen-
erators using meta generators in PDGF. In: Proceedings of the Sixth International
Workshop on Testing Database Systems, DBTest 2013, pp. 5:1–5:6. ACM, New
York (2013)

14. Sakr, S., Casati, F.: Liquid benchmarks: towards an online platform for collab-
orative assessment of computer science research results. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 10–24. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18206-8 2

15. Seybold, D.: Towards a framework for orchestrated distributed database evaluation
in the cloud. In: Proceedings of the 18th Doctoral Symposium of the 18th Inter-
national Middleware Conference, Middleware 2017, pp. 13–14. ACM, New York
(2017)

16. Stephens, J.M., Poess, M.: MUDD: a multi-dimensional data generator. SIGSOFT
Softw. Eng. Notes 29(1), 104–109 (2004)

17. Transaction Processing Performance Council (TPC): TPC-Homepage V5 (2016).
http://www.tpc.org/

18. Van Aken, D., Difallah, D.E., Pavlo, A., Curino, C., Cudré-Mauroux, P.: Bench-
Press: dynamic workload control in the OLTP-bench testbed. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2015, pp. 1069–1073. ACM, New York (2015)

19. Yoon, D.D.Y.: Database Performance Evaluation Framework. Ph.D. thesis, The
University of Sydney (2008)

20. van der Zijden, W., Hiemstra, D., van Keulen, M.: MTCB: a multi-tenant customiz-
able database benchmark. In: Proceedings of the 9th International Conference on
Information Management and Engineering, ICIME 2017, pp. 17–23. ACM, New
York (2017)

https://doi.org/10.1007/978-3-319-55483-9
https://doi.acm.org/10.1145/2463676.2463712
https://doi.org/10.1007/978-3-642-18206-8_4
https://doi.org/10.1007/978-3-642-18206-8_4
https://doi.org/10.1007/978-3-642-18206-8_2
http://www.tpc.org/

	A Versatile Framework for Painless Benchmarking of Database Management Systems
	1 Introduction
	2 Current Benchmarking Practices
	2.1 Interview Process
	2.2 Insights of Interest
	2.3 Further Analysis of Benchmarking Processes

	3 New Benchmarking Framework
	3.1 Versatility and Extensibility
	3.2 Configuration
	3.3 Distributed Benchmarks
	3.4 Repeatability/Reproducibility and Debugging
	3.5 Metadata Collection
	3.6 Output and Analysis

	4 Future Work
	5 Conclusion
	References




