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Preface

It is our pleasure to present to you the proceedings of the 30th Australasian Database
Conference (ADC2019), which took place in Sydney, Australia. The Australasian
Database Conference is an annual international forum for sharing the latest research
advancements and novel applications of database systems, data-driven applications,
and data analytics between researchers and practitioners from around the globe, par-
ticularly Australia and New Zealand. The mission of ADC is to share novel research
solutions to problems of today’s information society that fulfil the needs of hetero-
geneous applications and environments and to identify new issues and directions for
future research and development work. ADC seeks papers from academia and industry
presenting research on all practical and theoretical aspects of advanced database theory
and applications, as well as case studies and implementation experiences. All topics
related to database are of interest and within the scope of the conference. ADC gives
researchers and practitioners a unique opportunity to share their perspectives with
others interested in the various aspects of database systems.

As in previous years, the ADC 2019 Program Committee accepted papers consid-
ered as being of ADC quality without setting any predefined quota. The conference
received 16 submissions and accepted ten papers, including nine full research papers
and one demo paper. Each paper was peer reviewed in full by at least three independent
reviewers, and in some cases four referees produced independent reviews. A conscious
decision was made to select the papers for which all reviews were positive and
favorable. The Program Committee that selected the papers consists of 35 members
from around the globe, including Australia, China, Finland, Japan, the UK, and the
USA, who were thorough and dedicated to the reviewing process.

We would like to thank all our colleagues who served on the Program Committee or
acted as external reviewers. We would also like to thank all the authors who submitted
their papers and the attendees. This conference is held for you, and we hope that with
these proceedings, you can have an overview of this vibrant research community and
its activities. We encourage you to make submissions to the next ADC conference and
contribute to this community.

January 2019 Lijun Chang
Junhao Gan

Xin Cao



General Chair’s Welcome Message

On behalf of the organizers and Steering Committee for ADC 2019, I am honored to
welcome you to the proceedings of the conference. The Australasian Database Con-
ference has an extensive history; this was the 30th occurrence of the conference. In the
past decade, ADC has been held on the Gold Coast (2018), Brisbane (2017), Sydney
(2016), Melbourne (2015), Brisbane (2014), Adelaide (2013), Melbourne (2012), Perth
(2011), Brisbane (2010), Wellington (2009), and Wollongong (2008). This year, ADC
was run under the umbrella of the Australasian Computer Science Week, organized at
Macquarie University in Sydney.

We are especially grateful to A/Prof. Len Hamey of Macquarie University for
arranging things so smoothly. The technical program was arranged by Dr. Lijun Chang
(University of Sydney) and Dr. Junhao Gan (University of Melbourne), who managed
the review process by a panel of distinguished researchers from many countries, and
then selected the papers from 16 submissions. The proceedings publication was
arranged and supervised by Dr. Xin Cao (University of New South Wales). We are all
the beneficiaries of their dedication.

As well as the conference, whose papers are found here, we held a co-located
workshop aimed at PhD students and early-career researchers, with a range of out-
standing speakers, especially a keynote from Prof. Beng Chin Ooi (NUS). This all
shows the vibrancy of the database research community in Australia and New Zealand,
and contributes to its continuation.

Alan Fekete
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Batch Processing of Shortest Path
Queries in Road Networks

Mengxuan Zhang(B), Lei Li, Wen Hua, and Xiaofang Zhou

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

mengxuan.zhang@uqconnect.edu.au, {l.li3,w.hua}@uq.edu.au,
zxf@itee.uq.edu.au

Abstract. Shortest path algorithm is a foundation to various location-
based services (LBS) and has been extensively studied in the literature.
However, server-side shortest path calculation faces a severe scalability
issue when the business expands and a huge amount of requests are sub-
mitted to the server simultaneously. Although a straightforward solu-
tion widely-adopted in current industry is to deploy more processing
resources, in this work, we aim to improve the efficiency algorithmically
by answering queries in a batch and reusing shareable computations.
In particular, we generalize the goal-directed A* algorithm to correctly
solve the batch processing problem with localized destinations. We fur-
ther propose two decomposition algorithms to deal with scenarios where
the destinations are sparse. Extensive evaluations on a real-world road
network verify the superiority of our algorithm compared with state-of-
the-art methods.

Keywords: Shortest path · Batch process · Road network

1 Introduction

As the rapid spread of GPS-enabled devices, we have witnessed a blooming
of various location-based services (LBS) such as map applications, commercial
navigation products, O2O taxi business, etc. One of the most crucial techniques
behind them is the shortest path algorithm which, given two locations s and t
in a road network G = (V,E), returns a route from s to t with the minimum
network distance.

The shortest path problem has been extensively studied in both academia
and industry. Existing approaches can be categorized depending on whether
they use an index or not. Index approaches [1–9] pre-compute and store various
auxiliary information so that the shortest path can be retrieved quickly once
required. However, these methods are usually space-consuming and hard to adapt
to network dynamics since it incurs huge computational cost to update or rebuild
the index accordingly. Non-index approaches [10–12], on the contrary, search in
the road network directly which is more applicable in a dynamic environment
c© Springer Nature Switzerland AG 2019
L. Chang et al. (Eds.): ADC 2019, LNCS 11393, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-12079-5_1
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although not as efficient as the index counterparts. Considering the rapid changes
in a real-life road network, the non-indexing algorithms are more appealing to
industry and commercial LBS.

Shortest path queries can be handled at either client-side or server-side. How-
ever, in some applications such as O2O taxi and ride sharing, server-side pro-
cessing is inevitable since they require information from other shortest path
requests (e.g., nearby taxis and customers). Scalability becomes a severe issue
in this situation when a huge amount of requests are submitted to the server
simultaneously (e.g., 100K requests per minute during the rush hour). Naturally,
more servers can be deployed in order to cope with such a swarm of queries. But
is there a resource-efficient way to address the scalability issue? That is, can
we algorithmically reduce the total computational cost of simultaneous shortest
path queries?

To this end, we propose a batch processing algorithm by reusing shareable
shortest path computations. Intuitively, when queries are localized (i.e., origins
and destinations are centralized in a small region such as airports, train stations,
shopping malls, etc.), there could be a large proportion of common computations
among these queries. In other words, it is possible to answer all these queries
within a single network search. Therefore, we study the problem of 1-N (i.e.,
the same origin with different destinations) shortest path queries in this work. It
is worth noting that the 1-N algorithm can be easily adjusted to address other
problems such as M -1 (by applying 1-N algorithm on the reversed road network)
and M -N (by combining 1-N and M -1 algorithms).

Inspired by the goal-directed A* algorithm, we generalize it to the A*-1N
algorithm such that it can find shortest paths to N different but localized desti-
nations in one search. We further extend our approach to deal with widespread
destinations. In particular, we propose two decomposition strategies, i.e., angle-
based and distance-based, to split the N destinations into several clusters and
answer them separately using the A*-1N algorithm. Our contributions in this
work can be summarized as follows:

– We study a new problem of batch shortest path queries, which is quite impor-
tant to many real-world location-based applications;

– We improve the efficiency and scalability algorithmically by reusing shareable
computations among batch queries;

– We propose a generalized A*-1N algorithm and two decomposition methods
to speed up computation under different scenarios;

– We evaluate the effectiveness and efficiency of our algorithms comprehensively
using real data.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 presents our generalized A*-1N algorithm and two decomposi-
tion approaches with correctness and performance analysis. An empirical study
is conducted and reported in Sect. 4, followed by a brief conclusion in Sect. 5.
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2 Related Work

The basis of most existing approaches is the Dijkstra’s Algorithm [10]. It can find
not only the shortest path, but also the fastest path given a departure time [11,
13,14]. However, its search space is nearly a circle, which results in a waste of time
to traverse the obviously useless nodes. The Bi-Dijkstra algorithm reduces the
running time by searching from the source and the destination simultaneously.
Although its search space becomes two smaller circles, their sum could still be
big especially when the graph density is uneven. In order to further reduce the
search space, some heuristic algorithms like A* [12] and ALT [1] are proposed.
Nevertheless, since they are goal-directed and require a fixed destination, they
can only answer the query between a pair of nodes at a time. Even if there are
several queries from the same node simultaneously, we still have to run these
algorithms multiple times.

After that, various index structures are proposed to either reduce the search
space or return the result directly. The first kind is the pruning techniques,
such as Reach [15], Geographic Container [16], Arc-Flag [3] and CH [2]. They
can prune the search space by adding different additional information through
pre-computing all-pairs or partially all-pairs shortest paths (like shortcuts, grid
indicators and so on). The more additional information is added, the faster the
actual search is. The second group is called Hop Labeling [4], which includes
IS-Label [17], Hub-Labeling [18], Pruned Landmark Labeling [5], Hop-Doubling
[19] and H2H-Index [6]. They can answer the shortest distance query in O(1)
time by combining the shortest distance from the source node to a hop node,
and from this hop node to the destination. However, it takes at least cubic
time to build and does not support path retrieval. The last stream is based
on database techniques [7,20,21]. It stores all-pair shortest path in database
and builds indexes to retrieve the result. Obviously, it is the fastest in query
answering, but it is also the most time- and space-consuming. Furthermore,
since all these index approaches suffer from a large amount of preprocessing
time, they are mostly designed for the static environment and hard to adapt to
the dynamic one. As the traffic condition changes over time, we cannot afford
to rebuild any of these indexes.

Finally, only a few works try to solve the batch shortest path problem. Reza
[22] puts all the sources nodes in one big priority queue and run the Dijkstra
directly. All the intermediate results are settled by taking the average from the
sources. The algorithm terminates when all the destinations are visited. Appar-
ently, they cannot get the accurate result. Mahmud [23] breaks the batch search
into three parts: from the sources to an intermediate node, from this intermedi-
ate node to another intermediate node, and from the second intermediate node
to the targets. Although they propose several approaches to cluster the sources
and targets, they still cannot answer the query correctly.
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3 Batch Shortest Path Algorithms

In this section, we describe our algorithms in details. Firstly, we generalize the
pairwise A* algorithm to A*-1N algorithm and prove its correctness in Sect. 3.1.
Then we discuss the representative node selection in Sect. 3.2. After that, we
present two decomposition approaches to deal with the cases when the target
set distributes in a relatively large area in Sect. 3.3. Finally we briefly discuss
the batch query answering in Sect. 3.4. Some important notations are listed in
Table 1.

Table 1. Important notations

Notation Meaning

G(V,E) Graph G, Node set V = {vi}, Edge set E ⊂ {(vi, vj)}
w(vi, vj) Weight of edge (vi, vj)

l(vi, vk) Estimated cost between vi and vk

qs,t Path finding query from start node s and target node t

Qs,T Batch path finding query with start node s and target set T

ps,t Shortest/Fastest path from s to t

ds,t The cost of shortest/fastest path Ps,t

T Target node set and T ⊂ V

d(vi, vj) Cost from vi to vj and not necessarily the least cost

dvk(vi, vj) Estimated cost from vi to vj and through vk

3.1 A*-1N Algorithm

Given a graph G(V,E) with coordinate geometry and a shortest path query qs,t,
the classic pairwise A* algorithm chooses the target t as representative node
which guides the search towards it. H is a priority queue ordered by heuristic
distance dvi

(s, t) = d(s, vi) + l(vi, t) in ascending order. When t is popped out
from H, the shortest distance from s to t is found.

In order to generalize the classic A* to answer the multiple targets query, we
first prove we can choose any node to be the representative node r apart from t.

Lemma 1. Node vi popping out from H with no descending value dvi
(s, r) =

d(s, vi) + l(vi, r).

Proof. Suppose that the node μ1 popped out after μ is with smaller estimated
distance, that is dµ1(s, r) < dµ(s, r). There are two situations.

Case one, μ1 is not the adjacent node of μ or μ1 is the adjacent node of
μ with d(s, μ) + w(μ, μ1) ≥ d(s, μ1). Since d(s, μ1) won’t be refreshed when μ
popped out and μ is popped out before μ1, it is sure that dµ(s, v) ≤ dµ1(s, r).
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Case two, μ1 is the adjacent node of μ with d(s, μ) + w(μ, μ1) < d(s, μ1).
When μ popped out, dµ(s, r) = d(s, μ) + l(μ, r) and d(s, μ1) is updated with
d(s, μ1) = d(s, μ) + w(μ, μ1). Then dµ1(s, r) = d(s, μ) + w(μ, μ1) + l(μ1, r).
According to triangle inequality, dµ(s, r) ≤ dµ1(s, r).

These two cases are both contradictory with the assumption, then it is obvi-
ous that node vi popped out from H with no descending value dvi

(s, r).

Theorem 1. When node vi popped out from H, d(s, vi) = ds,vi
.

Proof. For any node vi popped out with distance dvi
(s, r) = d(s, vi) + l(vi, r),

there won’t exits another smaller estimated value dvi
(s, r)

′
= d(s, vi)

′
+ l(vi, r)

′

according to Lemma 1. So when vi popped out, dvi
(s, r) reaches its minimum

value. l(vi, r) is constant in G, then d(s, vi) is the shortest path distance from s
to vi, that is d(s, vi) = ds,vi

.

Therefore, we have proved the shortest distance from s to t can be retrieved
by the generalized A* algorithm (denote as A*-G algorithm) with arbitrary r.
Meanwhile, if representative node r is selected as t, the algorithm is equivalent
to the classic A* algorithm; If the representative node r is selected as s, the
algorithm is reduced to a special Dijkstra’s algorithm. Moreover, A*-G algorithm
can return any node’s shortest path during its search. And this is the basis of
our 1-N A* algorithm (denote as A*-1N algorithm).

Now we present our A*-1N algorithm. Given a non-negative graph G(V,E),
a starting node s ∈ V and a set of target nodes T ⊂ V , A*-1N algorithm aims to
answer the batch shortest path query Qs,T . According to the A*-G algorithm,
each query qs,t ∈ Qs,T (t ∈ T ) can be answered by running the algorithm once
with its corresponding r. Since r ∈ V can be arbitrarily selected, one fixed r
can be used for all the queries qs,t ∈ Qs,T (t ∈ T ), as long as these queries have
the same starting node s. The algorithm terminates when all nodes vi ∈ T have
popped out and Qs,T has been answered completely. As for the M-1 query, we
can solve it reversely.

3.2 Representative Node Selection

It should be noted that although the representative node r can be arbitrar-
ily chosen from V , its location affects the algorithm performance dramatically.
Recall that dv(s, r) of the nodes popping out from H are in no descending order.
Therefore, if node vn is the last node popping out, it has the largest value of
dvn

(s, r). Then any node vi with dvi
(s, r) ≤ dvn

(s, r) must have popped out
from H before the termination of algorithm. In another word, the location of r
determines the way the search space grows. Only after every t ∈ T are covered
by this space can the search terminate. Thus, limiting the searched node number
and search space is equivalent to lowering dvn

(s, r). So the representative node
selection is transfered to an optimization problem as follows:

minimize(max{dvi
(s, r)}), subject to vi ∈ T, r ∈ V
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Suppose vm is a node in T with largest shortest path length from s. Since
minimizing the maximum value of dvi

(s, r) is our objective, and dvi
(s, r) =

ds,vi
+ l(vi, r) when vi popped out of H. It is easy and direct to just minimize

l(vm, r) to zero, and then r is exactly vm. But selecting r as vm cannot always
minimize the maximum value of dvi

(s, r), vi ∈ T , as vm may not be the last node
popped out from H. It is possible that ds,vn

+l(vn, vm) > ds,vm
+0 when selecting

vm as the representative node, where vn is the last node popped out. Then vm
is not the optimal representative node. As vm cannot be determined before the
query start, vm can be approximated to node vfarthest with the largest euclidean
distance from the starting node. In consequence, vfarthest is the suboptimal
representative node, which will be verified in Sect. 4.

The above selection is based on the premise that the target nodes are geo-
graphically close. However, the difference of ds,vn

+l(vn, vfarthest) and ds,vfarthest

may be relatively big when target set is wildly distributed on G. Therefore, it
would result in a larger searching space to cover all the target nodes and one
single representative node won’t be effective enough in controlling the searching
space. Moreover, the A*-1N algorithm may even lose its advantages compared
with the Dijkstra’s. Hence, it is natural to decompose a large target set into
several small clusters and run the A*-1N algorithm on each of them.

Algorithm 1. Angle-Based Decomposition
Input: G(V, E), Starting node s ∈ V , Target node set T ∈ V
Output: {Ti}, i = 0, · · · , k with ∪Ti = T

1 begin
2 for t ∈ T do
3 H1.insert(t, angle(s, t)) //H1 is a priority queue ordered by angle(s, t) in

ascending order

4 cID ← 0
5 minAngle ← 0
6 creatNewCluster ← true
7 while H1 is not empty do
8 v ← H1.pop()
9 if creatNewCluster is false then

10 if angle(s, v) ≤ minAngel + θ then
11 TcID.add(v)

12 else
13 cID ← cID + 1
14 creatNewCluster ← true

15 if creatNewCluster is true then
16 TcID ← φ
17 TcID.add(v)
18 minAngle ← angle(s, v)
19 creatNewCluster ← false

20 return {Ti}, i = 0, · · · , k
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3.3 Decomposed A*-1N Algorithm

In this section, we propose two decomposition approaches to solve the perfor-
mance deterioration problem when T is sparse. First of all, we use angle(s, v) to
denote the included angle between vector (s, v) and (1, 0). If it is more efficient
to answer q(s, v1) and q(s, v2) separately rather than together when the angle
difference of two nodes angle(s, v1) and angle(s, v2) is larger than θ, then θ is
called the decomposition angle threshold. And it is reasonable to decompose a
target node set T into several small clusters if the T is widespread.

After we get the cluster set {Ti}, we can either run the A*-1N algorithm

sequentially or in parallel. The number of cluster is bounded by �360
θ

�, which
is much smaller compared to N . Therefore, it has a much smaller number of
threads than running N times A* algorithm, which could save loads of system
resources. Now we describe the angle-based and distance-based approaches in
the following sections.

Angle-Based Decomposition Method. As the name indicates, the angle-
based method only considers the included angles of the target nodes. It would
create a set of clusters whose largest included angles are all smaller than the
threshold. Firstly, we visit the target nodes in the angle-increasing order. If the
included angle between the current node vi and the first node v0 is smaller than
θ, we put vi into the same cluster of v0. Otherwise, if the included angle is larger
than θ, we finish creating the cluster T0 = {v0, · · · , vi−1} and use vi as the first
node in the second cluster. This procedure runs on until all the target nodes
are processed. In the end, we get a set of target node clusters. The details of
the method is shown in Algorithm 1. We use a min-heap H1 to implement the
sorting. The time complexity is O(|T | log |T |).

Distance-Based Decomposition Method. The distance-based decomposi-
tion method is based on the observation of the A*-1N algorithm’s searching
space shape, which is roughly elliptical. Obviously, it is the farthest node that
determines the size of this ellipse (on the far end of the long axis). Therefore,
the total searching space could be saved if the farthest node from s locates
in the middle of a decomposed cluster (along the long axis). Otherwise, we
have to extend the searching space in order to cover it. The details is shown in
Algorithm 2.

The target nodes are first sorted by their distances to s. Then we traverse the
nodes from far to near. For the first node, we create a cluster T0 to contain it. For
the latter node v with largest distance among the left nodes, the minimum angle
difference between v and existing clusters is calculated. If the minimum angle
difference is no larger than 0.5 ∗ θ, v is then added into one existing cluster with
the smallest angle difference. Otherwise, a new cluster is created to contain v.
This process won’t stop until all target nodes are assigned to one of the clusters.
We also implement it using max-heap, so the time complexity is O(|T | log |T |).
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Algorithm 2. Distance-Based Decomposition
Input: G(V, E), Starting node s ∈ V , Target node set T ∈ V
Output: {Ti}, i = 0, · · · , k with ∪Ti = T

1 begin
2 for t ∈ T do
3 H2.insert(t, angle(s, t), l(s, t)) //H2 is a priority queue ordered by l(s, t) in

ascending order

4 while H2 is not empty do
5 v ← H2.pop()
6 //C is the existing cluster set
7 for cluster Ti ∈ C do
8 minAngleDiff = minangle(v, Ti)

9 if minAngleDiff is no larger than 0.5 ∗ θ then
10 add v in existing cluter closest to v

11 else
12 construct a new cluster Tj = ∅
13 Tj .add(v)
14 C.add(Tj)

15 return cluster set C = {Ti}

3.4 Batch Query Answering

The batch shortest path query can be represented as the M-N shortest path
query, where M is the number of source nodes and N is the number of target
nodes. Depending on the actual queries, it is easy to divide them into several
1-N queries that share the similar source, and several M-1 queries that share
the similar target. For each 1-N query, we further decompose it into n clusters,
where n 	 N . As for the M-1 query, it is the reverse version of 1-N. In this way,
the massive batch shortest path query can be answered by a set of decomposed
A*-1N algorithms. It has a much smaller thread number than the pairwise A*,
and is much faster than the Dijkstra’s.

4 Experiments

We test our methods on Beijing road network which consists of 302,364 nodes
and 387,588 roads. Although the map is 185 km × 178 km, only the central
area of 120 km × 108 km is populated with many nodes. We use this zone in
the experiments. We randomly select a node in the central area as the origin s
of 1-N shortest path queries, and generate target set randomly from different
directions around s. Five target sets are chosen in each direction and we report
the average performance.

Our algorithms are evaluated under different scenarios by changing the fol-
lowing factors: (1) the location of the representative node; (2) target set size
n, namely number of nodes contained in the target set; (3) target box size e2,
namely size of the minimum bounding rectangle of the target set; (4) distance d
from s to target set; and (5) target set distribution. The default values of n, d
and e2 are set to 20, 15 km, and 2 km×2 km respectively in the experiments. We
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Fig. 1. Representative node selection

compare our algorithms with two alternatives, i.e., Dijkstra and A*-N (running
A* algorithms for n times), in terms of the number of visited nodes denoted as
|V̂ |. |V̂ | represents the size of search space which determines running time. The
higher the |V̂ |, the worse the performance. All experiments are carried out on
an Intel Core i7-7500U CPU 2.9 GHz with 8 GB RAM.

4.1 Location of the Representative Node r

Figure 1 shows the results of 10 groups of experiments. Each group randomly
selects a target box and chooses 20 nodes in it. We compare the performance of
selecting the nearest node, the farthest node and the best-performed node as the
representative node r. Obviously, the nearest node always has the largest |V̂ |,
while the farthest and the best-performed are much better and the difference
between them is relatively small. Because it always takes N times to get the
best-performed node and the farthest node is suboptimal, we use the farthest
node as the representative node r in the following experiments.

(a) Situation1 (b) Situation2

Fig. 2. Target set distribution
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4.2 Effect of d, n and e

Due to the page limit, we only discuss the effects of d, n and e on A*-1N,
but do not present the plots of experiment result here. First of all, as the dis-
tance d increases, A*-1N gains more benefit. Because the searching space of the
Dijkstra’s grows nearly quadratically, while that of A*-1N grows much slower.
Secondly, target node number n in a box does not affect A*-1N and Dijkstra’s
much, but the searching space of A* grows linearly to n. Finally, when the box
size e2 becomes bigger, the benefit of A*-1N decreases and it performs closer to
Dijkstra’s. To sum up, it is more beneficial to run A*-1N when the target set is
compact (smaller e and larger n) and far from the source node (larger d). When
the targets are sparse, we had better decompose them.

4.3 Target Set Distribution

The target set distribution covers a wide range of parameters, such as the dis-
persion degree of target set relative to start node, distortion of target set, the
shape of target set and so on. We consider the distortion of target set tentatively.

(a) Angle Difference and d (b) Different Angle Range

(c) Different d (d) Different Cluster Number

Fig. 3. Performance comparison of 1-N A*, Decomposed A* and Dijkstra’s algorithm

A distortion target set is made up of several small boxes with close distance.
We test two totally different and extreme situations. In the first one, boxes are
along the same direction but different distance with respect to start node. In the
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second one, the direction along which the boxes locate, is almost vertical with the
direction from start node to the boxes. We set 4 small target boxes in each target
set with equal angle difference α between every two adjacent boxes. 5 groups of
sets, with different α(2◦, 4◦, 6◦, 8◦, 10◦), are randomly selected from 6 direction
respectively. These 6 directions distribute uniformly around the start node. And
separated A*-1N algorithm is compared with A* algorithm and the Dijkstra’s
algorithm. Figure 2(a) shows the result of situation 1. The outermost A*-1N uses
the farthest box as input. Obviously, the visited node number of A*-1N and
outermost A*-1N are fairly close. Nodes in other three closer boxes will also be
searched in outermost A*-1N algorithm as long as their box sizes are not too
large. So when the target nodes locate in the range of certain direction, it is the
farther box that determines algorithm efficiency rather than those closer ones.
Figure 2(b) shows the experiment result of situation two. RTogo/Sepa denotes the
ratio of |V̂ | in A*-1N and in separated A*-1N. It can be seen that RTogo/Sepa

increases in each direction besides some fluctuations. As the angle difference
between the adjacent boxes increases, target set distributes wider. The search
area of A*-1N algorithm becomes broader to cover all the target nodes, while
the separated A*-1N algorithm does not change too much. So A*-1N loses its
advantage against the wide-separated target set.

4.4 Decomposed Batch Shortest Path

In order to determine the value of the decompose angle threshold θ, we randomly
select two nodes with different angle differences with the same distance d from
start node. We test 8 groups with d ranging from 5 km to 40 km. The result is
shown in Fig. 3(a). When RTogo/Sepa reaches 1, the corresponding angle differ-
ence is obtained as θ. Although there are fluctuations in Fig. 3(a), the value of
θ trends larger as d increases.

The two decomposition methods are compared with Dijkstra’s algorithm and
A*-1N algorithm. The ratio of |V̂ | in A*-1N, angle-based decomposition A*-1N
and distance-based decomposition A*-1N algorithm to Dijkstra’s algorithm are
denoted as RA∗/D, Rd1A∗/D and Rd2A∗/D, respectively. And the ratio of the
maximum |V̂ | among decomposed clusters to that of Dijkstra’s algorithm is
denoted as RdMaxA∗/D. We test the angle range of target set distribution, the
maximum distance d between start node and target set, and the generated cluster
number. The default value of angle range, d and cluster number are π, 3 km and
5, respectively.

In the first experiment, angle range differs from 40◦ to 320◦. In the second
experiment, the value of d ranges from 10 km to 50 km. In the third experiment
the box number variates from 3 to 9. In each experiment, 100 groups of target
cluster is generated under each parameter combination to fully reflect the per-
formance of each algorithm. And the experiment results are shown in Figs. 3(b),
(c) and (d) respectively.
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In Fig. 3(b), RA∗/D, Rd1A∗/D and Rd2A∗/D all tend to increase, especially
for RA∗/D. Target nodes distribute more dispersedly with larger angle range,
which results in a wider search space of A*-1N algorithm. Target nodes set
will be decomposed into more clusters, and |V̂ | of two decomposition method
will certainly increase, which causes the increase of Rdecomp1/D and Rdecomp2/D.
And they are both smaller than RA∗/D when angle range is more than 200◦,
which means that it is better to answer batch query by decomposed method
than 1-N A* algorithm when target nodes are more widespread. Figure 3(c)
shows that RA∗/D is relatively steady, while Rd1A∗/D and Rd2A∗/D increase
with larger d. Longer distance from the start node and target nodes results in
larger search space for every decomposed target set, which is the reason for the
growth of Rd1A∗/D and Rd2A∗/D. In Fig. 3(d), Rd1A∗/D and Rd2A∗/D grow along
with the increase of cluster number, and RA∗/D rises slightly. The distribution
of target nodes is more uniform when the generated cluster number is larger.
And the decomposition will result in smaller clusters, which increases the cost
of computation after decomposition. So it will be more efficient to decompose
the target set when nodes in it distribute closely locally. It is common in Fig. 3
that Rdecomp2/D is always smaller than Rdecomp1/D, which means distance-based
decomposition method is more efficient.

It should be noted that the result of RA∗/D, Rd1A∗/D and Rd2A∗/D are all
based on sequential computation. If parallel computation is applied, only the
decomposed cluster which consumes the maximum cost needs to be taken into
consideration. And the value of RdMaxA∗/D is smaller than other three ratios and
stay stable under different situations. So if parallel computation is permitted,
batch query efficiency will be improved greatly by decomposition method.

5 Conclusion

In this paper, we have proposed a A*-1N algorithm and two decomposition
methods to solve the massive shortest path query problem by reusing sharable
computation. We first generalize the classic A* algorithm to answer shortest
path queries with N targets. After that, we studied the effectiveness of different
representative node location. In order to cope with the situation where the target
node set is sparse, we come up with two effective approaches to decompose a
large target set into several smaller clusters. Our extensive experiments have
fully tested the performance factors and confirmed that our method is effective
in saving the computation resources when confronting a swarm of queries. This
work is the basis of the future batch M-N shortest path problem.

Acknowledgment. This research is partially supported by the Australian Research
Council (Grants No. DP150103008 and DP170101172).
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Abstract. Knowledge, in practice, is time-variant and many relations
are only valid for a certain period of time. This phenomenon highlights
the importance of designing temporal patterns, i.e., indicating phrases
and their temporal meanings, for temporal knowledge harvesting. How-
ever, pattern design is extremely laborious and time consuming even for
a single relation. Therefore, in this work, we study the problem of tem-
poral pattern extraction by automatically analysing a large-scale text
corpus with a small number of seed temporal facts. The problem is
challenging considering the ambiguous nature of natural language and
the huge amount of documents we need to analyse in order to obtain
highly representative temporal patterns. To this end, we introduce vari-
ous techniques, including corpus annotation, pattern generation, scoring
and clustering, to reduce ambiguity in the text corpus and improve both
accuracy and coverage of the extracted patterns. We conduct extensive
experiments on real world datasets and the experimental results verify
the effectiveness of our proposals.

Keywords: Temporal knowledge harvesting · Temporal patterns ·
Text mining

1 Introduction

With the technological advancements in Information Extraction (IE), large-
scale Knowledge Bases (KBs) have been constructed for semantic understanding,
Question Answering (QA) and other advanced tasks. KBs such as DBpedia [2],
TextRunner [28], NELL [18], Probase [27], and YAGO [16], are built automat-
ically from unstructured text by extracting millions of entities and relational
facts. However, most of these KBs regard relation instances as time-invariant
and ignore the corresponding valid temporal period. Actually, many relations
are changing and involving over time, i.e. they are only valid for a certain time
period. For example, the relation instance SpouseOf (“Brad Pitt”, “Angelina
Jolie”) holds true only over the temporal period of 2014 to 2016. The tempo-
ral scope of relations is particularly important and beneficial in many applica-
tion scenarios including QA systems, text summarisation, timeline generation,
etc. [5].
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Research on complementing KBs with a temporal dimension is very current.
To the best of our knowledge, only Freebase [3] and Yago2 [13], two recently con-
structed large KBs, have timestamped facts. However, Freebase is a collaborative
KB constructed mainly by its community. Yago2 extracts temporal facts using
regular expressions only from Wikipedia Infoboxes, which limits its coverage
and applicability to widely available free texts [22]. Although extracting tempo-
ral facts from free texts has been studied, including T-Yago [26], PRAVDA [25],
CoTS [22], TIE [15], it is still limited to specific domains and cannot be applied
to large-scale KBs.

Inspired by the pattern-based approach for constructing large-scale gener-
alised KBs [27], we resort to temporal patterns for temporal knowledge extrac-
tion. For example, if we know the phrase “get married” strongly implies the
beginning of a marriage, then we can apply the temporal pattern (PERSON,
PERSON, “get married”, TIME ) on the text corpus to extract the start date
of all possible facts of the relation SpouseOf. However, it is extremely laborious
and time-consuming to manually construct temporal patterns even for a sin-
gle relation. Hence, in this work, we focus on designing automatic methods for
extracting temporal patterns, in particular indicating phrases (e.g., “get mar-
ried”) and their temporal status (e.g., START and END), from large-scale text
corpus.

Given a seed set of facts between entities (e.g., “Brad Pitt” and “Angelina
Jolie”) along with their valid time (e.g., [2014, 2016]), our algorithm searches in
the text corpus for sentences that contain both entities and time expressions (e.g.,
“Pitt has been married to actress Angelina Jolie since 2014”, “In September 2016,
Jolie filed for divorce from Pitt”, etc.) and then extracts and aggregates tempo-
ral patterns (e.g., (“be married”, START ), (“file for divorce”, END), etc.) from
these sentences. Although the idea sounds simple, challenges still abound. First,
the text corpus is noisy and informal, full of nicknames, abbreviations, spelling
mistakes, pronouns, ambiguous entities, etc., which greatly limits the number
of sentences that can be retrieved for each seed. Second, different phrases can
indicate the existence of a relation to different extent. Given a set of retrieved
sentences, it is non-trivial to select indicating phrases and determine their indi-
cating strength. Finally, the text corpus is extremely large, making it infeasible
to traverse the entire corpus when extracting temporal patterns for a relation.
To address these issues, our major contributions in this work can be summarised
as below:

– We demonstrate the importance of temporal knowledge harvesting, and pro-
pose a novel framework for automatic temporal pattern extraction from a
text corpus.

– We introduce various techniques, including corpus annotation, pattern gen-
eration, scoring and clustering, to reduce ambiguity in the text corpus and
improve both the accuracy and coverage of the extracted patterns.

– We conduct extensive experiments on real world datasets and the experimen-
tal results verify the effectiveness of our proposed framework.
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The rest of this paper is organised as follows: in Sect. 2, we formally define the
problem of temporal pattern extraction and introduce proposed techniques in
detail; our experimental results are presented in Sect. 3, followed by a summary of
related work on temporal knowledge extraction in Sect. 4 and a brief conclusion
in Sect. 5.

2 Temporal Pattern Extraction

Definition 1 (Temporal Fact). A temporal fact, denoted as r(e1, e2, [ts, te]),
indicates the existence of a relation r between entities e1 and e2 during the time
period [ts, te]. For example, the temporal fact SpouseOf(“Brad Pitt”, “Angelina
Jolie”, [2014, 2016]) means there is a marriage relation between entities “Brad
Pitt” and “Angelina Jolie”, and it starts in 2014 and terminates in 2016.

Definition 2 (Temporal Pattern). We define the temporal pattern p as a
phrase that can, to some extent, imply the commencement or termination of a
relation r. Specifically, p consists of two parts: an indicating phrase v (e.g.,
verb phrase) and its temporal status sta ∈ {START, END}, i.e., p = (v, sta).
For example, given relation SpouseOf, its temporal pattern could be (“get mar-
ried”, START), (“get divorced”, END), and (“hold a wedding”, START), etc.
Obviously, different phrases can indicate the temporal status of relation r to
different extent. Therefore, we use w(p) to represent the indicating strength of
pattern p.

Definition 3 (Temporal Pattern Extraction). Given a text corpus D and
a seed set of temporal facts {r(e1, e2, [ts, te])}, we aim at extracting a collection
of weighted temporal patterns, i.e., {< p,w(p) >} that can indicate relation r.

Fig. 1. Framework overview.
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Figure 1 illustrates our proposed framework for temporal pattern extrac-
tion, which consists of two parts: offline corpus preprocessing and online
pattern extraction. Offline preprocessing is important for improving accuracy
and efficiency of our algorithm. As introduced in Sect. 1, we need to collect all
sentences containing the seed facts (i.e., entities and time expressions) for tem-
poral pattern extraction. However, the text corpus is noisy and informal, full
of nicknames, abbreviations, pronouns, ambiguous entities, etc., which greatly
limits the number of sentences that can be retrieved for each seed and lowers
down the accuracy and coverage of extracted patterns. Therefore, we annotate
the underlying text corpus using entity linking (TAGME [11]), co-reference res-
olution (Stanford Neural Co-reference [7]) and time expression normalisation
(HeidelTime [20]) during the offline stage. Furthermore, considering the large
scale of the text corpus, we construct an inverted-list-like index to avoid scan-
ning the entire text corpus and hence speed up online pattern extraction. During
the online stage, we handle input seeds one-by-one to generate temporal patterns
(Sect. 2.1). We then propose various weighting strategies to estimate the indicat-
ing strength of each pattern, and aggregate patterns among all the input seeds

Algorithm 1. Online Temporal Pattern Extraction.
Input: a seed set {r(e1, e2, [ts, te])}, an annotated text corpus D, an inverted

index Ie,t
Output: weighted temporal patterns Pr for relation r

1 Pr=∅
2 foreach r(e1, e2, [ts, te]) do
3 S=RetrieveRelevantSentences(e1, e2, [ts, te], D, Ie,t)
4 foreach s ∈ S do
5 Vs=ExtractVerbPhrases(s)
6 Ts=ExtractTimeExpressions(s)
7 trees=ExtractParseTree(s)
8 foreach v ∈ Vs do
9 tv=FindRelatedTimeExpression(v,Ts,trees)

10 if (|tv − ts| < |tv − te| then
11 p = (v, START )
12 else
13 p = (v,END)
14 ws(p)=ScorePattern(p, s, e1, e2, [ts, te])
15 Pr = Pr ∪ {〈p, ws(p)〉}
16 end

17 end

18 end
19 AggregatePatternScore(Pr)
20 {Pc}=ClusterPattern(Pr)
21 foreach Pc do
22 AdjustPatternScore(Pc)
23 end
24 Return {Pr}



Extracting Temporal Patterns from Large-Scale Text Corpus 21

(Sects. 2.2 and 2.3). Due to space limit, we only introduce some major techniques
of online pattern extraction in this paper, as illustrated in Algorithm1.

2.1 Temporal Pattern Generation

Recall that temporal patterns are phrases that can indicate the commencement
or termination of a relation to some extent. We regard verb phrases in a relevant
sentence as the candidate temporal patterns since the sentence is talking about
an event that can imply the existence of the target relation. In this work, we
consider a sentence s as relevant to a seed r(e1, e2, [ts, te]) if and only if s satisfies
the following conditions:

– s contains both e1 and e2;
– s contains at least one time expression t which is temporally close to either

ts or te.

For each relevant sentence s, we extract verb phrases v and time expressions
t based on the definition of verb phrase in Open IE systems [10] and the defini-
tion of time expression in the Timex3 annotation of TimeML [20], respectively.
The temporal status of a phrase sta ∈ {START, END} can be determined by
its corresponding time expression. That is, a phrase is highly possible to indi-
cate the commencement (resp. termination) of a relation if its time expression
is close to the start date ts (resp. end date te) of the input seed (lines 9–13 in
Algorithm 1). However, multiple verb phrases and time expressions might co-
exist in a sentence, and matching verb phrases to relevant time expressions is
not easy. A straightforward solution is to consider the distance (i.e., number
of words) between v and t in sentence s, but it fails sometimes. Consider the
sentence “Pitt met Friends actress Jennifer Aniston in 1998 and married her
in a private wedding ceremony in Malibu on July 29, 2000.” as an example.
The most relevant time expression for verb “marry” obtained using the naive
distance-based method is “1998” rather than “July 29, 2000”. In fact, humans
can correctly identify the relatedness between phrases and time expressions in a
sentence since they understand the syntactic structure of that sentence. There-
fore, we resort to parse tree to locate relevant time expressions.

Figure 2 illustrates an example parse tree. In the parse tree, leaf nodes are
tokens in the sentence and internal nodes are their labels, i.e. part-of-speech
tags. Intuitively, a verb phrase v is more related to a time expression t if v is
closer to t in the parse tree. Hence, given a pair of (v, t), we define their tree
distance dists(v, t) as the length (i.e., number of edges) of path to traverse from
v and t to their lowest common ancestor (LCA) in the parse tree. For example,
dists(“marry”, “1998”) = 3 while dists(“marry”, “July 29, 2000”) = 2. We then
regard the time expression that minimises dists(v, t) as the most related time
expression tv of phrase v.
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Fig. 2. Parse tree of sentence “Pitt met Friends actress Jennifer Aniston in 1998 and
married her in a private wedding ceremony in Malibu on July 29, 2000.”

2.2 Temporal Pattern Scoring

Obviously, temporal patterns have different indicating strength. For example,
(“marry”, START ) has a much stronger indication than {(“meet”, START ) for
the beginning of relation SpouseOf. Moreover, the text corpus is intrinsically
informal and noisy, which means we cannot guarantee that all the temporal
patterns extracted from the text corpus indicate a relation. However, as long as
these patterns can be scored and ranked effectively, those top-k patterns are still
invaluable for temporal knowledge harvesting. Therefore, it is essential to design
an effective weighing scheme which can correctly estimate the indicating ability
of each temporal pattern. In this work, we propose several heuristics to achieve
a reasonable pattern scoring. Specifically, we regard a pattern p = (v, sta) as
indicative of relation r if and only if

– for a seed r(e1, e2, [ts, te]) and a relevant sentence s that generates p, (1) v is
close to either e1 or e2 in s; (2) v is close to its related time expression tv in
the parse tree of s; (3) tv is temporally close to either ts or te;

– p can be extracted from many sentences relevant to seed r(e1, e2, [ts, te]);
– p can be generated by many seed facts of relation r.

In-Sentence Scoring. We first score pattern p at sentence level based on the
first heuristic. In particular, given a seed fact r(e1, e2, [ts, te]) and a relevant
sentence s, we calculate the weight of p in s, denoted as ws(p), using Eq. 1.

ws(p) = α · ws(v, e1, e2) + β · ws(v, tv) + γ · ws(tv, ts, te) (1)

In Eq. 1, ws(v, e1, e2), ws(v, tv), and ws(tv, ts, te) capture the position of v
in s, the correlation between v and tv, and the temporal closeness between tv
and [ts, te], respectively. α, β, and γ are three parameters to reflect the relative
importance of these features in the scoring function such that α + β + γ = 1.
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In particular, measuring temporal distance between two time expressions
|t1 − t2| is not straightforward. We observe that a time expression in practice
is usually represented as either a specific date (e.g. “2006-01-0”) or a tempo-
ral range (e.g. “2006”) which, however, cannot be compared directly. Table 1
summaries all possible combinations of two time expressions t1 and t2, where
star and horizontal bar represent a date and a temporal range respectively. Note
that the last case where t1 and t2 have a partial overlapping does not occur due
to time expression normalisation in the text corpus. To address this issue, we
propose a unified method to calculate |t1 − t2|. In particular, each time expres-
sion t is transformed into a temporal range [t.min, t.max] such that t.min (resp.
t.max) is the minimum (resp. maximum) possible date of t. t.min = t.max if t
is originally represented as a date. For instance, “May 2006” will be normalised
as [“2006-05-01”, “2006-05-31”]. Then we calculate |t1 − t2| using the following
equation.

|t1 − t2| =

{
0, (t1.min − t2.min) · (t1.max − t2.max) ≤ 0
|t1.min−t2.min|+|t1.max−t2.max|

2 , otherwise
(2)

In Eq. 2, (t1.min − t2.min) · (t1.max − t2.max) ≤ 0 reflects that one time
expression is fully contained in another, and their temporal distance is regarded
as 0 in this work. Table 1 shows some examples of temporal distances |t1 − t2|.
Cross-Sentence Scoring. After pattern scoring at sentence level, we further
aggregate all patterns to refine pattern weights. Aggregation heuristics follow
the observation that a pattern becomes more indicative if it can be extracted
from many relevant sentences and many seeds. Therefore, we aggregate pattern
weights among all the sentences and seeds (TF-like method). Common phrases
(e.g., “start to”) are further eliminated (IDF-like method) and the scores are
then normalised among all the patterns. We ignore the details in this paper due
to space limit.

Table 1. Different cases and examples of temporal distances between two time
expressions.
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2.3 Temporal Pattern Clustering

We also observe that some of the temporal patterns are highly correlated in
semantics, and hence their scores should be adjusted accordingly. For instance,
the following two patterns (“get married”, START ) and (“hold a wedding”,
START ) are semantically related. As a consequence, they are able to reciprocally
promote each other whenever any of them is identified as highly indicative of a
relation SpouseOf. We adopt word embedding techniques (e.g., Word2Vec [17])
to represent each phrase and apply existing density-based clustering method
(e.g., DBSCAN [9]) to locate semantically related patterns, using the following
distance function to find semantically related patterns.

dist(p, p′) = 1 − cosine(vec(p), vec(p′)) (3)

Here, vec(p) is the vector presentation of p obtained via word embedding on
p’s verb.

For each pattern cluster Pc, we propose a weighted-voting method to adjust
pattern scores in that cluster. In particular, we denote p∗ as the highest ranked
pattern in Pc, namely, p∗ = arg maxpi∈Pc

w(pi). Then the final score of pattern
p is adjusted as a combination of self-vote (whether p is originally indicative)
and context-vote (whether p∗ can semantically support p).

w(p) = w(p) + δ · sim(p, p∗) · (w(p∗) − w(p)) (4)

In Eq. 4, δ is an empirical decay factor (we set it as 0.8) to avoid negative
effects, and sim(p, p∗) is the semantic similarity between patterns p and p∗. We
can see that the larger the similarity, the more support p can achieve from p∗.

3 Experiments

3.1 Experimental Settings

Datasets. In general, our framework can extract temporal patterns from any
type of text corpus, such as web pages, news articles, tweets, etc., written in
English. In this paper, we report our experimental results on the publicly avail-
able PRAVDA datasets [24,25]1, which contain 23,000 soccer players’ Wikipedia
articles and around 110,000 online news articles mentioning players in “FIFA 100
list”, as well as 88,000 news articles about persons mentioned in the “Forbes 100
list” and their Wikipedia articles.

Evaluation Metrics. To the best of our knowledge, there is no public gold-
standard we can directly use to evaluate our algorithms for temporal pattern
extraction. Therefore, we selected two relations (i.e., SpouseOf, PlayForClub)
that are quite popular in existing temporal KBs [24,25] and randomly sampled
20 seed facts for each relation from Wikipedia’s InfoBox. We ran our pattern
1 The datasets can be downloaded from https://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/yago-naga/pravda/.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/pravda/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/pravda/
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extraction algorithms on all the 40 (i.e., 2*20) seeds, and invited five annotators
with different backgrounds to label the quality of the extracted patterns (from
1 to 5). The final label was based on the average of all the voting. In this way,
we obtained a high quality pattern library P

∗. We then evaluated the extracted
patterns under different settings using a widely-adopted ranking criterion nDCG
at the top-k patterns, namely nDCGk.

Parameter Setting. The most important parameters employed in this work
are α, β, and γ, which represent the corresponding contribution of ws(v, e1, e2),
ws(v, tv), and ws(tv, ts, te) to the overall pattern score (details introduced in
Sect. 2.2). As we do not have enough benchmark to automatically learn these
parameters, in the experiments, we iterated through all possible combinations
of the parameters (i.e., range from 0 to 1 with a step of 0.1) and reported the
best performance achieved.

3.2 Accuracy of Temporal Patterns

We evaluated the accuracy of our framework for temporal pattern extraction
from the following five aspects: (1) the influence of relation type, (2) the influence
of seed popularity, (3) the influence of seed set size, (4) the effectiveness of
pattern scoring features, and (5) the effectiveness of pattern clustering for score
adjustment.

Table 2. Pattern accuracy of different relations.

Relation START patterns END patterns

nDCG1 nDCG3 nDCG5 nDCG10 nDCG1 nDCG3 nDCG5 nDCG10

SpouseOf 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.76

PlayForClub 1.00 1.00 0.82 0.88 0.60 0.54 0.50 0.48

The Influence of Relation Types. We evaluated the accuracy of our algo-
rithms for different relation types. In particular, we extracted START and END
patterns based on all the 20 seeds for each relation, and reported nDCGk in
Table 2. We can see that START patterns are generally more accurate than
END patterns which, we believe, is natural since humans usually talk more
about the beginning rather than the termination of a relation. Furthermore, rela-
tion SpouseOf performs consistently well for both START and END patterns,
while we can only obtain accurate START patterns for relation PlayForClub.
However, the overall performance of our algorithm is still satisfactory, especially
for START patterns. It is worth noting that nDCGk decreases gradually when
k rises, which means most of the correct patterns are ranked relatively high
(e.g., in top-1, top-3 or top-5). This also verifies the effectiveness of our pro-
posed strategies for pattern generation and scoring. For the remaining of the
experiments, we only report average accuracy of temporal patterns among both
relations and status (START and END).
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The Influence of Seed Popularity. One important problem is how to select
input seeds when applying our framework for temporal pattern extraction. In
this work, we estimated seed quality by its popularity in the text corpus, and
evaluated its influence on pattern extraction. In particular, we counted the num-
ber of sentences containing both e1 and e2 for each seed and regarded it as seed
popularity. We then conducted pattern extraction given each single seed, and
reported pattern accuracy in Fig. 3(a). The x-axis denotes seed popularity, which
is divided into four intervals: [0−10], [11−50], [51−500], and [500+], and the y-
axis is the nDCGk value. From Fig. 3(a) we can observe an overall improvement
of accuracy when seed popularity increases. This is consistent with our expecta-
tion that popular seeds are more powerful in extracting temporal patterns than
unpopular ones. Based on such an observation, we can select input seeds using
popular entities, which is a natural way adopted in practice.

 0.2

 0.4

 0.6

 0.8

 1

0−10 11−50 51−500 500+
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(a) Seed popularity.
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(b) Seed set size.

Fig. 3. Pattern accuracy of different seed popularities and seed set sizes.

The Influence of Seed Set Size. We also evaluated the influence of seed set
size on the performance of pattern extraction. Given a seed set size denoted as
|s|, for each relation, we enumerated all possible combinations of |s| seeds (i.e.,(
20
|s|

)
combinations) and calculated the average nDCGk after applying each seed

set for pattern extraction. We then averaged among both relations to obtain
the nDCGk for the given seed set size |s|. Figure 3(b) reports the variation
of nDCGk when |s| ranges from 1 to 20. The results illustrate that pattern
accuracy improves when |s| increases. It is worth noting that all the 20 seeds
for each relation were randomly sampled, and hence most seeds are not very
popular (or of high quality). Therefore, it is not necessary to manually select
popular seeds for pattern extraction. Even randomly sampled seeds can achieve
satisfactory temporal patterns as long as enough seeds are provided.

The Effectiveness of Pattern Scoring Features. We then evaluated the
performance of each pattern scoring feature: w1 = ws(v, e1, e2), w2 = ws(v, tv),
and w3 = ws(tv, ts, te). Since our algorithm is quite accurate when all the 20
seeds are utilised, we only report pattern accuracy with three randomly selected
seeds in Table 3 to make the difference more observable. We can conclude from
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Table 3. The effectiveness of pattern scoring features (|s| = 3)

Features nDCG1 nDCG3 nDCG5 nDCG10

w1 0.58 0.52 0.51 0.48

w2 0.57 0.52 0.50 0.48

w3 0.57 0.55 0.53 0.49

w1, w2, w3 0.67 0.59 0.57 0.52

Table 3 that all the three features are quite effective in scoring and ranking
extracted temporal patterns (i.e., nDCG10 ≈ 0.5). Moreover, the highest accu-
racy is always achieved when these three scoring features are correctly combined,
which means these features can complement each other in pattern scoring under
different situations.

The Effectiveness of Pattern Clustering for Score Adjustment. Consid-
ering that some temporal patterns (e.g., “get married” and “hold a wedding”) are
semantically related, in this work, we conduct a pattern clustering and adjust
pattern scores in a cluster so that similar patterns can reciprocally reinforce
each other. In this part, we evaluated the influence of semantics-based clustering
on pattern accuracy. Table 4 reports the results. As before, we present average
nDCGk over both relations and temporal status (START and END). We can
observe that pattern clustering can effectively improve the accuracy of extracted
patterns especially their relative rankings.

Table 4. The effectiveness of pattern clustering

Approaches nDCG1 nDCG3 nDCG5 nDCG10

With clustering 0.90 0.88 0.83 0.76

Without clustering 0.90 0.79 0.74 0.65

4 Related Work

Temporal Knowledge Harvesting. To our best knowledge, only a few previ-
ous work [8,12,14,15,22,25,26] has addressed the problem of extracting temporal
knowledge. We classify them into two categories: coupling systems and extract-
ing systems. Coupling systems [8,12,14,22,26] aim at detecting valid time scopes
for existing relational facts. T-Yago [26] leverages regular expressions to extract
temporal information from Wikipedia’s Infoboxes, Categories and Lists, which
limits its coverage and applicability to widely available free text. MS MLI [8]
and UNED Blender [12] are trained by distant supervision and try to extract
valid time for given relations by aggregating timestamps. Whereas, they mainly
focus on seven predefined relations [21] and cannot be directly applied to general



28 Y. Liu et al.

relations. Besides, they only adopt sentence-level analysis and ignore the utility
of Web’s redundancy. Extracting systems [15,25] try to harvest temporal knowl-
edge from scratch, and they discover relations and their valid time from text
corpus simultaneously. TIE [15] leverages Markov Logic Network (MLN) with
transitivity rules to infer the temporal order of extracted events [23], which is
not a specific temporal value. PRAVDA [25] uses textual patterns to represent
the generated candidate facts, and then labels each candidate facts through a
graph-based label propagation algorithm. However, the textual patterns utilised
in PRAVDA cannot determine the beginning or end of a relation. Besides, these
patterns are derived directly from raw text. As discussed in Sect. 1, natural lan-
guages are intrinsically ambiguous which limits the accuracy and coverage of
patterns extracted from raw text.

Pattern-Based Information Extraction. Pattern-based information extrac-
tion systems has the advantage of high interpretability and easy to cope with
errors [6]. However, early-stage systems, such as DIPRE [4] and Snowball [1],
leverage heuristic rules to extract only certain predefined information, and mean-
while suffer from low precision and coverage. Recently, large-scale pattern-based
information extraction systems, e.g. Probase [27], ReVeb [10], and Ollie [19],
have been built. But they mainly focus on static relation extraction and ignore
temporal variance of the extracted relations. To the best of our knowledge, this
paper is the first one that targets at designing automatic approaches for tem-
poral pattern extraction which, we believe, is extremely important for temporal
knowledge harvesting.

5 Conclusion

In this paper, we study the problem of temporal pattern extraction which is an
indispensable pre-step for temporal knowledge harvesting. We propose a novel
framework to automatically discover temporal patterns by analysing a large-
scale text corpus. Our experimental results on real world datasets verify the
effectiveness of our proposals. As future work, we will evaluate our algorithms
on other types of text corpus including news articles, blogs and tweets, etc.
Besides, we will apply the extracted temporal patterns to harvest temporal facts
and design an iterative framework to construct a large-scale temporal knowledge
base.
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Abstract. Codd’s rule of entity integrity stipulates the existence of a
primary key over every database table. That is, uniqueness and absence
of null markers are enforced on the columns of the primary key. Key
sets stipulate a generalized entity integrity rule that can be achieved on
data sets where primary keys do not exist. Indeed, a key set means that
different pairs of rows can be distinguished by unique non-null values on
potentially different elements of the key set. While primary keys are a
core feature of SQL databases, key sets have not been researched much
at all. Our goal is to motivate the actual use of key sets in database sys-
tems. The use of key sets depends at least on the ability to identify those
key sets that are meaningful in a given application domain, and to effi-
ciently validate such key sets during the lifetime of the database. For this
purpose, we analyze for the first time the performance of validating key
sets in SQL experimentally, and also conduct experiments that provide
insight on the time and size required to generate Armstrong relations
for the implication of unary key sets by arbitrary key sets. Armstrong
relations provide computational support for identifying key sets that are
meaningful for a given application domain.

1 Introduction

Keys provide efficient access to data in database systems. They are required to
understand the structure and semantics of data. For a given collection of entities,
a key refers to a set of column names whose values uniquely identify an entity
in the collection. For example, a key for a relational table is a set of columns
such that no two different rows have matching values in each of the key columns.
Keys are fundamental for most data models, including semantic models, object
models, XML, RDF, and graphs. They advance many classical areas of data
management such as data modeling, database design, and query optimization.
Knowledge about keys empowers us to (1) uniquely reference entities, (2) reduce
data redundancy, (3) improve selectivity estimates in query processing, (4) feed
new access paths to query optimizers, (5) access data more efficiently via phys-
ical optimization, and (6) gain new insight into application data. In modern
c© Springer Nature Switzerland AG 2019
L. Chang et al. (Eds.): ADC 2019, LNCS 11393, pp. 31–44, 2019.
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applications, keys facilitate data integration, help detect anomalies, guide data
repairs, and return consistent answers to queries over dirty data.

For real-life applications, data models need to accommodate missing infor-
mation. SQL permits occurrences of a null marker to model any kind of missing
value. Occurrences of the null marker mean that no information is available about
the value of that row on that attribute. Codd’s rule of entity integrity says that
every entity is uniquely identifiable. SQL supports entity integrity by primary
keys. A primary key is a collection of attributes which stipulates uniqueness and
completeness. That is, no row of a relation must have an occurrence of the null
marker on any column of the primary key, and the combination of values on the
columns of the primary key must be unique.

Example 1. Consider the following snapshots of data from different wards at a
hospital. The first ward tracks information about the name of a patient, who
was treated for an injury in some room at some time.

Room Name Injury Time

1 Miller Cardiac infarct Sunday, 19

⊥ ⊥ Skull fracture Monday, 19

An example of a primary key that is satisfied by this table is K1 =
{injury, time}. In addition to the previous attributes, the second ward also tracks
information about the address of patients.

Room Name Address Injury Time

2 Maier Dresden Leg fracture Sunday, 16

1 Miller Pirna Leg fracture Sunday, 16

An example of a primary key that is satisfied by the second table is K2 =
{room, time}. Note that K2 is not satisfied by the first table because column
room features a null marker occurrence, while the second table does not satisfy
K1 because both rows have matching non-null values on injury and time.

In practice, requiring a primary key over every database table is often incon-
venient or not achievable. This is particularly true for modern applications such
as data integration and big data. Indeed, it can happen easily that a given
relation does not exhibit any primary key. This is illustrated by the following
example.

Example 2. We continue our previous example by looking at a data snapshot
that results from integrating the previous two data sets from Example 1. Using
null markers in the column address for the rows of the first table, the result of
the data integration process brings forward the following snapshot.
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Room Name Address Injury Time

1 Miller ⊥ Cardiac infarct Sunday, 19

⊥ ⊥ ⊥ Skull fracture Monday, 19

2 Maier Dresden Leg fracture Sunday, 16

1 Miller Pirna Leg fracture Sunday, 16

Evidently, the snapshot does neither satisfy the primary key K1 nor the
primary key K2. In fact, the snapshot does not satisfy any primary key since
each column features some null marker occurrence, or a duplication of some
value.

In response, several researchers proposed the notion of a key set. As the term
suggests, a key set is a set of attribute subsets. Naturally, we call the elements
of a key set a key. A relation satisfies a given key set if for every pair of distinct
rows in the relation there is some key in the key set on which both rows have
no null marker occurrences and non-matching values on some attribute of the
key. The flexibility of a key set over a primary key can easily be recognized, as
a primary key would be equivalent to a singleton key set, with the only element
being the primary key. Indeed, with a key set different pairs of rows in a relation
may be distinguishable by different keys of the key set, while all pairs of rows in
a relation can only be distinguished by the same primary key. We illustrate the
notion of a key set on our running example.

Example 3. The relation in Example 2 satisfies no primary key. Never-
theless, the relation satisfies several key sets. For example, the key set
{{room}, {time}} is satisfied, but not the key set {{room, time}}. The rela-
tion also satisfies the key sets X1 = {{room, time}, {injury, time} and X2 =
{{name, time}, {injury, time}}.

Both primary keys and key sets are independent of the interpretation of
null marker occurrences. That is, any given primary key and any given key set
is either satisfied or not, independently of what information any of the null
marker occurrences represent. The importance of this independence is partic-
ularly appealing in modern applications where data is integrated from various
sources, and different interpretations may be required for different occurrences
of null markers.

Given the flexibility of key sets over primary keys, it seems natural to further
investigate the notion of a key set. Neither the research community nor any
system implementations have analyzed key sets since their proposal in 1989. Very
recently, Hannula and Link [5] did study the implication problem associated with
key sets. They established automated reasoning capabilities for keys sets that
facilitate the processing of database queries and updates. However, the usability
of key sets by industry would require even more basic capabilities. Two of these
capabilities are acquisition and validation.
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Acquisition refers to the ability of business analysts to identify key sets that
model business rules in an application domain. It has been shown [10] that Arm-
strong relations provide computational support for business analysts to commu-
nicate their understanding of the application domain to domain experts. An
inspection of the Armstrong relations can provide valuable feedback to the ana-
lysts in the form of any business rules that they were not able to identify before.
While [5] has brought forward an algorithm that computes an Armstrong rela-
tion for the implication of unary by arbitrary key sets, the actual size of these
Armstrong relations and the time to compute them has not been analyzed.
For the acquisition of key sets we need to know how long it takes to compute
Armstrong relations and how many rows they carry. If it takes too long or the
Armstrong relations are too large, the computational support for an effective
dialogue between business analysts and domain experts may be infeasible. Fur-
thermore, validation refers to the problem of validating whether a given key set
is satisfied by a given table. Without efficient means to validate a collection of
key sets it is impossible to utilize them for the purpose of data management.
For the industry standard, it is important to understand the performance of
validating key sets within SQL systems.

Contributions. We address the performance of acquiring and validating key
sets. (1) We compare key sets with other uniqueness constraints in databases. (2)
We show how the validation of key sets can be done in SQL. Indeed, we analyze
to which degree a given key set is valid, for example, the percentage of rows in a
table that do not contribute to its violation. (3) We analyze the time to execute
the validation queries on real-world data sets with missing information. The
first takeaway is that the validation time grows quadratically in the underlying
number of rows. The second takeaway is that for key sets with the same number
of attributes, those with a larger number of elements result in fewer violations
and faster validation. (4) We analyze the time to compute Armstrong relations
for the implication of unary by arbitrary key sets. As the computation is precisely
exponential in the given key sets, we conduct experiments to determine the
average size and computation time.

Organization. We discuss related work in Sect. 2. Basic notions and notation
are fixed in Sect. 3. The validation problem is analyzed in Sect. 4. The compu-
tation of Armstrong relations and their experimental evaluation is described in
Sect. 5. Section 6 contains a conclusion and outlook to future work.

2 Related Work

Codd proposed the rule of entity integrity, which stipulates that every entity in
every table should be uniquely identifiable. In SQL that led to primary keys,
which are distinguished candidate keys. An attribute set is a candidate key for
a given relation if every pair of distinct tuples has no null marker occurrences
on any of the attributes of the candidate key and non-matching values on some
attribute of the candidate key [12]. Candidate keys are singleton key sets, that
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is, key sets with one element [6]. As the relation from Example 2 shows, there
are relations on which no candidate key holds, but which satisfy key sets.

Lucchesi and Osborn studied computational problems of candidate keys [12].
They proved that deciding whether a given relation satisfies some key of car-
dinality not greater than some given positive integer is NP-complete. Recently,
this problem was shown to be W[2]-complete in the key [1]. The discovery which
key sets hold on a given relation is beyond our scope.

Key sets are a generalization of Codd’s rule for entity integrity [14]. Extremal
problems of unary key sets were studied in [13]. Key sets were further discussed
in [11] where also Codd’s rule for referential integrity was generalized. Recently,
a binary axiomatization, the coNP-completeness of the implication problem, and
the non-existence of Armstrong relations for arbitrary key sets were established
[5], but also how to compute them for unary by arbitrary key sets. We continue
this inquiry by asking how feasible the computation of Armstrong relations is
for the acquisition problem. The validation problem of key sets has also not been
considered previously.

Possible and certain keys were also proposed recently [9]. Certain keys cor-
respond to key sets which have only singleton keys as elements. The paper [9]
investigate computational problems for possible and certain keys.

Contextual keys separate completeness from uniqueness requirements [15].
They are expressions (C,X) where X ⊆ C, and different from key sets since
X ⊆ C is a key for only those tuples that are complete on C. In particular, the
case where C = X only requires uniqueness on X for tuples that are complete
on X. This captures the SQL UNIQUE constraint.

Keys have also been investigated in XML [7], graphs [4], and uncertain data
[2,8].

3 Preliminaries

We give some basic definitions and fix notation. A relation schema is a finite
non-empty set of attributes, usually denoted by R. A relation r over R consists
of tuples t that map each A ∈ R to dom(A) ∪ {⊥} where dom(A) is the domain
associated with attribute A and ⊥ is the unique null marker. Given a subset
X of R, we say that a tuple t is X-total if t(A) �= ⊥ for all A ∈ X. Moreover,
dom(A) represents the possible values that can occur in column A of a table,
and ⊥ represents missing information. That is, if t(A) = ⊥, then there is no
information about the value t(A) of tuple t on attribute A.

We will use Ward = {room, name, address, injury, time} as the relation
schema of a running example. Each row of the table in Example 2 represents
a tuple. The second row is {injury, time}-total, but not total on any proper
superset of {injury, time}. The four tuples together constitute a relation over
Ward. The following definition introduces the central object of our studies. It
was first defined by Thalheim [14].
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Definition 1. A key set is a finite, non-empty collection X of subsets of a given
relation schema R. We say that a relation r over R satisfies the key set X if and
only if for all distinct t, t′ ∈ r there is some X ∈ X such that t and t′ are X-total
and t(X) �= t′(X). A key set that consists of only singletons is called a unary
key set.

We write X ,Y,Z, . . . for key sets, X,Y,Z, . . . for attribute sets, and
A,B,C, . . . for attributes. We use A to denote the singleton {A}. The cardi-
nality of X is the total number of attribute occurrences, ||X || =

∑
K∈X |K|,

and the size of X is the number |X | of its elements. For example, the key set
{{injury, time}, {room,name, time}} has cardinality five and size two.

4 Validation in SQL

So far, research on key sets has only been theoretical [5,11,14]. While the idea
is natural, it will only be useful when implemented in database systems. A fun-
damental question for the uptake of key sets by SQL is how to validate them
on a given table. The first aim is to identify a simple SQL query that does this
job. We will identify a query that returns all the rows of a given table that par-
ticipate in a violation of the given key set. The second aim is to evaluate the
performance of this query.

4.1 SQL Queries for Key Set Validation

We aim at finding an SQL query that allows us to validate whether a given key
set

X = {{A1
1, . . . , A

1
n1

}, . . . , {Ak
1 , . . . , A

k
nk

}}
is satisfied by a given table.

According to Definition 1 for r to satisfy X , for each pair of distinct tuples
t, t′ ∈ r there must be some Ki = {Ai

1, . . . , A
i
ni

} ∈ X such that both t and t′ are
Ki-total and for some A ∈ Ki, t(A) �= t′(A). Unfortunately, SQL does not have a
simple way of expressing universal quantification, so we will need to reformulate
this query in terms of a negated existential quantification. Indeed, for r to satisfy
X there must not be a tuple t ∈ r such that there is a tuple t′ ∈ r distinct from
t such that for all Ki = {Ai

1, . . . , A
i
ni

} ∈ X , t or t′ are not Ki-total, and for all
A ∈ Ki, t(A) = t′(A). In fact, instead of saying that there must not be such a
tuple t ∈ r, we could let our query return all such tuples t ∈ r. If the result is
empty, then the key set is valid, otherwise we have collected all the tuples that
participate in a violation of the key set. The latter would give us a more detailed
analysis since it informs us about the degree by which the given key set is valid
in the given table.

Before we stipulate the SQL query, we need to accommodate the fact that the
given table may contain duplicate tuples. Since we want to handle this situation,
we assume that there is a surrogate key column called id which associates a
unique identifier with any row in the table. Note that this is what all SQL-based
systems do internally anyway.
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Q1:
SELECT DISTINCT R.∗
FROM R, R AS R′

WHERE (R.id <> R′.id) AND
(R.A1

1 IS NULL OR . . . OR R′.A1
n1

IS NULL OR
(R.A1

1 = R′.A1
1 AND . . . AND R.A1

n1
= R′.A1

n1
)) AND

. . .
(R.Ak

1 IS NULL OR . . . OR R′.Ak
n1

IS NULL OR
(R.Ak

1 = R′.Ak
1 AND . . . AND R.Ak

nk
= R′.Ak

nk
)) ;

Note that the self-join in the FROM clause of Q1 reflects the fact that all tuple
pairs need to be compared. This is a consequence of wanting to distinguish all
pairs of distinct tuples in the relation by some element of X . This also indicates
that the growth of the time required to evaluate this query on the given table
will grow quadratically in the size of the table. In the scope of this paper we
do not aim at investigating how this performance can be improved by logical or
physical optimization techniques.

Also note that we can simply add a LIMIT 1 clause to the end of the query
Q1 in case we only want to validate whether the given key set is satisfied by the
given table. In this case, the query will terminate as soon as it finds one tuple
that participates in the violation of the key set.

Our query Q1 answers the question Which tuples cannot be distinguished
from all of the other tuples by the given key set? Consequently, the calculation

Valid tuples = |r| − |Q1|

gives us the number of tuples in the given table which can be distinguished from
all of the other tuples by the given key set, and

Fraction of valid tuples =
|r| − |Q1|

|r|

would give us the fraction of tuples in the given table that can be distinguished
from all of the other tuples by the given key set. These constitute one solution
to the degree of validity by which a given key set holds on a given table.

A different solution would quantify the degree of validity by the num-
ber/fraction of tuple pairs in the given table that can be distinguished by the
given key set. For this, we can use the query Q2 which results from Q1 by replac-
ing SELECT DISTINCT R.∗ by SELECT ∗. Indeed, Q2 would return all those pairs
of distinct tuples which cannot be distinguished by the given key set. Since the
number of pairs of distinct tuples in a given table r is

(
r
2

)
= 1/2 × (|r|2 − |r|),

and Q2 compares each pair of tuples twice, the calculation

Valid tuple pairs = 1/2 × (|r|2 − |r|) − 1/2 × |Q2|



38 Z. Zhang et al.

gives us the number of tuple pairs in the given table which can be distinguished
by the given key set, and

Fraction of valid tuple pairs =
1/2 × (|r|2 − |r|) − 1/2 × |Q2|

1/2 × (|r|2 − |r|)

would give us the fraction of tuple pairs in the given table that can be distin-
guished by the given key set.

Example 4. Recall our data set from Example 2, which we augment now by the
surrogate key column id as follows.

Id Room Name Address Injury Time

1 1 Miller ⊥ Cardiac infarct Sunday, 19

2 ⊥ ⊥ ⊥ Skull fracture Monday, 19

3 2 Maier Dresden Leg fracture Sunday, 16

4 1 Miller Pirna Leg fracture Sunday, 16

A computation of the various measures is then applied to the key sets {K1}
and {K2} from Example 3, and the key set X = {K1,K2} with respect to the
given table. The results are as follows.

Measure\Key set {K2} {K1} X
Valid tuples 0 2 4

Fraction of valid tuples 0 1/2 1

Valid tuple pairs 3 5 6

Fraction of valid tuple pairs 1/2 5/6 1

For example, no tuples in the given table is distinguishable from every other
tuple by {K2}, while the first two tuples are each distinguishable from all the
other tuples by {K1}, and every tuple is distinguishable from all the other tuples
by X . Similarly, tuple pairs (1, 3), (1, 4), and (3, 4) can be distinguished by {K2},
while only tuple pair (3, 4) cannot be distinguished by {K1}, and every tuple pair
can be distinguished by X .

4.2 Experiments

The previous section has provided some answers on how to validate given key
sets on given data sets within an SQL-based database management system. This
section will give some first insight into how long the validation of key sets may
take in practice, how the time for validation grows in terms of the input size,
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and how the degree of validity is influenced by the characteristics of the key sets.
In what follows we will first describe the real-world data sets we are using for our
experiments. We will then analyse the validation time, followed by an analysis of
the validity degrees. Our experiments are conducted on an Intel Core i7-7500U
CPU machine, which has 8 GB RAM and 2.7 GHz.

Table 1. Characteristics of real-world
incomplete data sets

Name #columns #rows #null

Hepatitis 20 155 167

Horse 28 300 1,605

Plista 63 1,000 23,317

Flight 109 1,000 51,938

Ncvoter 19 32,000 97,924

Uniprot 30 32,000 233,583

Data Sets. Our experiments are con-
ducted on real-world data sets with
incomplete information. The data sets
comprise of hepatitis, horse, plista, flight,
ncvoter, and uniprot, which have been
used as benchmark data sets for estimat-
ing the performance of algorithms that
discover different kinds of data dependen-
cies from data. They are publicly avail-
able1. The major characteristics of these
data sets are detailed in Table 1. In the table, name denotes the unique name
of the data set, #columns denotes the number of columns, #rows denotes the
number of rows, and #null denotes the number of null marker occurrences in
the data set.

Validation Time. Our first experiment concerns the time of evaluating query
Q1 for randomly created key sets of varying size and varying fragments of the
given data sets. For each data set, we created six fragments with growing numbers
of rows. Similarly, for each data set we randomly created key sets of varying size
but where the cardinality is fixed to the number of columns in the data set.
For each key set size, we randomly created ten key sets of that size, and then
measured the time to evaluate Q1 on each of the fragments and each of the key
sets. The output (y-axis) is the average time of evaluating Q1 for the ten key sets
and for the given fragment (x-axis). Figure 1 shows the results on (the fragments
of) our data sets and for various key set sizes.

There are mostly three main observations. (1) Validation times are very fast
for modest numbers of rows, even for scanning all tuple pairs. For example, the
longest time was spent on the full data set flight for validating key sets of size 1
and cardinality 63. This took 30 s, but most other times are significantly smaller,
in particular for key sets of larger size. The two larger data sets with 32,000 rows
exemplify that the quadratic time complexity has its consequences: validation
on full ncvoter takes just under 3hrs and validation on full uniprot takes about
5 and a half hours. (2) The validation time is quadratic in the size of the data
sets, for each fixed key set size. This is not surprising as we need to compare all
tuple pairs. (3) Among key sets of the same cardinality, the larger the size of a
key set, the faster the validation is. This is a consequence of the observation that
more violating tuples are found for smaller key set sizes, see the next experiment.
Hence, more time needs to be spent on identifying those.

1 https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html.

https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html
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(a) hepatitis (b) horse (c) plista

(d) flight (e) ncvoter (f) uniprot

Fig. 1. Average validation times for growing sizes of data sets and key sets

Validity Degrees. Figure 2 shows the number of tuples in the output of query
Q1, when evaluated with respect to the given key set and the given data set
fragment. There are two main observations. (1) The number of violations, and
thus the degree of violation, grows linearly in the size of the data set, for each
given key set size. (2) Among the key sets of the same cardinality, the larger the
size of a key set, the larger the degree of validity. Indeed, if the key set sizes are
smaller, then tuple pairs become harder to distinguish (since matching non-null
values are required on more attributes).

Final Remarks. We conclude that key set validation in SQL-based systems
is very much feasible, and can provide interesting insight into the compliance
of the data set with generalized entity integrity. Among key sets of the same
cardinality, those of smaller size might be favorable since they can distinguish
more entities and are faster to validate.

5 Acquisition of Key Sets by Armstrong Relations

We examine the feasibility of computational support for the acquisition of key
sets from a performance point of view. Armstrong relations have been found
useful for the acquisition of meaningful business rules [10]. Intuitively, this is no
different for keys sets. Recently, it was shown that Armstrong relations do not
exist for all collections of key sets, but an algorithm has been established that
computes an Armstrong relation for the implication of unary key sets by any
given collection of arbitrary key sets. Here, we will provide some first experimen-
tal evidence that the size of these Armstrong relations and the time to compute
them are small enough to offer computational support in practice. For that pur-
pose we briefly recall the computation of Armstrong relation for key sets.
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(a) hepatitis (b) horse (c) plista

(d) flight (e) ncvoter (f) uniprot

Fig. 2. Number of violating tuples for growing sizes of data sets and key sets

5.1 Computation of Armstrong Relations

The implication problem of unary key sets X by Σ = {X1, . . . ,Xn} of arbitrary
key sets only depends on the attributes in each given key set of Σ, and not on
how they are grouped as sets in a key set [5]. We thus identify X with

⋃
X

and each Xi with
⋃

Xi. We then compute anti-keys, the maximal key sets not
implied by Σ. Given the anti-keys, an Armstrong relation for Σ is generated by
starting with a single complete tuple, and introducing for each anti-key a new
tuple that has matching total values on the attributes of the anti-key and unique
values elsewhere. This construction ensures that all non-implied (unary) key sets
are violated and all given key sets are satisfied. The computation of the anti-
keys from Σ is done by taking the complements of the minimum transversals of
the hypergraph formed by the elements of Σ. A transversal for a given set of
attribute subsets Xi is an attribute subset T such that T ∩ Xi �= ∅ holds for all
i. While many efficient algorithms exist for the computation of all hypergraph
transversals, it is still an open problem whether there is an algorithm that is
polynomial in the output [3]. This construction always generates an Armstrong
relation whose number of tuples is at most quadratic in a minimum-sized Arm-
strong relation [5].

Example 5. Consider the set Σ = {X1,X2} with X1 and X2 from Example 3.
Then

⋃
X1 = {room, time, injury} and

⋃
X2 = {name, time, injury}. The min-

imum transversals are T1 = {time}, T2 = {injury}, and T3 = {room,name},
and their complements are anti-keys A1 = {room,name, address, injury}, A2 =
{room,name, address, time}, and A3 = {address, injury, time}. The following
relation is Armstrong for Σ.
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Room Name Address Injury Time

1 Miller 24 Queen St Leg fracture Sunday, 16

1 Miller 24 Queen St Leg fracture Monday, 19

1 Miller 24 Queen St Arm fracture Monday, 19

2 Maier 24 Queen St Arm fracture Monday, 19

The relation satisfies X1 and X2, but the relation violates the unary key set
ϕ′ = {{room}, {name}, {address}, {time}}, so ϕ′ is not implied by Σ.

5.2 Experiments

The problem of computing Armstrong relations for a given collection of key sets
is precisely exponential in the given cardinality of the key set [5]. Hence, the
question arises for which input sizes the computations are efficient in providing
support to analysts and domain experts for the acquisition of meaningful key
sets. For this purpose we conduct experiments in which we apply the computa-
tion to randomly created unary key sets over every schema with a fixed number
|R| of attributes, with |R| varying from 2 to 15. For each |R| (x-axis), and each
cardinality n = 2, . . . , |R| we randomly generate ten key sets of cardinality n, and
then compute the average number of tuples in the output (y-axis) and the aver-
age time to compute the output (y-axis), respectively. The results are illustrated
in Fig. 3 (a) and (b), respectively.

(a) (b)

Fig. 3. Number of tuples (a) and time (b) for computing Armstrong relations for
randomly created key sets over relation schemata R of various size |R|

For schemata with up to 12 attributes, Armstrong relations with an average
of up to ten tuples are created, and with an average time of up to ten seconds.
It is therefore reasonable to say that the computation of Armstrong relations is
feasible and can offer computational support for the acquisition problem. Even
for schemata with 14 attributes, the average size is 30 tuples and average time
50 s to compute.
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6 Conclusion and Future Work

Key sets can distinguish entities that primary keys cannot. For their uptake,
effective solutions for their validation and acquisition problems are required.
We have proposed first SQL queries to address validation, and studied their
performance on real-world benchmarks. Validation is quadratic in the number
of rows, and more effective and efficient when the elements of a key set have fewer
attributes. We have also tested the average performance of computing Armstrong
relations for key sets. For up to 12 attributes the computation is fast and creates
outputs of small sizes. This confirms the feasibility for computational support of
the acquisition problem. Dedicated algorithms instead of SQL-based solutions
to the validation problem would avoid disk-based access. It is also important
to study the impact of index structures on validation times. Our algorithms
for computing Armstrong relations can uncover insight on how these relations
support acquisition.
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Abstract. Benchmarking is a crucial aspect of evaluating database
management systems. Researchers, developers, and users utilise industry-
standard benchmarks to assist with their research, development, or pur-
chase decisions, respectively. Despite this ubiquity, benchmarking is usu-
ally a difficult process involving laborious tasks such as writing and
debugging custom testbed scripts, or extracting and transforming output
into useful formats. To date, there are only a limited number of compre-
hensive benchmarking frameworks designed to tackle these usability and
efficiency challenges directly.

In this paper we propose a new versatile benchmarking framework.
Our design, not yet implemented, is based on exploration of the bench-
marking practices of individuals in the database community. Through
user interviews, we identify major pain points these people encountered
during benchmarking, and map these onto a pipeline of processes rep-
resentative of a typical benchmarking workflow. We explain how our
proposed framework would target each process in this pipeline, potenti-
ating significant overall usability and efficiency improvements. We also
contrast the responses of engineers working in industry with those of
researchers, and examine how database benchmarking requirements dif-
fer between these two groups. The framework we propose is based around
traditional synthetic workloads, would be simple to configure, highly
extensible, could support any benchmark, and write output to any well-
defined data format. It would collect and track all generated events, data,
and relationships from the benchmark and underlying systems, and offer
simple reproducibility. Complex scenarios such as distributed-client and
multi-tenant benchmarks would be simplified by the framework’s work-
load partitioning, client coordination, and output collation capabilities.

Keywords: Benchmark · TPCC · YCSB · DBMS ·
Performance evaluation

1 Introduction

Benchmarking database management systems (DBMSes) is critical for evalu-
ating their correctness, performance, and efficacy. Organizations often employ
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industry-standard benchmarks before making purchase decisions; researchers use
benchmarks to evaluate novel technology; and developers frequently run bench-
marks during development to identify bugs or bottlenecks in their systems.

Due to the large variety of different DBMSes, benchmarks, database
paradigms, and data formats available today, benchmarking has become an
unnecessarily complex undertaking typically involving laborious manual pro-
cesses and repetitive tasks [4,5,14]. This heterogeneity led to the development
of new tools assisting with aspects of benchmarking, such as data and workload
generation [1,2,12,13,16], precise control over request rate and transaction mix-
ture [18], collection of statistics and environment information, and workload-
or target-specific testbeds or frameworks [8,9,19]. With the rise of cloud-based
distributed DBMSes, new benchmarking frameworks such as [15] have emerged
targeting properties such as horizontal scaling, elasticity, and availability, with
support for automated provisioning of cloud resources.

Previous research has largely focused on distinct benchmarking sub-processes
or specific scenarios, rather than taking a holistic approach. For instance, OLTP-
Bench [8] provided extensible support for running industry-standard bench-
marks targeting relational DBMSes with a focus on fine-grained control over
request rates, transaction mixtures, and access distributions; YCSB [6] provided
a benchmark for large-scale distributed cloud database systems; YCSB+T [7]
extended YCSB with support for transactional workloads; the TPC [17] bench-
marks focused on performance evaluation of relational DBMSes; MTCB [20] pro-
vided a benchmark for multi-tenant OLTP systems; UDBMS [11] implemented
a data model for benchmarking multi-model database systems; and MUDD [16],
PSDG [10], PDGF [12], and NoWog [1] provided automated test data generation.

Only a few studies [3–5] have been concerned with building a comprehen-
sive, extensible framework focusing on usability and the whole benchmarking
process. Most notably, BenchFoundry [3] implemented support for deterministic
trace-based workload generation within an extensible distributed benchmarking
framework capable of supporting several SQL and NoSQL systems. Determin-
istic, trace-based workload generation makes it difficult to control the statis-
tical distribution of inputs to match real-world situations. Implementations of
traditional benchmarks within BenchFoundry may produce results inconsistent
with synthetic workloads based on random sampling from a statistical distri-
bution [5]. Additionally, BenchFoundry does not collect detailed environment
metadata from benchmark clients and servers. Such metadata is often critical for
assessing the validity of performance benchmarks, which need to be conducted
under tightly controlled conditions and should not be impacted by resource or
benchmarking bottlenecks [5].

In practice, benchmarking platforms are typically based on a series of shell
scripts and configuration files that handle everything from collecting environ-
ment information to transforming benchmark output into a useful data format,
in addition to executing the benchmark. Depending on the experiment, there
may be several different versions of each script or configuration file typically dis-
tinguished by “meaningful” filenames. Little imagination is required to realize
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this often becomes chaotic. These scripts are often developed from scratch and
specialised to specific systems or benchmarks, and therefore not easily adaptable.
As we show in Sect. 2, these custom scripts are a major time sink and source of
bugs in benchmarking workflows.

In this paper, we propose and envision a new benchmarking framework
towards solving these issues and improving practices. Unlike most previous work,
our proposal has a focus on usability. Uniquely, it is based on interviews revealing
the real benchmarking practices of several academics and industry profession-
als. The result would be a highly general, extensible, and versatile framework
incorporating the whole benchmarking process; from DBMS and benchmark con-
figuration to output processing and statistical analysis, with a focus on usability
and meeting the benchmarking needs of both industry and academia. While our
framework proposal incorporates some ideas previously presented in the OLTP-
Bench [8] and BenchFoundry [3] papers, our focus is fundamentally at a higher
level. Our vision aims to remove difficulties reported by some highly experi-
enced people; it uses traditional synthetic workloads based on sampling from a
statistical distribution, while still focusing heavily on experimental repeatability.

The main contributions of this paper are:

1. An interview-based analysis of pain points in current practices and identifi-
cation of similarities and differences between academia and industry.

2. The design of a new benchmarking framework addressing the pain points we
identified.

The remainder of this paper is structured as follows. In Sect. 2 we describe our
exploration of the benchmarking practices of academics and industry profes-
sionals. Based on this, we identify a set of major pain points in benchmark-
ing processes and contrast the responses of industry professionals with those of
academics. We show that benchmarking may be encapsulated by a pipeline of
key processes, and we map the major pain points onto this pipeline. In Sect. 3,
we describe and envision our proposed framework alongside example use cases.
Section 4 describes possible avenues for future work.

2 Current Benchmarking Practices

The design and functionality of our new benchmarking framework envisioned
in Sect. 3 is heavily informed by awareness of current benchmarking practices.
We interviewed five people in order to gain a deeper understanding of the spec-
trum of practices currently employed within the community. These interviews
focused on identifying pain points, time sinks, and potential improvements within
respondents’ existing processes.

2.1 Interview Process

Interview questions covered three broad areas: (i) systems including DBMSes
under test, benchmarking infrastructure, and benchmarking tools; (ii) processes
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including experiment configuration, workload, data collection, statistical anal-
ysis, transformation of raw output data, storage and management of results,
and measurement dimensions; and (iii) features/functionality desired in a
benchmarking framework. We also provided respondents with a list of poten-
tial features for our new framework, and asked which features would be most
applicable to their workflow. Finally, respondents were given an opportunity to
suggest new features to resolve existing issues they had identified in their own
benchmarking processes. Our full set of interview questions is available online1.

Interviewees included some academic researchers, and some engineers work-
ing in industry on deployed DBMS systems. All respondents were asked identical
questions regardless of their respective backgrounds, and encouraged to provide
as much detail as possible. Some additional impromptu questions were asked to
clarify responses or request further detail. Interviews were conducted verbally
in-person or via teleconference, in a single block of time between 30 and 45 min,
with responses transcribed as the respondents spoke. While the number of peo-
ple involved is small, they cover a variety of situations, and so we expect that
improving the issues they mentioned will have wide benefits.

These interviews were conducted in December 2015. In March 2018 we con-
ducted a follow-up email asking some of the original respondents from both
industry and academia if any significant changes to their benchmarking tools,
processes, or methodology had occurred since 2015. In their replies, they reported
no significant changes. Hence, we are confident that our analysis of pain points,
and our proposed framework, remain relevant to the community in 2018.

2.2 Insights of Interest

Based on interview responses, we created a summary of the key challenges faced
by each respondent in their benchmarking workflows. We then used those sum-
maries to build the following taxonomy, in which each “pain point” corresponds
to a key challenge raised by at least one respondent:

PP1. Initial setup and configuration. The deployment and configuration of
a benchmarking experiment is often time-consuming and unintuitive.

PP2. Script writing. It is often necessary to write and debug custom testbed
scripts, which is laborious and time-consuming.

PP3. Reproducibility. Repeatability and reproducibility are difficult to accom-
plish, usually involving a manual process of referring to multiple information
sources to configure and re-execute an experiment.

PP4. Debugging. Unexpected results are difficult to substantiate, usually
requiring time-consuming manual debugging.

PP5. Distributed clients. Distributed benchmarks often require manual coor-
dination of clients and collation of output.

PP6. Metadata collection. Collecting additional system metadata (e.g. sys-
tem calls) during a benchmark run requires writing custom scripts, coordi-
nating these, and manually correlating output.

1 https://github.com/lexibrent/benchfw-resources/blob/master/interview-qns.pdf.

https://github.com/lexibrent/benchfw-resources/blob/master/interview-qns.pdf
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PP7. Log correlations. Correlating events recorded by benchmark clients with
those recorded in DBMS logs requires manual inspection or custom scripts.

PP8. Statistical analysis. Statistical exploration of benchmark metrics (e.g.
computing correlation coefficients) is often fruitful but typically too laborious
and time-consuming to be feasible.

Some notable similarities and differences were observed between the responses
from researchers and industry professionals:

– Industry respondents tended to focus more on reliability and efficiency
than academic respondents. For example, industry respondents expressed a
desire to measure “consistency of throughput”, “response time variance”, and
“latency with a threshold”.

– Industry respondents tended to focus on applications surrounding debugging
and continuous integration, whereas academic respondents primarily focused
on scientific applications such as experimentation with novel technologies.

– Academic respondents were more concerned with statistical and experimental
validity and repeatability than industry respondents. For example, academic
respondents discussed conducting multiple trials, and methods of dealing with
statistical outliers. Industry respondents did not pay much attention to these
topics, with some indicating they would typically only run a benchmark mul-
tiple times to assist with debugging, rather than to improve statistical relia-
bility.

– All respondents indicated they use cloud services such as Amazon EC2 exten-
sively in their benchmarking processes.

– All respondents agreed that distributed benchmark clients are difficult to
coordinate, but industry respondents appeared to exhibit less interest in con-
ducting distributed benchmarks than academic respondents.

– Industry respondents’ processes tended to focus on short-length, single-client
workloads, whilst academic respondents emphasised the importance of longer-
running and mixed-client workloads.

2.3 Further Analysis of Benchmarking Processes

Our interviews and our own experiences suggested that benchmark execution
can be represented as a pipeline of three main processes: (i) initial configu-
ration, (ii) benchmark runs, and (iii) results processing/analysis. This
pipeline model, depicted in Fig. 1, is consistent with observations of others in
the community [5] who also approach benchmarking as a pipeline, albeit from a
different perspective.

In Table 1 we assign each identified pain point to one or more pipeline pro-
cesses. We observe that initial configuration and results processing/analysis are
the two major sources of pain and time consumption, potentiating the greatest
improvements in efficiency and usability for the overall benchmarking pipeline.
Hence, our new benchmarking framework proposed in Sect. 3 is motivated by
improving the efficiency of the pipeline by finding solutions to these pain points.
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Initial configuration Benchmark
runs

Results
processing/analysis

Fig. 1. Benchmarking represented as a pipeline. Initial configuration and results pro-
cessing/analysis are the most painful processes, potentiating the largest efficiency and
usability improvements (indicated by inward arrows).

Table 1. Association of identified pain points with benchmark pipeline processes.

Pipeline process Major pain points

Initial configuration PP1, PP2, PP3, PP4, PP5, PP6

Benchmark runs PP4, PP5

Results processing/analysis PP4, PP5, PP6, PP7, PP8

3 New Benchmarking Framework

In this Section, we propose and envision a new framework towards addressing
the major pain points described in Sect. 2, with the overall goal of decreasing
the inefficiency and pain associated with DBMS benchmarking. The framework
we envision is founded on several key principles:

1. Generality and versatility—no restrictions should be imposed regard-
ing the: benchmark; configuration parameters (DBMS/benchmark); target
DBMS; workload; dataset; experimental method; or outputs. A relevant
benchmarking framework should be capable of handling the heterogeneity
of modern DBMS benchmarking.

2. Extensibility and abstraction—the framework should be highly extensible
in all directions, with a modular design utilizing multiple abstraction layers.
It should be straightforward to implement or extend benchmarks, workloads,
target DBMSes, experimental methodologies, etc. This principle responds to
the rapid pace of development within the database community and it aims to
ensure the proposed framework’s ongoing relevance.

3. Usability and configurability—the framework should be simple to install,
configure, and run, painless to extend, and provide intuitive output. All
aspects of the benchmarking pipeline should be separately and extensively
configurable using a simple self-documenting configuration format. Running
traditionally complex distributed benchmarks should be as simple as specify-
ing a few configuration parameters.

4. Track everything—as much information as practically possible (i.e. without
interfering with results) should be collected about the benchmarking environ-
ment. Metadata about relationships between information and objects within
the system should also be collected. More context is better than less when
reviewing benchmarking outputs.

5. Repeatability/reproducibility—replicating an experiment for result ver-
ification and consistency should be as simple as running a command.
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6. Flexibility of output—the framework should be capable of outputting any
well-defined format specified by the user, and of re-writing output in different
formats after experiment completion. It should be straightforward to extend
the framework with custom output formats.

Through consistent focus on these key principles, our proposed framework would
make leaps in resolving the major pain points identified in Sect. 2.2. The remain-
der of Sect. 3 envisions our new framework through these key principles, and
explains how each of the major pain points would be addressed. Though not the
focus of this paper, we also developed a set of nonfunctional requirements and
UML class diagrams for our proposed framework; these are available online2.

3.1 Versatility and Extensibility

We propose a highly modular design suitable for implementation in any object-
oriented programming language. In particular, our design supports any industry-
standard benchmark or micro-benchmark. These could be implemented natively
within our framework or run as separate programs. The minimum implementa-
tion required to run an existing benchmark would be writing methods to launch
the existing benchmark’s executable, process its output, and handle its input
configuration parameters. The framework would similarly support any possible
target DBMS, either implemented natively or accessed via a separately-running
benchmark program.

Different experimental methods and repeatability (PP3) would be supported
by abstracting the concept of a benchmark from that of an experiment. In our
model, an experiment could use any benchmark or combination thereof, any
number of times, with any number of warm-up/cool-down period, termination,
and data collection triggers. This would allow expressing complex experiments
such as the hypothetical scenario in Table 2.

Since our framework would be capable of handling the whole benchmark-
ing pipeline, the need to write and debug custom testbed scripts (PP1–PP4)
would be completely eliminated. Experiments designed within our framework
could be easily ported to new scenarios without the traditional script-modifying
and re-debugging that would otherwise be required with a custom testbed. Our
framework would also provide new opportunities for collaboration and data shar-
ing because anyone who could run the framework could also load and explore
the output of any experiment performed using it.

3.2 Configuration

Simplifying configuration of benchmarks and DBMSes would be a significant
usability accomplishment. Many systems are configured by setting values for a
set of predefined configuration keys, often using a key-value configuration format
such as Java Properties files. We would take advantage of this commonality

2 https://github.com/lexibrent/benchfw-resources/.

https://github.com/lexibrent/benchfw-resources/
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Table 2. Hypothetical YCSB benchmarking experiment in our framework.

Benchmark config ycsb/workloads/workloada

Benchmark clients localhost

DBMS servers bench1

Method 5 trials, non-distributed

Vary YCSB thread count from 1 to 32, stepping by 1

Targets MongoDB

Warm-up until server disk I/O is stable

Output YCSB throughput and aggregates: avg, SD, min, max

Output formats CSV and JSON

Collect (from servers) disk, CPU, RAM, and network utilization every 2 s

Start condition start at 2018-02-10 00:00:00 UTC

with a simple self-documenting key-value configuration format for every aspect
of the framework. Our framework could automatically generate configuration
files for other software components based on values set in the framework’s own
configuration, provided the framework is first extended with an implementation
of the appropriate parse and generation logic (for non-key-value formats).

Any configuration file within our proposed framework can reference any other
configuration file, allowing large or complicated scenarios to be split into man-
ageable chunks. The need to copy entire configuration files to change options
between experimental runs (PP1) is eliminated because our framework would
allow all desired values to be expressed within the same configuration file using,
for example, a concise range syntax. These value set declarations would be pro-
cessed independently to the general configuration syntax, allowing custom syntax
and parse logic to “just work” when implemented as an extension.

In addition, settings could be configured at different granularity levels. In
order of granularity from course to fine, these would be: framework, DBMS,
benchmark, experiment, and run. Any key configured at a given granularity
level would override any values set for it in courser granularity levels. This design
would allow, e.g., multiple experiments to share a common base configuration,
with different sets of benchmark runs overriding specific configuration values.

Since flexibility is a major goal of our proposed framework, every component
would be extensively configurable. Resource-intensive components such as com-
prehensive real-time system monitoring could be readily disabled. This design
provides finer control of overhead and the associated trade-offs.

3.3 Distributed Benchmarks

Challenges associated with manually coordinating distributed benchmark clients
running in parallel (PP5) would be eliminated by our framework’s ability to
automatically configure and coordinate multiple DBMS server systems and
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benchmark clients. An experiment configuration could list multiple machines on
the same network that are all running the framework, partitioned into DBMS
server and benchmark client machines. If any machine in such a configuration
contains a more recent version of an experiment configuration than its peers,
all peers would update to the later version before beginning execution. This
would enable painless configuration modifications post-deployment, by simply
modifying the configuration stored on one of the connected machines.

Partitioning the benchmark workload could be accomplished by specializing
specific configuration values for each client or group of clients. For example, to
split the workload based on operation type, one group of clients could be con-
figured to perform only reads and another to perform only inserts and updates.
Any configuration options supported by the benchmark could be used, so other
examples may include partitioning based on operation count, primary key, table,
or database (for multi-tenant benchmarks).

Our framework would track time stamps for all captured events, including
error log entries and output from the benchmark and target DBMS. At the
conclusion of a distributed benchmark run, all machines running the frame-
work would collate these events based on times tamp, while still tracking which
machine captured each event. Correlation coefficients between different datasets
could be automatically computed for collected metrics, assisting the user with
post-experiment analysis and debugging unexpected results.

3.4 Repeatability/Reproducibility and Debugging

Despite being a core principle of the scientific method, reproducibility is often
overlooked by the database community. We speculate that this may be due to
factors such as experimental complexity, inability to replicate hardware configu-
rations, closed-source or proprietary software licences, and incomplete or impre-
cise descriptions of experiments in literature. Our proposed framework would
simplify reproducibility (PP1, PP3) for benchmarking by automatically config-
uring the experimental method, benchmark, and DBMS. Each DBMS under test
would simply need a corresponding adapter class implementation.

Using our framework, anyone with the necessary hardware and software envi-
ronment could replicate any previous experiment performed with the framework
by running a command and providing the output data from the experiment to
be replicated. Our framework would warn the user if any detectable differences
were found between the current environment and the environment used in the
original experiment, reducing the chance of small differences going unnoticed.
If the full output of a previous experiment is unavailable, the experiment could
still be replicated by using identical configuration files, in which case our frame-
work would be unable to report environmental differences. During replication of
an experiment, values that were originally sampled from statistical distributions
could either be re-sampled or re-used.

The comprehensive targeted metadata collection capabilities of our frame-
work (described in Sect. 3.5) would simplify debugging by providing a more con-
figurable level of detail than what is traditionally available. Debugging tools
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could also be attached to processes within the pipeline by setting appropriate
configuration keys. This would eliminate the need to repeat an experiment with
debugging tools manually attached, making heisenbugs easier to catch (PP4).

3.5 Metadata Collection

The framework’s general approach to environment metadata collection would
be that “more is better” provided it can be used effectively. So, it should be
traceable, comprehensive, and relevant. Environment information would be col-
lected for each system running our framework within an experiment. It would
include details of (for example) the kernel, operating system, hardware, resource
use, runtime and library versions, network connections, running processes and
threads, system calls, memory access violations, crash dumps, and exact config-
uration files used. The collection mechanism would be modular and extensible,
so additional data collection could be implemented with ease.

Traceability of collected metadata would be accomplished with a relational
model linking each piece of information to its origin and other related data. For
example, system environment information is related to the: machine on which it
was collected, benchmark being executed, configuration used in that benchmark
execution, experimental method used and its configuration, framework version,
etc. These proposed metadata collection capabilities offer significant usability
and efficiency improvements over typical benchmarking methodologies (PP6).

3.6 Output and Analysis

Industry-standard DBMS benchmarks output a variety of different formats, only
some of which are extensible and configurable. Many write directly to stdout,
relying on the user to manually perform collection and analysis (or automate it
with custom testbed scripts). Our framework would improve this (PP2, PP4)
by automatically extracting metrics of interest from raw benchmark output and
storing these internally so they can be exported to any desired format such as
CSV, JSON, or perhaps a plot. For each supported benchmark, our framework
would require logic to process the benchmark’s raw output; typically involving
running regular expressions or parsers over captured stdout. Each output format
would have its own writer implementation, so it would be straightforward to
extend the framework with support for new output formats.

Comprehensive data collection in our proposed framework would make it
possible to extract additional metrics from existing experimental output without
needing to re-run the benchmark itself. This could also be used to convert a
completed experiment’s data to a different output format.

Statistical analysis of experimental results is traditionally performed entirely
manually after data extraction (PP8). Our framework would improve the effi-
ciency of this process by automating some common calculations. For example,
the user could configure the framework to output aggregate metrics such as sum,
average, min, max, median, standard deviation, variance, confidence interval,
and correlation coefficients (PP7). As with the other aspects of our framework,
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these would be modular and extensible. The framework would also be capable
of reporting new correlations that may be of interest to the experimenter.

4 Future Work

We now need to implement and evaluate our proposed framework. Future work
could also explore developing a framework supporting both synthetic and trace-
based workloads; combining the framework described in this paper with the
functionality of BenchFoundry [3].

5 Conclusion

In this paper we proposed a new versatile and extensible framework for con-
ducting benchmarking of DBMSes, based on a survey of the benchmarking prac-
tices of several individuals in the database community from both industry and
academia. We showed that a typical benchmarking workflow is well-modelled as
a pipeline of three key processes. Based on interview responses, we developed a
set of major benchmarking “pain points” and mapped these onto the processes
in our pipeline to determine which processes potentiated the greatest overall
efficiency and usability improvements. We characterized several core principles
upon which our vision is based: extensibility, usability, configurability, extensive
data collection, and reproducibility. Our proposed framework was described,
including how it would address each of the major pain points we had identified.
A future implementation of our proposed framework could greatly improve the
coherence of benchmarking for industry and academic purposes.
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Abstract. This paper describes Neighbourhood Blocking – a novel
method for the indexing step in the record linkage process. Record Link-
age is the task of identifying database records referring to the same entity
without the aid of definitive key fields. It has applications in data inte-
gration, fraud detection and other areas. This involves comparing pairs
of records. If done indiscriminately, the size of this task is quadratic
in dataset size. Therefore, various indexing methods are typically used
to reduce the number of record pairs subjected to detailed comparison.
Neighbourhood Blocking generalizes two existing indexing methods –
Standard Blocking and Sorted Neighbourhood Indexing. It also allows
meaningful treatment of missing values and a limited number of blocking
field mismatches. Comparison of the Cartesian product of the blocks is
avoided through the use of recursion. Numerical experiments and tests
on benchmark datasets are reported in which Neighbourhood Blocking
is compared to Standard Blocking and Sorted Neighbourhood Indexing.
Under the conditions tested, Neighbourhood Blocking is found to fre-
quently produce superior index quality, often at the expense of increased
runtime. Scale testing indicates that index production speeds for Neigh-
bourhood Blocking and Standard Blocking are similar when the database
size is sufficiently large.

1 Introduction

1.1 Record Linkage

Many applications such as data integration, deduplication and fraud detection
require the identification of distinct records referring to the same entity without
the aid of unambiguous identifying fields. For example, many census datasets
lack a field suitable for unambiguously identifying individual people. In such
cases, the task of resolving object identity must rely on a combination of other
field values where each field provides a partial and imperfect indication of object
identity. In the case of census data, these fields might include name, address,
date of birth, country of birth and other personal details. These non-key fields
typically have a many-to-many relationship with object identity. To take address
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as an example, several people might live at the same address, and the same
person may have different addresses at different times (or even a choice of homes
at the same time). There can also be multiple representations of the same piece
of information due to variations in the use of abbreviation, preferred names
(e.g.: Betty rather than Elizabeth), spelling of numbers etc. Additionally, some
differences are simply due to errors.

Since [3] investigated record linkage in 1940s, the subject has been pursued
separately in several disciplines. Consequently, many names are now used to refer
to it. These include: conflation, coreference resolution, data linkage, data match-
ing, deduplication, disambiguation, entity resolution, name resolution, object
identification, propensity score matching, record linkage, reference reconcilia-
tion and several others. In this paper, it will be referred to generally as “record
linkage” and as “deduplication” when the records to be matched are in the same
table.

The steps in the record linkage process described by [2] are:

1. Preprocessing – extraction of normalized representations and other features
from the source dataset(s)

2. Indexing – Selection of record pairs for further consideration as possible
matches

3. Comparison – Feature extraction from the selected record pairs
4. Classification – Binary classification of record pairs into matches and non-

matches
5. Evaluation – Assessment of the quality of the record linkage produced

In deduplication, merging is often added as a final step. This involves pro-
ducing a single record from each group of records that refer to the same entity.

This paper focuses on the Indexing step, the purpose of which is to inexpen-
sively eliminate the vast majority of possible record pairs from consideration as
possible matches. To illustrate why this is desirable, consider the deduplication
of the dataset illustrated in Table 1. A rapid, high-recall indexing step with only
0.5% precision would reduce the number of record pairs to be considered in detail
from approximately 5 billion to 1 million - a factor of 1

5,000 .

Table 1. Example dataset for deduplication

Item Count

Total records 100,000

Duplicate records 5,000

Total record pairs 4,999,950,000

True matching record pairs 5,000
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Table 2. Common indexing techniques

Indexing technique Record pair selection criterion

Standard blocking Exact match in one or more fields

Sorted neighbourhood Proximity in a sorting order

Qgram-based, suffix-based Exact match in any slight variations of a
field’s value

Canopy clustering; many: 1 mappings cluster or group membership

The indexing step involves several competing objectives:

– Scalability - sufficient to accommodate the source dataset
– Size reduction - elimination of a large proportion of possible record pairs.

This proportion is called the “reduction ratio”.
– Recall - proportion of true matching pairs retained

Common indexing techniques are listed in Table 2. These are described more
fully in Sect. 2.

1.2 Motivation

The primary motivation for combining aspects of Standard Blocking and Sorted
Neighbourhood Indexing is to produce a single indexing method with the fol-
lowing features:

– Matching by “proximity” of field values (in addition to equality)
– Use of multiple fields to assess record similarity

As outlined in sections “An Issue with Standard Blocking” and “An Issue with
Sorted Neighbourhood Indexing”, Standard Blocking lacks the first of these fea-
tures and Sorted Neighbourhood Indexing lacks the second.

An Issue with Standard Blocking. Standard Blocking is similar to a
database join in that it matches record pairs where the values of certain speci-
fied fields (“blocking keys”) are equal. A strength of this approach compared to
Sorted Neighbourhood Indexing is that it simultaneously constrains the differ-
ences between values in multiple fields.

However, one disadvantage of Standard Blocking is that the only selection
criterion for record pairs is whether or not they are in the same block. Any
meaningful notions of block proximity or position within blocks (e.g.: when the
blocks are discretized versions of continuous variables) are ignored. Take for
example, the eight points illustrated in Fig. 1. Ideally, an indexing method that
includes pairs of points that are far apart (for example, pair AD) should also
include all pairs of points in the central cluster (i.e.: DE, EF and DF).

Depending on the positions of block boundaries, this will happen in some
cases but not others. For example, the block boundaries in Fig. 2 separate all
the points in the central cluster.



60 D. Elias and J. Poon

Fig. 1. Example points for indexing illustrations

Fig. 2. Bivariate blocks

An Issue with Sorted Neighbourhood Indexing. Sorted Neighbourhood
Indexing produces an ordering of the distinct combinations of values in certain
fields (“sorting keys”) and returns all record pairs whose combinations of sort-
ing key values are closer than a specified distance in that ordering. Since the
“windows” used to select records for pairing can overlap, the problem (described
above) of nearby pairs straddling block boundaries doesn’t apply in Sorted
Neighbourhood Indexing.

However, one weakness of Sorted Neighbourhood Indexing is that it uses
only a single ordering of the records, causing it to typically include more distant
record pairs than, say, Standard Blocking with multiple blocking keys.
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To illustrate this, consider once again the set of points in Fig. 1. Any ordering
of the points corresponds to a (one-dimensional) route that visits all the points.
For example, sorting by the horizontal ordinate and then the vertical one pro-
duces a route that is monotonically non-decreasing in the horizontal ordinate
and varying widely in the vertical one. This is illustrated in Fig. 3. Taking a win-
dow size of 3 produces point groups ABD, BDC, DCG, CGF, GFE and FEH.
The Sorted Neighbourhood Index (i.e.: all intra-group pairs of records) therefore
includes distant pairs such as DC, GF and CG while excluding near ones such
as DF and DE. CG is an example of a more distant pair than any that would
be included by bivariate Standard Block Indexing as illustrated in Fig. 2.

Fig. 3. Sorted Neighbourhood: route with sorting by horizontal variable

Other Issues

Treatment of Missing Values. Neither Standard Blocking nor Sorted Neighbour-
hood Indexing provide any meaningful treatment of missing values. When these
methods are used in practice, missing values are typically either imputed or
excluded (by omitting either rows or columns from the tables being linked).
However, in reality missing values are just that – missing. The fact that a value
is missing from a particular record neither confirms nor contradicts that record’s
pairing with any other record. Therefore, some allowance for limited wildcard
matching of missing values is often desirable.

Allowance for Limited Field Mismatches. Records that refer to the same entity
often contain differences in field values that would place them far apart in the
sorting order. For example, consider the records shown in Table 3. These appear
to refer to two individuals - Catherine and Timothy Bourke, each of whom is
referred to by a pair of records. In each pair of records, there are three fields which
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Table 3. Example records for deduplication

Row Given name Surname Address Birth date SSID

1 Catherine Bourke 42 Black Stump Cres 15-Mar-1958 3984257

2 Cathy Smythe 42 Black Stump Cres 15-Mar-1958 398425

3 Timothy Bourke 42 Black Stump Cres 06-Dec-1959 3939872

4 Timothy Bourk 110 Beachfront Drive 06-Dec-1995 3939872

either agree exactly or would be nearby in the field’s sorting order. However, they
aren’t the same three fields in both cases. In situations like this, a record pair
selection rule like “any three of these five fields approximately agree” would be
desirable.

Indexes of this type can be constructed using intersections and unions of
Standard Blocking or Sorted Neighbourhood Indexes. However, the number of
separate indexes to be computed and combined quickly becomes unwieldy. An
algorithm that provides this type of matching more directly can be of value in
situations like this one.

1.3 This Paper’s Contributions

This paper’s contributions are:

– Proposal and description of Neighbourhood Blocking
– Description of a recursive implementation which avoids comparison of the

Cartesian product of the records
– Theorems relating to:

• Inclusion of all pairs of records that are closer to one another than a
specific Euclidean distance.

• Conditions under which Neighbourhood Blocking is an unambiguous
superset of Standard Blocking

• Neighbourhood Blocking Index size relative to that of Standard Blocking
– Tests comparing Neighbourhood Blocking, Standard Blocking and Sorted

Neighbourhood Indexing with respect to:
• index quality in benchmark datasets
• scalability properties in randomly generated datasets

1.4 Terms and Abbreviations

Key. A field used for grouping records into Blocks (blocking key) or for sorting
them (sort key)

BKV. Blocking Key Value - one of the values contained in a blocking key
Block. A group of all records with a particular combination of BKVs
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2 Related Work

2.1 Overview

The purpose of indexing in record linkage is to produce pairs of records for
further consideration in the Comparison and Classification steps. The need for
this was identified in [4] where the indexing technique now known as Standard
Blocking is also described. Indexing for record linkage is a field of active research,
and several approaches described in this section have significant similarities to
Neighbourhood Blocking.

2.2 Full Index

The simplest way of selecting record pairs for further consideration is simply to
select all possible pairs. This is known as “Full Indexing” and produces indexes of
the sizes indicated in Table 4. The full index size can be manageable in the case of
smaller datasets. For example, [8] focuses on the Comparison phase of the record
linkage process (i.e.: comparisons of pairs of records rather than the selection
of pairs for consideration). Numerical deduplication experiments are performed
there on datasets with 2,000 rows and therefore approximately 2,000,000 record
pairs in a full index.

Table 4. Full index sizes

Task Full index pair count

Linkage (n rows to m rows) nm

Deduplication (n rows) n2−n
2

2.3 Standard Blocking

Standard Blocking, described by [4], produces all pairs of records which have
exact matches in all fields designated as “blocking keys” (there can be multiple
blocking keys). This can be implemented using the following steps:

1. Produce an inner join of the table(s) using the blocking keys (for deduplica-
tion, there is only one table - join it to itself). Retain only the two columns
containing the record identifiers for the left and right tables in the join.

2. If there is only one source table (i.e.: the index is for deduplication rather
than linkage), discard all rows where the left row identifier is greater than or
equal to the right row identifier.

3. The remaining pairs of row identifiers are the index.
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2.4 Sorted Neighbourhood Indexing

This method, described in [5] selects all pairs of records that are within a fixed
“rank distance” of one another in a (single) sorted list. Unlike Standard Blocking,
Sorted Neighbourhood Indexing produces the union of full indexes of overlap-
ping groups of records. Since these record groups overlap, Sorted Neighbourhood
Indexing avoids the block boundary problem described in Sect. 1.2. [9] describes
an efficient method for implementing an online version of Sorted Neighbourhood
Indexing using a tree-based approach to maintain the sort order as new records
are added.

Sorted Neighbourhood Indexing requires two parameters:

– a record sorting criterion, and
– a “window width” which must be an odd positive integer

These steps can be used to produce a Sorted Neighbourhood Index:

1. Produce a single table of all distinct combinations of sorting keys in the
dataset (i.e.: if there are two tables, take the union of the sorting key combi-
nations in both of them). Call this the “Key Combination Table”

2. Sort the Key Combination Table.
3. For each record in the source table(s) find which row in the Key Combination

Table has the same combination of sorting keys. Store these row numbers in
a new “Rank” column in the source table(s)

4. Join the source table(s) (if there’s only one then join it to itself). The join
condition is that the absolute difference in Rank does not exceed w−1

2 where
w is the window width. Retain only the two columns containing the record
identifiers for the left and right tables in the join.

5. If there is only one source table (i.e.: the index is for deduplication rather
than linkage), discard all rows where the left row identifier is greater than or
equal to the right row identifier.

6. The remaining pairs of row identifiers are the index.

2.5 Mappings and Value Modifications

These methods map individual blocking key values to one or more alternative
versions.

Many-to-one mappings (such as Soundex which maps strings to sound codes)
are a way of coarsening blocking (thereby increasing the number of record pairs
included).

Many-to-many mappings (such as string modifications using q-grams or suffix
arrays) result in blocking where each record is effectively a member of multiple
blocks, thereby reducing the effects of block boundaries. Some such methods
are described in chapter four of [2]. Many-to-many mappings can often result in
very large indexes. [1] describes an approach to address this by “pruning” the
size of the mapping. This involves including only relatively rare BKV variants,
greatly reducing the size of the index, but retaining those record pairs involving
the coincidence of unusual variants.
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2.6 Other Methods

Since indexing is applied to the entire source dataset, it typically has a greater
need for scalability than the Comparison and Classification steps that follow it.
Consequently, indexing algorithms typically require field comparison methods
with properties that enhance algorithm scalability (e.g.: methods that rely on
sorting require ordinal field comparisons).

Most indexing algorithms use these scalability-friendly comparison methods
exclusively. However, some algorithms use them in addition to other comparison
methods which lack the properties that support algorithm scalability.

Canopy Clustering is one such method. It is an approximate clustering
method specifically suited to large datasets and distance functions that are slow
to compute. It initially estimates distances between records using some faster
distance function and then uses the slow distance function to revise distances
below a threshold value. The steps involved in Canopy Clustering are:

1. Begin with no records allocated to clusters.
2. Choose an unallocated record at random. This will be the “centroid” of a new

cluster. Use a fast comparison technique (e.g.: Jaccard similarity of q-gram
sets) to identify other unallocated records that are similar to it (this involves
comparison of the centroid record to all unallocated records). Then (only on
those records selected) use the slow comparison technique to compute their
distances to the centroid record. Allocate the centroid record and any others
that were found to be sufficiently close to it to the new cluster.

3. As long as any records remain unallocated, continue repeating the previous
step.

Another such method is Progressive Blocking which is described in [7]. This
is a method of prioritizing the Comparison and Classification of record pairs
with the aim of processing those more likely to be matches first. To do this,
it relies on integration with the Comparison and Classification tasks in order
to obtain feedback from them on the density of true matches found so far in
different regions in the record pair space.

3 Neighbourhood Blocking

3.1 Intuition

Neighbourhood Blocking is a generalization of both Standard Blocking and
Sorted Neighbourhood Indexing featuring:

– multiple blocking keys (like Standard Blocking)
– proximity (as well as equality) matching (like Sorted Neighbourhood Index-

ing)
– wildcard matching of missing values, and
– allowance for complete mismatches in a limited number of blocking keys
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Since Neighbourhood Blocking allows proximity matching in multiple blocking
keys, there is no single sorting order of the blocks such that block proximity
corresponds to sorting order proximity. Therefore, some other method besides
sorting needs to be used in order to avoid comparing the Cartesian product of
the blocks. In the implementation described here, recursive application of the
blocking algorithm achieves this.

3.2 Algorithm Description

Neighbourhood Blocking can be implemented in the following steps:

Normalize BKVs. Replace all non-null BKVs with integers representing their
rank (i.e.: each non-null BKV is replaced with the count of distinct non-null
values in the same column which appear earlier than it in a sorted list). This
enables the coarsening and recursion described in step Sect. 3.2.

Atomic Blocking. Produce a (single) master table of block BKV combinations
by taking all distinct combinations of BKVs in the table(s) being indexed. Assign
a distinct block ID to each row in this table.

Produce a Linkage Index of Candidate Block Pairs. This is an index of
the pairs of blocks on which the matching conditions will be checked in the next
step. Neighbourhood Blocking is used (recursively) to achieve this as follows:

– If the blocking is maximally coarse (i.e.: each blocking key has only one non-
null value), produce a Full Index (there will be no more than 2n rows where
n is the number of blocking keys).

– Otherwise: produce a Neighbourhood Blocking index using the same param-
eters (blocking keys, rank distance limits, wildcard limit and mismatch limit)
on a coarsened version of the block table where each non-null BKV x is
replaced with

⌊
x
a

⌋
where a > 1.

The number of recursive steps is logarithmic in the maximum number of
distinct values in any blocking key.

Identify Pairs of Matching Blocks. Compare the blocks in each of the block
pairs identified in the previous step and determine which ones satisfy the record
matching conditions. Put their block IDs into a link table (i.e.: each row is a
pair of block IDs).

Translate Block Pairs to Record Pairs. Use database-style joins (via the
link table found in the previous step) to determine the pairs of row IDs corre-
sponding to matching row pairs.
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For Deduplication, Filter the Record Pairs. In the case of deduplication
of a single table (as opposed to linkage of two tables), filter the list of record id
pairs to only include unique pairs (regardless of order).

3.3 Comparison to Other Methods

Standard Blocking and Sorted Neighbourbood Indexing are both special cases
of Neighbourhood Blocking where no wildcard matching or match condition
violations are allowed. Standard Blocking corresponds to a rank distance limit
of zero (i.e.: only equality matching is allowed). Sorted Neighbourhood Indexing
corresponds to a single (possibly composite) blocking key.

Strictly speaking, since Neighbourhood Blocking effectively involves a many-
to-many mapping of BKVs, it bears some similarity to mapping-based techniques
like q-grams or suffix arrays (described in Sect. 2.5). Neighbourhood Blocking
differs from these other methods in that inexact BKV matches are restricted to
those that can be determined from sorting order or null values alone.

Unlike Progressive Blocking (outlined in [7]), Neighbourhood Blocking is sep-
arable from the Comparison and Classification steps, uses multiple sorting orders
to determine block proximity and allows for wildcard matching and field mis-
matches.

A comparison of some key features of Neighbourhood Blocking and some of
its counterparts is summarized in Table 5.

Table 5. Comparison of index algorithm features

Feature Standard Sorted N’hood Progressive Neighbourhood

Multiple block keys � � �
Multiple orderings N/A �
Block combination/overlap � � �
Separable from comparison � � �
Nulls as wildcards �
Limited non-matches �

3.4 Properties

The Proximity matching criterion allows the inclusion of record pairs which
straddle block boundaries. By Theorem 1, where there is a notion of position
within blocks (making the notion of “close pairs straddling block boundaries”
meaningful), Neighbourhood Blocking includes all record pairs closer than a spe-
cific “inclusion distance”, regardless of the specific locations of block boundaries.

Theorem 1 (Inclusion distance). A Neighbourhood Blocking index using
blocking keys that are discretized versions of continuous variables will include
all pairs of records whose non-discretized Euclidean distance is less than the
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product of (a) the length of the unit of discretization, and (b) the lowest of its
rank distance limits. This is true regardless of the locations of block boundaries.

Proof. Let the differences in the values of each of the non-discretized blocking
keys be δ1, δ2 · · · δn (where n is the number of blocking keys). Let the unit of
discretization be u and let the minimum of the rank distance limits be rmin. By
assumption, the Euclidean distance between the records is less than rminu. In
other words: √∑

j

δ2j < rminu ⇒
∑

j

δ2j < (rminu)2 (1)

If the record pair is not included in the index by the Proximity criterion, the
following condition must be true.

∃j : δj > rminu (2)

which implies: ∑

j

δ2j > (rminu)2 (3)

since
∀j : δ2j > 0 (4)

Since (1) is a contradiction of (3), any pair of records separated by a Euclidean
distance less than rminu must be in the index.

Clearly, a Neighbourhood Blocking Index is a superset of a Standard Blocking
index which uses the same keys. However, by Theorem 2, it is also a superset of
a Standard Blocking Index where the granularity of any or all of the blocking
keys is coarsened by combining groups of 1 + rj adjacent values where rj is the
jth blocking key’s rank distance limit.

Theorem 2 (Superset of Standard Blocking). If:

1. XN is a Neighbourhood Blocking index with keys k1, k2 · · · kn and correspond-
ing rank distance limits of r1, r2 · · · rn

2. Each k′
j (j ∈ {1 · · · n}) is a (1 + rj):1 mapping of kj such that each distinct

value of k′
j corresponds to (1 + rj) consecutive sorted values of kj

3. XS is a Standard Blocking Index with keys k′
1, k

′
2 · · · k′

n

Then: XN ⊇ XS

Proof. XS comprises the union of Full Indexes on each of its blocks. Therefore,
it suffices to show that the Full Index of each such block is included in XN .

Consider any XS block. All records in it contain identical values of
k′

1, k
′
2 · · · k′

n. In the BKV matching for XN , assumption 2 implies that the
values for each of k1, k2 · · · kn must match by the Proximity criterion. Thus, all
record pairs in the XS block are included in XN .
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Theorem 3 relates to an idealized database where:

– all keys have sufficiently many distinct values for edge effects to be negligible,
– records are uniformly distributed throughout the key space, and
– no keys have any null values

Under these idealized conditions, it is shown that the size of a Neighbourhood
Blocking index is larger than a Standard Blocking Index using the same keys by
a factor of

∏
j(1 + 2rj), where rj is the rank distance limit for the jth blocking

key. By Corollary 1, for the same idealized database and where all blocking keys
are also sorting keys, a Neighbourhood Blocking Index has the same reduction
ratio as a Standard Blocking Index with each key coarsened by a factor of 1+2rj .

Theorem 3 (Index size relative to Standard Blocking). In datasets
where each block contains the same number of records and each sorting key has
the same number of distinct values, the index sizes for Standard Blocking and
Neighbourhood Blocking are related by:

lim
d,v→∞

| XN |
| XS | =

∏

j

(1 + 2rj) (5)

where:

XS is the set of record pairs from Standard Blocking
XN is the set of record pairs from Neighbourhood Blocking where no field mis-

matches or wildcards are allowed.
rj is the rank distance limit used in Neighbourhood Blocking for the jth blocking

key
d is the number of records per block,
v is the number of distinct values of each blocking key

Proof. The ratio of the index sizes can be itemized into contributions from inte-
rior and non-interior blocks. Here, “interior block” means a block whose neigh-
bourhood is not limited by maximum or minimum values of any of the sorting
keys. The itemization of the index size ratio is expressed in (6).

| XN |
| XS | = pIRI + (1 − pI)RN (6)

where:

pI proportion of blocks that are interior blocks
RI ratio of number of pairs contributed by interior blocks
RN ratio of number of pairs contributed by non-interior blocks

The number of record pairs contributed to the Standard Blocking Index by every
block (interior or not) is given by (7) for a deduplication index and by (8) for a
linkage index.

d(d − 1)
2

(7)
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d2 (8)

In Neighbourhood Blocking, each record is paired with the records in its own
block and also any other block whose BKV ranks differ by no more than rj for
each j. A record in an interior block can therefore be paired with records in a
total of

∏
j(1 + 2rj) blocks (since the paired record’s ranking in the jth key’s

sort order can differ by any of: −rj · · · 0 · · · rj). Therefore, the number of record
pairs contributed to the Neighbourhood Blocking Index by each interior block
is given by (9) for a deduplication index and by (10) for a linkage index.

d(
(∏

j(1 + 2rj)
)

d − 1)

2
(9)

d2
∏

j

(1 + 2rj) (10)

RI is given by (9) divided by (7) in the case of a deduplication index and by
(10) divided by (8) in the case of a linkage index. In both these cases:

lim
d→∞

RI =
∏

j

(1 + 2rj) (11)

Let n be the number of blocking keys. The total number of blocks is vn, and the
number of interior blocks is

∏
j(v − 2rj) which is no smaller than (v − 2rmax)n

where rmax = supj rj Therefore, the proportion of blocks that are interior blocks
satisfies:

pI ≥
(

1 − 2rmax

v

)n

(12)

implying that:
lim
v→∞ pI = 1 (13)

Combining (13) and (11) with the recognition that RN must be finite com-
pletes the proof.

Corollary 1. In the limiting case described in Theorem3, Neighbourhood Block-
ing produces the same index size as Standard Blocking with each blocking key
coarsened by a factor of (1+2rj) where rj is the jth blocking key’s rank distance
limit.

Proof. Let the total number of records in the dataset be N . This is related to d,
v and n by (14).

N = dvn ⇒ d = Nv−n (14)

The size of a Standard Blocking index is therefore given by (15) for a dedupli-
cation index and by (16) for a Linkage index.

N(Nv−n − 1)
2

(15)
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N2v−n (16)

If the blocks are coalesced into larger ones with a “side length” of (1 + 2rj) old
blocks in the direction of each (jth) blocking key, vn in (14), (15) and (16) is
effectively replaced with a smaller number vn

∏
j(1+2rj)

. Therefore, for both dedu-
plication and linkage indexes in the limiting case as N → ∞ the ratio of the
size of a Standard Blocking Index with the larger blocks to that of one with the
smaller blocks tends to: ∏

j

(1 + 2rj) (17)

which is the same ratio given in (5).

3.5 Application to Earlier Examples

Figure 4 illustrates how the application of Neighbourhood Blocking addresses
the two issues outlined in Sect. 1.2. Namely, application of proximity matching
in multiple directions and inclusion of close pairs of points that straddle block
boundaries. The rank distance limit is 1 for both keys, and the block size is one
third that used in Fig. 2 (the proportion indicated by Corollary 1 for Neighbour-
hood Indexing to produce a similar index size to Standard Blocking).

The shading in Fig. 4 indicates blocks containing points that are paired with
point D, the darker shaded block matching by Equality, and the lighter shaded
ones matching by Proximity. Although this blocking contains boundaries in the
same positions as those in Fig. 2 (and therefore the central cluster is still divided
by block boundaries), these do not prevent the inclusion of point pairs from the
central cluster in the index since all these pairs match by the Proximity criterion.

Fig. 4. Neighbourhood Blocking: pairings for point D
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3.6 Wildcard Matching of Missing Values

Figure 5 illustrates the treatment of missing values in Neighbourhood Blocking.
This includes the same points as in earlier examples, with the addition of two
new ones:

– P which has a null value for the vertical (y) ordinate, and
– Q which has null values for both ordinates (x and y)

Fig. 5. Neighbourhood Blocking: pairings for point D allowing one missing value

The area highlighting in Fig. 5 indicates the matching criteria for point D
when up to one (null value) wildcard match is allowed. Wildcard matches are
indicated by the hatched areas in the bars containing null values. Since up to
one wildcard match is allowed, pair PD will be included in the index but point
Q (which has two null values) will not.

3.7 Allowance for Non-matches

Figure 6 illustrates the effect of allowing non-matches in one of the fields. In this
figure, the blocking is twice as granular as that in Fig. 4. Allowing a mismatch
in either of the two fields would cause points in the cross-hatched regions to be
paired with point D.

4 Application to Benchmark Datasets

Comparisons of index quality (defined in Sect. 4.1) between Neighbourhood
Blocking, Standard Blocking and Sorted Neighbourhood Indexing were made
on the benchmark datasets listed in Table 6.
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Fig. 6. Neighbourhood Blocking: pairings for point D allowing one non-match

Table 6. Sample datasets

Source Dataset Entity type Column

count(s)

Row count(s) True

matches

Calculated fields

Recordlinkage FEBRL1 Person 13 1,000 500 Date components

FEBRL2 Person 13 5,000 1,934 Date components

FEBRL3 Person 13 5,000 6,538 Date components

FEBRL4 Person 13; 13 5,000; 5,000 5,000 Date components

DBG Leipzig Amazon-Google

Products

Product 11; 11 1,363; 3,226 1,300 Parsed codes;

topic modelling

ABT-Buy Product 10; 11 1,081; 1,092 1,097 Parsed codes;

topic modelling

DBLP-ACM Publication 4; 4 2,616; 2,294 2,224

DBLP-Scholar Publication 4; 4 2,616; 64,263 5,347

4.1 Methodology

After the calculated fields described in Table 6 were added to the datasets, a
number of indexes were calculated for each dataset using each of the indexing
methods. These were based on valid combinations of the parameters listed in
Table 7. For each index produced, a point representing its recall and reduction
ratio was computed. These were grouped by indexing method and the “frontier
points” among them were identified as those that:

1. are on the convex hull surrounding all points for the indexing method, and
2. do not have both lower recall and lower reduction ratio than any other point
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Table 7. Indexing parameters for benchmark datasets

Variable Values

Bounds Distribution

Number of blocking keys 1 .. number of columns Linear

Half window 1 .. 1
4

number of rows Geometric

Non-match limit 0, 1

4.2 Results

Index quality frontiers for the tests performed are shown in Figs. 7, 8, 9, 10 and
11. Each figure relates to a dataset. Each curve within these figures relates to an
indexing method. The points on the curve represent the frontier of combinations
of recall and reduction ratio achieved with the corresponding indexing method
and dataset.

The results for all the FEBRL datasets are broadly similar, so only Febrl3 is
shown (Fig. 7). For all these datasets, index quality is moderate to high and the
ranking of index quality frontiers is the same. That ranking is:

1. Neighbourhood Blocking with a near-perfect result
2. Sorted Neighbourhood Indexing
3. Standard Blocking

In the DBG Leipzig datasets (Figs. 8, 9, 10 and 11), all three indexing meth-
ods produce far lower index quality than those achieved in the FEBRL datasets.
[6] reports using string similarity measures in the indexing step to achieve higher
index quality in these datasets.

Fig. 7. Index quality frontiers - FEBRL3
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Fig. 8. Index quality frontiers - Abt-Buy

Fig. 9. Index quality frontiers - Amazon-GoogleProducts

In the case of the Amazon-GoogleProducts dataset (Fig. 9), Neighbourhood
Blocking did produce a noticeable improvement over the other methods, but
as with all the DBG Leipzing datasets, the absolute quality of all the indexes
suggests either the use of a Full Index or a more general value comparison method
(as used by [6]).
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Fig. 10. Index quality frontiers - DBLP-ACM

Fig. 11. Index quality frontiers - DBLP-Scholar

5 Scalability Comparison

Numerical experiments were conducted to compare the scalability of Neighbour-
hood Blocking with that of Standard Blocking and Sorted Neighbourhood Index-
ing on simulated datasets with up to 1 million rows. It was found that runtime
for Neighbourhood Blocking depends most strongly on two factors:

– How sparsely populated the blocks are (i.e.: the ratio of the number of records
in the database to the number of distinct combinations of BKVs)

– The size of the final index produced
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Table 8. Indexing times - lines of best fit by method (seconds per million row pairs)

Method Filtering Intercept Slope R2

Neighbourhood Blocking - No wildcards or adjacency 4.92 3.18 0.33

Neighbourhood Blocking - no wildcards 8.68 3.12 0.08

Neighbourhood Blocking - 1 wildcard 9.23 3.02 0.09

Neighbourhood Blocking - 2 wildcards 10.27 3.15 0.07

Full 1.19 1.08 0.99

Sorted Neighbourhood 1.22 10.34 0.96

Standard Blocking 1.55 3.23 0.82

Neighbourhood Blocking Non-sparse 0.26 3.20 0.99

Standard Blocking Non-sparse 0.23 3.13 0.99

When database sparsity is low:

– runtime for all three indexing methods is approximately linear in the size of
the index produced, and

– the rates of index production for Standard and Neighbourhood blocking are
similar

5.1 Results

Table 8 shows relationships between index production times (in seconds) and
index size (in millions of record pairs) for the methods tested. For non-sparse
datasets (i.e.: those with many records per block), index production rates for
Standard Blocking and Neighbourhood Blocking are similar.

6 Discussion

Since Standard Blocking and Sorted Neighbourhood Indexing are both special
cases of Neighbourhood Blocking:

– Neighbourhood Blocking can produce the same indexes as the other two index
types (as well as other indexes which might have higher quality), and

– The other two index types can be produced using the same algorithms as are
used for Neighbourhood Blocking (as well as other, more restricted algorithms
which might have lower resource consumption)

Therefore, whether or not Neighbourhood Blocking is preferable to the other
two methods depends on whether it produces an increment in index quality that
justifies any increment in resource consumption.

The benchmark datasets examined in Sect. 4 include several cases where the
improvement in index quality is material (as well as some where all three methods
behave poorly).

The timings in Sect. 5 indicate that the difference in resource consumption
is larger for small, sparse datasets than for large, dense ones.



78 D. Elias and J. Poon

7 Conclusion

Compared to Standard Blocking and Sorted Neighbourhood Indexing, Neigh-
bourhood Blocking can always produce indexes of at least the same quality, but
will always require at least the same resources.

Compared to the other two methods, Neighbourhood Blocking has several
advantages which can result in higher index quality. These include:

– multi-key proximity matching
– meaningful treatment of missing values
– tolerance for complete mismatches in a limited number of keys

Simple sorting-based implementations are inapplicable to the case of simulta-
neous proximity matching on multiple fields. However, efficient implementation
is possible through use of recursion.

Scalability tests indicate similar index production speeds for Neighbourhood
Blocking and Standard Blocking in sufficiently large datasets.

8 Further Work

This work could be extended by making a progressive version of Neighbourhood
Blocking. This would be similar to Progressive Blocking as described by [7],
except that additional match types would be allowed and block proximity would
be determined by multiple sorting orders.
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Abstract. Boolean data is a core data type in machine learning. It is
used to represent categorical and transactional data. Unlike real valued
data, it is notoriously difficult to efficiently design boolean datasets that
satisfy particular constraints. Inverse Frequent Itemset Mining (IFM) is
the problem of constructing a boolean dataset, satisfying given support
constraints for some itemsets. Previous work mainly focuses on the the-
oretical complexity of IFM and practical solutions scale poorly or do
not satisfy all the constraints. We propose Items2Data, a practical algo-
rithm for generating boolean datasets which is efficient under specific
conditions. We introduce global closure to describe the condition which
a dataset can be efficiently constructed. We evaluate Items2Data and its
use in designing synthetic datasets and to analyze its accuracy, scalabil-
ity and speed on real world datasets. The results indicate Items2Data is
practical and efficient for generating synthetic boolean data when pre-
defined itemsets are globally closed.

1 Introduction

The generation of boolean data sets that satisfy particular constraints is needed
to critically evaluate machine learning algorithms for categorical and transaction
data. Popular matrix factorization approaches exist for designing and generat-
ing synthetic real valued datasets, such as the Cholesky Decomposition [1], but
generating boolean data is a more difficult problem [2].

Various solutions have been proposed to solve the Inverse Frequent Item-
set Mining (IFM) problem [3–7]. The ability to construct a dataset D from a
set of itemsets S is powerful due to the intuitive nature of specifying itemset
supports or frequencies. However, the IFM problem is intractable [8]. Previous
work has explored many theoretical aspects of the problem and there are open
questions as to whether there exists an efficient and practical solution. Of the
practical solutions that exist [3–5] there is a trade-off between the ability to
accurately reconstruct the support of itemsets in S and the time complexity of
the algorithms.

Example: Consider an example where John wants to generate synthetic data
for 2 different scenarios: (1) a, b, c are statistically independent of each other
c© Springer Nature Switzerland AG 2019
L. Chang et al. (Eds.): ADC 2019, LNCS 11393, pp. 79–90, 2019.
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except for a slight positive association between a and b. (2) same as in (1), but
additionally a and b are negatively associated in the presence of c (a complex
interaction). He works out what that might look like in terms of itemset supports
and comes up with the itemset properties in Table 1.

Table 1. Itemset properties for running example

Itemset Independent support Scenario 1 support Scenario 2 support

a 0.500 0.500 0.500

b 0.500 0.500 0.500

c 0.500 0.500 0.500

ab 0.250 0.300 0.300

ac 0.250 0.250 0.250

bc 0.250 0.250 0.250

abc 0.125 0.150 0.100

Motivated by the ease of defining the joint distributions between items in a
similar manner to defining the desired correlations between variables in a correla-
tion matrix, we find a special condition that allows for the efficient reconstruction
of a dataset. Under this condition we can efficiently reconstruct a dataset that
satisfies itemset constraints in polynomial time.

We introduce concepts of marginal support, global closure and a novel app-
roach to generating boolean datasets. The marginal support of an itemset is the
non derivable information based on the support of all of its supersets. Calculat-
ing the marginal support for each itemset is similar to calculating how much of
an itemset’s support is covered by its supersets. By determining the marginal
support we are able to detect all itemsets whose supports can be derived by their
supersets. We find that the marginal support is related to the frequency of an
itemset that will be present in a dataset. When the sum of all marginal supports
in a set of itemsets is less than or equal to 1 then we say the set of itemsets is
globally closed.

Closed itemsets [9] are a compressed representation of itemsets and are
related to globally closed itemsets. The key difference between closed itemsets
and globally closed itemsets is that closed itemsets are defined by whether any
superset has the same support as an itemset and global closure is defined by
whether the total marginal support of all supersets are the same as an itemset’s
support. With marginal support, multiple supersets in combination can cover an
itemset not just a single superset. Globally closed itemsets are also a compressed
itemset representation and are smaller or at least as small as closed itemsets.

Example: Consider the itemsets in Fig. 1 and their support. All itemsets are
closed by definition. Itemset c is closed because it does not have the same sup-
port as any of its supersets, however c is derivable because its marginal support
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Fig. 1. A table of itemset support and marginal support. The marginal support is
calculated using the marginal formula where s(I) is the support for each itemset and
m(I) is the marginal support for each itemset.

is 0. This means the support of c can be derived from the marginal support of
all its supersets. The minimal set of globally closed itemsets therefore excludes
c and is smaller than the set of closed itemsets.

Using the properties of marginal itemsets and global closure, we propose an
algorithm, Items2Data, which aims to reconstruct a dataset D that satisfies item-
sets S. Taking a set of itemsets S with supports, we construct a set of marginal
supports M . If M is globally closed we can derive a dataset D that satisfies the
supports of M and therefore the supports of S. By focusing on the property of
global closure, it has the potential to make reconstructing data from itemsets
tractable. An advantage of this approach is that if S is not globally closed, then
instead of attempting to solve the problem of reconstructing a dataset from S,
we can change the problem to repairing S to make it globally closed. If S can
be repaired efficiently then we open up the opportunity to efficiently generate
boolean data much more generally.

Based on the above, our contributions in this paper are:

– The introduction of the concepts of marginal support and global closure,
which are used to determine whether a set of itemsets and supports can
efficiently map to a dataset.

– An efficient algorithm Items2Data that generates datasets that satisfy itemset
constraints by taking advantage of marginal support and global closure.

– Novel application of IFM to design synthetic boolean data.

We run two sets of experiments. The first explores the construction of 2 syn-
thetic environments introduced in Table 1 and use them to validate the data
distributions generated by Items2Data under different classification algorithms.
The second validates the reconstruction accuracy of Items2Data and time taken
for reconstruction on 6 real world datasets. We also test the time taken to
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calculate the marginal support from itemset supports in each of the datasets, to
show the practical feasibility of Items2Data.

The structure of the paper follows. Related work, alternatives to syn-
thetic data generation and well understood concepts are described in Sect. 2.
Section 3 introduces the novel concepts of marginal support, global closure and
the Items2Data algorithm. We demonstrate and validate the effectiveness of
Items2Data in Sect. 4, and conclude and describe future work in Sect. 5.

2 Related Work

In this section we review previous work in Inverse Frequent Pattern Mining
(IFM), synthetic data generation and introduce some known concepts that pro-
vide the foundation for our work. The IFM problem was initially introduced in
[10] and was analyzed from a theoretical perspective, showing that a general
solution is NP-hard. This work was motivated by privacy concerns when itemset
supports are shared publicly. Since then alternative formulations and parameter-
izations have been analyzed in [3,4,7,8], however it is not known whether there
is an efficient method to solve IFM and its variants.

Motivated by the intractability of the IFM problem, several heuristics have
been proposed. In particular [5] proposes an approximate solution to generating
synthetic market basket data, using an Iterative Proportional Fitting method
based on contingency tables. Guzzo et al. [4] introduced an alternative approach
that relaxed support constraints from a fixed constraint into a minimum and
maximum support. It also introduced the idea of satisfying the minimum support
for as long as possible while guaranteeing the maximum support, which improves
the tractability of the IFM problem. However, it is not guaranteed to satisfy
itemsets S even if the minimum support is equal to the maximum.

In subsequent work Guzzo et al. [3] propose an alternative formulation where
itemsets that are not in S are constrained to be infrequent below a threshold
and solved using large scale linear programs. Ramesh et al. [6] generate a dataset
that captures the properties of maximal itemsets, and does not aim to satisfy the
supports of S exactly. Our focus is on practical solutions to the IFM problem.
The key differences between previous practical solutions and our work is that
we satisfy S exactly and in polynomial time as long as S is globally closed. We
also ignore minimum support since it improves the likelihood of global closure.

Cholesky decomposition [1] is widely used to generate correlated multivariate
random normal synthetic datasets. It is efficient to compute and design datasets
by defining a valid correlation matrix, and the method works well for Gaussian
distributions. However, the output of this method is a real valued matrix and
it is not possible to transfer the method to boolean data generation. Matrix
decomposition methods traditionally capture the pairwise correlation between
variables and if interaction effects or conditional dependencies between variables
are desired then it becomes non trivial to design a valid correlation matrix.

Generating discrete dependent random variables via Gaussian copulas [11]
is another statistical alternative. Gaussian copulas can be used to define joint



Items2Data: Generating Synthetic Boolean Datasets from Itemsets 83

distributions for discrete variables. We propose an alternative approach using
the itemset framework. By specifying the itemsets and supports a dataset must
satisfy, we implicitly specify the joint distributions we wish to see. It is also
simple to specify higher order relationships by defining an itemset containing
several items.

2.1 Itemsets and Support

Itemsets are a well understood and fundamental concept in data mining, used
to represent transactions [12].

Definition 1. Let I be a finite domain of elements also known as items. Let
{I1, I2, ..., In} each be a unique collection of elements in I also known as itemsets.
Let S be a set of itemsets with associated supports. A transaction contains an
itemset T = Ii and a dataset is a collection of transactions D = {T1, T2, ..., Tj}.

Fig. 2. A dataset with items a, b and c in transactions 1–8.

Consider the dataset that is described in Fig. 2, which has items a, b and
c. Each row represents a single transaction and contains a single itemset. In
transaction 1 items a, b, and c are all present so transaction 1 contains the
itemset abc, while transaction 2 contains the itemset bc. The support of Ii is
determined by 1

|D| × |Ii ⊇ T | for T ∈ D, which is the fraction of transactions in
a dataset that contain the itemset Ii. For example the support of a is 0.5.

2.2 Itemset Representations

We describe closed itemsets, maximal itemsets and non-derivable itemsets which
are three different compressed itemset representations. Closed itemsets [9] have
been popular as the set of all closed itemsets is a compressed itemset represen-
tation that can be used to reconstruct the support of every other itemset. An
itemset is closed if none of its supersets have the same support as itself. Maximal
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itemsets [13] are a smaller itemset representation and can be used to reconstruct
all itemsets, but not their supports. A non-derivable itemsets (NDI) represen-
tation [14] is a set of itemsets which are non-derivable. A derivable itemset is
an itemset whose support can be perfectly derived by other itemsets, and all
other itemsets are non derivable. That is all other sets and their supports can
be reconstructed from an NDI representation.

3 Items2Data

We start by introducing new concepts before describing our novel Items2Data
algorithm.

3.1 Marginal Support Representations

We will introduce what marginal support is and also present a simple algorithm
to construct marginal support itemset representations from itemsets and their
support. The marginal support is the additional support of an itemset after
subtracting the marginal support of all its supersets. The intuition is that the
support of an itemset is not only determined by the number of transactions
that exactly match an itemset, but also by the number of transactions that
are supersets of an itemset. In Fig. 2 for itemset a there is only 1 transaction
that exactly matches a, but 3 other transactions with supersets of a giving a
a support of 0.5. By subtracting the support that is covered by each superset,
we can isolate the marginal support of a, that is the support information not
derivable from all of its supersets ab, ac, abc.

The algorithm for computing the marginal support of a set of itemsets and
their support can be solved in polynomial time. We wish to construct M where
each element contains the marginal count of an itemset in S. First we must sort
S by the length of the itemsets from longest to shortest resulting in S′. Starting
from S′

1, the marginal support of S′
1 is the support of S′

1 minus the total marginal
support of all its supersets. We repeat this process for S′

2, ...., S
′
n. In the worst

case, Quicksort is O(n2). There are also n(n− 1) superset checks to calculate all
marginal counts which is also O(n2). The worst case complexity of computing
marginals from S is O(n2) where n = |S|.

For example in Fig. 1, given S = {a : 0.500, b : 0.500, c : 0.375, ab : 0.250,
ac : 0.250, bc : 0.250, abc : 0.125} we sort S into S′ = {abc : 0.125, ab : 0.250,
ac : 0.250, bc : 0.250, a : 0.500, b : 0.500, c : 0.375}. Starting with the longest
element abc its marginal support is equal to its support since there is no superset
of abc, thus marginal support of abc is 0.125. Repeating this process for each
itemset in S′ we get M = {abc : 0.125, ab : 0.125, ac : 0.125, bc : 0.125, a : 0.125,
b : 0.125, c : 0.000}.

3.2 Global Closure

We introduce a new concept, global closure, which is used to determine if a set
of itemsets and their supports can efficiently map to a dataset.
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Definition 2. A set of itemsets S has an efficient mapping to a dataset D if
it is globally closed. S is globally closed if Σm

i=1(Mi) ≤ 1, that is the sum of all
marginal supports are less than or equal to the total support of a dataset, which
is 1.

Fig. 3. A globally closed set of itemsets. Arrows indicate the mapping between marginal
support and the number of rows in the dataset.

Mapping M onto D. Assuming M is globally closed, we can construct a
dataset D of size |D|, which is user defined. The algorithm to map M onto D is
as follows, sort M from the longest itemset to the shortest, resulting in M ′. For
each marginal support M ′

i that corresponds to an itemset Ii, append the itemset
as a new transaction in D such that there are M ′

i × |D| new transactions that
contain Ii. Finally, append the marginal support of the empty set to D.

Another interesting property of global closure is the ease of mining a globally
closed set of itemsets. Since the marginal supports in M including the empty set
are 1, each itemsets support in M has a corresponding amount of support in D
as can be seen in Fig. 3.

3.3 Items2Data

Items2Data is an algorithm that enables a user to design a dataset by pre-
defining itemsets and their supports. If the pre-defined itemsets are globally
closed, then it can guarantee that all supports in the itemsets are satisfied.

Figure 4 is an overview of the Items2Data algorithm. It consists of 3 steps, the
first step is to calculate the marginal supports M from a set of itemset supports S
which we call Support2Marginal. The second component is to determine whether
the marginal supports are globally closed. If M is not globally closed then we
do not move onto the third step. If M is globally closed then we move onto the
third step, Marginal2Data, which reconstructs a dataset D from the M .
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Fig. 4. Items2Data process overview

The benefit of Items2Data is that it is easy to reconstruct desired joint dis-
tributions if we can specify a globally closed set of itemsets. For the purposes of
designing synthetic data with few items, this is very useful to guarantee that the
joint distributions between items will be present. Another benefit is that we have
found a tractable solution since the worst case time complexity of Items2Data is
determined by the time complexity of the Support2Marginal step which is O(n2).
Although Items2Data works well under the condition where a set of itemsets has
to be globally closed, we discuss in future work that this is a first step towards
solving the more general problem.

4 Experiments and Results

The experiments in this section were implemented in Python 3.6 using an Intel
Core i7-7700HQ processor on a single core. Default algorithms and parameters
for Naive Bayes and Decision Trees were used from the scikit-learn library in
Python [15]. For each experiment we describe the experimental setup and results.

4.1 Designing Synthetic Data for Classification

It is a common task in machine learning to design synthetic data in order to
validate the performance of algorithms under different data distributions. The
purpose of this experiment is to test how well Items2Data can generate synthetic
data distributions for classification. We utilize the properties of two classifiers, a
gaussian based Naive Bayes Classifier (NB) which is known to rely on the condi-
tional independence assumption [16] that does not learn from data distributions
which contain conditional dependencies and the Decision Tree Classifier (DT)
which does learn from conditional dependencies.

Revisiting the example in Table 1, using itemset a as the target class, Scenario
1 is a synthetic environment where b and c are conditionally independent given
a since p(b|a)p(c|a) = p(b, c|a) or equivalently ab

a
ac
a = abc

a . In contrast, b and
c are not conditionally independent in the presence of a for Scenario 2. Under
these conditions, if Items2Data has reconstructed the distribution correctly, we
would expect similar performance between NB and DT for Scenario 1, whereas
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the performance of DT will increase in Scenario 2 due to the extra information
present in the higher order interaction between variables.

Therefore the experiment is set up as follows, for each scenario, use
Items2Data to construct a synthetic dataset. Set the itemset a as the target
class with b and c as the features to learn from. Evaluate with NB and DT using
10 × 10-fold cross validation, then report the average accuracy score and the
95% confidence interval. Reconstruction Accuracy is calculated by 1

|S|Σ
|S|
i=1

Ri

Si

where S are the pre-defined itemsets with supports and R are the reconstructed
itemsets with supports (Table 2).

Table 2. Classification accuracy of Naive Bayes (NB) and Decision Tree (DT) with 2
synthetic datasets

Dataset Scenario 1 Scenario 2

NB Accuracy 60.0± 0.5 (%) 60.0± 0.4 (%)

DT Accuracy 60.0± 0.5 (%) 70.0± 0.4 (%)

Reconstruction Accuracy 100% 100%

The results confirm that Items2Data can reconstruct the itemset properties
specified in Scenario 1 and 2. Items2Data has also generated a synthetic data
distribution in Scenario 1 where DT has similar performance to NB as expected.
In Scenario 2 DT, unlike NB, is able to learn the conditional dependence between
b and c. Therefore we have shown an example where Items2Data can construct
data distributions for machine learning which exhibit specific conditional depen-
dence properties.

4.2 Evaluating Items2Data with Real World Data Characteristics

In this section we demonstrate how Items2Data will perform if we design item-
sets that have similar size and characteristics as real world datasets. We use 6
popular frequent itemset datasets from the UCI machine learning repository and
other sources [17,18]. For each dataset we calculate 8 properties seen in Table 3.
#Transactions is the total number of transactions in a dataset, #Unique Item-
sets is the total number unique itemsets, %Unique Itemsets is the percentage
of unique itemsets relative to the total number of transactions, #Items is the
total number of items and Average Itemset Length is the average of length of all
itemsets. Support2Marginal Time is calculated by first deriving the support for
all unique itemsets in the dataset which we use to define S. We record the time
taken in seconds to construct the marginal supports M from itemset supports
S. Marginal2Data Time is the time taken in seconds to reconstruct a dataset D
from the marginal supports M with the same size |D| as the original dataset.
Reconstruction Accuracy is the same as in the previous experiment.

Table 3 shows the total run time performance of two steps in Items2Data.
Support2Marginal scales in polynomial time with #Unique Itemsets as can be
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Table 3. Dataset characteristics and reconstruction times

Properties Accidents bms1 bms2 Chess connect4 pumsb

#Transactions 340,183 59,602 77,512 3,196 67,557 49,046

#Unique Itemsets 339,898 18,473 48,684 3,196 67,557 48,474

%Unique Itemsets 0.9992 0.3099 0.6281 1.000 1.000 0.9883

#Items 468 497 3,340 75 129 2,113

Average Itemset Length 33.81 2.51 4.62 37.00 43.00 74.00

Support2Marginal Time NA 22 s 183 s 1 s 586 s 263 s

Marginal2Data Time NA 25 s 70 s 1 s 4 s 24 s

Reconstruction Accuracy NA 100% 100% 100% 100% 100%

seen in Fig. 5. #Unique Itemsets does not completely explain run time perfor-
mance as it also depends on the average itemset length, which is related to the
average number of superset operations required in calculating the marginal sup-
port. It can be seen that pumsb has an average itemset length of 74.0 which
indicates that there 74 items in each transaction. In non-transaction datasets
that have been coerced into a transaction format such as chess and connect4, it
is common to see a whole number average itemset lengths. This leads to lower run
time since there are no superset subtractions to perform in the marginal support
calculation. The lower run time can be seen when comparing Support2Marginal
in pumsb to bms2 where they have similar #Unique Itemsets, but pumsb is
faster.
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The accidents dataset was not able to complete due to the number of item-
sets being too large. Marginal2Data Time confirms computing a dataset from
marginal supports is quick and seems to scale well with #Unique Itemsets. The
Reconstruction Accuracy shows that Items2Data can exactly reconstruct the
itemset support constraints for the 5 datasets that were able to complete.

5 Conclusion and Future Work

We have proposed an efficient algorithm Items2Data which solves the typically
intractable problem of generating a dataset D from a set of itemsets in S by
exploiting a condition when S has an efficient mapping to D. We introduce the
concept of marginal support and global closure and show that it helps identify
when the marginal supports can efficiently map onto D. We also note that a
globally closed S can be a more condensed representation of itemsets than using
closed itemsets. Lastly we demonstrated the practical application of Items2Data
on designing boolean synthetic datasets for experimentation.

Reconstructing data from itemsets efficiently, opens up a new opportunities
to generate synthetic boolean data. While the initial approach is a first step and
depends on S being globally closed, future work in the ability to repair S so
that it is globally closed is important. It potentially shifts the difficulty of IFM
from generating data from itemsets to generating globally closed itemsets which
if can be addressed efficiently, will lead to many feasible approaches to synthetic
boolean data generation. Overall our work has made progress in advancing the
intractability and practical application of using itemsets to generate synthetic
boolean datasets.
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Abstract. Real time transaction (RTT) management poses a new challenge in
the design of replicated distributed real time database system (RDRTDBS).
Existing replication protocols maintain only the mutual consistency between
replicated data objects and lack to support the RTT management. This paper
explores different scenarios of interaction between coordinator, cohorts &
updaters and proposes measures to be taken for each scenario such that per-
formances of the system get improved and at the same time mutual consistency
can also be maintained. Additionally, a strict consistency criterion has also been
followed to prevent the user from accessing the inconsistent value. This pro-
posed work increases performance in terms of availability, scalability and reli-
ability with respect to other replication protocols.

Keywords: RTT � RDRTDBS � Sub-transaction �
Dependency relationship � Performance � Mutual consistency

1 Introduction

During past few decades, data is becoming a vital resource for many applications
requiring an effective and efficient data management technique [1]. The database
system (DBS) is used to store these data such that database operations in terms of
searching, insertion, deletion, and updation become easy [2, 3]. DBS can be catego-
rized into two types: centralized and distributed database. In Centralized database
system architecture, database operations are executed at a single site that offers more
reliability, less overhead and a single point of control whereas, in distributed database
system architecture, the database is hosted at diversified locations that are intercon-
nected through an internet/intranet [4, 5].

Real time system (RTS) can be termed as time constrained system whose cor-
rectness depends upon the logical consistency of the result and also at the time it is
produced [6, 7]. At present, RTS covers a wide spectrum of applications from a simple
to very complex one. For example, nuclear power plant, flight control system, space
shuttle, and so on. As RTS continues to evolve, many applications are requiring a
massive amount of data to be handled in a timely manner [8]. A distributed real time
database system (DRTDBS) is specifically designed to handle these data in a timely
manner. The primary focus of DRTDBS is on timely completion of real time trans-
action (RTT) irrespective of logical consistency. Typically, DRTDBS involves
distributed execution of RTT and strict consistency requirement that makes to satisfy
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real-time constraint more challenging. Therefore, DRTDBS is usually equipped with a
replication technique [9] to address such real-time requirement. The Replicated version
of DRTDBS is termed as replicated DRTDBS (RDRTDBS).

In RDRTDBS, data copies are replicated at multiple sites, so that, RTT can be
executed locally and performance of the system in terms of availability, scalability,
fault-tolerance and reliability can be increased [9]. In order to achieve such advantages,
it is necessary that replicated data object should be in consistent state, so that, con-
sistent result can be returned to the user. Therefore, in RDRTDBS majority of research
is conducted on the development of efficient and effective replication protocol. Existing
replication protocols [10–24] were mainly working to maintain the mutual consistency
of the replicated data object. In addition to this, these replication protocols were fol-
lowing different correctness criteria, so that, strict consistency or weaker than strict
consistency can be satisfied [25].

In replicated real-time environment, data copies are fully replicated, partially
replicated or not replicated. In the current paper, our system model is partially repli-
cated where RTT is admitted on any site. Based on its data requirement, cohorts are
established. Likewise, each cohort is having a list of updaters that holds the same data
copies. Therefore, for RTT processing, master establishes cohorts and cohort estab-
lishes its updaters.

Maintaining mutual consistency in the partially replicated real-time environment is
more challenging in comparison to the non-replicated environment because in repli-
cated real-time environment, RTT cannot be committed unless all cohorts and its
updaters are committed. Therefore, this paper proposes to use the concept of depen-
dency relationship [26, 27] to improve the performance of RDRTDBS. Adaptively
coordinate dependency relationship between sub-transactions executing on coordinator,
cohorts, and updaters has been proposed which plays an important role for its per-
formance improvement. This relationship includes the property of symmetric, transitive
and likewise. Some dependencies can also involve another dependency. However,
extending such concept in a replicated real-time environment is not so easy because of
the various factors such as involvement of a large number of sites (i.e. cohorts and their
updaters), random arrival of RTT on any site requesting to access the conflicted data
object, strict consistency criteria and lack of time. Therefore, to configure the depen-
dency relationship in RDRTBDS, new concept of working set has been proposed
which is the set of commit dependency set (CDS), abort dependency set (ADS),
termination dependency set (TDS), exclusion dependency set (EDS) and serial
dependency set (SDS). In our system, this working set is held by all sites that are
executing the sub-transaction of parent RTT. Through this working set, conflicted RTT
working on same data item on a particular site can be identified and appropriate
resolution mechanism can be applied to further improve the performance of the system.

Although dependency relationship with working set improves the performance of
the system, conflicted low priority RTT always has to get blocked or have to wait that
may cause low priority RTT to miss its deadline due to the presence of the single
version of the data object. Therefore, the concept of dual version data object has been
used to overcome such issue. The dual version data object is holding two values i.e.
before value and after value. This concept has been already proposed in [10] and has
been use in our system. In this paper, a dual version of data object exists on all sites
such that more than one RTT can work on the same data object. Here, parallel update
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RTT and read RTT can execute on the same real-time data object. Similarly, write RTT
and read RTT can execute on non-real time data object. This parallel execution pre-
vents the wastage of resources because if unconditionally high priority RTT gets
aborted then parallel low priority RTT gets the chance to commit.

Overall, our proposed concept of dependency relationship in the replicated real time
environment coordinates different dependency relationship between sub transactions
executing on different sites, uses working set to identify the conflicted RTT executing
on the same site, adapts proper mechanism to further improve the performance of the
system and uses dual version data object that avoids wastage of resources such that
resources can be properly utilized.

The main contribution of this paper is three-fold.

1. Specifies and coordinates different dependency relationships between different sub-
transactions to further improve the performance in terms of transaction miss ratio.

2. Conflict detection and resolution are done with the help of our new concept of
working set.

3. Utilization of dual version of data objects in place of single version such that
wastage of resources can be prevented.

The rest of the paper is organized as follows. Section 2 introduces the dependency
relationship. Section 3 discusses system model and presents the new concept of
working set for the dependency relationship. In Sect. 4, a mechanism to improve
performance of the system has been proposed. Section 5 discusses the simulation
results and Sect. 6, finally, concludes the paper.

2 Dependency Relationship

The Dependency relationship is used to specify and coordinate different dependency
relationship between sub-transactions executing on coordinator, cohorts and updaters.
The decision of relationship is identified from the read and write set of sub-transactions.
In our system, a dependency relationship is linked with an appropriate action that
defines what is to be done so that performance can be improved. For instance, during
strong commit dependency if sub-transaction in cohort gets committed, all its updaters
must also commit. Similarly, during abort dependency, if sub-transaction in the cohort
is aborted, all its updaters must also get aborted.

Dependency relationship can be categorized into external dependency, internal
dependency and independent dependency. The brief description of each dependency is
given as follows.

2.1 External Dependency

This dependency can be sub-categorized into exclusion and termination dependency.
Its definition is as follows.
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Exclusion Dependency
In this dependency, the outcome of one sub-transaction decides the outcome of another
sub-transaction. For example, in between two sub-transaction TI and TJ, if TI commits
then TJ must abort. It is represented as TI-E-TJ.

Termination Dependency
In this type of dependency, sub-transaction executing cannot unilaterally commit or
abort until the coordinator decides about commit or abort. Similarly, updaters are also
not allowed to commit or abort until cohorts decide to commit or abort. It is represented
as Coordinator-T-Cohorts and Cohorts-T-Updaters.

2.2 Internal Dependency

This dependency can be sub-categorized into strong commit and weak abort depen-
dency. Its description is as follows.

Strong Commit Dependency
This dependency exists between the coordinator & its cohorts and in between cohort &
its updaters. Action attached to this relationship defines that in between two sub-
transactions TI and TJ if TI is committed then TJ must also be committed. It is
represented as TI-SC-TJ.

Weak Abort Dependency
This dependency also exists between the coordinator and its cohorts, and in between
cohort and its updaters. Action linked with this dependency directs that in between TI
and TJ if TI is aborted then TJ will also get aborted. It is represented as TI-A-TJ.

2.3 Independent Dependency

As already defined in the previous paragraph, an independent dependency exists in
between those sub-transactions that do not use common data objects for their execu-
tion. It is represented as TI-I-TJ.

Now, consider a real-time scenario that makes a clear-cut understanding of how
dependency relationship exists.

Example 2.1. Suppose, there exist three transactions T1, T2, T3 that consist of a list of
operations and their operands (i.e. data objects are V, X, Y, and Z). These all trans-
actions are submitted to a node to be completed within their deadline. The detailed
information in the form of a group of operations is given below.

T1:R1(X), W1(X), R1(Y), W1(Y)
T2:R2(Z), W2(Z)
T3:R3(V), W3(V), R3(Y), W3(Y)

As given in Fig. 1. T1 is submitted at node N4 for execution. The required data
objects for T1 is X and Y. Here, N4 holds the copy of X. So, it can execute the operation
related to X only. For executing the operation related to X, sub transaction T11 is
created on node N4. In addition to this, N3 and N5 are the updaters of N4. To maintain
the consistency of data object X, N4 requests for LOCK on N3 and N5 also, such that,
forthcoming transaction for example transactions on-site N3 or N5 cannot alter the
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value of X. To improve the concurrency, we use here a dual version of X, such that,
transaction does not have to wait and can use the before value of data object to
proceed. Therefore, this transaction is exclusive dependent on T11 (i.e. T11-E-TXN). In
general, N3 and N5 are related to N4 through strongly committed dependency, abort
dependency and termination dependency (i.e. N4-SC-N3, N4-SC-N5, N4-A-N3, N4-A-
N5, N4-T-N3, and N4-T-N5). To maintain the consistency at N3 and N5, sub-
transaction T11_1 and T11_2 will be executed at N3 and N5 respectively. Similarly, to
execute the operation on Y, cohort N6 is initiated. To complete the execution on N6,
sub-transaction T12 is created. As shown in Fig. 1, N7 is linked as an updater of N6.
Therefore, here N6 and N7 are also related with strongly committed dependency, abort
dependency and termination dependency (i.e. N6-SC-N7, N6-A-N7, and N6-T-N7). To
maintain the consistency in between cohort(N6) and updater(N7), N7 will execute the
transaction T12_1. In addition to this, N4 and N6 are also related with strongly
committed dependency & abort dependency (i.e. N4-SC-N6 and N4-A-N6).

3 System Model

Before we describe proposed algorithm, our main objective is to first introduce about
RDRTDBS system model. Our assumptions with respect to locking model, network
model, database model and other parameters are same as given in [14]. Additionally,
each sub-transaction is connected with a working set that consists of different subsets
(i.e. CDS, ADS, TDS, EDS, and SDS). In the shown Fig. 2, CDS stands for commit
dependency subset which stores the id of those sub-transactions that have to get
committed. Similarly, ADS stand for abort dependency subset which holds the id of
those sub-transactions that must get aborted. Likewise, EDS is an abbreviation for
exclusion dependency subset which holds the id of those sub-transactions that are
exclusively dependent. TDS stands for termination dependency subset; this set holds
the id of those sub-transactions that cannot unilaterally decide to commit or abort.
Finally, SDS is the last set, which holds the id of those sub-transactions that are waiting
to execute.

Fig. 1. Snapshot of RDRTDBS
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The extended version of Example 2.1 using the working set is as follows.
As given in Example 2.1, Transaction T1: R1(X), W1(X), R1(Y), W1(Y) is sub-

mitted for execution at N4. To complete the transaction T1, sub-transaction T11 will be
created at N4 and T12 will create cohort at N6. Here, N3 and N5 are acting as updaters
for N4 and N7 is acting as an updater for N6. Therefore, to maintain the consistency
between N3, N4 & N5, sub-transaction T11_1 and T11_2 will be created at N3 and N5
respectively. Likewise, T12 will execute at N6 and to maintain the consistency between
N6 and N7, sub-transaction T12_1 is created at N7. Overall, five working set will be
created for T1 (i.e. T11, T11_1, T11_2, T12, and T12_1). The working set for T11 is
given in Fig. 3. In this working set. CDS contains the id of sub-transactions T11_1,
T11_2, and T12 because, if T11 get commit then T11_1, T11_2 and T12 will have to
commit. Similarly, ADS also hold the id of sub-transactions T11_1, T11_2, and T12. In
the working set of T11, EDS and SDS are empty because there does not exist any sub-
transaction which are exclusively and serially dependent.

Let read RTT “Transaction” is admitted at N3 to read X value. However, trans-
action gets conflicted with already executing T11_1 because both sub-transactions are
accessing common data object X. Therefore, transaction will use before value of X to
gets executed without wait and T11_1 will use after value to update X. So, in the
working set of T11_1, CDS and ADS contain the id of sub-transactions T11_1 and
EDS hold the id of sub-transaction transaction. The working set of T11_1 is shown in
the Fig. 4.

Fig. 2. Working set for RTT.

Fig. 3. Working set for Transaction (T11).

Fig. 4. Working set for Transaction (T11_1).
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Figure 5 is the working set of T11_2 and is presented at N5. In this working set,
CDS and ADS hold the id of T11_2 because at N5, there is no any other transaction to
execute. Similarly, TDS, EDS, SDS subsets are empty because there does not exist any
other transaction which is exclusively, terminate and serially dependent.

Figure 6 is the working set of T12 and is present at N6. In this working set, CDS
and ADS hold the id of T12, whereas, TDS hold the id of T31. T31 is the sub-
transaction created at N6 to access the data object Y.

In the working set of T12_1, CDS and ADS hold the id of T12_1 whereas TDS
holds the id of T31_1. Here, T31_1 is acting as updater for T31. Overall, T1 will
complete its installation by establishing the sub-transactions T11, T11_1, T11_2, T12,
and T12_1. Figure 7 is the working set of T12_1.

Fig. 5. Working set for Transaction (T11_2).

Fig. 6. Working set for Transaction (T12).

Fig. 7. Working set for Transaction (T12_1).
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4 Mechanism of Interaction Between Coordinator,
Cohort and Updaters

In the previous section, we have briefly explained about dependency relationship and
working set through an example. In this section, our intention is to introduce different
scenarios and propose proper actions, so that, performance can be improved. Four
scenarios have been considered wherein each scenario proper actions are specified that
are initiated automatically based on the sub-transaction status.

4.1 Scenario 1: T11 Decides to Commit Before T5 Completed Its Local
Data Processing

On Coordinator Site
If T11 decides to commit.

T11 will send commit message to cohorts present in CDS.
Wait for a response from all cohorts.

If the global decision is to commit.

T5 will enqueue on the wait queue, T11 will get committed, and EDS, TDS and ADS
subset of T11 get discarded.

If the global decision is to abort.

T5 will get the opportunity to get a commit, and EDS, TDS, ADS of T5 get
discarded.

On Cohort Site
If T12 decides to commit.

T12 will send commit message to T12_1 to get a commit.
Wait for a response from updaters.

If the global response is to commit from all updaters.

T12 get committed and reply with commit message to T11. EDS, TDS, and ADS of
T12 get discarded.

If the global message is to abort from all updaters.

T12 get abort and reply with abort message to T11. EDS, TDS, and CDS of T12 get
discarded.

4.2 Scenario 2: T5 Decides to Commit Before T11 Completed Its Local
Data Processing

On Coordinator Site
If T5 decides to commit.

T11 will send commit message to cohorts present in CDS.
Wait for a response from all cohorts.
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If the global decision is to commit.

T11 will enqueue on the wait queue, T5 will get committed, and EDS, TDS and ADS
subset of T5 get discarded.

If the global decision is to abort.

T11 will get the opportunity to get a commit, and EDS, TDS, ADS of T11 get
discarded.

On Cohort Site
If T5 decides to commit.

T5 will send commit message to its updaters.
Wait for a response from updaters.

If the global response is to commit from all updaters.

T5 get a commit and EDS, TDS, and ADS of T5 get discarded.

If the global message is to abort from all updaters.

T5 get abort and EDS, TDS and CDS of T12 get discarded.

4.3 Scenario 3: T5 and T11 Both Decide to Commit at the Same Time

On Coordinator Site
High priority transaction gets the chance to get committed.
If high priority transaction gets committed, then low priority transaction gets restarted.
If unconditionally high priority transaction gets aborted, then waiting for lower pri-
ority transaction will get the chance to get committed.

4.4 Scenario 3: T5 and T11 Both Decide to Abort at the Same Time

On Coordinator Site
Sub-transaction waiting on SDS of T5 and T11 gets a chance to proceed.

5 Simulation and Experimental Result

To check the performance of our proposed mechanism, we develop a detailed simu-
lation model for RDRTDBS. Our model is based on the model presented in [14].

5.1 Simulation Setting

The main objective of developing simulator and performing experiments is to get
ensured that proposed algorithms improve the performance in terms of transaction miss
ratio. In addition to this, our intention is to perform experiments with changing
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parameters, condition and their results are explained in this section. A list of parameters
and their respected values used in the simulation model are presented in Table 1.

Deadline assignment for the transaction is calculated by the formula given below.

DL ¼ AT þ ST � Rt ð1Þ

Where DL, AT, SL and Rt are the deadline, arrival time, slack factor value and
resource time respectively of the requested transaction.

5.2 Experimental Result

We compare the performance of our model with another existing replication protocol
[14]. The experimental results have been presented where each simulation run 10 times
and the majority of times (i.e. 92% times) confidence intervals are drawn for each data
point. Figures 8 and 9 show improvement in missed deadline percentage when com-
pared with MIRROR under normal and heavy load, Fig. 10 shows the improvement in

Table 1. User transaction workload and system parameter setting

Parameter Values

Number of nodes 10
Number of pages in the database 1000 pages
Replication Degree 4
CPUs per node 2
Data disks per node 4
Log disks per node 1
Buffer hit ratio on a node 0.1
Transaction category Sequential
Arrival rate (Trans./Second) Varies
Slack value 6.0
No. of pages accessed per transaction 10 pages

Fig. 8. Miss % under normal load.
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missed deadline under low update frequency and Fig. 11 shows improved missed
deadline percent with partial replication.

6 Conclusion

In this paper, our objective was to further improve the performance of RDRTDBS. This
objective was completed via coordinating different dependency relationship between
sub-transactions and by executing proper actions. In addition to this, we have proposed
a new concept of working set that identifies the conflicted sub-transactions executing

Fig. 9. Miss % under heavy load.

Fig. 10. Miss % under low update frequency.

Fig. 11. Miss % with partial replication.
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on a site and gives the opportunity to high priority RTTs to get completed. To prevent
the wastage of the system resources, we have proposed to use the dual version of data
object that allows parallelly two RTT to work on the common data object. Addition-
ally, we have explored the different scenario of RTT processing and have proposed
proper measures for each scenario. The performance of our proposed dependency
relationship was compared with the MIRROR and simulations result shows that our
proposed RUT improves the performance in terms of transaction miss ratio.
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Abstract. Data analysts arduously rely on data visualizations for draw-
ing insights into huge and complex datasets. However, finding interesting
visualizations by manually specifying various parameters such as type,
attributes, granularity is a protracted process. Simplification of this pro-
cess requires systems that can automatically recommend interesting visu-
alizations. Such systems primarily work first by evaluating the utility of
all possible visualizations and then recommending the top-k visualiza-
tions to the user. However, this process is achieved at the hands of high
data processing cost. That cost is further aggravated by the presence
of numerical dimensional attributes, as it requires binned aggregations.
Therefore, there is a need of recommendation systems that can facilitate
data exploration tasks with the increased efficiency, without compro-
mising the quality of recommendations. The most expensive operation
while computing the utility of the views is the time spent in executing
the query related to the views. To reduce the cost of this particular oper-
ation, we propose a novel technique mView, which instead of answering
each query related to a view from scratch, reuses results of the already
executed queries. This is done by incremental materialization of a set of
views in optimal order and answering the queries from the materialized
views instead of the base table. The experimental evaluation shows that
the mView technique can reduce the cost at least by 25–30% as compared
to the previously proposed methods.

1 Introduction

With the unprecedented increase in the volume of data, the challenge of finding
efficient ways to extract interesting insights is critical. As such, data visualization
has become the most common and effective tool for exploring such insights. Gen-
erally, the visualizations are generated using user-driven tools like Tableau, Qlik,
Microsoft Excel, etc. However, the use of these tools is of limited effectiveness
for large datasets, as it is very difficult for the user to manually determine the
best data visualization by sequentially browsing through the available represen-
tations. Research efforts are therefore being directed to propose recommendation
systems that automatically recommend visualizations [3,4,8–10,13]. These sys-
tems automatically manipulate the user selected dataset, generate all possible
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visualizations, and recommend the top-k interesting visualizations, where inter-
estingness is quantified according to some utility function such as deviation,
similarity, diversification, etc. The generation of these all possible visualizations
is challenged by a wide range of possible factors. This include user-driven factors
such as individual user preferences, data of interest, information semantics and
tangible factors such as chart type, possible attribute combinations and available
transformations (e.g. sorting, grouping, aggregation and binning).

Recent studies have focused on automatically generating all possible aggre-
gate views of data and proposing search strategies for finding the top-k views
for recommendation, based on the deviation based utility metric [3,4,13]. The
search space of all possible visualizations is huge and it explodes even further in
the presence of numerical dimensions, as binned aggregation is required to group
the numerical values along a dimension into adjacent intervals. In our previous
work [3,4] on visualization recommendation, binning for numeric dimensions was
introduced and efficient schemes (named as MuVE) to recommend the top-k
binned views were proposed.

The most expensive operation while computing the utility of views is the
time spent in executing the queries related to the views. To reduce the cost of
this particular operation, a novel technique mView is proposed, which instead
of answering each query related to a view from scratch, reuses results from the
already executed queries. In summary, this is done by materializing views and
answering queries from the materialized views instead of the base table. The idea
of materializing views for reducing the query-processing time is well studied in
the literature [2,6,11] and has proven significant relevance to a wide variety
of domains, such as query optimization, data integration, mobile computing
and data warehouse design [6,11]. However due to prohibitively large number
of views, the blind application of materialization may result in even further
degradation of the cost [2]. Substantial amount of work has already been done
to select an appropriate set of views to materialize that minimize the total query
response time and the cost of maintaining the selected views, given a limited
amount of resource, e.g., materialization time, storage space etc. [5].

In this work our proposed technique mView first defines a cost benefit model
to decide which views are the best to reuse. Later, in an optimal order it mate-
rializes the best set of views, which reduce the overall cost of the solution.

The main contributions of this work are as follows:

– We formulate and analyze the problem of selecting views to materialize for
efficiently generating aggregate views in the presence of numerical attribute
dimensions (Sect. 3).

– We propose the mView technique, which introduces a novel search algorithm,
particularly optimized to leverage the specific features of the binned views
(Sect. 4).

– We conduct extensive experimental evaluation, which illustrate the benefits
achieved by mView (Sects. 5.1 and 5.2).
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2 Preliminaries

2.1 Aggregate View Recommendation

The process of visual data exploration is typically initiated by an analyst speci-
fying a query Q on a database DB . The result of Q, denoted as DQ, represents
a subset of the database DB to be visually analyzed. For instance, consider the
following query Q:

Q: SELECT ∗ FROM DB WHERE T;

In Q, T specifies a combination of predicates, which selects a portion of DB for
visual analysis. A visual representation of Q is basically the process of generating
an aggregate view V of its result (i.e., DQ), which is then plotted using some of
the popular visualization methods (e.g., bar charts, scatter plots, etc.). Similar
to traditional OLAP systems and recent data visualization platforms [8,9,12,13],
our model is based on a multi-dimensional database DB , consisting of a set of
dimension attributes A and a set of measure attributes M. Additionally, F is
the set of possible aggregate functions over the measure attributes M, such as
SUM, COUNT, AVG, STD, VAR, MIN and MAX. Hence, an aggregate view Vi over DQ

is represented by a tuple (A,M,F ) where A ∈ A, M ∈ M, and F ∈ F. That
is, DQ is grouped by dimension attribute A and aggregated by function F on
measure attribute M . A possible view Vi of the example query Q above would
be expressed as:

Vi: SELECT A, F(M) FROM DB WHERE T GROUP BY A;

where the GROUP BY clause specifies the dimension A for aggregation, and F (M)
specifies both the aggregated measure M and the aggregate function F .

Typically, a data analyst is keen to find visualizations that reveal some inter-
esting insights about the analyzed data DQ. However, the complexity of this task
stems from: (1) the large number of possible visualizations, and (2) the interest-
ingness of a visualization is rather subjective. Towards automated visual data
exploration, recent approaches have been proposed for recommending interesting
visualizations based on some objective, well-defined quantitative metrics (e.g.,
[8,9,13]). Among those metrics, recent case studies have shown that a deviation-
based metric is able to provide interesting visualizations that highlight some of
the particular trends of the analyzed datasets [13].

In particular, the deviation-based metric measures the distance between
Vi(DQ) and Vi(DB). That is, it measures the deviation between the aggregate
view Vi generated from the subset data DQ vs. that generated from the entire
database DB , where Vi(DQ) is denoted as target view, whereas Vi(DB) is denoted
as comparison view. The premise underlying the deviation-based metric is that
a view Vi that results in a higher deviation is expected to reveal some interest-
ing insights that are very particular to the subset DQ and distinguish it from
the general patterns in DB . To ensure that all views have the same scale, each
target view Vi(DQ) is normalized into a probability distribution P [Vi(DQ)] and
each comparison view into P [Vi(DB)].
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For a view Vi, given the probability distributions of its target and comparison
views, the deviation D(Vi) is defined as the distance between those probability
distributions. Formally, for a given distance function dist (e.g., Euclidean dis-
tance, Earth Mover’s distance, K-L divergence, etc.), D(Vi) is defined as:

D(Vi) = dist(P [Vi(DQ)], P [Vi(DB)]) (1)

Consequently, the deviation D(Vi) of each possible view Vi is computed, and the
k views with the highest deviation are recommended (i.e., top-k) [13]. Hence,
the number of possible views to be constructed is N = 2×|A|× |M|× |F|, which
is clearly inefficient for a large multi-dimensional dataset.

2.2 Binned Views

In the previous section we discussed about aggregate view recommendation
specifically for categorical dimensions. However, for continuous numerical dimen-
sions, typically the numerical values along a dimension require grouping into
adjacent intervals over the range of values. For example, consider a table of
employees, which has Age as a numerical dimension attribute. Particularly, one
of the aggregate views on this attribute is count the number of employees grouped
by Age. For this type of views, it is more meaningful if adjacent intervals are
grouped together and shown in a summarized way. For example, Fig. 1a shows
the whole range grouped in 8 bins.

Fig. 1. Generating Vi,2 by performing aggregation on Vi,4 or Vi,8

To enable the incorporation and recommendation of visualizations that are
based on numerical dimensions, in our previous work [3,4], we introduced the
notion of a binned view. A binned view Vi,b simply extends the basic definition
of a view to specify the applied binning aggregation. Specifically, given a view
Vi represented by a tuple (A,M,F ), where A ∈ A, M ∈ M, F ∈ F, and A is
a continuous numerical dimension with values in the range L = [Lmin − Lmax],
then a binned view Vi,b is defined as:

Binned View: Given a view Vi and a bin width of w, a binned view Vi,b is
a representation of view Vi, in which the numerical dimension A is partitioned
into a number of b equi-width non-overlapping bins, each of width w, where
0 < w ≤ L, and accordingly, 1 ≤ b ≤ L

w .
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For example, Fig. 1a shows a binned view Vi,8, in which the number of bins
b = 8 and the bin width w = 5, while Fig. 1c shows a binned view Vi,2, in which
the number of bins b = 2 and the bin width w = 20. Note that this definition
of a binned view resembles that of an equi-width histogram in the sense that
a bin size w is uniform across all bins. While other non-uniform histograms
representations (e.g., equi-depth and V-optimal) often provide higher accuracy
when applied for selectivity estimation, they are clearly not suitable for standard
bar chart visualizations. Given our binned view definition, a possible binned bar
chart representation of query Q is expressed as:

Vi,b : SELECT A, F(M) FROM DB WHERE T GROUP BY A

NUMBER OF BINS b

The deviation provided by a binned view Vi,b is computed similar to that in
Eq. 1. In particular, the comparison view is binned using a certain number of
bins b and normalized into a probability distribution P [Vi,b(DB)]. Similarly, the
target view is binned using the same b and normalized into P [Vi,b(DQ)]. Then
the deviation D(Vi,b) is calculated as:

D(Vi,b) = dist(P [Vi,b(DQ)], P [Vi,b(DB)]) (2)

2.3 View Processing Cost

Recall that in the absence of numerical dimensions, the number of candidate
views N to be constructed is equal to 2 × N , where N = |A| × |M| × |F|. In
particular, |A| × |M| × |F| queries are posed on the data subset DQ to create
the set of target views, and another |A| × |M| × |F| queries are posed on the
entire database DB to create the corresponding set of comparison views. For
each candidate non-binned view Vi over a numerical dimension Aj , the number
of target and comparison binned views is equal to: |M|×|F|×Bj each, where Bj is
the maximum number of possible bins that can be applied on dimension Aj (i.e.,
number of binning choices). Hence, in the presence of |A| numerical dimensions,
the total number of binned views grows to NB which is simply calculated as:

NB = 2 ×
|A|∑

j=1

|M| × |F| × Bj (3)

Furthermore, each pair of target and comparison binned views incur query exe-
cution time and deviation computation time. Query execution time is the time
required to process the raw data to generate the candidate target and compar-
ison binned views, where the cost for generating the target view is denoted as
Ct(Vi,b), and that for generating the comparison view is denoted as Cc(Vi,b).
Moreover, deviation computation time is the time required to measure the
deviation between the target and comparison binned views, and is denoted as:
Cd(Vi,b). Notice that this time depends on the employed distance function dist.
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Putting it together, the total cost incurred in processing a candidate view Vi is
expressed as:

C(Vi) =
B∑

b=1

Ct(Vi,b) + Cc(Vi,b) + Cd(Vi,b) (4)

We note that the cost of computing deviation is negligible as compared to query
execution cost, as it involves no I/O operations. Furthermore, for simplicity in
the next sections we assume C(Vi,b) = Ct(Vi,b) + Cc(Vi,b). Therefore, Eq. 4 is
reduced to:

C(Vi) =
B∑

b=1

C(Vi,b) (5)

Hence, the total cost incurred in processing all candidate binned views is
expressed as:

C =
N∑

i=1

C(Vi) (6)

The goal of this study is to propose schemes that reduce the cost Ct(Vi,b)
and Cc(Vi,b), which will consequently reduce the overall cost C of the solution.

3 Problem: Materialized View Selection

As mentioned in Sect. 2, the view recommendation process involves the gener-
ation of a huge number of the comparison and the target views. Particularly,
these views are the result of executing their corresponding aggregate queries.
Section 2.3 outlines how colossal the cost is for the binned view recommenda-
tion problem. However, we notice that for binned aggregate queries, the result
of certain queries can be used to answer other queries. For instance, consider a
view Vi,2 = (A,M,F, 2) can be answered from a number of other views such as
Vi,4, Vi,6, Vi,8, etc., by performing aggregation on these views instead of the base
table. We term this relationship as dependency. For instance, view Vi,2 depends
on Vi,4, Vi,6 and Vi,8.

Definition: View Dependency: a binned view Vi,b depends on another binned
view Vi,b′ , if Vi,b can be answered using Vi,b′ , where b′ is a multiple of b i.e.,
b′ = xb.

For any non-binned view Vi, all the possible binned views Vi,b can be directly
generated from the base table. Therefore, every Vi,b at least depends on the
base table, and at most depends on B

b − 1 other views Vi,b′ . The dependency
relationship between the candidates can be represented by a lattice. Figure 2
shows the lattice for a particular non-binned view Vi that can have a maximum
of 8 bins. Each node in the lattice represents a binned view, e.g. node 5 is binned
view Vi,5, while node 0 represents the base table. A view can be generated using
any of its ancestors in the lattice. For instance, the ancestors of node 3 (i.e., Vi,3)
are node 6 (i.e., Vi,6) and node 0 (i.e., base table).
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Fig. 2. Lattice for view Vi with B = 8

Every Vi,b′ is a candidate view that can be reused to generate some other
views. Specifically, Vi,b can be cached in the memory or stored on the disk for
later reuse. However, because of the limited memory it is practical to store the
view on the disk. Therefore, we propose to materialize the views that are later
required to be reused. For instance, in Fig. 2, every view that is an ancestor of
at least one other view is a candidate view to be materialized. A key problem is
how to decide which views should be reused? The three possible options are:

1. Reuse nothing: This is the baseline case in which all the queries are answered
from the base table. Consequently, this would incur the query processing time
for each binned view from scratch.

2. Reuse the whole lattice: In this case all views should be materialized. This
would reduce the query processing time of each binned view but the over-
all execution time of the solution will increase because it would include the
additional cost of materializing the views.

3. Reuse a set of views: Choose an optimal set of views T to reuse and materi-
alize them. This will incur the cost of materialization but reduce the overall
cost of the solution because a number of queries will be answered from the
materialized views instead of the base table.

The best option is to reuse a set of views, which has a possibility of reducing
the overall cost. However, a cost benefit analysis between answering the views
directly from the base tables vs. materializing the views and answering some
views from those materialized ones is required. For that purpose, let Cb(Vi,b) be
the cost of answering a binned view Vi,b from the base table. Then in Eq. 5, the
cost of finding the top-1 binned view (C(Vi)), for the non-binned view Vi, can
be rewritten as:

C(Vi) =

L
w∑

b=2

Cb(Vi,b) (7)

Notice C(Vi) actually specifies the cost for option 1, where nothing is reused. For
the other options, where reuse is involved, let Cm(Vi,b) be the cost of answering
Vi,b from a materialized view. Additionally, let the views be divided into two
sets: (1) Dependent Set: the views that can be answered from T belong to the
dependent set P, and (2) Independent Set: the views that cannot be answered
from T belong to the independent set I. Particularly, the views in I need to
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Fig. 3. Example of cost model for HashAggregate operator where bm = 8 and b = 4

be answered from the base table. Let the cost of materializing a view Vi,b′ is
CM (Vi,b′), then Eq. 8 specifies the cost for option 3:

C(Vi) =
∑

Vi,bεP

Cm(Vi,b) +
∑

Vi,bεT

CM (Vi,b) +
∑

Vi,bεI

Cb(Vi,b) (8)

Definition: Materialized View Selection for View Recommendation:
Given all the binned views Vi,b for a non-binned view Vi, find a set T of views
to materialize, which minimize the cost C(Vi) of finding the top-1 binned view.

4 Methodology

Our proposed schemes in this section adapt and extend algorithms of material-
ized view selection towards efficiently solving the aggregate view recommenda-
tion problem.

4.1 mView: Greedy Approach

As explained int Sect. 2, the large number of possible binned views, makes the
problem of finding the optimal binning for a certain view Vi highly challenging.
An exhaustive brute force strategy is that given a certain non-binned view Vi,
all of its binned views are generated and the utility of each of those views is
evaluated. Consequently, the value of b that results in the highest utility is
selected as the binning option for view Vi. However, this involves massive cost
of processing all possible binned views.

In this work, we propose a novel technique mView, which instead of answer-
ing each query related to a view from scratch, reuses results from the already
executed queries through view materialization. Particularly, mView maintains
two sets of views; (1) T: the views that are finalized to be materialized, (2)
Cand: set of candidate views that can be added to T and consequently get mate-
rialized. The proposed technique mView adapts a greedy approach to determine
T for materialization. Initially, Cand and T are empty. Then for a non-binned
view Vi, a lattice as shown in Fig. 2 is constructed, using an adjacency list after
identifying dependencies among the views. The search for the top-1 binned view
starts from the binned view Vi,b where b = 1. All of the views that are ancestors
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of Vi,b in the lattice are added to the set Cand. Next, the benefit of materializing
each view in Cand is computed.

We study in detail how to compute the benefit of materializing a view in the
next paragraph. After benefit calculation, from the set Cand, a view Vm, which
provides the maximum benefit is selected. Vm is added in T if it is not already
in T. Consequently, Vm is materialized and Vi,b is generated from Vm. In next
iteration Cand is set to empty again and the ancestors of the next binned view
are added to Cand. This process goes on until all of the Vi,b have been generated.
Initial experiments show this approach reduced cost of Linear search by 25–30%
Clearly, for this technique to work efficiently, a cost model is required to estimate
the benefit of materializing views without actual materialization. Therefore, next
we define that cost and benefit model.

Cost Benefit Analysis. As mentioned earlier, to decide which views are the
best candidates for materialization, the cost and benefit of materialization needs
to be analyzed. Specifically, we use processing time as our cost metric to measure
performance of the schemes. In the linear cost model, the time to answer a query
is taken to be equal to the space occupied by the underlying data from which
the query is answered [1,7]. In this work, the same model is adopted with some
modifications. Assume that the time to answer the aggregate query Q is related
to two factors; (1) the number of tuples of the underlying view from which Q is
answered, which is actually the number of bins of the ancestor view, and (2) the
amount of aggregation required to answer Q. Normally, a relational DBMS uses
HashAggregate as query execution plan for group-by queries. Particularly, in
this study PostgreSQL is used as backend database, which uses HashAggregate
as query execution plan for group-by queries. Hence, the cost model used by the
query optimizer, particularly PostgreSQL consists of a vector of five parameters
to predict the query execution time [14]; (1) Sequential page cost (cs), (2) Ran-
dom page cost (cr), (3) CPU tuple cost (ct), (4) CPU index tuple cost (ci), and
(5) CPU operator cost (co). The cost CHA of the HashAggregate operator in a
query plan is then computed by a linear combination of cs, cr, ct, ci, and co:

CHA = nscs + nrcr + ntct + nici + noco

Where the values n = (ns, nr, nt, ni, no)T represent the number of pages sequen-
tially scanned, the number of pages randomly accessed, and so forth, during the
execution.

Generally, for estimating cost of an operator, the values in vector n are esti-
mated. However, in our case, the already known number of rows of a materialized
view (i.e., number of bins of that view) and target view can be used for vector n.
For instance, Fig. 3 shows the steps of the HashAggregate operator for generating
a view with 4 bins from a view with 8 bins, and the cost incurred. Specifically,
The operation of generating a view with b bins from a view with bm bins has
the following parameters:

– nscs & nrcr: cs and cr are the I/O costs to sequentially access a page and
randomly access a page, while ns and nr are the number of sequentially and
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randomly accessed pages respectively. Generally, size of a page is 8 KB. Con-
sequently, ns depends on the page size, size of each row (let it be r), and the
number of rows read, which is equal to the number of bins of the materialized
view, i.e., ns = 8KB

r×bm
. Furthermore, cs and cr depends on whether the data

is fetched from the disk or it is already in cache. Particularly, this cost is
negligible for the later case and that is the case in our model.

– ntct : ct is the cost of scanning each row and nt is the number of rows scanned,
which is equal to the number of bins of the materialized view, i.e., nt = bm.

– nici: ci is the cost to place the row in a bucket (bin) using hashing and ni

is the number of rows hashed, which is equal to the number of bins of the
materialized view, i.e., ni = bm.

– noco: co is the cost to perform aggregate operation such as sum, count etc.,
and no is the number of aggregate operations performed. If Vi,b is answered
from Vi,bm

, then there are b buckets and each bucket will require bm

b − 1
aggregate operations, i.e., no = b( bm

b − 1) = bm − b.

Therefore, the cost of HashAggregate operator CHA is:

CHA = ntct + nici + noco

CHA = bmct + bmci + (bm − b)co

CHA = bm(ct + ci + co) + b(−co)

The costs ct, ci, and co remain same for all queries. Therefore, we replace them
with simple constants c and c′ such that: c = ct + ci + co and c′ = −co. Hence,

CHA = bm × c + b × c′

Therefore, the cost of generating Vi,b from materialized view Vi,bm
is:

Cm(vi,b) = bm × c + b × c′ (9)

Where c and c′ are learnt through multi-variable linear regression. Consequently,
the benefit of materializing a view Vi,bm

is computed by adding up the savings in
the query processing cost for each dependent view Vi,b over answering Vi,b from
the base table and subtracting the cost of materialization of Vi,bm

.

B(Vi,bm
) =

∑

Vi,b∈P

[(Cb(Vi,b) − Cm(Vi,b))] − CM (Vi,bm
) (10)

In this section, we listed the details of our proposed technique mView for
the exhaustive search, which is also called Linear search. When this scheme is
applied to a non-binned view Vi, it results in a top-1 binned view, this is termed
has horizontal search. Furthermore, applying this to every non-binned view, their
corresponding top-1 binned views are identified and from there top-k views can
be easily recommended, this is termed as vertical search. In our experiments, we
differentiate between horizontal and vertical search and the scheme applied to
each direction.
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4.2 Materialized Views with MuVE

In [3,4], we argue that the deviation based utility metric falls short in com-
pletely capturing the requirements of numerical dimensions. Hence, a hybrid
multi-objective utility function was introduced, which captures the impact of
numerical dimension attributes in terms of generating visualizations that have:
(1) interestingness (D(Vi,b)): measured using the deviation-based metric, (2)
usability (S(Vi,b)): quantified via the relative bin width metric, and (3) accu-
racy (A(Vi,b)): measured in terms of Sum Squared Error (SSE). The proposed
multi-objective utility function, was defined as follows:

U(Vi,b) = αD × D(Vi,b) + αA × A(Vi,b) + αS × S(Vi,b) (11)

Parameters αD, αA and αS specify the weights assigned to each objective, such
that αD+αA+αS = 1. Furthermore, to efficiently navigate the prohibitively large
search space MuVE scheme was proposed, which used an incremental evaluation
of the multi-objective utility function, where different objectives were computed
progressively. In this section, we discuss how to achieve benefits of both the
schemes, mView and MuVE.

Selecting T while using MuVE as search strategy is non-trivial, because of
the trade-off between MuVE and mView. In the MuVE scheme, the benefit of
cost savings comes from the pruning of many views and utility evaluations.
A blind application of greedy view materialization, as in mView, may result
in materialization of views that gets pruned because of the MuVE’s pruning
scheme. The idea here is to estimate which views MuVE will eliminate and
exclude those views from the set of candidate views to materialize. To address
this issue, we introduce a penalty metric, which is added to the benefit function.
Therefore, a candidates view Vi,bm

, which has high certainty (represented as
CE(Vi,bm

)) of getting pruned by MuVE gets a high reduction in its benefit of
materialization. Particularly, a view gets pruned due to either of the two factors;
(1) short circuit of deviation objective, the certainty of this pruning is represented
as CED(Vi,bm

), and (2) early termination, certainty of getting early terminated
is represented as CEE(Vi,bm

). The certainty factor CE(Vi,bm
) is the sum of the

certainty of pruning deviation evaluation (CED(Vi,bm
)) and certainty of getting

early terminated (CEE(Vi,bm
)).

CE(Vi,bm
) = CED(Vi,bm

) + CEE(Vi,bm
)

Therefore, the benefit of materializing a view in Eq. 10 is updated as:

B(Vi,bm
) =

∑

Vi,b∈P

[Cb(Vi,b) − Cm(Vi,b)] − [CE(Vi,bm
) × CM (Vi,bm

)] (12)

The certainty of pruning deviation computation depends on the ratio of αA and
αD. MuVE uses a priority function to determine which objective to evaluate first,
in other words MuVE tries to prune the objective, which is not evaluated first.
According to that function if αA is greater than αD there is a chance of pruning
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the deviation objective. We are interested in pruning deviation evaluation as it
is the only objective that involves execution queries for target and comparison
views.

CED(Vi,b) =
{

0 for
αA
αD

<1
αA
αD

×10 for
αA
αD

�1

}
(13)

The certainty of early termination depends on αS and b, higher value of αS or
b means the chance of getting early termination is high.

CEE(Vi,b) =
{

0 for αS<0.5
αS× b

L for αS≥0.5

}
(14)

5 Experimental Evaluation

5.1 Experimental Testbed

We perform extensive experimental evaluation to measure the efficiency of top-k
view recommendation strategies presented in this paper. Here, we present the
different parameters and settings used in our experimental evaluation.

Setup: We built a platform for recommending visualizations, which extends the
SeeDB codebase [13] to support view materialization based schemes presented
in this paper. Our experiments are performed on a Corei7 machine with 16 GB
of RAM. The platform is implemented in Java and PostgreSQL is used as the
backend DBMS.

Schemes: We investigate the performance of the different combinations of the
vertical and horizontal search strategies presented in [3] with mView proposed
in this paper. Our naming convention for those combinations is represented as:
SearchH-SearchV, where SearchH denotes the search strategy employed for hor-
izontal search, whereas SearchV is the one for the vertical search. This leads
to the following combinations: Linear-Linear, MuVE-Linear, and MuVE-MuVE
as baseline schemes and mView(Linear-Linear), mView(MuVE-Linear), and
mView(MuVE-MuVE) as proposed schemes.

Data Analysis: As in [13], we assume a data exploration setting in which a multi-
dimensional dataset of diabetic patients1 is analyzed. The DIAB dataset has 9
attributes and 768 tuples. The independent numeric attributes of the dataset
are used as dimensions (e.g., age, BMI, etc.), whereas the observation attributes
are used as measures (insulin level, glucose concentration, etc.). In our default
setting, we select 3 dimensions, 3 measures, and 3 aggregate functions, which
results in a maximum of 2961 possible views. In the analysis, all the α values
are in the range [0 − 1], where αD + αA + αS = 1. In the default setting,
αD = 0.2, αA = 0.2, αS = 0.6, k = 5, and euclidean distance is used for
measuring deviation, unless specified otherwise.

1 https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Performance: We evaluate the efficiency and effectiveness of the different recom-
mendations strategies in terms of two factors: (1) Cost: As mentioned in Sect. 3,
the cost of a strategy is the total cost incurred in processing all the candi-
date binned views. We use wall clock time to measure the different components
included in that cost namely, query execution time of target and comparison
views, deviation computation time, and accuracy evaluation time. (2) Relative
Difference: The ratio between cost of baseline schemes and the mV iew based
schemes, i.e., Costofbaseline−CostofmV iewScheme

Costofbaselinescheme . Each setting is executed 10 times
and then average is taken as the cost incurred.

5.2 Experiments

In the following experiments, we evaluate the performance of our technique
mView under different parameter settings. As explained in Sect. 4 that mView
scheme is used in combination with the baseline Linear scheme and optimized
MuVE scheme. Additionally it was also mentioned that the blind materializa-
tion of views while using MuVE search strategy may not be the optimal solu-
tion. Therefore, for mView(MuVE-MuVE) and mView(MuVE-Linear) schemes
an heuristic based method was proposed to predict the expected early termi-
nation and short circuit point. Figures 4 and 6 show the impact on cost, while
Figs. 5 and 7 quantifies the percentage improvement achieved in terms of relative
difference using the view materialization scheme.

Fig. 4. Impact of αA and αS on cost,
while αD = 0.2

Fig. 5. Impact of αA and αS on relative
difference, while αD = 0.2

Fig. 6. Impact of αA and αD on cost,
while αS = 0.2

Fig. 7. Impact of αA and αD on relative
difference, while αS = 0.2
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In Figs. 4 and 5, αD is set to constant 0.2 while αA and αS are changing.
In particular, as shown in the figures, αS is increased, while αA is implicitly
decreased and is easily computed as αA = 1 − αD − αS . Figure 4 shows that
cost mView(Linear-Linear) is less than the baseline scheme Linear-Linear. This
is because mView chooses such a set of views to materialize that saves aggrega-
tion time by generating them from the materialized views. Furthermore, Fig. 5
shows mView(Linear-Linear) reduces the cost by almost 30% as compared to the
Linear-Linear scheme. Figure 4 also shows that using our proposed heuristic in
mView(MuVE-MuVE) and the incremental view materialization of mView, the
cost is further reduced. This is due to the reason that we avoided the unnecessary
materialization of views which are eventually pruned by mView(MuVE-MuVE).
Furthermore, Fig. 5 shows mView(MuVE-MuVE) reduces the cost by almost
70% as compared to MuVE-MuVE at αS = 0.6.

In Figs. 6 and 7, αS is set to constant 0.2 while αA and αD are changing.
Figure 6 clearly shows that mView based three schemes have less cost compared
to the other three schemes. The difference in cost for the mView(MuVE-MuVE)
scheme is more than 30% at αD = 0.1 as shown in Fig. 7.

6 Conclusions

In this paper we presented a novel technique mView for recommending top-k
binned aggregate data visualizations. The proposed scheme reuses the already
executed views through materialization and answering the later queries from
the materialized views. We defined a cost benefit model to decide which views
can be reused later. We also proposed a heuristic based approach to predict
the expected early termination and short circuit for MuVE based schemes. Our
experimental results show that employing the mView technique for both Linear
and MuVE based schemes offers significant reduction in terms of data processing
costs.
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Abstract. Over the past decade, the volume of data has grown exponen-
tially due to global internet service propagation. The number of individu-
als using the internet has expanded, especially with the use of social net-
works. Utilising GPS-enabled mobile devices, social networks have been
labelled Location-based Social Networks (LBSN). This service enables
users to share their current spatial information by ‘checking-in’ with
their friends at different locations. This article proposes a conceptual
framework to enhance the effectiveness of community search over LBSN.
As users are more likely to look for people whom they share similar
personalities and interests, these keywords plus the spatial information
could help a lot in finding the most appropriate query-based social com-
munity. As a result, this paper aims to contribute to the existing body of
knowledge as well as the industry in the field of community search (CS).
In particular, this work is focusing on CS in the environment of LBSN
to benefit from factors of spatial, keywords and time in order to enhance
community search models by these factors. Therefore, in this study, we
focus on the current state-of-the art of CS and the limitations of inte-
grated models. The preliminary results confirm that user’s checkins can
present an alternative approach to produce and update the users’ inter-
ests with which we use to boast effectiveness of attributed community
search along with spatial information.

Keywords: Community search · User interests · Spatial graph

1 Introduction

Over the past decade, the volume of data has grown exponentially due to global
internet service propagation. According to the latest report issued by the UN’s
international telecommunications union (ITU), the number of individuals using
c© Springer Nature Switzerland AG 2019
L. Chang et al. (Eds.): ADC 2019, LNCS 11393, pp. 119–131, 2019.
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the internet exceeded 3.5 billion by 20171. Social network applications, such
as Facebook2, Twitter3 and Foursquare4 are the most common internet appli-
cations. These applications have consequently attracted millions of users. For
example, over 1.75 billion of Facebook users are active monthly5. Because they
use GPS-enabled mobile devices, social networks have been called Location-
based Social Networks (LBSNs). This service enables users to share their cur-
rent spatial information by ‘checking-in’ with their friends at different locations.
Foursquare, on which more than 30 million users are accommodated, receives
millions of check-ins daily6. Other traditional social networks such as Facebook
and Twitter7 also provide users with the facility of check-ins, which can be
utilised for many business purposes. In most cases, a check-in generates a triplet
〈u, l, t〉 indicating that user u checked-in at location l associated with spatial
information 〈x, y〉 at a specific time t, which also shows that the user is tem-
porally online. Consequently, this leads both industry and academia to consider
the time dimension. People on social networks communicate with each other and
this interaction is recorded with time. For example, consider social network users
on the Gold Coast who are interested in a coffee shop at which their friends have
already checked-in. This group of people have planned to meet up at a certain
place and time. The coffee shop (e.g. Merlo)can also utilise its customers’ profiles
on Facebook to provide location-specific advertisements to potential customers,
who might also be interested in other items offered by the coffee shop. How-
ever, this increases the complexity of the social network. Moreover, due to the
vast development of online social networks, people can create and update their
profiles. A huge amount of textual information is associated with users because
they can express themselves easily through blogging. If a Flickr user utilises
many keywords related to travelling (e.g. posts many photos about trips with
keywords), these keywords help interested users to find people with similar inter-
ests. Basically, users are more likely to search for people with whom they share
similar personalities and interests or those who share similar work and research
areas. Users are progressively geo-coded and geo-positioned on social networks
and there is increased availability of textual descriptions regarding interests, such
as tourist attractions and cafes.

This research contributes to the existing body of knowledge as well as the
industry in the field of community search. This work focuses on the social com-
munity in the environment of LBSN. Due to the variant data type of LBSN,
the significance of this research can be classified into three dimensions: social
relationships, attributes, and spatio-temporal. In terms of social matter, friend
recommendations, in which the system searches for similar users to recommend

1 http://www.itu.int/en/ITU-D/statistics.
2 http://www.facebook.com.
3 http://twitter.com.
4 https://foursquare.com.
5 http://www.statisticbrain.com/facebook-statistics.
6 Foursquare statistics. https://foursquare.com/about/.
7 www.twitter.com.

http://www.itu.int/en/ITU-D/statistics
http://www.facebook.com
http://twitter.com
https://foursquare.com
http://www.statisticbrain.com/facebook-statistics
https://foursquare.com/about/
www.twitter.com
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them to each other, is one of the most important outputs of community search.
Moreover, as the users of LBSN can have keywords or tags to describe them-
selves or their businesses, a self-drive tour of a set of POIs or a minimum group
of people, who share similar interests, could be achieved using an attributed
community.

To model and search complex social graphs meaningfully, the simple graph
model is often not adequate to capture many real-world social network datasets.
As previously noticed from the examples, for most social networks, information
is not only available about social connections but also about user demographics,
preferences, actions performed, and so on. Combining both the explicit spatial
association of a place and the implicit semantics of interaction with s place
provides a unique opportunity for in-depth understanding of both places and
users. Hence, in this research we investigate the possibilities of spatio-attributed
community search to enrich the simple graph model.

2 Related Work

Community search is a community retrieval approach that aims to find a densely
populated query-based on-line connected community (Fang et al. 2017; Li et al.
2015). For example, k-core (Seidman 1983) was utilised in (Li et al. 2015; Sozio
and Gionis 2010). (Sozio and Gionis 2010) designed the first algorithm Global to
retrieve the connected k-core that includes the vertex q. In detail, the problem
was formulated as Q, a set of query nodes or seeds against a graph G = (V,E)
to retrieve a connected subgraph including Q. Thus, the authors suggested a
function called the ‘goodness function’ f to measure the goodness of the sub-
graph. Moreover, this work (Sozio and Gionis 2010) considered subgraph density
by using two other functions: the average and minimum degree of the subgraph
nodes fa and fm, respectively.

2.1 Attributed Community Search

An attributed community is represented by vertices associated with text or
keyword-named attributes. These attributes can effectively provide more features
such as ease of interpretation and personalization (Fang et al. 2017). Recently,
(Shang et al. 2017) proposed an attributed community search method, which was
enhanced by (Huang et al. 2014), with a refining technique. The main idea was to
reconstruct the graph based on topology-based and attribute-based similarities.
The new reconstructed graph was called the TA-graph. Based on the TA-graph
structure, an index named AttrTCP-index based on TCP-index (Huang et al.
2014) was created. Thus, queries that are on the new index AttrTCP-index
return to communities that satisfy the queries. Moreover, (Fang et al. 2017)
investigated the attributed community search by combining a cohesive structure
and keyword. The data model in this study was similar to the previous one
(Shang et al. 2017), specifically in keywords for which each vertex v is associ-
ated with a set of keywords. However, this work utilised the k − core technique
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(Seidman 1983) and the decomposition algorithm proposed in (Batagelj 2003) to
find a cohesive structure called a connected k − core denoted by ̂k − core. More
significantly, the study designed an index called the Core Label tree (CL-tree),
which puts the ̂k − core and keywords in a tree structure. Based on the k − core
definition, the authors identify the research problem as given G = (V,E), a posi-
tive integer k, a vertex q ∈ V and a set of keywords S ⊆ W. In community search,
index construction plays a key role due to the effective and efficient impact on
results. Since cores can be nested (Batagelj 2003), the CL-tree index (Fang et al.
2017) was constructed. Obviously, a ̂k − core must contain ̂(k + 1) − core. Thus,
a tree structure is the most suitable data structure for such k − cores.

2.2 Spatial Community Search

Spatial graphs are on-line social networks on which users can share their location
information, e.g. their position during check-ins. Spatial community search can
perform community retrieval techniques, e.g. k-core or k-truss on a spatial social
network. For example, given a Geo-Social Graph G, and a query vertex q, the task
of spatial community search is to find a subgraph of G. This subsection reviews
the most considerable works in terms of a spatio-social community search, as
previously reviewed works assume non-spatial graphs (Cui et al. 2013; 2014;
Huang et al. 2014; Li et al. 2015; Sozio and Gionis 2010). It can be said that
a recent work named spatial-aware community (SAC) (Fang et al. 2016) has
adopted the concept of minimum degree, which basically depends on the k−core
technique. SAC is a subgraph denoted by H = (VH , EH), which needs to satisfy
the following:

– Connectivity, Gq ∈ G is connected and q exists.
– Structure cohesiveness ⇒ all vertices are intensively linked in H.
– Spatial cohesiveness ⇒ all vertices are almost at the same spatial location.

Compared to traditional CS works, condition three is intuitively what distin-
guishes SAC. So, spatial cohesiveness in SAC is defined to achieve a minimum
covering circle (MCC) with the smallest radius. The formal definition is that
given a set of vertices S, the MCC of S is the spatial circle that contains all ver-
tices in S with the smallest radius. SAC follows the two-step framework: (1) find
a community S of vertices, based on some CS algorithm (Sozio and Gionis 2010);
and (2) find a subset of S that satisfies both structure and spatial cohesiveness.

All reviewed methods consider social constraints. Some reinforce social
queries with extra constraints, e.g. keywords, location, and time. However, there
is a lack of integration of all constraints into one CS framework. Therefore, this
article proposes a conceptual framework to enhance the effectiveness of com-
munity search models over LBSN. The enhancement has been enforced by inte-
grating compatibly text-mining techniques with a community search model as
demonstrated in Fig. 1.
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Fig. 1. Research gap

3 Methodology

This research has developed a hybrid approach, which aims to search for desired
query-based social communities over LBSN. Our hybrid approach considers three
different dimensions, including keywords, location, and time, which significantly
enhance the effectiveness of social community search outputs. Therefore, the
approach has combined different methods in which each method is required to
achieve its research objectives under one framework.

3.1 Problem Formulation

In this section, we provide definitions that will be used throughout the paper.
Also, this section provides the problem statement followed by an example to
elaborate our research problem.

Data Model: We consider the location-based social network G = (V,E,X) as an
attributed graph, where V is a set of all users. Each edge e (u, v) ∈ E indicates
that a friendship exists between two users. X denotes a matrix [X] n × l where
l is the number of all possible distinct keywords W , which are associated with
places P that have been visited by users in form of 4-tuple check-in point CK. So,
CK = {〈ui, pk, t,Wpk

〉|ui ∈ V, pk ∈ P} where pk is identified by a unique GPS
coordinate and t is a time-stamp when a user ui checked-in pk. For example,
in Fig. 2 there are nine users, i.e. u1, ..., u9. Some conform with the conditions
of inducing dense subgraphs. For instance, 〈u1, u2, u3, u4〉, 〈u7, u8, u9〉 are two
subsets, which form socially dense subgraphs. Moreover, our example shows that
users could visit places either as a group or individually, e.g. 〈u1, u2, u3, u4〉
checked-in at the same time t1 and the same place as well, which results in
keeping a dense spatio-temporal relationship. Later, we will learn how to define
our query model to retrieve communities. Based on our data model, we give the
following definitions followed by the query model.

Query Model: The main goal of our framework is to search the community of
a location-based social graph. Our query model is maintained by several con-
straints that need to be satisfied to return an Attri-Spatial Social Community.
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Fig. 2. Motivation example of location-based social network

Let us consider an example of a LBSN user u, who enquires where her friend
Majid and his friends went for coffee and chocolate last year. People acquire each
other’s choices and interests e.g. user u likes the choice of her friend, Majid, in
coffee and chocolate. To model this query, let q be a query that needs to retrieve
all u’s friends who visited a place pu in time t. In addition, the query q has a
keyword constraint that has the keywords of coffee and chocolate. Similarly, q
can be asked to retrieve all places Pu visited by u’s friends in a certain time t
and keywords. The result set of q is V ′ ⊂ Pu ⊂ V .

3.2 Definitions

Based on the data and query model in the previous section, the following are
definitions with which to draw up our framework.

Definition 1 (User’s Interests): Let U ⊆ V be a set of Users U who have CKs.
Each user u ∈ U is associated with a vector of keywords Wu. These keywords
are extracted from places P , that have been visited by the user u, to represent
users’ interests as vectors in the space model.

Definition 2 (Interest Weight): Let each interest be w ∈ W where W is a
keyword set. Each w ∈ u is associated with a weight named Relevance Score RS
to indicate the interests’ weights ∀u ∈ U .

Definition 3 (Similarity-Based Graph SBG): Given an attributed graph G =
(V,E,W ), the SBG is a refined social graph constructed by computing interest-
based similarities, which can be measured using a similarity function. The SBG
can enhance the relationships between users regarding the user’s interests. In
addition, the SBG helps in returning accurate, query-based communities.
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Definition 4 (k-core (Seidman 1983)): Given an integer k ≥ 0 , an existing
connected subgraph G(V ′) is called ̂k − core iff ∀v ∈ G(V ′) has deg(v) ≥ k, and
G(V ′) is connected.

Definition 5 (Core Relevance Score CRS ): Given a query-based attributed sub-
graph H ⊆ G, and an interest w, the weight of interest w is RS as in Definition 2.
Thus, CRS computes the relation between each subgraph Hi and their interest
weight ∀w ∈ H

CRSHi
=

∑
w∈Hi

RS

|Hi| (1)

where |Hi| is the number of users u ∈ Hi.

Problem Definition : Given an undirected LBSN G = (V,E), an integer k,
q ∈ V , w ∈ Wq and r, returns a subgraph Gq ⊂ G, which satisfies the following
properties (Table 1):

Table 1. Query property

Q = (q, k, w, r)

Property Meaning

Connectivity Gq ⊆ G is connected and q ∈ Gq

Structure cohesiveness ∀v ∈ Gq , deg(v) ≥ k

Interest cohesiveness Ensures that Gq has maximum CRS

Spatial range A given radius r that ensures ̂k − cores are located within the range

3.3 Framework

In this section, we explain the framework and demonstrate how the three phases
can interact with each other as one architecture. As shown in Fig. 3, our pro-
posed architecture initially processes tags associated with places visited by users,
followed by processing the social graph by linking each user with a vector of
interests; each interest also carries weight. Once the attributed graph is created
with associated vectors, we select all the pairs, which are unacquainted, but
have at least one common neighbour, to measure the similarity between each
pair. Based on comparing the similarity with a given threshold θ, we add any
pairs that satisfy the minimum θ. Next, we compute the core decomposition.
Finally, an index named AttriSpatial is created. The index is composed of two
components - keywords and spatial -to handle the query Q = (q, k, w, r).

User-Keyword TF-IDF Matrix. In this model, the well-known information
retrieval model Term Frequency Inverse Document Frequency TF-IDF has been
adapted to calculate the weight of users’ interests. Accordingly, keywords Wp,
extracted from places Pu that were checked into by a user u, are regarded as terms
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Fig. 3. Conceptual framework

and each user u is regarded as a document. Thus, each keyword of interest w ∈
user u is represented as a dimension in the vector space model and, consequently,
each user ui is represented as a vector. To compute the weight of each keyword
RS defined by Definition 3, the following is the TFIDF model.

RSi,j =
fwi,uj∑

wi∈uj
fwi,uj

· log
| U |

| u ∈ U : wi ∈ u | (2)

where fw,u is the keyword frequency for each user u, and
∑

w∈u fw,u is the
total number of a user’s keywords Wu, which were acquired via place check-ins
Pu and log |U |

|u∈U :w∈u| calculates the inverse user frequency of keywords w.

Intra-similarity of Users. After phase one is complete, phase one output,
which is the result of Algorithm 1, is used to input phase two. In this phase, the
intra-similarity of users depends on each keyword relevance score associated with
them. In such a case, we adopt the cosine similarity to calculate the similarity
between a pair of users. Each user is represented by an interest weight vector xi.

attr − sim(vi, vj) =
xi · xj

‖xi‖2 · ‖xj‖2 (3)

To guarantee that there is a minimum familiarity, each pair must have at least
one common neighbour friend before adding them as friends.
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On-line Query Processing. The aim of phase three is to search for the
best cohesive query-dependent communities based on the attributed-spatial con-
straints. The cohesiveness of communities, returned by queries, attempts to align
all constraints: keywords, social, and spatial. As a result of the output of the pre-
vious phases, during phase three we have produced a technique named AttriSpa-
tial K-Core. In addition, a ranking function, called Core Relevance Score CRS,
can be derived from the technique. The task of the derived function is to rank
the retrieved communities based on the interest weight from phase one as well
as the community structure from phase two. More significantly, this technique
is employed to construct an efficient hybrid index to improve our dimensional
query processing.

Data: G = (V,E), Users Check-insCK = {〈ui, pk, t,Wpk
〉}

Result: Attributed Graph with weighted attributes G = (V,E,X)
begin

initialisation
V ←− U
W ←− ∅
X[V,W ]
for v ∈ V do

X[v,RetKeyword(v)]
end
for v, w ∈ X[] do

Compute RS
end

end
Algorithm 1. Attributed graph extracting

4 Case Study of a Location-Based Social Network

For the sake of producing preliminary results, a conceptual framework (Armenat-
zoglou et al. 2013) has been reimplemented with modifications. Also, a dataset
called Weeplaces has been used to evaluate our proposed hybrid approach.

4.1 Dataset

Weeplaces is a dataset (Liu et al. 2014) that has been collected from a web-
site named Weeplaces, in which users’ check-in activities can be visualised in
LBSN. It has been integrated using the API of other well-known LBSNs, e.g.
Facebook Places, Foursquare, and Gowalla. The dataset contains more than
7.5 million check-ins by 15,799 users across 971,309 geolocations. Most impor-
tantly, we have revealed that Weeplaces has a reasonable number of communities.
As demonstrated in Fig. 4, various values of k affect the order of cores as defined
in Definition 4.
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Fig. 4. Coreness distribution

4.2 Preliminary Results and Discussion

Setup. Two different data storage approaches have been employed for social and
spatial layers. The two storage schemes have been implemented on MongoDB,
a document-oriented database with the Python programming language. At the
social layer, the social graph has been stored as a set of documents regarding
the adjacency list representation. Moreover, each user has a list of keywords
representing weighted interests. The spatial layer, which shows each place visited
by a user, creates a document to represent that place. Thus, this document has
a place ID, the visiting users’ IDs, the tags that describe the place, and location
coordinates.

Results. It is worth noting that our dataset has keywords to describe places
that have been checked into by users. Keywords help us to understand users’
interests by investigating the keyword frequency of each user compared to other
users. Initially, we must represent the keywords distribution for the entire dataset
over 100 users, in which each user is represented as a document. As shown in
Fig. 5, on axis x, we plotted the graph attributes extracted by Algorithm 1. These
attributes were associated with the weights calculated by the TFIDF schema in
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Fig. 5. Interest weights

Fig. 6. Interest user comparison

Sect. 3.3. The goal is to differentiate between users using their interests. TFIDF
is usually utilised as features to represent users as documents.

In Fig. 5, we grouped interests based on the global average TFIDF. The
average will help us to select the appropriate threshold to retrieve query-based
communities from which members contain attributes that are associated with
greater weights than the threshold. The distribution in Fig. 5 demonstrates that
a certain number of interests (graph attributes) are associated with weight score.
This places these attributes in the area under the curve at which users share
significant and representative interests, according to the feature selection tech-
nique, TFIDF. This leads us to the main contribution of our research; there may
be other similar users who could increase the possibility of retrieving cohesive
communities, in terms of interests.
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We looked closely at Fig. 6, in which users are compared to each other under
specific graph attributes (Coffee Shop, Art Gallery, Movie Theatre and
Performing Arts). We found that users were had very similar interests (Art
Gallery and Performing Art) due to their visits to similar places, although
(Coffee Shop and Movie Theatre) were lower. Consequently, this outcome
encouraged us to continue semantically investigating keywords associated with
places that users prefer to visit.

Discussion. Previous related studies emphasise the significance of attributed
graphs in community search. However, most of these studies investigated
attributes, such as users’ interests, as static keywords in community search. This
study aims to integrate text analytic techniques into a framework of community
search to keep users’ profiles updated with their interests. This guarantees that
communities retrieved by the framework are larger, more familiar, and more
accurate than communities returned by community search models only.

5 Conclusion and Future Work

In this article, a recent body of knowledge regarding community search over a
social graph has been reviewed. Specifically, two dimensions, including attributes
and geolocations, have been investigated in more detail. This paper proposes a
conceptual framework with preliminary results. Technically, this paper has shown
that we can enrich users’ profile interests by extracting keywords associated with
places they visit. These interests have been analysed to produce an attributed
social graph. As this work is part of ongoing research, in the future, we will
conduct extensive experiments on various datasets of LBSN. Experimental work
will include updating the social graph based on interest-based similarity among
users as indicated in phase two. We will then create an efficient hybrid index
that can handle different types of data, as explained in phase three. Furthermore,
one of our future goals is to perform several comparisons, either using a baseline
system or state-of-the-art work. Our future work will include the validation and
feasibility of the proposed framework, in terms of effectiveness and efficiency.
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Abstract. The paper presents an interactive graphical environment, which
enables the detection and graphical visualization of concepts in a document or a
document collection. Concepts are expressed by (multiple) entities extracted
from the document and by the relationships between them. The tool offers an
entity-centered view, which graphically shows the most important relationships
of a central entity or entity-group, consisting of multiple co-occurring entities.
By specifying prefixes and an additional available type system, complex filters
can be created that allow the disclosure of various relationships between entities.
Entities and their relationships are determined at the time of indexing and stored
in appropriate data structures, so that an interactive search and exploration of
relationships between entities is easily possible at runtime. The tool is available
for online demonstration at https://www.smiffy.de/CoOcViz (credentials:
adc2019, password: demo).

Keywords: Named entities � Document semantic � Entity co-occurrence �
Visualization � Navigation

1 Introduction

In recent years there has been a series of advances in Natural Language Processing
research and with technologies such as Named Entity Recognition (NER) [1] and
Named Entity Disambiguation (NED) [2] we now have tools which can support us in
analyzing the content and sentiment of unknown texts. So, for the understanding of a
news article it is extremely helpful to know which entities, such as persons, places,
organizations, times appear in it. By examining these entities to determine where they
appear within a document and together with which entities, first important conclusions
can be drawn about an article or even an article collection. Shifting the focus from the
document to the entity, it is also very interesting to find out how a given entity relates to
other entities in a document corpus. Transferred to the medical field, for example, it is
certainly valuable to know that the combination of two specific drugs is repeatedly
mentioned with unwanted skin irritation.
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2 Demonstrator

The functionality of the visualization tool is as follows. At the beginning, an entity is
selected for which the relationship network is to be analyzed. The selection is made by
specifying the entity using prefixes. An auto-suggestion and completion service offers
suitable entities according to the prefix(s) entered. After selecting the desired entity, a
view as shown in Fig. 1(a) is displayed. The chosen entity is located in the center (red).
The most n-relevant entities related to it are grouped around it. The thickness of the
edge expresses the degree of strength of the relationship. Each displayed entity can be
selected as a new central entity by mouse click. Alternatively you can click on an edge.
In this case an entity-group is created, consisting of the entities related by the edge
(<Olympic Games>, <Sochi>). The result of such a click is shown in Fig. 1(b). The
entity-group forms the new center and around it are shown entities that are related to
this entity-group. What you can also see are individual dashed edges between the blue
entities. This means that there is also a strong co-occurrence between these entities.
These edges are also clickable and create a new entity group as new central node.

The tool also offers a series of filter options. By specifying a prefix, only the entities
that fulfill a certain prefix are displayed. Figure 2(a) shows this using the prefix
‘summer’. Already during the input of the prefix, a two-column selection box is dis-
played, which shows all qualifying entities in the left column (here: all summer
olympiads). Selecting one of these entities creates an entity-group with the previous
central entity (or group) and the newly selected entity as new central node. On the right
side of the entities, categories are displayed which also pass the prefix match and which
contain entities that are related to the current central entity. For example, 62 entities
related to the entity <Olympic Games> belong to the category <Swimmers at the 2012

Fig. 1. Screenshots of visualization tool with <Olympic Games> resp. <Olympic Games> &
<Sochi> as central nodes (Color figure online)
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Summer Olympics>. Selecting a category causes a filter to be set that only displays
entities in that category. Figure 2(b) shows a category filter (<Medalists 2014 Winter
Olympics>). In this case only athletes who have won a medal at the 2014 winter games
will be shown in the graph. In Fig. 2(b) you can additionally see that the number of
displayed nodes in the graph can be specified. The number of entities related to the
central entity (red) can be varied between 5 and 50. In addition, the m (between 0 and
10) most important entities to these entities can also be displayed. This is particularly
helpful if the related entities have further entities in common or if entities are not very
familiar but can be classified by the additional entities (e.g. country of an athlete).
Another important feature is the time aspect. As can also be seen in Fig. 2(b), it can be
specified which news articles (restricted by year) will be used for the calculation of the
relatedness measure. This can make important changes in time visible.

3 Related Work

Schmidt et al. [3] have published a prior work on this topic, where related entities
matching a prefix are suggested in the search interface to speed up query formulation
for the entity-based search engine STICS [4]. The main finding was that context-
sensitive suggestions have to be made. Figure 3 gives an example for this behavior.
Depending on the context (none, <Donald Trump>, <Hollywood>) different sugges-
tions were made for the same prefix. This work, on the contrary, explicitly shows
relations between entities in a graphical and navigational manner. Indeed, the data
structures used are partly the same. ESPRESSO [5] considers the relationships between
two entity sets. They identify dense subgraphs with strong relationships to both sets. In
contrast to our work, they focus on entity-sets and not on document sets.

Fig. 2. Auto-completion for a given prefix (a) and an applied category filter <Medalists at the
2014 Winter Olympics> (b) (Color figure online)
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4 Conclusion and Further Work

The paper reported on a system for identifying and analyzing entities and their rela-
tionships among a document corpus. The system uses a graph based representation
which further allows the navigation along entity relationships as well as filtering
relationships based on prefixes and/or categories. The system not only considers
bidirectional relationships, but also relationships between more entities (the so-called
entity groups).

For further work, we intend to extend the interface, so that the documents most
relevant to an entity or entity group can be inspected along with the parts of the
documents, providing the most needed boost for that entity or entity type.
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