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Preface

Model Validation and Uncertainty Quantification represents one of eight volumes of technical papers presented at the
37th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics
and held in Orlando, Florida, January 28–31, 2019. The full proceedings also include volumes on Nonlinear Structures
& Systems; Dynamics of Civil Structures; Dynamics of Coupled Structures; Special Topics in Structural Dynamics &
Experimental Techniques; Rotating Machinery, Optical Methods & Scanning LDV Methods; Sensors and Instrumentation,
Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing; and Topics in Modal Analysis & Testing.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Model Validation and Uncertainty Quantification (MVUQ) is one of these areas.

Modeling and simulation are routinely implemented to predict the behavior of complex dynamical systems. These tools
powerfully unite theoretical foundations, numerical models, and experimental data, which include associated uncertainties
and errors. The field of MVUQ research entails the development of methods and metrics to test model prediction accuracy
and robustness while considering all relevant sources of uncertainties and errors through systematic comparisons against
experimental observations.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Sheffield, UK Robert Barthorpe
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Chapter 1
Nondestructive Consolidation Assessment of Historical
Camorcanna Ceilings by Scanning Laser Doppler Vibrometry

M. Martarelli, P. Castellini, and A. Annessi

Abstract This paper presents a procedure for the evaluation of the conservation state and the restoration efficiency of
nineteenth century camorcanna vaults based on the analysis of objective features extrapolated from nondestructive vibration
testing data. As example of application has been chosen the camorcanna vault of the “salone grande” in the nineteenth
century Villa Greppi in Monticello Brianza near to Milan, Italy. Non-contact scanning laser Doppler vibrometry has been
exploited for the evaluation of the dynamic behavior of the vault before and after rehabilitation. At the first, the structure
where frescoes are attached, a cannulated loft spread with mortar, and related aging problem, e.g. painting detachment, are
explained. Thus, usual and innovative non- invasive diagnostic techniques are listed, focusing attention on Laser Doppler
Vibrometry. Then, Villa Greppi case study is considered, reporting on site equipment and how measurements were taken.
Therefore, processed data results are shown, and objective feature indices defined.

Keywords Camorcanna · Frescoes · Restoration · Scanning laser Doppler vibrometry · Modal analysis

1.1 Introduction

Nowadays, Cultural Heritage (e.g. artwork and historical buildings) di-agnostics and conservation state assessment using
various non-contact techniques is more and more conventional. Several techniques have been successfully exploited to
evidence typical defects in artworks, as delamination, detachment of frescoes, wooden icons or mosaics, i.e. Scanning Laser
Doppler vibrometry (SLDV [1, 2]), Electronic Speckle Pattern Interferometry (ESPI, [3, 4]), Infrared Thermography (IRT,
[5–7]), acoustic and ultrasound imaging techniques ([8, 9]). In the present paper, the conservation state and the restoration
efficiency of thin camorcanna vaults made with wooden beams, mats of reeds and mortar is assessed. Studies regarding
camorcanna vaults show that differential settlements of light vaults may cause cracking on the lower surface, damaging
stuccoes and frescoes. Thus, it is necessary to understand the causes for this to happen and find interventions to prevent
cracks [10, 11]. To investigate the conservation state on camorcanna vaults, traditionally restorer use visual inspection
and percussion techniques. Nowadays, Non-Destructive Testing (NDT) could be adopted using LDV and IRT [12]. The
former seems to be one of the most promising diagnostic techniques, especially due to its nondestructive nature, high spatial
resolution and frequency range [13]. It allows to measure vibrational frequency response of the structure in terms of mobility
functions, which allow to evidence areas of detachment between frescoes and wooden structure. The latter is capable of
identifying and characterizing imperfections over a large area. This can be achieved only if there is a sufficient temperature
gradient between the flawed and sound area that is appreciable by the IRT sensor [14]. Also ultrasonic techniques are
successful in evaluating camorcanna detachments. Defect localization and dimensions could be estimated [15].

M. Martarelli
Faculty of Engineering, Università degli Studi eCAMPUS, Novedrate (CO), Italy

P. Castellini (�) · A. Annessi
Industrial Engineering and Mathematical Sciences Department, Università Politecnica delle Marche, Ancona, Italy
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Fig. 1.1 Carmorcanna vault portion with intertwined reeds [16]

1.2 Camorcanna Vaults Structure

In many theaters, churches and historical buildings between the sixteenth and nineteenth century, vaults were made by
mats consisting of stitched thin cane and mortar fixed on a wooden framework. This kind of structure is usually called
camorcanna. These vaults were cheap, lightweight and easy to built up, thus really popular. They were often decorated with
precious frescoes and stuccoes that give them historical, artistic and architectural value.

Camorcanna is composted by mats of reeds, constructed linking together thin canes with strings (see Fig. 1.1). Reed mats
are fixed on a wooden supporting structure and mortar is spread on them. When it is dry, the surface is ready to be decorated
with frescos and stuccoes.

Nowadays, many camorcanna vaults are left in deterioration due to many factors linked with constructive system problems
or external issues. The former may be errors in ribs sizing, inadequate link between the elements or wood inner defects. The
latter are caused by accidental events e.g. subsidence, earthquakes, water infiltration, variation in thermo-hygrometric loads
or attacks from fungi and insects [16]. The mortar detachment is one of the usual defect in paintings on described structures
due to improper installation. During construction, the mortar has to be quite liquid so it can wrap straws properly. In fact,
it as to penetrate the straw layer to create a mechanical connection (by interference and adhesion). If the mortar is too solid
when given, the connection between it and the straws is only by adhesion. Hence, the joint is not resistant enough and the
painting falls under his own weight.

Another usual issue of cannulated vaults is straws detachment from the wooden support they are linked with. It can yield
to a coat brake and a consequent fall of a vault portion. Both the indicated faults are not visible from the outside and are
detectable only afterwards.

1.3 Case Study: Paintings in Greppi’s Manor Vault

Villa Greppi is a nineteenth century manor located in Monticello (LC), Italy. The plan detail of Fig. 1.2a shows the frescoed
coffered ceiling hall under study. In Villa Greppi’s case, the camorcanna panels were made as follow:

1. The first structure consists of thick chestnut wooden beams supporting the floor (about 40 by 40 cm in size).
2. Smaller transverse beams (about 8 by 10–15 cm in size), called ribs, are used to link together the latter beams.
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Fig. 1.2 Frescoed hall scheme. (a) Plan detail of the frescoed hall. (b) Panels measurement labels scheme

3. Mat of reeds (5–10 mm in diameter) are fixed to ribs lower part by at head nails.
4. The mortar (made by plaster, lime or a mixture of both) is then spread on the straws.

A painted panel and one missing the fresco and the mortar are shown in Fig. 1.3. The main hall has an area of 66 m2 and
the coffered loft is 5 m high. It is divided in 15 painted panels (square or rectangular). A visualization scheme is shown in
Fig. 1.2b. Panel names are arranged in a matrix form.

1.4 Testing Equipment and Measurement Set-Up

The objective of this study is the assessment of the structural behavior improvement due to restoration process. The damage
occurred to some parts of the ceiling were due to detachment of whole panels, and this suggest the need to verify the stiffness
of the connection between the frescos structure and the supporting reeds, but also the behavior of the whole ceiling, which
movements could stress the panels in a dangerous way.
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Fig. 1.3 Villa Greppi’s painted loft. (a) Frescos on camorcanna. (b) Damaged camorcanna without mortar and painting

For these reasons, vibration measurements were performed before and after the restoration following two approaches:

1. The vibration response measurement at local level, with a dense spatial sampling on each panel (where the fresco was
present), that can be considered a panel level investigation.

2. The vibration response measurement at global level, for the entire vault where one measurement point for each panel was
taken, that can be considered a ceiling level investigation.

The vibration response of the structure was measured in both cases in terms of velocity by means of an LDV that gives
mobility Frequency Response Function (FRF). The measurement was performed on the frescoes surface in the vertical
direction with a frequency range of 0–512 Hz and a frequency resolution of 312.5 mHz. Measurement points were selected
to highlight the local and the global behavior respectively.

The panel analysis was performed on all ceiling coffers except to the number 11, 12 and 51, see scheme in Fig. 1.2b,
since the frescoes were missing on those panels. Each coffer was forced into vibration by means of an electrodynamic shaker
operating as an inertial vibrodyne. As shown in Fig. 1.4b, the shaker was leaning on the vault structural beam of the ceiling
and it was pushing an inertial mass of 500 g. The reaction force was acting as excitation of the structure. A load cell was
measuring the force applied on the mass, which corresponded to the sum of dynamic forces applied, as a reaction force, by
the shaker on the beam. The panel vibration response was measured by the LDV pointing on a regular grid of points on the
fresco surface. A grid of 6 × 7 points was sat for the square panel and 8 × 7 points grid for rectangular one.

The measured data set is made of FRF functions, obtained as ratio between the vibration velocity response of the panel
and the force imparted in input by the electrodynamic shaker. Each FRF is weighted by the transmission path from the
shaker to each measurement point and indicates how the energy travels through the different supporting elements (beams,
panel, fresco). Therefore, diagnostics is possible: loss of signal amplitude could be due to a structural problem, e.g. fresco
detachment.

The global behavior of the ceiling has been estimated by performing an additional test. Excitation was provided by an
instrumented hammer on the ceiling beam while response was measured by LDV on the central point of each panel. The
vibration velocity was measured by the LDV that was sequentially moved at the central position of all the panels.
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Fig. 1.4 Test setup. (a) LDV during measurements. (b) Shaker position during measurements

Table 1.1 Loft mode shapes

Frequency (Hz)
N. modes Type Before restoration After restoration

Mode 1 2nd flexural 10.72 11.53
Mode 2 3rd flexural 12.96 15.00
Mode 3 1st torsional 28.80 32.01

1.5 Experimental FRF Analysis

In order to assess the effectiveness of the restoration on the health status of the structure, an analysis of the measured FRFs
has been performed at both ceiling and panel level. First, a modal analysis has been done on the FRFs set in order to identify
the dynamic behavior of the structure before and after the restoration in terms of resonance frequencies, damping loss factor
and mode shapes. Then FRFs measured at each panel have been processed in order to extract quantitative features correlated
to the structural modification produced by the restoration. Finally, signal features were extracted from FRFs in order to obtain
synthetic set of scores that could assess effectiveness of restoration accomplished.

1.6 Modal Analysis

The modal analysis carried out on the impact testing FRFs set allowed estimating the resonance frequencies before and
after the restoration at global level (listed in Table 1.1). Structure stiffening and frequency shift could be noticed in Fig. 1.5,
particularly in the phase graph. The corresponding mode shapes are shown in Fig. 1.6, only for the configuration before the
restoration, the shape of the mode is not experiencing variation after the intervention. The modal analysis carried out on
the FRFs computed on panel level dataset allowed to estimate the resonance frequencies before and after the restoration of
each panel. The resonance frequencies before and after restoration are reported in Table 1.2, specifically for panel 42. The
corresponding mode shapes calculated for the configuration after the restoration are shown in Fig. 1.7. Panel irregularities
(concerning materials, structure) and non-linear behavior increase the analyses complexity. The restoration intervention
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Fig. 1.5 Comparison between FRFs before (blue curves) and after (red curves) therestoration on a loft representative point

Fig. 1.6 Loft mode shapes. (a) Loft 2nd flexural mode. (b) Loft 3rd flexural mode. (c) Loft 1st torsional mode

Table 1.2 Single panel mode shape

Frequency (Hz)
N. modes Type Before restoration After restoration

Mode 1 Rigid mode 11.34 12.64
Mode 2 Rigid mode 13.76 15.90
Mode 4 1st flexural 31.84 42.50
Mode 6 2nd flexural 43.28 64.51

added mass and stiffened the panel structure changing the boundary conditions; thus, the disposition of the nodal lines,
which previously coincided with possible cracks, has changed. Furthermore, the first panel modes, that looks like rigid body
motion, at panel level, correspond to global modes of the loft.
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Fig. 1.7 Loft mode shapes. (a) 1st flexural mode. (b) 2nd flexural mode. (c) 12nd flexural mode

1.7 FRF Analysis

Modal analysis does not provide correct and stable information due to the marked variability of the structure under test
(between different panels and before/after restoration). In order to catch the effects of the restoration on each panel, obtaining
a “score scale” related to the efficiency of the intervention, synthetic parameters that could condense all the collected
measures were searched. This can be tackled by observing the averaged FRF obtained from the mean of all the FRFs
measured on each panel. The averaged FRF for each panel, before and after restauration are reported in Fig. 1.8; it is evident
a stiffening effect after the intervention.

By observing the average FRF plots it has been deducted that a significate feature representing the effect of the restauration
is the stiffening of the structure, i.e. the shift at the highest frequency range of the panel resonances. This frequency shift
can be straightforwardly identified by cross-correlating corresponding average FRFs before and after intervention. Cross-
correlation functions are reported in Fig. 1.9; they show a frequency lag (on the x-axis) that is always positive, thus a
frequency shift towards high frequencies is present and is consistent for all panels.

1.8 Conclusions

In the present paper, camorcanna ceilings consolidation is assessed using LDV. The aim of this work is to method to
evaluate the restoration efficiency of frescoed panels (by means of its vibrational characteristics). Villa Greppi’s case study
is presented. From the modal analysis of global ceiling and the single coffer, it has been possible to demonstrate that the
restauration increases the stiffness of the entire ceiling that is evident from frequency resonance shift in the high range and
from mode shapes modification. By analyzing the FRF data sets for each panel this frequency shift is evident at global level
for the entire FRF. It was possible therefore to extract a feature representing this stiffening effect, which is the consequence of
the restauration. Even if the stiffening is consistent on all the panels (there is an average frequency increase of 14 Hz) it is very
variable between one panel to another: it goes from values around 30 Hz to values of about 3 Hz (with a standard deviation
of 10 Hz). This demonstrates the inhomogeneity of the intervention: observe the map of the frequency shift according to the
arrangement of the coffers, Fig. 1.10.
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Fig. 1.8 Averaged FRF for each panel. (a) Averaged FRF panel 12. (b) Averaged FRF panel 13. (c) Averaged FRF panel 22. (d) Averaged FRF
panel 23. (e) Averaged FRF panel 31. (f) Averaged FRF panel 32. (g) Averaged FRF panel 33. (h) Averaged FRF panel 41. (i) Averaged FRF panel
42. (j) Averaged FRF panel 43. (k) Averaged FRF panel 52. (l) Averaged FRF panel 53
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Fig. 1.9 Cross-correlation curves for each panel. (a) Panel 12. (b) Panel 13. (c) Panel 22. (d) Panel 23. (e) Panel 31. (f) Panel 32. (g) Panel 33. (h)
Panel 41. (i) Panel 42. (j) Panel 43. (k) Panel 52. (l) Panel 53
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Fig. 1.10 Frequency increase
map over the coffers disposition
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Chapter 2
The Need for Credibility Guidance for Analyses Quantifying
Margin and Uncertainty

Benjamin B. Schroeder, Lauren Hund, and Robert S. Kittinger

Abstract Current quantification of margin and uncertainty (QMU) guidance lacks a consistent framework for commu-
nicating the credibility of analysis results. Recent efforts at providing QMU guidance have pushed for broadening the
analyses supporting QMU results beyond extrapolative statistical models to include a more holistic picture of risk, including
information garnered from both experimental campaigns and computational simulations. Credibility guidance would assist
in the consideration of belief-based aspects of an analysis. Such guidance exists for presenting computational simulation-
based analyses and is under development for the integration of experimental data into computational simulations (calibration
or validation), but is absent for the ultimate QMU product resulting from experimental or computational analyses. A
QMU credibility assessment framework comprised of five elements is proposed: requirement definitions and quantity of
interest selection, data quality, model uncertainty, calibration/parameter estimation, and validation. Through considering and
reporting on these elements during a QMU analysis, the decision-maker will receive a more complete description of the
analysis and be better positioned to understand the risks involved with using the analysis to support a decision. A molten salt
battery application is used to demonstrate the proposed QMU credibility framework.

Keywords Credibility · Margin · Uncertainty · QMU · Guidance

2.1 Introduction

The purpose of this paper is to describe the need for credibility guidance in quantification of margins and uncertainty
(QMU) analyses and provide a potential structure for such guidance. Credibility is defined as “the quality or power of
inspiring belief” [1], so credibility guidance should assist in the consideration of belief-based aspects of an analysis. A QMU
credibility assessment framework comprised of five elements is proposed: requirement definitions and quantity of interest
(QoI) selection, data quality, model uncertainty, calibration/parameter estimation, and validation. Through considering and
reporting relevant aspects of these elements during a QMU analysis, the decision-maker will receive a more complete
description of the analysis and be better positioned to understand the risks involved with using the analysis to support a
decision.

This paper will be structured as follows. The remained of this section will provide a history of QMU, motivation for
why a credibility assessment framework is needed, and highlight similar efforts in the CompSim domain. Next will be a
section outlining the proposed framework for gathering and organizing QMU credibility evidence. How to use the evidence
to evaluate analysis credibility is then discussed. A demonstration of the process applied to a molten salt battery example
problem is provided in the next section. Lastly, a summary of the paper is provided.

2.1.1 What Is QMU

QMU originated at the national laboratories in the early 2000s to address risk in nuclear weapon stockpile stewardship in
the absence of full system testing [2]. QMU was originally posed as a risk assessment framework for nuclear weapons,
addressing the three elements of the risk triplet (what can occur? how likely is it? and what are the consequences?) [3]; this
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QMU formulation also included a fourth element, credibility, defined as the answer to the question ‘how much confidence
do we have in our risk assessment?’ [4]. Historically at Sandia National Laboratories (Sandia), QMU was largely applied to
experimental data-based problems, but it appears likely that an integration of computational simulation (CompSim) results
and experimental data will be the paradigm of the future. While processes for conducting QMU have developed over time
(e.g., [5, 6]), there are still no formal processes for evaluating the credibility of a QMU analysis.

QMU entails comparing a performance measure to a performance requirement to determine the likelihood of functioning
as intended, considering all relevant uncertainties. Implementing a QMU analysis requires building a team with the
relevant expertise; identifying performance measures and requirements; assimilating relevant data; running an analysis; and
communicating the results. Considering these steps of a QMU analysis, a corresponding QMU credibility assessment should
address many of the inherent aspects of the analysis such as relevance of the performance measure and requirement, data
quality, and analysis limitations.

2.1.2 Why Measure Credibility?

There is currently a gap in guidance within Sandia National Laboratories (Sandia) for assessing the credibility of QMU
analyses. New guidance for QMU was recently released as internal documents within Sandia in two sections: (1) an overview
of high-level QMU concepts and processes and (2) descriptions of statistical tools that can be used to derive QMU results,
with a focus on QMU for experimental data. This new guidance pushed for broadening the analyses supporting QMU results
beyond extrapolative statistical models and advocated for a more holistic picture of risk, including information garnered
from both experimental and CompSim campaigns. Although this new guidance improves the informational basis of QMU
analyses, it does not provide a consistent framework for communicating the credibility of analysis results.

Credibility assessment guidance for QMU is needed because:

• Decision-makers are increasingly asking for credibility assessments when being provided analysis results. Decision-
makers are learning that they must understand the level of confidence they should invest in the results to better utilize
the analysis that they commissioned.

• Failing to provide guidance for communicating credibility may lead to overconfidence in results. A question that should
be posed to QMU analysts is, “What is the credibility of your results?” Without asking this question, the decision-maker
may believe results are more reliable than is warranted and make ill-informed decisions.

• A unified QMU credibility framework would result in greater consistency in information presentation. When credibility
results are analyst-specific and/or analysis-specific, decision-makers will interpret results differently depending on who
conducted the analysis.

• Streamlined documentation of important auxiliary information (e.g., metadata, methods) is integral to understanding and
reproducing QMU results. Summary QMU results (for example, margin over uncertainty ratios) always rely on auxiliary
supporting information about the QMU process and supporting experimental data.

Without a consistent credibility assessment framework, decision-makers must rely on source credibility, or their belief in
the source of the information. Although not specific to the reception of QMU results, psychological research has explored
the role of source credibility in other information distribution areas. Across the psychology literature, source credibility is
typically attributed to a person providing a message. Key aspects of source credibility include the source’s trustworthiness
and expertise [7]; to a lesser degree, composure, dynamism, sociability [8] and even accents of voices [9]. Chaiken and
Maheswaran found source credibility can affect decisions in two ways: (1) by serving as a peripheral cue for simple
acceptance or rejection of an argument, and (2) by biasing the strength of the decision-maker’s argument processing [10].

While biasing the belief in results based on the source is potentially problematic in itself, Heesacker et al. found that as
source credibility increases, persuasion also increases [11]. They attribute this phenomenon to more credible sources eliciting
greater thinking about the message (improved information presentation, not informational content).

Across psychological research a theme persists: human judgment is persuaded and biased by a variety of minute factors.
As humans participate in high stakes decision making, it is important to understand how small changes in presentation of
the message (or data) can unintentionally bias the decision-maker. To mitigate such bias, credibility frameworks may help
through providing consistency, transparency, and structure.
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2.1.3 History of Credibility in CompSim

The concepts of credibility continue to be developed for presenting CompSim results as evidence to support a decision as
well as for the incorporation of experimental data into CompSim analyses. Reviewing the progress of credibility guidance
for these fields provides a starting point for the analogous guidance for QMU analyses.

For institutions that utilize CompSim to support decisions regarding complex engineering questions such as national
laboratories, the aerospace and defense industries, and space agencies, the credibility associated with CompSim predictions
must be understood. Methods for assessing and communicating the credibility of CompSim based evidence are being
developed by many organizations [12]. As an example, the Predictive Capability Model Maturity (PCMM) [13] has
been developed at Sandia over the last decade to provide a consistent framework for evaluating CompSim credibility.
PCMM was developed as a method of directing discussion about and communication of the many assumptions, errors,
biases, and uncertainties ever present in CompSim predictions. A broad spectrum of CompSim activities are covered by
elements of PCMM including code verification, physics and material model fidelity, representation and geometric fidelity,
solution verification, validation, and uncertainty quantification. Those elements are perceived to encompass the majority of
error/uncertainty sources that may impact a CompSim analysis. An approach for grading a simulation’s performance in the
different elements is also provided, which includes guidance describing the expected attributes needed to achieve a specific
maturity level for each element. This grading is meant to foster gap identification and resource allocation.

PCMM can be to be used as a results credibility communication tool as well as an initial analysis planning aid.
Applications using PCMM as a prediction credibility assessment tool have been demonstrated [14, 15].

In the CompSim community, experimental credibility is currently being developed from the perspective of using
experimental data for model validation and calibration [16, 17]. Through providing structure for the assessment of
experiments used for CompSim and experimental integration activities, consistency between modeling activities can be
increased. A common difficulty when comparing experimental and CompSim results is ensuring that the scenarios captured
by each are similar enough to not be the cause of significant discrepancy. When such discrepancies occur, it may be difficult
to determine the source. Through capturing information about the experimental setup from the perspective of how that
information will be used in CompSim analyses, more information can be gained from the comparisons. This same framework
can be used to increase an experimental campaign’s value through incorporating knowledge about how the data will be
utilized into the test planning process. Outcomes of these experimental credibility processes include characterization of
experimental uncertainties, assessment of model validation or calibration quality, and assessment of experimental alignment
with modeling goals.

2.2 Important Elements for QMU Credibility

Following the strategy for developing a credibility framework laid out by the CompSim community, potential sources of
error, uncertainty, bias, or assumptions that could impact a QMU analysis are categorized into elements. It is proposed that
QMU credibility can be assessed using the following five elements.
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QMU Credibility Elements

1. Requirement Definition and QoI Selection

Defining the requirement against which performance is compared and selecting the appropriate quantity of interest
that can be used to represent performance

2. Data Quality

Evaluating the available data and its attributes

3. Model Uncertainty

Describing any models used to analyze the data and associated assumptions

4. Calibration/Parameter Estimation

Considering how the model is fit or calibrated

5. Validation

Determining if the model is a sufficient representation of the data with respect to making the prediction of interest

The five elements are described in more detail in the subsections below. At the end of each element-specific section,
suggested documentation is provided that would support credibility statements for each element.

2.2.1 Requirement Definition and QoI Selection

Requirements may sometimes be clearly specified and the mapping from available data to that requirement may be simple,
but this is not strictly true. Requirements may need interpretation that comes from consultation with a subject matter expert
or simply from the QMU analyst. Available data often requires additional assumptions and/or processing to be comparable
with the requirement. The quantity compared against the requirement is referred to as the QoI. QoIs are typically physical
quantities, while requirements may be functions of these physical quantities. Determining how the requirement and QoI
definitions will be compared is a necessary step of a QMU analysis.

Suggested Documentation What is the requirement? Are there any perceived ambiguities in the requirement definitions?
What is the QoI? What is the relevance of the QoI relative to the requirement?

2.2.2 Data Quality

A great deal of qualitative information lives with the dataset that may impact the value of the dataset. Specifically, metadata
about a dataset should be documented and preserved, so that important information about the data-generating mechanism
can be evaluated when the data are analyzed. Metadata may include:

• When was the data gathered?
• What method was used to capture the measurements?
• How well developed was the measurement/experimental method?
• Where was the test conducted?
• Who conducted the test?
• What tester(s) was used?
• How well characterized are the experimental conditions?

Transparently evaluating metadata reduces the risk of omitting information that may impact the conclusion of the
analysis. The following four categories are common categories of such auxiliary data (but should not be considered all-
encompassing).



2 The Need for Credibility Guidance for Analyses Quantifying Margin and Uncertainty 15

1. Sparsity The amount of data available impacts how much sampling uncertainty will exist in an estimate. Further, some
estimates require more data than others to avoid extrapolative inferences; for instance, estimating a mean typically requires
much less data than estimating an extreme percentile or rare exceedance probability to avoid extrapolation. Issues with
presenting distributional tail extrapolation have been highlighted in [18].

Suggested Documentation How much data is available? Is the data sufficient to empirically validate any estimates being
made?

2. Representativeness The QoI often cannot be directly measured given the available data. Therefore, the analyst must
consider how the available data map onto the QoI. For example, are we interested in environment A, but only have data
tested in a similar, but less stressing environment B?

Suggested Documentation What is the representativeness of the data relative to the application space (including tested
environments, age, etc.), as defined by the QoI?

3. Noisiness/Measurement uncertainty Most measurements contain some error. This error can arise from many different
sources. A common source of error is the tester or instrument’s measurement error. In addition, errors can be introduced
during data processing steps to convert a signal captured by a measurement device to a physical quantity. Uncertainty in
the measurement can also be injected into the data through uncertainty about what is truly being measured. For example,
measurement devices may be placed in orientations and exposed to boundary conditions that deviate from those specified
for the experiment.

Suggested Documentation What are the magnitudes and hypothesized sources of the measurement errors?

4. Bad data/Outliers Rejection of bad (inaccurate) data or non-physical outliers is an aspect of data analysis. Omitting
outliers is often acceptable, but only when the root cause of the outlier is known. Understanding the root cause of impactful
outliers often requires investigation into manufacturing and/or measurement process.

Suggested Documentation How much data was rejected (not included in the final analysis)? Why it was rejected?

2.2.3 Model Uncertainty

Models, whether physics-based or statistical, are an important aspect of QMU analyses, particularly when data are sparse or
are not representative. Information about the types of models, underlying assumptions, and additional uncertainties associated
with modeling activities must be considered and communicated. If the model is purely physics-based, then existing predictive
maturity methods like PCCM [13] can be used to assess the model credibility. If the model is empirical or statistical, then the
credibility for these types of models should be evaluated, though we are not aware of any formal frameworks for evaluating
model credibility. Goodness-of-fit methods are not sufficient metrics for evaluating model credibility [19], due to only testing
if the distribution form hypothesis can be rejected. A typical means of assessing a statistical model’s prediction capabilities
is to demonstrate the model’s ability to predict data not used to train the model. While such activities may be used to
support model validation (as will be address later in the validation subsection), this does not probe the underlying model
uncertainties we deem to be essential to model credibility. We recommend assessing two components of model credibility:
the causal structural and functional assumptions of the model.

1. Causal structural assumptions The inability to accurately represent the collected data in the empirical model will
introduce bias in QoI estimates. Causal structural assumptions concern whether causal or physics-based relationships can
be learned from the available data by comparing how the data were generated to an underlying causal model for the data.
Specifically, causal analysis concerns establishing underlying causal relations between variables and then determining if
the collected data are sufficient to infer the QoI under these causal relations [20]. Common sources of bias include [21]:

• Omitted variable bias: important variables were not measured in the dataset that should be included in the model to
accurately capture the physics in the empirical model.

• Selection bias: the data are not a random sample from the population, but the model assumes a random sample.

Suggested Documentation Was the causal structure of the model considered? Is the fitted model consistent with an
underlying causal model for the data? Is selection or omitted variable bias present? To what fidelity is the causal structure
understood?
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2. Functional assumptions Given a set of causal structural assumptions, statistical models are then specified to represent
the empirical relationship between the inputs and outputs. Functional assumptions specify this relationship, conditioning
on the set of causal assumptions. Stated differently, causal assumptions pertain to whether all of the necessary inputs are
included in the modeling to address biases in the data; functional assumptions pertain to whether the empirical model is
correct, conditioning on having the correct inputs in the model. Examples of functional assumptions include normality or
other distributional assumptions, linearity between inputs and outputs, and no interaction between inputs on the output,
i.e., independence of effects. The complexity of the selected model is often limited by the available data. Further, the
importance of the functional assumptions often varies. For instance, normality assumptions will often have minimal
impact when estimating means, but can have a significant impact on tail extrapolations, which are common in reliability
and QMU analyses. If multiple model forms provide similar fits to the data, this model form uncertainty should be
considered.

Suggested Documentation What functional assumptions were made? Were the assumptions tested empirically, based on
subject matter data, or required due to lack of data? To what fidelity are the functional relationships understood? How
sensitive is the QoI estimate to the functional assumptions?

2.2.4 Calibration/Parameter Estimation

The act of updating model parameters using data (including both estimating and quantifying uncertainty in the parameters)
is called calibration when models are physics-based and parameter estimation when models are empirical/statistical. These
definitions are not universally accepted, but will be used within this framework. When data are sparse, calibration and
statistical estimation procedures can perform poorly (e.g., maximum likelihood, bootstrapping), and limitations to calibration
procedures should be addressed. Bayesian calibration processes incorporate additional knowledge into parameter estimates
in the form of prior distributions. When using Bayesian techniques, the sensitivity of the calibration result to the prior should
be considered and acknowledged if significant.

Additionally, not all calibration parameters are equally important to consider; specifically, the degree of consideration
paid to an updated parameter should scale with the model’s sensitivity to that parameter. Model sensitivity analysis typically
refers to evaluating the magnitude of change in a prediction caused by changes to an input parameter’s value.

Suggested Documentation What is the accuracy of the selected calibration/estimation procedure for important model
parameters in the application? Was additional information incorporated into the parameter estimates? What is the sensitivity
to updated and non-updated parameters?

2.2.5 Validation

Once the dataset is understood, the model selected, and the model fit to best represent the data, the model’s validity should be
judged with regards to the prediction of interest (quantity deemed comparable to requirement). Comparing model predictions
with experimental data allows for the model’s predictive capability, in regards to the prediction quantities of interest, to be
quantitatively assessed. Model validation should occur when using physical-based models or statistical models [6]. Model
validation has become a major area of emphasis in the CompSim domain [22, 23], and is well developed for statistical cross-
validation of models [24–26]. It should be noted that validation cannot prove a model’s predictive capability, only provide
supporting evidence. If data sufficiently relevant to the requirement was available, then this data would be used to make the
QMU assessment, and models would not be needed.

Suggested Documentation How well does the model predict the available data? Can the model be compared to an ‘external
test set,’ i.e., data that were not used to build or calibrate the model? If so, what is the fidelity of the validation data? Are the
model predictions consistent with subject matter knowledge? How relevant to the requirement is the validation?
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2.3 Evaluating Credibility

Once these elements of credibility have been evaluated, then these elements can be assimilated to provide an overall
assessment of credibility. Each of the five elements should undergo a peer review of the analysis decisions and
documentation of those decisions so that the analysis can be fully understood at a later date. Both peer review and
documentation are also included in the aforementioned experimental [17] and CompSim credibility approaches [13]. When
presenting QMU results to a decision-maker, overviews of these five elements should be included in order to allow the
decision-maker to better understand the value of information contained.

Whether to develop a quantitative scale for scoring analysis credibility remains an open question. Many ‘predictive
maturity’ frameworks assign numeric scores to sub-elements and combine the sub-scores to create an overall score. For
instance, in PCMM, sub-elements are assigned an ordinal score from 0 to 3, and the PCMM authors suggest methods
for combining sub-element scores into a single overall score, though advise against this collapsing of information due to
interpretability issues [13]. Zeng et al. score the ‘trustworthiness’ of methods using a decision model based on the analytic
hierarchy process [27]. Hemez et al. developed a predictive maturity index, emphasizing the need to go beyond goodness of
fit and consider a more wholistic picture of credibility when evaluating the predictive maturity of modeling and simulation
based results [19].

We do not score credibility herein, instead favoring a more qualitative synopsis of the credibility supporting evidence.
Following [13], we argue that there is not a natural ‘weighting’ of the subelements that can produce a meaningful overall
score. Further, our experience suggests that quantitative scoring can become highly politicized and arbitrary. When presenting
credibility results, we recommend that, instead of collapsing information into a quantitative score, information should be
collapsed into a set of key points. Specifically, the sensitivity of the QMU predictions to the model assumptions should
be qualitatively or quantitatively assessed. Elements with particularly low credibility and potentially high impact should be
highlighted. In areas of concern, sensitivity studies [28] can be conducted to determine the potential quantitative impact of
an assumption. If the QoI results hinge on assumptions that are highly uncertain, then the analysis naturally lacks credibility.

2.4 Example Application

To demonstrate our concept of QMU credibility, the proposed framework is applied to a simulated molten-salt battery
dataset. The example is meant to resemble a real-world equivalent that could be generated from a production facility.
Conditions varied within the dataset are the environmental temperature (−35 ◦C to 65 ◦C), intensity of the current loading
profile (characterized as varying intensities between 0 and 1), and production lot number (1 through 7). Typical means of
visualizing this dataset against a requirement are shown in Fig. 2.1. The performance requirement specified for this dataset
is for the baseline voltage to remain above 30 V for a specified time. The dataset is comprised of observed baseline voltages
at the required time. Examination of the plots would seem to show that the requirement would be met, but it is also difficult
to know how useful the information provide is in answering the question “what is the margin to the requirement and what
are the associated uncertainties in that estimate?”

In order to better answer this margin and uncertainty question, suggested documentation from the proposed QMU
credibility assessment framework when applied to the molten salt battery example is now provided.

2.4.1 Requirement Definition and QoI Selection

Requirement: Once activated, 99.5% of batteries must maintain a baseline voltage above 30 V for YY seconds.
QoI: Predict the baseline voltage at the requirement time, in the battery population at their harshest temperature and loading

conditions at end of life.
Rationale: The requirement must be met in the current battery stockpile for all application environments. Therefore,

environments that impact battery voltage, such as temperature, loading profile, and age, must be considered.
Uncertainties: The QoI is defined at the worst-case load and temperature, but the requirement is ambiguous about those

effects. It is improbable that the battery will ever experience these environmental extremes in use-environments. Therefore,
predictions to the worst-case setting may be too conservative and sensitivity studies should explore the impact of this
conservatism. The requirement specifies a 0.995 reliability, so variability in the battery population must be considered to
reach comparable terms.
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Fig. 2.1 Raw battery
performance data (500 samples)
available for comparison to
requirement. The top figure
shows data’s battery performance
measure as a frequency density,
where the three subpopulations
come from the three testing
temperatures. A cumulative
complementary density function
of the same performance measure
is shown in the second plot as an
example of another common
method of visualizing QMU
datasets

2.4.2 Data Quality

Metadata/Source: The data was gathered during production 15 years ago and captured using two high quality testers by three
operators (equally distributed). The measurement method was developed during battery design process.

Uncertainty: Uncertainty in the data primarily stems from the lack of representativeness. Individual sources of uncertainty
are detailed below.

Sparsity: 500 units were tested at different environmental conditions. The quantity of data was deemed sufficient, but may
require extrapolation from a statistical model to characterize tail behavior and estimate the percentile of interest and
corresponding uncertainty.

Representativeness: Tested units were randomly sampled from all produced units and are therefore representative of all
production lots. Tested units span the full temperature and loading conditions of interest, but were tested immediately
after production and therefore do not provide any information about battery aging.

Noisiness/Measurement uncertainty: Loading and voltage measurements are sufficiently precise. Experimental temperature
conditions are within ±0.5 ◦C. Unit to unit variability is expected due to manufacturing tolerances of components, but
will need to be characterized.

Bad data/Outliers: No outliers found.
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Y

loadtempage=0 lot

Fig. 2.2 Causal network for molten salt battery. Boxes indicate observed variables. In causal language the boxes would be known as interventions
due to those variable values being manipulable for a single battery test. Age is believed to potentially have a causal relationship with the QoI (Y,
voltage), but is always 0 in the available data

2.4.3 Model Uncertainty

Type of model: For this dataset a statistical model is used, so causal and functional assumptions can be assessed.
Causal structural assumptions: An underlying causal model for the molten-salt battery system was elicited from experts and

shown below in a causal network format (Fig. 2.2).
Age, temperature, loading conditions, and manufacturing lot number are all covariates that have a causal relationship with
voltage. This causal structure assumes that the covariates are not confounders (no association between inputs).
To estimate the QoI (the voltage at the worst-case temperature and load) using the data, we define the QoI of interest as:

YQ(lot) = (Y |age, load, temp, lot) (2.1)

YQ = (Y |age, load, temp) (2.2)

=
∫
YQ(lot)P (lot)dlot (2.3)

An omitted variable bias exists, because all production data was collected on un-aged batteries. Expert judgement can be
leveraged to determine the potential impact of this bias. To estimate the QoI, we assume:

YQ(lot) = (Y |age = 0, load, temp, lot)+ δA (2.4)

where δA is an additive shift due to age that is elicited from experts or an auxiliary source of information.
Selection bias may also be present in the dataset due to a great number (≈60%) of the samples coming from room
temperature tests versus the tests at temperature extremes (≈20% each). Because we condition on temperature in the QoI,
this selection bias should not impact the ability to make inference about the QoI, though it does increase the variance of
the estimated effect of temperature on voltage.

Functional assumptions: To model YQ(lot), a linear model is assumed to be an appropriate method of representing the
input-output relationships:

YQ(lot) = α0 × temp.+ α1 × load +
lots∑
i=1

α1+iI (i = lot)+ ε (2.5)

ε ∼ N(0, σ 2) (2.6)

This model assumes linear relationships between the input parameters and output; and assumes that interactions between
parameters are insignificant. Further, residual variability due to manufacturing tolerances is modeled using an normal
distribution. Because age = 0 in the dataset, age-effects cannot be estimated in the fitted statistical model.

2.4.4 Calibration/Parameter Estimation

Parameter estimation procedure: Ordinary least-squares (OLS) minimization is used to fit the statistical model. Because the
sample size is large (n = 500) and model is simple, there are no meaningful uncertainties associated with the parameter
estimation procedure. Fit results are shown below with standard errors and manufacturing variability captured as the model
residual (Table 2.1).
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Table 2.1 OLS model parameter
fits and standard errors

Parameter OLS fit Std. err.

α0 0.067 9.9E−5

α1 −0.784 0.013

α2 36.48 0.012

α3 36.56 0.014

α4 36.60 0.013

α5 36.63 0.014

α6 36.57 0.013

α7 36.63 0.013

α8 36.71 0.012

σ 0.0734 –

Fig. 2.3 Validating linear
assumption by comparing an
OLS fit containing no-interaction
terms to one with first order
interactions

Parameter sensitivities: Variability due to lot number is found to be differentiable through calibration, but the major model
sensitivities are due to the load and temperature. Sensitivity to aging cannot be inferred from the data, leaving an unknown
in the analysis.

2.4.5 Validation

Prediction performance: With ample data the functional assumptions of linearity and no interaction can be evaluated from the
data, as shown in Fig. 2.3. Comparing the data fit of the model without any interactions to one with all possible interactions
demonstrates that no improvement in fit occurred.

Prediction assessment: The model’s predictions are consistent with behaviors anticipated by subject matter experts. The
normal-residuals assumption can be empirically checked for inaccuracy. However, because we are using the model to predict
a 99.5th percentile from data collected at multiple loads and temperatures, we cannot directly confirm this assumption for
the temperature/load condition where we are predicting (50 out of 500 samples were at the worst-case conditions).

2.4.6 Summary of Credibility Assessment

Key assumptions that were identified include: relevance of the QoI, normality of the residuals, and no battery aging.
Sensitivity studies can be conducted to evaluate the impact of these assumptions. For instance, worst case temperature
(−35 ◦C) and loading conditions (1) have been assumed for the QoI. Figure 2.4 compares the calibrated model’s prediction
battery performance uniformly sampled across all conditions of interest with the predictions only for the worst case scenario,
demonstrating how this QoI assumption significant impacts on our QMU conclusions. Model predictions for the worst-case
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Fig. 2.4 Illustration of potential
QoI bias from using most
strenuous conditions to define
performance, as compared to
general population. Shaded
regions show 95% confidence
intervals

Fig. 2.5 Comparison of return
level trends for raw experimental
data at most strenuous
temperature and loading
conditions with (asterisk) and
without (filled circle) inclusion of
worst case aging impact.
Estimates of percentiles based on
the raw data with 95% confidence
intervals (shaded regions) are
compared with those based on the
fitted model (line). Variability in
predictions is due to lot
differences and unit-to-unit
variability

scenario are still a distribution, due to including lot and unit-to-unit variability. Comparing the worst-case distribution with
the full potential distribution shows the degree of conservatism being added to the analysis. Experts may also have some
knowledge about the appropriateness of a normal approximation to represent unit to unit variability in battery performance;
to elicit such information, analysts can inquire about subpopulations or non-linearities in manufacturing tolerances that would
result in a multi-modal, skewed, or heavy tailed distribution. Subject matter experts can be consulted to determine the impact
of age on voltage over time, resulting in sensitivity information such as: aging will reduce the performance in a linear manner
by at worst 3 V by the end of lifetime of the battery population.

In order to estimate the 99.5th percentile of the battery population at the worst case conditions, extrapolation using the
model is needed due to only limited data available for those conditions. Figure 2.5 illustrates both the sensitivity to aging and
the extent of extrapolation through plotting the experimental data and model predictions in terms of return level [29]. Return
level is 1

1−percentile ; for instance, a return-level of 200 can be interpreted as the average number of units necessary to detect
one failure (or, similarly, to inform a 0.995 reliability requirement) [18]. While the raw data trend and model predictions for
the worst-case temperature and loading conditions show significant margin (∼3.25 V) with minimal uncertainty (∼0.14 V),
when the worst case aging impact is considering, the margin becomes small (∼0.25 V). Here margin is defined as the distance
from the model’s mean estimate of the 99.5th percentile and uncertainty is distance from the mean 99.5th percentile estimate
to the lower 95% confidence interval bound. With such a small margin, the results have an increased sensitivity to the
assumptions used to extrapolate with the model. Where the uncertainty in the margin prediction was insignificant when age
effects were neglected, it becomes potentially significant once that effect is considered. In a standard QMU analysis, the
potential impact of an unquantified variable like age would likely not be presented.
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2.5 Summary

Following the recent revamping of the QMU process at Sandia and current emphasis on prediction credibility, guidance
for assessing the credibility of QMU analyses is needed. Direction for how to communicate credibility of CompSim
and experimental gathering campaigns (designed to support CompSim analysis) is already being developed. The future
QMU paradigm will likely look more like experimentally supported CompSim than the historic model that was largely
experimental based. With this change in QMU paradigm comes the need to provide credibility evidence with any QMU
result. Five elements have been proposed as the basis for QMU credibility assessment framework: requirement definition
and QoI selection, data quality, model uncertainty, calibration/parameter estimation, and validation. Through considering
those elements and proposed subelements, documentation and communication of such information should be included in
the communication of any QMU results. With this information the decision-maker receives a greater appreciation of the
assumptions that went into generating the results as well understanding of the utility of the information provided. The
application of this QMU credibility framework has been demonstrated on a molten-salt battery dataset.
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Chapter 3
Failure Behaviour of Composites Under Both Vibration Loading
and Environmental Conditions

Georgios Voudouris, Dario Di Maio, and Ibrahim Sever

Abstract The study focuses on the understanding of failure behaviour of composites which are subjected to vibration fatigue
under environmental temperature conditions. The study of vibration fatigue failure in composites can be challenging because
of the coupling between mechanical and thermal properties. In fact, stiffness distribution and self-heating are typically
occurring under vibration conditions. As the problem stands, the sole use of either testing or simulation would not be
adequate to understand the failure behaviour fully. This paper will present both an experimental and numerical work,
based on a component designed with a ply-drop feature to enhance and localise the damage occurrence. The vibration
testing experiments were carried while an environmental chamber was used to control the exposure temperature. Similar
experimental conditions are simulated in a finite element multi-physics environment, where the crack opening is modelled by
VCCT method. The simulation environment is very challenging because both mechanical (dynamics) and thermal behaviours
need to be incorporated to study the failure of a given vibration loading. Both experimental and numerical results will be
qualitatively compared.

Keywords High cycle vibration fatigue · Environmental temperatures conditions · Carbon fibre reinforced polymers ·
Finite element · Virtual crack closure technique

3.1 Introduction

The accurate prediction of fatigue failure, of polymer-based composites, depends on the effects of various factors, such as
the environmental conditions as well as the material properties. It is understood that changes in the temperature and moisture
conditions, can lead to an acceleration in the fatigue damage accumulation of composite components. Therefore, it is of
greater significance to consider the role of the ambient temperature when studying the fatigue failure of composites.

There are only a few references in the literature relating the surrounding temperature and the fatigue characteristics of
composite materials. A typical feature of most studies is to investigate the behaviour of composites at pure mode I or II
while the excitation frequency is not greater than 10 Hz [1–4]. In a recent study, Coronado et al. [1] asses the Interlaminar
Fracture Toughness (IFT) of Uni-Directional carbon fibre composite (AS4/3501). Static and fatigue tests were carried out in
a temperature range between −60 ◦C and 90 ◦C. The authors reported that under cyclic loading, the initiation Energy Release
Rate is increased with temperature while less energy is required for the crack propagation. Overall, elevated temperatures
seem to lead to higher ductility while sub-zero temperature can result in a more brittle behaviour of the material. It was
also observed that the Fatigue Delamination Growth Rate (FDGR), at −30 ◦C and −60 ◦C, progressively dropped as
the delamination length increased. Sjögren and Asp [2], continued the work of Asp [3], and studied the delamination
characteristics of a carbon fibre system (HTA/6376), at 20 ◦C and 100 ◦C. The tests were performed for three different
loading scenarios: Pure Mode I and II and for a 50% mode-mixity. It was noticed that the FDGR is accelerated at higher
exposure temperatures. Furthermore, it seems that mode II can affect greatly the delamination growth. In addition to these,
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Charalambous et al. [4], performed a fatigue delamination characterisation study on Carbon Fibre Reinforced Polymers
(CFRP), namely IM7/8552, at an ambient temperature range between 50 ◦C and 80 ◦C. A mode-mixity of 43% was
investigated at a frequency of 5 Hz. The authors concluded that delamination crack propagates two orders of magnitude
faster at 80 ◦C in comparison to Room Temperature.

Most studies seem to prefer low cycle, mechanical three-point bending tests, over high cycle vibration fatigue ones. This
strategy can be explained since the viscoelastic properties of composite components can introduce added challenges in the
fatigue testing. So, researchers would prefer low cycle testing in an effort to eliminate this phenomenon. More specifically,
during high cycle fatigue testing of composite components, the internal temperature of the specimens is increased [5]. This
phenomenon is commonly known as the self-heating temperature. It has been reported that the self—the heating temperature
has the potential to alter the fatigue strength of specimens [2, 6].

However, certain attends have been made in the past for high cycle vibration fatigue testing. Only recently, Just-Agosto
[7] introduced a vibration fatigue testing method which he then used for testing a foam material. In a continuation of this
study, Gu et al. [8] applied this tree point bending technique to analyse the fatigue behaviour of a Glass Fibre material
system. Di Maio [9] develop a testing technique which dictates that a specimen be excited at resonance until fatigue damage
is developed. Magi et al. [10] utilised this method for the investigation of CFRP. They correlated the change of dynamic
properties of a specimen, during endurance testing, with its stiffness degradation.

It is therefore apparent that various factors, such as the ambient and the shelf-heating temperatures, can affect the fatigue
life of composite components. For this reason, one might never be able to isolate the mechanical and thermal properties
of carbon fibre composites, fully. For this reason, the primary purpose of this paper is to show that the integration of
experimental and analytical results aids the in-depth analysis of the fatigue failure characteristics of CFRP while taking
into account the ambient temperature levels.

3.2 Experimental and Numerical Methods

3.2.1 Experimental Procedure

A customised fixture was developed to accommodate the endurance testing of specimens in an environmental chamber which
can maintain and control the temperature condition during the test. The environmental chamber was insulated; apart from
a small opening on the top which permits a Thermal Camera and a Scanning Laser Vibrometer to take a reading during
testing. Thermocouples were installed at critical positions in the chamber to ensure that the temperature level is similar for
different tests. Before each test, a stabilisation period of 90 min was required for the specimens to reach thermal equilibrium.
In addition to this, an appropriate heat input value was selected in the chamber which maintains the inside temperature within
a range of ±0.5 ◦C for 107 cycles. The fixture was attached to an Electromagnetic Shaker which excites the specimens close
to resonance frequency (Fig. 3.1). Strain gauges were installed to correlate the vibration amplitude at the measurement point
of the laser beam and the strain level. Fatigue tests were carried out at 25 ◦C, 50 ◦C, 65 ◦C and 75 ◦C; keeping strain levels
of the tests the same for the different temperature levels. This approach permits the comparison of the results. Furthermore,
this technique promotes the separation between the mechanical and the ambient temperature effects since the applied strain
level is the same at different temperature levels. As a result, the exposure temperature has the dominant effect in the fatigue
failure of specimens.

The component is a rectangular specimen 185 mm × 50 mm, made with 20 prepreg plies of IM7/8552, four of which
are interrupted plies 110 mm × 50 mm (Fig. 3.2). The stacking sequence is [0, 0drop, 90drop, (0, 90)3, 0]s. The ply-drop
section acts as stress raiser and allocates the damage initiation region. Specimens were cut into shape with great accuracy
(≤1 mm) since uneven dimensions, among specimens, can lead to undesired behaviours, such as the rotation of the sample
during vibration, which was experienced on some experiments.

3.2.2 Experimental Results

Di Maio’s experimental method was adopted for this study [9]. The technique dictates that the specimens should be excited
near the resonance frequency (≈400 Hz) and at the first bending mode. The testing coupons are excited at a constant
amplitude which translates to a constant strain level for the duration of the experiment. A key feature of the method is
that the typical Phase Lock Loop (PLL) is replaced by a Frequency Lock Loop (FLL) to trace the response phase rather than
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Fig. 3.1 Experimental set up

Fig. 3.2 Specimen layup and ply drop (green: 0◦ plies/blue: 90◦ plies/grey: resin pocket/purple: crack propagation)

the resonance frequency. In fact, by fixing the excitation frequency, one can observe more accurately how a change of the
internal stiffness distribution affects the component dynamics. After a sudden change at the beginning of the test, which is
assumed to be transverse crack development, the response phase traces a constant slope decay which is believed to be initial
delamination opening. A sudden change in the response phase is measured when the delamination size becomes critical
(critical event) The High Cycle Fatigue (HCF) tests are interrupted if either the Critical Delamination Size (CDS) or the
107 cycles are met first.

Further testing revealed that the self-heating temperature of a specimen, follows almost a reversed behaviour (Fig. 3.3).
This behaviour is better presented in Fig. 3.4, where the response phase is plotted against the temperature profile. This is
repeated for three environmental temperatures and the plots clearly show linearity with different slopes. Since the specimen’s
self-heating temperature is the result of an applied strain the plot in Fig. 3.4 includes the three parameters, such as phase,
temperature and strain.

By analysing the Fig. 3.3 further, one can notice that the graphs are separated into three quasi-linear regions. Region
A corresponds to the achievement of a hysteretic equilibrium between the forced vibrations and the heat dissipation. The
self-heating temperature would stabilise if the strain energy in the sample would not allow any crack propagation. The rapid
change of the response phase in this region implies that the transverse crack is being developed.

As soon as the hysteretic thermo-mechanical equilibrium is reached the phase and the specimen’s temperature experience
linear increase and decrease, respectively (Region B). This condition is being understood because of the modelling of the
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Fig. 3.3 Phase/specimen’s surface temperature change during endurance testing

Fig. 3.4 Quasi-linear curves describing the phase vs. the specimen’s temperature profile at different environmental temperatures

crack propagation by Virtual Crack Closure Technique. In fact, the model (described in the following section) shows how
the crack opens and develops because of the mechanical dynamic stress.

Eventually, the crack reaches a critical size which, for the given vibration energy, will open up to a certain length. As a
result of the delamination opening, the surface temperature of a specimen increases rapidly due to the ply by ply rubbing.
The newly formed delamination leads to a rapid deterioration of the specimen’s stiffness.

Figure 3.5 presents the typical Response Phase evolution of specimens that are subjected to vibration fatigue and different
strain levels. It can be seen that with increasing strain, the fatigue life of specimens decreases. This implies that the stiffness
of specimens deteriorates faster.

Figure 3.6 presents the Phase Evolution of testing coupons that are excited at the same strain level (2.55 × 10−3) but
they are exposed at different surrounding temperatures. One can observe that the critical event occurs faster at elevated
temperatures. Therefore, the fatigue life of CFRP is shorter at higher ambient temperature levels. It is also important to
notice that the effect of environmental temperature seems to be more severe than the strain effects on the fatigue life of
CFRP.
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Fig. 3.5 Phase evolution at different strain levels

Fig. 3.6 Phase evolution at different ambient temperature levels (ε = 2.55 × 10−3)

3.2.3 Numerical Approach

Magi [11] applied the Virtual Crack Closure Technique (VCCT) to verify that the experimental results were sensible. In
fact, there were other experimental methods to measure the crack opening during the vibration fatigue and to verify that
the change in the response phase was associated with an almost abrupt crack opening. The numerical experiment proved
that delamination opens earlier than the change observed in the response phase, but the delamination size becomes critical
when the phase suddenly drops. However, he did not take into account the self-heating and environmental temperature. This
section aims at repeating the work of Magi for the VCCT and also include the ambient temperature as an additional parameter
affecting the formation of a crack.

A 2D model was employed for the VCCT. The model was built to resemble the testing coupons (Fig. 3.2) closely. It is
important to build the correct geometry of the specimens in order to capture the correct vibration mode. For this reason, the
shape of the ply-drop was traced from the micrographs of the specimens. CT scans also showed that crack initiates from
the resin pocket and then develops into delamination (Fig. 3.2). As a result, a similar pattern was used in the Finite Element
Model. However, multiple iterations are required to study each step of the crack propagation with high accuracy. The model
was implemented on Abaqus using the Steady-State Dynamics Analysis.
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Table 3.1 Physical and mechanical properties of HTA/6376

E1 (GPa) E2 = E3 (GPa) υ12 = υ13 (GPa) υ23 (GPa) ρ (kg/m3)

164 10 0.3 0.45 1571

Table 3.2 Fracture mechanics properties of HTA/6376 [12]

20 ◦C 100 ◦C
GIc (J/m2) Cm nm GIc (J/m2) Cm nm

Mode I 260 1.2 × 107 5.5 249 4.2 × 106 4.2
Mode II 1002 7.5 × 107 4.4 701 9.1 × 106 4.6

As it was discussed in [11], a Paris Law has to be used to investigate the Crack Growth Propagation Rate. Therefore, the
Paris Law can be described as follows:

da

dN
= Cm ×

(
GImax

GIc
+ 4GIImax

GIIc

)nm
(3.1)

Where da is the crack length, dN is the Number of Cycles and GImax, GIImax are the fracture toughness of the material for
the opening and sliding modes, respectively. Cm, nm GIc and GIIc are constants. These constants are significantly affected
by the testing temperature and their respective values for CFRP systems can be found in the literature (Tables 3.1 and 3.2).
Therefore, one can investigate the behaviour of the material at different ambient temperatures by employing the appropriate
material properties.

Finally, it is essential that the analytical model follow the experimental method. Hence, the vibration response was kept
constant at each iteration in order to trace the Response Phase, correctly. In order to achieve this requirement, the excitation
force was altered in every iteration, to reflect the deterioration in stiffness of the specimen at given vibration frequency. The
stiffness deteriorates as the crack propagates.

3.2.4 Analytical Results

Figure 3.7 shows the analytical results acquired from the VCCT simulation. It can be observed that this technique managed
to replicate the Response Phase evolution, closely. More specifically, the phase follows similar quasi-linear trends, and it can
be separated into three regions. Hence, the critical event can be easily identified. Figure 3.7 displays the numerical data from
simulations of different excitation amplitudes but at the same ambient temperature level. It can be seen that the critical event
occurs earlier at higher severity levels; similar to the experimental trends. This implies a shorter fatigue life that emerges
from an accelerated stiffness deterioration.

The effects of environmental temperature are presented in Fig. 3.8. For this scenario, the simulations were implemented
using the appropriate material properties, given by literature, to reflect the changes in ambient temperature. Despite that, the
vibration amplitude was kept the same to accommodate the comparison of the results. It can be observed that the analytical
results follow the experimental trends in this case, too. Fatigue life decreases with increasing temperature since the critical
event develops faster. Moreover, as it was discussed for the experimental data, the effects of the surrounding temperature
levels seem to be harsher on the fatigue strength of the material than strain levels.

3.3 Conclusion

The VCCT for simulating the crack opening caused by vibration fatigue, at different ambient temperature levels, was
introduced and the data were analysed. Data analysis revealed that the simulated response phase evolution follows the
experimental data closely. However, the model was not able to capture the exact amount of time required to failure. This
phenomenon can be explained since multiple factors affect the final results; as a result, the model is currently unable
to integrate all of them. Despite that, the VCCT analysis showed by a qualitative solution how much the environmental
temperature could affect the crack opening for a given vibration loading.
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Fig. 3.7 Simulated phase evolution at different amplitudes (m)

Fig. 3.8 Simulated phase evolution at different ambient temperature levels (at 2 × 10−3 m)

Furthermore, the simulated data were verified against the experimental results, confirming once again how important the
use of a numerical aid. It will be essential to understanding what parameters should be integrated to perform a comprehensive
model validation. Furthermore, interrupted HCF tests were executed and the samples analysed by CT scans. The NDT
measurements confirmed that delamination opens before becoming critical as the model simulated it. Finally, the fusion of
test and analysis is seen as fundamental to navigate towards the best understanding possible.
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Chapter 4
Verification and Validation for a Finite Element Model
of a Hyperloop Pod Space Frame

Vignesh Jayakumar, T. S. Indraneel, Rohan Chawla, Sudeshna Mohanty, Shishir Shetty, Dhaval Shiyani,
and Shabaan Abdallah

Abstract This paper discusses the verification and validation of a finite element (FE) model of the space frame built by
the Hyperloop University of Cincinnati (HUC) team for the first student design competition organized by SpaceX. For the
purpose of studying the frame performance in various dynamic scenarios, development of a reliable FE model was crucial. A
verification and validation (V&V) strategy utilizing physical modal tests and torsional stiffness tests was adopted to ensure
that the FE model was capable of accurately capturing the dynamic characteristics of the constructed space frame. This work
aims to present the details of the V&V activities as performed on the main frame.

Keywords Hyperloop · Verification · Validation · Calibration · Modal testing · Torsional stiffness testing

4.1 Introduction

The Hyperloop concept was proposed by Elon Musk in a white paper released in 2013 [1]. To accelerate the research and
development of the technology, SpaceX had announced a design competition in 2015. As a part of the competition, teams
were required to design reduced scale pods that were to be propelled down a mile-long test track by an electric vehicle
pusher. One of the main ideas behind the concept was to maximize the speed of transport by minimizing the friction at the
tires through levitation mechanisms and minimizing the air drag by maintaining the test track at sub atmospheric pressures.
The pods were also required to brake and come to a halt within the limits of the test track. Modular subsystems on the pod
were designed to enable levitation, braking and stability. The main frame was designed to withstand all the loads from these
subsystems.

Apart from ensuring that frame satisfies the static load cases and packaging requirements of different subsystems,
performance in different dynamic scenarios was required to be studied. In the absence of any existing benchmark data
and information on the track loads and due to different cases that needed to be considered, it was decided to rely on a
computational approach to study the frame response. Model verification and validation is an activity that carried much
importance in achieving this. A verified and validated model helps to improve the confidence in the results from multibody
dynamics (MBD) models or any other dynamic studies carried out using the model. The aim of this work is to highlight
the verification and validation efforts for the main frame of the pod structure. The results from modal impact testing and
torsional stiffness testing were used to calibrate and validate the FE model respectively. A brief description of the pod design
is presented first to provide some context. This is followed by an overview of the verification and validation activities as
defined in literature and finally the details of the tests and results carried out as a part of this study.

4.2 Frame Design

Figure 4.1 provides a general overview of the HUC pod design and the individual subassemblies that attach to the frame.
The main frame weighed 70 lb. and was designed for a safety factor of 2. Hollow aluminum tubes of OD 2′′ × ID 1.87′′ and
OD 1′′ × ID 0.93′′ were welded together to construct the main frame. The overall pod dimensions were 3.42′ in height, 3′ in
width and 15.6′ in length. The tubes on the topside of the frame were primarily aimed at providing a bolting and supporting
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Fig. 4.1 HUC pod design overview

surface for the carbon fiber skin panels used to cover the pod. The pod rested on six wheels and also housed eight levitation
hoverboards. The six wheels were provided to help with the takeoff and landing phases of the pod motion. Commercial
hoverboards were used as levitation skids, and magnetic arrays (activated by linear actuators) were selected for braking. The
initial propulsion for the pod was provided with help of a large electric vehicle (pusher) attached to the back of the pod via a
semi-hemispherical pusher interface. The pod structure housed magnetic brake mechanisms and friction brake mechanisms
which aimed to bring the pod to rest safely within the mile-long test track.

4.3 Verification and Validation

Verification and validation is a well-documented procedure and there are several guides available in literature that sheds light
on how to implement the process [2, 3]. The guides define the two parts of this process as follows:

1. Verification: The process of determining if a computational model accurately represents the underlying mathematical
model and its solution.

2. Validation: The process of determining the degree to which a model is an accurate representation of the real world from
the perspective of the intended uses of the model.

Verification can be divided into two parts—code verification and calculation verification. Code verification refers to the
verification of the FE code that is used in the study and checking for errors in its implementation. This was not deemed
necessary for this project as a commercial software was being utilized to implement the FE model in this project. Calculation
verification involves checking for the level of discretization errors in the mathematical model. This is usually carried out as a
mesh verification study by comparing the results of the mathematical model to that obtained from analytical models for the
same system. Additionally, mesh convergence studies can also be utilized to ensure that the discretization errors are minimal,
and this approach is handy especially in cases where analytical models are not available. The validation activity is carried
out in two stages. The first stage involves calibration which is defined by the ASME guide as the process of adjusting the
physical modeling parameters in the computational model to improve agreement with experimental data [4–6]. In the second
stage the calibrated model is used to check the model’s ability to predict accurately by comparing results from computational
model to that of experimental data for different load cases.

4.4 Mesh Verification

For the purposes of this study, since the main components in the frame construction were aluminum tubes, the FE mesh was
verified by comparing the modal frequencies with analytical results for a simple tube model. The mesh for the weld regions
were not included in this phase of the study. The main aim of the study was to develop a model capable of replicating the
dynamic responses of the structure. Hence the mesh at the weld regions were addressed in the model calibration stage with
the goal of capturing the stiffness characteristics accurately. Table 4.1 below highlights the mesh verification study results
for a tube of length 125 mm, nominal radius 25 mm and thickness 1.25 mm. Shell elements were utilized in the construction
of the mesh. The results indicate that the discretization error is very small in the 20–5 mm range for mesh size and not much
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Table 4.1 Mesh verification for the model

Element size (mm) Number of elements Analytical frequency (Hz) [7] FEA modal frequency (Hz)—from ANSYS Percentage difference (%)

20 120 12,076.16 12,135 0.48
10 208 12,117 0.34
5 775 12,087 0.09

improvement is expected by further refining the mesh. For the purposes of the frame model construction a mesh size of
around 10 mm was utilized observation [9] of this study.

4.5 Modal Testing and Model Calibration

The verified model was validated in two stages. The first stage involved updating and calibrating the model. A modal test
case was to be utilized to update and calibrate the FE model’s stiffness properties. Modal frequency estimates and the mode
shapes were used to compare the FE model and the real structure during the model updating and calibration phase. This
activity ensures confidence in the accuracy of the computational model. This is of importance in a structure having several
welded joints.

4.5.1 Test Setup

The modal test was performed in a free-free condition by resting the space frame on top of soft foam materials placed on
sawhorse tables. The sawhorse tables were located 10 ft. apart and a traditional impact hammer approach was used for the
modal test. A 10 × 20 measurement (20 input points and 10 output points) was carried out. A Poly-reference Time Domain
(PTD) algorithm was used for the modal parameter and mode shape estimation [8].

4.5.2 Results

Following the tests, the FE model was calibrated by updating the stiffness properties to better correlate modal frequencies
and mode shapes with those of the real structure. The material Young’s modulus of the tubes and Young’s modulus and
size of the welds at the joints were the parameters that were calibration in this phase. Figures 4.2 and 4.3 highlights the
mode shapes and modal frequencies obtained from testing and the updated FE model. Modal Assurance Criterion (MAC)
plots were used to further confirm this observation [9]. Figure 4.4 presents a MAC plot comparing the first four modes from
testing and simulation and the high values along the diagonals indicate a good match. Table 4.2 provides a comparison of the
modal frequencies from the updated FE model and the test activity.

4.5.3 Discussion of Errors

The first mode was the most sensitive to the boundary conditions and hence shows a higher error percentage. This can be
attributed to the fact that it’s possible to define truly free-free condition in a FE model, however, the free-free condition that
the test structure was subjected was not ideal. The sawhorses on which the structure was rested provided some degree of
vertical restraint. The other modes were observed to show much better correlation. The range of 5–6% error was a good
correlation considering the number of welds in the structure that are difficult to model accurately.
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Fig. 4.2 Mode shape (Test results for the base of the frame structure)

Fig. 4.3 Mode shape (FE Results for the base of the frame structure) [9]

4.6 Torsional Testing and Model Validation

The calibrated frame model was used to validate the frame by comparing the results from the FE model for a torsional
stiffness test to the results from experimental data obtained from a hydraulic four poster setup

4.6.1 Test Setup

UC-FSAE torsional stiffness measurement machine (TSMM) was used to carry out the static torsional stiffness measurements
[10, 11]. The setup (Fig. 4.5) consisted of a hydraulic four poster (a MTS

®
320 Tire-Coupled Road Simulator) to provide the

input loads, linear variable differential transformers (LVDTs) internal to the posts to measure the deflection, two 60′′ steel I-
beams, and PCB model 1380-03A load cells to measure the forces were included in the setup. The space frame was attached
to the top flange of the I-beam using C-clamps. The torsional stiffness of the space frame was measured in three sections of
4 ft. length: front, middle and back. The frame was clamped at points 1, 2, 7 and 8 for front section case; points 1, 2, 3 and
4 for middle section case and 3, 4, 5 and 6 for the back section case (Fig. 4.5). In each of these cases, the torsional stiffness
was estimated by two methods, i.e. front twist and back twist. In the front twist, the two hydraulic inputs on the rear side



4 Verification and Validation for a Finite Element Model of a Hyperloop Pod Space Frame 37

Fig. 4.4 Cross MAC plot

Table 4.2 Modal frequency comparison and error percentages

Mode Testing (Hz) FEM (Hz) Percentage difference (%)

1st torsion 19.77 16.9 −14.5
1st bending (transverse) 25.77 24.1 −6.5
1st bending (sideways) 28.81 29.8 3.4
2nd bending (transverse) 32.77 31.3 −4.5

of the space frame were held fixed, and the front two input points were given an equal and opposite displacement, thereby
twisting the space frame, and vice versa in the back twist. In both the front and back twist cases, a complete hysteresis loop
was recorded.

4.6.2 Results

Figure 4.6 highlights the comparison of the results from the torsional testing and the simulation from the updated and verified
model. The x-axis shows the angle of twist and the y-axis shows the reaction torque experienced by the hydraulic four posters.

4.6.3 Discussion of Errors

The experimental data is seen to match well with the simulation data for smaller angles of twist for all three sections that
were tested. As the angle of twist was increased, local displacements were observed at the c-clamps junctions. This was
observed to adversely affect the zero error in the load cells during the test. As a consequence a greater difference is observed
between the measured and the simulated results for higher angles of twist. The TSMM setup was originally developed for
FSAE frame testing and so there were some features of the setup that were not ideal for the frame structure of the pod.
The forces generated during the torsional stiffness measurements were very low compared to the maximum range of the
load cells incorporated in the TSMM. The displacements and forces applicable on the aluminum frame were limited to
ensure that the frame was not subjected to any yield or damage. Hence, the range and sensitivity of the load cells was not
ideal and contributed a source of uncertainty to the measurements. Figure 4.7 highlights the standard deviations for each
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Fig. 4.5 TSMM setup

Fig. 4.6 Torsional test result comparison (test vs. simulation)
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Fig. 4.7 Standard deviation from the measurements over a measurement cycle (a) (Top) Front portion test. (b) (Middle) Middle portion test. (c)
(Bottom) Back portion test

measurement observed because of the above factors. These errors in measurement explain some of the variations in torsional
stiffness comparison presented in Fig. 4.6. Even though these errors were deemed to be within acceptable limits for the
validation activity, the results from testing can be improved addressing these sources of errors. Modifying the TSMM setup
with load cells that are more sensitive in the load range the space frame is being subjected to can help reduce the error in the
experimental setup. Additionally, use of node blocks on the frame or any other provision to improve the join of the frame
to the I-beam would help improve the experimental data and help overcome some of the random and biased errors creeping
into the measurement as well.

4.7 Conclusion

The back-portion testing exhibited consistent measurement data while also correlating well with simulations. Considering
the difficulties in measurement, it is possible to conclude that the FE model is able to predict the stiffness of the frame quite
well. Thereby a validated and reliable FE model was developed and is available for use in further studies of dynamics of the
pod.
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Chapter 5
Investigating Nonlinearities in a Demo Aircraft Structure Under
Sine Excitation

S. B. Cooper, S. Manzato, A. Borzacchiello, L. Bregant, and B. Peeters

Abstract Developing on the basic idea behind parametric and non-parametric identification of nonlinear systems, another
case study on integrating system identification and finite element modelling of nonlinear structures is presented. The first
step, which is the focus of this paper, involves using acquired input and output data to derive an experimental model
for both the underlying linear model and nonlinear model of the proposed structure, no information about the system is
required and only the applied excitations and corresponding accelerations are implemented in the nonlinear identification
step. The proposed case study is demonstrated on a nonlinear simple metallic plane assembly with localized stiffness and
damping nonlinearities; in this case, an updated linear finite element model of the structure is derived and the nonlinearities
experimentally characterised.

Keywords Nonlinear identification · Experimental data · Finite element model · Numerical simulation and system
integration

5.1 Introduction

Nonlinearities often originate from different sources in engineering structures most especially in an industrial application,
a large majority of these nonlinearities are narrowed down to the design of the structure, nature of the joints, material and
geometric properties. Research on bolted joints and other types of nonlinear features have been proven to introduce large
uncertainties in the stiffness and damping properties of a structure which can often render the response of the structure
nonlinear, identifying and predicting the effect of these nonlinearities at operational conditions is of current challenge
to present structural engineers dealing with complex nonlinear structures. In this context the integration of experimental
nonlinear identification and finite element modelling of engineering structures would be of great advantage to the present
structural dynamics society. Experimental nonlinear identification is important in many structural dynamic applications, for
example in complex aerospace and mechanical structures [1], micromechanical systems with magnetic or friction forces [2],
machineries with rubber isolation mounts and assembled structures with bolted interfaces [3]. In most engineering design,
the base line structure is often linear, but the vibration testing and operational performance of some of these structures exhibit
a level of nonlinear phenomena which can no longer be ignored or assumed as linear [4]. Hence, the accurate representation
of these nonlinear behavior in the finite element model of the structure or built up assembly would be of extreme benefit in
obtaining better response prediction at the forcing range of interest.

Examples on the real life application of some of these developed nonlinear identification methods are also available in the
literature where the identification of weak nonlinearities was studied on a more complex aerospace structure in [5] where a
strategy for non-linear modal identification of weak nonlinear effects on a large aircraft was presented. An aluminum plate
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attached with two stores used to illustrate the behavior of a wing and an engine suspended by a means of nonlinear pylon
also displayed the presence of weak nonlinearities during a vibration test, the results obtained illustrated some hardening
characteristics as show in [6]. Similar study was also carried out on a large helicopter with the identification of weak nonlinear
softening behavior on one of the vibration modes as shown in [7]. Other examples of case studies where nonlinearity have
been noticed in aerospace structures can be found in [8] where nonlinearity was also detected at the elastomeric mounts
supporting the four turboprop engines of the aircraft during the Ground Vibration Test (GVT) of the Airbus A400M aircraft
designed for military purpose. The F-16 fighter aircraft also showed a nonlinear behavior at wing-to-payload mounting
interface of the aircraft when a similar GVT was conducted [9]. Nonlinearities were also detected on the Cassini spacecraft
due to the presence of gaps in the support of the Huygens probe [10]. More case studies on the presences of nonlinearities in
engineering structures can be found in the literature, it is therefore possible to conclude that the development of identification
techniques which are capable of producing satisfactory results when linear identification techniques fail is an active area of
study in today’s structural dynamics society. In the real-world application nonlinearity is ever-present and as engineers push
to design lighter, more flexible and more efficient structures, the design are shifting towards non-linear regime which also
shows that there is a need for developing strategies for understanding the nonlinear response of these structures. Hence this
paper addresses the nonlinear experimental identification, and the force controlled experimental test conducted on a demo
aircraft model. This involves the use of established and robust identification techniques to identify the type of nonlinearity
present in the assembled missile, the complete identification process i.e. (Detection, Characterization and initial Parameter
estimation) was achieved based on experimental data. Measured time series and frequency data driven by sine-sweep test
and random excitation were exploited to gain an initial insight to the dynamic behavior and properties of the assembly. The
structure of the paper is as follows: Sect. 5.3 describes the first case experimental study conducted on the demo aircraft
followed by the linear identification based on measured data from low level random excitation and a correlation and model
updating step. Section 5.4 includes the pylon elements in the physical and numerical model, and correlate the former using
again a low level random excitation. In Sect. 5.5, the nonlinear identification is initiated based on measured data and the use
of the first two stages of the white-box identification process. (Detection, Characterization and Parameter Estimation), where
random multisines, sine sweeps and force-controlled stepped sine data were used for most of the analyses. The conclusion
of the study, an outline on future works and the collective use of different analysis techniques in this research are finally
summarized in Sect. 5.6.

5.2 Description of the Test Item

The baseline test item analyzed in this paper is a demo aircraft model, used extensively for demonstration and training
purposes in the context of modal analysis and GVT. The plane, entirely built in aluminum, consists of a beam with
square cross-section (the fuselage), connected to a bigger (wings) and smaller (horizontal stabilizer or tail plane)-plates.
An additional vertical plate, representing the fin or vertical stabilizer, is connected to the tail plane by means of L-shaped
beam. All components are connected by mean of bolts. At the front and rear of the fuselage, two eye bolts easily allow
suspending the demo aircraft and obtain the desired boundary conditions for modal testing. A CAD representation of the
whole aircraft model is shown in Fig. 5.1. To introduce a local nonlinearity, the pylon models previously analyzed in [6, 11]
are also here used: in these elements, the geometric nonlinearity of the thin plates supporting the lumped masses is combined
with the cubic profiles of the blocks which connect the “engine” to the wing. As the engine deflection increases, a bigger
portion of the pylon comes into contact with the blocks’ surface, thus introducing a stiffening effect. The position of the
pylons on the wings and the length and thickness of it were designed and optimized to observe modal interactions when the
nonlinearity is excited.

By connecting the pylon to the slender wings, it is expected that some nonlinearities on the aircraft might also be triggered.
First of all, the connection between the pylon and the wings relies on two M3 bolts, which might cause the connection to
open when the system is excited at resonance. Secondly, all plates are connected with bolts which, at high response levels,
might induce a local softening behaviour. Finally, as the wings are relatively slender, it might be expected that, similarly
to the pylon, they might also experience a geometric nonlinear response for high wing tip displacements. It will be also an
objective of this paper to detect and quantify the nonlinear response at these locations, but the identification will mostly focus
on the pylon behavior.
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Fig. 5.1 CAD models of (left) the full aircraft and (right) the pylon subassembly

Fig. 5.2 Preliminary FE model

5.3 Experimental and Numerical Analysis of the Aircraft

The main objective of the paper is, as mentioned, to present a step-by-step procedure that allows in the end to obtain a
validated non-linear Finite Element of the test object, which in this case is the aircraft model with the pylons. Obviously,
the first step is to deal with what we know (or can know) fairly accurately, which in this case is the aircraft without the
pylons. Consequently, this section will present the preliminary and simplified aircraft model built starting from the CAD, the
Experimental Modal Analysis campaign and the model upgrading and updating phases to increase the accuracy of the FE
model.

5.3.1 Preliminary FE Model

Based on the nominal dimensions of the aircraft components, a preliminary FE model was built, with the objective of getting
a first idea of the global modes and plan the experimental campaign accordingly, in particular with respect to the number and
positions of the sensors.

The model is shown in Fig. 5.2. Each main element (Fuselage, Wings and Tail) is modelled using nominal dimensions
and material properties as illustrated in Table 5.1. Solid elements are used for the fuselage bar (to allow taking into account
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Table 5.1 Elements properties and material used in the model in Fig. 5.2

Component Element type Element properties

Fuselage CTETRA10 Aluminium
Wings—Tail Plane—Fin CQUAD8 Thickness: 3 mm Aluminium
Eye bolts CBAR Diameter: 8 mm Steel
Bolt heads CQUAD8 Thickness: 5 mm Steel

Fig. 5.3 Pre-test analysis results: (left) candidate sensor locations and (right) autoMAC using the candidate sensor set

in more advanced models the contact surface with the other structural elements), while all the plates are modelled using
standard 2D elements. The connection elements, which are made of steel, are here mostly included to account for their mass
contribution; indeed, the actual connections have been modeled using node-to-node rigid connection elements and more
accurate representation will be introduced after the reference experimental results are available.

The total mass of the physical plane was measured to 3.17 kg, while the one computed from the model amount to 3.10 kg.
At this stage, this is considered to be reasonably good to determine the main modes and the frequency range of interest. The
results of this FE are then used to define a test setup. When the objective of a modal test is the validation of the FE model,
it is important that the identified modes are as much as possible unique, that is their cross-correlation should be as small
as possible. Besides, it is also important to ensure that the experimental mode shapes can be easily interpreted and the test
geometry gives a clear idea of the motion of the structure. Consequently, based on the availability of sensors, a preliminary
test setup was assessed, the mode shapes reduced to the “measured” DOFs and the autoMAC computed. The results are
summarized in Fig. 5.3, where it is confirmed that the selected sensor locations will allow a good and unique description of
the modes up to 400 Hz.

5.3.2 Experimental Modal Analysis

Based on the observation from the preliminary analysis of the Finite Element model, a preliminary Experimental Modal
Analysis campaign is then performed, under the assumption that the aircraft model behaves linearly and with the objective
of identifying its modal parameters with which the model could be updated. In total, 24 sensors were used (6 triaxial and
18 single axis accelerometers), for a total of 36 degrees of freedom. Although they are supposedly the ideal locations to
excite the structures, wing tips were avoided because of the very high response for such a lowly damped structure, as this
could generate issues when trying to control the excitation (e.g. with stepped sine tests). Consequently, the two shakers were
connected approximately half way through the trailing edge of the wings, ensuring a good excitation of all modes (including
the torsional ones) while limiting the shaker stroke required to follow the structural response at resonance. Figure 5.4 shows
the instrumented plane, as well as the test geometry with the two red arrows indicating the excitation locations and directions.
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Fig. 5.4 Experimental modal analysis setup (left) and test geometry (right) for the identification of the linear modal model of the plane

Fig. 5.5 Linearity check for Driving Point FRF (left) and Coherence (right) for four different pseudo random excitation levels. Force level are
expressed as RMS values

To excite the structure, a Pseudo Random excitation with random phase randomization was selected. In view of the low
damping expected on such a structure, two delay blocks were specified to give the system enough time to reach steady state
conditions after each new realization. To achieve the prescribed number of averages (40), a combination of 4 repetitions and
10 realizations are specified.

The airplane was excited between 5 and 600 Hz, while the bandwidth has been set to 800 Hz, with a frequency resolution
of 0.195 Hz. To verify for the system linearity, 4 different excitation levels are defined, and the results are compared in Fig.
5.5. If the system is linear, the FRFs acquired for different excitation levels should perfectly overlay, which is not exactly
the case here. Also the coherence can help assessing the linearity of the system, but more in general a low coherence can
be due to noise, nonlinearities or even leakage. By looking at both representations, it can be concluded that, for the lower
level, the excitation might still be not high enough to consistently excite the structure, and the measurements are affected by
noise. The two intermediate levels, except at higher frequencies, are very consistent and show the highest coherence across
the frequency range. For the higher level, it is clear from the coherence plot that the system has a clear nonlinear behavior
across the frequency range. Based on this, it can be concluded that in general, if the level is sufficiently high, the plane model
will show some nonlinear behavior, possibly due to the bolted connections and geometric nonlinearities on the plate.

Finally, linearity of the system was also verified by checking for reciprocity between excitation and response locations.
The results in Fig. 5.6 show a very good reciprocity between the measured FRFs up to 400 Hz, giving confidence in the
system linearity at the considered level.
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Fig. 5.6 Reciprocity check for 0.5 N RMS excitation level

Table 5.2 Summary of natural frequency errors for mode pairs showing a MAC higher than 0.5

Test mode # Test frequency FE mode # FEM frequency Freq. % error

1 17.69 1 19.42 9.8
2 34.06 2 38.36 12.6
3 63.21 3 71.39 12.9
4 64.53 4 73.89 14.5
5 76.08 5 87.60 15.1
6 78.33 6 92.20 17.7
7 86.91 7 101.44 16.7
8 90.17 8 102.07 13.2
9 103.57 9 114.33 10.4
10 152.70 10 176.65 15.7
12 181.14 11 193.41 6.8
13 211.70 12 235.74 11.4
14 226.94 13 260.92 15.0
15 232.40 14 267.30 15.0
16 243.73 15 271.57 11.4
17 318.62 16 349.00 9.5
18 322.99 17 373.27 15.6
19 348.06 18 389.74 12.0
22 377.82 20 438.07 15.9
23 381.10 19 433.02 13.6
24 391.85 23 461.93 17.9

To further check for the system linearity, modal analysis was performed on the FRF derived for all 4 load levels and the
results compared. In general, estimated modal parameters are quite consistent, with the bigger scatter observed, as expected
for the lower and higher levels. Based on these observation, the results observed at 0.5 N RMS (Table 5.2) excitation will be
those used for the model validation and assumed as reference.

5.3.3 Plane Model Validation and Updating

One key elements for being able to accurately predict the nonlinear response with a numerical model is to make sure that
the linear behavior matches as closely as possible the experimental data. Obviously, structural dynamics provides the ideal
framework to objectively assess the degree of correlation between the model and the experiments as it allows to compare
the natural frequencies and mode shapes. Figure 5.7 shows the MAC between the numerical and experimental mode shapes:
the model is able to predict the first 18 experimental modes very accurately, with a match to the experimental ones above
85%. Above these, the MAC still has a diagonal trend but the actual correlation values are lower and some of the modes
appear in different order. It is then also possible to use the MAC matrix to identify mode pairs and compare the values of
the natural frequencies, as shown in Table 5.2. The results clearly shows that the model is consistently stiffer (or inversely
lighter) than the physical structure, which make sense considering the already mention difference in mass and the fact that
the local mass introduced by the sensors is not added to the model. This comparison gives a clear indication on where the
model updating should focus, which is on the overall mass and stiffness of the model, probably due to material properties
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Fig. 5.7 MAC matrix for the experimental mode shape from the linear plane analysis and the numerical one from the preliminary model

not exactly matching the nominal ones. Such a good initial correlation between the experimental and numerical mode shapes
indicates that the model assumptions (in terms of mass and stiffness distribution) are generally correct up to approximately
400 Hz; the upgrading will thus only focus on the material properties and overall mass to improve the frequency correlation.
The first step is to include the local masses of the sensors: here, lumped masses are added to the model in correspondence
of the nodes where a sensor is placed, with the value equal to that reported by PCB on the sensor types used (5 g for the
triax and 4 g for the single axis accelerometers). Additionally, the properties of the aluminium used to model the plates was
modified, with the density increased to match the total measured mass and the Young Modulus slightly decreased. With these
very limited modification, the results in Figs. 5.8 and 5.9 could be achieved: the error between the natural frequencies is now
consistently below 10%, and for the majority of the modes even below 5%, from which we can conclude that the model is
valid up to 400 Hz.

5.4 Modal Identification of the Aircraft with the Pylons

Now that the desired level of correlation between the linear baseline aircraft model and the experimental results is reached,
the two pylons are added to the aircraft. Firstly, a linear test is performed to identify an experimental modal model to validate
and, if necessary, further update, the finite element model. As the focus is now on the wings and pylons, and the way they
interact with each other, some of the sensors from the tail substructures are moved to these elements, as shown in Fig. 5.10.
Different levels of Pseudo Random excitations are applied verify the linearity of the system, and the FRF are displayed in
Fig. 5.11. We can clearly observe how the FRFs change from low to high level, with a general softening trend. The FRFs
from the lower level are used for modal analysis.

Compared to the analysis in Sect. 5.3, FRFs are measured only up to 200 Hz, where approx. 20 modes could be expected.
It should also be stressed that some manufacturing differences can be expected in the pylons, which might propagate to the
airframe breaking its symmetry and consequently making a direct comparison to the FE model more challenging than in the
previous case. Despite this, the correlation between the experimental and simulated modes looks very good, as shown in Fig.
5.12. The majority of the identify modes have a MAC above 70%, with two clusters were the correlation is lower. A more
focused analysis shows that these modes correspond to the sets of first torsion and second bending of the pylon (Fig. 5.13).
While in the model they appear as pair of symmetric modes, in the experimental mode sets it is more difficult to clearly
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Fig. 5.8 MAC matrix between experimental and numerical mode shapes after updating
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Fig. 5.9 Correlation between experimental and numerical natural frequencies before and after updating

identify them. For the pair of torsional modes, the symmetric one is coupled with a mode of the wing which is almost at the
same frequency and in the second only one of the two pylons moves. For the second bending mode, the problem is related to
the fact that the mode is difficult to identify since no sensors were placed on the thin plate to limit mass loading. With these
consideration in mind, it can be concluded that the model nicely represent the experimental data, as also in these case the
natural frequencies are in general within 10% of those measured experimentally.

Since currently the majority of the methods for characterization of nonlinearities relies on SIMO measurements, a final
linear experimental modal analysis is performed, by only considering the shaker under the left wing. By using only one
shaker, it is expected that the symmetry of the structure is broken and some of the modes might not be identified as clearly
as before. The measured data and estimated modal parameters for the same excitation profile and level, but using one or two
shakers simultaneously, are compared in Figs. 5.14 and 5.15. The peaks in the two FRFs match nicely, but some differences
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Fig. 5.10 Test setup for the linear identification of the aircraft with pylons. Left: physical structure. Right: Test Geometry

200.005.00 Hz

25.00

-70.00

dBg/
N

F 6.4 N RMS
F 3.2 N RMS
F 2.5 N RMS
F 1.6 N RMS
F 1.0 N RMS
F 0.4 N RMS

Fig. 5.11 Aircraft with pylons: FRF linearity check with Pseudo Random excitation

Fig. 5.12 MAC matrix between experimental and numerical modes for the aircraft with pylons case

are clearly visible, in particular for the mode around 35 Hz. In terms of mode shapes, generally the majority of the modes is
well captured, except those where mode pairs appear at very close frequency: there, using multiple exciters surely helps in
separating the contributions of these modes and obtain a better estimation.
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Fig. 5.13 Comparison between experimental (left) and numerical (right) symmetric (top) and asymmetric (bottom) torsion modes
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Fig. 5.14 MIMO vs. SIMO FRF for the same excitation level and profile
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Fig. 5.15 MIMO vs. SIMO estimated mode shapes and natural frequencies

5.5 Nonlinear Identification

5.5.1 Nonlinear Detection Based on Time Series and FRF Inspection

Nonlinear detection is the first step in a nonlinear identification process to consider if the structure exhibits some level of
nonlinear behavior under different excitation conditions. To check for symptoms of nonlinear behavior on the demo plane,
several tests are conducted on the entire plane assembly using different types of excitation signals. In this paper, stepped and
swept-sine excitations are predominantly used for investigating the nonlinear effects observed in the measured response of
the assembly from low to higher excitation levels. Stepped and swept sine excitation signals were selected based on their
deterministic nature. For a linear system or structure, the output response would produce a pure sine wave and for a nonlinear
case, distortions are easily detected by visualizing the output response of the sine wave.

These stepped-sine FRFs only consider the first harmonic and neglect all other higher-order harmonic components in both
input and output. Figure 5.16 shows the lack of homogeneity in the measured FRFs over different excitation levels, this is a
clear breakdown of the superposition principle coming from linear theory. Evidence of nonlinearity is observed based on the
shift in frequency and maximum amplitude for the measured frequency bandwidth. In addition to the observed frequency and
amplitude shifts, the resonant peaks also lean to the left as shown in Fig. 5.16, causing a sudden transition (jump) down to a
lower energy state when increasing in frequency, and a smaller transition (jump) up to a higher energy state when decreasing
in frequency. This is most evident in the FRFs reporting the responses between 6.5 and 8.20 Hz.

Sine-sweep test was also conducted on the plane assembly at multiple excitation levels to gain some insight into the time
series data, covering a frequency bandwidth of 5.5–100 Hz. Accelerations at selected locations of the plane were measured
at 0.6 N, 0.8 N, 1 N and 1.2 N excitation levels. Figure 5.17 shows selected plots of the measured acceleration against sweep
frequency for the modes of the plane in that bandwidth. Symptoms of nonlinearity are visible in the plots presented in Fig.
5.17 where both frequency and amplitude shift are observed for all modes when the excitation is increased. The lack of
symmetry feature is also observed around the resonance peak of 39.6 Hz for high amplitude of vibration, skewness of the
signal envelop is also observed around the resonance peaks at high excitation level.
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Fig. 5.16 Comparison of force controlled stepped sine frequency response measured at the left wing and left pylon for frequency range 6.5–8.2 Hz
and 14.30–16.30 Hz

Fig. 5.17 Comparison sine-sweep acceleration response measured at the left wing and left pylon for frequency range 5.5–100 Hz
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Fig. 5.18 Oddmultisine drive signal with bandwidth from 5 to 100 Hz and consisting of 10 realizations with 2 delay blocks and 4 repetitions

Fig. 5.19 Results of BLAs estimation with oddmultisine excitation on a sensor on the pylon (left) and on the wing tip (right). Black: 3 N; Dark
Grey: 0.3 N; Light Grey: 0.03 N

5.5.2 Best Linear Approximation Estimation with Oddmultisines Excitation

Amongst the several techniques available to estimate the Best Linear Approximation of a nonlinear system, the one based
on the multisine excitation is surely, from an industrial point of view, one of the most interesting and easier to use. The key
reason for this is that it rely on excitation signals and averaging scheme very close to those of the classical Pseudo Random
excitation. More details on the odd-multisines, their properties and how the BLA is estimated can be found in [12]. The
main difference with a regular FRF estimation is that instead of using the averaged input and output data, a partial BLA
estimate is calculated for each period of the excitation. A BLA FRF estimate, for a given signal, is then calculated via the
average of the different BLAs: this allows to derive the noise and standard deviation of the estimates at each frequency line.
The difference between the total variance of the BLA and the noise variance is an estimate of the variance of the stochastic
nonlinear contribution.

The excitation signal was generated to be equivalent to the pseudo random one used in the previous sections to identify
the linear model, with the difference that in each realization a number of randomly selected odd harmonics are not excited.
The reference drive signal is shown in Fig. 5.18. The same drive signal was scaled to 3 excitation levels, respectively at 0.03,
0.3 and 3 N RMS. The estimated BLAs, noise and nonlinear contributions are displayed in Fig. 5.19. First, by comparing the
BLAs on the two displayed measured locations, it is immediately evident (as expected) that nonlinearities are much stronger
on the pylon than at the wing, as the BLAs are significantly different across the three levels. The actual nonlinear response
can be quantified by the difference between the “noise” and the “noise + NL” estimates at each level. At the lower level,
the SNR is very low, and thus the estimate noise variance is extremely high; moreover, as expected, the nonlinear distortion
is marginal. This is in line with what was shown in Fig. 5.5. From the other two levels, more information can be derived.
First of all, it is confirmed that the wing response is relatively linear at lower frequencies, and start to become significant
only above 80 Hz. On the contrary, the pylon shows a significant nonlinear behavior, which increases with the load level and
appears constant throughout the considered frequency band.
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Fig. 5.20 (Left) Comparison of BLA and regular FRF estimates from a Pseudo Random Excitation. (Rigth) MAC matrix of BLA and FRF mode
shapes

The estimated BLAs can now be used to identify a modal model, which will represent the best linear approximation
of the underlying linear model at that specific excitation level, for which the nonlinearities can be clearly quantified. This
gives more confidence in the results than just using regular pseudo random, where the nonlinear contribution is just averaged
out instead of being estimated as is the case here. This is shown in Fig. 5.20, where on the left the BLAs derived with the
intermediate levels are compared with those derived, for the same excitation level, with those from a regular pseudo random
excitation. In terms of end results, the modal parameters, the two analysis yield similar results.

5.5.3 Best Linear Approximation Estimation with Sine-Sweep Excitation

As alternative approach to the one described in the previous paragraph, sine-sweep input and output data acquired at different
excitation levels can also be used. Although a sine-sweep is a deterministic signal instead of a random one, the initial linear
state space and the FRF of the BLA can still be obtained using the expression given by:

GBLA(k) = Y (k)

U(k)
(5.1)

at the excited frequency lines k. The fact that the spectrum U(k) of a sine-sweep is not rough at all frequencies could pose
a challenge in the calculation 15, however the LPM (Local Polynomial Model) can still be applied based on calculating the
difference between the input at two consecutive frequencies i.e., (U(k) − U(k − 1)). Figure 5.20 shows the corresponding
estimated FRFs and total distortions for the parametric and nonparametric BLA for the two main frequency bandwidths of
interest (6–100 Hz) the selected FRFs and total distortion (=noise + nonlinear) levels are based on excitation levels ranging
0.6–1 N.

Figure 5.21 shows an illustration of the estimated amplitudes and total distortion levels across the different excitation
levels and frequency bandwidths of interest. Slight shift in the resonance peaks and reduction in amplitude is observed across
the FRFs obtained from the multiple forcing level BLA estimation as shown in Fig. 5.21 as the excitation level increases.
Similarly, it is evident that the total distortion (noise + nonlinear distortions) also affects the response of the structure.
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Fig. 5.21 Nonparametric FRFs and total distortions for two different output sensors on the assembly based on measured sine-sweep data for
frequency range 6–100 Hz

5.5.4 Nonlinear Characterisation

Nonlinear characterisation helps in determining the type of nonlinearity in the structure and in addition seeks to provide
answers to some major questions that arise when dealing with nonlinear system. Some of the typical questions that arises are
listed below:

(a) What is the strength of the nonlinearity? i.e. is it weak or strong nonlinearity
(b) What is the source of the nonlinearity? i.e. is it stiffness or damping nonlinearity or both
(c) What is the nonlinear stiffness characteristic? i.e. is it hardening or softening
(d) What is the characteristic of the restoring force? i.e. is it symmetric or asymmetric

Of all the characterization methods available in the literature, the Acceleration Surface Method has proven its ability to
characterize the stiffness and damping properties of a nonlinear structure due to its in-built characterization competences.
By presenting the restoring force surface results for a nonlinear structure as a function of the displacement, velocity and
acceleration in a three-dimensional plot, it is possible to visualize the type of nonlinearity in the system. The stiffness and
damping properties of the nonlinearity can also be visualized by taking a slice of the three-dimensional plot at zero values of
the corresponding velocity and displacements.
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Fig. 5.22 3D and 2D Acceleration Surface Method results between 6.5 and 8.2 Hz at the pylon connection

In this case, narrow band sine-sweep test was conducted around the first of mode (6.5–8.2 Hz) of the plane assembly
at high level of excitation this mode was observed as the mode that activates the connection between the left pylon and
the left wing of the plane. The acceleration surface was computed using acceleration data measured at the bottom surface
of the wing and the pylon for the selected mode, the velocity and displacement vectors were obtained by integrating the
acceleration vectors of the selected points. These measured points were selected to visualize the nonlinear behaviour caused
by the connection. To visualise the form of elastic nonlinearities in this connection, a cross section along the axis of the zero
velocity value of the acceleration surface plot in was plotted and presented on the second plot of Fig. 5.22.

5.6 Conclusion

This paper has presented a case study on investigating the nonlinearities observed during the experimental campaign of
a demo aircraft structure designed to understand the side effects of nonlinearities caused by bolted joints and multibody
assemblies. The overall aim of the paper was to demonstrate the application of a selected number of techniques for
experimental identification of the demo aircraft structure with nonlinear features incorporated in the design. The aim was
achieved by three different types of experimental test, the type of test included Random excitation test which was used for
the linear identification. The second test was based on sine-sweep and stepped sine excitation test, results obtained from
this test were used to detect and ascertain the existence of nonlinearity in the measured time response envelop. The overall
results obtained from this investigation has demonstrated the presence of a bilinear type of nonlinearity in the structure and
it is therefore important to include such nonlinear phenomena in the finite element model of the structure. Starting from the
validated linear Finite Element model, future activities will aim at finding simplified yet accurate ways of introducing the
experimentally characterized nonlinear behavior in the aircraft and pylon models.
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Chapter 6
Sensor Placement for Multi-Fidelity Dynamics Model Calibration

G. N. Absi and S. Mahadevan

Abstract This paper studies a multi-fidelity resource optimization methodology for sensor location in the calibration of
dynamics model parameters. Effective calibration can only be achieved if the information collection in the experiments is
successful. This requires a thoughtful study of the sensor configuration to maximize information gain in the calibration
of system parameters. This paper proposes a framework for optimizing the sensor number and locations to maximize
information gain in the calibration of damping parameters for non-linear dynamics problems. Further, we extend the basic
framework to the case of multi-fidelity modeling. In the presence of models of multiple fidelity, runs from the high-fidelity
model can be used to correct the low-fidelity surrogate and result in stronger physics-informed priors for calibration with
experimental data. This multi-fidelity calibration allows the fusion of information from low and high-fidelity models in
inverse problems. The proposed sensor optimization methodology is illustrated for a curved panel subjected to acoustic and
non-uniform thermal loading. Two models of different fidelity (a time history analysis and a frequency domain analysis) are
employed to calibrate the structure’s damping parameters and model errors. The optimization methodology considers two
complicating factors: (1) the damping behavior is input-dependent, and (2) the sensor uncertainty is affected by temperature.

Keywords Bayesian calibration · Multi-fidelity · Optimization · Sensor location · Structural dynamics

6.1 Introduction

Inferring unknown system parameters in dynamics problems is a critical initial task in understanding the behavior of a
structure. The success of a calibration exercise depends on the quality of the information extracted from an experimental
setup and is directly related to the sensor configuration. This paper proposes a framework that optimizes the number and
location of strain gages in test structures with non-linear dynamics such that the information gain in calibration of the
unknown system parameters is maximized.

Several different metrics for information gain have been investigated in the literature. Some studies have used the Fisher
information matrix to optimize sensor location. Shah and Udwadia [1] define a method of finding the optimal location for a
single sensor in a building structure to calibrate the shear stiffness. Kammer [2] maximizes the trace of the Fisher information
matrix to find a sensor configuration set from a larger candidate set that maintains independence of the finite element model
target modes partitions. Kirkegaard and Brincker [3] investigate the influence of the increasing number of sensors on the
noise-to-signal ratio at the optimal sensor locations. Heredia-Zavoni et al. [4, 5] have focused on minimizing the Bayesian
loss function in the trace of the inverse Fisher information matrix to find the optimal sensor location to calibrate lateral
stiffness and base flexibility in multiple degrees of freedom shear systems.

In the presence of large data sets, the determinant of the Fisher information influences the information entropy [6]. Studies
have used different entropy measures to quantify information gain. Papadimitriou et al. [7] minimize the uncertainty in the
model parameter estimates by minimizing the information entropy measure, also known as Shannon’s entropy. Papadopoulou
et al. [8] use the joint entropy measure to select optimal sensor locations for the purpose of improving predictions of wind
flow around buildings. Hu et al. [9] use the relative entropy measure, i.e., the Kullback Leibler divergence, in optimizing
experimental input settings in order to maximize information gain for calibration of thermal conductivity and volumetric
heat capacity in heated concrete slabs.

Work in structural health monitoring (SHM) has also focused on strain gage location optimization. Abdullah et al. [10]
studied the optimization of sensors (or controllers) in discrete locations for control of civil engineering structures. Raich and
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Liszkai [11] optimize the location and number of sensors to maximize the quality of the information collected in addition
to the location of the excitation in a multi-objective optimization approach. Guratzsch and Mahadevan [12] optimize sensor
location to detect damage in structures under transient mechanical and thermal loading.

When model parameters are constant and/or deterministic, it has been shown that optimizing the location of one sensor
may be enough for calibration [13]. However, when the system parameters and/or the model errors are spatially variant,
optimization becomes more challenging [14].

This work aims to optimize the number and location of sensors in the calibration of unknown system parameters that are
dependent on multiple inputs in non-linear structural dynamics by maximizing the information gain in the parameters’ joint
posteriors. We also consider the effect of the input on the sensors by including an input-dependent degradation function in
the sensor uncertainty measure. We further extend the optimization framework to model calibration problems where models
of multiple fidelity are used. The proposed sensor optimization methodology is illustrated for a curved panel subjected to
acoustic and non-uniform thermal loading.

6.2 Background

The sensor location optimization developed in this paper can be applied to single fidelity models as well models with multiple
fidelity. In this paper, the emphasis is on calibration of input (temperature) dependent damping parameters, spatially varying
errors, and input-depending experimental errors in the presence of models of multiple fidelity.

6.2.1 Damping Calibration

Structural dynamics models are typically formulated as:

[M]
{ ..
x(t)

}+ [C]
{ .
x(t)

}+ [K] {x(t)} = {f (t)} (6.1)

where the mass matrix [M] and the stiffness matrix [K] can be calculated based on measurements, and the damping matrix
[C] inferred from results in an experimental setup of the structure under dynamic excitation.

Damping is associated with the dissipation of energy in a vibrating structure. Different types of damping can be present,
and the structural configuration of an experimental setup dictates which type of damping dominates [15]. A broadening of
the resonant peak of the frequency response curve under amplified acoustic loading in some experiments [16] motivated
studying the effect of input on damping values in non-linear applications.

6.2.2 Bayesian Calibration

Calibration of model parameters may be performed using Bayes’ theorem as

πθ (�|Yobs) ∝ πθ (�) .L (�) (6.2)

where π�(�| Yobs) is the posterior distribution of the parameter the data �after calibration with the dataYobs, π�(�)is
the prior distribution of�, and L(�) is the likelihood function or the probability of observing Yobs for a specific value of
the calibration parameter. Markov Chain Monte Carlo (MCMC) sampling can be used to draw samples from the posterior
distributions. Several algorithms are available for MCMC sampling: Metropolis-Hastings [17], Gibbs sampling [18], slice
sampling [19], etc. In this paper, and for illustration purposes, we use slice sampling to evaluate Eq. 6.2. Using MCMC
sampling methods is usually very expensive: thousands of samples are needed to correctly estimate the posterior distributions.
Expensive simulation models need to be replaced by cheaper surrogates. Many surrogate modeling techniques can be used for
that purpose such as polynomial-based response surfaces [20], artificial neural networks [21], polynomial chaos expansion
[22], and Gaussian process (GP) interpolation (or Kriging) [23]. Here, we illustrate our approach using a polynomial chaos
expansion (PCE) regression model.
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6.2.3 Kullback–Leibler Divergence

It is well established that a significant posterior distribution change compared to a prior distribution in a calibration exercise
implies significant information gain in the calibration process. In order to optimize the sensor location to include the most
relevant information into the calibration, we pick the sensor number and locations that yield the largest posterior changes in
calibration. The changes can be reflected in a shift of the posteriors (bias change), a reduction in the uncertainty, or both. In
order to account for both the bias and uncertainty changes, we use the Kullback-Leibler (KL) [24] divergence calculation.

KL divergence is a non-symmetric measure of the relative entropy between two probability distributions. It has been used
as a measure of information lost when a new distribution is trying to approximate an old one or as a measure of information
gain when the gain is reflected by a large divergence of the posterior distribution compared to the prior in calibration. The
latter measure is of interest in the context of calibration.

Assume p(x) and q(x) are two probability distributions of a random variable x. The KL divergence KLD of q(x) compared
top(x) is defined as:

KLD (p(x) ‖ q(x)) =
∞∫

−∞
p(x) ln

p(x)

q(x)
dx (6.3)

Note that KL divergence is not a distance measure: KLD(p(x) ‖ q(x)) 
= KLD(q(x) ‖ p(x)). In addition, KLD(p(x) ‖ q(x)) ≥ 0
and KLD(p(x) ‖ q(x)) = 0 if and only if p(x) = q(x) for all x.

In this paper, we compute the KL divergence for the joint posterior distribution compared to the joint prior distribution
within the optimization algorithm.

6.3 Sensor Location Optimization

The optimized selection of sensor locations in the experiments can be applied in the general case where only one model
is available (single fidelity example) or in the case of multi-fidelity simulations. We consider a grid of candidate sensor
locations in the experimental setup and find the optimal number and location of the sensors to retain the most information
in the calibration of system parameters. The optimization objective is to select the sensor locations that maximize the KL
divergence between the joint prior distribution of the calibration parameters and the model errors and their joint posterior
distribution.

Since we cannot run experiments with actual sensors in all candidate locations, we replace the experimental observations
with synthetic observed data. In the case of multi-fidelity modeling, the synthetic experimental data can be sampled using
the multi-fidelity model (i.e., a low-fidelity surrogate corrected with high-fidelity simulations at all possible candidate sensor
locations), with an added noise term.

We start by selecting a low number of sensors from the candidate locations. We then calibrate the system parameters for
different location combinations of the sensors and calculate the KL divergence of the posterior distributions with regards to
the priors for each location combination. The optimal location consists of the location at which the calculated KL divergence
is maximized. Since the candidate locations are discrete, we employ a discrete optimization algorithm such as simulated
annealing for this purpose. We repeat the optimization methodology for an increasing number of sensors. Convergence is
reached when adding more sensors does not yield higher KL divergence values from the previous case.

6.4 Numerical Example

6.4.1 Problem Description

The application is a simplified representation of an aircraft fuselage panel subjected to dynamic acoustic loading (P) and
high temperature loads (T). The panel is curved (Fig. 6.1) and modeled using the FEA software ANSYS.
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Fig. 6.1 Curved panel dimensions and strain gage locations (units: cm)

Fig. 6.2 Temperature distribution in experimental setup (left) and ANSYS model (right)

The acoustic load is assumed to be a uniform pressure on the plate surface, with testing magnitudes of 160, 166, 172 and
178 dB. The temperature load follows the experimental setup distribution as seen in Fig. 6.2. A laser beam centered at the
center of the panel heats it for temperatures of 120 and 180 ◦F.

The experimental setup is simulated using two different models: a high-fidelity time-history analysis, and a low-fidelity
power spectral density analysis. Both models have the same mesh size and consider a non-linear stress-strain relationship
(material non-linearity). For more details on the models physics, and for discussion regarding the non-linearity of the
analysis, please refer to [25]. Two types of damping need to be calibrated: Frictional damping (FD), a type of Coulomb
damping resulting from the friction on the boundary of the panel with the experimental setup, and material damping (MD) or
Raleigh damping throughout the remainder of the plate. FD and MD are assumed linear functions of the temperature gradient
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Fig. 6.3 Optimized location for three strain gages

�T = T − TRoom = T − 70. We also calibrate the fixity ratio, which is the length of fixed plate boundary divided by the total
boundary length, to account for the uncertainty with respect to the boundary conditions. Lastly, knowing that the recorded
strain doesn’t start at the initial time of the experiment, we include an initial stress (IC) on the plate in the form of a uniform
pressure on the panel in the calibration variables. The model form errors are considered input dependent too. We also assume
that high temperature affects the strain recordings, and we account for that in the form of an exponential degradation function
of the variance of the experimental error. The aim is to find the optimal number and location of the experimental strain gages
to efficiently calibrate the damping coefficients.

6.4.2 Sensor Location Optimization Results

Calibration of the damping parameters as well as the fixity ration, initial conditions, and model errors was done for three
sensors. The calibration strain gages with the maximum KL divergence were found to be at (5,10,15). Figure 6.3 shows these
locations on the curved panel:

Subsequent optimizations for increasing numbers of strain gages can be done until convergence is reached, i.e., when
adding more strain gages does not increase the gain in information in the joint posterior distributions (no increase in
subsequent KL divergence values).

6.5 Conclusion

This work provides a framework for selecting the optimal number and locations of strain gages in non-linear dynamics
experiments for the purpose of model calibration, in the presence of multiple inputs. It takes into consideration the strain
gage uncertainty as an increasing function of the input temperature and selects the optimal number and location of the
strain gages that maximizes the information gain in calibration. Future work needs to address the computational challenges
associated with a large number of candidate sensor locations.
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Chapter 7
Application of Cumulative Prospect Theory to Optimal
Inspection Decision-Making for Ship Structures

Changqing Gong, Dan M. Frangopol, and Minghui Cheng

Abstract The selection of optimal maintenance solutions under uncertainty is affected by the risk perception of decision-
makers. The solution predicted by the minimum expected cost criterion may not conform to the preferences of decision-
makers. The aim of this paper is to develop a risk-informed maintenance decision-making framework for corroding ship
structures considering risk perceptions. Cumulative prospect theory is employed to model the choice preferences under
uncertainty. The optimal ship maintenance strategy is developed as a single goal to maximize the expected prospect value.
The uniform inspection interval is assumed to be the only design variable and a condition-based repair policy is considered.
Monte Carlo simulations are employed to obtain the distribution of the maintenance and failure costs within the considered
service life. The application of the developed framework is demonstrated on a ship hull girder structure.

Keywords Risk perception · Cumulative prospect theory · Ship risk · Inspection optimization

7.1 Introduction

Corrosion is one of the most common threats to the safety of ship structures [1]. Under chloride marine environment,
corrosion on the surface of plates and stiffeners can grow over time. Without proper inspection and repairing to arrest
or eliminates corrosion, plastic collapse of the hull girder may eventually occur as the result of cross-section reduction.
Significant uncertainties are inherent to corrosion propagation, external wave loading, and hull girder resistance, among
others. Maintenance decisions are usually made in the presence of uncertain ship structural performance. Ship maintenance
involves expensive labor and material cost. There is a need for an optimal planning framework that can comprehensively
consider optimum maintenance budget allocation, corroding structural performance uncertainties, and perceptions of risk of
decision-makers.

The minimum expected cost criterion is widely used to select optimal design and maintenance solutions for structures and
infrastructure systems [2–4]. This criterion is sufficient if decision-makers are risk-neutral to the high-order magnitude of cost
uncertainties, e.g., variance [5]. However, because of the subjective perceptions of uncertainty, the “optimal” implied by the
minimum expected cost may not be the most desirable to the decision-maker. For example, among the choices with the same
expected cost, a risk-prone decision-maker prefers the one with greater uncertainty to obtain potential small cost returns.
Utility theory transforms solution outcomes into utility values based on the risk attitude of decision-makers. Risk neutrality,
aversion, and propensity are characterized using linear, concave, and convex functions, respectively [6]. Most preferred is
a solution with the maximum sum of utility values of possible outcomes weighted by their respective probabilities. Utility
theory has been incorporated in the civil and marine maintenance framework to capture the impact of decision-makers’ risk
attitudes [7–10]. These studies reveal that utility theory can act as a simple practical tool in guiding the selection among
competing maintenance solutions. Nevertheless, empirical observations show that actual decision-making under uncertainty
deviates from the prediction by utility theory [11]. People are observed to evaluate choices based on losses and gains relative
to a reference point. People are found to be risk-averse over gains, risk-prone over losses, and more sensitive to losses than
gains. In addition, people do not weight the probabilities linearly and tend to subjectively distort the physical probabilities by
overemphasizing small probabilities and underemphasizing large probabilities [11]. To accommodate the observed cognitive
behavior, cumulative prospect theory (CPT) is developed and considered to be a dominant alternative to utility theory. The
optimal seismic design of civil structures based on CPT has been presented in [5, 12]. The advantage and flexibility of CPT
in modeling risk decision-making are demonstrated in these studies.
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In this paper, an attempt is made to incorporate CPT in the corroding ship hull structure maintenance planning to explore
the optimal solution to decision-makers’ choices from the perspective of risk perception. To this end, the optimal maintenance
is investigated by maximizing the preference characterized by CPT. The design variable selected is the inspection time. It is
assumed that ship components are repaired after inspection if their corrosion depth reaches the allowance of the Classification
Societies Rules [13]. The uncertainties associated with material strength, geometry, corrosion growth rate, bending resistance
model, and external loadings are considered. The distributions of ship life-cycle maintenance and failure costs are computed
using Monte Carlo simulation, and CPT preference is evaluated on this basis.

7.2 Cumulative Prospect Theory

CPT consists of a value function and a probability weighting function. The value function describes the desirability of
the solution outcome (e.g. cost). Contrary to the utility function considering the consistent risk attitude for all outcomes, the
value function is convex for losses and concave for gains, in agreement with the observed people’s risk-prone and risk-averse
behaviors for losses and gains, respectively. Losses and gains are classified according to a reference point, which represents
decision-makers’ expectation of future outcomes [14]. The weighting function is inverse S-shaped, reflecting the fact that
people subjectively overweight small probabilities and underweight moderate and high probabilities in the decision-making
process [11].

Consider a set of possible monetary outcomes relative to the reference point in ascending order G = (x1, p1; . . . , xn, pn),
where pi denotes the probability of the i-th monetary outcome xi (i = 1, 2, . . . , n) with

∑n
i=1 pi = 1. According to CPT,

decision-makers choose an alternative that maximizes the expected prospect value [11]:

E [V ] =
m∑
j=1

π−
j v
(
xj
)+

n∑
k=m+1

π+
k v (xk) (7.1)

where xj (j = 1, . . . , m) ≤ 0; xk (k = m + 1, . . . , n) ≥ 0; v(•) is the prospect function; π−
j (j = 1, . . . , m) and π+

k (j = m + 1,
. . . , n) are decision weights for losses and gains, respectively. The decision weights are [11]

π−
1 = w− (p1) , π

+
n = w+ (pn) (7.2a)

π−
j = w− (p1 + · · · + pj

)− w− (p1 + · · · + pj−1
)
, if 1 < j ≤ m (7.2b)

π+
k = w+ (pk + · · · + pn)− w+ (pk+1 + · · · + pn) , if m < k < n (7.2c)

where w+(·) and w−(·) are the weighting functions for gains and losses, respectively. Tversky and Kahneman [11] suggests
probabilities weighting functions w+: [0, 1] → [0, 1] for gains and w−: [0, 1] → [0, 1] for losses, respectively, as

w+ (·) = (·)b+

(
(·)b+ + (1 − (·))b+)1/b+ (7.3a)

w− (·) = (·)b−

(
(·)b− + (1 − (·))b−)1/b− (7.3b)

with b− and b+ ∈ (0,1). The value function is defined as

v(x) =
{
xa, if x ≥ 0
− λ(−x)β, if x < 0

(7.4)

where λ specifies loss aversion degree with λ ≥ 1; α, β ∈(0, 1) are the exponential parameters. λ is introduced to reflect more
sensitivity to losses than gains. Tversky and Kahneman [11] found that α = β = 0.88, λ = 2.25, b− = 0.69, and b+ = 0.61.
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7.3 Reliability Assessment

7.3.1 Limit State Function

Subjected to global still waver and wave-induced vertical bending moment, the most critical ship failure mode is the ultimate
collapse of the hull girder cross-section at mid-span [15]. This failure mode can result in the loss of the ship and its cargo,
causing significant economic and environmental consequences. The limit state function associated with the hull girder at
mid-span is [15]

G = ξuMu − ξswMsw − ξwξw,nMwe (7.5)

where Mu is the ultimate vertical bending capacity of the hull girder; Msw is the maximum still water induced moment
at mid-span during one voyage; Mwe is the annual maximum wave-induced bending moment; ξu and ξ sw are the model
errors for predicting the ultimate bending capacity and still water moment, respectively; ξw and ξw,n are the model error
of wave-induced moment predictions, respectively. Note that ξw specifically accounts for the uncertainty of linear response
prediction, and ξw,n is a correction factor considering the nonlinearity of responses due to hull flare and large ship motion
amplitude [15].

7.3.2 Ultimate Bending Capacity

The vertical bending strength is predicted using simple analytical expressions by Paik and Mansour [16]. This method
assumes that the hull girder cross-section fails by overall plastic collapse when the tensile flange yields and compression
flange reaches the ultimate buckling strength. With the assumed longitudinal stress distribution over the cross-section, the
ultimate bending strength of the hull girder in sagging (Mus) and hogging (Muh) conditions are [16]

Mus = −AD (D − g) σuD − As

D
(D −H) (D +H − 2g) σuS − ABgσyB + A′

B

H
(g − DB)

[
DBσuS − (H −DB) σyS

]

−ASH
3D

[
(2H − 3g) σuS − (H − 3g) σyS

]
(7.6)

Muh = ADgσyD + AB (D − g) σuB + A′
B (D − g −DB) σ ′

uB + ASH

3D

[
(2H − 3g) σuS − (H − 3g) σyS

]

+AS
D
(D −H) (D +H − 2g) σuS (7.7)

where D is the hull girder depth; DB is the double bottom height; AB, A′
B , AD, and AS are the total sectional area of the outer

bottom, inner bottom, deck, and half-sectional area of the side, respectively; g denotes the neural axis position; H is the depth
of hull section in linear elastic state; σ yB, σ yS, and σ yD are the yield strength of the bottom, side, and deck, respectively;
σ uB, σ ′

uB , σ uD, and σ uS are the ultimate compression strength of the bottom, inner bottom, deck, and side, respectively. For
the detailed calculation of g and H, readers are referred to Paik and Mansour [16]. The flange and side of the ship hull girder
are stiffened panels with spaced flat, angle or T-bars. A stiffened panel consists of stiffened plate elements with stiffeners
of various sizes. The strength of stiffeners is typically higher than that of plates. The ultimate strength of the flange and
side is approximated as the equivalent value strength of stiffened plate elements. Similarly, the yield strength of a stiffened
plate element equals the equivalent yield strength of the plate and its stiffener. The ultimate compression strength, σ u, of a
stiffened plate is evaluated using the following formulations [17]:

σu/σye =
(

0.995 + 0.936λ2 + 0.107β2 + 0.188λ2β2 − 0.067λ4
)−0.5

(7.8a)

λ = l

πr

√
σye

E
(7.8b)

β = b

wt

√
σyp

E
(8.8c)
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where σ ye is the equivalent yielding strength of the stiffened plate; l is the longitudinal stiffened plate length between
transverse webs; r is the gyration radius of the stiffened plate; E is Young’s modulus; b is the breadth of the plate between
longitudinal stiffeners; and wt is the wall thickness of the plate.

7.3.3 Still Water Bending Moment

Still water bending moment is caused by the difference in distribution between weight and the buoyancy force along the ship
longitudinal direction. In the ship loading manual [13], it is recommended that maximum bending moment is calculated as

(a) for sagging condition

Msw,max = −0.05185CwvL
2B (Cb + 0.7) KNm (7.9a)

(b) for hogging condition

Msw,max = 0.01CwvL
2B (11.97 − 1.9Cb) KNm (7.9b)

where B is the ship breadth; Cb is the ship block coefficient; L is the ship length; Cwv is the wave coefficient given as [13]

Cwv =
⎧⎨
⎩

10.75 − [(300 − L) /100]1.5 for 90 m ≤ L ≤ 300 m
10.75 for 300 m ≤ L ≤ 350 m

10.75 − [(L− 350) /100]1.5 for 350 m ≤ L ≤ 500 m
(7.10)

In addition to the ship size, still water moment is also dependent on the ship type and load condition. During one voyage,
the maximum still water moment can be different because of the fuel consumption and load redistribution. There exit
uncertainties associated with the maximum still water moment. Statistical analysis of various types of ships on a number
of voyages found that the maximum bending moment during one voyage can be described using a normal distribution with
the mean and standard deviation given, respectively, as μsw = γ 1Msw,max and σ sw = γ 2Msw,max, where γ 1 = 0.70; γ 2 = 0.20
[18].

7.3.4 Wave-Induced Bending Moment

The wave-induced moment is the result of hull girder hydrodynamic response under the dynamic distribution of buoyancy
forces. By assuming the wave in the short period as a stationary Gaussian process, the response can be predicted using
the stochastic spectrum analysis with the peak moment response at a random time point approximated as a Rayleigh
distribution [15]. In a long time duration, the ship experiences a variety of different sea states. To account for this, the
Rayleigh distribution is weighted proportional to the time the ship spent in different sea states. Statistical analysis based on
the sea wave condition given in the IACS North Atlantic scatter diagram shows that the weighted Rayleigh distribution can
be approximated by the Weibull distribution [15]:

FMe (me) = 1 − exp

[
−
(me
w

)k]
(7.11)

where k = 1; w = −Mw,max/ln10−8; Mw,max is the maximum wave-induced bending moment in the ship loading manual [13],
which is given as:

(a) for sagging condition

Mw,max = −0.11CwvL
2B (Cb + 0.7) KNm (7.12)
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(b) for hogging condition

Mw,max = 0.19CwvL
2BCb KNm (7.13)

For a period of one year, in-service ships experience many peak cycles. It follows that the annual maximum wave-induced
bending moment is described by Gumbel distribution

FMwe (mwe) = exp

[
− exp

(
−mwe − λ0

θ0

)k]
(7.14)

where λ0 and θ0 are the characteristic value and scale parameter of Gumbel distribution, respectively. The parameters of
Gumbel distribution are [18]

λ0 = w

[
ln

(
acTr

Tw

)]k
and θ0 = w

k

(
ln

(
acTr

Tw

)) 1−k
k

(7.15)

where Tr is the considered reference time, i.e., Tr = 1 year; Tw is the average wave period, i.e., Tw = 8.0 s; ac is a factor
accounting for the time fraction of a load condition, e.g., ac = 0.35 for a full load condition.

7.4 Ship Life-Cycle Cost

Within the considered service life, the life-cycle cost of ship hull girder is

C0 =
nin∑
l=1

Cin

(1 + v0)
Tin,l

+
nrep∑
l=1

Crep

(1 + v0)
Trep,l

+
nf∑
l=1

Cf

(1 + v0)
Tf,l

(7.16)

where v0 denotes the discount rate; nin, nrep, and nf are the number of inspections, repair, and failure events, respectively;
Tin,l, Trep,l, and Tf,l are the time of the lth inspection, repair, and failure, respectively; Cin, Crep, and Cf are the costs of
inspection, repair, and ship failure, respectively. In the CPT assessment, the overall monetary cost is expressed as CR = R −
C0, where R denotes the reference cost. The cost of repairing a ship structural element includes material, welding, labor, and
electricity costs, while the failure cost includes the direct cost of the ship structure and cargo loss, as well as indirect costs of
environment pollution and spillage clean-up, and loss of human life. A detailed repair cost estimate is presented in [19].

7.5 Optimization Framework

7.5.1 Repair Policy

The detailed inspection of the ship hull girder is periodically conducted on an empirical basis of five years [20]. For
inspection, the ship is transported to a dry dock and the net thickness of the ship’s steel plates are measured by ultrasound
equipment. Classification Societies specifies that corroded structural elements are replaced with new ones if the renewal
criterion is satisfied [13]: tm < tas-built − twas, where tas-built is the as-built thickness; tm is the measured thickness; twas is
the double side waste allowance, rounded up the nearest 0.5 mm. The as-built thickness is the sum of the structural design
thickness plus corrosion addition. Corrosion addition adds a safety margin against corrosion. Since distinct environment
exists across the mid-ship section, the corrosion growth rates of structural elements of the deck, sides, and bottom plating
are different. To account for this, corrosion wastage allowance given by Classification Societies is specific to the location of
the mid-ship section [13].
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7.5.2 Inspection Optimization

The empirical ship inspection interval does not necessarily imply the optimal. As mentioned previously, the optimal solution
under uncertainty is often selected by minimizing the expected life-cycle cost, E[C0]. CPT is better in predicting the
preferences among choices. The optimal inspection interval, tin, in this paper is therefore investigated by maximizing the
CPT prospect value corresponding to the distribution of life-cycle cost. The optimization formulation is as follows

Find tin (7.17a)

Minimize E [V] (7.17b)

The distribution of the life-cycle cost is calculated using the Monte Carlo simulation. It is assumed that throughout the
considered time, the repair of ship structural elements is only applied after inspection. This assumption is in agreement with
repair policy specified in IACS [13].

7.6 Case Study

A double hull tanker adapted from Hu et al. [21] is utilized to illustrate the application of the developed decision-making
methodology. The ship has a length of L = 168 m and a breadth of B = 28 m. The length of the longitudinal stiffeners
between transverse webs is l = 3925 mm. It is assumed in this study that the ship has a block coefficient of Cb = 0.48 and
a hull girder depth of D = 16 m. The mid-ship section of the double hull girder is shown in Fig. 7.1 with a close-up view
of a structural member. The structure members are labeled with a number (1–81). Table 7.1 lists the nominal values of the
geometry dimension and material properties of structural members. In the simulation analysis used for obtaining the life-
cycle cost, bp, hw, and bf are assumed to be deterministic, while tp and tf are normally distributed with the mean equal to the
nominal value given in Table 7.1 and the coefficient of variation (COV) of 0.1. It is further assumed that for each structural
member, Young’s modulus, E, follows a normal distribution with the mean of 205,800 MPa and COV of 0.03. A linear
corrosion model is adopted to predict the time-variant uniform corrosion depth on the surface of the plating and stiffeners.
Table 7.2 summarizes the probabilistic characteristics of corrosion parameters. All the random variables representing the
same physical parameters associated with different structural members are assumed partially dependent with the correlation
coefficient of 0.5. The variables representing the same parameters are assumed to be independent.

Fig. 7.1 Mid-ship cross-section of the tanker (adapted from Hu et al. [21])
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Table 7.1 Geometry and material property of structure elements in Fig. 7.1 (adapted from Hu et al. [21])

Plating Stiffener
Member number bp (mm) tp (mm) σ yp (MPa) hw (mm) tw (mm) bf (mm) tf (mm) σ yp (MPa)

1,6,11 800 15 235 1050 10.5 300 15 235
2–5, 7–10 800 12.5 235 350 9 90 13 353
12–15 800 14 235 300 10.5 100 15 353
16–17 800 14 235 200 9 90 12 353
18–43 750 12.5 235 300 10.5 120 16 235
44–56 750 13.5 235 350 10.5 120 18 235
57–60 750 12.5 235 350 10.5 120 16 235
61–73 750 14 235 350 10.5 120 16 235
74–81 1100 14 235 350 10.5 120 18 235

Table 7.2 Probabilistic characteristics of corrosion growth parameters

Variable Distribution Mean COV

Coating life (years) [2] Deterministic 3 –
Deck plating corrosion rate (mm/year) [22] Weibull 0.065 0.5
Side plating corrosion rate (mm/year) [22] Weibull 0.03 0.1
Inner and outer bottom plating rate (mm/year) [22] Weibull 0.17 0.5

Fig. 7.2 Wastage allowance, twas, at different ship locations (mm) (according to IACS [13])

The wastage allowance for structural member renewal according to IACS [13] is described in Fig. 7.2. The ship inspection
cost is assumed to be $200,000. Using the repair cost estimation method developed by Rigterink et al. [19], the average
member repair cost of the plate for the considered hull girder is $461 per m2. It is further assumed that the length of repaired
structural members is equal to the longitudinal length between transverse webs.

The failure cost is estimated at $298 million, calculated based on the empirical equation provided by Guia et al. [23],
assuming the ship deadweight of 166,300 ton and ignoring the ship scrapping value loss. The money discount rate is assumed
to be 5%. The total number of simulation samples is 105 The reference point in CPT is dependent on the expectations
of decision-makers. To avoid introducing subjectivity by assuming an arbitrary value, parametric studies are conducted
considering a set of reference cost values R = {$0, $104, $106, $108}.



72 C. Gong et al.

Fig. 7.3 Expected life-cycle cost and expected prospect value with a varied inspection time interval from 2 to 30 years

Fig. 7.4 Cumulative failure probability for different inspection time intervals

Figure 7.3 shows the expected prospect value as the inspection interval increases from 2 to 30 years, together with the
expected cost. Note that the magnitude of prospect values with different reference point is distinct. Direct comparison of
absolute values obtained assuming different reference points is meaningless [5]. In Fig. 7.3, the prospect values are scaled
such that the preference trends can be easily compared. The shaded markers imply the optimal solutions for different criteria.
It is showed in Fig. 7.3 that the inspection interval for minimizing the expected life-cycle cost is 12 years. The optimal
inspection time suggested by CPT is 6 years when R = $0, $104, and $106, while the optimal solution is 4 years when
the reference cost is R = $108. This indicates that the expectation of the life-cycle cost of decision-makers can affect the
preferred inspection interval but not in a significant manner. The life-cycle costs with tin = 4 and 6 years are $1.20 million
and $0.96 million, respectively, both of which are larger than the minimum life-cycle cost of $0.78 million. This suggests that
CPT results in optimal inspection intervals that are different from the optimal based on the minimum expected cost criterion.
The time-variant cumulative probabilities corresponding to the four selected optimal solutions are plotted as a function
of forecast time in Fig. 7.4. It is seen that in this case the inspections with repair action based on the corrosion wastage
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allowance reduce the cumulative failure probability at year 31 from 2.31% to 0.23% (tin = 4 years), 0.25% (tin = 6 years),
and 0.38% (tin = 12 years), respectively. The cumulative failure probabilities associated with tin = 4 and 6 years throughout
the considered time are similar, whereas that with tin = 12 years are higher. tin = 12 years leads to the minimum life-cycle
cost. In this case, the expected maintenance cost dominates the expected failure cost because of the small failure probabilities.

7.7 Conclusions

In the presence of uncertainty, ship operators need to determine the optimal inspection and repair schedules that consider not
only the cost-effectiveness of maintenance investment but also people’s inherent risk perceptions. This paper uses CPT to
investigate the optimal inspection interval of corroded ship hull girders subjected to collapse failure. To this end, Monte Carlo
simulation is employed to compute the distribution of life-cycle costs, in which a condition-based industry repair policy is
implemented, namely, structural members are replaced when corrosion penetration exceeds the wastage allowance given in
IACS [13]. The optimal solution is explored by maximizing the expected prospect value of CPT with the uniform inspection
time interval selected as the design variable. The methodology is demonstrated on a hypothetic ship hull girder. The optimal
solutions dictated by the minimum E[C0] and E[V] are compared. The analysis results show that, for the considered example,
considering risk perception using CPT leads to inspection plans that have a higher expected life-cycle cost than the minimum
E[C0]; the impact of the reference point in CPT has no impact on the preferred inspection interval unless a significantly large
cost is assigned as reference cost.
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Chapter 8
Establishing an RMS von Mises Stress Error Bound for Random
Vibration Analysis

David Day, Moheimin Khan, Michael Ross, and Brian Stevens

Abstract The root mean square (RMS) von Mises stress is a criterion used for assessing the reliability of structures subject
to stationary random loading. This work investigates error in RMS von Mises stress and its relationship to the error in
acceleration for random vibration analysis. First, a theoretical development of stress-acceleration error is introduced for a
simplified problem based on modal stress analysis. Using results from the example as a basis, a similar error relationship
is determined for random vibration problems. Finite element analyses of test structures subject to an input acceleration
auto-spectral density are performed and results from parametric studies are used to determine error. For a given error in
acceleration, a relationship to the error in RMS von Mises stress is established. The resulting relation is used to calculate a
bound on the RMS von Mises stress based on the computed accelerations. This error bound is useful in vibration analysis,
especially where uncertainty and variability must be thoroughly considered.

Keywords Acceleration · Error bound · Random vibration · RMS von Mises stress · Uncertainty quantification

8.1 Introduction

Finite element models are used to analyze physical systems of interest and they contain errors that arise due to discrepancies
between the approximate model and actual system. The source of error in finite element simulations can be generally
attributed to three major factors: data input, physics model, and numerical solution accuracy [1]. When the finite element
formulation adequately represents the physics of the problem with sufficient numerical accuracy, data input becomes the
main source of error. These input errors are often due to uncertainties in loads, geometry, material properties, or boundary
conditions.

In structural analysis, a typical use for finite element analysis (FEA) is to evaluate the response of a system under a loading
condition and to make predictions, such as determining a margin using some specific criteria. Oftentimes, the quantity of
interest is stress, so any source of data input error will cause an uncertainty in stress and the resulting margin. To accurately
assess the failure of the system under consideration, it is important to be able to quantify this error relation.

For a random vibration analysis, loading is in the form of an auto-spectral density, or ASD, which is often determined
from test results. The quantities of interest are the root mean square von Mises (VRMS) stress and response acceleration
ASD. The VRMS is used to predict the failure of structures subject to probabilistic loads and accounts for the complete
frequency response of the structure [2]. Data input error arising from uncertainty in material and system properties affects
the resulting stresses and accelerations. The acceleration is an important quantity, since most random vibration tests collect
acceleration measurements at several locations in a system. Accelerometer data is often readily available, but the stress state
at a specific point in a structure may not be. Thus, it is important to quantitatively bound uncertainty and error in stress
through the acceleration.
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In this work, data input errors are used as perturbations to introduce acceleration error and evaluate the limits of the
error in stress. Three different example cases are analyzed. The first case uses the magnitude of the error in acceleration to
determine a bound on the modal von Mises stress for a free-free beam. In the second and third cases, two different beams
are studied in a random vibration setting. For these problems, the sources of error are perturbations in the modulus, density,
damping, and length. The random vibration solution uses the method presented in [2], where the VRMS stress is calculated
using modal stress and displacement amplitudes. An in-depth theoretical development is discussed and the stress-acceleration
error relation for the example problem is studied first, followed by results from the other two cases in a random vibration
context.

8.2 Theory

The equation of motion for a damped, multi-degree of freedom (MDOF) system under load F(t) can be expressed as

[m] ü(t)+ [c] u̇(t)+ [k] u(t) = F(t) (8.1)

where [m], [c], [k] are the system mass, damping, and stiffness matrices, respectively. In a direct solution, the displacements,
u(t), are computed by numerically solving the coupled partial differential equations of motion. Modal superposition, used
in modal-based methods such as random vibration, takes advantage of the modal degrees of freedom, or modal coordinates,
qn(t), to uncouple the equations using the system mode shapes, φn, as given in [3]:

un(t) = φnqn(t) (8.2)

[M] q̈(t)+ [�]T [c] [�] q̇(t)+ [K] q(t) = Q(t) (8.3)

Here, [M] = [�]T [m][�] is the modal mass matrix, [K] = [�]T [k][�] is the modal stiffness matrix, andQ(t) = [�]T F (t)
is the modal force vector. The displacements are calculated by solving the n uncoupled equations for each qn(t), which are
used to determine the strains and stresses at a given time.

In random vibration problems, the quantities of interest are statistical in nature, so a metric such as the VRMS is used
to assess failure. For random vibration of MDOF systems in the time domain, the mean square von Mises stress can be
calculated using the modal coordinates and the stress mode shapes of the structure [2],

σ 2
VRMS = E

[
p2(t)

] = ∑
i,j

Γij Tij = ∑
i,j

E
[
qi(t)qj (t)

]
Ψ σi

T AΨ σj (8.4)

Here, E[p2(t)] is the expected value, or mean, of the square of the von Mises stress, p(t) = σ (t)TAσ (t), where
σ (t)T = [σ xxσ yy σ zz σ yzσ xz σ xy]. The VRMS is calculated using the modal covariance, Γ ij = E[qi(t)qj(t)], the stress modes
�σi

T ,�σj , and matrix A, defined in [2].
In the frequency domain, the modal coordinate, qi(ω), is related to the input loads, fj(ω), by the transfer function,

Hij(ω) [2].

qi (ω) = Hij (ω) fj (ω) (8.5)

From [4], the spectral density matrix of the response, [SX(ω)], is calculated from the transfer function and the given
spectral density matrix, [SF(ω)],

[SX (ω)] = [H (ω)] [SF (ω)] [H (ω)]† (8.6)

This reduces in the case of a single input to

[SX (ω)] = |H (ω)|2 [SF (ω)] (8.7)
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In the frequency domain, the mean square von Mises stress is given as

E
[
p2(t)

] = ∑
m

∑
n

1
2π

∫∞
−∞
[
(Hσ (ω))†AHσ (ω)

]
mn
Sff (ω)mndω (8.8)

Additional steps in determining the above equation for VRMS are given in [2].

8.2.1 Theoretical Development of Acceleration Error

This section details the theory used in relating the modal stress error and acceleration error.
A model is used to attempt to predict measurements. One assumption is that the model converges to the actual

measurements under mesh refinement, so predictions can be made regarding the model errors. These predictions are initially
made on a coarse mesh. A fine mesh is also used, which is fine enough that the error is approximately the difference between
the coarse and the fine values. The purpose of this section is to describe the calculation of an error bound for the maximum
possible modal von Mises stress on the fine mesh. The input to the algorithm is:

1. A course mesh and a fine mesh
2. Mode shapes on both meshes
3. Stress mode shapes on the fine mesh
4. A linear interpolation operator called the prolongation (coarse to fine)
5. Fine mesh mass matrix
6. Normal acceleration on the coarse mesh, at some time
7. Bound on the L2 error in the acceleration at that time

The displacements u(x, t) are approximated by their value on some fine mesh, uh(x, t). A sufficiently fine mesh is chosen
such that u − uh is much smaller than uH − uh, where uH(x, t) is the displacement on the coarse mesh. Similar conditions
are required for accelerations and von Mises stress. The next assumption is that the trajectory, u(x, t), accelerations and von
Mises stress can be well approximated by the low frequency modal approximation, meaning that the modes appropriately
describe the system within a valid frequency range of interest.

Reduction to Linear Algebra

In this section, some intermediate steps are omitted, so further details are given in Appendix 1.
On the fine mesh, the modes are the columns of the mode shape vector, �h = [

φh1 , . . .
]
, defined on the mesh nodes.

The displacement, uh, has modal expansion uh (x, t) = �hi (x)q(t), where q = [q1, . . . ]. Similarly, the coarse mesh has
uH = �Hi (x)b(t), with �H = [

φH1 , . . .
]
, and b = [b1, . . . ]. Using the corresponding stress modes, Ψ h = [

ψh1 , . . .
]
,

defined at element centroids, a stress state associated with the corresponding stress mode can be obtained as

σh (x, t) = Ψ h(x)q(t) (8.9)

The von Mises stress, σ v, can be calculated from the deviatoric stress tensor, σ dev, as σv =
√

3
2

(
σdev : σdev), where “:”

denotes the double dot product. Thus, using the deviatoric stress modes, σdevh (x, t) = Ψ dev(x)q(t), the von Mises stress can
be expressed in modal terms as

σvh (x, t) =
√

3

2

∥∥∥Ψ dev(x)q(t)
∥∥∥
F

The goal is to relate to the (squared) maximum von Mises stress, max
(
σvh

)2, to acceleration error and obtain a bound, δ2,
such that

‖üh − P üH‖2
L2 < δ

2 (8.10)
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Here, the error is calculated from the Euclidean or L2 norm of üh − P üH , and P is a fine to coarse mesh transfer linear
operator called the prolongation.

The solution of the optimization problem is the maximum of the solutions over each element. Eigenvalues connect
accelerations and displacements, q̈ = −�2

hq and b̈ = −�2
Hb and rigid body modes can be ignored. Due to q = −�−2

h q̈,

there holds
(
σvh

)2 = q̈T Xq̈ for

X = [
χij
]
, χij = 3

2
Ψ dev

ω2 : Ψ dev
ω2 (8.11)

Here, X is a symmetric matrix with a positive diagonal, composed of the deviatoric stress modes and eigenvalues. The
bound on the stress is determined by solving the nonlinear Eq. (8.10). Some assumptions are made which explain how, for the
purposes of this study, solving the nonlinear equation is relatively easy because several complications do not arise. Details
are given in Appendix 1.

The basic problem is as follows: for given b̈ on the coarse mesh, to maximize
(
σvh

)2 = q̈T Xq̈ over all q̈ such that the
error in acceleration, ‖üh − P üH‖2

L2 < δ2. This provides an understanding of the relationship between the accuracy in
acceleration to the accuracy in stress, and how this bound varies with the state of acceleration on the coarse mesh, üH .

8.3 Analysis Examples

FEA was performed for three different example problems and a stress-acceleration error relationship was determined for
each case. The error is defined as the percent difference in stress or acceleration from a base model that ideally represents
the system. Using the theory presented in the previous section, the first case examines the error bound for an unsupported, or
free-free, beam. An acceleration error is imposed and the relation to the maximum modal von Mises stress error is found. The
second and third cases involve more practical examples, in which random vibration of a cantilever beam and two-material,
joint rectangular beam is considered. Material properties and beam geometry are varied (perturbed) to obtain an error in
acceleration that is related to the VRMS error. All analysis was performed using Sandia’s in-house finite element code
Sierra/SD, along with MATLAB and Python scripts.

8.3.1 Case 1: Free–Free Beam

Analysis for this problem follows the steps outlined in Sect. 8.2.1, with further details provided in Appendix 1. An
acceleration is initially applied to all nodes in the coarse mesh and the resulting L2 error in acceleration is linearly varied
from an initial δmin, to δmin + 2‖c‖, which is twice the norm of the initial fine mesh acceleration. For the free–free beam, the
maximum modal von Mises stress was calculated on the fine mesh for different values of this L2 acceleration error. Stress
and displacement mode shapes from 16 calculated modes were used.

The beam material is steel and it is 1 in. (25.4 mm) in diameter and 10 in. (254 mm) in length. The beam was meshed
with a total of 1920 8-node, linear hexahedral elements (Hex8) as shown in Fig. 8.1. All stress calculations were done on the
fine mesh, with a coarse mesh of 240 elements used to apply the acceleration, as mentioned in Sect. 8.2.1.

The resulting plot in Fig. 8.2 shows a linear relationship between the maximum stress error in the model and the
acceleration error. The modal von Mises stress distributions1 for the initial and final stress states are also presented. The
acceleration error reached a maximum of 393%, and the error in the von Mises stress was 154%, giving the maximum
stress error to acceleration error ratio of 0.392. This error ratio, defined as the maximum percent VRMS error divided by the
maximum acceleration percent error relationship provides a measure of the sensitivity of stress error change relative to the
acceleration error. It also describes how the errors are bound and is the slope of the percent error plot for a linear relation.

This relation between the maximum modal stress in the model and the acceleration error is a first step to obtaining a
practical error bound. The example case is theoretical, since the accelerations are ideally applied and the resulting modal
stresses cannot be used to directly evaluate failure. We are typically interested in more realistic boundary conditions and

1Like the mode shape amplitudes, the mode shape stresses can be arbitrarily scaled, so only the relative values are important here.
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Fig. 8.1 Free–free beam model: fine mesh

Fig. 8.2 Stress-acceleration error relationship and stress contours for lowest and highest error values

loading scenarios. Thus, the following sections describe a similar stress-acceleration relationship for beams subject to random
vibration loading.

8.3.2 Case 2: Cantilever Beam Random Vibration

In this example, a cantilever beam is subjected to a 1 g2/Hz flat random vibration input from 20 to 2000 Hz. The frequency
resolution used in the simulations is 0.1 Hz and the input ASD is shown in Fig. 8.3. The loading is applied in the positive Z
direction using a concentrated, seismic mass attached with rigid bar elements to the end of the beam. The mass is constrained
in all directions except the input to ensure uniform loading.

To obtain an error in acceleration, the data input values perturbed in the FE simulations were the material and geometric
properties, or model parameters. The modulus of elasticity, density, damping ratio (percent of critical), and length were the
selected parameters, and each was independently increased by 1% per simulation with a total of 20 simulations per parameter.
As one parameter is varied, the others are fixed to a nominal value. The output RMS acceleration in the Z-direction (AZRMS)
was studied at two different nodes (points) on the mesh and the average VRMS of the Hex8 elements sharing the point was
obtained. For this problem, the locations of the points were the same for each simulation except for the length perturbation,
where the distance from the beam end and distance between points was held constant.

The resulting absolute value in VRMS error was plotted versus the absolute value of the AZRMS error. The error for each
simulation was calculated using the following Eq. (8.12).

%Errornarms = 100
∣∣anrms−a0

rms

∣∣
a0
rms

(8.12)
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Fig. 8.3 Random vibration input (1 g2/Hz over 20–2000 Hz; 0.01 g2/Hz at 10 Hz and 2010 Hz)

Fig. 8.4 Cantilever beam model with coordinate system, input, and point location

Here, a0
rms is the RMS value at a selected point for the initial, unperturbed model and anrms is the RMS value at the

same point for the nth perturbed model, where n ranges from 1 to 20 and each subsequent n is a 1% increase in one of the
parameters. The same calculation was also done using the maximum values of VRMS and AZRMS over the entire model.

The cantilever beam dimensions are 1 in. (25.4 mm) by 2 in. (50.8 mm) by 20 in. (508 mm) and the material is aluminum.
A stress refinement study was initially performed and the final model consists of approximately 160,000 Hex8 elements.
Fig. 8.4 shows the beam model.

The response ASD at the two points of interest and the relevant mode shapes for the unperturbed, base model are shown
in Fig. 8.5. The three bending modes about the Y axis are exaggerated for visualization purposes.

Plots of the error in VRMS and AZRMS are presented for each of the parameter perturbation studies: modulus of elasticity,
damping, density, and length. In addition, the maximum VRMS stress error for each model was plotted against the maximum
AZRMS error to obtain an error bound similar to Fig. 8.2 in the previous section. A table summarizing the range of maximum
values is also given at the end of the section.

For the change in modulus, a one-to-one linear relationship was observed at both points and for the maximum values, as
presented in Fig. 8.6. A perturbation in damping also resulted in a direct linear relationship; this was expected for uniform
modal damping, so the plots are not shown here and are given in Appendix 2. The density relationship in Fig. 8.7 was also
linear, while the length perturbation exhibited some nonlinearity,2 which is especially prevalent in the Point 2 plot in Fig.
8.8. After the 16th simulation, there is a turning point in the relation at which the acceleration error decreases while the stress

2All results are for a linear elastic constitutive model and no frictional effects are considered, so the term “nonlinear” is used in the context of
describing the relationship between the errors.
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Fig. 8.5 Cantilever beam: base model response ASD and contributing modes

Fig. 8.6 Cantilever beam: effect of modulus change on stress-acceleration error relation, selected points and maximum

error continues to increase. In addition, the other two length plots look linear initially, but start behaving nonlinearly as the
acceleration error increases.

To further investigate possible sources of this nonlinear error relationship, the ASD at Point 2 was plotted for each of
the 20 length perturbation simulations. The first plot in Fig. 8.9 indicates that a fourth mode starts entering the 20–2000 Hz
frequency range once the beam length is increased past a certain point. In addition, the response due to the mode initially
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Fig. 8.7 Cantilever beam: effect of density change on stress-acceleration error relation, selected points and maximum

Fig. 8.8 Cantilever beam: effect of length change on stress-acceleration error relation, selected points and maximum

at 1374 Hz starts to increase well beyond the input level. These two factors suggest that the changing error relationship in
the Point 2 plot of Fig. 8.8 is caused by the influence of the new mode and the increased response of an existing mode. This
significant change in modes and frequencies disrupts the initially linear error relation. On the other hand, the response ASD
for the modulus perturbations shown in the second plot of Fig. 8.9 demonstrates consistency in the modes and small changes
across all 20 simulations, leading to the error relation shown previously in Fig. 8.6.

A summary of the range of stress-acceleration error and the error ratios is given in Table 8.1. The range of stress values is
also listed for reference. The data presented in the table is for the error in the maximum value at any point in the model. This
is distinct from the maximum error for a single point in model, but similar values can also be found at the individual points.
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Fig. 8.9 Cantilever beam: complete range of response ASD for length (left) and modulus (right) perturbations

Table 8.1 Cantilever beam: maximum value error summary

Perturbation VRMS range (psi/MPa) Maximum VRMS % error Maximum AZRMS % error Error ratio

Modulus 390/2.7 4.7 4.5 1.03
Damping 729/5.0 8.7 8.7 1.00
Density 1220/8.4 14.6 4.3 3.40
Length 1034/7.1 12.4 9.9 1.26

Fig. 8.10 Combined beam model with coordinate system, input, and point location for the two sections

8.3.3 Case 3: Combined Beam Random Vibration

Analysis on a two-material, combined beam was performed in the same manner as the cantilever beam, with a few
modifications. For the input loading, the ASD frequency range is changed to 100–3000 Hz and the input location is moved
to the bottom of the beam, in between the two joined sections (blocks), as shown in Fig. 8.10. The loading direction is kept
the same- in the positive Z direction. Also, two points are used to probe the acceleration and stress for each block, for a total
of four points in the combined beam model. These points are placed at the top of the blocks to study results in a different
location than Case 2.
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Fig. 8.11 Combined beam: base model ASD and modes with highest response

The combined beam model is the same overall length and mesh size as the cantilever beam, and the two blocks are joined
together, with the material properties defined independently. The model is half steel, half aluminum, with equivalenced nodes
at the interface to provide an ideal joint. The perturbation is performed similarly to the previous problem, except that the
modulus, density, and length are only changed for the aluminum beam. For the perturbed length model, the length of the
aluminum beam was increased by 0.125 in. (3.2 mm) for each simulation and the point coordinates were unchanged.

The response ASD for the base model is shown in Fig. 8.11. There are several modes across the frequency range, many
of which are close in frequency. Two of the modes that produce the highest response are also shown in Fig. 8.11.

Examining the results for the modulus perturbation in Fig. 8.12, the general trends are like those from the cantilever beam
problem. However, the error relation is clearly nonlinear. For the change in damping, a linear relationship similar to the
cantilever beam was observed, although it was not one-to-one for the maximum; the plots are given in Appendix 2. For the
density and length perturbations, the results were much more unpredictable than the previous example. The error plots for
the density change in Fig. 8.13 are nonlinear and inconsistent, with several turning points, although some sections appear
uniform. The error results for the length perturbation shown in Fig. 8.14 are also erratic.

As in the previous example, the response ASD is studied to determine the source of the inconsistency between stress
error and acceleration error. Fig. 8.15 shows the ASD at Point 1 for each simulation in the modulus perturbation study. The
modes change gradually as the modulus changes and no new modes enter the input frequency range, but the large variation
in response could contribute to the nonlinearity of the plots in Fig. 8.12.

Next, we examine possible reasons for the unpredictable error relation presented earlier. In Fig. 8.14, there is a large
AZRMS error caused by a 1% perturbation in length. From the second to the third perturbed model, an increase in length
of 0.125 in. (3.2 mm) resulted in a 15% change in acceleration error and almost a 10% change in maximum stress error.
These changes are apparent in the ASD, in Fig. 8.16. The peak acceleration response nearly doubled at 2 kHz for Point 3.
Additionally, two modes near 350 Hz are nearly indistinguishable before the small change in length, yet clearly distinct after
the small increase in length. These abrupt changes had a substantial impact on the resulting error relationship.
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Fig. 8.12 Combined beam: effect of modulus change on stress-acceleration error relation, selected points and maximum

Fig. 8.13 Combined beam: effect of density change on stress-acceleration error relation, selected points and maximum

Furthermore, some parts of the error relationship were consistent, such as models 9 through 12 of the length perturbation
study, shown in Fig. 8.17. This can be attributed to the lack of new modes introduced to the input load frequency range,
illustrated in the Fig. 8.18 ASD. The response over models 9 through 12 is relatively stable, which is contrasted by the
drastic change in the response over the entire perturbation range.

Although many of the results obtained from this combined beam example were not as straightforward as the previous
two cases, the error ratio still gives an idea of the observed limits of stress and acceleration error. For the density and length
studies, the error ratio is omitted since the inconsistent trends make it an inadequate measure of the error bound. A summary
of the maximum value results is given in Table 8.2.
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Fig. 8.14 Combined beam: effect of length change on stress-acceleration error relation, selected points and maximum

Fig. 8.15 Combined beam: complete range of response ASD for modulus perturbations

8.4 Evaluation

The data suggests that in an ideal case, a linear relationship between the stress error and acceleration error should be expected.
However, as uncertainties in model parameters cause the system modes to change significantly, the results can vary greatly
and it becomes difficult to quantify the error relationship.

Case 1 presents a theoretical linear relationship between the error in maximum modal von Mises stress and acceleration.
As a practical extension of this initial study, Case 2 and 3 demonstrate a similar relationship for random vibration simulations.
Results show that there can be large changes in the stress error and acceleration error if the mode shapes are significantly
affected by a relatively small change in properties. These perturbations can have a pronounced effect if modes are close in
frequency, and the error relation can become unpredictable.
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Fig. 8.16 Combined beam: model 1 and 2 response ASD for length perturbations

Fig. 8.17 Combined beam: effect of length change on stress-acceleration error relation (models 9 through 12)

For the random vibration examples, a change in damping exhibited the only consistently linear error relationship, with a
direct relationship between VRMS and AZRMS error at each point, although the error ratio was not necessarily 1 over the
model maximum. Still, this direct relationship is to be expected since uniform modal damping was specified. As for the range
of errors, over the 20% perturbation in each model parameter, the highest stress error was 25.4% for the density and length
perturbation in Case 3. In addition, the highest error ratio observed was 3.4, for the cantilever beam density perturbation.
The error ratio is a useful measure for the cantilever beam, but it is specific to the system and model parameter. It may
have limitations if the model increases in complexity, or if measurements are made at stress concentrations or near boundary
conditions. Additionally, a low error in acceleration does not necessarily correspond to a low error in stress, since it depends
on the modes of the system being predictable and stable, or having a low sensitivity to the uncertainty in model parameters.
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Fig. 8.18 Combined beam: models 9 through 12 and range of response ASD for length perturbations

Table 8.2 Combined beam: maximum value error summary

Perturbation VRMS range (psi/MPa) Maximum VRMS % error Maximum AZRMS % error Error ratio

Modulus 1767/12.2 8.2 18.2 0.45
Damping 2304/15.9 7.8 9.9 0.79
Density 13,960/96.3 25.4 25.0 –
Length 13,250/91.4 24.4 27.1 –

More data is needed to see how results hold for more complex systems, and future work could include multiaxial inputs,
input load uncertainty, and coupled parametric effects. It would also be interesting to study results from other modal-based
analyses, such as a modal transient solution to see if a bound could be determined even if the modal stress is not directly
used.

8.5 Conclusion

A relationship between the error in stress and acceleration was calculated for three example problems. For the first case, a
linear relation and theoretical bound for the maximum modal von Mises stress error and acceleration error was determined.
The results were extended to a random vibration solution that utilized the modal stress and two example cases were
considered. An error in acceleration due to changes in modulus of elasticity, damping ratio, density, and length for each
example beam was related to the error in VRMS stress. An error ratio was defined to describe and bound the relationship and
results were found to be linear if the system mode shapes do not change significantly with perturbation in model parameters.
Irregular behavior was observed when new modes were introduced into the input load frequency range, influencing the
response between perturbed models. The results of this work support that, given the stability of system modes across
uncertainty in model parameters, the error in stress could be related to and bound through the errors in acceleration for
a random vibration analysis. These error trends are useful for providing a quantitative measure of accuracy in stress and
acceleration predictions.
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Appendix 1

This section includes further explanation of the theory discussed in Sect. 8.2.1. Additional details on the nonlinear equation
to be solved, ‖üh − P üH‖2

L2 , are also presented. If the approximations are accurate, the solution is not difficult. As the
acceleration grows however, larger bounds on the stress must be computed carefully.

At some time, t, the error is given as

‖üh − P üH‖2
L2 = 〈

�hq̈ − P �H b̈,�hq̈ − P �H b̈〉
M

(8.13)

Introducing the matrices

T = φT P TMPφ, B = φT P TMPφh (8.14)

There holds

‖üh − P üH‖2
L2 = q̈T q̈ − 2b̈T Bq̈ + b̈T T b̈ (8.15)

Note that B and T are identity matrices if the modes are exact. An alternative to the acceleration problem is the
displacement problem, involving

‖uh − PuH‖2
L2 = qT q − 2bT Bq + bT T b (8.16)

For the displacement problem, �h is omitted from the definition of X. For the acceleration problem, q, b, c are replaced
by q̈, b̈ and c̈ respectively. Setting c as

c = BT b (8.17)

The goal is to establish sufficient conditions for qTX q ≈ cTXc. And setting

β = √
bT T b (8.18)

Next comes the second assumption about how typically the nonlinear equations are easy to solve. We can expect β ≥ ‖c‖,
but for clarity we assume β ≥ ‖c‖.

qT q − 2bT Bq + bT T b = qT q − 2cT q + β2 = ‖q − c‖2 + β2 − ‖c‖2 (8.19)

The case of interest is the case in which q cannot have rotated around from c all the way to the eigenvectors of X with
large eigenvalues.

A Lagrangian for this problem is L (q, λ) = 1
2q
T Xq− 1

2λ
(
qT q − 2qT c + cT c), the critical points satisfy Xq = (q − c)λ.

Two definitions are included for clarification. First let δmin = (β2 − ‖c‖2)1/2. And second, let δ =
√
δ2 − δ2

min.
To determine the Lagrange multiplier, first solve for q, and then eliminate q from the constraint equations,

q = (λ−X)−1cλ,
∥∥(λ−X)−1Xc

∥∥ = δ (8.20)

Equation 8.20 must be solved for λ. The value of the Lagrange multiplier is not unique. The equation Xq = (q − c)λ
implies that ‖Xq‖ = δ |λ| So, in practice the maximum corresponds to the largest positive Lagrange multiplier, λ > ‖X‖.
However, in general this would have to be another assumption. We assume that λmax(X) = ‖X‖.

There is a case in which an approximate solution is obvious. Suppose that τ = ‖Xc‖/δ � ‖X‖. In this case
(τ − X)−1 ∼ τ−1 and λ ∼ τ . For sufficiently small δ, λ ∼ |Xc|/δ and λ > ‖X‖. A more precise statement involves γ ≥ 1
defined by ‖Xc‖ = ‖X‖‖c‖γ .

It turns out that if δ < γ ‖c‖, then λ ∼ ‖Xc‖/δ. This is seen by manipulating the equation τ = ‖Xc‖/δ ≥ ‖X‖. First using
the definition of γ , ‖Xc‖γ /δ > ‖X‖. Next, ‖X‖ is cancelled, leaving ‖c‖γ /δ > 1 or ‖c‖γ > δ.
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This means that the estimated value of λ can be used instead of the exact value and that q ∼ c, which is the benign case.
This is to be expected, since usually the approximation is quite accurate and the nonlinear equation is trivial to solve.

Typically, γ � 1. On the other hand, if δ > ‖c‖γ , then it is worthwhile to carefully solve the nonlinear equation that
determines λ; we expect that ‖a‖ ∼ δ.

Appendix 2

This section includes the stress-acceleration error plots omitted from the main text (Figs. 8.19 and 8.20).

Fig. 8.19 Cantilever beam: effect of damping change on stress-acceleration error relation, selected points and maximum

Fig. 8.20 Combined beam: effect of damping change on stress-acceleration error relation, selected points and maximum
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Chapter 9
A Neural Network Surrogate Model for Structural Health
Monitoring of Miter Gates in Navigation Locks

Manuel Vega, Ramin Madarshahian, and Michael D. Todd

Abstract Structural health monitoring (SHM) of miter gates of navigation locks is crucial for facilitating cargo ship
navigation. Closure of these inland waterway structures causes considerable economical loss to the marine cargo and
associated industries. In practice, strain gauges are often mounted in many of these miter gates for data collection, and
various inverse finite element techniques are used to convert the strain gauges data to damage-sensitive features. Arguably,
these models are computationally expensive and sometimes they are not suitable for real-time health monitoring or for
monitoring confounding environmental effects. In this work, a Multi-Layer Artificial Neural Network (MANN) is designed
to serve as a “run time” surrogate model that links data (from the strain gages) to damage classification (gaps in the miter
gate contact). Three cases of complexity, combining hydrostatic and thermal loading scenarios with varying gap scenarios,
are considered to design the MANN. A confusion matrix is used to evaluate the performance of the networks and derive
probabilities. Results show the potential of MANNs as a reliable surrogate model for computationally expensive inverse
finite element modeling in damage classification for this application.

Keywords Miter gates · Artificial neural networks · Surrogate model · Finite element · Inverse model

9.1 Introduction

In the United States, the U.S. Army Corps of Engineers (USACE) owns and operates 236 locks at 191 sites [1]. According
to a report published by USACE in 2017, more than half of these assets are older than their economic design life, 50 years,
and need a prudent structural health monitoring solution to ensure their safe and reliable operation [2].

Damage to the locks may lead to closures of the lock chamber, which impose economic losses on the commercial shippers.
Two types of closures (i.e. scheduled and unscheduled) apply to miter locks. Scheduled lock closures allow commercial
shippers to adjust their activities to be coordinated to optimize their benefit. However, unexpected events such as accidents,
weather, or emergency maintenance needs can result to unscheduled closures, which can negatively impact commercial
activities [3]. Therefore, there is a need to identify the current state of lock gates to see how reliable they are when unforeseen
events are present. Knowing the condition of a lock gate and its components can allow to take preventive measures to avoid
or minimize the loss in unscheduled closures. Miter gates are the most common type in the United States with other types of
lock gates being sector, tainter and vertical lift [4].

For miter gates, some experienced engineers and lock operators from USACE [2] agree that one of the primary concerns
for inspection, maintenance and repair are the condition of the quoin and gaps between the lock wall and the quoin block.
A “gap” is referred to as the loss of bearing contact between the quoin attached to the gate and the lock wall. A “gap” in
the quoin block changes the load path in the miter gate, leading to higher stresses on some places in the lock gate (e.g., the
pintle) and leading to operational and/or structural failure. Therefore, monitoring the condition of the “gap” can be used to
extend the life of the gate and/or suggest repairs and maintenance in a timely manner. Some other concerns related to miter
gates are corrosion and fatigue deterioration [5].

Most of the miter gates owned by USACE are strategically instrumented with strain gauges for data acquisition [6]. The
strain topography in the structure changes as the boundary conditions change, in other words, as the size of a gap changes
for a gate. Therefore, finite element (FE) models could be used to map the strain gauges data to a specific “gap” in an inverse
analysis. However, these models are computationally expensive and sometimes they are not feasible for real-time health
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monitoring or for monitoring fluctuating environmental effects. Consequently, a surrogate model with fast predictions of the
target damage (e.g., the “gap”) can be used.

Artificial neural network (ANN) modeling, which are lately used extensively in many areas of science and engineering,
could be a powerful way to predict the contact “gap” at the quoin block. Some researchers have used ANNs as surrogate
models, using validated FE models to generate data to train the network [7–8].

In this paper, a Multi-Layer Artificial Neural Network (MANN) is designed to serve as a computational inexpensive
surrogate model that links the strain gages data to the “gap” in the quoin block. An ABAQUS FE model of a miter gate is
used to obtain synthetic strain data to design such MANN.

The paper first explains the finite element model and then describes the architecture of the MANN. In the result section, the
efficiency of MANN is examined by considering three cases of different complexity. A confusion matrix is used to evaluate
the performance of the networks under these realistic cases. Results show the potential of MANNs as an inexpensive reliable
alternative for computationally expensive inverse finite element modeling in the classification of the “gap” size in miter gates.
Other analysis would have to be performed to see which “gap” size is critical in redistributing the load in such a way that
some failure in the gate or in one of its component may happen rapidly.

9.2 Finite Element Modeling

Instrumentation on miter gates have started recently. Additionally, tracking the “gap” size has not been monitored constantly.
Therefore, due to the lack of actual experimental data, FE simulations are needed to understand the effect of different “gap”
size on the strain gage readings and the redistribution of loads along the miter gate. The FE model has been previously
validated with the available strain gage readings from the Greenup miter gate. The Greenup gate is a brand-new gate where
a very small or nonexistent “gap” can be assumed for validation purposes.

Consequently, simulated data was used for training and testing, which are generated by integrating ABAQUS and Python.
In this paper, a single gap scenario is used as shown in Fig. 9.1 to generate the training and testing data.

Gap length is a random number between 0 and 180 in. under random loading scenarios defined by two normal distributions
for upstream and downstream hydrostatic pressure [9]. For simplification purposes, the gate and the quoin block attached
to the gate are modeled as a single part (denoted in gray). All the elements in the domain are 3D linear shells elements to
reduce the computational cost of such a large model.

A hard-contact condition is used between the lock wall (denoted in yellow) and the gate (denoted in gray), making this
a nonlinear problem. The opposite side of the lock wall uses fixed boundary conditions. Symmetry boundary conditions are
used at the right end (i.e., miter) of the gate to simulate the right leaf. The miter gate is subjected to upstream and downstream
hydrostatic loading as shown in Fig. 9.2.

Fig. 9.1 Gap modeling (Left: No gap, Right: Schematic gap)
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Fig. 9.2 Hydrostatic loading on miter gates

The ABAQUS Greenup model was run with python to obtain 3000 realizations, 2000 for training and 1000 for testing
data. Generating this data took almost one week using a 4-cpu desktop.

9.3 Multi-Layer Artificial Neural Network

9.3.1 Preliminary Design

The MANN was designed using the open-source platform TensorFlow, which has been used for several real-world
applications [10, 11]. In the first demonstration, only three damage levels were defined (i.e., low, moderate, and high) based
on the gap length (i.e. 0–60 in., 60–120 in. and 120–180 in.). In this MANN, shown in Fig. 9.3, a 99% accuracy was reached.
Two thousand data sets are used to create 300,000 mini-batches, which are small random sets of the original data sets. Then,
Mini-batch Gradient Descent algorithm uses the mini-batches sets used for training and validation to minimize the loss
function by changing the weights and biases. After, the MANN finishes its training and validation stage, 1000 new data sets
not seen in training are used for testing the MANN.

9.3.2 Extended Design

Subsequent to the first demonstration, the MANN was extended to consider 18 cases based on the gap length (i.e. increments
of 10 in. within a range of 0–180 in.). The new MANN was designed with 6 hidden layers (228 neurons) with a decreasing
learning rate to improve the final accuracy. The Softmax function is used for the last layer as an activation function to reach
a value between zero and one for each class, allowing indication of the damage case. Three cases of complexity, combining
hydrostatic and thermal loading scenarios with varying gap scenarios, are considered to design the MANN.

Case 1: Consider “gap” length to be a random number between 0 and 180 in. with a constant (known) hydrostatic loading,
and neglect thermal environmental load effects.

Figure 9.4 shows a confusion matrix, sometimes called matching matrix, for the testing data, which reveals the MANN
performance on classifying the gap length when only raw strain gauge data are used as an input. The obtained confusion
matrix for the MANN is a heavily-banded matrix with a few gap lengths misclassified to an adjacent class. This happens
because sometimes a gap length, which in fact is a continuous parameter, lays in the boundary of two discretely-divided
classes. Overall, the confusion matrix shows an accuracy of 98.8%.

Case 2: Consider “gap” length to be a random number between 0 and 180 in. with a random loading scenario defined
by two normal distributions for upstream and downstream hydrostatic pressure, and neglecting thermal environmental load
effects.
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Fig. 9.3 MANN to classify three different gap length ranges (levels)

Fig. 9.4 Confusion (Matching) Matrix using NN to classify 18 scenarios (Case 1)

Case 3: The same as Case 2 except that the environmental temperature, which will add thermal strain effects, is defined
as a random number based on the lowest and highest temperature value recorded by thermometers in the actual Greenup gate
data.

Again, the ABAQUS Greenup model was run with Python to obtain 3000 realizations, 2000 for training and 1000 for
testing data for every case.
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Table 9.1 Testing accuracy of
MANN designs

Case Testing accuracy

1 0.988
2 0.961
3 0.958

Table 9.2 MANN verification
(testing accuracy)

Cross verification Test Case 1 Test Case 2 Test Case 3

Train Case 1 0.988 0.459 0.097
Train Case 2 0.887 0.961 0.213
Train Case 3 0.798 0.911 0.958

Table 9.1 summarizes the accuracy obtained for Cases 1 through 3. Interestingly, a very high accuracy is reached for all
cases. It is important to note that the number of layers and neurons were manually modified to allow Case 1 reach a very
high accuracy. Alternatively, a higher accuracy may be reached by optimizing the number of layers along with a dropout
function to prevent overfitting. For Cases 2 and 3, the same numbers of layers and neurons as Case 1 were used. Therefore,
an individual optimization of the number of layers cab also be performed to improve the case by case testing accuracy.

9.3.3 Cross Verification

In general, it could be expected that the MANN trained for Case 3 be used to predict Case 1 and 2, since Case 3 includes all
Case 1 and Case 2 effects. Conversely, the MANN trained for Case 1 should have very poor results when predicting Case 2
and 3. Therefore, to verify the results shown in Table 9.1, the following was observed using different data of each case for
training and testing of the MANN:

As expected, the MANN trained with the data of Case 3 achieves a good testing accuracy when using data of Case 1, 2
and 3 as shown in Table 9.2. Similarly, the MANN trained with the data of Case 2 performs god for Cases 1 and 2. On the
other hand, a very poor accuracy is obtained when a MANN is trained with Case 1 but tested with Case 2 or 3 and when
is trained with Case 2 but tested with Case 3. Based on the table above, it can be concluded that variability in the loading
and temperature are both very critical to consider in the training because inevitable the data in a real SHM setup would be
affected by such effects. Again, note that 2000 data points were used for training and 1000 were used for testing for every
value shown in Table 9.2.

9.4 Conclusion and Further Work

A MANN can successfully predict the condition of a “gap” in the quoin blocks when enough data is available. For this
paper, the FE model was used as a source of generating synthetic training and testing data. Cross Verification can be useful
to identify what effects are important to consider in the training phase of a MANN. Finally, a MANN with three sources
of variability was designed that can accurately predict a “gap” between 79.8 and 95.8% of the times. And when not, it can
predict the value to a very close class (i.e. a banded confusion matrix). In the real world, testing data should be obtained
directly from physical strain gages. As demonstrated, a MANN can have a very high testing accuracy up to 95.8% if trained
with all the sources of variability that a real strain gauge is subjected. Contrarily, a MANN can have a very poor testing
accuracy as low as 9.7% if trained with data obtained from an oversimplified FEM model. Additionally, strain gauges are
installed in specific places and record the strain in a specific direction. Any additional information can be used to build a
more sophisticated network.
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Chapter 10
Model Validation Strategy and Estimation of Response
Uncertainty for a Bolted Structure with Model-Form Errors

Huijie Li, Qintao Guo, Ming Zhan, and Yanhe Tao

Abstract The model-form uncertainty and the connection parameter uncertainty are difficult to separate in structural
dynamics. In this paper, we study a model-form uncertainty substructure identification method. Through the precision
evaluation of the hyper-model of the substructure, and the experimental modal analysis of the substructure, the method
of identifying the model-form uncertainty in the overall structure is given. Through the experimental modal analysis of the
connection substructure, the uncertainty quantification is conducted and the joints parameters of the structure are identified.
Finally, the response error estimation of the overall structure is given by combining the uncertainty of model form and of
parameters. By comparing with the response errors estimated of the overall experiment, the proposed method is validated. In
this paper, using modal parameters and frequency response as the response feature. A general definition of validation metrics
was conducted which related to frequency response function. By using a bolted frame the framework of model validation is
illustrated and the validation of the method in this paper is proved.

Keywords Structural dynamics · Model validation · Model-form uncertainty · Uncertainty quantification

10.1 Introduction

It is becoming more and more common to use numerical models to predict the behavior of physical systems in engineering
and complex environments, especially when experiments are hampered by money or security. However, some assumptions
and simplifications will inevitably be introduced in the establishment of numerical models, so that the model prediction can
only be an approximation of reality. For this reason, the uncertainty of numerical simulation prediction must be validate so
that simulation prediction can effectively replace or supplement full-scale experiments [1–3].

Typical numerical prediction uncertainties come from parametric numerical, and model-form uncertainties. Uncertainties
in parameters represent variability or unknown values of coefficients of constitutive models, energy recovery coefficients, or
coefficients of contact conditions between two surfaces. Because of the uncertainties of the size of the contact surface, the
friction coefficient and the installation preload, this paper proposes to treat the contact stiffness of the connection structure
as a random distributed parameter, and uses the model updating method based on the response surface method and the
distributed algebra method to quantified it [4]. The method is feasible and convenient for practical engineering application.
For the model-form uncertainties and numerical uncertainties, their error sources are input error εin (model size parameters),
discrete error εh and surrogate model prediction error εSU [5, 6]. Ideally, the input parameters of the computational model
should be the same as those of the real physical system, but the input errors of the computational model will be caused by
the variability of the experiment and the influence of the measurement errors. In simulation, we will discretize the model
into finite nodes or grids or decompose the time into finite time steps, which will cause discrete errors. The total uncertainty
is written as the sum of all components [7]:

εnum = εin + εh + εSU (10.1)

Because the physical model studied in this paper is a benchmark structure and pay much attention on its modal parameters,
so εin and εSU can be ignored. Therefore, the quantification of uncertainty in numerical calculation can be approximated by
discrete error quantification. The uncertainty of model form is fuzzy compared with parameter and numerical uncertainties.
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It comes from known or unknown assumptions and simplifications, such as small deformation and large deformation model,
linear elastic and elastic-plastic model, or Euler-Navier-Stokes equation [8]. By evaluating the accuracy of the supermodel
of substructure, or by experimental modal analysis of substructure, the identification method of model form uncertainty for
the overall structure is given.

10.2 Numerical Error Quantification

Quantization discretization error is to quantify the difference between theoretical solution and numerical solution. This paper
is concerned with the modal frequency of the model, which gradually tends to a limit value as the discrete scale decreases. A
posteriori estimation mixed order extrapolation based on Richardson extrapolation can be used to quantify the discrete error
[9]. This method can satisfy the definite condition only if the results of three groups of different scales can be satisfied. The
mixed order extrapolation formula is.

f = r3f1 − r (r + 1) f2 + f3

(r + 1) (r − 1)2
(10.2)

Among them, f is the limit value when the discrete scale tends to zero, which is also the theoretical solution, f1 represents
discrete solutions of fine grids, f2 represents discrete solutions of medium grids, f3 represents discrete solutions of rough
grids. The discrete characteristic relations of the three grids are:

h3 = rh2 = r2h1, h1 = h (10.3)

Among them, h is the discrete characteristic quantity, that is the length of the grid, r = 2 represents mesh encryption
factor. According to the analysis of Richardson’s mixed order extrapolation formula, it is shown that f must be less than f1,
and there is a relationship:

f − f1 < f1 − f2 < f2 − f3 (10.4)

The difference between theoretical value fexact and f should satisfy the following relations:

|f − fexact | < |f − f1| (10.5)

The absolute value symbol indicates that fexact may be between f1 and f, or less than f. This uncertainty is due to the lack of
sufficient understanding of the theoretical solution, so it is necessary to take this uncertainty into account when quantifying
the uncertainty. Therefore, the discrete error can be transformed into the uncertainty of physical quantities after the range of
the difference between the theoretical solution and the limit value of the convergent solution is obtained. The scope of its
uncertainty is:

− |f − f1| < f − fexact < |f − f1| (10.6)

Uncertainty U1 is:

U1 = 2 |f − f1| (10.7)
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10.3 Model Form Error Estimation (εmodel)

Suppose the real response of the physical system is ytrue, the measured response value is yobs, the experimental measurement
error is εom, the predicted value of the model is ypred, the response value calculated by simulation is yc. Then there should be
the following relationships [7]:

ytrue = ypred + εnum + εmodel (10.8)

ytrue = yobs + εom (10.9)

ypred + εnum + εmodel = yobs + εom (10.10)

yc = ypred + εnum (10.11)

εmodel = yobs + εom − yc (10.12)

But most of the time we need to quantify εmodel to predict yobs. Here we first quantify model uncertainty εmodel of
the substructures by using a parameterization equivalent analysis method which modulus E of the substructure can be
taken as a virtual parameter. By statistics sampling the sample of the substructure modal parameters can obtain a mean
E0and its standard deviation. Variance of E0 is used to describe the model form error to a certain degree of perturbation
(random distribution). Our goal, of course, is not just precisely reproduce the experimental measurements by studying and
calibrating the parameters. Instead, our goal is to build numerical models that allow predictive responses to encompass
uncertain experimental measurements.

10.4 Analysis

The research object of this paper is an aluminum frame consisting of a bottom plate, a top beam, two columns and four
angles, as shown in the Fig. 10.1. The width of the beam and the side columns is 50.8 mm and the width of the floor is
152.4 mm. The beam and column, the column and the floor are connected by L-shaped angle steel. The angles and beams
and columns are connected by bolts with a diameter of 12.7 mm and a length of 25.4 mm. The connection to the base plate
is four 10–24 socket cap screws with a length of 12.7 mm.

The simulation model of the aluminum frame is shown in the Fig. 10.2, and the bolt connection is modeled by the bush
elements as depicted in Fig. 10.3.

In this paper, we only study the modal response of the frame and each substructure. By quantifying the numerical error
and model form error of each substructure, the prediction response of the whole frame structure can envelop the experimental
measurement with uncertainty.

The numerical error of frame structure is quantified based on Richardson extrapolation method. The Initial mesh size of
each structure size is 1 mm, and three grids with grid sizes of 1.25 mm, 2.5 mm, and 5 mm are sequentially created. The
same mesh density is used for each seed structure, that is, the beam, the side column, and the bottom plate. The variation of
the modal frequency difference for each structure as the mesh density increases is shown in the Fig. 10.4 [10].
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Fig. 10.1 The schematics of the portal frame structure with dimensions in millimeter
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Fig. 10.2 The FEM of the portal frame structure

Fig. 10.3 The bolted connections of FEM are expressed by Bush elements
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Considering the size of the model and the number of degrees of freedom of the model, the substructures in the frame
structure are selected from the grid density of 2.5 mm as the prediction model. The numerical error of this mesh density is
also the uncertainty of the discrete error quantized by Richardson extrapolation as shown in the Table 10.1.

The samples of each substructure were calculated, and the same mesh density was used for each sample. The mean and
standard deviation of the elastic modulus per substructure are shown in the following Table 10.2.

Studies have shown that in the overall experiment of the frame, the torque of the bolt will affect the stiffness of the
overall frame order, thus changing the resonant frequency. The bolt tightening sequence and the tightening method also have
an effect on the experimental results, but the impact is small and can be ignored. The measurement results of the overall
experiment under different torques are displayed in Table 10.3 [11], the modes are depicted in Figs. 10.5, 10.6, 10.7, and
10.8.

For the connecting part of the frame bolts model were built with a bush element, which has six parameters, three
translational stiffness parameters, and three rotational stiffness parameters. The rotational stiffness parameter has little effect
on the response of the frame. The axial stiffness kz in the translational stiffness parameter is the main parameter affecting
its mode, and the shearstiffness ks has some effect on the mode. According to the change of bolt torque in the experiment
and identification results, the axial stiffness kz∈ [110, 1 × 107] and the shear stiffness ks ∈ [600, 1 × 107] are also used
to describe the experiment in the model and the variance in the torque of the bolt. In the model prediction of the overall

Table 10.1 Numerical error of each mode of substructure (modal frequency %)

Substructure First order Second order Third order Fourth order Fifth order Sixth order

Bottom plate 0.02 0.42 0.14 0.78 0.28 1.2
Side column 0.34 1 1.8 2.8 2.4 1.4
Beam 0.02 0.04 0.06 1.3 0 2.6

Table 10.2 The quantification of model form error for substructure (virtual modulus Mpa)

Substructure Mean Standard deviation Relative uncertainty (%)

Bottom plate 65,000 2080 3.2
Side column 65,360 1844.885 3.2
Beam 69,167.5 1394.742 1.7

Table 10.3 Overall ranges of resonant frequency variability (from measurement)

Shearing Torsion Out-bending In-bending
Torque level(Nm) Low High Low High Low High Low High

4.52 58.8 63.0 97.5 99.0 102 104 170 178
9.04 62.8 66.6 99.8 101 104 105 180 178

18.08 66.3 71.6 102.0 103 105 106 183 193

Fig. 10.5 The first mode frequency of the portal frame structure is 67.217 HZ
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Fig. 10.6 The second mode frequency of the portal frame structure is 97.254 HZ

Fig. 10.7 The third mode frequency of the portal frame structure is 105.88 HZ

Fig. 10.8 The fourth mode frequency of the portal frame structure is 185.01 HZ
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Table 10.4 Ranges of measured
and predicted resonant
frequencies of the first four
modes

Measurements Prediction
Mode Bounds Range Bounds Range

1 58.8–71.6 12.8 55.9–72.1 16.2
2 97.5–103.0 5.5 91.6–103.1 11.5
3 102.0–106.0 4.0 98.2–110.9 12.7
4 170.0–193.0 23.0 160.5–196.5 36

frame, the parameters of the angle steel are fixed. When the elastic modulus of the substructure and the translational stiffness
of the bolt change in the above quantitative range, the prediction range of the first four-order model is compared with the
experimental variation range as shown in Table 10.4.

10.5 Conclusion

The numerical analysis of the first four order modes of frame structures is validated in this paper. The numerical uncertainties
of substructures, the model form uncertainties and the parameter uncertainties of bolted joints are quantified respectively. The
quantification of the numerical uncertainty was given directly by Richardson extrapolation; The uncertainty measurement
of the model form is conducted by the parameterization of the elastic modulus of the substructure, and were shown as the
mean and standard deviation of the modulus; the parameters of bolted connection structure was given by the difference of
the modal parameter. Finally, the modal range predicted by the model envelops the experimental value of uncertainty. This
quantitative method makes the prediction of the model more reliable and accurate.

Acknowledgements The study in this paper was supported by National Key Laboratory of Science and Technology on Helicopter Transmission
in NUAA. And this study also was supported by NSAF (Grant No. U1530122).
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Chapter 11
Characteristic Analysis of Modified Dolly Test: A Sensitivity
Study of Initial Conditions on Rollover Outcomes

Mohammad Reza Seyedi, Sungmoon Jung, and Jerzy Wekezer

Abstract Rollover crashes are known as the most dangerous type of accidents throughout the world. They are associated
with multi-directional velocities and accelerations which creates a complex dynamic behavior of the vehicle. Several
experimental and numerical methods have been used to gain a better understanding of kinematics of the vehicle and occupants
during the rollover crashes. Due to the complex nature of the rollover, any change in the initial conditions may significantly
influence the rollover outcomes. The main goal of this study is to assess the effects of initial conditions on dynamic responses
of the bus using a modified dolly rollover test procedure. Since the experimental rollover test is very expensive and to decrease
the computational costs, the numerical model of cutaway bus was developed using lumped mass-spring-damper in PC-Crash
software. First, the model was validated using the experimental data. Then, a series of simulations have been conducted
with considering various initial conditions (inputs) such as initial velocity, friction of rollover surface, height of bus’s CG,
and initial roll angle. The range of initial variables were selected based on Latin Hypercube Sampling (LHS) with uniform
distribution. The simulation results were used to build the surrogate model using Kriging model for each rollover outcomes
(outputs) including number of quarter turns, roll distance, deceleration rate, and maximum impact force. The sensitivity of
the model to 400 set of input data was computed in MATLAB. The results of the sensitivity analysis indicate that the number
of quarter turns and roll distance was highly affected by the initial velocity of the bus. Furthermore, the deceleration rate
controlled mainly by friction and initial velocity and a negative correlation with the initial roll rate. No strong correlation
between maximum impact force and any input parameters was observed. This led us to perform further research on exploring
the effects of dynamic characteristics of the bus on maximum impact force.

Keywords Modified dolly rollover test · PC-Crash · Sensitivity analysis · Kriging model

11.1 Introduction

Rollover accidents are reported as the most dangerous crash mode among road traffic accidents in terms of the fatality rate
[1]. Rollover crashes have a complex kinematics because they are usually multidirectional and associated with multiple
impacts. The development of hardware and software helped researchers to conduct the more accurate experimental and
computer simulation of rollover crashes. Therefore, various methods have been developed to replicate the actual kinematics
of the vehicle and occupants during the rollover in laboratory conditions [2]. Among available test procedures, dolly rollover
test is one of the most widely used test procedures for the safety assessment of the vehicle. In a typical dolly test procedure,
the vehicle placed in the tilted cart (23◦) and moved laterally to reach the desired velocity (part c in Fig. 11.1). Then the
cart suddenly stopped and the vehicle started to roll over a flat surface (test bed can be a soil, concrete or asphalt). Also,
depends on the cart geometry, a vehicle can be released with different initial slope, height from the ground, and initial roll
rates (Fig. 11.1). Find the effects of test’s parameter on the kinematics of the vehicle is a very pivotal step to improve the
reliability and accuracy of results in rollover safety assessment.

Despite increasing the computational capabilities, it is fairly costly to conduct sensitivity studies using finite element
analysis (FEA) for rollover crash simulation. For instance, with our current hardware, simulating the FE model of dolly
rollover for only 3 s takes more than 72 h to finish. Therefore, the kinematics of the vehicle was simulated using lumped-
mass-spring-damper model in PC-Crash. The objective of this study is to compute the sensitivity of the rollover outcomes
to the initial conditions of the test. First, the dynamic characteristics of the actual cutaway bus such as suspension and
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Fig. 11.1 Different platforms to conduct the rollover accident: (a) rollover sled test [3]; (b) Modified dolly rollover for heavy vehicles [4]; (c)
Standard dolly test

Fig. 11.2 The sensitivity analysis process

inertial properties, the center of the gravity (COG), and overall dimensions were extracted. Then, the data were used to build
the dynamic model of the bus in PC-Crash software. The details about the theory of dynamic model and its accuracy and
reliability can be found in several studies [5–10]. Next, to validate the model, the results from PC-Crash included overall
motion, a number of quarter turns (Nq), roll distance (Rd), and angular rates were compared with similar experimental
results. Figure 11.2 shows the steps that have been followed to perform the sensitivity analysis using the simulation
results.

The input parameters with proper range and uniform distribution were selected to create the design space using Latin
Hypercube Sampling (LHS). Among various available surrogate models [11–13], Kriging method was used to build the
response surfaces for all outputs. Finally, after checking the accuracy of the model the sensitivity of selected rollover
outcomes to the input parameters was evaluated by computing the standardized regression correlation (SRC). By comparing
the results of SA given by these methods, this study provides an insight into the relationship between initial conditions of
dolly rollover test and rollover outcomes.
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Table 11.1 Vehicle specifications

Item Value

Total weight (loaded) (kg) 4788
Wheelbase (m) 3.51
Overall dimensions (m) H=2.7, L=6.1, W=2.2
Inertial properties (kg. m2) Iroll=3897, Iyaw=12992,Ipitch=12992

Fig. 11.3 Comparison of experimental and PC-Crash results

11.2 Dynamic Model of the Bus

The details of the vehicle specifications are shown in Table 11.1. The dynamic components of the bus were modeled in
PC-Crash and the similar body was assigned to the model only for a visual purpose. This software calculates the rigid body
motion of the vehicle based on the 3D kinetic vehicle model. The data from the library was also used to simulate the tires
using TM-Easy model.

An experimental dolly rollover test was performed using specific initial conditions is shown in Table 11.3 in Appendix.
The data were then used to validate the model. The dominant movement of the bus in a dolly rollover test is usually
rotational movement around the longitudinal axis (roll) and translational movement in a lateral direction. Therefore, the
roll rate and resultant acceleration resulted from the numerical model were compared with corresponded experimental data
(Fig. 11.3).
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Fig. 11.4 Details of input and output parameters selected in a modified dolly rollover test

Different factors contributed to the discrepancies between the numerical and experimental results. First, it can be explained
by the rigid behavior of the bus in the simulation analysis. In the experimental test, the deformation of the bus can significantly
affect the overall kinematics of the bus while in the numerical model the bus was rigid. Also, the friction is not constant during
the rollover, because contacts happened between different parts of the bus and ground. Furthermore, because the cart was
not modeled in this simulation, the initial roll rate 120 deg/s at t = 0.25 s was used to create actual rollover condition [14].
The overall motion of the bus from both experimental and numerical analysis was compared in Appendix Fig. 11.6. The
total rotation of the bus was the same as the experimental data (5 quarter turns–450◦). This quantitative and qualitative
comparison of the numerical results in PC-Crash and experimental dolly indicate that the model is sufficiently reliable and
accurate enough to build the surrogate model.

11.3 Sensitivity Analysis Using a Surrogate Model

In this study, since we were not able to perform a direct coupling between PC-Crash and mathematical model (written in
MATLAB), the surrogate model was used to perform the sensitivity analysis. The initial position and orientation of the
bus, friction, and initial rotational and translational velocities were selected as input parameters. The selected input and
output parameters are shown in Fig. 11.4. The approximate maximum impact force and deceleration rate were also found to
be significant parameters in rollover outcomes [15]. To extract the maximum force, some assumptions were made. First, the
impact was assumed to occur in a single plane. Second, the impact force applied at a single point where we can use Newton’s
second law equation to extract forces. Then we assume that the friction force is the only horizontal force that applied to the
vehicle [16]:

∑
MG = IG × α → Fy.D − μ.Fy.L = I × α → Fy = I × α/ (D − μ.L) (11.1)



11 Characteristic Analysis of Modified Dolly Test: A Sensitivity Study of Initial Conditions on Rollover Outcomes 111

M: The net torque
I: Moments of inertia in roll direction around COG
A: Angular acceleration
To define time and orientation of the bus at maximum impact force, the position of the bus at the maximum angular

acceleration was determined. As a result, depending on the orientation of the bus, the maximum impact force applied to
either roof or tires. Based on Eq. (11.1), in some cases, the value of the denominator reaches zero which can significantly
influence the final value of the calculated force. This is because friction value assumed to be coulomb friction with no relative
velocity between vehicle’s body and ground whereas in some cases it would be less than coulomb friction. To prevent this
situation, these cases were removed from sample points.

The LHS method was used to generate optimal sample points. This sampling method creates a uniform distribution of
optimal points which can minimize the bias part of the mean square error. In the present study, a uniform distribution for five
input parameters was selected with a certain range (Table 11.2).

The range of each input parameter was chosen based on different experimental values that were used in rollover tests. For
example, the lowest value for friction represents the flat wet concrete where the upper bound represent the racked concrete
surface [17]. The maximum 23◦ are currently used for the initial slope of the passenger cars and 0◦ for the rollover sled
test. For heavy vehicles, due to the high amount of crash energy that dolly test produced, usually the vehicle placed on
the flat cart without tilting. The maximum height 0.8 m was chosen from the tilt table test procedure to show the effects
of height on output parameters. For each set of input parameters, the output parameters from PC-Crash simulation was
extracted and considered as “training” points for Kriging model formation. We used R Squared to evaluate the accuracies
of the metamodels (see [11]). The results of the accuracy evaluation are shown in Fig. 11.7. It should be noted that for
certain initial conditions, the number of quarter turns was equal to zero which indicates that the rollover did not happen
(see Fig. 11.7).

Here, the global sensitivity analysis was performed using the constructed surrogate model for each output parameters in
MATLAB. The sensitivity analysis investigated in this study include Standardized Regression Coefficient (SRC). SRC gives
the strength of the correlation between output and input variables [18]. In Fig. 11.8, the output parameters for 400 sample
points were plotted with respect to all variables. The results were then used to compute the SRC and reveal the correlation
between initial conditions and corresponded rollover outcomes (Fig. 11.5).

Table 11.2 Selected input
parameters to build the Kriging
model

Item Range Distribution

Initial velocity (m/s) [0–30] Uniform
Height (m) [0–0.8] Uniform
Orientation (degree) [0–23] Uniform
Initial roll rate (deg/s) [0–200] Uniform
Friction [0.2–0.9] Uniform

Fig. 11.5 The SRC results for each output parameter
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11.4 Summary and Conclusion

Initial conditions of the vehicle can have significant effects on rollover outcomes. To quantify the sensitivity of the rollover
outcomes to test parameters, using high fidelity models (i.e. FE model) is computationally expensive. For instance, a rollover
crash event takes a longer time (seconds) than other crash modes (millisecond) which has a profound effect on computational
costs. Therefore, the lumped-mass-spring-damper method was used to characterize the kinematics of the vehicle in a dolly
rollover test. Then, based on the LHS method, a set of parameters for initial conditions have been selected to create different
rollover scenarios. Several simulations have been conducted and their results were used to construct the surrogate model.
Finally, the sensitivity of the rollover outcomes to their initial condition was computed.

The results indicate that the number of quarter turns and roll distance are highly affected by the initial velocity such that
as the initial velocity increased both Nq and Rd. went up. The deceleration rate (Ad) was mainly controlled by friction and
velocity. Also, the initial roll rate has a negative correlation coefficient on Ad which means that the Ad will decrease when
the initial roll rate goes up. The maximum impact force (Fmax) was not significantly affected by input parameters. It should
be noted that uncertainties of the assumptions that we made to calculate the maximum force and the rigidity of the body in
simulations might influence the outcome. However, the results may indicate the possibility that the Fmax was mainly affected
by vehicle characteristics rather than the test parameters. The total weight, moment of inertia, and suspension properties can
be considered as important factors in maximum impact force.

Appendix

Table 11.3 The initial condition
of the experimental dolly rollover
test

Item Value

Initial velocity (m/s) 11.2
Initial slop (deg) 5
Initial roll rate (deg/s)a 120
Friction (racked concrete) 0.85
Initial height (m) 0.3

aExtracted from Fig. 11.3
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Fig. 11.6 Comparison of vehicle’s motion resulted from PC-Crash and experimental rollover test
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Fig. 11.8 The scatter plot of the output parameters (decoration (Adec), maximum impact force (Fmax), roll distance (Rd), number of quarter turns
(Nq) with uints of m/s2, N, m respectively) for 400 set of input parameters
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Chapter 12
Input Estimation of a Full-Scale Concrete Frame Structure
with Experimental Measurements

Xi Liu and Yang Wang

Abstract This paper studies input estimation of a full-scale concrete frame structure, which is modeled with over a thousand
degrees-of-freedom (DOFs). With acceleration response measured from dynamic testing, the natural frequencies and mode
shapes of the concrete frame are first identified. The experimentally identified modal properties are compared with those
obtained from a finite element (FE) model using nominal material properties. The FE model is then used to construct state-
space system matrices for input estimation. With only acceleration measurements, an unbiased minimum-variance estimator
combined with an online drift filter is used to estimate the dynamic input generated by a shaker. The estimation results
show acceptable performance of the proposed algorithms for application on the full-scale two-story two-bay concrete frame
with both simulated and experimental measurements. The effect of sensor locations on input estimation performance is also
discussed.

Keywords Input estimation · Minimum-mean-square-error estimation · Linear stochastic system · Modal analysis ·
Sensor instrumentation

12.1 Introduction

In civil engineering, structures are often subject to unknown dynamic excitations, such as wind or traffic loads, which are
generally difficult or expensive to measure directly. In such scenarios, numerical techniques can be developed to estimate the
unknown input using structural response measurements. Among early studies in input estimation, Kitanidis [1] proposed a
recursive state estimator that minimizes the trace of the state estimation error covariance, while subject to an unbiasedness
constraint to account for the unknown input. This approach provided an optimal state estimation in the minimum mean
square error (MMSE) sense, but without an explicit estimation of the unknown input. Gillijns and De Moor [2] extended the
work and proposed a joint input-state estimation algorithm by combining a minimum-mean-square-error (MMSE) estimator
and a weighted least squares (WLS) objective. Lourens et al. and Maes et al. applied the estimation algorithm to a reduced-
order model of a footbridge for hammer force identification using field measurement [3, 4]. Maes et al. also studied the
identifiability, stability and uniqueness conditions of the estimation approach for modally reduced-order models [4]. It was
observed that a low-frequency drift occurs in the estimated input if using only acceleration measurements. To improve the
estimator performance, Azam et al. proposed a dual Kalman filter by estimating the input and state in two different stages
[5], which assumes the unknown input and state are uncorrelated. Azam et al. further compared the dual estimator with the
one proposed by Gillijns et al. using a small-scale laboratory structure excited at the base [6]. The approach could reduce the
input estimation drift but needs a proper choice of estimator covariance.

This paper investigates simultaneous input-state estimation for a full-scale concrete structure. When using only
acceleration measurements, a high-pass drift filter is added to the input estimator at each time step. The drift filter is pre-
tuned using simulated measurements and can be used for online estimation without the need of an offline filter as in [7]. The
proposed input estimation approach is validated on a two-story two-bay concrete frame with dense sensor instrumentation.
The rest of the paper is organized as follows. The input estimation problem and the corresponding algorithm are introduced
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in Sect. 12.2. Section 12.3 describes the full-scale structure and experimental modal analysis results. Section 12.4 describes
input estimation results with both simulated and experimental acceleration measurements. Finally, the paper is summarized
with conclusions and future work.

12.2 Input Estimation Algorithm

Consider a discrete-time stochastic linear state-space system as shown in Eqs. (12.1) and (12.2),

xk+1 = Axk + Buk + vk (12.1)

yk = Cxk +Duk + wk (12.2)

where xk ∈ R
n is the state at time step k, uk ∈ R

nu is the unknown input, vk ∈ R
n is the process noise or disturbance,

yk ∈ R
m is the measurement output, and wk ∈ R

m is the measurement noise. It is assumed: (1) the system is observable,

i.e. the observability matrix O �
[
CT (CA)T · · · (CAn−1

)T ]T
has full rank; (2) vk ∼ N (0, �v) and wk ∼ N (0, �w)

are white Gaussian noise; (3) wk and vl are independent for all k and l; (4) initial state is random x0 ∼ N (μ0, �0) and
independent from wk and vl for all k and l; (5) the number of unknown inputs is smaller than the number of measurements,
nu ≤ m, and rank(D) = nu. The following notations are used: the minimum-mean-square-error (MMSE) estimate of xk

given cumulative sequential measurements yseq
l = [

yT0 y
T
1 · · · yTl

]T
is denoted as x̂k|l � E

(
xk|yseq

l

)
. The conditional

covariance of xk given yseq
l is �xk|l � cov

(
xk|yseq

l

)
. The weighted least squares (WLS) estimate of uk is ûk � h (yk),

i.e. a function h(•) of measurement yk at time step k only. The cross-covariance between the input and state given yseq
l is

�xkuk|l � cov
(
xk, uk|yseq

l

)
.

Overall, the estimation algorithm is divided into the following stages shown in Fig. 12.1, including input estimation, input
drift filtering, measurement update of state and time update of state. In the first stage, the unknown input uk is estimated using
the new measurement yk at time step k. The input estimation gain Luk (Eq. 12.5) is obtained by solving a WLS optimization

Initialization:

Input estimation: for
(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

Input drift filtering: (12.8)

(12.9)

Measurement update of state: (12.10)

(12.11)

(12.12)

Time update of state: (12.13)

(12.14)

end

Fig. 12.1 Simultaneous input-state estimation
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problem. The state measurement update gain Lxk (Eq. 12.10) is obtained by minimizing the trace of the state estimation
covariance �xk|k subject to an unbiasedness constraint of the state [1, 2]. The drift filter is represented in state-space form by
Af , Bf , Cf and Df , which can be pre-tuned using a nominal FE model of the structure of interest. The state of the drift filter

at time step k is denoted as
∼
uk . The filtered input estimate ûfk is then used to update the state using the new measurement yk

(Eq. 12.11). Finally, time update of the state can be derived using the known state-space system in Eq. (12.1). Without the
input drift filtering stage, the estimation of state is optimal in the sense of MMSE and the estimation of input is optimal in
the sense of WLS [2]. Figure 12.1 summarizes the estimation procedures from time step k to k + 1.

12.3 Test Structure

Figure 12.2 shows the two-story two-bay concrete test frame. In order to prevent excessive out-of-plane movement of the
test frame, a collapse prevention frame was built next to the test frame. When testing the frame, a hydraulic linear inertia
shaker provided by NEES@UCLA was installed at the middle beam-column joint on the roof (i.e. the second elevated
slab). The inertia force of the moving mass on the shaker is used to dynamically excite the structure [8, 9]. Accelerometers,
strain gages, and linear variable displacement transducers (LVDTs) were instrumented on the concrete frame to measure
structural responses during the shaker tests. Specifically, nine tri-axial accelerometers (Kinemetrics EpiSensor ES-T) were
installed at beam-column joints, and 33 uniaxial accelerometers (Kinemetrics EpiSensor ES-U) were installed at mid-length
and quarter length locations of columns and longitudinal beams of both the first and second elevated slabs. This study uses
26 longitudinal (shown in blue) and 16 vertical (shown in red) acceleration channels (see details in Fig. 12.3 and [9]). In
addition, an accelerometer was installed on the moving mass of the shaker for calculating the excitation force.

The first test on the frame was a scaled El Centro input, when the maximum displacement of the shaker mass was scaled
to 1 in. The low-magnitude input caused little to no damage to the frame, and the frame can be treated as a linear structure in
this case. The acceleration responses were sampled at 200 Hz and a 30 Hz low-pass filter is applied during post-processing.
Using the filtered acceleration response, the first four modes are identified through the Numerical Algorithms for Subspace
State Space System Identification (N4SID) [10]. Figure 12.4 shows the experimentally identified resonance frequencies,
mode shapes and damping ratios of the concrete frame.

An FE model with 2482 DOFs is built in SAP2000, where the nominal material properties are obtained from concrete
cylinder tests during each concrete pour, ranging from 22.1 to 26.9 GPa (3200–3900 ksi). Modal assurance criterion (MAC) is
used to evaluate the similarities between each pair of experimental and simulated mode shapes at measured DOFs, defined as

MACi =
((

ψ
EXP,m
i

)T
ψ

FE,m
i (α)

)2

∥∥∥ψEXP,m
i

∥∥∥2

2

∥∥∥ψFE,m
i (α)

∥∥∥2

2

for the i-th mode. The closer the MAC value gets to 1, the better the two mode shapes match.

Fig. 12.2 Full-scale test frame
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Fig. 12.3 Acceleration measurements

Fig. 12.4 Experimentally identified modes of the test frame

Table 12.1 Modal property comparison between experiment and FE model

Mode 1st 2nd 3rd 4th

Experiment f EXP
i (Hz) 2.00 5.41 13.92 19.82

FE model f FE
i (Hz) 1.96 5.63 14.96 20.61

(
f FE
i − f EXP

i

)
/f EXP
i −1.57% 4.16% 7.44% 4.00%

MAC values 0.999 0.988 0.935 0.887

Table 12.1 shows the comparison of modal properties between experimentally identified results and those of the FE model.
It can be seen that the difference in natural frequencies is within 8%. The MAC values of the first three modes are larger
than 0.9. The FE model is shown to be reasonably accurate in describing the contribution from the first two modes, which
are more significant than higher modes for in-plane longitudinal response. To validate the input-state estimation framework
presented in Fig. 12.1, the FE model is used to simulate structural responses under shaker excitation as well as providing
the mass and stiffness matrices used to construct the state-space system for input estimation. Future work is under plan to
perform detailed FE model updating using experimentally identified modes. Upon future model updating, the updated model
can be used in combination with experimental responses for input-state estimation.



12 Input Estimation of a Full-Scale Concrete Frame Structure with Experimental Measurements 121

12.4 Validation of Input Estimation Algorithm

The state-space dynamical system as shown in Eqs. (12.1) and (12.2) can be constructed based on the following equations of
motion with nDOF degree-of-freedoms (DOFs):

Mq̈(t)+ Cdampq̇(t)+Kq(t) = �uu(t) (12.15)

where M, K ∈ R
nDOF×nDOF are the mass and stiffness matrices, which can be obtained from the FE model in Sect. 12.3;

Cdamp ∈ R
nDOF×nDOF is the damping matrix, which can be constructed using a Rayleigh damping model based on the

experimentally identified damping ratios of the first two modes (Fig. 12.4); q(t), q̇(t) and q̈(t) ∈ R
nDOF are displacement,

velocity and acceleration vectors; �u ∈ R
nDOF×nu is the input mapping matrix with ones at the input DOFs and zeros

elsewhere; and u(t) ∈ R
nu is the shaker force input, which is a scalar in this application (nu = 1).

A possible choice to formulate a state-space model is to define the state vector x(t) as the displacement and velocity
of all DOFs. In this case, the dimension of the state-space system (Eq. 12.1) is two times the number of DOFs of the FE
model. As a result, when the input estimation algorithm is applied to a full-scale structure, the dimension of the system
could easily be over thousands or more, e.g. 4964 in this concrete frame example. Therefore, for computational feasibility, a
model reduction approach is needed to improve the computational efficiency in such applications. The approach considered
here is to use the structural modal properties to reduce the dimension of state-space systems. The displacement, velocity and
acceleration vectors q, q̇, q̈ in Eq. (12.15) are converted to modal coordinates using q = �z, q̇ = �ż, q̈ = �z̈, where � is
the mass-normalized eigenvectors of the model. Left multiplying �T to both sides of Eq. (12.15) and replacing q, q̇, q̈ with
z, ż, z̈ gives:

(
�TM�

)
z̈+

(
�T Cdamp�

)
ż+

(
�TK�

)
z = �T �uu (12.16)

Here �TM� = I, �TK� = �2, and � is a diagonal matrix with diagonal entries equal to the natural frequencies of the
structure. As a result, a reduced-order continuous state-space system can be formulated in modal coordinates as follows.

ẋ =
{
ż

z̈

}
=
[

0 I
−�2 −�T Cdamp�

]{
z

ż

}
+
[

0
�T �u

]
u = Acx + Bcu (12.17)

Here Ac and Bc represent the system matrix and the input matrix of the continuous state-space model. When m acceleration
measurements are available, i.e. y(t) ∈ R

m, the corresponding measurement equation is

y = �yq̈ + w = �y�
[−�2 −�T Cdamp�

] { z
ż

}
+ �y��T �uu+ w = Ccx +Dcu+ w (12.18)

Here �y ∈ R
m×nDOF is the output mapping matrix; w ∈ R

m is the measurement noise; Cc is the output matrix and Dc

is the feedthrough matrix of the continuous state-space model. To implement estimators in discrete time, a zero-order-hold
discretization method is used to convert the continuous system to discrete state-space system. In addition, a fictitious process
noise vk ∼ N (0, �v) is added to the discrete system to tune the estimator, which can help improve the conditioning of
�yk|k−1 in Eq. (12.3) by increasing�xk|k−1 during the time update stage as shown in Eq. (12.14). In this example, the diagonal
entries of �v are heuristically set to a small number of 10−10. To assess the performance of the estimator, both simulated
and experimental acceleration measurements are used to estimate the unknown shaker input, respectively. Note that process
noise vk is only added to the estimator and not used in generating simulated measurements.

12.4.1 Input Estimation with Simulated Measurement

First, the FE model is used to simulate acceleration response, including 26 longitudinal and 16 vertical channels as shown
in Fig. 12.3, excited by the measured shaker input. The measurement noise level is set as σw = 0.1 mg. The initial values
corresponding to the estimated state are set as μx0 = 0 and �x0 = 10−10. To reduce the dimension of the system, the
first two modes from the FE model are used to formulate the state-space system in Eqs. (12.17) and (12.18). To quantify
the difference between the estimated ûk and the actual input uk, root mean square (RMS) error is calculated, defined as
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Fig. 12.5 Estimation of shaker input: simulated measurements without drift filter. (a) Comparison of inputs 0–30 s. (b) Comparison of inputs
0.5–6 s

Fig. 12.6 Estimation of shaker input: simulated measurements with drift filter. (a) Comparison of inputs 0–30 s. (b) Comparison of inputs 0.5–6 s

√
1
K

∑
K

k=1 |uk − ûk|2, where K is the total number of data points. Figure 12.5a shows the comparison of inputs without
using the drift filter. A 68% confidence interval of the input estimation trajectory, indicated by the standard deviation σuk of
the input estimation error, is also included. It can be seen that a low-frequency fictitious drift is visible after around 12 s,
resulting in a RMS error of 0.79 kN. Figure 12.5b shows the close-up plot from 0.5 to 6 s with an RMS error of 0.15 kN. To
improve the estimator performance, a fourth order high-pass Chebyshev Type I filter is tuned with cut-off frequency of 10−4

Hz and 0.05 dB of passband ripple to reduce drift error. Figure 12.6 shows the input comparison after combining the drift
filter at each time step. The RMS error is reduced to 0.18 kN for the time period of 0–30 s with a slight increase to 0.28 kN
during 0.5–6 s.

12.4.2 Input Estimation with Experimental Measurement

Next, input estimation is conducted using 42 experimental acceleration measurements from the same 1-in. El Centro shaker
excitation as used in Sect. 12.4.1. The first two modes from the FE model are used to formulate the state-space model, and
the measurement noise level is assumed to be σw = 0.1 mg. The initial values corresponding to the estimated state are kept
the same as in Sect. 12.4.1, i.e. μx0 = 0 and �x0 = 10−10. Figure 12.7a shows that the estimated input starts to drift from
around 6 s, which resulting in a large RMS of 0.53 kN. Figure 12.7b shows the corresponding close-up plot of the input
comparison. Figure 12.8 compares the input estimation results with the measured shaker input for both the 0.5–6 s duration
and the entire 30 s when the drift filter is added. It can be seen that the estimated input could match better with the measured
input after combining the drift filter, which reduces RMS error especially for the entire time history.

To further investigate the effect of sensor locations on input estimation, the magnitude of the feedthrough matrix D is
examined. In general, according to Eq. (12.2), larger magnitude in D results in more contribution of input u to measurement
y. On the contrary, if D is too small, input can be inundated by measurement noise w. When zero-order-hold discretization
is used, the magnitude of the feedthrough matrix is given by D = Dc = �y��

T�u. The mass normalized eigenvector can
be expressed as � = [

ψ1 ψ2 · · · ψnmode

]
, where ψ i denotes the eigenvector of the ith mode with length equal to nDOF, i.e.
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Fig. 12.7 Estimation of shaker input: experimental measurements without drift filter. (a) Comparison of inputs 0–30 s. (b) Comparison of inputs
0.5–6 s

Fig. 12.8 Estimation of shaker input: experimental measurements with drift filter. (a) Comparison of inputs 0–30 s. (b) Comparison of inputs
0.5–6 s

ψi = [
ψ1,i ψ2,i · · · ψnDOF,i

]T
. Recall that the input mapping matrix �u has value one at the input DOFs and zero elsewhere.

In this example, the input vector dimension is nu = 1; �u is therefore a column vector with value one at the input DOF entry
(denoted as the p-th DOF) and zero elsewhere. The rows of the output mapping matrix �y have value one at the measured
DOFs (denoted as the j1, . . . , jm-th DOFs) and zero elsewhere. Finally, since �u is a column vector in this example, the
feedthrough matrix D also degenerates to a vector:

D = Dc = �y��
T {�u} = �y

(∑nmode

i=1
ψiψ

T
i

)
{�u} = �y

∑nmode

i=1

⎡
⎢⎢⎢⎢⎣

ψ2
1,i ψ1,iψ2,i · · · ψ1,iψnDOF,i

ψ2,iψ1,i ψ2
2,i · · · ψ2,iψnDOF,i

...
...

. . .
...

ψnDOF,iψ1,i ψnDOF,iψ2,i · · · ψ2
nDOF,i

⎤
⎥⎥⎥⎥⎦ {�u}

=
∑nmode

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψj1,iψp,i

ψj2,iψp,i
...

ψjm,iψp,i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12.19)

where ψp, i denotes the value of the ith mode eigenvector at the input DOF-p; ψj1,i denotes the value of the ith mode
eigenvector at the first measured DOF j1; ψj2,i denotes the value of the ith mode eigenvector at the second measured DOF
j2, etc. The equation indicates that D has larger magnitude when both mode shape values of ψj(·),i and ψp, i are large.

In this example, recall the input DOF-p is along the longitudinal direction on the second elevated slab (roof). Mode shape
values at this DOF from the first two modes, ψp, 1 and ψp, 2, are relatively large compared with many other DOFs. When an
acceleration channel is instrumented longitudinally and close to the input DOF-p, the value of ψj(·),i will be close to ψp, i

and be relatively large. This provides a larger product between ψj(·),i and ψp, i, and a larger magnitude in the corresponding
row-(•) of the feedthrough matrix (vector) D. In particular, measurements A6–8, A14–16, A21–23, A25 and A26 in Fig. 12.3
contribute most to the input estimation due to their corresponding relatively large mode shape entries ψj(·),i for the first two
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modes. For acceleration channels in vertical directions, or in longitudinal directions but at DOFs further away from the input
DOF-p (particularly these on and below the first elevated slab), the corresponding mode shape entries of the first two modes
are relatively small. These measurements can help reduce the input estimation error when used together with the longitudinal
measurements close to the input location. However, these measurements alone are not suitable for estimating the shaker
input, due to the relatively small feedthrough matrix (vector) D. In other words, the input signal-to-noise ratio is low if the
magnitude of D is small. If only a limited number of sensors are available, it is suggested to place the sensors close to the
input location, i.e. at and above the mid-height of the second-elevated-slab columns in this example. If the sensors could only
be placed far from the input location, a modified input estimation algorithm without the direct feedthrough matrix (vector)
D is needed.

The measurement allocation effect can also be observed in the estimation gain Lu. Figure 12.9a shows the time history of
input estimation gain Lu of different acceleration channels. After around 7 s, during which the most significant input happens,
the input estimation gain Lu converges to steady state value. Figure 12.9b compares the steady state estimation gains among
different acceleration channels, which are numbered as A# in Fig. 12.3. In general, longitudinal measurements (channel
A1–A26) have much more significant contribution to the input estimation compared to vertical measurements (channel A27–
A42). Among the longitudinal measurements, sensors instrumented at and above the mid-height of the second-elevated-slab
columns have larger estimation gains, which have more contribution to the input estimation compared to the measurements
on and below the first elevated slab.

12.5 Conclusions

This paper presents the input estimation of a full-scale concrete frame using acceleration measurements. Modal properties
of the test frame are first identified by N4SID using experimental measurements and compared with those of an FE model.
Upon constructing system matrices based on the FE model, input estimation is then applied to estimate shaker force input
with both simulated and experimental measurements. Because no displacement measurements are used, a recursive drift filter
is adopted and tuned to reduce estimation error. The estimated input and experimentally measured shaker input are compared
and acceptable performance is observed. In addition, the effect of sensor locations on the input estimator performance is also
discussed. It is observed that when sensors are instrumented far away from the input location, the corresponding entries in
the feedthrough matrix D is small and these measurements alone could not be used to estimate the input due to the presence
of measurement noise. For practical applications, the performance of the algorithm also largely depends upon the accuracy of
the state transition matrix A, which is constructed using the structural stiffness, damping and mass matrices. To achieve more
accurate input estimation results, FE model updating with experimental measurements through non-convex optimization can
be incorporated in future work.
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Chapter 13
Bayesian Estimation of Acoustic Emission Arrival Times
for Source Localization

Ramin Madarshahian, Paul Ziehl, and Michael D. Todd

Abstract The onset time of an Acoustic Emission (AE) signal is an important feature for source localization. Due to the
large volume of data, manually identifying the onset times of AE signals is not possible when AE sensors are used for health
monitoring of a structure. Numerous algorithms have been proposed to autonomously obtain the onset time of an AE signal,
with differing levels of accuracy. While some methods generally seem to outperform others (even compared to traditional
visual inspection of the time signals), this is not true for all signals, even within the same experiment. In this paper, we
propose the use of an inverse Bayesian source localization model to develop an autonomous framework to select the most
accurate onset time among several competitors. Without loss of generality, three algorithms of Akaike Information Criterion
(AIC), Floating Threshold, and Reciprocal-based picker are used to illustrate the capabilities of the proposed method.

Data collected from a concrete specimen are used as an input of the proposed technique. Results show that the proposed
technique can select the best onset time candidates from the three mentioned algorithms, automatically. The picked onset
time is comparable with manual selection, and accordingly has better accuracy for source localization when compared to any
of the single methods.

Keywords Onset time · Acoustic emission · Bayesian inference · Automatic picker

13.1 Introduction

Assessment of microcrack network characteristics in cement-based materials is vital to determine the consequences of
degradation on its physical behavior, e.g. mass transfer or tensile strength [1–3]. When a microcrack develops, the released
energy propagates as stress waves to the surface of the structure. Sensors, usually of a piezoelectric type, are used to detect
these acoustic emission (AE) signals generated by extension and coalescence of microcracks. AE activities are localized
knowing the differences in arrival times (i.e. when P waves reach to sensors) of signals at different sensor locations. The
technique is known as the time of arrival (TOA) method, which is highly sensitive to the accuracy of the measurement of the
AE onset time [4].

AE activities are recorded in the presence of environmental and sensor noise. Detection of an actual AE signal in a noise-
contaminated signal environment is critical for robust source localization. Visual inspection plausibly is the most precise
way to determine the onset time, particularly for an experienced operator used to seeing AE signals. This method, however,
has two main drawbacks: first, considering that the microsecond duration of an AE signal is miniscule compared to the
monitoring life of a typical structure, it is not feasible to conduct visual inspections of AE signals for continuous health
monitoring of a structure. Second, AE signals are sometimes embedded in the noise with a low signal-to-noise ratio (SNR),
whether due to propagation distance, dissipation, or environmental noise.

Automatic pickers are intensively used to find the arrival time that best determines the onset of a signal from the noise.
These methods work based on different features of signals such as amplitude, energy, and statistical properties. Fixed and
Floating Threshold methods, Akaike’s Information Criterion (AIC), Hinkley Criterion [5], cross-correlation based methods
[6, 7], CWT based binary map [7] and Reciprocal-based Onset time selector [8] are a few examples of many algorithms
developed for automatic onset time detection. The goal of this paper is not to evaluate these algorithms or to propose a
new competing algorithm. Studies of these methods confirms that although some methods are in general more reliable than
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others, there are always cases that other methods could have obtained the onset time more accurately [9]. Madarshahian et al.,
proposed that a Bernoulli parameter can be used to select an onset time, when two competing methods are available [10]. In
this work, we show that several different methods can be used simultaneously to result in a more accurate estimate of source
coordinates. To do this, we introduce a Bayesian approach to automatically select the most accurate onset time for source
localization from the candidate algorithms’ for onset time detection.

The proposed approach is explained by considering three onset time detectors. These methods, including a model for
source localization and the proposed approach for onset time selection, are explained and discussed in Sect. 13.3 of this
paper. Experimental data, generated by a pencil-lead breakage (PLB) test [12], is used to illustrate the method capability.
Results are shown by illustrating an example of onset time detection methods on one of the signals, implementation of the
proposed approach, and comparison of different sets of onset time on source localization.

13.2 Experimental Data

The data of this work is collected from a PLB test on a concrete block specimen shown in Fig. 13.1. The AE signals are
recorded using ten sensors located on different faces of the concrete block. The source is located in the ZY face of the
concrete block as shown in Fig. 13.1.

The AE signals are recorded using ten sensors at different faces of the concrete block. Source is located in the ZY face
of the concrete block as shown in Fig. 13.1. The data can be found in the reference [11].

13.3 Methodology

This section is organized in to three parts. In the first part, three different methods to detect the onset time of AE signals
are introduced. In the second part, the shortest path method which is used to obtain the P wave travel time is explained. In
the third part the proposed approach to select the best onset time among those onset times obtained by the three methods is
introduced.

13.3.1 Automatic Onset Detection Algorithms

The three onset time selectors, or automatic pickers, are used in this paper are: (1) Floating Threshold picker, (2) AIC picker,
and (3) The Reciprocal-based picker.
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Floating Threshold

The Floating Threshold algorithm is one of the most common and simplest picking algorithms. Onset time is the moment
when signal amplitude passes a threshold calculated as a factor of the root mean square amplitude for the first portion of
each time series, known to be before the signal onset. In this work, we consider four times the noise standard deviation as
the threshold. It is assumed that noise follows a zero-mean normal distribution, and it is therefore very unlikely that a sample
of the noise distribution falls out of the interval specified by four standard deviations from zero. Therefore, the first point
of a signal that passes this threshold is classified as an AE event, yielding the onset time. Although the Floating Threshold
algorithm is used intensively due its simplicity, it is not very useful when SNR is low or sudden spikes exist in the signal.
The Floating threshold can be expressed mathematically by Eq. 13.1.

tonset = argmin(ti |abs(X[ti]) > Xtre), (13.1)

where tonset is the first arrival time, obtained by finding the smallest time (ti) correspond to samples (X[ti]) with absolute
value greater than the threshold (Xtre)

AIC Picker

Auto-regressive algorithms are another class of pickers which use statistical properties of a signal to find the onset time.
These algorithms are threshold independent and insensitive to random spikes in time-series [13]. The Akaike’s Information
Criterion (AIC) is commonly used for onset determination of AE signals. The AIC function of an AE signal reaches its
minimum at the onset time. The AIC algorithm has been compared to many other auto-pickers, and it is proven that it has
a reliable onset determination [14, 15]. Equation 13.2 shows a fitness function which is used in the AIC method. The time
corresponding to the minimum of this function is considered as the onset time of an AE signal.

AIC(ti) = ti ln(σ 2(X[1, ti]))+ (tN − ti+1) ln(σ 2(X[ti+1, tN ]))
tonset = argmin(AIC(ti))

(13.2)

In Eq. 13.2 ti is the time corresponds to the ith sample andN is the total number of samples in signalX, σ 2s[p, q] is variance
of the portion of signal X from sample p to q. The onset time is considered as the moment corresponding to the minimum
of the fitness function shown in Eq. 13.2.

In an interesting study, the AIC and Floating Threshold methods are compared when onset times were obtained manually
using visual inspection as the metric. It was shown that AIC outperformed the Floating Threshold method generally. However,
in some cases the latter identified the onset time more accurately [9].

The Reciprocal-Based Picker

This method is conceptually similar with the AIC method, the point of difference is its fitness function which is shown in
Eq. 13.3.

REC(ti) = − i

σ 2(X[1, ti]) − N − i
σ 2(X[ti+1, tN ])

tonset = argmin(REC(ti))

(13.3)

In research by Babjak et al., the AIC and Reciprocal-based picker were compared, and it was shown that the Reciprocal-based
picker could detect onset time more accurately than the AIC picker for their structural health monitoring problem [8].
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13.3.2 The Shortest Path Model

The shortest path model is used to obtain the traveling time of a P wave from source to sensors. This model is not the most
accurate model for a heterogeneous material like concrete. The distance between the source and a sensor divided by the P
wave speed, models the time of arrival for each sensor. Equation 13.4 shows the mathematical expression of this model [16].

�ti =
√
(X0 −Xi)2 + (Y0 − Yi)2 + (Z0 − Zi)2

V
− t0 (13.4)

Where �ti + t0 is the time that an AE wave reaches to the ith sensor from the source. Source coordinates are shown by X0,
Y0, and Z0 and coordinates of the ith sensor are shown by Xi , Yi , and Zi . The last parameter of the model is V which is the
P wave speed.

13.3.3 The Proposed Bayesian Picker

Bayesian methods are intensively used for model updating inverse problems [17–19]. Equation 13.5 shows the mathematical
expression of the Bayes theorem,

P(θ |D) = P(D|θ)P (θ)
P (D)

, (13.5)

where our initial belief about parameters, i.e. prior P(θ), is updated by seeing new evidence, D, conditioned on the model
parameters in the likelihood function P(D|θ). Here, the updated belief, known as the posterior, is shown by P(θ |D).

Obtained onset times from an automatic picker can be used as input data, but since the onset times obtained from different
methods are not exactly the same, the posterior for source location shows different amount of uncertainty and bias. Our data
may be structured as a matrix of n × m, which n is numbers of sensors and m is numbers of candidates for an onset time.
Here m is three since we used three methods to identify the onset times. Considering that we used ten sensors in our test, the
data D = [dij ]n×m will be a 10 by 3 matrix.

Obviously, one of the suggested onset times for each signal is closer to the unknown true value of the onset time. Of
course, we do not know which one is the most accurate without doing some kind of independent visual inspection. However,
intuitively the most accurate onset times leads to the least amount of uncertainty in the inference of source coordinates. We
propose to let the Bayesian model pick the onset times from the pool of data by introducing a new latent parameter, denoted
by α. The new parameter is a categorical parameter consists of one outcome out of m possible outcomes. Here, since m is
three, the possible outcomes of α would be 0, 1, or 2. Each of these numbers represents one of the automatic pickers, i.e. 0
for AIC picker (di0), 1 for the floating threshold (di1) and 2 for the reciprocal-based picker (di2). Then the data is fed to the
model using Eq. 13.6:

di = 0.5 × di0(1 − α)(2 − α)+ di1(α)(2 − α)+ 0.5 × di2(α − 1)(α) (13.6)

When we run MCMC algorithm, each time only one of the obtained onset times is selected for each sensor. For the prior of
this parameter, we can assign the probability of 1

3 to each method if our initial belief about them has no preference. However,
based on the literature, generally in most of cases AIC picker gives us more accurate estimation of the onset time than floating
threshold method [9]. Furthermore, in another work is was implied that the Reciprocal-based picker arguably gives better
estimation of onset time than AIC picker in most of the cases [8]. The power of Bayesian inference is that we can consider
this information in our priors before observing the data by assigning subjective probabilities to each automatic picker as we
did in this work.

Priors for source coordinates are assigned uniformly distributed over the known block dimensions. Similarly, a range of
variation is selected for the wave speed prior. Finally, using our prior about the P wave speed and considering the dimensions
of the block, a positive-valued distribution is assigned to tmin.

Categorical Gibbs Metropolis method is used for inference about α, and No U-Turn Sampler (NUTS) method is used for
other parameters [20]. After implementing MCMC a chance of success is assigned to each picker for each sensor considering
numbers of related α value in each chain (e.g., counts of the value “1” in the MCMC chain of α for the Floating Threshold
method). Finally, the onset time with highest probability is selected for each sensor, and the model is run again by considering
only the chosen onset time.



13 Bayesian Estimation of Acoustic Emission Arrival Times for Source Localization 131

13.4 Results

Figure 13.2 shows an example of the implementation of the three methods. It illustrates that these methods may identify the
onset time differently. From visual inspection it seems in this case that the Reciprocal-based picker detects the onset time
more accurately than other two, and Floating Threshold method is more accurate than AIC picker. Implementing the proposed
approach, the posterior for the categorical parameter, shown in Fig. 13.3, reflects a similar expectation. Even though in the
prior, based on the literature, we assigned more chance of success to the AIC picker than Floating Threshold; our method
for sensor 8 suggested a higher probability for the Floating Threshold onset time in comparison with AIC picker, and the
highest probability is obtained for the Reciprocal-based picker as expected based on visual inspection shown in Fig. 13.2. The
categorical parameter sometimes shows a very similar chance of success for two of pickers (e.g. AIC and reciprocal-based

Fig. 13.2 Comparison of onset time detection using three methods for sensor 8

Fig. 13.3 Histogram for Bernoulli parameter indicating posterior probability of selection. (a) AIC picker, (b) floating threshold picker, (c)
reciprocal-based picker
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Fig. 13.4 Comparison of source

picker for sensor 1). Checking their corresponding onset times, we found that these values are almost the same, and then a
similar posterior probability is expected intuitively.

To study the effect of onset times on source localization, each set of onset times is used for source localization using
Bayesian inference and performing MCMC sampling. Then, results were compared with the selected onset times using the
proposed method. The source obtained by those onset times which are selected by the proposed approach shows less amount
of uncertainty compared to when only onset times from one of the other methods are used. Figure 13.4 shows the joint
Bayesian inference for two coordinates of the source in comparison with that obtained using the chosen onset times by the
proposed approach.

13.5 Concluding Remark

In this paper, a Bayesian model selection process was formulated for optimal AE signal onset time detection for the purpose
of source localization. The selection process works by choosing the most accurate onset time from a population of onset times
identified by using different established algorithms. Here, three methods of AIC Picker, Floating Threshold and Reciprocal-
based method were used as a suite of well-known, mature, widely-used onset time detectors. The proposed method was
implemented on a set of experimental data obtained from a PLB test. Results showed that the posterior probability obtained
for each picker is in accordance with our expectation concluded from visual inspection. Moreover, onset times obtained
from each method were used for source localization. Bayesian source localization using the selected onset times by the
proposed method was less biased in comparison with the use of each set of onset times separately. The proposed approach
implementation is straightforward and fast, showing strong potential to be used for continuous monitoring of structures using
AE methods.
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Chapter 14
Quantification and Evaluation of Parameter and Model
Uncertainty for Passive and Active Vibration Isolation

Jonathan Lenz and Roland Platz

Abstract Vibration isolation is a common method used for minimizing the vibration of dynamic load-bearing structures in
a region past the resonance frequency, when excited by disturbances. The vibration reduction mainly results from the tuning
of stiffness and damping during the early design stage. High vibration reduction over a broad bandwidth can be achieved
with additional and controlled forces, the active vibration isolation. In this context, “active” does not mean the common
understanding that the surroundings are isolated against the machine vibrations. Also in this context, “passive” means that
no additional and controlled force is present, other than the common understanding that the machine is isolated against the
surroundings. For active vibration isolation, a signal processing chain and an actuator are included in the system. Typically, a
controller is designed to enable a force of an actuator that reduces the system’s excitation response. In both passive and active
vibration isolation, uncertainty is an issue for adequate tuning of stiffness and damping in early design stage. The two types
of uncertainty investigated in this contribution are parametric uncertainty, i.e. the variation of model parameters resulting in
the variation of the systems output, and model uncertainty, the uncertainty from discrepancies between model output and
experimentally measured output. For this investigation, a simple one mass oscillator under displacement excitation is used to
quantify the parameter and model uncertainty in passive and active vibration isolation. A linear mathematical model of the
one mass oscillator is used to numerically simulate the transfer behavior for both passive and active vibration isolation, thus
predicting the behavior of an experimental test rig of the one mass oscillator under displacement excitation. The models’
parameters that are assumed to be uncertain are mass and stiffness as well as damping for the passive vibration isolation
and an additional gain factor for the velocity feedback control in case of active vibration isolation. Stochastic uncertainty
is assumed for the parameter uncertainty when conducting a Monte Carlo Simulation to investigate the variation of the
numerically simulated transfer functions. The experimental test rig enables purposefully adjustable insertion of parameter
uncertainty in the assumed value range of the model parameters in order to validate the model. The discrepancy between
model and system output results from model uncertainty and is quantified by the Area Validation Metric and an Bayesian
model validation approach. The novelty of this contribution is the application of the Area Validation Metric and Bayes’
approach to evaluate and to compare the two different passive and active approaches for vibration isolation numerically and
experimentally. Furthermore, both model validation approaches are compared.

Keywords Vibration isolation · Velocity feedback control · Monte Carlo simulation · Model uncertainty · Area
validation metric

14.1 Introduction

The consideration and quantification of uncertainty in mechanical structures is becoming more significant in early design
stages for decision making. For example, the final product’s design properties vary within today’s increasing solution space
of passive, semi-active and active solutions. Over the last years, active solutions have been increasingly investigated in the
scientific community because of their variability and the establishment and popularity of smart materials and structures that
are often used in active systems. However, the increased possibilities may lead to neglect the advantages of passive solutions
that may be less expensive, more reliable and investigated thoroughly, e.g. vibration reduction with absorbing material or
compensators [1]. While active systems may reduce the vibrations more effectively than passive systems, the active system is
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more complex because of the necessary inclusion of sensors, actuators, interfaces, a signal processing chain and a controller
[2]. They lead to additional uncertainty in the system that should be taken into account when deciding about the favorite
technology in early design stages.

Platz et al. showed analytically in [3] the principle deviation of amplitude and phase responses of a one mass oscillator
with passive and active vibration isolation when the corresponding system’s parameters mass, stiffness, damping coefficient
and gain vary. This first but only rough investigation lead to the conclusion that active vibration isolation may result in less
uncertainty of the model’s output over the frequency range of interest when using a direct MONTE CARLO simulation. A more
precise analysis is presented in [4], where Platz et al. utilized the χ2-Test to validate the assumption of normal distribution
of the model’s input parameters when using 100 and 10,000 samples for a MONTE CARLO simulation. The variations of the
system’s properties were investigated for six different characteristic points of the amplitude and phase response like resonance
and isolation frequency for both passive and active vibration isolation. The standard deviation of that characteristic properties
was not considerably affected by using 100 or 10,000 samples, but the higher sampling rate resulted in the acceptance of
normal distribution assumption for all input parameters. It was shown that active vibration isolation analysis in early design
stages does not necessarily result in less uncertainty of the system’s output throughout the whole frequency range of interest.
In a third contribution, Platz and Melzer [5] compared the probabilistic approaches from [3] and [4] with non-probabilistic
approaches in early design stages, like the direct interval analysis, the direct fuzzy analysis and the simplified worst case
analysis. The non-probabilistic approaches require less computational cost but overestimate the uncertainty in amplitude and
phase response for passive and active vibration isolation in comparison to the MONTE CARLO simulation. However, when
the interrelation between the standard deviation of the MONTE CARLO simulation and the membership function of the fuzzy
approach are known beforehand, the latter is an effective alternative to predict uncertainty in early design stage with less
computational cost than with the MONTE CARLO simulation.

Now, in this contribution the authors not only investigate the parametric uncertainty for numerical simulations they also
validate the mathematical models for passive and active vibration isolation of a one mass oscillator. The model uncertainty
is quantified with the Area Validation Metric (AVM) proposed by Roy and Oberkampf in [6] and a Bayesian approach with
hypothesis testing based on [7] and [8]. Any further differentiation between a systematic discrepancy bias and a random
experimental error as introduced in [9] is not taken into account. As in [3], the model uncertainty was quantified for the five
evaluation criteria that are taken into consideration again:

1. the varying maximum vibration amplitude Vmax,
2. the varying resonance frequency ωres at maximum vibration amplitude |V (�=ωres)|=Vmax ,
3. the varying isolation frequency ωiso at |V (�=ωiso)|=0 dB,
4. the varying amplitude |V (�=100 1/s)|=V100 at the excitation frequency �=100 1/s>ωiso,
5. and the varying excitation frequency ω15 for −15 dB isolation attenuation.

These five evaluation criteria cover relevant points of interest in amplitude and phase response of passive and active
vibration isolation for the frequency range of interest. The advantages and disadvantages between the two model validation
methods are discussed and the model uncertainty in passive and active vibration isolation is compared.

14.2 System Description

14.2.1 Linear Mathematical Dynamic Model of the One Mass Oscillator for Passive and Active
Vibration Isolation

The simple one degree of freedom model of a suspension leg supporting a vehicle’s chassis, Fig. 14.1a, is used in this
contribution to compare passive and active vibration isolation with respect to parametric and model uncertainty, [3, 4] and
[5]. In the mechanical model in Fig. 14.1b (left), the mass m represents usually one fourth of a chassis while the suspension
leg’s mechanical properties result from the stiffness k and the damping coefficient b for passive vibration isolation and
the velocity feedback gain g for active vibration isolation. The suspension leg is assumed to be free of mass. Since the
simple linear mathematical model is derived and discussed thoroughly in [3] and [4], here the authors only present the basic
principle and the final dynamic transfer relation used to calculate the evaluation criteria in order to quantify parametric and
model uncertainty.

When excited by harmonic base point stroke

w(t) = ŵ cos(�t + δ) (14.1)
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ż(t)

m

Fb Fk Fa

m

Fig. 14.1 One mass oscillator, (a) suspension leg (DAIMLERBENZ), (b) simple mechanical model (left) and cut free forces (right), [3]

with the angular excitation frequency �, excitation amplitude ŵ, time t and phase shift δ = 0, the mass oscillates in z-
direction. With linearity assumed, the damping and stiffness forces in Fig. 14.1b are

Fb = b (ż(t)− ẇ(t)), Fa=−g ż(t) and Fk=k (z(t)− w(t)). (14.2)

Using the forces in (14.2) as well as the angular eigenfrequency ω0 = √
k/m and the damping ratio D = b/(2ω0m), the

complex amplification function

V (η) = ẑp

ŵ
= 1 + i 2D η

(1 − η2)+ i(2D η + g ζ ) (14.3)

is derived [4], with η=�/ω0 and ζ =�/(mω2
0). Its corresponding real amplitude is

|V (η)| =
√

1 + (2D η)2
(1 − η2)2 + (2D η + g ζ )2 (14.4)

and its real phase is

ϕ(η) = arctan
−2D η3 − g ζ

1 − η2 + (2D η)2 + 2D η g ζ
. (14.5)

14.2.2 Realization of the Test Rig

The test rig is shown in Fig. 14.2a with its schematic sketch in Fig. 14.2b. It is used to experimentally validate the linear
mathematical model introduced in Sect. 14.2.1. The mass A is attached to four rectangular leaf springs B that bend laterally in
z-direction and one voice coil actuator C. The leaf spring and the voice coil actuator are fixed to a frame D, an electrodynamic
shaker harmonically excites the frame at the point E in z-direction. The stiffness k of the mechanical model in Fig. 14.1a is
realized through the four leaf springs while the passive and active damping is realized through the voice coil actuator that is
controlled by a DSPACE system and MATLAB/SIMULINK. The damping forces in (14.2) are calculated using the signal from
two accelerometers attached to the mass and frame of the test rig. These realizations of the stiffness and damping forces
enable precise adjustment and variation of the stiffness k, damping coefficient b and gain g, thus allowing to cover a wide
range of parameter values for the investigation and quantification of uncertainty. Additionally, the mass can be varied by
attaching magnets G to the oscillating mass.
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x

y

z

Fig. 14.2 Experimental test setup for passive and active vibration isolation (a) photo of the test rig with sloped top view, (b) schematic sketch of
test rig with straight top view in y-direction

Table 14.1 Constant and varied parameters of the leaf springs and voice coil actuator

Element Property Variable Value Unit

Leaf spring parameter Young’s modulus Es 6200 N/m2

Width ts 0.04 m

Height hs 0.01 m

Voice coil parameter Resistance Re 4.8 �

Inductance Le 0.003 H

Force constant �e 17.5 N/A

Factor passive gp,− 1.68 As/m

gp 2.4 As/m

gp,+ 3.12 As/m

Factor active ga,− 1.68 As/m

ga 2.4 As/m

ga,+ 3.12 As/m

The stiffness of one rectangular leaf spring is

ks = Es ts h
3
s

l3s
, (14.6)

with the Young’s modulus Es, the width ts, the height hs and the length ls of the leaf spring. The first three parameters are
constant with their corresponding values displayed in Table 14.1, while the length of the leaf spring can be varied to set the
stiffness to the desired value. The mass is attached to four leaf springs in parallel, hence (14.6) is multiplied with the factor
4 to calculate the total stiffness

k = 4 ks = 4

(
Es ts h

3
s

)
l3s

(14.7)

of the system in Fig. 14.1b. The passive and active damping forces from (14.2) are realized with the voice coil actuator’s
force

Fv(t) = �e Iv(t) (14.8)
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with the actuator’s force constant �e and the current Iv(t) of the electrical network, a series connection of the constant
inductance Le and resistance Re [10]. The differential equation of the electrical network is

Iv(t) Re + dIv(t)

dt
Le + Uind(t) = Uv(t) (14.9)

with the control voltage Uv(t) as input parameter and the induced voltage Uind(t) = � (ż(t) − ẇ(t)) resulting from the
relative velocity between the base excitation point and the oscillating mass in Fig. 14.1b. With the relation

dIv(t)

dt
≡ iωIv(t) (14.10)

and substituting Iv(t) from (14.9) in (14.8) follows

F v(ω) = �e
Uv(ω)+ i ω�e (z(ω)− w(ω))

Ze(ω)
(14.11)

with the electrical impedance

Ze(ω)= iωLe + Re. (14.12)

Thus, through variations of the control voltage Uv(t), the actuator’s force in (14.11) can be varied only with limited
precision due to the frequency dependency of the electrical impedance (14.12) and the dependency of the induced voltage
Uind(t) on the relative velocity [10]. Therefore, in [10] Perfetto et al. proposed a method that compensates those effects by
calculating the control voltage

Uv(ω) = gamp
(
gC + i ω gp Ze(ω)

)
(z(ω)− w(ω))+ i ω gamp ga Ze(ω)z(ω) (14.13)

with the compensator gain gC = −�e/gamp, with is the constant gain gamp of a voltage amplifier in the signal processing
chain. The factor gp is used to adjust the passive damping coefficient b in (14.2) and the factor gp to adjust the feedback gain
g in (14.2). Substituting (14.13) for Uv(ω) in (14.11) and considering the relation (14.13) leads to the actuator force

Fv(t) = gamp�e gp (ż(t)− ẇ(t))+ gamp�e ga ż(t) (14.14)

that can freely be adjusted by gp and ga. From the comparison of Fv(t) with the passive damping force, Fb, and the active
damping force, Fa from (14.2) follows the equations

b = gamp�e gp + b0 =bp + b0 and g = gamp�e ga, (14.15)

where bp is the passive damping coefficient resulting set by the voice coil actuator. The damping coefficient b0 =2D0 ω0m

is the inherent damping of the test rig with the open circuited voice coil actuator e. g. Fv(t) = 0 N. Then, only the stiffness
force Fk from (14.2) and the damping force Fb(t) = b0 (ż(t)− ẇ(t)) act on the mass. From experimental measurements,
the value of the constant damping ratio D0 = 0.0039% is determined. The variation of the passive gp and active factor ga
are discussed in the following section.

14.2.3 Variation of the Input Parameters

The parameter uncertainty results in the variation of the model’s output, the numerically simulated amplitude and the
phase, (14.4) and (14.5), and in the variation of the experimentally measured output data from the test rig due to the varying
parameters mass m, stiffness k, damping coefficient b and gain g according to Table 14.2. Furthermore, the model’s output
and measured output data deviate from each other due to the model uncertainty. The model uncertainty results from the
simplifications of the mathematical model compared to the real test rig such as assuming linearity or the use of discrete
homogeneous stiffness and damping behavior. The effects of parameter and model uncertainty are briefly presented in the
following based on the example of passive vibration isolation with a varying damping coefficient b.
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Table 14.2 Varying input
parameter values

Property Variable Value Unit Variation

Mass m− 0.64 kg −15.88%

m 0.757 kg 0%

m+ 0.875 kg +16.01%

Stiffness k− 23,090 N/m −19.42%

k 32,980 N/m 0%

k+ 39,673 N/m +20.28%

Damping coefficient b− 43.88 Ns/m −30%

b 62.69 Ns/m 0%

b+ 81.49 Ns/m +30%

Gain g− 43.88 Ns/m −30%

g 62.69 Ns/m 0%

g+ 81.49 Ns/m +30%

Fig. 14.3 Numerically simulated and measured amplitude |V (�)| and phase ϕ(�) for passive vibration isolation with g = 0, constant m = m,
constant k=k and varying b as shown in Table 14.2 for the simulated data (black solid line) bsim =0 Ns/m, (blue dashed dotted line) b1,sim, (blue
solid line) b2,sim, (blue dashed line) b3,sim and the measured data (red dashed dotted line) b1,exp, (red solid line) b2,exp, (red dashed line) b3,exp.
The maximum amplitude Vmax for each case is marked with the grey circle o

Figure 14.3 shows the amplitude |V (�)| and phase ϕ(�) for passive vibration isolation of the analytical model, (14.4)
and (14.5), and of the measured output data after transforming back �=η ω0 within the frequency range 10 ≤ � ≤ 120 1/s.
The parameters m=m and k= k are the mean values chosen from Table 14.2 and the gain for active vibration isolation is
g=0 Ns/m while the damping coefficient varies with b1<b2<b3.

Figure 14.3 shows amplitudes and phases for three different damping coefficients, b1,sim < b2,sim < b3,sim and
b1,exp <b2,exp <b3,exp, for numerical simulations and experiments. For both simulated and measured amplitude and phase
responses in Fig. 14.3, a higher damping leads to a lower amplitude at their resonance frequency ωres, but to a less decrease of
amplitudes beyond the isolation frequency �> ωiso, which is well known. For all three damping coefficients, b−, b and b+,
the measured maximum amplitudes Vmax are higher than the simulated amplitudes. Furthermore, the simulated amplitude
responses intersect at the model’s isolation frequency ωiso while the measured amplitude responses do not. Typical for
passive vibration, the theoretical phase shift ϕ(ω0) = −90◦ does not occur at undamped resonance frequency ω0 for the
three damping coefficients. The simulated phases tend towards ϕ(�>>ω0)=−90◦ for higher excitation frequencies but, the
higher the damping coefficient, the lower the frequency at which the phase reaches close to −90◦. For the measured phase, the
tendency of the phase reaching −90◦ for frequencies �> ω0 is not observed within the frequency range 10 ≤ � ≤ 120 1/s.
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Additionally, the deviation in the measured phase is lower than in the simulated phase for the three different damping
coefficients.

In Fig. 14.3 only the damping coefficient b was varied in three different cases to demonstrate the differences between the
numerical simulation and the experiments. For a thorough investigation of parameter and model uncertainty, first the interval
of variation of each input parameter is set and presented in Table 14.2. The intervals are chosen in reference to previous
work in [5] but have been adjusted due to geometrical restrictions of the test rig. The mass may vary about ±16% and the
stiffness about ±20%, which are higher values than previously used in [5]. The damping coefficient for passive vibration
isolation and the gain for active vibration isolation vary with ±30% around their means, Table 14.2. The variations are
assumed to be normally distributed with standard deviation σ for the simulation and the upper and lower values resulting
from the variation range represent ±σ with 99.7% probability. That is an accepted approach for the standard deviation
when assuming normal distribution [11]. The complex amplification function from (14.3) was calculated N = 1000 times
via MONTE CARLO simulation for N independently varying, normally distributed samples of the mass, the stiffness and the
damping coefficient for passive vibration isolations as well as the gain for active vibration isolation via MATLAB. Conducting
the χ2-test according to [4] shows that the Null-hypothesis for assumed normal distribution is accepted for 1000 samples.

The experimental measurements are conducted for every combination of the three parameters mass, stiffness and damping
coefficient or gain at their three different values from Table 14.2, according to a full factorial design of experiments. This
allows to capture the effect of every input parameter on the measured output [12] leading to the number of 27 = 33

combinations of the three different parameters for each, passive and active vibration isolation. In order to minimize
deviations due to measurement errors or environmental changes, i.e. different temperatures, five repetitions for each of
the 27 combination are conducted, leading to a total of K = 5 · 27 = 135 measurements. The χ2-test is again used to prove
that the measured outputs are normally distributed, thus validating the assumption of normal distribution of parameters for
the MONTE CARLO simulation.

14.3 Quantification of Model Uncertainty

The mathematical models of the one mass oscillator introduced in Sect. 14.2.1 predict the amplitude and phase responses
in case of passive and active vibration isolation according to the parameter variation in Table 14.2 via a MONTE CARLO

simulation with N = 1000 samples. The model uncertainty for the five evaluation criteria introduced in Sect. 14.1, Vmax,
V100, ωres, ωiso and ω100, is quantified and compared. The authors validate the models with the experimental data via the
Area Validation Metric [6] and a Bayesian probabilistic approach using Bayes factors [7, 8].

14.3.1 Quantification of Uncertainty with the Area Validation Metric

The Area Validation Metric (AVM)

d(x) =
∫ ∞

−∞
|Fsim(x)− Fexp(x)|dx (14.16)

was presented by Roy and Oberkampf in [6] as a method to quantify model uncertainty. In (14.16), the absolute value of
the difference between the cumulative density functions (CDF) of the numerical simulated data Fsim(x) from the MONTE

CARLO simulation and the experimental measurements Fexp(x) is calculated by integration. The variable x is a simulated or
measured evaluation criterion, in our case Vmax, V100, ωres, ωiso or ω15. The CDF of normally distributed data is

F(x) = 1

2

[
1 + 2√

π

∫ xmax

0
e(x − x)/(√2 σx)dx

]
(14.17)

with the mean x and standard deviation σx of the simulated evaluation criteria and represents the probability that the
evaluation criteria is equal to or smaller than x.
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Passive Vibration Isolation

In Fig. 14.4 the CDF from the MONTE CARLO simulation and the measured evaluation criteria, Vmax, V100, ωres, ωiso and ω15
for passive vibration isolation are presented, with the AVM as the gray area between the CDF. Three different characteristics
exist to evaluate parameter and model uncertainty of the evaluation criteria: the slope of the CDF, possible intersection of
the CDFs and the area between the CDF. First, the higher the slope, the smaller the parameter uncertainty, because the range
of possible values of the evaluation criteria is smaller. Thus, the observation of the slope of simulated and measured output
enables a comparison between parameter uncertainty of the simulated and measured outputs. Second, if both curves intersect
at some point, then the evaluation criteria has identical or similar values in the area around the intersection, thus the model
uncertainty is smaller than without any overlapping but only at the point of intersection. Finally the smaller the AVM, the
smaller the model uncertainty.

The slopes of all simulated CDF for the five evaluation criteria in Fig. 14.4 are similar to the slopes of the measured output
data, but the difference between the slopes varies for the evaluation criteria. For passive vibration isolation, the size of the
AVM of the maximum amplitude Vmax is higher than for the other four evaluation criteria, showing that a systematic bias
exists between mathematical model and the test rig. The CDF of Vmax are the only ones that do not intersect. The AVM are
normalized to the mean values of the simulated output data and are listed in Table 14.3. For passive vibration isolation, the
highest normalized AVM results for the maximum amplitude with dp,n,Vmax =0.208, while the lowest normalized AVMs are
dp,n,ωres =dp,n,ωiso =0.034.

Fig. 14.4 Area Validation Metric for passive vibration isolation is the grey area between the CDF for the simulated Fsim (blue solid line) and the
measured output data Fexp (red solid line) for the evaluation criteria (a) the maximum amplitude Vmax, (b) the amplitude V100 at � = 100 1/s (c)
the resonance frequency ωres, (d) the isolation frequency ωiso and (e) the frequency ω15 at |V (�)| = −15 dB

Table 14.3 Area validation metric of the evaluation criteria

Vibration isolation AVM Vmax V100 ωres ωiso ω15

Passive dp,abs 2.079 1.038 1.182 1.644 5.730

dp,n 0.207 0.072 0.034 0.034 0.055
Active da,abs 2.071 1.119 1.038 1.449 5.198

da,n 0.207 0.077 0.032 0.029 0.041
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Fig. 14.5 Area Validation Metric for active vibration isolation is the grey area between the CDF for the simulated Fsim (blue solid line) and the
measured output data Fexp (red solid line) for the five evaluation criteria (a) the maximum amplitude Vmax, (b) the amplitude V100 at � = 100 1/s,
(c) the resonance frequency ωres, (d) the isolation frequency ωiso and (e) the frequency ω15 at |V (�)| = −15 dB

Active Vibration Isolation

The CDF from the MONTE CARLO simulation and the measured evaluation criteria for active vibration isolation are presented
in Fig. 14.5. As was observed for passive vibration isolation in Fig. 14.4, the slopes of all simulated curves are similar to the
slopes of the measured output data. The AVM of the maximum amplitude Vmax is the highest, meaning it has the highest bias
between simulated and measured output data. In difference to passive vibration isolation, there is no intersection between
the CDF of Vmax and V100. The normalized AVM of the five evaluation criteria are listed in Table 14.3. The highest model
uncertainty exists for Vmax with da,n,Vmax = 0.204 and the model uncertainty for ωiso is the lowest with da,n,ωiso = 0.029,
which differs with a value of 0.003 from da,n,ωres =0.032.

Comparison of the Model Uncertainty for Passive and Active Vibration Isolation

The normalized AVM in Table 14.3 show that the model output deviates from the real system’s output of the test rig in
Fig. 14.2 for both passive and active vibration isolation for all five evaluation criteria due to model uncertainty. The highest
model uncertainty occurs at the maximum amplitude Vmax with da,n,Vmax =0.207 for passive and da,n,Vmax =0.204 for active
vibration isolation. It is followed by the model uncertainty at the amplitude V100 with da,n,V100 = 0.072 and da,norm,V100 =
0.08.

The model prediction at the three frequency points is more accurate than at the two amplitudes, with the lowest model
uncertainty occurring for the resonance and isolation frequencies, dp,n,ωres = 0.034 and dp,n,ωiso = 0.034 for passive and
da,n,ωres =0.032 and da,n,ωiso =0.029 for active vibration isolation. Summing up, the model uncertainty for the active system
model is lower than for the passive system model for all evaluation criteria except for V100, but the difference only varies
slightly.
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14.3.2 Quantification of Model Uncertainty with a Bayesian Approach

The Bayesian approach introduced in Sect. 14.2.1 uses the single n-th posterior probability

p(Hn,x |Ax) = p(Ax |Hn,x) p(Hn,x)
N∑
n=1

p(Ax |Hn,x) p(Hn,x)
(14.18)

that represents the probability of the numerically simulated events Hn,x for n = 1, 2, 3, . . . , N = 1000 samples of an
evaluation criteria x under the condition of the observed event Ax , here the experimentally measured evaluation criteria

at the test rig [7, 8, 13]. Thereby p(Ax |Hn,x) is the likelihood, p(Hn,x) is the prior probability and
N∑
n=1
p(Ax |Hn,x) p(Hn,x)

is the total probability, a normalizing factor to ensure that the integral of the posterior probability is equal to one. The single
n-th prior probability

p(Hn,x) = 1

σH
√

2π
e
−1

2

⎛
⎝Hn,x −H

σH

⎞
⎠

2

(14.19)

is the normal density function of the numerical simulated events Hn,x , with mean H and standard deviation σH , and gives
the range and probability of the evaluation criteria x expected to predict the experimental data. The assumption of normal
distribution of the numerical simulated events is based on the accepted χ2-test of the experimental data in Sect. 14.2.3.
However, the prior is a hypothesis rather than a probability. The likelihood

p(Ax |Hn,x) =
K∏
k=1

1

σH
√

2π
e
−1

2

(
Ax,k −Hn,x

σH

)2

(14.20)

represents the similarity between the observed events Ax of an evaluation criteria x and the hypothesis events Hn,x from the
mathematical models [8], when Ax,k is the k-th observed event for the number k = 1, 2, 3, . . . , K = 135 of experimental
measurements set in Sect. 14.2.3 for each evaluation criterion. The posterior (14.18) and prior probabilities (14.19) are used
to calculate the Bayes factor

B = p(Hx |Ax)
p(Hx)

(14.21)

that is defined as the ratio of the posterior probability and prior probability of the meanHx of the numerical simulated events
Hn,x . The Bayes factor provides a threshold value B = 1. If B > 1, the mathematical model is deemed adequate to predict
the experimental or, if B<1, the mathematical model is inadequate [8].

Passive Vibration Isolation

Figure 14.6 shows the prior (14.18) and posterior probabilities (14.19) for each evaluation criteria Vmax, V100, ωres, ωiso or
ω15, introduced in Sect. 14.1. The vertical, dashed line illustrates the mean Hx . For Vmax, the prior and posterior density
functions do not overlap, indicating that the predicted model output differs from the experimental data, Fig. 14.6. For the
other four evaluation criteria, the prior and posterior probabilities overlap in various degrees. The most central overlapping
occurs for V100 in Fig. 14.6, which means that the model uncertainty is lower than for the other four evaluation criteria. Those
assumptions are confirmed by the calculated Bayes factors in Table 14.4, with Bp,V100 =0, 038 and Bp,ω15 =0, 006 being the
only factors with values Bp>0. However, the Bayes factors for all evaluation criteria are smaller than one, which means that
the mathematical model for passive vibration isolation is deemed inadequate to predict any of the five evaluation criteria.
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Fig. 14.6 Bayes approach with prior p(Hn,x) (blue solid line) and posterior probability p(Hn,x |Ax) (red solid line) for passive vibration isolation
for the evaluation criteria (a) the maximum amplitude Vmax, (b) the amplitude V100 at � = 100 1/s, (c) the resonance frequency ωres, (d) the
isolation frequency ωiso and (e) the frequency ω15 at |V (�)| = −15 dB

Table 14.4 Bayes factors B for
passive and active vibration
isolation

Bayes factor B Vmax V100 ωres ωiso ω100

Bp 0.000 0.038 0.000 0.000 0.006

Ba 0.000 0.000 0.000 0.000 0.000

Active Vibration Isolation

Figure 14.7 shows the prior (14.18) and posterior probabilities (14.19) of the five evaluation criteria, Vmax, V100, ωres, ωiso
and ω15 for active vibration isolation. The prior and posterior density functions overlap noticeably only for ωres and ωiso.
Most overlapping occurs at the resonance and isolation frequencies ωres and ωiso, indicating the lowest model uncertainty.
According to the Bayes factors in Table 14.4, the mathematical model for active vibration isolation is inadequate to predict
the system’s output because Ba<1 for all five evaluation criteria.

Comparison of the Model Uncertainty for Passive and Active Vibration Isolation

The use of the Bayes approach including the Bayes factor shows the difference between the model uncertainty of the passive
and active system model. The overlapping of the prior and posterior density functions is more noticeably in case of passive
vibration isolation, however, the mathematical models of the passive and active systems are both inadequate to predict the
system’s output when B<1 occurs.
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Fig. 14.7 Bayes approach with prior p(Hn,x) (blue solid line) and posterior probability p(Hn,x |Ax) (red solid line) for active vibration isolation
for the evaluation criteria (a) the maximum amplitude Vmax, (b) the amplitude V100 at � = 100 1/s, (c) the resonance frequency ωres, (d) the
isolation frequency ωiso and (e) the frequency ω15 at |V (�)|= −15 dB

14.4 Conclusion

In this contribution, model uncertainty of passive and active vibration isolation models of a one mass oscillator is quantified
with respect to major characteristic points in amplitude and frequency, such as maximum amplitude at resonance frequency,
the isolation frequency and amplitudes beyond the isolation frequency. For active vibration isolation, a simple constant
velocity feedback controller is used. The uncertainty is quantified with two different methods, the Area Validation Metric and
a Bayesian approach using the Bayes factor. For both methods, numerically simulated model output from a MONTE-CARLO

simulation and experimentally measured data of a test rig according to a full factorial design of experiment are utilized to
quantify uncertainty. It is shown that the discrepancy between model and test rig of the observed maximum amplitudes at
resonance frequency is higher than of the frequencies beyond the isolation frequency. Furthermore, both validation methods
show that no significant difference between the uncertainty in modeling the passive and active vibration isolation exist.
However, when using the Bayes factor’s threshold value of one, the linear mathematical model’s are deemed to be inadequate
to predict the test rig’s output. In future work, the authors will quantify and compare the uncertainty for passive vibration
isolation with more complex methods of active vibration isolation than the constant velocity feedback control, such as
adaptive feedforward controller and robust controller.
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Chapter 15
Bayesian Model Updating of a Five-Story Building Using
Zero-Variance Sampling Method

Mehdi M. Akhlaghi, Supratik Bose, Peter L. Green, Babak Moaveni, and Andreas Stavridis

Abstract This study presents the Bayesian model updating and stochastic seismic response prediction of a reinforced
concrete frame building with masonry infill panels. After the 2015 Gorkha earthquake, some of the authors visited the
building and recorded ambient vibration data using a set of accelerometers. The seismic response of the building was also
recorded during one of the moderate aftershocks, using a set of sensors at the basement and the roof. In this study, the ambient
vibration data is used to calibrate a model and the earthquake data is used to validate it. Natural frequencies and mode
shapes of the building are extracted through an output-only system identification process. An initial finite element model
of the building is developed using a recently proposed modeling framework for masonry-infilled RC frames. Bayesian
model updating is then performed to update the stiffness of selected structural elements and evaluate their respective
uncertainties, given the available data. A novel sampling approach, namely Zero-Variance MCMC, is implemented to
address the computational challenges of stochastic simulation when estimating the joint posterior probability distribution
of the model’s parameters. This sampling approach has been shown to drastically improve computational efficiency while
preserving adequate accuracy. The calibrated model is used for the probabilistic prediction of the seismic response of the
building to a moderate earthquake. This predicted response is shown to be in good agreement with the available recorded
response of the building at the roof.

Keywords Bayesian Model Updating · Zero-Variance Markov Chain Monte Carlo · System Identification · Response
Prediction

15.1 Introduction

Following the development of fast computers, numerically intensive sampling methods for statistical inference have gained
a lot of attention. These methods are generally easy to implement and result in a point cloud of sample points that can help
us understand the uncertainties involved in the process much better. Markov chain Monte-Carlo (MCMC) method is one of
these methods that has been used extensively in many research studies.

For more complicated problems involving large number of updating parameters, these sampling algorithms can become
inefficient or computationally expensive. This has resulted in a series of efforts to improve the efficiency of this method
leading to algorithms like adaptive MCMC [1] and transitional MCMC [2], each of which has tried to address part of the
problem with this sampling technique. The Zero-Variance method which is used in this research study has been shown to
significantly reduce the sample variance of the structural parameters estimated using Monte Carlo methods and also increase
the efficiency of the algorithm [3].
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15.2 Analysis

The 5-story masonry infilled reinforced concrete building of the National Society of Earthquake Technology (NSET), is
chosen for this research study. Ambient vibration data has been collected following the 2015 Gorkha earthquake using a set
of 16 accelerometers. The structure is also equipped with a continuous monitoring system which has recorded the acceleration
data at the 4th floor and ground level during the earthquake [4]. Figure 15.1 shows the street view and the plan view of the
building, depicting the location of the masonry and shear walls in the plan view.

System identification had been conducted using an output only method and eigenfrequency and mode shapes of the
building are calculated. A 3D model of the building is built following a recently proposed methodology [5, 6] based on the

Fig. 15.1 NSET building from the street view and the plan

Fig. 15.2 Response prediction of the 4th floor based on the deterministic model updating results
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available data and is then calibrated using both deterministic and probabilistic model updating. For the probabilistic part,
Bayesian model updating is conducted using both basic and zero variance MCMC algorithms. Results from these two sets
of analyses are compared along with the results from the deterministic model updating. The seismic response of the building
is then predicted using this calibrated model and the results are compared to the actual acceleration data available at the
fourth floor of the building during the earthquake. Figure 15.2 demonstrates an initial response prediction based on only the
deterministic model updating results.
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Chapter 16
Input Estimation and Dimension Reduction for Material Models

Sam Myren, Emilio Herrera, Andrew Shoats, Earl Lawrence, Emily Casleton, D. J. Luscher, and Saryu Fensin

Abstract Computer models for applications such as climate or materials have become increasingly complex. In particular,
the input and output dimensions for these types of models has grown steadily larger, which has increased the computational
burden of comparing these models with experimental data. This has spurred the development of statistical techniques for
estimating outputs and reducing the dimension. This paper will show an example of these approaches applied to modeling
and experiments for Tantalum, a material of interest for the Departments of Defense and Energy. We obtain results from a
number of small-scale tests of Tantalum single crystals and use these results in a Bayesian statistical procedure to constrain
the range and dimensionality of a Tantalum model.

Keywords Dimension reduction · Material modeling · Model calibration · Emulation · Tantalum

16.1 Introduction

Many materials are used in engineering applications under conditions that are considerably more extreme than those we
can test in a laboratory. We need well-calibrated, physics-based materials models in order to extrapolate from laboratory
experiments to actual use cases. Ideally, these models are calibrated in a way that provides quantified uncertainty along with
predictions so that we can properly assesses risk under the true operating conditions. This paper presents one solution to
this problem that uses Bayesian statistics to estimate input parameters of a strength model for tantalum based on laboratory
experiments.

Tantalum is a rare earth refractory metal that is most commonly used in the electronics industry on capacitors. It is
particularly useful because of its high melting point and corrosion resistance. These properties are desirable for defense
applications where tantalum may be used for material containment under extreme temperatures or on missiles/spacecraft.
Therefore, it is important to understand how tantalum will respond to a variety of external stimuli. Unfortunately, due to
the expense of the material and the extreme conditions under which it will be used, it is costly or impossible to run even
small-scale experiments. Computer model simulations of tantalum provide a mechanism to learn more about the material
under different scenarios.

We consider a simulation model for compressive tantalum. The model predicts experimental stress-strain curves as a
function of the experimental conditions (e.g., the temperature and strain rate) and materials properties of the of tantalum
(e.g., Boltzmann constant and Burger’s Vector). Sometimes, material properties are relatively well-accepted within the field.
This work focuses on those parameters that are more difficult to characterize. Among these are χ , C1, and CA which represent
the percent of work converted to heat under high strain rate tests, the material’s hardening response to stress, and the reduction
of dislocation density through annihilation due to stress, respectively.

However, the computational cost of running such computer simulations can also be time and resource expensive. In
addition, a given computer simulation does not perfectly describe nature. This paper employs sensitivity analysis and
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emulation of the model, along with a Markov chain Monte Carlo approach, to attempt to estimate the values of 14 unknown
parameters that produce outputs that match corresponding experimental data. Through the process presented here, we can
estimate parameter values with corresponding uncertainty, which could then inform other models. We do so by applying the
framework presented in [1, 2].

16.2 Physical Measurements

We use two types of experiments on two experimental devices in order to learn how tantalum responds to low and high strain
rates.

For the low strain rate (ASTM standard of 10−3–10−1 s−1) tests, a Materials Testing System (MTS) was utilized. MTS
testing entails slow loading the specimen from above at a controlled rate while measuring the strain of the sample as a
function of applied stress. Strain is measured by displacement sensors placed at the base and top of the samples. As the
operator of the MTS increases the known pressure from above, the sample bears the added pressure and compresses, and the
strain of the specimen is tracked as the displacement sensors get closer together. Figure 16.1 displays a Tantalum specimen
resting on the platform within the MTS machine. In total, seven experiments were performed using this experimental setup;
each at a different strain rate and temperature. Two tests at 21 ◦C were performed for strain rates of 1e−1 s−1 and 1e−3 s−1,
two tests at −80 ◦C were performed at 1e−1 s−1 and 1e−3 s−1, one test at 200 ◦C was performed at 1e−3 s−1, and two tests
at 400 ◦C were performed at 1e−1 s−1 and 1e−3 s−1.

For the high strain rate (4 × 103–5 × 103 s−1) tests, a split Hopkinson Bar was utilized. In the split Hopkinson Bar
test, tantalum samples are placed between two metal bars: the incident bar and the transmission bar. A gas gun accelerates
the incident bar toward the sample. The sample is struck by the incident bar and compresses between the incident bar and
the transmission bar. During compression, strain gauges record the displacement of the sample. Three experiments were
performed using this experimental setup; each at a different strain rate and temperature. The first test was performed at a
strain rate of 4400 s−1 at 200 ◦C, the second test at 5000 s−1 at 400 ◦C, and the third test at 5300 s−1 at 600 ◦C.

In all experiments, the tantalum specimens were single crystals and compressed in the [100] direction. The specimens were
cylinders with a height and diameter of about 1.0 cm. The testing generated stress/strain relationship plots. Our experimental
data are shown in Fig. 16.2.

16.3 Computer Model Simulation

The compressive tantalum model subject to optimization in this investigation is based on the single-crystal constitutive theory
from [3, 4] applied here to computing uniaxial stress response during dynamic loading of single crystal BCC tantalum,
for example under split Hopkinson pressure bar loading. Under these conditions and for crystallographic orientations (e.g.
loading along [100]) in which the response exhibits symmetric slip on a subset of all available slip systems, an assumption
of small strains enables a simple evaluation of the stress, σ , versus strain, ε, curve given a prescribed strain rate, ε̇, or
strain versus time history, ε(t). The shear stress on each of the NA active slip systems can be expressed as τ = fτσ where

Fig. 16.1 Tantalum specimen prepared for compression in the MTS machine
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Fig. 16.2 Stress-strain curves from the experiments performed on the MTS machine and Hopkinson Bar

the coefficient fτ = n1s1 is computed from the slip system normal and slip direction vectors, n and s, respectively, for the
symmetrically identical active slip systems. Similarly, the effective plastic strain rate is computed by ε̇p = fγ γ̇where the
coefficient fγ = NAfτ and γ̇ is the slip rate on each of the active slip systems.

For our particular choice of constitutive model, the slip rate is related to the density of mobile dislocations, �M , the velocity
of mobile dislocations, v, and the magnitude of a unit of slip, i.e. the Burgers vector magnitude, b, according to Orowan’s
relation γ̇ = �Mvb. Under conditions of uniaxial stress, it is convenient to neglect the small elastic strains and deal with a
purely viscoplastic response such that the prescribed effective strain (or strain rate) history is considered to be purely plastic,
i.e.ε̇p = ε̇. This leads to an expression that can be solved for the shear stress at each increment of the strain history

τ = τ ∗ s.t. v̂
(
τ ∗, �M, �1, T ; {θ} )− ε̇

�mbf γ
= 0 (16.1)

where �1 and T are the immobile dislocation density and the material temperature, respectively, and {θ} represents the
material model parameters. We hold the state variables, �M , �1, and T, fixed at each increment to solve for the shear stress.
The temperature is subsequently updated using an explicit forward Euler integration of

Ṫ = (1 − χ) σ̄ ˙̄ε
ρCv

(16.2)

where χ is the complement to the Taylor-Quinney factor, ρ and Cv are the mass density and specific heat of tantalum,
respectively, and we neglect any thermoelastic contributions to the free energy (cf. [5]). Similarly, the dislocation density on
all slip systems is updated via forward Euler integration of their respective evolution rates

�̇1,M = ̂̇�1,M (v, T , �M, �1; {θ} ) (16.3)

The constitutive equations v̂ (τ ∗, �M, �1, T ; {θ} ) and ̂̇�1,M (v, T , �M, �1; {θ} ) are those given in [4]. We focus our
attention on estimating the 14 input parameters listed in Table 16.1. Any input values not included in the table, but that
were input variables to the materials model can be found in [5].
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Table 16.1 Parameters and ranges considered in the compressive tantalum model

Parameter Units Description Min. Max.

C1 – Taylor hardening coefficient 0.3 1
B0 MBar-μs Reference phonon drag viscosity 2e−11 1e−9
g0 – Dislocation barrier energy coefficient 0.01 1
ω0 MHz Dislocation attempt frequency 0.04375 8.75
p – Energy barrier shape coefficient 0.1 2
q – Energy barrier shape coefficient 0.1 2
τ 0 stress-MBar Intrinsic lattice resistance 1e−06 1e−2
Varrhom0 (�M0) cm−2 Initial mobile dislocation density 1e8 1e12
Varrhoi0(�i0) cm−2 Initial immobile dislocation density 1e1 1e12
L cm Mean spacing between barriers 1e−5 1e−4
CM – Dislocation multiplication coefficient 0.01 10
CA – Dislocation annihilation coefficient 0.1 1000
CT – Dislocation trapping coefficient 0.1*CM 1*CM

Rhosati
(
�SATi

)
cm−2 Saturation density of immobile dislocations Varrhoi0 Varrhoi0 + 1e15

16.4 Methodology

16.4.1 Bayesian Statistics and Estimation

We adopt a Bayesian approach to the problem of estimating the best fitting input parameters for the computational materials
model. A Bayesian statistical model has two parts, a likelihood and a prior distribution. The likelihood describes the
probability distribution of the data given the unknown materials parameters. The prior distribution describes our best guess
at a probability distribution for the unknown parameters before considering the current data.

To build our likelihood, we assume that the experimental data are a noisy version of the materials model run at the
best fitting parameters. The materials model at a given parameter setting returns a stress-strain curve. Our experiments also
produce such a curve. We will assume that the experimental curve should be a materials model curve with Gaussian error at
each point. Denote our experimental curve by y, our unknown best fitting materials parameters by θ , the materials model by
η(·), and our Gaussian error variance as σ2. We can write

y ∼ N
{
η (θ) , σ 2I

}
(16.4)

which says that the vector y is multivariate normal with mean vector given by η(θ ) and independent noise at each location
with variance σ2. Our prior distribution for the unknown parameter vector θ is just uniform over a fixed range for each
parameter independently. The ranges are given in Table 16.1 and are chosen based on expert knowledge about the materials
properties and model, derived in [3, 4].

The posterior distribution is the probability distribution of the unknown parameters given the observed experimental data.
It is proportional to the product of the prior and the likelihood

p (θ |y) = f (y|θ) I {θ ∈ H } /K (16.5)

where f(y|θ ) is the Gaussian likelihood described above and I{θ ∈ H} is the uniform prior distribution. The value K is a
normalizing constant that typically cannot be computed because it involves the solution to a difficult integral. This means
it is hard to compute things like the mean and variance directly. It is also difficult to sample from this distribution using
straightforward approaches. Instead, we use an approach called Markov chain Monte Carlo (MCMC).

MCMC is a sequential sampling procedure that produces a correlated sample from a specified distribution. The algorithm
is described in Fig. 16.3. Because the unknown normalizing constant appears in both the numerator and denominator of
the acceptance probability of Step 2, it cancels out and we do not ever need to compute it. This approach only requires
forward evaluations of the posterior; we do not to invert it or compute derivatives. Thus, we can use this approach with the
compressive tantalum materials model simply by computing the output at any candidate input from Step 1.

One disadvantage of this algorithm is that it may requires tens of thousands of correlated samples in order to produce
good estimates. This can be intractably slow when used with a materials model, even if the simulation requires only a few
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Fig. 16.3 MCMC Algorithm

seconds to evaluate. Thus, we need to alter the approach to require just a few hundreds of material model evaluations. We do
this through the construction of an emulator, a fast, statistical approximation to the materials model, described next.

16.4.2 Emulation

In order to perform the parameter estimation and sensitivity analysis, we will need to run the computer model simulation
many thousands of times at various input parameter settings. To speed up the computation time, we built an emulator of the
computer model. An emulator is a statistical approximation to the computer model output that predicts the output that would
have been produced by the computer model simulation at new values of the input parameters. Where the computer model
may take minutes to produce a stress/strain relationship curve, a trained emulator can produce one in fractions of a second.

Our emulator is based on Gaussian process regression. Gaussian process regression is a flexible approach to regression
that can capture a wide variety of flexible behavior and can be made to interpolate the training set. Training the model can
be slow, but afterwards, it produces very fast predictions. Details can be found in [6] and its references. We produced our
emulator using the Emulator Generating Gadget (EGG) [7] which takes a training set of input-output pairs from the materials
model and returns C code that can be compiled into the fast predictor. The inputs were selected using a Latin Hypercube
Sampling design [8] so as to avoid any large gaps in parameter space. This approach guarantees that the inputs fill the space
uniformly without any large gaps. Once built, we can use the fast emulator in place of the computationally expensive model
in the MCMC scheme described above.

16.4.3 Sensitivity Analysis

We also consider methodology to determine whether some of the parameters can be fixed. Sensitivity analysis is a broad term
for such a practice. We use the active subspace approach [9]. The general idea is that some parameters have a negligible effect
on the output, they can be fixed and effectively removed from study. The active subspace approach does this through a study
of the model’s gradients. A gradient matrix is produced and decomposed using a singular value decomposition. The singular
vectors indicate the directions in parameter space that capture most of the changes in the model. If certain parameters do not
contribute significantly to any of the singular vectors with large singular values, they can be removed from study.

16.5 Results

To begin, we obtained a Latin Hypercube design of 500 runs and obtained simulation results for each set of inputs. The
design is shown in Fig. 16.4 and the simulations with a strain rate of 10−3 s−1 and temperature of 400 K are shown in
Fig. 16.5.

The 500 input and output pairs discussed above were used to build the emulator. To test the accuracy of the emulator,
seven “testing” sets of input parameters not used to train the emulator were produced. Stress-strain curves were generated
from both the emulator and the original materials model. The emulator error is estimated as the difference between the
two curves produced from the same input parameter set, with results shown in Fig. 16.6. The scale of the emulator error is
typically less than 5% of the total variation in the outputs, confirming that the emulator could reasonably be substituted for
the materials model in the parameter estimation process. Note that to test the trained emulator, parameter sets not used to
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Fig. 16.4 Each parameter is uniformly distributed, with respect to the others, across the parameter space by using a Latin Hypercube experimental
design
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Fig. 16.5 Stress-strain curves for tantalum materials model generated from Latin-Hypercube design of parameter space, at a strain rate of 10−3 s−1

and temperature of 400 K

the train the model must be used. Because the emulator building process assumes the materials model is deterministic, i.e.,
identical inputs produce identical outputs, the emulator is a perfect interpolator, i.e., training input parameter sets will return
identical output from the materials model.

Figure 16.7 summarizes the results of the sensitivity analysis. In lieu of a formal active subspace analysis, we focus on
an examination the gradient matrix directly. Each line in the figure corresponds to one of the 500 training points. The values
indicate a standardized gradient for each parameter for a single location on the stress-strain curve (shown in the inset). These
are the raw values that feed into the formal active subspace approach. The results seem to indicate that a few of the parameters
play only a small role in the output. In particular, B0 and ω0 have gradients that are small over the entire parameter space
relative to the other parameters. The results at other points on the stress-strain curve tend to have smaller overall gradients,
but tell a broadly similar story. Some direct experimentation indicates that these parameters have only a few percent effect
on the output. We do not remove these parameters in the rest of our analysis, but it may make sense to fix them in the future.
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Fig. 16.6 Emulator error as defined by the difference between the emulator and the materials model an identical set of input parameters

Fig. 16.7 Sensitivity Analysis results a measured by the value of the gradient at the point depicted in the insert for 500 input parameter sets

Before analyzing the experimental data, we test the procedure using a simulation result in place of the experimental data.
In this case, we know the true parameters at which the simulation was run, so we can evaluate the quality of the estimation
procedure. Figure 16.8 shows the posterior distribution for two of the parameters. The posterior means lie very close to the
true values and are good estimates of the true values in this case. Further, we can use the entire distribution to summarize the
uncertainty in the result and propagate this uncertainty into future predictions of material performance.

We now turn to analysis of the experimental data. Unfortunately, we are not able to obtain trustworthy results. The
parameter estimation gives results that are near the boundaries of the ranges considered for many of the parameters.
Figure 16.9 demonstrates the problem of a mismatch between the materials model and experiment. The red curve in this
figure is the result of one experiment from the MTS machine at 21 ◦C with strain rate of 1e−1 s−1; the black curves show the
results from the 500 training curves used to build the emulator. The materials model over the range of input parameters, and
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Fig. 16.8 Posterior distribution for two parameters from the test analysis

Fig. 16.9 Stress-strain curves for the training set used to build the emulator and the experimental data for which we attempted to perform
calibration

therefore the emulator, do not produce any results that look like the experiment. The experimental curve has a faster initial
rise than anything we see in from the materials model.

16.6 Conclusions and Future Work

We have demonstrated the application of a statistical technique for comparing experiments and computationally intensive
materials models. The procedure is based on the use of a Bayesian statistical model estimated through a Markov chain Monte
Carlo algorithm and an emulator, a fast, statistical surrogate for the materials model. The procedure works well in a test case.
In addition, a sensitivity analysis was performed on the 14 input parameters under consideration. Parameters that were found
to have a small effect on the output could be fixed when estimating the remaining input parameters, leading to decreased
computation time and less uncertainty.
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Unfortunately, we were not able to successfully calibrate our materials model to actual experimental data because of
significant discrepancies between the two. Additional study will be required to determine the source of these differences.
It is possible that the materials model may lack important physics or there may be greater dependency between the strain
rate and stress-strain curves than is captured in the materials model. There may also be systematic errors in the experiment
that account for these differences. The strain rate and temperature have a big effect on the output both from simulation and
experiment, so the next step may be comparing theory and experiment at ideal, well-behaved experimental conditions and
then increasing the complexity once the discrepancies are better understood.
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Chapter 17
Augmented Sequential Bayesian Filtering for Parameter
and Modeling Error Estimation of Linear Dynamic Systems

Mingming Song, Hamed Ebrahimian, and Babak Moaveni

Abstract In this paper an augmented sequential Bayesian filtering approach is proposed for parameter and modeling error
estimation of linear dynamic systems of civil structures using time domain input-output data through a sequential maximum
a posteriori (MAP) estimation approach, which is similar to Kalman filtering method. However, in the application of existing
Kalman filters, the estimation of modeling errors is rarely considered. Unlike traditional Kalman filter which provides state
estimation at every time step, the proposed filtering approach estimates the parameter and modeling error on a windowing
basis, i.e., the input and output data are divided into windows for estimation which would save computation burden. The
analytical derivation of the proposed augmented sequential Bayesian filtering method is first presented, and then the method
is verified through a numerical case study of a 3-story building model. An earthquake excitation is used as the input and the
acceleration time history response of the building model is simulated. The simulated response is then polluted with different
levels of Gaussian white noise to account for the measurement noise. The simulated response is used as the measured data
for calibrating another 3-story shear building model which is different from the original model for simulation. Modeling
errors are introduced in this shear building model including the shear building assumption, grouping strategy and boundary
conditions. The augmented sequential Bayesian filtering approach is applied to estimate the model parameters and modeling
error. The performance of the proposed method is studied with respect to modeling errors, the number of sensors and the
level of noise.

Keywords Sequential Bayesian filtering · Model parameter estimation · Modeling error estimation · Uncertainty
quantification

17.1 Introduction

Kalman filter is one of the most common methods for state estimation given a series of input-output data. Considering
its efficiency and application simplicity, a class of different Kalman filter methods has been developed and applied for
different purposes, e.g., state estimation, model parameter estimation, input estimation, modeling uncertainty estimation, or
joint estimations. Extended Kalman filter (EKF) and unscented Kalman filter (UKF) have been the most popular Kalman
filter methods for model parameter estimations of civil engineering structures. Numerical applications of UKF for model
parameter estimation are presented in these two studies [1, 2]. Azam et al. proposed a dual-Kalman filter for joint state-input
estimation given output-only acceleration measurements [3]. Astroza et al. applied a dual adaptive filtering approach for
nonlinear finite element (FE) calibration accounting for modeling uncertainty [4]. In this study, a new filtering approach is
proposed for model parameter and modeling error estimation.
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17.2 Methodology

The proposed augmented sequential Bayesian filtering method estimates the model parameters and modeling errors through
a maximum a posteriori (MAP) estimation approach. It can be seen as an extension of the existing Bayesian filtering method
[5, 6] which allows model parameters estimation. The FE model of the considered structure is assumed to depend on a set
of regular parameters, θ1, and another set of model parameters which are functions of additional parameters θh (referred
to as high-level parameters), i.e., θ2 = f(θh). The model-predicted response is denoted by ŷ = h̃ (θ1, θ2) = h̃ (θ1, f (θh)),
in which the function h̃ (. . . ) evaluates the response from the FE model. The model-predicted response can be denoted as
ŷ = h (θ1, θh) without loss of generality. The measured structural response y is assumed to be equal to the sum of model-
predictions and a prediction error, i.e., y = h(θ1, θh) + e, in which e refers to the prediction error and follows a normal
distribution e ∼ N(μe, �e). The mean vector and variance matrix of e approximately quantify the modeling errors through
a normal distribution. The unknown parameters to be estimated include θ1, θh, μe and �e. For brevity, a new parameter θ

is defined to combine all model parameters (regular and high-level parameters), i.e., θ = [θ1
T , θh

T ]T , and a new vector ψ is
defined to include all unknown parameters to be estimated, i.e., ψ = [θT , αT ]T , in which α = [μe

T , rT ]T and r = (diag(�e))
which denotes the diagonal terms of �e. In this study, �e is assumed to be a diagonal matrix which ignores the correlation
between different prediction error components. The objective of the proposed filtering method is to find the MAP estimation
of ψ at each time window.

Based on Bayes’ theorem, the posterior probability density function is proportional to the product of likelihood function
and prior distribution:

p ( ψ | y) ∝ p ( y | ψ) p (ψ) (17.1)

In the framework of Bayesian filtering, the prior distribution of the current time window is chosen as the posterior

distribution of previous window, i.e., ψ ∼ N
(
ψ̂

−
, P̂−

ψ

)
. Therefore, the natural logarithm of the posterior distribution is

derived below:

log (p ( ψ | y)) = c − 1
2 log (|�e|)− 1

2

(
y − h (θ)− μe

)T
(�e)

−1 (y − h (θ)− μe
)

− 1
2

(
ψ − ψ̂

−)T (
P̂−

ψ

)−1 (
ψ − ψ̂

−) (17.2)

Then by setting the derivative log(p(ψ|y)) of ψ over equal to zero, the MAP estimation of ψ can be obtained:

∂ log (p (ψ| y)) /∂ ψ =
[
∂ log (p (ψ| y))

∂θ

∂ log (p (ψ| y))
∂μe

∂ log (p (ψ| y))
∂r

]
= 0 (17.3)

The three partial derivatives are derived separately:

θ̂
+ = θ̂

− +
[
Cθ

T (�e)
−1 Cθ |̂θ− + Pθθ

]−1 [(
Cθ

T (�e)
−1
(

y − h
(̂
θ
−)− μe

))
− Pθα

(
α − α̂−)] (17.4)

where Cθ = ∂h(θ)
∂ θ

, which can be evaluated using analytical (e.g., direct differentiation method) or numerical (e.g., finite

difference method) methods, and
(

P̂−
ψ

)−1 =
[

Pθθ Pθα

Pαθ Pαα

]
.

μe = y − h (θ)− �e

(
∂ψ

∂ μe

)T (
P̂−

ψ

)−1 (
ψ − ψ̂

−)
(17.5)

−1

2
(�e)

−1Iny×1 + 1

2
(�e)

−2(y − h (θ)− μe
)2 −

(
∂ψ

∂ r

)T (
P̂−

ψ

)−1 (
ψ − ψ̂

−) = 0 (17.6)

in which
(
y − h (θ)− μe

)2 =
[(
yi − hi (θ)− μei

)2] is a ny × 1 vector.
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Fig. 17.1 (a) 3-story frame model (true structure); (b) 3-story shear building model (with modeling errors)

The three partial derivative equations, Eqs. (17.4)–(17.6), should be solved simultaneously; however, it is mathematically
difficult to obtain an analytical closed form solution which satisfies all three equations. Therefore, an iterative numerical
solution is proposed here:

For window k:

1. Update θ̂
+

using previous estimated θ̂
−

while keeping μe and r = (diag(�e)) the same as last iteration.
2. Update μe with θ̂

+
.

3. Update r = (diag(�e)) with θ̂
+

and μe.
4. Go to step 1 until the convergence criteria is reached.

Then move to next window k + 1.
The proposed augmented Bayesian filtering method is verified through a numerical case study of a 3-story building model.

The response of the building is first simulated using a 3-story frame model which represents the true structure as shown in
Fig. 17.1a. An earthquake ground excitation is used as the input of the structure and its acceleration response is simulated
and polluted with white noise. Then a 3-story shear building model with significant modeling errors, as shown in Fig. 17.1b,
is created for model parameter and modeling error estimation using the proposed filtering approach. The performance of the
proposed method is studied with respect to modeling errors, the number of sensors and the level of noise.
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Chapter 18
On-Board Monitoring of Rail Roughness via Axle Box
Accelerations of Revenue Trains with Uncertain Dynamics

V. K. Dertimanis, M. Zimmermann, F. Corman, and E. N. Chatzi

Abstract In addressing recent demands for increasing loads and speed of Railways, as well as increasing railway network
usage, inexpensive and frequent monitoring of the infrastructure may be adopted to ensure safe and reliable operation.
Presently, inspection of railway infrastructure is carried out visually or with dedicated Track Recording Vehicles (TRV),
which are equipped with a number of optical and inert sensors and periodically collect geometric data. However, such
inspection is costly, may only be carried out at periodic, and thereby infrequent intervals, and may disrupt other services
and regular operation. As an alternative, relatively low-cost on-board monitoring data collected from revenue-making trains,
could offer a cost-effective and more robust approach to monitor railway tracks. This approach relies on accelerometers
mounted either on the axle box or on the car body, with the potential of almost continuous monitoring, earlier fault detection
and thereby serving as a natural fit for predictive maintenance. However, the dynamics collected from revenue service trains,
via low-cost sensors, are inevitably described by uncertainties (speed, weight, rolling stock condition). To this end, we
propose an approach relying on model-based system identification for increasing the estimation capacity. A vehicle–rail
interaction model is coupled with a dual Kalman filter (KF) on measured axle box vibration data from in-service trains, in
order to estimate the input excitation (e.g. rail roughness). Via estimation of the input, we may distinguish between isolated
defects (e.g. squats, turnout frogs, welded joints) and effects distributed over a certain track length (e.g. concrete sleeper,
wood sleeper, ballast, slab track).

Keywords Rail roughness · Substructuring · Dual Kalman filter · On-board monitoring · Uncertainty

18.1 Introduction

The traditional approach to life-cycle assessment (LCA) and maintenance planning of infrastructure almost exclusively
relies on inspections that are either carried out in regularly spaced intervals, or are triggered due to manifestation of
irregular or potentially unsafe behavior. The drawbacks of such an approach with respect to ensuring resilience (i.e., prompt
reaction to condition degradation) are self-evident. A more informative alternative has long been in place, namely the
practice of Structural Health Monitoring (SHM), i.e., the utilization of sensors for extracting continual information on
system behavior [1]. Many railway Bodies in Europe already investigate the turn to such a data-driven LCA scheme for
the management of both rail infrastructure and the vehicle fleet, with high quality data collected by means of diagnostic
service vehicles.

In a time where competition between rail and road transport is intensifying and overall system costs are expected to rise,
an efficient approach to maintenance planning could prove key in enhancing the competitiveness of railway transportation
against other transport modes. The inexpensive and frequent monitoring of the complete infrastructure network via “smart”
on-board monitoring schemes [2–4] can enable a shift from the current costly scheduled maintenance regimes toward data-
driven predictive maintenance. This reduces downtime and emergency maintenance actions, with positive implications on
rail traffic reliability and maintenance costs.

Thus far, inspection of railway infrastructure has been carried out visually or with dedicated Track Recording Vehicles
(TRV), which are equipped with a number of optical and inertial sensors and periodically collect geometric data. However,
such inspection is costly, may only be carried out at periodic, and thereby not so frequent, intervals, and may disrupt other
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services and regular operation. As an alternative, relatively low-cost continuous monitoring, based on on-board vibration
data, collected from revenue-making trains, could be a cost-effective approach to monitor railway tracks [5–9]. It is worth
mentioning that on-board monitoring systems using diverse sensor technologies are also investigated in road vehicles [10, 11].

In this work we explore this second option through the adoption of a minimum intervention strategy. This pertains to the
use of a single sensor for tracking the train vibration, and the implementation of a dual KF (KF) [12] for the estimation of the
unmeasured input force that is developed as the result of train-track interaction [13]. Via estimation of the latter, identification
of isolated defects (e.g. squats, turnout frogs, welded joints, etc.), as well as of effects distributed over a certain track length
(e.g. superstructure type, ballast condition, soil properties, etc.) can be accomplished.

18.2 Description of the Method

Figure 18.1 displays a simplified model for the description of the vertical dynamics of a train vehicle. The chassis is modelled
as a lumped mass with two degrees of freedom (DOFs) that correspond to bounce and pitch, while each bogie and wheelset
are modelled as lumped masses with a single DOF (e.g. bounce). All vehicle parts are connected through the primary and
secondary suspensions and the wheel–rail interaction is modelled with a linear Hertzian spring.

A limitation hindering implementation of the proposed method to the state-space model of the original vector structural
equation pertains to the input delay that is associated to the rear wheelset. To this end, the dual KF estimation is succeeded by
(1) establishing the transfer function that connects the induced wheel-rail interaction force to the acceleration of a measured
DOF, which herein assumed to be the bounce of the front wheelset; (2) transforming the latter into a state-space model ; (3)
discretizing the state-space model using an appropriate sampling rate; and (4) setting up the dual KF, by adopting a fictitious
equation for the unknown forces.

In more detail, the differential equation that describes the bounce motion of the front wheelset is

mwf ẍwf (t)+ cpf ẋwf (t)+ kwf xwf (t) = fwf (t)+ fpf (t) (18.1)

in which fwf (t) = kwf rf (t) is the wheel contact force and fpf (t) is the interaction force between the wheelset substructure
and the rest of the vehicle, given by

fpf (t) = cpf

(
ẋbf (t)− ẋwf (t)

)
+ kpf

(
xbf (t)− ẋwf (t)

)
(18.2)

This latter force carries all uncertainties associated with the parameters of the vehicle (excluding the ones of the wheelset
substructure) and especially the massMc and inertia Ic of the chassis, which correspond to the varying amount of passengers
during operation. The effects of this force to the vibration acceleration of the wheelset mass are expected to be considerably
lower, compared to the ones of the wheel contact force, allowing thus a relative accurate estimation of the latter.

q

Fig. 18.1 Pitch-bounce model of a railway vehicle
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Under the availability of vibration acceleration measurements, Eq. 18.1 admits a state-space representation of the form

ξ̇(t) = Aξ(t)+ Bu(t) (18.3a)

y(t) = Hξ(t)+ Du(t) (18.3b)

where ξ(t) = [xwf (t) ẋwf (t)]T , u(t) = fwf (t)+ fpf (t)T and

A =
[

0 1

− kwf
mwf

− cpf
mwf

]
, B =

[
0 0
1
mwf

1
mwf

]
(18.4a)

H =
[
− kwf
mwf

− cpf
mwf

]
, D =

[
1
mwf

1
mwf

]
(18.4b)

Under the assumption of constant intersample behaviour of the input forces (e.g. the zero-order hold principle), the discrete-
time counterpart of Eq. 18.3 reads

ξ [k + 1] = Adξ [k] + Bdu[k] (18.5a)

y[k] = Hdξ [k] + Ddu[k] (18.5b)

for Ad = eATs , Bd ≈ TsB, Hd = H and Dd = D, where Ts denotes the sampling period.
The realization of the dual KF [12] initiates by adopting a random walk model for the temporal evolution of the unknown

input

u[k + 1] = u[k] + wu[k] (18.6)

wherewu[k] is a zero-mean Gaussian white noise process of variance σ 2
uu. Accordingly, by adopting the procedure described

in Eftekhar Azam et al. [12], Eqs. 18.5 and 18.6 can be transformed into the following dual set of KFs:

Input Estimation

u[k + 1] = u[k] + wu[k] (18.7a)

y[k] = Hdξ [k] + Ddu[k] + wy[k] (18.7b)

State Estimation

ξ [k + 1] = Adξ [k] + Bdu[k] + wξ [k] (18.8a)

y[k] = Hdξ [k] + Ddu[k] + wy[k] (18.8b)

In Eqs. 18.7b and 18.8, process and measurement noise has been added to the state and the output equations of the original
discrete-time state-space representation of the wheelset, modelled also as zero-mean white noise processes of covariance
matrix �ξξ and variance σ 2

yy , respectively.

18.3 Numerical Implementation

The proposed method is evaluated by simulating the pitch-bounce model of Fig. 18.1, using the structural parameters given
in Table 18.1. Excitation is realized by adopting the American Railway Standard, developed by the US Federal Railroad
Administration, to generate an artificial rail profile of average quality (e.g. grade 4, [14]). A range of wavelengths between
0.10 and 70 m is assumed, for a distance of 800 m and a travelling velocity of 150 km/h. The selected values for the input,
process and measurement noise second-order statistics are σ 2

uu = 10−2, �ξξ = 10−12I2, and σ 2
uu = 10−10, respectively,

while the initial variance/covariance matrix of the unknown input and state vector are P 2
uu[0] = 10−1 and Pξξ [0] = 10−5I2,

respectively.
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Table 18.1 Numerical values for the structural parameters of the pitch-bounce model

Parameter Symbol Value Unit

Front wheelset mass mwf 1220 kg

Rear wheelset mass mwr 1200 kg

Front/rear bogie mass mbf , mbr 850 kg

Chassis mass Mc 4125 kg

Chassis inertia Ic 1.25×105 kg m2

Front/rear wheelset Hertzian contact spring kwf , kwr 3.00×107 N/m

Front/rear primary suspension stiffness kpf , kpr 3.00×106 N/m

Front/rear secondary suspension stiffness ksf , ksr 6.00×106 N/m

Front/rear primary suspension damping cpf , cpr 0.60×104 N s/m

Front/rear secondary suspension damping csf , ccr 1.80×104 N s/m

Distance of the chassis centre of gravity from the front/rear suspensions L1, L2 8.53 m
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Fig. 18.2 True (black) and estimated (red) rail profile
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Fig. 18.3 True (black) and estimated (red) one-sided power spectral density for the profiles of Fig. 18.2

The results are expanded over Figs. 18.2 and 18.3 and indicate very good performance of the dual observer. The estimated
profile resembles in good accuracy its true counterpart, with the minor discrepancies attributed to the effects of the force
fpf (t) that is also “hidden” in the estimate. These effects are more obvious in the wavenumber domain, where a small peak
appears in the spectral amplitude of the estimated profile: this corresponds to a frequency band around 25–26 Hz, in which
the pitch-bounce model has two closely-spaced modes (25.35 and 25.56 Hz).

18.4 Conclusions

The encouraging results suggest further investigation of the method, especially with respect to a number of aspects that
render its actual implementation successful. These include, among others, a more systematic investigation of the effects
of vehicle uncertainties, by integrating them into the estimation process [15]. Of primary importance is the extension of the
method to cover the direct prediction of ballast condition and soil properties, towards its integration into an actual monitoring
alternative of railway infrastructure.
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Chapter 19
Bayesian Identification of a Nonlinear Energy Sink Device:
Method Comparison

Alana Lund, Shirley J. Dyke, Wei Song, and Ilias Bilionis

Abstract Nonlinear energy sink (NES) devices have recently been introduced in civil engineering for structural control.
Because of the essential geometric nonlinearities governing these devices, identification must be performed in the time
domain. Such methods can be challenging due to processing requirements, sensitivity to noise, and the presence of
nonlinearity. Bayesian analysis methods have been shown to overcome these challenges, providing robust identification
of nonlinear models. In this study we compare the unscented Kalman filter and the particle filter for the identification of
a prototype NES device. Simulated responses developed using a device model and a sample set of parameters are used
here to demonstrate and evaluate the identification process. Analysis of the identification results is conducted by varying
the identification technique used and the selection of the prior distributions on the parameters. These preliminary numerical
results will inform a later implementation on experimental response data.

Keywords Nonlinear Energy Sink · Bayesian Analysis · Model Identification · Unscented Kalman Filter · Particle Filter

19.1 Introduction

The nonlinear energy sink (NES) is of interest to the structural engineering community for its ability to passively dissipate
structural vibration over a wide range of frequencies. This property encourages its long-term use in structures whose dynamic
behavior is subject to change due to the effects of aging, repurposing, and rehabilitation. The NES device concept was first
explored in a series of studies by Gendelman et al. [1] and Vakakis and Gendelman [2] in 2001. The dynamic analysis
of these devices and their performance when coupled with linear systems is a topic of ongoing research [3–8]. Recent
studies attempt device identification, using static testing for specific parameters [5] and the restoring force method for global
identification [7].

Bayesian system identification techniques provide a promising alternative to these methods. Of these techniques, Kalman
filters [9] and particle filters (PF) [10] are commonly used for recursive estimation. In the Kalman filter class, the unscented
Kalman filter (UKF) [11] and its variants have been shown to be the most applicable for the robust identification of nonlinear
systems with additive Gaussian noise [12–14]. The PF has likewise been shown to be reliable for identifying generalized
nonlinear systems, though it does suffer from increased computation time [15–17]. In this study we compare the ability of
these techniques to accurately identify the parameters of a prototype NES device from its simulated responses. The results
of the identification process for each method are also analyzed in terms of the selection of the prior distributions on the
parameters.
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19.2 Background

The NES device investigated in this study, shown in Fig. 19.1, is similar to the small-scale Type 1 NES device designed by
Wierschem [7]. An additional Coulomb damping term is incorporated in the governing equation in anticipation of frictional
effects in the experimental implementation of the device. The complete model is given by

mẍ + cvẋ + cf tanh (200ẋ)+ kx + zx3 = −mẍg, (19.1)

where m is the mass of the device (0.664 kg), cv is the viscous damping coefficient (0.419 Ns/m), cf is the Coulomb damping
coefficient (0.054 N), k is the linear stiffness coefficient (21.8 N/m), z is the nonlinear stiffness coefficient (696,295 N/m3),
x is the displacement of the mass, and ẍg is the acceleration of the base. The term tanh (200ẋ)is a continuous approximation
of the idealized discontinuous Coulomb damping force. The excitation used in this study corresponds to an acceleration
resulting from a 5 mm sine sweep displacement at the base, varying linearly in frequency from 0 to 5 Hz over 30 s. This
excitation was selected because it demonstrates a clear variation in the behavior of the device over a frequency range of
interest. The response, shown in Fig. 19.2, is calculated using 4th order Runge-Kutta integration at a sampling frequency of
2048 Hz.

The UKF and PF algorithms are implemented to identify the parameters θ = [cv cf k z] using displacement and
acceleration response signals with 10% process and measurement noise. The parameters are logarithmically transformed
during algorithm operation to allow unconstrained optimization over the parameter space, which is known to be positive.
The UKF approach used in this study is described in detail in [11, 12]. State augmentation is used to facilitate the joint
estimation of the states and parameters. The PF approach used in this study is described in [10, 16] and implemented with
the python library pyParticleEst [18]. Expectation-maximization (EM) is used with the PF to facilitate joint estimation [19].

Fig. 19.1 Schematic diagram of the NES device

Fig. 19.2 Displacement response of true and identified model using UKF (a) and PF (c) and distribution of candidate parameter sets estimated by
UKF (b) and PF (d)
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19.3 Analysis

Parameter identification results from this preliminary analysis are given in Fig. 19.2, with results from the UKF method
shown in Fig. 19.2a, b and results from the PF method shown in Fig. 19.2c, d. Each method is evaluated with 20 sets of
initial parameters. The final parameters are determined from the resulting candidate solutions as those minimizing the RMS
error on the displacement response. The final parameter sets are θUKF = [0.376, 0.058, 22.65, 697,397] and θPF = [0.416,
0.064, 20.87, 699,874]. With the exception of the Coulomb damping parameter identified by the PF, all identified parameters
are within 10% of the true values. The UKF and PF generate similar results and similarly good representations of the
response, as shown in Fig. 19.2a, c. The consistency with which they attained these solutions differs, as shown in Fig. 19.2b,
d. The UKF generates a far narrower set of solutions using the same set of initial parameters.

19.4 Conclusion

These preliminary results suggest that a state augmentation approach to the UKF has the potential to generate a more
consistent set of identified parameters for the NES device than an EM approach with the PF. Further investigations will
be performed to systematically compare the methods, particularly with respect to the experimental response of the NES.
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Chapter 20
Calibration of a Large Nonlinear Finite Element Model
of a Highway Bridge with Many Uncertain Parameters

Rodrigo Astroza, Nicolás Barrientos, Yong Li, and Erick Saavedra Flores

Abstract Finite element (FE) model updating has emerged as a powerful technique for structural health monitoring (SHM)
and damage identification (DID) of civil structures. Updating mechanics-based nonlinear FE models allows for a complete
and comprehensive damage diagnosis of large and complex structures. Recursive Bayesian estimation methods, such as the
Unscented Kalman filter (UKF), have been used to update nonlinear FE models of civil structures; however, their use have
been limited to models with a relatively low number of degrees of freedom and with a limited number of unknown model
parameters, because it is otherwise impractical for computationally demanding models with many uncertain parameters.
In this paper, a FE model of the Marga-Marga bridge, an eight-span seismically-isolated bridge located in Viña del Mar-
Chile, is updated based on numerically simulated response data. Initially, 95 model parameters are considered unknown, and
then, based on a simplified sensitivity analysis, a total of 27 model parameters are considered in the estimation. Different
measurement sets, including absolute accelerations, relative displacements, strains, and shear deformations of the isolators,
are analyzed to investigate the effects of considering heterogeneous responses on the estimation results. In addition, a non-
recursive estimation procedure is presented and its effectiveness in reducing the computational cost, while maintaining
accuracy and robustness in the estimation, is demonstrated.

Keywords Model updating · Nonlinear finite element model · Parameter estimation · High-dimensional parameter space

20.1 Introduction

Finite element (FE) model updating aims to determine a set of parameters, defined in deterministic or probabilistic terms, of a
model such that the misfit between the FE-predicted and measured responses, or quantities derived therefrom, is minimized
[1]. In structural engineering, an important application of FE model updating is damage identification. In his area, linear
FE model updating has attracted significant attention from the community, by proposing methodologies and verifying and
validating them with simulated and experimental data (e.g., [2]). However, linear FE models need to be employed with data
recorded from excitations of low amplitude (e.g., ambient vibrations), and therefore, damage is described as a reduction of
the effective stiffness of the structure being analyzed. As an alternative, updating of nonlinear FE models allows a more
comprehensive characterization of the damage, including strength deterioration and ductility capacity, by using the data
recorded during damage inducing events.

In recent years, some research efforts have been devoted to update mechanics-based nonlinear FE models, mainly using
a Bayesian estimation framework (e.g., [3–5]). In particular, Astroza et al. [6–8] and Ebrahimian et al. [9] proposed using
the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) to estimate parameters defining mechanics-based
nonlinear FE models. These studies have provided promising results, however, all of them have tackled the estimation of
nonlinear models with a limited number of degrees of freedom and/or with a low number of parameters to be identified.
In real world, it is anticipated that nonlinear FE models to be solved correspond to large and complex models involving a
large number of parameters to be estimated. Therefore, it is required to validate the performance of the previously proposed
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methods and also their feasibility in terms of the computational resources required. In this paper, the performance of the
UKF when dealing with the updating of a FE model of a seismically isolated highway bridge including many degrees of
freedom and material nonlinearities, and requiring the estimation of a large number of parameters is investigated. The effects
of considering heterogeneous response measurements is also studied and a batch-recursive approach is presented to reduce
the computational cost involved in the estimation process.

20.2 FE Model Updating

The nonlinear differential equation describing the response of a nonlinear FE model of a structural systems subjected to
uniform seismic excitation can be written as

M (θ) q̈k+1 (θ)+ C (θ) q̇k+1 (θ)+ rk+1 (q1:k+1 (θ) , θ) = −M L ügk+1 (20.1)

where qk+1, q̇k+1, q̈k+1 ∈ R
n×1 = displacement, velocity, and acceleration response vectors, M, C ∈ R

n×n = mass and
damping matrices, rk + 1(q1:k + 1(θ), θ) ∈ R

n×1 = nonlinear resisting force vector, n = number of degrees of freedom, θ ∈
R
nθ×1 = vector of model parameters, nθ = number of model parameters, L ∈ R

n×r = influence matrix and ügk+1 ∈ R
r×1 =

seismic base acceleration vector , r = number of components of base excitation, k = 0, 1, . . . , N − 1 denotes the time step,
and N is the number of data samples of the input acceleration vector. At discrete time tk + 1, different types of responses
can be extracted from the FE model (̂yk+1 (θ) ∈ R

ny×1, with ny = number of measured responses) and related with their
measured counterparts (yk+1 ∈ R

ny×1):

yk+1 = ŷk+1
(
θ, üg1:k+1

)+ vk+1 (20.2)

where the ŷk+1
(
θ, üg1:k+1

)
is an implicit nonlinear response function (i.e., the FE model), üg1:k+1 includes the ground

accelerations from time t1 to tk + 1, and vk + 1 is the prediction error vector, which is assumed here to be described by a
white Gaussian process with zero mean and covariance matrix R.

The vector of model parameters to be estimated (θ) is modeled as a random walk, defining together with Eq. (20.2), the
following nonlinear state-space model:

θk+1 = θk + wk
yk+1 = hk+1

(
θk+1, ü

g

1:k+1

)+ vk+1
(20.3)

where hk+1
(
θk+1, ü

g

1:k+1

) = ŷk+1
(
θ, üg1:k+1

)
, wk is the process noise assumed white Gaussian with zero-mean and diagonal

covariance matrices Q and statistically uncorrelated with vk. Instead of updating the FE model at every time step as proposed
in [6], a batch-recursive approach is employed. This aims to reduce the computational cost involved in the estimation process
and therefore allow calibrating nonlinear FE models with a large number of degrees of freedom and requiring the estimation
of a high number of parameters. A single forward analysis of these types of models may require a significant amount of time,
and consequently, the inverse problem involving many parameters to be estimated may be prohibitive using existing methods.
In the batch-recursive approach the FE model is updated every D > 1 time steps, where D corresponds to the updating step.
Then, the model parameters are estimated at tk + 1, k = D − 1, 2D − 1, . . . , instead of at every time step. When the model
is updated at time tk + 1, the innovation vector is extended to include the responses from times tk−D+2 to tk + 1, then, no
measured information is discarded in the estimation process. A summary of the batch-recursive approach used in this paper
is shown in Fig. 20.1.

20.3 Application Example: Marga-Marga Bridge

20.3.1 Description of the Structure, FE Model, and Input Motion

The Marga-Marga bridge is an eight-span highway bridge located in Chile (Fig. 20.2). The bridge reinforced concrete deck is
supported on four steel girders which are connected to the piers and abutments by high-damping rubber bearings. Reinforcing
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Fig. 20.1 Batch-recursive estimation procedure for large FE models with high-dimensional parameter space

steel and concrete of the structural components have nominal yield strength of 420 MPa and maximum compressive strength
of 25 MPa, respectively. More information about the bridge is available in [10].

The open-source software platform OpenSees [11] was used to model the bridge. The superstructure, which includes the
girders and the deck, was modeled with an equivalent cross-section. The rigid offsets of the structure were modeled with
rigid linear beam-column elements (Fig. 20.3). The piers were modeled using nonlinear distributed plasticity beam-column
elements and the concrete and steel fibers considered the constitutive laws concrete04 and steel02 as available in OpenSees.

The reinforcing steel model is defined by four primary parameters: elastic Young’s modulus (E0), initial yield stress
(fys), strain hardening ratio (bs), and a parameter describing the curvature of the transition curve between the asymptotes of
the elastic and plastic branches during the first loading (R0). The concrete model is defined by four parameters, modulus
of elasticity (Ec), maximum compressive strength (fc′), strain at the maximum compressive strength (εc), and strain at
the crushing strength (εcu). The seismic isolators were modeled employing the Elastomeric Bearing element available in
OpenSees, which is defined by five parameters, the initial elastic stiffness (Ke), yield strength (fy), post-yield stiffness ratio
of linear hardening component (b), post-yield stiffness ratio of nonlinear hardening component (α2), and an exponent of
non-linear hardening component (μ).

The mass properties of the bridge were computed based on the volume of the components and their material densities
and were lumped at the nodes of the FE model. Rayleigh damping model with critical damping ratio of 2% for the first
longitudinal and transverse modes was assumed. No contribution of the isolators was considered in the Rayleigh damping
model. Uniform base excitation was considered at both bridge ends and at the bottom of the piers. The 90◦, 0◦, and UD
(vertical) ground motion components recorded at the Los Gatos station during the 1989 Loma Prieta earthquake (Fig. 20.4)
were considered in the longitudinal, transverse, and vertical directions of the bridge. More details about the FE model can be
found in [12].
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Fig. 20.2 Marga-Marga bridge. Top: photo, Bottom: elevation view

Fig. 20.3 FE model of the Marga-Marga bridge. Left: pier, Right: typical span

20.3.2 Response Simulation

The parameters of the reinforcing steel and concrete constitutive models, the parameters of the seismic isolator elements, the
elastic modulus of the deck and steel girders (ED and EG, respectively), and the coefficients defining the Rayleigh damping
matrix (α and β) are considered as model parameters. It is assumed that the seven piers and isolators are governed by different
model parameters, then a total of 95 parameters are initially considered to be estimated. A set of true model parameter values
are selected to simulate the response of the bridge. Their values were randomly selected assuming a Gaussian distribution for
each parameter with nominal mean values of E0

Ci = 210 GPa, fsy
Ci = 420 GPa, bS

Ci = 0.005, R0
Ci = 18, fc′Ci = 25 MPa,



20 Calibration of a Large Nonlinear Finite Element Model of a Highway Bridge with Many Uncertain Parameters 181

1 2 3 4 5 6 7 8 9 10 11 12 13

Time [s]

-0.5

-0.25

0

0.25

0.5

A
cc

el
er

at
io

n 
[g

]

90°
UD
0°

Fig. 20.4 Ground accelerations recorded at the Los Gatos station during the 1989 Loma Prieta earthquake

Table 20.1 True value of model parameters of the Marga-Marga bridge

εc
Ci = 0.002, εcu

Ci = 0.006, Ke
Ci = 14,600 N/mm, fyCi = 6800 N, be

Ci = 0.2, α2
Ci = 0.15, μCi = 1.5, EG = 210 GPa,

ED = 23.5 GPa, α = 0.0563, and β = 0.0017, where the superscript Ci denote the pier/column i (see Fig. 20.2), and a
coefficient of variation of 10%. The true parameter values are shown in Table 20.1.
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20.3.3 Sensitivity Analysis

A simplified one-at-a-time sensitivity analysis is conducted for the Marga-Marga bridge and the results are shown in tornado
diagrams [13]. Local sensitivities of 36 different responses with respect to the 95 parameters described above are analyzed.
The considered responses include: longitudinal and transverse absolute acceleration responses at the top of piers #2, #4,
and #6 and at the deck above the same piers (i.e., 12 absolute acceleration responses, y1 to y12), relative displacements
collocated with the acceleration responses (i.e., 12 relative displacement responses, y13 to y24), strain responses on one steel
and one concrete fiber at the bottom section of the same piers (i.e., 6 strain responses, y25 to y30), and longitudinal and
transverse shear strains on isolators located above piers #2, #4, and #6 (i.e., 6 isolators’ shear strain responses, y31 to y36).
A perturbation of ±5% around the true value of each model parameter (Table 20.1) is considered. Then, the relative root
mean square error (RRMSE) between the true responses (i.e., computed using the true parameter values) and those obtained
with the perturbed parameter values is computed and plotted in tornado diagrams. Figure 20.5 shows the sensitivity results
of one global response, the absolute acceleration response on top of pier #2 in the longitudinal direction (y1), and one local
response, the shear deformation of the isolator on top of pier #6 in the longitudinal direction (y35). The parameter ID in
Fig. 20.5 refers to the model parameters presented in Table 20.1. From Fig. 20.5 it is observed that response y1 and y35
are mostly sensitive to parameters defining the response of the isolators in the interior piers (#2 to #6), elastic modulus of
steel girders and deck (EG and ED), the stiffness-proportional parameter of the Rayleigh damping (β), and some concrete
parameters (chiefly Ec, fc′, and εc) of the interior piers (#2 to #6). As expected, the predominant effect of the isolation layer
in the overall structural response is clearly captured by the simple sensitivity analysis conducted. Moreover, it is observed
that global acceleration and displacement responses are more sensitive to concrete model parameters than shear deformation
response of the isolators. This shows the importance of considering heterogeneous response quantities when calibrating large
and complex nonlinear FE models. By comparing the magnitude of the RRMSEs related to the different responses analyzed,
it is observed that shear deformation of the isolators experienced the highest variations (y31 to y36), followed by global
acceleration (y1 to y12) and displacement (y13 to y24) responses, while fiber level responses (y25 to y30) show the lowest
variations. Then, the model parameters to be estimated are selected as those having a RRMSE equal or higher than 20% of
the RRMSE for the most sensitive parameter, considering all the measured responses. A threshold value of 20% is chosen
in this application because of the abrupt change in the swings of the tornado diagram. The twenty-seven (27) parameters
satisfying this criterion are highlighted in grey in Table 20.1 and are chosen for the estimation and model updating phase.

20.3.4 Estimation of Model Parameters

The twenty-seven model parameters defined above define the vector θ. The true responses (ytrue) obtained using the true
model parameters (Table 20.1) are polluted by white Gaussian noise to define the measured response (y) employed for the
estimation. For acceleration and displacement-related responses, levels of noise of 0.7%g and 2.0 mm RMS, are respectively
considered. Note that displacement-related responses includes relative displacement responses of the pier and deck, and
also shear strain responses of the isolators. For the fiber strain responses, an absolute noise level of 0.005% is assumed.
Then, the updating process employs the three components of seismic base acceleration (üg) and the measured response
(y) to estimate the twenty-seven FE model parameters. To investigate the effects of the number and type of the measured
responses and of the updating step (D) considered in the estimation process, different instrumentation setups are considered
to update the FE model. The twelve cases analyzed are summarized in Table 20.2 and include values of D = 5, 10, and 20
and measured responses considering only accelerations (cases B01 to B03), accelerations + displacements (cases B04 to
B06), accelerations + displacements + strain in fibers (cases B07 to B09), and accelerations + displacements + strain in
fibers + shear strain in isolators (cases B10 to B12).

wk is assumed zero-mean with diagonal covariance matrix Q, whose diagonal entries are computed as
(
q × θ̂ i0|0

)2
,

i = 1, . . . ,27 and q = 1 × 10−5. Matrix R was constructed assuming standard deviations of 0.5% for acceleration responses,
1.3 mm for global displacement responses, 1.5 mm for shear deformation of isolator responses, and 0.003% for strain in
steel and concrete fiber responses. Initial estimates of the parameters are randomly chosen from the ranges [−20%, −10%]

and [10%, 20%] of the true parameter values. P̂θθ
0|0 is taken as diagonal with entries equal to

(
p × θ̂ i0|0

)2
, with i = 1, . . . ,27

and p = 5%. Figure 20.6 shows the time history of the mean estimate of the 27 parameters normalized with respect to the
corresponding true values for cases B01and B12. In cases B01, all the isolator model parameters, the elastic modulus of steel
girders and deck (EG and ED), and most of the elastic modulus of concrete of the piers converge to the true values, while
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Fig. 20.5 Tornado diagrams for the model parameters of the Marga-Marga bridge. Left: y1 = absolute acceleration response on top of pier #2 in
the longitudinal direction. Right: y35 = shear deformation of isolator on top of pier #6 in the longitudinal direction

estimation errors for other model parameters vary from less than 10% (e.g., β, εc
C2, εc

C3, εc4
2,) to larger than 15% (e.g.,

fcC2, fcC5, fys
C2). In case B12, all the model parameters are accurately estimated and all of them converge to their true values

at about 6 s.
All the estimation results are summarized in Table 20.3, where the final estimates of the twenty-seven model parameters

corresponding to the twelve cases analyzed are shown. Final estimates with relative errors lower than or equal to 5% are
highlighted in grey. It can be clearly observed that most of the model parameters are accurately estimated. In particular, the
isolator model parameters are very well estimated in all cases, even when the instrumentation is spatially sparse, include
only acceleration responses, and a value of D = 20 is considered. Parameters β, EG, ED, and Ec

Ci with i = 2, 3, 4, 5 are
also accurately estimated in most cases. The only parameters that show more values with errors larger than 5% are εc

C3,
εc

C5, εcu
C5, and fys

C2, which is expected because the measured responses contain less information about these parameters
compared to the other selected parameters. Overall, the estimation performance is excellent for all values of D analyzed,
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Table 20.2 Response measurements considered for the Marga-Marga bridge

Case ID D y1 (a1) → y12 (a12) y13 (d1) → y24 (d12) y25 (ε1) → y30 (ε6) y31 (�1) → y36 (�6)

B01 20 � – –
B02 10 � – –
B03 5 � – –
B04 20 � � – –
B05 10 � � – –
B06 5 � � – –
B07 20 � � � –
B08 10 � � � –
B09 5 � � � –
B10 20 � � � �
B11 10 � � � �
B12 5 � � � �
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Fig. 20.6 Updating history of the normalized parameter estimates for cases B01 and B12
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Table 20.3 Final normalized parameter estimates for the Marga-Marga bridge

considering the large number of parameters to be estimated, the complexity of the nonlinear FE model, and the reduced
number of measured responses.

20.3.5 Response Prediction Errors

Figure 20.7 shows the RRMSEs between the true and updated FE models corresponding to the measured response quantities
(see Table 20.2) for the twelve cases analyzed (cases B01 to B12). In addition, the RRMSEs between the true and initial FE
models are depicted in parenthesis and denoted by Eini, which range between 7% (y23) and 152% (y31). After the updating
process, the largest RRMSEs is about 28% (y4 for case B05) and most of the errors are lower than 10%, confirming an
excellent agreement between the true responses and the corresponding FE-predicted responses based on the updated model.
Analyzing the effect of the updating step for each instrumentation setup, it is observed that as D decreases the RRMSEs also
decreases. In this application example, the effect of the heterogeneous sensors is also evidenced, chiefly when displacement-
related responses are added (i.e., global displacements and shear strain in isolators).

20.3.6 Computational Cost

All the analyses for the bridge model were conducted using three threats of an Intel Xeon E3-1230 processor and 32-GB
random-access memory. Table 20.4 summarizes the wall-clock time (twc) for the 12 cases of analysis and also normalized
times, with respect to the longest run (B06) and with respect to the time required for a single run of the FE model
(trun = 6.5 min). The time to conduct the updating processes depends on the value of the updating step (D) but is practically
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Fig. 20.7 Estimation errors in measured responses for the Marga-Marga bridge. Left: global responses, Right: local responses

Table 20.4 Wall-clock times of
the estimation process for the
Marga-Marga bridge

Wall-clock time
Case ID D h % twc/trun

B01 20 45.3 26.8 418
B02 10 75.7 44.7 699
B03 5 160.3 94.7 1480
B04 20 42.8 25.3 395
B05 10 78.7 46.5 726
B06 5 169.2 100.0 1562
B07 20 43.7 25.8 403
B08 10 84.5 49.9 780
B09 5 161.5 95.4 1491
B10 20 44.1 26.1 407
B11 10 81.5 48.2 752
B12 5 158.4 93.6 1462

independent of the number of measured responses. Considerable reductions of the wall-clock time are achieved as D
increases, without compromising the accuracy of the estimation results. The wall-clock time for D = 20 is about 25%
of that for D = 5. It is noteworthy that the updating of the Marga-Marga bridge model was not conducted for D = 1, because
excessively high running time was anticipated (about 14 days). Note that the wall-clock time can be further reduced if the
estimation process is conducted in a more powerful computer. For example, if the updating process of the bridge model
for case B04 (D = 20) is conducted using ten threats of a desktop workstation with an Intel Xeon E5-2650 processor and
64-GB random-access memory, the wall-clock time decreases to 13.5 h (twc/trun ≈ 135) (i.e., about 1/3 of the wall-clock time
reported in Table 20.4).
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20.4 Conclusions

This paper investigated the performance of the unscented Kalman filter (UKF) to update large and complex mechanics-
based nonlinear finite element (FE) models with a large number of degrees of freedom and with a high number of unknown
model parameters (i.e., a high dimensional parameter space). Because the use of recursive Bayesian estimation on these
types of models is computationally demanding, it may be prohibitive for FE models of real-world civil structures. Then,
this paper presents a practical approach comprising two steps: (1) one-at-a-time (OAT) sensitivity analysis based on tornado
diagrams to select the most influential parameters and (2) a batch-recursive approach to reduce the computational cost of
the updating process. The performance of the proposed approach was investigated for different updating step values (i.e.,
updating the model every few time steps) and instrumentation setups, including heterogeneous responses. The application
example consisted of a three-dimensional isolated highway bridge model with 95 unknown model parameters. Heterogeneous
responses, including global (acceleration and displacement) and local (shear deformation of isolators and strain of materials),
were used and their effects on the estimation results were analyzed. For all the values of the updating step considered (5, 10,
and 20) excellent estimation and prediction results were obtained, including parameter estimates and measured responses of
the structure. The approach and results shown in this paper confirm that updating of large and complex nonlinear mechanics-
based FE models with many degrees of freedom and involving a high number of parameters to be estimated is feasible and
therefore, is an attractive alternative for damage identification of civil structures.

Acknowledgements R. Astroza acknowledges the financial support from the Chilean National Commission for Scientific and Technological
Research (CONICYT), through FONDECYT research grant No. 11160009.
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Chapter 21
Deep Unsupervised Learning for Condition Monitoring
and Prediction of High Dimensional Data with Application
on Windfarm SCADA Data

C. Mylonas, I. Abdallah, and E. N. Chatzi

Abstract In this work we are addressing the problem of statistical modeling of the joint distribution of data collected
from wind turbines interacting due to collective effect of their placement in a wind-farm, the wind characteristics
(speed/orientation) and the turbine control. Operating wind turbines extract energy from the wind and at the same time
produce wakes on the down-wind turbines in a park, causing reduced power production and increased vibrations, potentially
contributing in a detrimental manner to fatigue life. This work presents a Variational Auto-Encoder (VAE) Neural Network
architecture capable of mapping the high dimensional correlated stochastic variables over the wind-farm, such as power
production and wind speed, to a parametric probability distribution of much lower dimensionality. We demonstrate how
a trained VAE can be used in order to quantify levels of statistical deviation on condition monitoring data. Moreover, we
demonstrate how the VAE can be used for pre-training an inference model, capable of predicting the power production of
the farm together with bounds on the uncertainty of the predictions.

Examples employing simulated wind-farm Supervisory Control And Data Acquisition (SCADA) data are presented. The
simulated farm data are acquired from a Dynamic Wake Meandering (DWM) simulation of a small wind farm comprised of
nine 5 MW turbines in close spacing using OpenFAST.

The contribution of this work lies in the introduction of state-of-the-art machine learning techniques in the general context
of condition monitoring and uncertainty quantification. We show how the high dimensional joint probability distribution
of condition monitoring parameters can be analyzed by exploiting the underlying lower dimensional structure of the data
imposed by the physics of the problem. The process of making use of the trained joint distribution for the purposes of
inference under uncertainty and condition monitoring is clearly exposed.

Keywords Uncertainty quantification · Deep learning · Variational autoencoder · Windfarm SCADA · DWM

21.1 Introduction

Wind turbines are subjected to stochastic loadings throughout their lifetime. Many wind turbines are reaching their end
of design life which is 20–25 years. It is of interest to estimate the level of structural damage they have been subjected
throughout their lifetime. The turbines can either be refurbished or decomissioned depending on the estimated level of
structural deterioration. Due to the requirements for control in the level of electrical grid integration, but also for optimal
power production, utility-scale wind turbines contain a supervisory control and data acquisition platform (SCADA) which
typically registers 10 min mean and standard deviation of several quantities of interest. The SCADA stream may contain
useful information not only for estimating the current state of the structure based on past measurements, but also for detecting
malfunctioning components based on instantaneous SCADA measurements. Both tasks rely on the statistical modelling of
the SCADA stream, while at the same time modelling the environmental conditions. That is due to the fact that wind, together
with pitch and yaw control, are the primary causes of mechanical straining for wind turbines.

Moreover, for the case of turbines positioned in a park, it is of importance to consider the potential interactions of them
through wakes. Wakes in the context of this work, are the result of vortices produced on the tip of horizontal axis wind
turbines (HAWT). In this work we have performed a medium-fidelity wake simulation for a windfarm containing 9 turbines
with rated capacity of 5 MW in a three-by-three arrangement. We used the so-called Dynamic Wake Meandering (DWM)
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Fig. 21.1 The layout of the
studied simulated farm

simulation model [1] for the effect of wakes as it is implemented in the NTWC simulation suite [2]. The two main parameters
characterizing wind statistics in this work are the 10 min mean windspeed, and turbulence intensity. The mean windspeed
distribution typically changes with height, however for the simulations that this work considers we have not statistically
modelled this effect (typically referred to as wind shear).

21.2 Description of the Method

21.2.1 Simulated SCADA Dataset

Figure 21.1 displays a sketch of the turbine layout on the considered windfarm. In total, 600 aero-servo-elastic simulations
were run for randomly sampled windpseed and turbulence intensity, according to their joint distribution, as defined in IEC
64100 design standard [3] for a class C turbine. The raw simulated dataset consists of dynamic and operational measurements,
such as time-domain tower and blade root moments and power production for the 9 wind turbines for 2000 s. The first
400 s in the time domain results are ignored in order for the farm to reach approximately stationary operational conditions.
Consequently, two 600 s intervals are considered from each simulation, amounting to 1200 stochastic inputs.

The aero-servo-elastic simulations were performed with NREL-OpenFAST using the simplified ElastoDyn module and
the AeroDyn14 module for aerodynamics and the simulations of the downstream wakes, using the DWM simulator. The
windfields used for the simulations are created with TurbSim, with the Kaimal turbulence model and using a different
random seed for every simulation. Therefore the response of each turbine and the farm as a whole is fully stochastic. The
DWM model can capture the meandering and expanding of wakes.

21.2.2 Variational Autoencoder

Relatively recently, in the concurrent works of [4] and [5], an efficient method for building probabilistic latent variable
models was proposed. The model form of the so-called Variational Autoencoder (VAE) is shown in Fig. 21.2.

The Variational Autoencoder (VAE) is a re-formulation of the autoencoder [6] where the encoder, referred to also as the
recognition model, parametrizes a known probability distribution qφ(x|z) over latent variables z which is an approximation
to the true posterior distribution pφ(x|z). The encoder and the decoder, are both implemented as deep neural networks.

The likelihood of the datapoints reads

logpθ
(x(1), · · · , x(N)) =

N∑
i=1

logpθ (x(i)) (21.1)
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x

zφ θ

N

Fig. 21.2 The variational autoencoder as a probabilistic graphical model. Solid lines denote the generative model (decoder) pθ (z)pθ (x|z), dashed
lines denote the variational approximation qφ(z|x) to the posterior pθ (z|x). The variational parameters φ to be learned jointly with the generative
model parameters θ

Fig. 21.3 The computational graph of a VAE with a Gaussian stochastic layer. In essence, we compress the raw high dimensional SCADA data
X ∈ R

D dimensional SCADA stochastic vectors, to a z ∈ R
M dimensional stochastic vector (M << D)

For training the VAE, we optimize a lower bound on the likelihood of each datapoint that is given in Eq. (21.2).

L(φ, θ; x(i)) = −DKL(qφ(z|x(i))||pθ (z))+ Eqθ (z|x(i))
[

logpθ (x(i)|z)
]

(21.2)

The first term of the right-hand-side is the Kulback-Leibler divergence between a prior over the latent variable z and the
variational posterior qφ(z|x). The second term in the RHS is the expected likelihood of the data given a set of samples
from the latent space. The quantity in Eq. (21.2) is referred to as the Evidence Lower Bound (ELBO). We can chose
qφ(z|x) to be from a parametric family. In this work, we chose a diagonal Gaussian qφ(z|x) = N (μ(x), σ (x)). We can re-
parametrize samples from a Gaussian distribution, as scaled and shifted samples from a standard Gaussian auxiliary variable
ε ∼ N (0., I), and consequently we can train on the scaling and shifting of the distribution, in practice, deterministically.
Note, however, that during the evaluation of the network sampling is performed. The computational graph with this re-
parametrization is shown in Fig. 21.3. This re-parametrization trick was proposed independently by Kingma and Welling [4]
and Rezende et al. [5]. Without this re-parametrization, alternative sampling based estimators for the gradient could have
been used for optimization of the hyper parameters. These sampling based estimates are far less efficient and are expected
to have much higher variance, especially for cases of large and diverse datasets. This is the main trick that makes training of
VAEs efficient and scalable to large datasets.

21.2.3 Sampling from the Trained Model

In the context of a VAE, the problem of approximating the high dimensional joint distribution of the 45 dimensional raw
data vector, is cast as a problem of discovering a distribution over a lower dimensional random vector, that we have assumed
is distributed according to a known prior distribution q(z). For the simulated farm studied in this work, a stochastic latent
vector of size 3 was found to be adequate to capture most of the variations in the data. The encoder is expected to exploit
the correlations between the raw input variables, allowing for a lower dimensional representation. Samples from the training
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Fig. 21.4 The samples from the simulation are denoted with blue dots. With orange dots are the samples from the VAE. The autoencoder seems
to perform well in capturing the windspeed and turbulence distribution of all the turbines

dataset, together with samples from a variational autoencoder trained on the simulated farm data are shown in Figs. 21.4
and 21.5. It is observed that the approximation is not as good in regions of lower probability mass. Nevertheless, for our
purposes the VAE gives a good enough approximation, For clarity, the windspeed and turbulence intensity are shown
separately for each turbine, whereas the autoencoder learns them jointly. Moreover, the angle-dependent effect of wakes
makes the turbulence intensity higher on waked turbines and this cannot be seen in this figure.
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Fig. 21.5 Reconstruction of mean power curve for 3 × 3 farm

For more intuition on the representation that the autoencoder learns, the latent space is presented in Fig. 21.6. The first
two columns are the sinus and cosinus of the mean angle of the wind in the farm. It is interesting to note, that the latent
factor in column 4 seems to be directly correlated with mean windspeed. The mean inflow angle was kept as a deterministic
variable in the latent space. We can easily control the mean angle and make predictions from the VAE with bounds on the
uncertainty, while sampling from the prior distribution p(z).

21.2.4 Using the Joint Distribution for Predictions

In Fig. 21.7, samples from the autoencoder are drawn, conditioned on a windspeed range from the middle of the power curve
up to the rated power ([10 m/s,12 m/s]). This region of the power curve is expected to have the most pronounced wake effects,
in terms of power production. That is mostly due to the fact that we are in the below rated regime, and the windspeed is high
enough for the effect to propagate in a large distance. Note, that the dots are 5000 samples from the autoencoder for varying
wind orientation, and unseen examples. It is observed that the deficits on windspeed present extrema at multiples of 45◦ as it
was expected from the configuration of the windfarm. Moreover, at multiples of 90◦ from zero, the farm presents the highest
wake deficits, whereas on multiples of 90◦ from 45◦ the peaks of wake deficit are lower. This is expected due to the geometry
of the farm. However, the autoencoder has not learned a representation that corresponds to the symmetries we would expect,
since there is no effect captured in angles ±26.56◦ around every 45◦ spaced point. This is a subtle effect due to the alignment
of the center turbine of one side of the farm, with the turbines on the edges of the opposing side. It is believed that this is
mostly due to the relatively small number of simulations available for the problem at hand. Finally in Fig. 21.8 the ratio of
power production of turbine T (2,2) to the maximum power produced in the farm is given. The correct angles are identified as
the peaks of wake deficit, and bounds on the uncertainty of the estimation can be obtained by the samples of the autoencoder.
There are some outliers which can be treated either with more training or more input data.

21.2.5 Using the VAE for Probabilistic Condition Monitoring

For a well trained variational autoencoder, where the latent variables have indeed converged to the assumed prior p(z), given
a raw SCADA measurement the encoder will produce a point in the latent space z. Since we have endowed the latent space
with a known probability distribution, we can compute the likelihood of the raw datapoint as the likelihood of the latent
space. It has to be stressed, that this will be a good estimate only if the DKL term in Eq. (21.2) is very low. In our examples
we didn’t have any simulated faults and therefore no results are presented for that application. This may be a complementary
approach to fault detection as proposed in [7].
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Fig. 21.6 The latent space variables, colored according to mean farm windspeed. Rows and columns 3–5 are the probabilistic latent factors,
whereas the mean angle is kept deterministic for easier estimation of predictions w.r.t. angle
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Fig. 21.7 Estimates of the maximum wake deficit estimated by the autoencoder. Red lines correspond to multiples of 90◦ for the angle of
windspeed and green lines correspond to multiples of 90◦ but with a 45◦ shift

Fig. 21.8 VAE samples for the wake deficits for turbine (2,2) (see Fig. 21.1 for numbering). The power deficit is defined as the ratio of the power
of the turbine, to the maximum power produced from the farm for a given sample. The estimated mean power deficit is shown with the blue curve

21.3 Conclusions

In this work we have demonstrated how a deep variational autoencoder neural network can be used in order to yield
interpretable insights on high dimensional monitoring data. In works to follow, investigations on the architecture of the
network are going to be presented, as well as results from the application of the technique on real farm SCADA data.

Acknowledgements The authors would like to gratefully acknowledge the support of the European Research Council via the ERC Starting Grant
WINDMIL (ERC-2015-StG #679843) on the topic of Smart Monitoring, Inspection and Life-Cycle Assessment of Wind Turbines.
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Chapter 22
Influence of Furniture on the Modal Properties of Wooden Floors

Lars Vabbersgaard Andersen, Christian Frier, Lars Pedersen, and Peter Persson

Abstract Structure-borne vibration and low-frequency re-radiated noise from internal and external sources cause annoyance
for inhabitants in dwellings. A key parameter in the prediction of vibration and noise levels is the modal parameters of
the floors in a building, since vibration and sound levels increase when natural frequencies of the floor coincide with the
excitation frequencies of a source, e.g. monoharmonic vibration of unbalanced rotating machinery and appliances or HVAC
system—or traffic induced ground vibration propagating into the building. This paper has focus on wooden floors built as
an assembly of particleboard and timber joists. Such floors constitute horizontal divisions in many dwellings—both older,
traditional buildings and new lightweight buildings. The analysis concerns the impact of furniture placed on a floor with
otherwise known properties. Given the small mass of a traditional wooden floor, the presence of furniture can be expected to
change the modal properties of the floor significantly. The finite-element model, developed for the present analyses, accounts
for uncertainty in the position of the furniture, and the analysis addresses the importance of the elevation of the mass above
the floor regarding the natural frequencies and the related modes of vibration.

Keywords Floor · Vibration · Finite-element model · Non-structural mass · Uncertainty

22.1 Introduction

Lightweight timber floors are usually designed and constructed in accordance with existing codes. In spite of this, users often
experience discomfort associated with the dynamic serviceability of such floors [1], and the nature and amount of discomfort
may be difficult to assess [2]. The annoyance can be caused by poor dynamic performance of the floor related to walking
on it, or the annoyance may stem from vibration and re-radiated noise from internal or external sources. Low inertia and
stiffness of lightweight floors provide part of the explanation, but another key factor may be uncertainty related to the modal
properties, which makes the design of timber floors difficult from a serviceability point-of-view.

Uncertainty can be related to the material properties of the construction elements, as reported by Foschi and Gupta [3] as
well as Persson and Flodén [4]. Furthermore, uncertainty is related to the boundary conditions and to internal joint flexibility.
The influence of joint rigidity between the floors and the main structure was discussed by Andersen and Kirkegaard [5],
whereas Andersen and co-workers examined the propagation of uncertainty in the support conditions into uncertainty in
the eigenfrequencies of a rectangular concrete floor slab [6, 7]. For a double-leaf wooden wall panel, Domadiya et al. [8]
examined the variations in eigenfrequencies due to different assembly approaches, including screws or glue between plates
and studs. Similar variations can be expected for floors and may be influenced by workmanship. Further, a floor panel may
be different when tested in a controlled laboratory environment or in a real building [9]. Flodén et al. [10] found that the
modal properties of an empty floor can be determined quite accurately by computational models, but that it requires extensive
testing of individual construction elements and joints, which is not possible for real-life construction.

However, even after final installation of a floor, its modal properties may change. For example, Devin et al. [11] found
that non-structural partitions placed on a floor have a significant impact on the modal properties, but that this impact can be
difficult to quantify in the design stage. Thus, the modal properties of a floor have a strong effect on the comfort associated
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with its use, but the use of the floor also has a strong influence on the modal properties of the floor. In this context, Pedersen
et al. [12] as well as Frier et al. [13, 14] examined the influence of non-structural mass on a concrete slab floor. The analyses
concerned the amount of non-structural mass associated with furnishing or storage as well as the elevation of the mass above
floor level. Even for a heavy concrete floor, the variations in non-structural mass that may be expected due to different use
of the floor were found to be significant. Especially, elevation of the mass was found to reduce the higher eigenfrequencies
much more than the lower eigenfrequencies, proving a strong increase of the modal density in the frequency range relevant
to traffic-induced structure-borne vibration and low-frequency re-radiated noise. Given the much larger ratio between non-
structural mass and structural mass for lightweight timber floors, even higher impact on the modal properties of such floors
can be expected.

Hence, the present analyses concern non-structural mass placed on a lightweight wooden floor panel, treating the total
mass as well as its distribution and elevation above floor level as stochastic variables. Uncertainty related to eigenfrequencies
in the low-frequency range associated with whole-body vibration is assessed, based on Latin Hypercube sampling. Section 2
provides a description of the computational model, including the finite-element model used for the floor panel and the model
of the random elevated non-structural mass, while Sect. 3 presents the results of two case studies in which the non-structural
mass has been placed on top of the joists or on the plate between the joists. Finally, the conclusions are provided in Sect. 4.

22.2 Computational Model for Wooden Floor with Furniture

This section concerns the computational model for the wooden floor. The finite-element model of the wooden floor is shortly
described. Next, the modelling approach for elevated non-structural mass, used to represent furniture, will be described.
Finally, the stochastic model for added, non-structural mass, including its elevation above floor level, is considered.

22.2.1 Finite-Element Model of Rectangular Wooden Floor

The analyses concern a single-span, single-leaf, light-weight wooden floor panel composed of a particleboard (chipboard)
plate glued on top of timber joists. The floor is 6.0 m long, 4.2 m wide. The plate is 22 mm thick and considered to be
seamless. The joists all have a rectangular cross section with a height of 225 mm and a width of 42 mm. They span across
the width direction of the plate, and the distance between the joists is 600 mm centre-to-centre. Hence, a total of eleven joists
support the plate in the span direction. It is noted that the two joists on the edges of the floor are moved 21 mm inward from
the edge such that the outer side of the joists are aligned with the edge of the plate. Hence, the first bay at either end of the
floor is 579 mm instead of 600 mm. Further, in addition to the main joists, timber beams (“side beams”) with the same profile
are placed along the two remaining edges, again moved inward from the edges to align the exterior sides of the beams with
the edges of the plate. Consequently, beams frame the entire edge of the floor. Finally, a 13 mm thick gypsum board lies on
top of the particleboard. This gypsum board is considered as a non-structural mass, thus only contributing by its mass and
not by stiffness.

The floor is supported along the 6 m long sides. The supports are placed at the base of the two side beams, 21 mm from
the edges of the floor at the centre of the beam base, i.e. the span is 4158 mm. All degrees of freedom are fixed at either end,
which effectively provides clamped boundaries of the floor along the two supported edges.

The particleboard plate and timber joists are assumed to behave linear elastically, given the small deformation levels
relevant to vibration induced by external sources such as road traffic outside the building or internal sources such as walking
on the floor. Particleboard is assumed to have a Young’s modulus of 3.0 GPa, a Poisson’s ratio of 0.30, a mass density of
767 kg/m3. Timber with a Young’s modulus of 8.5 GPa, a Poisson’s ratio of 0.20 and a mass density of 432 kg/m3 has been
used. Both materials are considered isotropic and homogeneous. For the particleboard, this is considered a fair assumption,
though a real board has slightly higher stiffness near the top and bottom and smaller stiffness in its interior as a result of
the production process, resulting in a small degree of inhomogeneity and orthotropy. Timber has a pronounced orthotropic
behaviour. However, applying beam theory, only the stiffness in the lengthwise direction is important. Finally, the gypsum
board has a mass density of 692 kg/m3.

Mindlin theory (thick-plate theory) is applied for the particleboard, and the beams are treated by Timoshenko beam theory.
Euler-Bernoulli theory would be inaccurate in the present analyses, already for low eigenmodes, given that the height of the
beams is about 1/20 of the span, i.e. shear deformation is expected to contribute significantly to the response. Also, rotational
inertia is accounted for in all parts of the model. Especially, to include the non-structural mass from the gypsum plate, the
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thickness of the plate is artificially increased. A weighted average value of the mass density of particleboard and gypsum is
then applied for the calculation of the inertia.

In the finite-element (FE) model, quadratic Lagrange interpolation is applied to the displacements and rotations of the
cross sections in the plate as well as the beams. Thus, each shell element used to model the plate has nine nodes, and each
beam element has three nodes. Selective integration is applied for all elements to avoid shear locking. The formulation
does not account for drilling degrees of freedom in the shell elements. Instead, an infinitesimal artificial stiffness has
been introduced to counteract ill-conditioning of the stiffness matrix. The mass matrix is obtained by full integration in
all directions, including the thickness direction of the plate. For the beams, integration over the height and width directions
are done analytically, i.e. with bending stiffnesses given in terms of the second moments of area. The shear factor for the
beams as well as the plate have been set to 5/6 which is valid for rectangular cross sections, and the torsional constant for a
rectangular solid profile has been used for the beams.

The FE models of the particleboard and the timber joists are first assembled separately. Hence, the plate is one sub-model
and all beam elements constitute another sub-model. Lagrange multipliers are introduced to tie the two sub-models together,
thus forming a system of auxiliary equations that establish rigid links between the nodes placed at the centrelines of the
beams and at the neutral plane of the plate. In this way, the 123.5 mm offset between the beams and the plate are properly
accounted for. Rigid connections between particleboards and joists have been proven to be a valid assumption if the boards
are screwed as well as glued to the joists [10]. The FE model of the floor is illustrated in Fig. 22.1. The plate elements are
shown in blue, whereas the beam elements are shown in red. Dashed red lines indicate the position of the neutral axis in each
joist. The additional beams introduced at the 6 m long sides of the panel are visible. The mesh size is 0.60 m, corresponding
to a distance of 0.30 m between the nodes. This mesh has been found to provide eigenfrequencies of adequate accuracy in
the frequency range up to about 100 Hz. Finally, the first three eigenmodes of the empty floor are shown in Fig. 22.2.

Fig. 22.1 Three-dimensional combined beam and plate finite-element model of the floor

Fig. 22.2 The first three eigenmodes of the empty floor. (a) Mode 1 at 38.1 Hz, (b) Mode 2 at 39.0 Hz, and (c) Mode 3 at 40.9 Hz
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22.2.2 Stochastic Model of Elevated Non-structural Mass

Whereas the material properties as well as the joint and support conditions are all considered deterministic, the present
analyses concern random non-structural mass. The position of the individual masses will be considered deterministic (see
Sect. 3), but the magnitudes of the masses as well as their elevations are modelled as random variables.

The total non-structural mass from usage of the floor, Mu, is assumed to be Gumbel distributed with a coefficient of
variation of 0.2 and a 98% quantile value corresponding to a characteristic serviceability load of 0.2 × 2.5 kN/m2. This
corresponds to 20% utilisation of a floor in an office or dwelling and provides a characteristic value of 1283 kg for the mass,
which comes on top of the non-structural mass related to the gypsum board. For comparison, the structural mass is about
890 kg, i.e. about two thirds of the characteristic value of the non-structural mass from usage of the floor. For a concrete slab,
the structural mass would be around 10–15 tonnes, i.e. higher than the non-structural mass, indicating the difference between
a lightweight floor and a heavyweight floor.

To generate the individual masses in each realisation, uniformly distributed random numbers are first generated for all
masses. Each of these uniformly distributed numbers is then divided by the sum of the uniformly distributed number and
multiplied by Mu. Hence, the sum of the individual random masses will be equal to the Gumbel distributed total mass Mu.
Each of the individual masses is elevated above the floor to model, for example, armchairs, sofas, low bookshelves, tables
or other furniture. The elevation is considered uniformly distributed between 0 and 0.75 m. It is noted that all stochastic
variables are assumed statistically independent. This may be unrealistic for a real floor, given that a user may place furniture
or storage shelves in a less random configuration. However, a detailed analysis of correlations between individual masses,
positions and elevations is beyond the scope of this analysis.

The elevated masses are assumed to be rigidly connected to the structure. Whereas constraints were introduced in terms of
Lagrange multipliers to tie the beams to the plate, the elevated masses are modelled directly by introducing additional mass
and rotational inertia into the nodes of the plate FE model at the relevant positions. Hence, no additional degrees of freedom
or auxiliary equations are solved for the elevated masses.

22.3 Analysis of a Rectangular Wooden Floor with Furnishing

For the concrete slab analysed by Pedersen and co-workers [12–14], small changes in the positioning of furniture will lead
to small changes in the modal properties of the system, since the floor is considered homogeneous. However, for the wooden
floor considered in the present analyses, non-structural mass can be attached on top of the joists, or it can be placed on
the particleboard between the joists. In order to study the importance of this relative placement, two extremes are analysed.
Section 3.1 concerns Case 1, in which all non-structural mass is placed in a regular grid with nodes on top of the joists, and
Sect. 3.2 concerns Case 2 with all non-structural mass placed in the midspan between the joists. It is noted that no masses
are placed at the nodes on the edge of the plate in Case 1, and no masses are placed on the first lines of nodes 0.3 m from
the edges of the floor in Case 2. Thus, only furniture placed “in the middle of the floor” is considered in the present analysis,
whereas the effects of furniture placed “along the walls” will be a topic for future analysis (Fig. 22.3).

22.3.1 Case 1: Non-structural Mass Placed Over the Joists

Two situations are studied in Case 1 with the non-structural mass placed directly over the joists. Figure 22.4 shows the
cumulative distribution functions (CDFs) for the first five undamped eigenfrequencies when the mass is placed at floor level,
i.e. with no elevation. Similarly, Fig. 22.5 presents the CDFs for the first five undamped eigenfrequencies when the mass is
elevated as described in Sect. 2.2. Latin Hypercube sampling with 20,000 realisations has been used, which provides smooth
CDFs. The dashed vertical lines in the figures indicate the undamped eigenfrequencies of the empty floor, noting that Modes
4 and 5 follow the trend of Modes 1–3 (see Fig. 22.2), i.e. they have four and five local extremes along the width direction
of the floor.

With reference to Fig. 22.4, the non-structural mass has a marked influence on the eigenfrequencies, even when placed
directly on the floor with no elevation. On average, the first five eigenfrequencies are all reduced by about 14 Hz. Since
the total mass is Gumbel distributed, the realisations of very low total non-structural mass occur with an extremely low
probability. This explains the offset of the CDFs, even at cumulative probabilities near 1.0. A similar behaviour of the CDF
curves can be seen at low cumulative probabilities. Very few realisations of extremely large total mass occur.
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(a) (b)

Fig. 22.3 Models with furniture placed (a) on top of the joists (Case 1), or (b) between the joists (Case 2)

Fig. 22.4 Cumulative distribution functions for the first five eigenfrequencies—mass over joists without elevation

Fig. 22.5 Cumulative distribution functions for the first five eigenfrequencies—mass over joists with elevation

As expected, comparison of Figs. 22.4 and 22.5 shows that the eigenfrequencies are further reduced when the masses are
elevated above the floor. As an interesting observation, the CDF for the eigenfrequency associated with Mode 1 has a slightly
different shape than CDFs for the other eigenfrequencies. Also, the eigenfrequency of Mode 1 is reduced significantly more
than that of Mode 2. A closer inspection of Mode 1 reveals that the nature of the mode differs between different realisations
of the non-structural mass. Thus, in some realisations, the first mode (and in some cases other modes as well) are local and
associated with rotational oscillation of a single elevated mass. The eigenfrequencies related to Modes 2–5 are reduced such
that they lie closer when the mass is elevated compared to the situation with the mass placed directly on the floor. This can
be attributed to the rotational inertia of the elevated masses that have stronger influence on higher modes compared to lower
modes.
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22.3.2 Case 2: Non-structural Mass Placed Between the Joists

Figure 22.6 shows the CDFs for the first five eigenfrequencies of the floor with non-structural mass placed right on the floor
in the midspans between the joists. Again, Latin Hypercube sampling with 20,000 realisations has been performed to obtain
smooth CDFs. Comparing these CDFs to those presented in Fig. 22.4, clearly the first two eigenfrequencies are lower when
the masses are placed between the joists than when they are placed over the joists. However, the eigenfrequencies related to
Modes 4 and 5 are higher in Case 2 compared to Case 1—for Mode 5 the difference is about 4 Hz in average. This indicates
that the position of the mass relative to the joists is important, even when the mass has not been elevated. It is recalled that the
total mass has the same Gumbel distribution in either case, so the difference in the CDFs is due to different relative positions
of the individual masses and slightly larger individual masses in Case 2 compared to Case 1 (40 masses in Case 2 versus 54
masses in Case 1).

Next, Fig. 22.7 shows the CDFs for Case 2 with uncorrelated uniformly distributed elevation of the individual masses.
Comparing these CDFs to those in Fig. 22.6, a distinct reduction in the eigenfrequencies can be observed as a result of
elevating the masses. Thus, the first five eigenfrequencies drop by 10 Hz (Mode 1) to 18 Hz (Mode 5) for the 50% quantiles.
This means that the eigenfrequencies are reduced to less than half their value in the situation with mass placed directly at
floor level. The relatively marked differences in eigenfrequencies caused by elevating the mass in Case 2 can be explained
by the low local bending and shear stiffnesses of the particleboard.

Furthermore, comparing Fig. 22.7 to Fig. 22.5, the first five eigenfrequencies for Case 2 with elevated masses are
significantly lower than the equivalent eigenfrequencies in Case 1 with elevated masses. This difference has its origin in
the character of the modes. Thus, in Case 1 it was observed that the first mode (and to some extent other modes) have a local
character, as already mentioned in Sect. 3.1. This tendency becomes more pronounced in Case 2 with the masses placed
between the joist. Here, the first five modes may in some realisations relate to oscillations of single elevated non-structural
masses.

Fig. 22.6 Cumulative distribution functions for the first five eigenfrequencies—mass between joists without elevation

Fig. 22.7 Cumulative distribution functions for the first five eigenfrequencies—mass between joists with elevation
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22.4 Discussion and Conclusion

A 6.0 m long, 4.2 m wide single-span, single-leaf floor panel made of particleboard on timber joists has been analysed using
a finite-element model. Especially, the first five undamped eigenfrequencies have been determined and compared for two
cases: Case 1 with non-structural mass placed over the joists and Case 2 with the mass placed between the joists. Situations
with mass lying flat on the floor or elevated above the floor have been examined. In all analyses, Latin Hypercube sampling
has been performed assuming the total mass to be Gumbel distributed, whereas the relative magnitudes of individual masses
(and in two of the situations their elevation above the floor) have been assumed uniformly distributed.

The present analyses concerned a total non-structural mass with a characteristic value corresponding to 20% utilisation
of a standard floor in an office or residential building. This non-structural mass is about twice the mass of the considered
lightweight wooden floor panel. It corresponds to about 50 kg per square metre, which is judged to be reasonable for an office,
a dining room, a living room, or similar, also accounting for people positioned on chairs. For such rooms, full utilisation up
to a characteristic value of 2.5 kN/m2 would be unrealistic.

However, the present study demonstrates than even the relatively small utilisation factor of 0.2 leads to significant drops in
the eigenfrequencies compared to the empty floor—especially when the additional non-structural mass is placed between the
joists and elevated above the floor, taking rotational inertia into consideration by assuming the mass to be rigidly connected
to the floor. Whereas the first five eigenfrequencies of the empty floor lie in the range 38–48 Hz, reduction of all these
eigenfrequencies down to about 10–20 Hz occur when placing elevated masses between the joists. Here, some or all of the
first five eigenmodes can be characterised as local modes associated with oscillation of individual elevated masses, made
possible by the relatively flexible plate spanning between the beams.

It can be argued that real furniture, such as tables or chairs placed in the middle of a floor, may have more (usually four)
points of contact to the floor, and that uncorrelated masses with single points of contact do not provide a realistic model. Also,
the assumption of rigid links to the elevated masses may be considered inaccurate. While the simplified model of furniture
may provide results of fair accuracy for heavy floors made of, for example, concrete, a better model may be necessary
for lightweight wooden floors, given the more delicate nature of the dynamic problem caused by strong inhomogeneity of
stiffness. This will be a topic for future research.

In this context, it can be noted that larger non-structural mass on the considered wooden floor amplifies the behaviour
observed already with the utilisation factor of 0.2. If full utilisation, i.e. non-structural mass providing a load of 2.5 kN/m2,
is assumed, one would expect a first undamped eigenfrequency of about 12 Hz, since the non-structural mass would in
this case be about 9.3 times larger than the structural mass, reducing the eigenfrequency by a factor of 3.2, approximately.
However, when increasing the total mass, the individual masses also increase, given that the number of non-structural masses
is unchanged. As a result of this, the dynamic response of the floor model will be dominated by the local modes associated
with oscillation of individual masses—in particular when the masses are placed in the midspans between the joists. In this
case, all the first five eigenfrequencies are reduced to values in the range 3–5 Hz, i.e. much lower than expected for a case in
which the non-structural mass has been smeared out over the structure.

In any case, the present study indicates that the placement of furniture (and people) on a lightweight wooden floor has a
significant impact on its modal properties. The present analyses assumed a Gumbel distribution for the total non-structural
mass, which provides relatively narrow probability density functions for the eigenfrequencies compared to, for example,
a uniformly distributed total mass. Still, differences of about 5 Hz can be observed between the 10 and 90% quantiles of
the eigenfrequencies. This comes in addition to the differences of about 3–8 Hz caused by various placements of the mass
relative to the joists.

Hence, it can be concluded that non-structural mass must be considered in the dynamic assessment of a wooden floor. The
eigenfrequencies of the empty floor are highly unrealistic for a floor in service. Furthermore, the placement of furniture
should be considered, since furniture placed between joists leads to different eigenfrequencies (and eigenmodes) than
furniture placed directly over the joists. While this may be expected, it may be surprising that the differences in placement
of the mass can lead to a halving of the eigenfrequencies.
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Chapter 23
Optimal Sensor Placement for Response Reconstruction
in Structural Dynamics

Costas Papadimitriou

Abstract A framework for optimal sensor placement (OSP) for response reconstruction under uncertainty is presented
based on information theory. The OSP is selected as the one that maximizes an expected utility function taken as the mutual
information between data and response quantities of interest (QoI). The expected utility function is extended to make the
OSP design robust to uncertainties in structural model parameter and modelling errors. The resulting utility function is a
multidimensional integral of the information entropy for each possible value of the model parameters, weighted by the prior
or posterior probability distribution of the model parameters. The formulation uses the Gaussian nature of the response QoI
given the measurements to simplify the expected utility function in terms of the covariance matrix of the uncertainty in the
response output QoI given the values of modeling parameters. Methods to compute the multidimensional integrals and to
optimize the sensor placement are discussed. The implementation is presented for two cases used to predict response time
histories from output-only measured data: modal expansion techniques and filter-based techniques.

Keywords Information gain · Kullback-Leibler divergence · Relative entropy · Bayesian inference · Response
prediction

23.1 Introduction

Vibration measurements taken from various locations in a structure are used to improve models and model-based predictions
of output quantities of interest (QoI) that are critical of structural reliability and safety. The problem of predicting responses at
unmeasured locations (e.g. accelerations, velocities, displacements, strain, stresses) in the presence of modelling and loading
errors and uncertainties is often formulated using modal expansions or Kalman-type filtering techniques. Formulations
have been developed for state estimation given input and associated uncertainties, as well as input-state estimation given
output-only vibration measurements [1–6]. For linear model of structures the response is obtained to be Gaussian with the
uncertainty in the response estimates described by the covariance matrix that depends on the structural model and modeling
errors used. The objective in optimal sensor placement (OSP) is to collect the most informative data that minimize the
uncertainties in the predictions of important output QoI. In this way the most reliable responses can be obtained. Such
responses can be used to reconstruct important response quantities of interest that can further be used to assess the reliability
and safety of the structure based on actual vibration measurements. In particular, reconstructing the stress time histories
is critical in estimating fatigue damage accumulation based on actual vibration measurements collected from a monitoring
system [1, 7]. In this paper, the response reconstruction problem is investigated from the optimal experimental design point of
view. The problem to be addressed is to find the optimal sensor locations for obtaining the most accurate response predictions.
Existing works on the subject concentrate on minimizing a measure of the covariance matric of the error estimate of the output
response QoI [8, 9]. In this work we present a framework based on information theory and utility functions and we extend
existing developments to estimate optimal sensor configurations that are robust to uncertainties in model and prediction error
parameters. The proposed framework is applicable to complex linear systems.
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23.2 Background

Consider a structural model used to predict the temporal variability of the response vector z
(
t;ϕ, u

)
∈ Rnz (e.g.

accelerations, velocities, displacements, strains, stresses) at nz degrees of freedom (DOF) of an underlining structure given
the value of a structural model parameter set ϕ (e.g. stiffness, mass and damping related parameters) and the excitation
vector u(t) ∈ Rnu . Let y(t) ∈ Rny be response time history data collected from sensors. These data depend on the sensor
configuration vector δ containing the location and measurement direction of sensors placed in a structure. The data may
consist of either acceleration, displacement and strain measurements. In what follows, a linear model of the structure is
assumed. Also it will be assumed that the excitation response time histories u(t) are not available. Given output-only data,
there are a number of methods to reconstruct the response of the structure at unmeasured locations. Two such cases are next
considered for reconstructing estimates of response at output QoI.

In the first case the response reconstruction is obtained using modal expansion techniques, while in the second case
state estimation or input-state estimation is performed using available filtering techniques [1–6]. Due to system linearity,
the estimate of the response z(t) at time t given the data is derived to be a multi-variable Gaussian vector with mean that
depends on the measurement output time histories and covariance matrix that depends on the structure of the linear model, its
parameters ϕ, and state, output and input error covariance matrices. This Gaussian distribution of the output vector QoI z(t) is

denoted herein as N (z; ẑ(t), P (t)), where the mean estimate ẑ(t) ≡ ẑ
(
t;ϕ,D, δ

)
depends on the measured data, the model

parameter set and the sensor configuration, while the covariance P(t) ≡ P
(
t; δ, ϕ

)
of the error in the estimate depends

on the sensor configuration and the parameter set, but is independent of the measured data D. For practical convenience
and without loss of generality, stationarity conditions are assumed, where the covariance matrix of the error in the output
response estimate or the error in the input-output response estimate is independent of t. We next explore further the two cases
for which the multi-variable Gaussian distribution for the response quantity arises.

Using modal expansion for linear systems, the measured time histories, restricted for demonstration purposes to
displacements at N0 DOF, are given with respect to the modal coordinates as

y(t) = �
(
δ, ϕ

)
ξ(t)+ e(t) (23.1)

where �
(
δ, ϕ

)
∈ RN0×m is the modeshape matrix corresponding to m contributing modes, ξ ∈ Rm is the vector of modal

coordinates, and e(t) is a zero-mean measurement error with covariance matrix Qe. For estimation purposes the following
condition should be met N0 ≥ m in order for the system to be identifiable. Displacement and strain predictions at output
locations or DOF are given by the prediction equation

z(t) = �
(
ϕ
)
ξ(t)+ ε(t) (23.2)

where �
(
ϕ
)

∈ Rnz×m are the corresponding displacement or strain modeshapes that relate modal coordinates to predicted

displacement or strain quantities, and ε(t) is a zero-mean prediction error with covariance matrix Qε. The modeshape matrices

�
(
δ, ϕ

)
and �

(
ϕ
)

are available by analyzing the model (e.g. finite element model) of the structure. Assuming Gaussian

prediction errors e(t) and ε(t) and using Bayesian inference to estimate the parameters ξ(t) and propagate to output quantities
z(t), it is straightforward to show that the output z(t) is Gaussian with mean that depends on the data and covariance matrix

Pz

(
δ, ϕ

)
given by

Pz

(
δ, ϕ

)
= �

(
ϕ
)
�T

(
δ, ϕ

)
Qe

(
δ, ϕ

)
�
(
δ, ϕ

)
�T

(
ϕ
)

+Qε (23.3)

which is independent of the data. Also, the covariance matrix does not depend on the time t provided that the error covariance
matrices are assumed to be independent of time.

In the second case, introducing the state vector consisting of displacement and velocities at all DOF, the equation of
motion is re-formulated in the state-space continuous form

ẋ(t) = A (ϕ) x(t)+ B (ϕ) u(t)+ es(t) (23.4)
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with observation and prediction equation

y(t) = C
(
δ, ϕ

)
x(t)+D

(
δ, ϕ

)
u(t)+ e(t) (23.5)

z(t) = Cp

(
ϕ
)
x(t)+Dp

(
ϕ
)
u(t)+ ε(t) (23.6)

where the state matrices A, B, C and D depend on the stiffness, mass and damping matrices of the structure, es(t), e(t) and ε(t)
are respectively the zero-mean state, measurement and prediction errors with covariance matrices Qs, Qe and Qε, respectively,
while Cp and Dp are system matrices that connect the output QoI to the state and input vectors. Similar description in the
discrete state space form is also available. Also, a description can also be obtained in the modal space to simplify the
formulation for complex linear systems in the case where only a fraction of the modes contribute to the response. For known
input characteristics that are given by a linear filtering technique (for example, Kanai-Tajimi filter for earthquake excitations),
the state vector can be augmented to include the states of the input filter, while the parameter set ϕ is augmented to include
the parameters defining the input.

Using Eq. (23.6), the uncertainty in the prediction of output QoI z(t) is given by

Pz

(
δ, ϕ

)
=
[
Cp

(
ϕ
)

Dp

(
ϕ
)]
P
(
δ, ϕ

) [
Cp

(
ϕ
)

Dp

(
ϕ
)]T +Qε (23.7)

and depends on the covariance matrix P
(
δ, ϕ

)
of the error in the state and input estimates.

Various techniques exist to estimate the covariance of the state and input in the case of output-only vibration
measurements. For example, consider the case of white noise input. This case arises also for non-white excitations modelled
by a set of stochastic differential equations with parameters that captures the characteristics of the excitation. The filter
parameters are usually uncertain and are included in the parameter set ϕ. The stationary error covariance of the state estimate
for displacement and velocity measurements is provided by the steady-state Ricatti equation in the form

A
(
ϕ
)
Px

(
δ, ϕ

)
+ Px

(
δ, ϕ

)
A
(
ϕ
)

− Px
(
δ, ϕ

)
CT

(
δ, ϕ

)
Q−1
e C

(
δ, ϕ

)
Px

(
δ, ϕ

)
+ B

(
ϕ
)
QsB

T
(
ϕ
)

= 0 (23.8)

Substituting the covariance matrix Px
(
δ, ϕ

)
into Eq. (23.7), one obtains the covariance of the state and input vector as a

function of the sensor configuration δ.
Similarly, for the case where the input in not white noise but unknown, one can use existing input-state estimation

techniques to estimate the error covariance for the predictions of both the state and the input. In this case the Ricatti Eq.
(23.8) is replaced by similar equation(s) that can be solved to estimate the joint covariance for state and input. The resulting
formulation depends on the method used. One can find such formulation in references [8, 9]. The end result is that the

covariance matrix P
(
δ, ϕ

)
depends on the characteristics of the system and the input contained in the parameter vector ϕ.

It is clear that the covariance of the error estimate for the state and input is independent of the measurements and depends
only on the structural model parameters, as well as the state and measurement error covariances. The parameters that define

the state and measurement error covariances can be included in the parameter set ϕ. The covariance matrix P
(
δ, ϕ

)
,

described in terms of the parameters ϕ and the sensor locations δ, is the main quantity used in the next section to solve
the optimal sensor location problem for response reconstruction. To account for uncertain model and input characteristics

ϕ, a prior probability distribution p
(
ϕ
)

can be used to quantify such uncertainties in the values of the model parameters.

The data can also be used to learn a partition of the model parameter set ϕ, with the rest of the parameters to be nuisance
parameters. Using Bayesian inference for the parameters that are learned using the data, the prior probability distribution of

these parameters can be replaced by the posterior probability distribution. Herein we will denote such distribution by p
(
ϕ
)

,

without making the distinction between prior and posterior.
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23.3 Optimal Sensor Placement Formulation

Information theory and utility functions are used to formulate the optimal sensor placement problem so that the most reliable
response reconstruction is achieved that is robust to modeling and input uncertainties. The objective is to select the sensor
locations (and DOF) to maximize the information contained in the data for predicting the output response QoI. Using
Lindley’s work [10] and extending the expected utility to include the uncertainty in the model parameters, one maximizes
the expected utility function

U
(
δ
) =

∫

�

∫

ϒ

∫

!

u
(
δ; z, ϕ, y

)
p
(
z, y, ϕ|δ

)
dz dy dϕ (23.9)

that quantifies the usefulness of learning from the data in predicting output QoI, where u
(
δ; z, ϕ, y

)
is the utility function

given a particular value of the model parameter set ϕ and the data y, p
(
z, y, ϕ|δ

)
= p

(
z|y, ϕ, δ

)
p
(
y|ϕ, δ

)
p
(
ϕ
)

,

p
(
z|y, ϕ, δ

)
is the posterior uncertainty in the response prediction given the data y and the model parameter set ϕ, p

(
y|ϕ, δ

)

is the uncertainty in the outcome y given the model parameters, and p
(
ϕ
)

is the uncertainty in the model parameters. A

rational choice of the utility function is the information gained by the data, quantified by the Kullback-Leibler divergence
[11] between the prior and posterior probability distribution given an outcome y, obtained from an experimental design δ
and the model parameters ϕ. The expected utility function is an average of the utility function over all possible values of the
response predictions as they are inferred from the data, and all the possible data outcomes. In Eq. (23.9), the expected utility
function has been extended to a robust measure that takes into account the uncertainty in the model parameters ϕ that are
usually uncertain.

It can be readily shown that the expected utility function can be formulated in terms of the change in the information
entropy before and after the data are collected, given by

U
(
δ
) =

∫

�

Hz

(
ϕ
)
p
(
ϕ
)
dϕ −

∫

�

∫

ϒ

Hz|D
(
y, ϕ, δ

)
p
(
y|ϕ, δ

)
dy p

(
ϕ
)
dϕ (23.10)

whereHz
(
ϕ
)

is the prior information entropy given the model parameter set, andHz|D
(
y, ϕ, δ

)
is the posterior information

entropy given the data set and the model parameter set. For Gaussian probability distribution of the response vector z(t), the
posterior information entropy given the values of the data set and the model parameter set ϕ is given by

Hz|D
(
y, ϕ, δ

)
= 1

2
nz ln (2π)− 1

2
ln detPz

(
δ, ϕ

)
(23.11)

and thus it depends on the covariance P
(
δ, ϕ

)
of the error of the state and input estimation, as well as the sensor locations,

while it is independent of the data. Taking into account that the prior information entropy Hz
(
ϕ
)

in Eq. (23.10) is constant,

independent of the sensor configuration vector δ, and that the posterior information entropy Hz|D
(
y, ϕ, δ

)
does not depend

on the data, the expected utility function finally takes the form

U
(
δ
) = c + 1

2

∫

!

ln det
{
P
(
δ, ϕ

)] }
p
(
ϕ
)
dϕ (23.12)

which is a probability integral over the space of uncertain parameters ϕ. The integral Eq. (23.12) represents the robust

information entropy over all possible values of the model parameters quantified by the PDF p
(
ϕ
)

. The multidimensional

integral can be evaluated using Monte Carlo techniques or sparse grid methods [12].
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The optimal sensor configuration δopt is obtained by maximizing the U
(
δ
)

with respect to the design variables δ

δopt = arg max
δ

U
(
δ
)

(23.13)

The optimal number of sensors in the sensor configuration can be estimated by monitoring the gain in information
as additional sensors are placed in the structure. Usually, after sufficiently number of sensors placed in the structure,
the information gain using additional sensors is relatively small. The optimal number of sensors is a trade-off between
information gain and cost of sensors. The optimization in Eq. (23.13) may result in multiple local/global solutions.
The optimization problem is solved in the continuous physical domain of variation of the sensor locations. Stochastic
optimization algorithms, such as CMA-ES [13], can be employed in order to avoid premature convergence to a local
optimum. Alternative heuristic forward and backward sequential sensor placement algorithms [14, 15] are effective in
solving the optimization problem. The heuristic algorithm bypasses the problem of multiple local/global optima manifested in
optimal experimental designs, providing near optima solutions in a fraction of the computational effort required in expensive
stochastic optimization algorithms.

23.4 Conclusion

Using information theory and utility function, the optimal sensor placement problem for response reconstruction is
formulated as a problem of maximizing a multi-dimensional integral of the minus the information entropy in the parameter
space. The framework provides optimal sensor configurations that are robust to uncertainties in the model parameters as well
as uncertainties in the state and measurement errors. Such uncertainties are not known in the initial optimal experimental
design phase and thus need to be postulated or partly learned from the data using Bayesian inference techniques. Monte Carlo
or sparse grid techniques can be used to estimate the multidimensional integral. Computationally efficient heuristic sequential
sensor placement strategies can be employed to estimate the near optimal sensor locations. The proposed framework
is applicable to complex linear systems involving uncertainties in their parameters. It is appropriate to use for reliably
reconstructing responses that are important for providing data-driven reliability and safety estimates of systems, as well as
reconstruct stress responses that are needed in fatigue damage accumulation theories [1, 7]. The proposed framework can be
implemented with response reconstruction techniques based on modal expansion methods, as well as filter-based methods
for joint input-state estimation. Moreover, it can be used to explore the number and type of sensors that are needed to provide
reliable estimates of output QoI.
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Chapter 24
Finite Element Model Updating Accounting for Modeling
Uncertainty

Rodrigo Astroza, Andres Alessandri, and Joel P. Conte

Abstract A novel approach to deal with modeling uncertainty when updating mechanics-based finite element (FE) models
is presented. In this method, a dual adaptive filtering approach is adopted, where the Unscented Kalman filter (UKF)
is used to estimate the unknown parameters of the nonlinear FE model and a linear Kalman filter (KF) is employed
to estimate the diagonal terms of the covariance matrix of the simulation error vector based on a covariance-matching
technique. Numerically simulated response data of a two-dimensional three-story three-bay steel frame structure with eight
unknown material model parameters subjected to seismic base excitation is employed to illustrate and validate the proposed
methodology. The results of the validation studies show that the proposed approach significantly outperforms the parameter-
only estimation approach widely investigated and used in the literature.

Keywords Finite element model · Modeling uncertainty · Parameter estimation · Dual filtering

24.1 Introduction

Improving the predictive capabilities of models, providing a tool for damage identification, and verifying modeling
techniques are some significant problems that are assisted by model calibration. Significant research has been focused on
updating linear finite element (FE) models [1]; however, calibration of nonlinear FE models has attracted the attention in
recent years. Although the first studies dealing with the updating of nonlinear models of structures were conducted in the
70’s and 80’s (e.g., [2–4]), mechanics-based nonlinear FE models have been the subject of research only the last years (e.g.,
[5–10]). When state-of-the-art nonlinear FE models are updated using measured response data, a parameter-only estimation
approach is considered, because is not feasible to estimate the response variables defining the state vector (e.g., displacements
and velocities at every degree of freedom of the model). This implies that modeling uncertainty is not accounted for, which
may have detrimental effects in the prediction capabilities of the updated FE model [11] because any FE model is only an
approximate representation of the system to be modeled [12–14].

In this paper, a dual adaptive filtering approach is proposed to deal with modeling uncertainty when updating mechanics-
based nonlinear FE models. The method presented addresses the different sources of uncertainty involved in FE model
updating, including parameter, modeling, and noise uncertainties. The unscented Kalman filter (UKF) is employed for
parameter estimation and a linear Kalman filter is used to estimate the diagonal entries of the covariance matrix of the
simulation error vector (e.g., [15, 16]), which are considered time variant because modeling uncertainty may vary in time.

24.2 Problem Formulation

The discrete-time equation of motion of a mechanics-based nonlinear FE model under uniform earthquake base excitation
can be written as

M (p) q̈k+1 (p)+ C (p) q̇k+1 (p)+ rk+1 (qk+1 (p) ,p) = −M (p)L (p) ük+1 (24.1)
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where, p ∈R
np × 1 = vector of model parameters, np = number of model parameters, M, C ∈ R

n×n = mass and damping
matrices, q, q̇, q̈ ∈ R

n×1 = nodal displacement, velocity, and acceleration vectors, r(q(p), p) ∈ R
n×1 = internal resisting

force vector, L ∈ R
n×nu = influence matrix of the base excitation, n = number of degrees of freedom of the FE model,

ü ∈ R
nu×1 = input ground acceleration vector with nu = number of acceleration components of the base excitation, and the

subscript denotes the time step.
Aleatory and epistemic uncertainties are present when selecting the model parameters, because they are defined based

on the information contained in material specifications, characterization of external loads, blueprints, etc., therefore, in
real structures it is not possible to have a precise estimation of the model parameters. In this paper, the vector of model
parameters is written as p = [θT ϕT ]T , with θ ∈ R

nθ×1 = vector of unknown model parameters to be estimated, and
ϕ ∈ R

nϕ×1 = vector of modeling uncertainty parameters. Then, Eq. (24.1) can be written as

M (θ,ϕ) q̈k+1 (θ,ϕ)+ C (θ,ϕ) q̇k+1 (θ,ϕ)+ rk+1 (qk+1 (θ,ϕ) , θ,ϕ) = −M (θ,ϕ) L (θ,ϕ) ük+1 (24.2)

From Eq. (24.2), the FE-predicted response, ŷk+1 ∈R
ny×1, can be expressed as a nonlinear function of θ and ϕ, the

time-history of earthquake excitation (ü1:k+1 = [
üT1 , . . . , ü

T
k+1

]T
), and the initial conditions (q0 and q̇0), i.e.,

ŷk+1 = hk+1 (θ,ϕ, ü1:k+1,q0, q̇0) (24.3)

where hk + 1(·) = nonlinear response function of the FE model.
Measured response, yk+1 ∈ R

ny×1, can be used to calibrate θ since it is related to the FE-predicted response by means of:

vk+1 = yk+1 − ŷk+1 (24.4)

where vk+1 ∈R
ny×1 = simulation error vector assumed Gaussian white with zero mean and covariance matrix

Rk+1 ∈R
ny×ny , i.e., vk + 1 ∼ N(0, Rk + 1). Effects of measurement noise and modeling errors are included in the simulation

error vector. In this paper, modeling uncertainty is considered by defining different model classes for response simulation
(M0) and model updating (Mj) phases [11], i.e., Mj 
= M0. Measured response data (y) is obtained by using a set of
pre-defined model parameters denoted by θtrue and polluting the associated response (ytrue) with additive noise. Unknown
model parameters defining the FE-predicted response, ŷ, will be estimated based on a model class Mj. Different cases and
levels of modeling uncertainty are analyzed, then, different model classes Mj (j = 1, 2, . . . ) are investigated.

Since the unknown model parameters are time invariant, they can be estimated assuming a random walk model. Then, the
following nonlinear state-space model is defined

θk+1 = θk + wk
yk+1 = hk+1 (θk+1,ϕ, ü1:k+1)+ vk+1

(24.5)

where the initial conditions have been omitted for notational convenience and wk ∈ R
nθ×1 denotes the process noise assumed

to be uncorrelated with vk + 1, and Gaussian white with zero mean and covariance matrix Qk ∈ R
nθ×nθ , i.e., wk ∼ N(0, Qk).

24.2.1 Parameter-Only Estimation Based on the UKF

The UKF can be used to recursively estimate the mean vector and covariance matrix of the θ, denoted by θ̂ and P̂θθ,
respectively. This parameter-only estimation approach has been investigated in detail by Astroza et al. [9, 11, 17], proving
its robustness to input and output measurement noises and also to minor modeling uncertainty. Figure 24.1 summarizes the
parameter-only estimation approach for nonlinear FE model updating based on the UKF. More details about this approach
can be found in [17, 18].
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Fig. 24.1 Framework for parameter estimation of nonlinear FE models using the UKF

24.2.2 Dual Approach Accounting for Modeling Uncertainty

Compensation effects arise in the parameter-only estimation approach when moderate to high levels of modeling uncertainty
exists, and biased estimates (reaching even unphysical values) of the unknown model parameters are obtained, implying large
estimation errors for unobserved responses [11]. To alleviate this issue, a dual adaptive filtering approach is presented here.
The aims is to estimate θ and at the same time estimate the diagonal entries of Rk + 1, i.e., the variances of the prediction error
vector. To this end, a covariance-matching technique is employed, which goal is to make the innovations (vk+1|k) compatible
with their expected covariance matrix [16].

Here, it is assumed that Rk + 1 is diagonal and expressed as Rk+1 = diag (rk+1), i.e., that the simulation errors of the
different response measurements are uncorrelated. Then, an UKF is used as master filter (MF) to estimate θ and a linear KF
is employed as slave filter to estimate rk + 1. Figure 24.2 shows the proposed dual filtering approach, where the highlighted
portion corresponds to the additional calculations required to incorporate the estimation of rk + 1. T and U are the time-
invariant covariance matrices of the process and measurement noises, respectively, of the state-space model corresponding
to the SF, both assumed Gaussian white with zero mean. Further details about the dual adaptive filtering approach can be
found in [19].

24.3 Validation Study

The exterior north-south frame of a three-story steel moment-resisting frame building known as SAC-LA3 [20] under seismic
base excitation is used as validation example. Columns and beams are made of A572 and A36 steel, respectively. Geometry
of the frame is shown in Fig. 24.3a. A FE model is developed in the software OpenSees [21] using nonlinear force-based
fiber-section beam-column elements. Each column and beam member is modeled with a single element and seven and six
integration points, respectively. Rayleigh damping with mass- and tangent stiffness-proportional coefficients based on a
critical damping ratio of 2% for the first two initial modes (T1 = 1.06 [s] and T2 = 0.35 [s]) is assumed. Element cross-
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Fig. 24.2 Pseudo-code of the proposed dual adaptive filtering approach for FE model updating

sections are discretized into fibers. Columns’ webs into 6 × 1 fibers across their length and width, respectively, and each
column’s flange in a single fiber. Beams’ webs into 16 × 1, 14 × 1 and 11 × 1 fibers across their length and width, at
the second, third and roof level, respectively, and each beam’s flange in a single fiber. Further details of the structure and
nonlinear FE model can be found in [17].

The Giuffre-Menegotto-Pinto (MGMP) constitutive model [22] is employed to model the nonlinear uniaxial stress-strain
behavior of the steel fibers. This material model is defined by four primary parameters (which will be considered unknown
and estimated), corresponding to modulus of elasticity (Es), initial yield stress (fy), a parameter defining the curvature of the
elastic to plastic transition during the first cycle (R0) and strain-hardening ratio (b) (see Fig. 24.3b). Two different sets of
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Fig. 24.3 (a) Model of the SAC-LA3 steel moment resisting frame building; (b) Modified Giuffre-Menegotto-Pinto steel constitutive model

model parameters are assumed for the MGMP of beams and columns, because these elements are made of different type

of steel. Then, θ is defined by θ =
[
Ecols , f coly , Rcol0 , bcol, Ebeams , f beamy , Rbeam0 , bbeam

]
∈ R

8×1. ϕ incorporates different

sources of modeling uncertainty, including gravity loads, geometry variables, damping properties, and mass properties (nodal
masses). The response of the frame is simulated numerically considering defined values of modeling uncertainty parameter
values and different sets of ϕ parameter values are considered to mimic diverse cases of modeling uncertainty.

24.3.1 Cases of Modeling Uncertainty

The cases of modeling uncertainty are taken from [11], and they were chosen to have large discrepancies between the
measured and FE-predicted responses when a parameter-only estimation approach is used. Vector ϕ analyzed in this study is
shown below and the levels (magnitudes) of modeling uncertainty are summarized in Table 24.1 (see Fig. 24.3 for notation).
A total of 28 cases are studied (Table 24.2), then j = 1, 2, . . . , 28 for Mj.

ϕ =

⎡
⎢⎢⎢⎢⎣

[
H0 H1 H2 H3 V 1 V 2 V 3

]T
[
NM11 NM12 NM13 NM14 NM21 NM22 NM23 NM24 NM31 NM32 NM33 NM34

]T
[
DGL1 DGL2 DGL3

]T
[
αM βK

]T

⎤
⎥⎥⎥⎥⎦ ∈ R

24×1

Note that geometry parameters Ha (a = 0, 1, 2, 3) and Vb (b = 1, 2, 3) define the location of vertical and horizontal axes
of the FE model; terms NMik denote the nodal mass at floor i and column k (i = 1, 2, 3 and k = 1, 2, 3, 4); DGLc denotes
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Table 24.1 Types and magnitudes of errors considered for the modeling uncertainty parameters

Parameter type Parameters Variation magnitude Error

Geometry H0, H1, H2, H3 Low ±3% of bay-width (0.27 [m])
V1, V2, V3 Low ±3% of story-height (0.12 [m])

Nodal Masses NMik Low +5%
High +30%

Distributed Gravity Loads DGL1, DGL2, DGL3 Low +5%
High +30%

Damping Coefficients αM , βK Low +15%
High +50%

Table 24.2 Cases of modeling uncertainty considered for the frame (defined by coefficients applied to the modeling uncertainty parameters)

Case ID H0 H1 H2 H3 V1 V2 V3 NM1 NM2 NM3 DGL1 DGL2 DGL3 αM βK

1 1.00 1.00 1.00 1.00 1.03 0.97 1.03 1.00 1.05 1.05 1.00 1.00 1.00 1.00 1.00
2 1.00 0.97 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.05 1.05 1.00 1.00
3 1.00 1.00 1.00 1.00 1.03 0.97 1.03 1.00 1.00 1.00 1.00 1.05 1.05 1.00 1.00
4 1.00 1.00 1.00 1.00 1.03 0.97 1.30 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.15
5 1.00 0.97 1.03 1.00 1.03 1.00 1.03 1.00 1.00 1.00 1.05 1.05 1.05 1.00 1.00
6 1.00 1.03 0.97 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.15
7 1.00 1.03 0.97 1.00 1.03 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.15
8 1.00 0.97 1.03 1.00 1.03 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.15 1.15
9 1.00 0.97 1.03 1.00 1.03 1.00 1.03 1.05 1.05 1.05 1.05 1.05 1.05 1.00 1.00

10 1.00 1.03 0.97 1.00 1.03 1.00 1.00 1.00 1.05 1.05 1.00 1.00 1.00 1.15 1.15
11 1.00 0.97 1.03 1.00 1.03 1.00 1.03 1.05 1.05 1.05 1.00 1.00 1.00 1.15 1.15
12 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.30 1.30 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.03 0.97 1.03 1.00 1.30 1.30 1.00 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.30 1.30 1.00 1.00
15 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50
16 1.00 1.03 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50
17 1.00 1.00 1.00 1.00 1.03 1.03 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50
18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.30 1.00 1.00 1.30 1.00 1.00 1.00 1.00
19 1.00 1.03 0.97 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.00 1.00 1.00 1.00
20 1.00 0.97 1.03 1.00 1.03 1.00 1.03 1.30 1.30 1.30 1.00 1.00 1.00 1.00 1.00
21 1.03 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50
22 1.00 0.97 1.03 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50
23 1.00 1.03 1.00 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.30 1.30 1.00 1.00
24 1.00 1.03 0.97 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.30 1.30 1.00 1.00
25 1.00 1.03 1.00 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.00 1.00 1.50 1.50
26 1.00 0.97 1.03 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.00 1.00 1.50 1.50
27 1.03 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.30 1.30 1.50 1.50
28 1.00 1.03 1.00 1.00 1.03 1.00 1.00 1.00 1.30 1.30 1.00 1.30 1.30 1.50 1.50

the gravity load acting on the beams at levels c = 1, 2, 3; and αM and βK are the mass and stiffness proportional coefficients
defining the Rayleigh damping. The true structure does not consider any variation in ϕ.

Error related to geometry variables are defined as a percentage (%) of the bay-width and story-height. For example,
a coefficient of 0.97 considered for V3 means that roof coordinate is modified as (V3 – 0.03×story height). Coefficients
related to nodal masses are evenly modified for a given level.

Earthquake Input Motions

The 360◦ component of the ground motion recorded at Los Gatos station during the 1989 Loma Prieta earthquake (see
Fig. 24.4) is used as base excitation. Model class M0 of the frame is subjected to this record to numerically simulate the
seismic response of the actual structure (y). Then, the estimation using this information and both estimation approaches
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Fig. 24.4 Ground acceleration time history recorded at the Los Gatos station during the 1989 Loma Prieta earthquake

(parameter-only and dual) are employed to update different nonlinear FE models belonging to model classes Mj (j = 1, 2,
. . . , 28).

FE Model Updating Results

Dynamic Response Simulation

The horizontal absolute acceleration responses of the three levels of the frame are considered as measured responses and
denoted by y1, y2, and y3 in Fig. 24.3a. The true response of the structure (ytrue) is numerically simulated using model class
M0 with the following vector of true model parameters θtrue = [200 GPa, 345 MPa, 20, 0.08, 200 GPa, 250 MPa, 18, 0.05]T

and ϕtrue =

⎡
⎢⎢⎢⎢⎣

[
0 9.14 18.28 27.43 3.96 7.92 11.88

]T
[m][

64.94 129.88 129.88 194.81 64.94 129.88 129.88 194.81 69 138 138 207
]T [

kN s2

m

]
[

26.01 25.99 23.09
]T [ kN

m

]
[

0.1782 0.00167
]T

⎤
⎥⎥⎥⎥⎦

T

.

In the estimation phase, each component of the true response vector of the structure (ytrue) is polluted with an independent
white Gaussian noise with zero-mean and 0.5%g root-mean-square (RMS), to generate the measured response, y. Thus, the
measurement noise exact covariance matrix is 0.24 × 10−2 I3 [(m/s2)2], where Ii denotes the i × i identity matrix.

Estimation of Unknown Model Parameters

The model parameters characterizing the steel material constitutive model are considered unknown and to be estimated.
Random initial values for the unknown model parameters are considered and then both estimation approaches are applied to
calibrate the FE models (belonging to different model classes Mj, j = 1, . . . , 28) using the measured response (y).

The unknown model parameters are initially assumed statistically uncorrelated, and thus the initial estimate of their

covariance matrix, P̂θθ
0|0, is diagonal, with entries computed as

(
p × θ̂

i

0|0
)2

, where i = 1, . . . , nθ = 8 and p denotes the

initial coefficient of variation of the unknown model parameters. Then, the initial estimates of the mean vector and covariance
matrix of the unknown model parameters are taken as

θ̂0|0 =
[
1.3 Ecols , 0.8 f coly , 0.7 Rcol0 , 1.25 bcol, 0.8 Ebeams , 0.75 f beamy , 1.3 Rbeam0 , 1.4 bbeam

]T
= [260 GPa, 276 MPa, 14, 0.1, 160 GPa, 187.5 MPa, 23.4, 0.07]T

P̂θθ
0|0 = diag

[(
0.2 · θ̂0|0

)2] ∈ R
8×8

As proposed in [17, 18], a diagonal process noise covariance matrix Q = diag

[(
q × θ̂

i

0|0
)2
]

with q = 1 × 10−5 is

assumed. In the parameter-only estimation approach, the simulation error covariance matrix is assumed fixed and equal to
R = 0.87 × 10−3 I3 [(m/s2)2]. It is noteworthy that excellent estimation results were obtained in previous studies when using



218 R. Astroza et al.

the parameter-only approach with similar structures and levels of noise, when no model uncertainty is considered [17, 18].
In the dual approach, this covariance matrix is considered as the initial estimate for the simulation error covariance matrix,

i.e., R̂0 = diag
(̂
r0|0
) = 0.87 × 10−3 I3

[(
m/s2

)2]
. In the SF, P̂rr

0|0 is assumed diagonal with entries computed according to

P̂rr
0|0 = diag

[(
0.2 × r̂0|0

)2]. The time-invariant covariance matrices of the process and measurement noises used in the SF

are taken as T = U = 1 × 10−20 I3.
The final estimates of the unknown model parameters for all the modeling uncertainty cases (Table 24.2) obtained with

both approaches (parameter-only and dual) are reported in Table 24.3. Here, the normalized parameter estimates (with respect
to the true parameter values) and the associated final coefficient of variation (CV) are shown, and D and N denote the dual
and parameter-only estimation approaches, respectively.

Results obtained with the dual approach (D) shows significant improvement with respect to the parameter-only approach in
terms of parameter estimates, an also allows keeping higher level of uncertainty in those parameters for which the information
contained in the measured responses is limited. When using the parameter-only approach, divergence and convergence to
unphysical values of the unknown model parameters are observed, undesired effects that are controlled by the dual approach.
Parameters Ecols and Ebeams are estimated by the parameter-only estimation approach in the range (85.91–205.84%) of their
true values, and the estimation using the dual adaptive filtering approach narrows that range to (95.05–153.95%). Results
for parameters f coly and f beamy are similar; using the parameter-only approach the estimates vary between 27.50% and
233.88% of the true values, and employing the dual adaptive filtering approach in the range (70.85–157.19%). Significant
differences are also observed in the estimation of the post yield-related parameters, the less sensitive parameters for the
acceleration response measurements considered [11]. For instance, the parameter-only approach estimates bcol in the range
(10.01–400.51%), while with the dual adaptive filtering approach the estimates are in the range (30.56–155.09%) of the
corresponding true parameter values, demonstrating a significant improvement. The final coefficient of variation estimates
for bcol are between 0.51% and 5.74% for the parameter-only approach and between 1.54% and 15.72% for the dual adaptive
filtering approach. Similar results are obtained for other post yield-related parameters (Rcol0 , Rbeam0 and bbeam).

Figure 24.5 shows the time histories of the normalized mean estimates of the unknown model parameters for case 11
(see Table 24.2). Results of the parameter-only and dual approaches are compared. At initial time steps, the amplitude of the
response is low and the frame behaves in the linear-elastic range and therefore y only contains information about Ecols and
Ebeams . As the base excitation and the response increase (at about 3 s), the frame behaves nonlinearly and yielding of some
fibers occurs and f beamy starts to be updated. At around 4 s, the measured response becomes sensitive to the other unknown

model parameters (f coly , Rbeam0 , Rcol0 , bbeam, and bcol). When R is also estimated (i.e., dual approach), the convergence of the
unknown model parameters tends to be considerably more stable and smoother, not exhibiting abrupt changes. In Fig. 24.5,
dashed lines show plus/minus two standard deviations (±2σ ). When the dual approach is used, unknown model parameter
for which low information is contained in the measured response, the estimation uncertainty (±2σ ) remains high.

Errors in Observed Responses

For each case of modeling uncertainty, the final estimates of the unknown model parameters are used with the FE
model belonging to the corresponding model class Mj to predict the response of the structure when it is subjected
to the seismic excitation. The responses of the calibrated models are compared to their true counterparts (defined
by M0(θtrue, ϕtrue)) using the relative root-mean-square error (RRMSE), which is defined by RRMSE (a,b) =√[

1
Ns

∑Ns
i=1(ai − bi)2

]
/

√[
1
Ns

∑Ns
i=1(ai)

2
]

× 100 (%)for signals a (reference) and b, where Ns denotes the total number

of data samples.
Figure 24.6 reports the RRMSEs between the true and FE-predicted measured (observed) acceleration responses for

all cases studied (see Table 24.2) using the initial and final estimates of the unknown model parameters obtained from
both approaches. The RRMSEs of the initial (non-updated) FE models range from 30.11% to 86.33%. The parameter-only
approach reduces this misfit between the true and FE-predicted observed responses, with relative errors in the final FE-
predicted responses ranging from 11.76% to 85.08%, but with none of the updated models achieving RRMSEs lower than
10% for the observed responses. On the contrary, when using the dual adaptive filtering approach, the RRMSEs decrease
significantly, reaching values ranging between 0.68% and 25.02%, with 32% of the cases having relative errors below 10%
for all measured responses, and 89% of the cases with relative errors below 20%, demonstrating an excellent performance in
matching the observed responses.
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Table 24.3 Normalized final estimates and coefficient of variation (%) (in parentheses) of the unknown model parameters obtained for the studied
cases using parameter-only (N) and dual adaptive filtering (D) approaches

Case ID
Eestcol
Etruecol

f esty col

f truey col

Rest0 col
Rtrue0 col

bestcol
btruecol

Eestbeam
Etruebeam

f esty beam

f truey beam

Rest0 beam
Rtrue0 beam

bestbeam
btruebeam

1 (N) 1.03 (0.06) 1.31 (0.30) 0.42 (0.43) 1.87 (2.62) 1.27 (0.13) 0.98 (0.22) 0.75 (0.12) 0.58 (0.48)

1 (D) 1.10 (0.32) 1.17 (1.60) 0.54 (1.15) 0.55 (8.38) 1.14 (0.41) 0.92 (0.64) 1.07 (1.16) 1.32 (3.01)

2 (N) 0.95 (0.07) 2.18 (1.14) 0.16 (0.09) 1.37 (2.05) 1.06 (0.11) 1.02 (0.18) 0.88 (0.20) 0.49 (0.45)

2 (D) 1.00 (0.08) 0.99 (0.57) 1.02 (1.21) 1.01 (3.91) 1.00 (0.14) 0.99 (0.34) 1.01 (0.52) 1.03 (1.38)

3 (N) 1.11 (0.06) 1.18 (0.19) 0.58 (0.20) 0.10 (0.51) 1.05 (0.11) 0.99 (0.25) 0.82 (0.19) 0.85 (0.67)

3 (D) 1.13 (0.32) 1.02 (1.81) 0.72 (2.14) 1.17 (9.39) 1.01 (0.45) 0.89 (0.59) 1.08 (1.25) 1.17 (2.63)

4 (N) 1.11 (0.07) 0.77 (0.13) 0.92 (0.33) 1.00 (0.74) 1.10 (0.12) 1.02 (0.23) 0.67 (0.11) 0.73 (0.54)

4 (D) 1.15 (0.30) 1.19 (0.75) 0.57 (0.86) 0.31 (3.90) 0.99 (0.37) 0.89 (0.67) 1.09 (1.26) 1.43 (2.94)

5 (N) 1.05 (0.07) 1.11 (0.26) 0.70 (0.37) 0.54 (1.33) 1.02 (0.13) 1.23 (0.17) 0.56 (0.12) 0.10 (0.12)

5 (D) 1.06 (0.19) 1.13 (0.70) 0.63 (0.81) 0.38 (3.02) 1.04 (0.30) 0.95 (0.48) 1.09 (0.96) 1.09 (2.17)

6 (N) 1.03 (0.09) 0.98 (0.20) 0.96 (1.08) 1.44 (2.21) 0.96 (0.14) 1.16 (0.15) 0.56 (0.11) 0.10 (0.12)

6 (D) 1.02 (0.12) 0.95 (0.40) 1.08 (0.98) 1.36 (2.90) 1.00 (0.21) 0.94 (0.31) 1.04 (0.59) 1.18 (1.22)

7 (N) 0.99 (0.06) 1.41 (0.15) 0.54 (1.02) 0.16 (1.15) 1.16 (0.14) 1.11 (0.15) 0.58 (0.07) 0.10 (0.21)

7 (D) 1.06 (0.20) 1.09 (1.00) 0.74 (1.28) 0.59 (6.24) 1.03 (0.33) 0.93 (0.50) 1.04 (0.84) 1.25 (2.10)

8 (N) 0.99 (0.07) 2.34 (2.26) 0.19 (0.21) 0.63 (5.74) 1.11 (0.14) 0.97 (0.23) 0.88 (0.21) 0.78 (0.60)

8 (D) 1.06 (0.19) 1.08 (0.87) 0.65 (0.97) 0.41 (2.03) 1.03 (0.31) 0.94 (0.43) 1.10 (0.92) 1.20 (1.92)

9 (N) 1.06 (0.08) 1.02 (0.32) 0.52 (0.26) 1.34 (2.78) 1.18 (0.15) 1.21 (0.20) 0.56 (0.10) 0.10 (0.21)

9 (D) 1.10 (0.16) 1.08 (0.88) 0.87 (1.22) 0.98 (5.07) 1.09 (0.28) 1.04 (0.47) 0.95 (0.61) 1.04 (1.79)

10 (N) 1.04 (0.11) 1.22 (0.32) 0.27 (0.15) 0.48 (1.16) 1.04 (0.21) 0.86 (0.18) 0.50 (0.10) 0.10 (0.22)

10 (D) 1.02 (0.11) 0.99 (0.40) 1.11 (1.08) 1.30 (2.92) 1.06 (0.21) 1.02 (0.28) 1.01 (0.45) 1.10 (1.13)

11 (N) 1.09 (0.07) 1.09 (0.33) 0.63 (0.27) 0.10 (1.94) 1.18 (0.15) 1.17 (0.30) 0.63 (0.12) 0.41 (0.59)

11 (D) 1.10 (0.21) 1.05 (1.66) 0.79 (1.53) 1.21 (8.16) 1.09 (0.35) 1.01 (0.70) 0.95 (0.83) 1.15 (2.48)

12 (N) 1.17 (0.07) 1.02 (0.26) 0.63 (0.25) 1.22 (1.83) 1.23 (0.18) 0.87 (0.22) 0.32 (0.03) 0.40 (0.32)

12 (D) 1.10 (0.13) 1.21 (1.22) 0.69 (1.35) 0.33 (4.02) 1.40 (0.35) 1.02 (0.44) 1.50 (1.50) 1.53 (1.93)

13 (N) 1.05 (0.07) 1.22 (0.19) 0.36 (0.11) 1.61 (1.59) 2.06 (0.20) 0.99 (0.23) 0.68 (0.11) 0.59 (0.34)

13 (D) 1.13 (0.35) 1.31 (2.27) 0.48 (1.22) 1.09 (13.54) 1.54 (0.77) 0.93 (0.76) 1.36 (2.15) 1.66 (3.62)

14 (N) 1.03 (0.09) 1.19 (0.29) 0.49 (0.30) 0.31 (2.26) 1.06 (0.17) 1.12 (0.18) 0.46 (0.08) 0.10 (0.12)

14 (D) 1.03 (0.18) 1.52 (2.23) 0.34 (1.77) 0.77 (15.30) 1.04 (0.29) 0.71 (0.46) 1.36 (1.72) 1.31 (2.32)

15 (N) 0.97 (0.08) 1.67 (0.54) 0.17 (0.08) 2.22 (2.00) 1.03 (0.12) 0.98 (0.19) 0.99 (0.27) 0.57 (0.56)

15 (D) 1.01 (0.14) 0.95 (0.22) 0.97 (0.82) 1.07 (1.61) 0.97 (0.20) 0.96 (0.24) 1.00 (0.41) 1.22 (0.94)

16 (N) 1.11 (0.11) 0.28 (0.05) 1.62 (0.69) 3.30 (0.69) 0.89 (0.11) 1.36 (0.14) 0.47 (0.05) 0.14 (0.16)

16 (D) 1.00 (0.15) 0.95 (0.62) 1.05 (1.26) 1.20 (3.77) 0.98 (0.24) 0.97 (0.49) 0.97 (0.62) 1.18 (1.65)

17 (N) 0.97 (0.09) 0.68 (0.13) 1.34 (0.70) 1.49 (1.00) 0.98 (0.13) 1.23 (0.20) 0.50 (0.07) 0.10 (0.26)

17 (D) 0.95 (0.22) 0.92 (0.86) 1.25 (2.52) 1.30 (5.70) 0.95 (0.34) 1.00 (0.63) 0.96 (0.83) 0.94 (2.19)

18 (N) 1.14 (0.11) 0.84 (0.14) 0.28 (0.06) 1.44 (0.83) 1.11 (0.13) 1.24 (0.18) 0.52 (0.09) 0.10 (0.11)

18 (D) 1.22 (0.19) 1.30 (0.57) 0.67 (0.79) 0.33 (1.54) 0.95 (0.21) 1.02 (0.42) 0.97 (0.65) 0.82 (1.54)

19 (N) 1.02 (0.07) 1.40 (0.22) 0.35 (0.08) 0.71 (1.22) 1.70 (0.20) 1.03 (0.19) 0.83 (0.14) 0.68 (0.31)

19 (D) 1.07 (0.19) 1.57 (1.88) 0.92 (9.96) 1.04 (15.72) 1.38 (0.46) 0.94 (0.61) 1.27 (1.32) 1.03 (1.94)

20 (N) 1.29 (0.08) 1.53 (0.25) 0.41 (0.07) 0.13 (0.77) 1.51 (0.16) 1.12 (0.24) 0.97 (0.24) 0.96 (0.55)

20 (D) 1.35 (0.31) 1.38 (2.08) 0.66 (2.09) 1.00 (11.01) 1.38 (0.53) 0.87 (0.62) 1.50 (2.74) 1.96 (3.47)

21 (N) 1.03 (0.10) 0.87 (0.12) 0.55 (0.12) 0.34 (0.53) 1.00 (0.13) 1.14 (0.17) 0.74 (0.19) 0.31 (0.26)

21 (D) 1.03 (0.17) 0.95 (0.66) 1.08 (1.72) 1.30 (3.84) 0.97 (0.28) 0.95 (0.59) 0.99 (0.87) 1.19 (2.17)

22 (N) 1.00 (0.12) 0.61 (0.16) 0.21 (0.06) 4.01 (1.04) 1.09 (0.12) 0.91 (0.11) 1.31 (0.60) 0.97 (0.48)

22 (D) 1.03 (0.21) 0.97 (1.00) 0.94 (1.56) 1.07 (5.25) 0.97 (0.32) 0.97 (0.65) 0.96 (0.83) 1.16 (2.48)

23 (N) 0.86 (0.08) 0.87 (0.27) 0.23 (0.10) 3.53 (2.55) 2.04 (0.27) 1.18 (0.17) 0.45 (0.04) 0.12 (0.16)

23 (D) 1.08 (0.17) 1.02 (1.26) 1.33 (2.92) 1.55 (7.96) 1.39 (0.39) 1.08 (0.53) 1.30 (1.19) 1.65 (1.90)

24 (N) 1.01 (0.06) 1.77 (0.23) 0.26 (0.17) 0.28 (2.51) 1.87 (0.23) 0.78 (0.17) 0.60 (0.07) 0.61 (0.29)

24 (D) 1.11 (0.17) 1.11 (1.34) 1.03 (2.17) 1.18 (6.55) 1.36 (0.37) 1.11 (0.43) 1.27 (1.01) 1.54 (1.65)

25 (N) 1.07 (0.10) 1.12 (0.32) 0.53 (0.23) 1.45 (2.17) 1.41 (0.24) 1.51 (0.26) 0.50 (0.09) 0.10 (0.19)

25 (D) 1.09 (0.27) 1.22 (0.84) 0.80 (1.19) 0.53 (3.79) 1.36 (0.47) 1.25 (0.58) 1.09 (0.94) 1.32 (2.41)

26 (N) 1.08 (0.11) 1.18 (0.35) 0.72 (0.67) 1.55 (2.41) 1.37 (0.27) 1.50 (0.28) 0.41 (0.07) 0.10 (0.12)

26 (D) 1.08 (0.36) 1.24 (1.14) 0.43 (0.71) 0.89 (5.53) 1.37 (0.66) 1.26 (0.70) 0.96 (1.06) 1.12 (2.75)

27 (N) 1.04 (0.09) 1.35 (0.28) 0.49 (0.15) 0.20 (1.44) 1.50 (0.23) 1.32 (0.31) 0.67 (0.12) 0.51 (0.59)

27 (D) 1.09 (0.23) 1.16 (0.69) 1.18 (2.37) 1.34 (5.57) 1.33 (0.47) 1.28 (0.60) 0.98 (0.76) 1.15 (1.88)

28 (N) 1.08 (0.10) 1.38 (0.27) 0.46 (0.18) 1.23 (1.76) 1.39 (0.22) 1.57 (0.20) 0.57 (0.11) 0.10 (0.14)

28 (D) 1.12 (0.22) 1.16 (0.91) 1.10 (1.86) 1.17 (4.98) 1.31 (0.44) 1.25 (0.74) 1.02 (0.90) 1.23 (2.24)
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Fig. 24.5 Comparison of the parameter estimation time-histories for Case 11 (low-magnitude multi-parameter modeling uncertainty) obtained
using the parameter-only and dual adaptive filtering estimation approaches
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Fig. 24.6 RRMSEs between the true observed absolute acceleration responses and the corresponding initial and final FE-predicted responses for
low- (1–11) and large-magnitude (12–28) modeling uncertainty cases for the frame subjected to the Los Gatos earthquake record

24.4 Conclusion

A dual filtering approach for updating mechanics-based nonlinear finite element (FE) models accounting for modeling
uncertainty was presented. In this approach, the Unscented Kalman filter (UKF) was used to estimate the unknown
FE model parameters and a linear Kalman filter (KF) to estimate the diagonal terms of the covariance matrix of the
simulation error vector based on a covariance-matching technique. Estimation results, in terms of parameter and measured
response, of the common parameter-only and the proposed dual approaches were compared and discussed considering as
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application example a three-story three-bay 2D steel frame with nonlinear behavior subjected to seismic excitation. Different
scenarios of modeling uncertainty were analyzed and eight unknown model parameters were estimated. It was shown that
the proposed dual filtering approach outperforms the conventional parameter-only estimation approach, achieving better
parameter estimates, avoiding divergence and estimation of unphysical parameter values, and attaining better match of the
measured and unmeasured response quantities.
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Chapter 25
Model-Based Decision Support Methods Applied
to the Conservation of Musical Instruments: Application
to an Antique Cello

R. Viala, V. Placet, S. Le Conte, S. Vaiedelich, and S. Cogan

Abstract In musical instrument making and restoration domains, the variability of the materials and the irreversibility of
the changes are issues for the experimental study of the impact of design changes and restorations on musical instruments.
In addition, the analytical methods based on simplified geometries and models are not sufficiently detailed for the study
of complex structures and phenomena. The virtual prototyping, and its different capabilities, can be a powerful method for
instrument makers and museum curators as a decision support tool. Nevertheless, the accuracy of the model is an important
matter to assess good predictions. In the case of antique and unique instruments, it is sometimes hard to obtain exhaustive
geometrical properties. Similarly, it is also difficult to evaluate the material properties of full instruments, and this uncertainty
may have a strong impact on the output features of the numerical models. In this study, a numerical model of cello is
developed using finite element method. It is used to evaluate the impact of a modification of a geometrical property on
dynamical features. It is shown that the lack of knowledge on the arching height of the top and back plates of a cello has
a strong impact on the computed dynamical properties of the cello. Secondly, the model is considered with and without
repair cleats and defects like galleries excavated by wood-boring insects. It is observed that the bridge admittance exhibits
discrepancies above 220 Hz which is in the low frequencies domain of the model and quantify the impact of repairs. This
model capability is a starting point for further simulations accounting for material and geometrical uncertainties and to assess
the confidence level of a model for restoration issues.

Keywords Musical acoustics · Virtual prototyping · Dynamical modelling · Cultural heritage conservation · Finite
element model

25.1 Introduction

Generally applied in industrial and research domains, model-based decision support has been used for decades as a powerful
tool. Considering uncertainties and finely modeled geometries, it can be used for the virtual prototyping of parts and
structures. In the musical instrument domain, these methods can be used as a support for the design of new instruments.
Moreover, it can also be used for the conservation and restoration of antique and valuable instruments. Many models of
musical instruments have been developed for decades, especially violins since the 1980s [1]. More recently, models have
been developed for the reverse engineering of a violin [2] or the study of dynamics and acoustics of violin body [3] and the
way geometric properties interacts. Models have also been developed to screen material properties of the wooden constituents
of the violin [4] and as a decision support tool for violins and guitars [5].

It must be highlighted that curators deal with unique and irreplaceable instruments, which represents a main difference
with usual industrial products, for which the critical aspects mostly deal with security and cost concerns. Musical instruments
are made with different pieces of wood whose mechanical properties may be hard to evaluate and represent a considerable
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lack of knowledge. In the same manner, the fine knowledge of the geometry can be either impossible or costly, involving
experiments and devices [6, 7].

So, a major concern must be pointed out about the geometrical and material uncertainties, and the way they can affect
the results of a model. Moreover, the climatic conditions that an instrument can undergo have to be considered for such
problematics, as musical instruments constantly undergo relative humidity and temperature changes when outside the
showcase [8]. In this study, a cello is modeled using the finite element method, and a geometrical characteristic is changed,
the height of the top and back plates, while the material properties are unchanged. Secondly, the impact of repairs and defaults
on the dynamical response of the model is evaluated, as a potential starting point for a decision support tool for restoration
of musical instruments. The object of study of this work is an antique cello which exhibits many previously repaired cracks,
and galleries produced by xylophagous insects, whose activity can be experimentally detected by acoustic emission [9].

The cello is made of different species of wood: spruce, maple, ebony and sometimes rosewood that are assembled together.
Different experimental studies in the dynamical fields have been focused on several parts of the cello, such as the tailpiece
dynamics [10, 11] and studied wolf notes [12]. The body of the instrument is here the main object of concern and is made
of carved maple back and bent sides, and a carved spruce soundboard. The aim of the study is to evaluate the impact of an
incorrect geometrical modeling on the dynamical response. For this purpose, the geometry of the cello is finely modeled
using computer aided design and the finite element method, described below.

25.2 Analysis

The studied structure is a cello, made by Pietro Guarneri in the eighteenth century and kept at the musée de la musique,
Paris, under the label E.1555. The nominal model is made using the template of a model given in [13] and the data collected
by curators and instrument makers about some properties of the E1555 cello. The Computer aided design (CAD) of the cello
model has been made using the software SOLIDWORKS and is shown in the Fig. 25.1.

The repair cleats and galleries are schematized in the Fig. 25.2. The geometry has been meshed with tetrahedral elements
with quadratic interpolation, the number of nodes is approximately equal to 350,000, which leads to a value close to one
million degrees of freedom. Most of the parts are made of wood (maple, spruce an ebony species). The wooden parts are
modelled under the linear elastic hypothesis, with an orthotropic definition of the elastic parameters. The material properties
identified are taken from [14, 15] and given in the Table 25.1. For the latter, three models will be considered: the first model
made with nominal values obtained in [13], labelled as V1 and the one with the correct arch height of both back and top,
which corresponds to an increase of 10 mm and a corresponding global shape change, labelled as V2. The photogrammetry
method has been used for the measurements of the arch dimensions. In addition, a model is created based on the model V2
without cleats and gallery, labelled as V2_2, to evaluate the impact of repairs or defaults on the behavior of the cello.

The bent parts orientation has been considered by changing the orientation of the local coordinate frames of the
corresponding elements. The modal basis computation of 100 modes lasts one hour. Once the modes are computed, the
comparison between each case is made with a modal assurance criterion, proposed in [16]. To highlight the capability of the
finite element models, the bridge admittances of each case are computed. The admittance is computed with the application of
an input force and an observation of either the displacement velocity and acceleration at the same point in the same direction,

Fig. 25.1 Computer aided design, (CAD) of the cello model; left: front view, right: back view
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Fig. 25.2 Left: scheme of the cleats and cracks of the cello, based on radiographs provided by the laboratory of the Musée de la musique, Paris,
right: bridge excitation and measurement point and direction on a Belgian cello

Table 25.1 Orthotropic material
properties for maple, spruce and
ebony species, taken from [14,
15]

Maple Spruce Ebony

Specific gravity [−] 0.64 0.44 1.09
EL [MPa] 12,200 12,840 18,000
ER [MPa] 1820 1000 2450
ET [MPa] 1060 650 1520
νLR, νRL [−] 0.37, 0.05 0.37, 0.03 0.56, 0.07
νRT, νTR [−] 0.65, 0.37 0.48, 0.3 0.95, 0.7
νLT, νTL [−] 0.45, 0.03 0.4, 0.02 0.7, 0.06
GLR [MPa] 1375 810 1660
GRT [MPa] 430 46 540
GTL [MPa] 1010 790 1300

as shown in the Fig. 25.2, right part. The bridge admittances are often considered as a signature of the soundboard musical
instrument dynamics and has been widely measured [17] but never modeled previously on a numerical model of a cello. The
synthesis of the admittance of a cello can unlock some issues that are common in experiments, such as the reproducibility of
the measure [18] and the interpretation of the results in the case of geometrical and material differences between instruments,
since numerical models can change each parameter at once.

25.3 Results

The computed modal bases are rich and only low frequency canonical modes will be considered. These modes, labeled as T1,
C2, C3 and C4 according to usual nomenclature [19], are shown in the Fig. 25.3 and the evolution of the eigenfrequencies
for the corresponding modes for each model V1, V2 and V2_2 are given in the Table 25.2.

It is shown that changing the arch height can lead to a variation of the eigenfrequencies of up to 8% for low frequencies
mode. In addition, for higher frequencies, the computed and experimental modal bases are not correlated above the 20th
modes which states for a completely different behavior above 250 Hz. Thus, such geometrical parameters like arch heights
and thickness are keys for the good correlation of a model and a real instrument and need to be characterized.

The admittances at the bridge for the cases V2 (without repairs) and V2_2 (without repairs) are given in the Fig. 25.4.
First, the usual A0 acoustic mode is not displayed on the admittance since the fluid-structure interaction was not implemented
in the model. The admittance shape below 230 Hz is like the one given in [19] (with lower frequencies) and, under this point,
no significative differences are shown between the repaired and not repaired cases. Above this frequency, differences occur in
the admittances’ shapes, and increase with increasing frequencies, which highlights the facts that repairs affect the dynamical
behavior of the cello, even in the low and mid-frequency domains.
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Fig. 25.3 Normalized eigenvectors of the eigenmodes modes of interest (blue = 0, red = 1; left side: top view, right side: back view

Table 25.2 Eigenfrequencies of
the first three modes of interest of
the cello and their evolution for
three difference cases: nominal
model V1, modified model V2,
and modified model V2 without
repairs

Eigenmode V1 V2 V2_2

T1 [Hz] 191.3 179.4 (−6.2%) 179.4
C2 [Hz] 179 164.2 (−8.2%) 164.5
C3 [Hz] 207 222.1 (+7.3%) 221.8
C4 [Hz] 213 212.2 (−0.4%) 212.1

Relative changes between V1 and V2 are given
in brackets

Fig. 25.4 Bridge admittance (acceleration) at the bridge with and without cleats and wormholes
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25.4 Conclusion

The numerical models created have highlighted two main facts. Firstly, the geometry accuracy is a key for the predictive
capability of a cello, and geometrical properties like arch shape and height are essential for the accuracy of the model.
Nowadays, such geometrical features are evaluated effectively with photogrammetry and CT scans means. Secondly, the
effects of repairs like cleats and defaults like insect galleries can modeled with such models. The effects of these elements
are important on the dynamical behavior of the cello, and this can be considered as an effective tool for more refined
and dedicated studies, like the design of repairs cleats that would affect as lower as possible the behavior of the musical
instruments, when such repairs are inevitable for the structural integrity of the instrument. In conclusion, this study shows
that the numerical models can simulate the effect of restorers and instrument maker’s decisions on the dynamical behavior,
which can be a starting point for a decision support tool in both static and dynamical domains. The perspective proposed is to
evaluate the impact of geometric and material uncertainties on the static response of the cello, when undergoing prestresses
due to assembly and strings.
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Chapter 26
Optimal Sensor Placement for Response Predictions Using Local
and Global Methods

Costas Argyris, Costas Papadimitriou, and Geert Lombaert

Abstract A Bayesian framework for model-based optimal sensor placement for response predictions is presented. Our
interest lies in determining the parameters of the model in order to make predictions about a particular response quantity of
interest. This problem is not adequately explored since the majority of currently available literature is focused on parameter
inference, rather than prediction inference. The model parameters are inferred by collecting experimental data which depends
on the chosen sensor locations. The parameter values are uncertain and their uncertainty is described by a prior probability
density function. The measured quantity, or data, is a quantity that can be predicted by the model which depends on both
parameters and sensor locations. A prediction error equation is used to describe the discrepancy between the model-predicted
measured quantity and the actual data collected from the experiment. The sensor locations are optimized with respect to
prediction inference, while the case of parameter inference is derived as a special case under a more general framework.
The posterior covariance matrix is used as a measure of uncertainty in the predictions. Two approaches are developed for its
calculation, one global and one local. The local approach is based on sensitivities at a fixed value of the parameters, while the
global approach uses Monte Carlo sampling and explores the full range of uncertainty in the parameters. A simple numerical
example is presented in order to illustrate and verify the two approaches.

Keywords Optimal sensor placement · Bayesian inference · Robust predictions · Uncertainty quantification · Monte
Carlo integration

26.1 Introduction

Model-based optimal sensor placement is concerned with finding which is the best way to perform an experiment such
that a specific purpose is achieved, using a model of the system as a guide. Common purposes include parameter inference
and making predictions using the model [1]. Herein we are interested in optimizing the design for prediction inference,
and recover parameter inference as a special case. The parameters are uncertain, as are the experimental data, since no
experiment has taken place at the time of design. These uncertainties are treated within the Bayesian framework for
uncertainty quantification [2], by assigning a prior probability density function (PDF) for the parameters and a probabilistic
model for the difference between model predictions and data, known as the prediction error.

Following the Bayesian method, the posterior represents our updated state of uncertainty about the parameters or
predictions given the data. In order to formulate the objective function one needs to chose a scalar measure to describe
posterior uncertainty. The seminal paper of Lindley [3] suggests using the expected gain in Shannon information from prior
to posterior as a measure of the information provided by an experiment. Information theory measures, based on scalar
measures of the Fisher Information Matrix (FIM) [4, 5] and on information entropy [6–8] have been proposed in the past for
structural parameter estimation problems.

Much of the currently available literature is focused on designing the experiment for parameter inference. However, when
trying to derive both parameter and prediction inference under the same framework, information-theoretic quantities such as
the entropy can be troublesome to work with due to the complicated relation between the posterior PDF of parameters and
predictions. In this work we use the posterior covariance matrix to describe uncertainty and specifically its determinant as a
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scalar measure. This enables us to formulate the problem for the general case of prediction inference, and recover parameter
inference as a special case. The posterior covariance matrix is found using two different approaches, one global that uses
Monte Carlo sampling [9, 10] and one local that uses sensitivities.

First we present the general formulation, then develop the two approaches, and finally we verify the methodology using a
simple linear example.

26.2 OED Formulation for Response Predictions

Throughout the text all involved quantities are real-valued vectors whose size is denoted when they are first introduced. For
clarity purposes, no specific vector notation is used. Let M = M(θ) represent a parametrized model of a structure, which
depends on parameters θ ∈ R

Nθ whose values are uncertain. Model M(θ) can be used to calculate two different quantities,
namely the measured and predicted quantities, both of which depend on parameters θ . These two quantities represent the
forward problem. The former is the quantity that is going to be measured when the experiment is performed, and the latter
is the quantity that we would like to predict accurately after having collected the experimental data. Let g = g(θ) ∈ R

Ng

represent the predicted quantity of interest. It depends on the uncertain model parameters θ and therefore it is also uncertain.
Our goal is to perform the experiment in such a way that the estimate of g(θ) is as accurate as possible. Knowledge about
g(θ) comes through knowledge of parameters θ , which in turn is obtained through the measured data collected from the
experiment. The inference of parameters θ from measured data constitutes the inverse problem. Then the updated uncertainty
in θ is propagated to uncertainty in the predicted quantity g(θ) (uncertainty propagation).

We assume that the experiment can be performed for ND different designs. Each design, denoted by m = 1, . . . , ND ,
can be conceived as a different sensor setup with Nm sensors which would lead to a different measured data set. However,
this data set is not known in advance before the experiment takes place. In order to model the process of data collection
we consider the two main reasons for mismatch between measured data and model predictions for the measured data: (1)
imperfect knowledge about model parameters θ and (2) imperfect model coupled with random measurement error (prediction
error). Both sources of uncertainty are taken into account in the prediction error equation which models the measured data
set under design m as:

d̂m ∼ dm(θ)+ em (26.1)

where dm(θ) ∈ R
Nm is the model prediction for the measured data under design m for parameters θ , and em ∈ R

Nm is
the prediction error term, considered to be a multivariate zero-mean Gaussian random vector with covariance matrix �em .
Following the Bayesian framework for uncertainty quantification, parameter uncertainty is modelled by assigning a prior
PDF to the parameters, namely p(θ). Then the posterior is given by Bayes’ rule as:

p(θ |d̂) = p(d̂|θ)p(θ)
p(d̂)

(26.2)

where p(d̂|θ) is the Gaussian likelihood defined through the prediction error equation (26.1), p(θ) is the prior and p(d̂) is
the evidence.

The flow of information from measured data to parameters and to predictions can be seen schematically in Fig. 26.1.
The goal is to find which of the ND possible experimental designs will result in the most accurate posterior prediction

about g(θ). This is formulated as a discrete optimization problem:

mopt = arg min Um , m = 1, . . . , ND (26.3)

where the objective function Um reflects the uncertainty in the estimate of g(θ) resulting from data collected from
experimental design m. Note that if we set g(θ) = θ the problem reduces from inference of predictions to inference of
model parameters. Hence, the problem of optimizing the design for parameter inference can be seen as a special case of
optimizing for prediction inference, where the predictions are set equal to the parameters. However, the choice of objective
function Um must also reflect that possibility.
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Parameter spaceMeasured data space Prediction space

m = 1

m = 2

Size of each green circle = posterior parameter 
uncertainty for particular data sample

Average size = objective for parameter inference

Size of each blue circle = posterior prediction 
uncertainty from particular parameter posterior

Average size = objective for prediction inference

Different designs explore different sub-domains 
of the measured data space. The red 
disturbances represent prediction error.

Fig. 26.1 Flow of information from measured data to parameters and predictions

Our choice of objective function Um is motivated by the fact that we wish to develop both parameter and prediction
inference under the same framework. As already stated in the introduction, using the entropy (or any other related
information-theoretic quantities such as Kullback-Leibler divergence or Mutual Information) has the drawback of requiring
knowledge of the full posterior PDF for the quantity we wish to infer. For parameter inference from measured data (inverse
problem), the posterior is given by Bayes’ rule (26.2). However, for prediction inference the posterior PDF of predictions
g is required which is related to the posterior PDF of parameters through the known formula of transformation of variables
from θ to g(θ):

p(g|d̂) = p(θ(g)|d̂) ∣∣Jg−1

∣∣ (26.4)

where the posterior of the parameters p(θ(g)|d̂) in the right-hand side is written solely as a function of g using the inverse
transformation g−1 from g to θ , and Jg−1 is the Jacobian matrix of the inverse transformation. The transformation needs to
be a unique mapping representing a one-to-one relation between g and θ . The inverse transformation g−1 from g to θ and
its Jacobian can be calculated only for very simple relations between g and θ . These factors severely limit the applicability
of the method to very simple cases.

For that reason we turn to the posterior covariance matrix to describe posterior uncertainty in a quantity, and specifically
to its determinant as a scalar measure of uncertainty. Using the covariance matrix sidesteps the above mentioned issues
because it does not require knowledge of the full functional form of the posterior PDF of the predicted quantity, but only the
forward relation g = g(θ). Also, its calculation is relatively straightforward and can easily accommodate for both prediction
and parameter inference. Therefore, we chose the objective function Um in (26.3) to be the determinant of the posterior
covariance matrix of the prediction g, after measured data d̂m have been collected from design m:

Um =
∣∣∣�g|d̂m

∣∣∣ (26.5)

Next we demonstrate how the posterior covariance matrix can be evaluated using two different approaches, one global
and one local.
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26.3 Global Sampling-Based Approach

Since we do not know the measured data before the experiment takes place, we follow the strategy of averaging over the
unknown, using the prior and likelihood in order to draw possible “data” samples. Following the theory of expected objective
function for optimal experimental design [3] the expected objective is the average determinant over all possible data sets that
can result from design m:

Vm = E [Um] =
∫
p(d̂m)Um dd̂m (26.6)

Next we demonstrate how the posterior covariance matrix of (26.5) can be evaluated. In the following we temporarily drop
the dependence of the posterior covariance matrix of g on the specific set of data d̂m for notational convenience. Similarly for
the dependence of g on θ . Then the element (i, j) of �g , representing the posterior covariance between the i and j elements
of the predicted vector g is given by:

�
i,j
g = cov(gi, gj ) = E[(gi − E[gi])(gj − E[gj ])] = E[gigj ] − E[gi]E[gj ] (26.7)

where the expectations are evaluated using the known theorem for the expectation of a function of a random variable as:

E[gigj ] =
∫
!

gi gj p(θ |d̂) dθ (26.8)

E[gi] =
∫
!

gi p(θ |d̂) dθ (26.9)

where the posterior is used as the density for θ in order to reflect our updated state of knowledge about the parameters after
having observed the data. Substituting the posterior from Bayes’ rule (26.2) results in the following integrals over the prior:

E[gigj ] = 1

p(d̂)

∫
!

gi gj p(d̂|θ) p(θ) dθ (26.10)

E[gi] = 1

p(d̂)

∫
!

gi p(d̂|θ) p(θ) dθ (26.11)

where the evidence term is given by the total probability theorem as:

p(d̂) =
∫
!

p(d̂|θ) p(θ) dθ (26.12)

Analytic calculation of the above integrals is possible only for very simple models. Numerical quadrature is efficient only
for a very small number of parameters and data points which result in low-dimensional integrals. For the general case of
multiple parameters and data points, Monte Carlo integration is the only possible solution. Herein we introduce Monte Carlo
importance sampling similar to [9] to approximate the objective function.

26.4 Local Sensitivity-Based Approach

In the sensitivity-based method the posterior covariance matrix of θ is derived from the Gaussian approximation of the
posterior:

�−1
θ |d̂m = [∇θ dm(θ)]T �−1

em
[∇θ dm(θ)] +�−1

θ | θ=θ∗ (26.13)

where ∇θ dm(θ) is the Nm ×Nθ matrix of sensitivities of the measured quantity with respect to model parameters (Jacobian
matrix). The second term, �θ , is the covariance matrix of the Gaussian prior for θ .
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Expression (26.13) is a local approximation because it is derived from a Taylor series expansion of the log-posterior
around the “optimal” value θ = θ∗ of the model parameters, which minimizes the fit with the data. However, since the
data are not available during this stage, a nominal value of θ is selected based on engineering judgement. The Gaussian
approximation is exact for the case of linear models.

Then the posterior covariance matrix of predictions g is given by:

�g|d̂m = [∇θ g(θ)] �θ |d̂m [∇θ g(θ)]T | θ=θ∗ (26.14)

where ∇θ g(θ) is the Ng × Nθ matrix of sensitivities of the predicted quantity with respect to model parameters (Jacobian
matrix). Again the above expression is accurate for predicted quantities that are linear with respect to model parameters.
Note that for both methods (global and local) the case of optimizing the design for parameter inference can be recovered as
a special case by setting g(θ) = θ .

26.5 Application: Simple Linear Model

We demonstrate and verify the two approaches using a simple linear model. For this problem the required integrals can be
evaluated analytically due to the simple form of the likelihood function, and therefore the analytical form of the objective
function is found. Next we approximate the objective function with the sampling method and compare with the analytical
solution as the number of samples is increased. Finally we also calculate the objective function using the sensitivity method.
Due to the linearity of the problem we anticipate the sensitivity method to be exact.

We consider the simple case of the single-parameter linear model for the measured quantity:

dx(θ) = θx (26.15)

where θ is the uncertain parameter and x is the measured location specifying the experimental design. The prediction error
equation is then:

d̂x = θx + e (26.16)

where the error term e is assumed to follow a zero-mean univariate Gaussian distributionN(0, σ 2
e ). Three cases are examined

for the standard deviation of the error σe:

1. Constant: σe = σ
′
e

2. Proportional to location: σe = σ
′
ex

3. Inversely proportional to location: σe = σ
′
e/x

The likelihood function then takes the known form:

p(d̂x |θ, x) = 1√
2πσ 2

e

exp

(
−1

2

(d̂x − θx)2
σ 2
e

)
(26.17)

We also assume a Gaussian prior for θ , p(θ) = N(mp, σ
2
p). Since we have only one parameter the predicted quantity is the

parameter itself (g = g(θ) = θ ) and therefore the expected utility function is simply the expected posterior variance of θ .
So our objective is to find the optimal measure location x∗ such that we learn the most about θ .

The integrals of Eqs. (26.10)–(26.12) simplify to:

E[θ2|d̂x] = 1

p(d̂x)

∫ +∞

−∞
θ2 p(d̂x |θ) p(θ) dθ (26.18)

E[θ |d̂x] = 1

p(d̂x)

∫ +∞

−∞
θ p(d̂x |θ) p(θ) dθ (26.19)

p(d̂x) =
∫ +∞

−∞
p(d̂x |θ) p(θ) dθ (26.20)



234 C. Argyris et al.

which are evaluated analytically for the given form of the likelihood and prior distributions. Then the posterior variance of θ
is given by (26.7) as:

V ar(θ |d̂x) = E[θ2|d̂x] − E[θ |d̂x]2 (26.21)

and the final objective function is given by the integral over the data:

Ux =
∫ +∞

−∞
p(d̂x) V ar(θ |d̂x) dy (26.22)

Carrying out all the integrations analytically for the three cases of error standard deviation results in the following forms for
the objective function respectively:

U1
x = σ

′2
e σ

2
p

σ
′2
e + σ 2

px
2

(26.23)

U2
x = σ

′2
e σ

2
p

σ
′2
e + σ 2

p

(26.24)

U3
x = σ

′2
e σ

2
p

σ
′2
e + σ 2

px
4

(26.25)

Next we interpret the resulting objective functions. In the absence of measurement error e, any location x would be equally
good to find the value of θ simply by solving the model equation for θ : θ = y/x. This intuitive notion is reflected in all the
objective functions by reducing to zero for σ

′
e = 0 independently of the value of x. A zero objective function means zero

expected posterior variance for θ , which means that we learn the value of θ exactly with no uncertainty at all. Also note
that the objective functions reduce to zero for σp = 0 independently of the value of x again. This is because a zero prior
uncertainty implies that we already know exactly the value of θ and no additional data can change that; that is, the posterior
is always dominated by the prior.

However, for non-zero values of σ
′
e and σp there is dependence on the measured location x in objective functions U1

x and
U3
x which correspond to the constant and inversely proportional error cases respectively. Specifically, we see that the objective

function decreases (posterior uncertainty in θ decreases) as x increases. This is because the farther away we measure the less
important is the measurement error compared to the actual model value. In the constant error case, the error remains the
same as the model output is increased when we increase x and therefore the signal-to-noise ratio gets larger. Therefore we
have more accurate data d̂x which is contaminated with less noise, which in turn leads to greater accuracy in the identified
value of θ . The same principle holds in the inversely proportional error case but even stronger since the error does not remain
constant, but it actually decreases with x, and this results in an even faster reduction of the objective function as x increases
(x4 compared to x2). Finally note that for the trivial case of x = 0,U1

x andU3
x reduce to the prior variance σ 2

p . This is because
at x = 0 the model output is zero and we only measure noise which has no valuable information about θ , and therefore the
prior uncertainty remains unchanged.

In the proportional error case we see that U2
x does not depend on x at all. This is due to the fact that the signal-to-noise

ratio remains the same regardless of x, since the noise is always proportional to x. Small model outputs have small error, and
large model outputs have large error, and therefore there is no preference to a specific x so the objective function is constant
and independent of x.

Finally note how the objective functions do not depend on the Gaussian prior mean mp but only on its variance σ 2
p since

what matters is the posterior variance and not the mean.

26.5.1 Comparison with Monte Carlo Integration

Next we solve the same problem (constant error case) using Monte Carlo integration for an increasing number of samples
in order to check the convergence. The exact analytical solution U1

x is known in this case and is also shown for comparison
purposes. The values of σ

′
e, σp and x which were used are shown in the titles of Fig. 26.2.
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Fig. 26.2 Comparison between Monte Carlo (blue circles) and analytical solutions (black line) for different values of σ
′
e, σp and x. Monte Carlo

objective function values are normalized by the analytical value for each case of σ
′
e, σp and x. Case (a): σ

′
e = 1, σp = 1, x = 1, Case (b): σ

′
e = 0.1,

σp = 0.1, x = 1, Case (c): σ
′
e = 0.01, σp = 0.01, x = 1, Case (d): σ

′
e = 0.01, σp = 0.01, x = 10

We can observe how the Monte Carlo solution converges to the true analytical solution as the number of samples is
increased (unbiased estimator). We can also see the associated noise (variance) when moving from one number of samples
to the next, which is introduced due to the random sampling. The variance is due to both the random sampling of parameter
values from the prior and due to the random data samples from the likelihood. For each objective function evaluation a new
batch of parameter and data samples is drawn, which leads to slightly different results. The average error in the first three
sub-figures (x = 1) is about 2% while in the fourth (x = 10) is about 0.5%. Also in the case of x = 10 the Monte Carlo
estimator stabilizes much more quickly compared with x = 1. This is due to the fact that there is a much greater signal-to-
noise ratio for x = 10 and the uncertainty introduced in the estimator through data noise has a much smaller contribution
than with x = 1. This leads to a better convergence behaviour.

Next we evaluate the objective function with the sensitivity-based method, using the derivative of the measured quantity.
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26.5.2 Sensitivity-Based Method

Substituting the linear measured quantity from Eq. (26.15) to (26.13) we obtain:

σ−2
θ |d̂x = ∇θ (θx) σ ′−2

e ∇θ (θx)+ σ−2
p

= x2

σ
′2
e

+ 1

σ 2
p

= x2σ 2
p

σ
′2
e σ

2
p

+ σ
′2
e

σ
′2
e σ

2
p

= x2σ 2
p + σ ′2

e

σ
′2
e σ

2
p

σ 2
θ |d̂x = σ

′2
e σ

2
p

σ
′2
e + σ 2

px
2

(26.26)

which has exactly the same form as the one obtained analytically with the global approach in Eq. (26.23), and therefore the
same analysis of the results holds here as well. The reason why the sensitivity-based approach gives the exact solution is
because the measured quantity is linear with respect to the parameter and this makes the method exact and not approximate.

26.6 Conclusions

A model-based Bayesian optimal sensor placement framework was presented where the interest lies in using the experimental
data for making predictions using the model. The posterior covariance matrix of the predictions was used as a measure of
uncertainty. Two methods were presented for evaluating the covariance matrix, one global and one local. The global method
uses Monte Carlo sampling to evaluate the required integrals while the local method uses Gaussian approximation of the
posterior and is based on the sensitivities of the measured and predicted quantities with respect to parameters. A simple
linear numerical application was used where the analytical solution is known, in order to demonstrate how the two methods
can be applied.

Acknowledgement This work was performed within the frame of the project C16/17/008 “Efficient methods for large-scale PDE-constrained
optimization in the presence of uncertainty and complex technological constraints” funded by KU Leuven.
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Chapter 27
Incorporating Uncertainty in the Physical Substructure During
Hybrid Substructuring

Connor Ligeikis and Richard Christenson

Abstract In hybrid substructuring, a structural system is partitioned into a numerical substructure and a physical
substructure. Typically, the physical substructure consists of a system component whose behavior is difficult to model
while the numerical substructure consists of a computational model of the remainder of the system. Hybrid substructuring
has previously been shown to be an effective method to quantify the effect of parametric uncertainties in the numerical
substructure on the response of the system. This paper proposes and implements a methodology where the effect of
parametric uncertainty can also be incorporated into the physical substructure. This idea is implemented in a series of
small-scale Real-Time Hybrid Substructuring (RTHS) tests on a magneto-rheological fluid damper used to control a two
degree-of-freedom mass-spring system. The physical current supplied to the damper is treated as a random variable. Using
the RTHS test results, a metamodel of the system’s frequency domain behavior is developed using Principal Component
Analysis and Kriging. This metamodel is then used to evaluate probabilistic system performance.

Keywords Real-time hybrid substructuring · Metamodeling · Kriging · Vibration control · Magneto-rheological
dampers

27.1 Introduction

Real-Time Hybrid Substructuring (RTHS) is a cyber-physical form of dynamic testing which interfaces numerical modeling
with physical experiments in real time [1]. In RTHS, a system is partitioned into a numerical substructure and a physical
substructure. The physical substructure is typically a rate-dependent physical component of the system which is difficult to
model and the numerical substructure consists of a computational model of the remainder of the system. In a typical RTHS
test, a simulated numerical loading is applied to the numerical substructure of the system. A numerical displacement is then
computed and applied to the physical substructure via a transfer system such as a hydraulic actuator. Physical loading may
also be applied directly to the physical substructure. Restoring forces produced by the physical substructure are measured
using sensors and those forces are then fed back to the numerical substructure. This cycle repeats during each time step of
the test. Thus, RTHS provides a cost-effective method to study the performance of the full system during the early stages of
the design process while only physically testing a single component of that system.

RTHS has been shown to be an effective way to evaluate structural system performance when that system contains
parametric uncertainty in the numerical substructure. Abbiati et al. proposed a method called Adaptive Kriging-Hybrid
Simulation (AK-HS) which combines a non-parametric statistical interpolation method called Kriging (Gaussian process
regression), an adaptive machine learning algorithm, and hybrid substructuring to efficiently estimate a structural system’s
probability of failure based on a given failure criteria [2]. In this method, a relatively small number of hybrid substructuring
tests are used to build a computationally efficient metamodel of the system response. Monte Carlo (MC) simulations are
then performed using this metamodel to quantify probabilistic system behavior. This proposed method was experimentally
validated using RTHS tests on a system that consisted of two adjacent six degree-of-freedom (DOF) base-isolated structures
connected with a viscous damper [3]. It was shown that probabilities of failure can be accurately estimated for a system
containing up to 24 random variables using a reasonable number of RTHS tests.

The authors propose an RTHS-based method which can be used to evaluate a structural system’s frequency domain
behavior when parametric uncertainties are present in both the numerical and physical substructures. To demonstrate how
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Fig. 27.1 Two DOF mass-spring
system

Fig. 27.2 Mean (magnitude and phase) of the FRFs evaluated at 500 sample points by the true system model and the metamodel

this methodology works, a numerical example is provided. The system in question is the two DOF quarter car model shown
in Fig. 27.1.

Vibrations are suppressed using a magneto-rheological (MR) fluid damper. MR dampers are devices with variable
damping characteristics that are controlled by adjusting a supplied current. In this system, the sprung mass m1 and the current
supplied to the damper i are treated as uniformly distributed random variables ranging from 400 to 600 kg and 0–0.25 amps,
respectively. The un-sprung mass m2 and the spring stiffnesses k1 and k2 are considered to be deterministic with values
of 50 kg, 25,000 N/m, and 150,000 N/m, respectively. The MR damper is simulated using the hysteretic model proposed
by Kwok et al. [4]. In a real RTHS implementation, the MR damper would be the physical substructure and the two DOF
system would be the numerical substructure. The system is excited by a 20 Hz band-limited white noise base displacement
xb input. Using Latin hypercube sampling on the random input parameters m1 and i, 50 simulations are performed using
Simulink. Next, the frequency response functions (FRFs) relating the input base displacement xb to the output sprung mass
displacement x1 are estimated for each of the 50 simulations using the tfestimate function in MATLAB. These FRFs represent
the vector-valued response output of the model. The goal is to predict the FRF for a given m1 and i pair without having to
conduct an additional RTHS test. This is accomplished via a statistical metamodel.

First, following the methodology proposed by Yaghoubi et al., the size of the response output vector is reduced by
Principal Component Analysis (PCA) [5]. PCA is used to transform the very long (>1000 points) FRF vectors of correlated
system outputs into much shorter (<10 points) vectors of uncorrelated variables that represent the core statistical features
of the response output. The MATLAB based uncertainty quantification software framework UQLab is then used to build
independent Kriging metamodels for each of these uncorrelated PCA variables [6]. Using these metamodels, a vector of
PCA variables can be predicted for a desired set of random inputs. These variables are then transformed back into the full
length FRF output vector for the unknown m1 and i pair. To evaluate the effectiveness of this methodology, a mean FRF is
computed for 500 MC samples using both the full system model and the metamodel as shown in Fig. 27.2. These mean FRFs
are almost identical. Further, Fig. 27.3 shows the full FRFs found using the true model and metamodel for these 500 samples
along with the means shown in black. These results demonstrate that this approach is effective at accurately predicting this
system’s probabilistic behavior.



27 Incorporating Uncertainty in the Physical Substructure During Hybrid Substructuring 239

Fig. 27.3 All FRFs obtained by evaluating at 500 sample points: (a) the true system model; and (b) the metamodel

Full RTHS tests to validate the proposed method will be conducted in the Shock and Vibration Laboratory at the University
of Connecticut. The physical substructure is a Lord Corporation MR damper (Model RD-1005-3). This damper is attached
to a servo-hydraulic actuator system which consists of a Quincy-Ortman Cylinder with a MOOG servo-valve. The actuator is
controlled with a Parker Hannifin Corporation analog controller (Model 23-7030). A PCB force sensor (Model 208C04) will
be used to measure the damper force. The dynamic equations of the numerical substructure will be solved by a Speedgoat
performance real-time target machine. The Speedgoat machine will also provide displacement commands to the servo-
hydraulic actuator system. A Data Physics SignalCalc Mobilyzer dynamic signal analyzer will be used to collect numerical
and physical data and compute the signal power spectral densities, frequency response functions, and coherence functions
automatically.
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Chapter 28
Applying Uncertainty Quantification to Structural Systems:
Parameter Reduction for Evaluating Model Complexity

Robert Locke, Shyla Kupis, Christopher M. Gehb, Roland Platz, and Sez Atamturktur

Abstract Different mathematical models can be developed to represent the dynamic behavior of structural systems and
assess properties, such as risk of failure and reliability. Selecting an adequate model requires choosing a model of sufficient
complexity to accurately capture the output responses under various operational conditions. However, as model complexity
increases, the functional relationship between input parameters varies and the number of parameters required to represent
the physical system increases, reducing computational efficiency and increasing modeling difficulty. The process of model
selection is further exacerbated by uncertainty introduced from input parameters, noise in experimental measurements,
numerical solutions, and model form. The purpose of this research is to evaluate the acceptable level of uncertainty that can
be present within numerical models, while reliably capturing the fundamental physics of a subject system. However, before
uncertainty quantification can be performed, a sensitivity analysis study is required to prevent numerical ill-conditioning from
parameters that contribute insignificant variability to the output response features of interest. The main focus of this paper,
therefore, is to employ sensitivity analysis tools on models to remove low sensitivity parameters from the calibration space.
The subject system in this study is a modular spring-damper system integrated into a space truss structure. Six different
cases of increasing complexity are derived from a mathematical model designed from a two-degree of freedom (2DOF)
mass spring-damper that neglects single truss properties, such as geometry and truss member material properties. Model
sensitivity analysis is performed using the Analysis of Variation (ANOVA) and the Coefficient of Determination R2. The
global sensitivity results for the parameters in each 2DOF case are determined from the R2 calculation and compared in
performance to evaluate levels of parameter contribution. Parameters with a weighted R2 value less than .02 account for
less than 2% of the variation in the output responses and are removed from the calibration space. This paper concludes with
an outlook on implementing Bayesian inference methodologies, delayed-acceptance single-component adaptive Metropolis
(DA-SCAM) algorithm and Gaussian Process Models for Simulation Analysis (GPM/SA), to select the most representative
mathematical model and set of input parameters that best characterize the system’s dynamic behavior.

Keywords Sensitivity analysis · Analysis of variation · Uncertainty quantification · Bayesian inference · MCMC

28.1 Introduction

The field of structural dynamics requires mathematical models to simulate the static and dynamic behaviors of engineered
systems under an assortment of loading and boundary conditions. Simulated responses can assess the structural stability
and health of a system, or they can evaluate a system’s performance for untested operational and environmental conditions.
This methodology helps support high consequence decision making that affects public policy, safety and national security
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procedures [1]. However, a fundamental divide exists between physical systems and numerical solutions to mathematical
models from the uncertainty introduced from the design stage, manufacturing processes, and material variability; this
uncertainty is classified as aleatory or irreducible uncertainty [2, 3]. This theoretical chasm is further worsened from
uncertainty introduced by the surrounding environment (experimental uncertainty), inaccurate solutions to differential
equations (numerical uncertainty), the unknown value and variability of parameters (parameter uncertainty), and poor
engineering judgment (bias error) [3]. If this uncertainty is left unaccounted, the accuracy of predicted results can drastically
decrease and lead to ill-informed decision making. Verification and validation (V&V) studies, therefore, must be performed
to evaluate the uncertainty in these predictive models.

This paper will investigate a structural system composed of a coupled modular active spring-damper system and space
truss (German acronym MAFDS). The MAFDS was developed in the collaborative research center SFB 805 “Control of
Uncertainty in Load-Carrying Structures in Mechanical Engineering” at the Technische Universitaet Darmstadt, its general
functionality is comparable to the front landing gear of an aircraft. The main goal of the MAFDS is to study uncertainty in
dynamic stability, vibration behavior, and load distribution, and, eventually, to find ways to control or compensate uncertainty
with different measures (e.g. active vibration control technology). The test rig of the MAFDS, as shown in Fig. 28.1, is
subjected to a variety of loading and boundary conditions to monitor the impact they have on the uncertainty from stability,
strength and vibrational behavior [4]. In this contribution, the MAFDS has been evaluated during the process of model
selection and validation to quantify uncertainty in the dynamic outputs from Fig. 28.2 for different sets of inputs. An idealized
two-degree-of-freedom (2DOF) model, as shown in Fig. 28.4, was implemented to characterize the mechanics and physics
of the spring-damper system only, neglecting single truss properties (e.g. truss geometry and member material properties).
The 2DOF model was then solved for the dynamic outputs in Fig. 28.2 using the average acceleration Newmark-β method
with numerical integration techniques that minimize numerical uncertainty from a conditionally stable step size and, hence,
improved the numerical solutions [5]. Experimental uncertainty was also reduced significantly by correctly calibrating the
sensors prior to performing tests under controlled environmental conditions.

The primary focus of this research is to investigate parameter uncertainty and bias error, commonly referred to as model-
form uncertainty, introduced by assumptions about model complexity [6, 7]. As model complexity increases, the functional
relationship between input parameters (e.g. linear or nonlinear) varies and the number of parameters required to represent
a physical system increases. Increasing model complexity reduces the uncertainty associated with output response features
due to the modeling form, but also increases response uncertainty due to a lack of knowledge of the input parameters [8]. The
inherent difficulty in this problem is identifying what levels of model-form and parameter uncertainty can be included within
a model while still capturing the fundamental physics and providing reliable results. Minimizing model-form and parameter
uncertainty of multiple models requires addressing under what conditions and circumstances a simple model will reproduce
outputs from the MAFDS compared to a more complex model [4]. Thus, the difficulty in predictive modeling is constructing

Fig. 28.1 The structural design in (a) displays components of the MAFDS, and (b) demonstrates how the load path will be distributed after a free
fall drop test
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Fig. 28.2 Dynamic outputs of interest from the MAFDS. Left: The top image shows the average relative displacement zr over time; the middle
image shows the force Fsd measured at the upper force sensor over time; and the bottom image shows the force Fef measured at the elastic foot
over time. Right: Outputs associated with IDs in Left images

a simple mathematical representation that can reduce computational time of more complex models while capturing the
governing physics and mechanics of the system. In this study, there are three unique cases for modeling suspension stiffness
and two unique cases for modeling the damping force for a total of six 2DOF cases (refer to Table 28.5). These cases have
been developed to reproduce the static and dynamic outputs of the MAFDS with varying levels of complexity, similar to [4].
The quantify uncertainty from their simulated outputs, evaluate model-form uncertainty, and, the main goal, to determine
which input parameters need to be calibrated in order to capture the data’s variability for each 2DOF case.

In this paper, a sensitivity analysis study was performed to determine which input variables contributed the least to the
variability of output responses and could be removed of the calibration space, or, in other words, which inputs could be
held constant during inversion of the 2DOF MAFDS mathematical model. A statistical screening method that utilized The
Analysis of Variation (ANOVA) and the Coefficient of DeterminationR2 was employed to evaluate each set of input variables
from the six 2DOF cases for their contribution to the variability in the output response features. The weighted R2 value for
each set of parameters were compared against each other, and inputs with a R2 less than 0.02 were identified as having low
sensitivity. This form of parameter reduction is expected to improve parameter estimation for the six 2DOF cases, reduce
model-form uncertainty, and ameliorate computational efforts.

28.2 Modular Active Spring-Damper System Description

The MAFDS, as seen in Fig. 28.1, is a large-scale suspension strut system, analogous to an aircraft landing gear, that consists
of: an upper space truss structure and added payload; a suspension system with both stiffness and damping components; a
lower space truss structure; guidance links that enable kinematic motion between the lower and upper space trusses; an elastic
foot with both stiffness and damping components; and a user-specified drop height hf. The purpose of the MAFDS is not to
serve as an aircraft landing gear, but rather as an academic devise to study, in a general sense, the uncertainty in a suspension
strut’s dynamic outputs [4]. In this paper, there are a total of eight outputs of interest, these are identified by Fig. 28.2. These
outputs are calculated using data from the displacement and force sensors shown in Fig. 28.3. The displacement sensors
operate under the linear displacement variable transformer (LVDT) principle, while the elastic foot and suspension forces
are recorded using a three axial strain gauge and a single axial strain gauge, respectively.

In this study, the MAFDS is represented numerically by an equivalent 2DOF model, Fig. 28.4 indicates the MAFDS
components and the free body force diagram for this model. In the 2DOF system, the upper and lower space trusses are
idealized as two lumped masses with an upper mass mu and a lower mass ml. The mass values for the 2DOF system
were determined to be 180 kg and 40 kg, respectively. The suspension system is represented by a spring with stiffness ks
and a dash-pot with viscous damping bs. The elastic foot is also represented by a spring with stiffness kef and a dash-pot
with damping bef. Additionally, as indicated in Fig. 28.4, the upper and lower masses have a degree-of-freedom associated
with local translational displacements, zu and zl, respectively. The six 2DOF cases represent the stiffness and damping
forces of the 2DOF mathematical model with varying functional relationships and number of parameters, or, in other words,
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Fig. 28.3 Location of MAFDS force, Fsd and Fef, and relative displacement, zr, sensors

Fig. 28.4 Equivalent 2DOF MAFDS model
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differing levels of complexity. These cases serve the purpose of assessing what degree of model complexity is required to
effectively represent the MAFDS in the 2DOF mathematical model. The system is assumed to be subjected to a free and
full homogeneous field of gravitational acceleration g. When dropped from a height hf, the initial time step t measurement
does not occur until right before the system hits the ground, meaning the initial displacements, zu(t), zl(t), and velocities,
żu(t), żl(t), at time t = 0 are:

zu(0) = zl(0) = 0, żu(0) = żl(0) = √
2ghf. (28.1)

The dynamic outputs of interest, as indicated in Fig. 28.4 are calculated using the equations below.

Relative Displacementszr Suspension ForcesFsd Elastic Foot ForcesFef

zr,max = max |zu − zl| Fsd,max = max |Fks + Fbs | Fef,max = max |Fkef + Fbef |
zr,min = (zu,end − zl,end), t = tend Fsd,min = min |Fks + Fbs |, tmax < t ≤ tend Fef,min = min |Fkef + Fbef |, tmax < t ≤ tend

Fsd,rest = Fks + Fbs, t = tend Fef,rest = Fkef + Fbef, t = tend

(28.2)

The stiffness Fks and damping Fbs forces are calculated by Mallapur and Platz [9]:

Suspension Elastic Foot

Fks = ks(zu − zl) = kszr Fkef = kefzl

Fbs = bs(żu − żl) = bsżr Fbef = befżl

(28.3)

28.3 Stiffness Regression Models

Before creating a variety of different mathematical models to represent the behavior of the entire MAFDS, data from the
static system first had to be obtained to model the stiffness behavior of the suspension system. In this study, a series of static
tests were performed by increasing the added payload from 0 to 200 kg in increments of 10 kg. During each incremental
increase, measurements for the upper force Fsd and relative displacements zr were recorded using the sensors illustrated
in Fig. 28.3. For each test, the recorded force was divided by the average relative displacement to calculate the suspension
system’s stiffness.

Figure 28.5a displays the relation between the measured force Fsd and relative displacements zr. The resulting Fks(zr)

curve indicates that the linear relationship between force and relative displacement transitions when zr is approximately
0.068 m. This bi-linear relationship, also observed in previous studies [4, 9], indicates there are two potential slope values

Fig. 28.5 Experimental stiffness (a) force and (b) coefficient curves of the spring-damper system
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that can describe the stiffness behavior of the system. On the contrary, Fig. 28.5b indicates that the upper suspension stiffness
varies non-linearly with the relative displacement, and, as a result, there are more than two potential values for modeling
the system. It was determined that this nonlinear behavior was not observed in the previous studies [4, 9] as a result of
biased data produced from improper sensor calibration, and because of this, new suspension stiffness models needed to be
developed. Three new independent models of varying complexity were fitted to the stiffness coefficient curve to address the
linearity-nonlinearity discrepancy: (1) the most simple model was a piecewise function composed of two linear polynomials;
(2) the intermediate model was a cubic polynomial; and (3) the most complex model was a piecewise function composed of
two power functions. The following subsections discuss how each method in (1)–(3) was developed.

28.3.1 Piecewise Linear Polynomials

The first and most simple stiffness case was fit to the experimental data in Fig. 28.5b with a piecewise function composed
of two linear polynomials. The function is founded on the assumption that the stiffness curve varies bi-linearly with relative
displacement at the transition point zr,tp when zr ∈ [0 m, 0.068 m] and zr ∈ [0.068 m, 0.082 m]. Each polynomial consisted
of two unknown coefficients, which resulted in a total of four unknown stiffness coefficients. The transition point zr,tp is
the location where the rate of change in the stiffness coefficient curve increases and is used to derive the fitted suspension
stiffness k̂s,a(zr) as a function of relative displacement zr in Eq. (28.4).

k̂s,a(zr) =
{
a0,1 + a1,1zr, zr ≤ 0.068 m

a0,2 + a1,2zr, zr > 0.068 m
(28.4)

To determine the values for the coefficients in Eq. (28.4), the data in Fig. 28.5b was divided at the transition point zr,tp and a
linear regression analysis was performed on each individual set of data. Table 28.1 indicates the calculated mean and standard
deviation for each of the subject parameters.

28.3.2 Cubic Polynomial

For the second stiffness case, the complexity of the regression increased as the model form changed from linear polynomials
to a third order polynomial. Model complexity did not increase from the number of unknown variables that had to be solved,
but rather from the assumption that the stiffness coefficient curve is continuously smooth and nonlinear. Similar to the
piecewise linear polynomials case, the cubic polynomial case had a total of four unknown coefficients from fitting a third
order polynomial to the stiffness coefficient data. The fitted model k̂s, b(zr) is developed in Eq. (28.5).

k̂s, b(zr) = b0 + b1zr + b2z
2
r + b3z

3
r (28.5)

Similar to the piecewise linear polynomials case, the mean and standard deviation values for the cubic polynomials were
calculated by performing a polynomial regression analysis on the experimental data in Fig. 28.5b. Table 28.2 indicates the
mean and standard deviation for each of the cubic polynomial parameters in Eq. (28.5).

Table 28.1 Piecewise first-order
polynomial stiffness coefficients,
k̂s,a(zr)

Polynomial coefficients Mean Standard deviation

a0,1, in kN
m 28 0.50

a1,1, in kN
m2 73 11.56

a0,2, in kN
m −1.58 0.95

a1,2, in kN
m2 516 12.50
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Table 28.2 Cubic polynomial
stiffness coefficients, k̂s,b(zr)

Polynomial coefficients Mean Standard deviation

b0, in kN
m 23 0.52

b1, in kN
m2 601 48

b2, in kN
m3 −1.49e+04 1.25e+03

b3, in kN
m4 1.24e+05 9.45e+03

Table 28.3 Piecewise power
function stiffness coefficients,
k̂s,c(zr)

Polynomial coefficients Mean Standard deviation

c0,1, in kN
m 6.55 0.33

c1,1, in kN
m2 17 0.42

c2,1, unitless 0.10 2.50e−03

c0,2, in kN
m 4.43 0.13

c1,2, in kN
m2 0.19 4.83e−03

c2,2, unitless 1.19 3.70e−03

Fig. 28.6 Three fitted regression model to stiffness coefficient data when zr ≤ zr,tp and zr > zr,tp

28.3.3 Piecewise Power Functions

The third stiffness model is the final and most complex case, consisting of a piecewise function composed of two power
functions and a total of six unknown stiffness coefficients. The fitted model k̂s, c(zr) is developed in Eq. (28.6), and again,
the mean and standard deviations of the parameters were calculated through a regression analysis of the data in Fig. 28.5b.
Table 28.3 indicates the values for each coefficient in Eq. (28.6). During the regression analysis, the power functions had
the lowest residual error of all three stiffness model cases, which strongly implies that the suspension stiffness data behaved
most like a power function.

k̂s, c(zr) =
{
c0,1 + c1,1z

c2,1
r , zr ≤ 0.068 m

c0,2 + c1,2z
c2,2
r , zr > 0.068 m

(28.6)

The results in Fig. 28.6 shows how well the three regression models fit the experimental stiffness coefficient data before
and after the transition point zr,tp = 0.068 m. Initially, the first piecewise power function and the third-order polynomial
underestimate the stiffness coefficient data when zr is approximately less than 0.018 m. The first piecewise linear polynomial,
however, overestimates the stiffness coefficient data when zr < 0.018 m. Once zr ≥ 0.018 m, the third-order polynomial
overestimates the data while the first piecewise linear polynomial underestimates when zr ∈ [0.018 m, 0.048 m]. From
zr ∈ [0.048 m, 0.082 m], all models closely approximate the stiffness data before and after the transition point zr, tp.
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Fig. 28.7 Elastic foot force curve from manufacturer’s data

Table 28.4 Elastic foot stiffness
coefficients, kef(zl)

Polynomial coefficients Mean

d0, in kN
m 148

d1, in kN
m2 −1717

d2, in kN
m3 7.45e+5

28.3.4 Elastic Foot Stiffness

To reduce the number of unknown calibration parameters, and because the manufacturer provided the stiffness force versus
displacement data, the stiffness coefficients for the elastic foot were treated as known parameters [10]. The coefficient values
were calculated by taking the derivative of the force versus displacement curve seen in Fig. 28.7, Eq. (28.7) displays the
resulting equation for kef(zl). Table 28.4 indicates the stiffness coefficient values for kef(zl).

kef (zl) = d0 + d1zl + d2z
2
l (28.7)

28.4 Damping Regression Models

To determine the damping coefficient bs of the suspension system, a series of 35 dynamic tests were performed by varying
the drop height between 0 and 0.1 m and the added payload between 0 and 100 kg. Similar to the static tests, total force
Fsd and relative displacement zr measurements were recorded using the upper suspension force sensor and the displacement
sensors illustrated in Fig. 28.3. For each test, the damping force Fbs was computed by taking the difference between the
total measured force Fsd, and the stiffness force F̂ks fitted to each stiffness case (see Eq. (28.8)). Figure 28.8 provides a
purely figurative example to illustrate how a damping force curve is developed from the combination of 35 experimental
drop tests. As can be seen in Fig. 28.8, a characteristic hysteresis curve is formed, which is assumed to be attributable to
the compressibility of oil and/or cavitation within the suspension [11, 12]. In this study, these effects are ignored, and single
curve models are fitted to the experimental data via regression analysis to “average” out the effect of hysteresis.

b̂s(żr) = F̂bs

żr
= Fsd − F̂ks

żr
(28.8)

Two different cases of varying model complexity were used to model the relationship between the damping force Fbs
versus relative velocity żr , which are a (1) piecewise function with two linear polynomials, F̂bs,d, and (2) cubic polynomial,
F̂bs,e. All together, there are a total of six 2DOF cases that vary in complexity for modeling suspension stiffness and damping
(refer to Table 28.5). The following three subsections further discuss the development of each damping case with respect to
its subject stiffness case.
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Fig. 28.8 An illustrative example showing the development of the experimental damping force curve of the suspension strut system for (a) one
and (b) all thirty-five experimental drop tests

Table 28.5 Cases for suspension stiffness and damping force curves

2-Piecewise damping, F̂bs,d Third order damping, F̂bs,e

2-Piecewise stiffness, F̂ks,a Case 1 Case 2

Third order stiffness, F̂ks,b Case 3 Case 4

Power 2-piecewise stiffness, F̂ks,c Case 5 Case 6

Table 28.6 Piecewise first-order polynomial damping coefficients, b̂s,d(żr)

Polynomial Standard Polynomial Standard Polynomial Standard

coefficients Mean deviation coefficients Mean deviation coefficients Mean deviation

Case 1 Case 3 Case 5

m
(a)
1,1, in kNs

m 4.81 4.50e−02 m
(b)
1,1, in kNs

m 4.92 4.82e−02 m
(c)
1,1, in kNs

m 4.86 4.39e−02

m
(a)
1,2, in kNs

m 1.09 1.88e−02 m
(b)
1,2, in kNs

m 1.08 1.93e−02 m
(c)
1,2, in kNs

m 1.08 1.83e−02

28.4.1 Piecewise Linear Polynomials

The first case for modeling damping involved fitting two linear polynomials in Eq. (28.9a) to the damping force data Fbs at
the transition point żr = 0 m

s . This is the simplest case because it assumes damping does not exhibit hysteretic behavior, and
changes linearly at different rates when żr < 0 m

s and żr ≥ 0 m
s . There are two unknown polynomial coefficients, which

are the slopes of the first-order polynomials in Eq. (28.9a). Because the damping force should be zero at żr = 0 m
s , it was

assumed that the intercepts m(j)0,1,m
(j)

0,2 =0, j = a, b, c for all stiffness cases. In other words, by taking the first derivative of
Fbs,d(żr), the damping coefficients bs,d(żr) of the system in Eq. (28.9b) can be calculated from Eq. (28.9a).

F̂
(j)

bs,d(żr) =
{
m
(j)

0,1 +m(j)1,1żr, żr < 0 m

m
(j)

0,2 +m(j)1,2żr, żr ≥ 0 m
j = a, b, c (28.9a)

b̂
(j)

s,d (żr) =
{
m
(j)

1,1, żr < 0 m
s

m
(j)

1,2, żr ≥ 0 m
s

j = a, b, c (28.9b)

Table 28.6 displays the mean values for m(j)1,1,m
(j)

1,2, j = a, b, c and their standard deviations that were used to construct

b̂s, d(żr).
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Table 28.7 Cubic polynomial damping coefficients, b̂s,e(żr)

Polynomial Standard Polynomial Standard Polynomial Standard

coefficients Mean deviation coefficients Mean deviation coefficients Mean deviation

Case 2 Case 4 Case 6

v
(a)
1,1, in kNs

m 3.05 2.08e−02 v
(b)
1,1, in kNs

m 3.16 2.25e−02 v
(c)
1,1, in kNs

m 3.06 2.07e−02

v
(a)
2,1, in kNs2

m2 −2.62 4.57e−02 v
(b)
2,1, in kNs2

m2 −2.91 4.95e−02 v
(c)
2,1, in kNs2

m2 −2.66 4.54e−02

v
(a)
3,1, in kNs3

m3 0.89 2.60e−02 v
(b)
3,1, in kNs3

m3 1.03 2.81e−02 v
(c)
3,1, in kNs3

m3 0.91 2.58e−02

28.4.2 Cubic Polynomial

For the second damping case, the complexity of the system increased as the model form changed from linear polynomials
to a third order polynomial. A third order polynomial F̂bs, e(żr) was selected for the nonlinear damping coefficient curve
because it was better at capturing the transient behavior with a smoothly varying curve from żr < 0 m

s to żr ≥ 0 m
s . A total

of four unknown polynomial coefficients must be optimized to fit a curve F̂bs, e(żr) to Fbs(żr) in Eq. (28.10a). The intercept

parameter v(j)0,1, j = a, b, c, however, was assumed to be zero based on the assumption that the damping force should be zero

at żr = 0 m
s . Table 28.7 displays the mean values for v(j)1,1, v

(j)

2,1, v
(j)

3,1, j = a, b, c and their standard deviations that were used

to construct b̂s, e(żr).

F̂
(j)

bs,e(żr) = v
(j)

0,1 + v(j)1,1żr + v(j)2,1z
2
r + v(j)3,1żr

3, j = a, b, c (28.10a)

b̂
(j)
s,e (żr) = v

(j)

1,1 + 2v(j)2,1żr + 3v(j)3,1żr
2, j = a, b, c (28.10b)

The six damping models for each test case are the damping force plotted against the relative velocity in Fig. 28.9a–c. These
results display F̂bs(żr) from the two damping cases, F̂ (j)bs,d and F̂ (j)bs,e, j = a, b, c, which were derived from the stiffness cases

F̂ks,a, F̂ks,b and F̂ks,c.

28.4.3 Elastic Foot Damping

Because damping data was not provided by the elastic foot manufacturer, the damping coefficient b̂ef was assumed to be a
constant viscous damping coefficient. The prior value for the damping coefficient b̂ef was approximated to follow a uniform
probability distribution with values ranging from 0 Ns

m to 1000 Ns
m .

28.5 Solving the Equation of Motion

Once the stiffness and damping properties were approximated for both the suspension and elastic foot for each of the
regression cases in Table 28.5, they were indexed into the equation of motion for the 2DOF system,

[M]
⎧⎨
⎩
z̈u

z̈l

⎫⎬
⎭

t+�t

+ [B]
⎧⎨
⎩
żu

żl

⎫⎬
⎭

t+�t

+ [K]
⎧⎨
⎩
zu

zl

⎫⎬
⎭

t+�t

= {F}, (28.11)
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Fig. 28.9 Two damping models, F̂ (j)bs,d and F̂ (j)bs,e, were fit to Fbs, and both models were calculated using the (a) piecewise linear polynomials F̂ks,a

when j = a, (b) cubic polynomial F̂ks,b when j = b, and (c) piecewise power functions F̂ks,c when j = c

where [M], [B], [K], and {F} are the mass matrix, damping matrix, stiffness matrix, and force vector, respectively. The mass,
damping, and stiffness matrices and force vector were composed, such that

M =
⎡
⎣mu 0

0 ml

⎤
⎦ B =

⎡
⎣ b̂s(żr) −b̂s(żr)

−b̂s(żr) b̂s(żr)+ b̂ef

⎤
⎦ K =

⎡
⎣ k̂s(zr) −k̂s(zr)

−k̂s(zr) k̂s(zr)+ kef(zl)

⎤
⎦ {F} =

⎧⎨
⎩
g(mu +mn)

gml

⎫⎬
⎭ , (28.12)

where g represents the gravitational acceleration constant (i.e. 9.81 m
s2 ), and mn represents the additional payload ranging

between 0 and 100 kg added to the upper mass of the 2DOF system. The index (t + �t) in Eq. (28.11) indicates the future
time step values for the acceleration ¨{z}, velocity ˙{z}, and displacement {z} vectors, which are unknown and must be solved
using numerical integration.

In this study, Newmark-β numerical integration was leveraged to solve the 2DOF equation of motion in Eq. (28.11)
and, therefore, the dynamic outputs of interest in Eq. (28.2). Because the initial conditions of the system are known (see
Eq. (28.1)), the future time step value (t + �t) for the acceleration, velocity, and displacement vectors must be calculated.
Equations (28.13)–(28.15) indicate how the future acceleration, velocity, and displacement vector values are calculated as a
function of the present vector values.

¨{z}t+�t = e0{�z} − e1 ˙{z}t − e2 ¨{z}t (28.13)

˙{z}t+�t = ˙{z}t + e3 ¨{z}t + e4 ¨{z}t+�t (28.14)

{z}t+�t = {z}t + {�z} (28.15)
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Subscript t indicates the present vector values for acceleration, velocity, and displacement. The change in displacement from
the present time step t to the future time step (t+�t) is represented by {�z}. The parameters e0−e4 are numerical integration
constants; these values, and others, are determined using the equations below:

e0 = 1

β�t2 e1 = 1

β�t e2 = 1

2β
− 1 e3 = (1 − γ )�t

e4 = γ�t e5 = γ

βt
e6 = γ

β
− 1 e7 = �t

2

(
γ

β
− 2

)
.

(28.16)

The parameters β and γ represent the variation in acceleration during the incremental time step �t , and numerical or artificial
damping introduced by discretization in the time domain, respectively. For this study, the average acceleration Newmark
method was utilized, meaning β = 1

4 and γ = 1
2 . As previously mentioned, the average acceleration method was ideal for

this study because it is conditionally stable for any size time step, and provides accurate results for a “small enough” time
step [5]. In this study the numerical time integration step was �t = 0.0005 s.

Once the equations for the future acceleration, velocity, and displacement vectors were known, they were entered into
Eq. (28.11) and matrix algebra was performed to solve for the unknown change in displacement {�z}. Equation (28.17)
indicates the new equation of motion derived to solve for {�z}.

{�z} = [�]−1{q}t (28.17)

[�] = e0[M] + e5[C] + [K] (28.18)

{q}t = {F} + [M](e1 ˙{z}t + e2 ¨{z}t)+ [C](e6 ˙{z}t + e7 ¨{z}t)− [K]{z}t (28.19)

When the change in displacement {�z} was calculated in Eq. (28.17), it was entered back into Eqs. (28.13)–(28.15) to solve
for the future acceleration, velocity, and displacement vector values. After these values were known, the integration process
started over with the future time step (t + �t) now becoming the present time step t . This process was repeated until the
system entered a steady state at a total simulation time of t = 2 s. During this process, the total suspension force Fsd and
total foot force Fef were calculated for each time step using the equations in Eqs. (28.2)–(28.3).

28.6 Uncertainty Quantification

28.6.1 Sensitivity Analysis

As mentioned, the primary focus of this research project was to investigate uncertainty in the six 2DOF cases that are
mathematical representations of the MAFDS. The purpose of having multiple cases is to identify the minimum level of
model complexity required to capture the governing physics and mechanics of the physical system in the dynamic outputs.
Before solving this problem, however, it was necessary to first perform a sensitivity analysis on each model to identify the
parameters that had the least impact on output response variations. In this study, sensitivity analysis methodologies were
employed to identify parameters that contributed an insignificant variance to the output response features and eliminate
them from the calibration space (i.e. hold at a constant mean value). Low sensitivity variables were eliminated from the
calibration space to prevent numerical ill conditioning and to reduce computational costs associated with statistical inversion
algorithms [3].

Analysis of Variation (ANOVA) and the Coefficient of Determination R2 were utilized as statistical screening
methodologies in this paper to evaluate the sensitivity of each coefficient in Sects. 28.3 and 28.4. The later R2 value provided
a measure for how varying an independent parameter between its L bounds affects the variability in the output response,
which is expressed in Eq. (28.20) as

R2
p,n = 1 −

∑L
i=1
∑LN−1

j=1 (yp,ij − ŷp,i)
2

∑LN

k=1(yp,k − ȳp)2
, (28.20)

where p is a vector from one to eight representing the response features of interest in Fig. 28.2, and n is a vector from
{1, 2, . . . , N} representing the parameters from a subject model. The overall mean value for a given response p is represented
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Fig. 28.10 The R2 results from (a–f) for cases 1–6, respectively, and the colors labeled 1–8 represent the outputs from Fig. 28.2

by ȳp, while the mean response value for a given parameter level i is represented by ŷp,i. The full-factorial level L is used to
evaluate the sensitivity of the response features to a given parameter. In this study, a two-level full-factorial design L = 2 was
performed by sampling a single value at both the 2.5% lower and 97.5% upper limits from each variable’s 95% confidence
bound. The confidence bounds for each regression coefficient were calculated using the standard deviation values provided
in Tables 28.2, 28.3, 28.6, and 28.7. As a result, this design frame has LN numerical evaluations with a scaled output
R2 ∈ [0, 100] provided for each of the eight response features. The value of R2 was then used to evaluate if a parameter
could be kept constant using its mean value or if it needed to vary based on R2. For example, R2 = 0 indicated that a variable
had negligible or no influence on the value of a selected response feature; whereas, a value of R2 = 100 indicated that a
variable contributed all of the variability to the selected response feature. For consistency, the additional payload mn and
drop height hf were held constant for all full-factorial evaluations.

Figure 28.10 indicates the results for all the cases in Table 28.5. The columns presented in Fig. 28.10 indicate the R2

sensitivity of all the response features to each set of parameters. As can be seen, each parameter for each case appears to
have some influence on at least one of the subject outputs. To evaluate which parameters exhibited the least influence, a
weighted total was calculated by taking the average R2 for each parameter. If a parameter was found to have a weighted R2

value of less than 2%, that parameter was considered to be non-influential and thrown out of the calibration space (i.e. held
constant at its mean value). As can be seen in Table 28.8, each of the cases from Table 28.5 has at least one parameter that
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Table 28.8 Average R2 value

Param Case 1 Param Case 2 Param Case 3 Param Case 4 Param Case 5 Param Case 6

a0,1 12.62 a0,1 5.73 b0 2.02 b0 0.63 c0,1 8.13 c0,1 2.77

a1,1 27.03 a1,1 21.88 b1 36.99 b1 23.68 c1,1 25.04 c1,1 10.58

a0,2 1.26 a0,2 1.05 b2 30.41 b2 30.72 c2,1 6.53 c2,1 2.15

a2,1 28.35 a1,2 19.33 b3 16.07 b3 14.95 c0,2 0.23 c0,2 0.29

m
(a)
1,1 6.61 v

(a)
1,1 1.19 m

(b)
1,1 0.41 v

(b)
1,1 0.62 c1,2 22.00 c1,2 23.40

m
(a)
1,2 5.12 v

(a)
2,1 18.14 m

(b)
1,2 1.76 v

(b)
2,1 12.42 c2,2 10.16 c2,2 9.90

bef 19.00 v
(a)
3,1 20.60 bef 12.35 v

(b)
3,1 14.17 m

(c)
1,1 5.26 v

(c)
1,1 1.05

bef 12.07 bef 2.83 m
(c)
1,2 4.58 v

(c)
2,1 17.24

bef 18.05 v
(c)
3,1 20.74

bef 11.88

Table 28.9 Reduced set of input parameters for cases 1–6 of the suspension stiffness and damping coefficients

Number of full set of input parameters Number of reduced set of input parameters

Case 1, F̂ (d)bs,a 7 6

Case 2, F̂ (e)bs,a 8 6

Case 3, F̂ (d)bs,b 7 4

Case 4, F̂ (e)bs,b 8 6

Case 5, F̂ (d)bs,c 9 8

Case 6, F̂ (e)bs,c 10 8

could be removed from the calibration space and held constant. Table 28.9 indicates the size of the reduced parameter space
for each case.

28.6.2 Uncertainty Quantification Frameworks

Moving forward, inverse modeling will be applied to the 2DOF mathematical model for the six 2DOF cases. Inverse modeling
or inversion is the process of using the known dynamic outputs to solve for the set of input variables in Table 28.8 when their
true values are unknown. As part of inverse modeling, two Bayesian frameworks will be presented and deployed in a later
study to evaluate model-form uncertainty for each of the six 2DOF cases using the output responses in Eq. (28.2) and the
reduced set of input variables based on the results from Fig. 28.10 and Table 28.8. The foundations of their methodologies
are derived from Bayes’ theorem,

P(m| d) = P({doutput}|{xinput})P ({xinput})
P ({doutput}) ∝ P({doutput}|{xinput})P ({xinput}), (28.21)

where {xinput} is vector of input variables to the 2DOF mathematical model; {doutput} is the vector of dynamic outputs;
P({xinput}|{doutput}) is the posterior distribution; P({doutput}|{xinput}) is the likelihood function, P({xinput}) is the prior
distribution; and, P({doutput}) is the data distribution, which is held constant for the fixed data set. The posterior distribution
P({xinput}|{doutput}) is the probability that the given set of input variables produced the data set {doutput}, and the likelihood
function L({xinput}|{doutput}) or P({doutput}|{xinput}) is the probability {doutput} produced the given set of input variables
{xinput}. Finally, P({xinput}) is the prior knowledge about the distribution of the input variables, such as its shape, and lower
and upper limits. The prior distribution of the input variables from Table 28.8 influences how the parameters are expected to
vary in the model space, like a uniform or multivariate Gaussian distribution, and if they are treated as dependent (correlated)
or independent (uncorrelated) variables.The first case (1) will be a delayed-acceptance single component adaptive Metropolis
(DA-SCAM) algorithm with ordinary kriging of the likelihood, and the second case (2) will be the Gaussian Process Model
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for Simulation Analysis (GPM/SA) developed at Los Alamos National Laboratories. Both of these statistical frameworks
will predict the probability distribution of how well the N number of model inputs from each 2DOF case will reproduce
the experimental response features, such as relative displacement. Before these frameworks are employed, results from the
sensitivity analysis study in Fig. 28.10 will eliminate low sensitivity variables contributing less than 2% to all output response
features and set them to their mean value using Tables 28.2, 28.3, 28.6, and 28.7.

The first DA-SCAM algorithm is based on a two-stage Metropolis-Hastings (MH) algorithm proposed by Christen and
Fox [13] that predicts variables during statistical inversion. Calculating the 2DOF MAFDS forward model every iteration can
be computationally expensive. The research from [13] by Fox and Christen proposed using an inexpensive approximation
to the forward operator, like the 2DOF MAFDS model, based on an algorithm from [14]. Instead of randomly walking
through the model space, a single component adaptive Metropolis algorithm (SCAM) from [15] was introduced to improve
sampling in high dimensions for all of the variables in cases 1–6. The initial phase of this algorithm runs a single component
adaptive Metropolis algorithm to account for the burn-in time of the Markov chain for each 2DOF case. For the preliminary
acceptance decision stage, the delayed acceptance portion of the DA-SCAM algorithm begins with computing an inexpensive
likelihood estimate to the 2DOF MAFDS model via ordinary kriging or linear interpolation with de-clustering. The DA-
SCAM algorithm is one approach for solving the 2DOF MAFDS model for stiffness and damping cases 1–6.

The Bayesian model calibration approach from [16–18] that implements a multivariate simulator with the goal of reducing
the computational expense and time during statistical inversion similarly to the DA-SCAM algorithm. The regression model,
η(X, θ), X = {hf,mn}, where X is the set of control variables for drop height and added mass, and θ is the calibration
parameters or the input variables at an optimal setting. will capture the random spatial effects from the physics of the data.
It is assumed to behave as a multivariate Gaussian distribution with a mean and variance that must be trained to represent
the observed training and testing data, which essentially allows the GP model to capture the underlying physical processes
of the MAFDS. Since the pdf of the multivariate Gaussian distribution is continuously differentiable, this property of the GP
model provides a smoothly varying and continuous simulator η(X, θ) to represent the physics of the MAFDS. By applying
the GP model for η(X, θ) in a Markov chain Monte Carlo (MCMC) based algorithm, this algorithm develops a statistical
representation of the physically informed system that can be used with any observed data set. This approach will be compared
to the results from DA-SCAM algorithm for the six 2ODF cases.

In short, two Bayesian frameworks have been introduced as the first paper in a series. The main purpose of this paper
is to introduce the MAFDS 2DOF forward model, address model-form uncertainty through six 2DOF cases, and perform
suspension stiffness and damping analysis. In the next study, the GPM/SA and DA-SCAM algorithms will solve the 2DOF
MAFDS inverse problem presented in this paper to evaluate model-form uncertainty.
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Chapter 29
Non-unique Estimates in Material Parameter Identification
of Nonlinear FE Models Governed by Multiaxial Material Models
Using Unscented Kalman Filtering

Mukesh Kumar Ramancha, Ramin Madarshahian, Rodrigo Astroza, and Joel P. Conte

Abstract Bayesian nonlinear finite element (FE) model updating using input and output measurements have emerged
as a powerful technique for structural health monitoring (SHM), and damage diagnosis and prognosis of complex civil
engineering systems. The Bayesian approach to model updating is attractive because it provides a rigorous framework to
account for and quantify modeling and parameter uncertainty. This paper employs the unscented Kalman filter (UKF), an
advanced nonlinear Bayesian filtering method, to update, using noisy input and output measurement data, a nonlinear FE
model governed by a multiaxial material constitutive law. Compared to uniaxial material constitutive models, multiaxial
models are typically characterized by a larger number of material parameters, thus requiring parameter estimation to be
performed in a higher dimensional space. In this work, the UKF is applied to a plane strain FE model of Pine Flat dam (a
concrete gravity dam on King’s River near Fresno, California) to update the time-invariant material parameters of the cap
plasticity model, a three-dimensional non-smooth multi-surface plasticity concrete model, used to represent plain concrete
behavior. This study considers seismic input excitation and utilizes numerically simulated measurement response data.
Estimates of the multi-axial material model parameters (for the single material model used in this study) are non-unique. All
sets of parameter estimates yield very similar and accurate seismic response predictions of both measured and unmeasured
response quantities.

Keywords Non-unique estimates · Bayesian parameter estimation · Unscented Kalman filter · Nonlinear FE model ·
Cap plasticity model · Concrete gravity dams

29.1 Introduction

Finite element (FE) model updating is an important component of structural health monitoring (SHM) of complex civil
engineering systems such as dams, buildings and bridges [1]. The system response measured using sensors mounted on the
real system differs from the response predicted using a mechanics-based FE model, thus raising the need for model updating.
The discrepancy between measured and FE predicted responses are mainly due to noisy input and output measurements,
uncertainty in model parameters and model uncertainties (the selected model class does not contain the real structure) [2]. The
current state-of-the-art in model updating involves updating the system state vector and the vector of unknown parameters
of the FE model using measured input and output data. This is achieved by minimizing the error between the predicted and
measured responses [3]. Once updated, the FE model acts as a digital twin (or cyber model) of the real system and can thus
be used for structural health monitoring, damage diagnosis and prognosis purposes.

The input and output measurements pertaining to structural/civil engineering systems are often noisy and sparse (not
sufficient to completely determine the unknown state and parameter vector of the FE model). In such systems, there often
exists a prior knowledge (or degree of belief), expressed as prior probability distribution, about the unknown parameter
vector. For example, if the parameter of interest is “the tensile strength of concrete at a certain location of the structure”,
then its nominal value can be used as a mean of the prior probability distribution of that parameter. In this regard, the
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Bayesian approach to model updating is attractive because it allows combining prior knowledge with a noisy and incomplete
measurement data set to update the unknown state and parameter vector [4].

In this paper, the Bayesian FE model updating framework is applied to the Pine Flat dam, a concrete gravity dam on the
King’s river near Fresno, California. In this respect, a 2D plane strain nonlinear FE model of the dam is developed in an FE
analysis software framework (OpenSees) with the cap plasticity model, a classical 3D non-smooth multi-surface plasticity
model [5–7], used to represent the behavior of plain concrete. The FE model characterized by a set of realistic material
parameter values is subjected to seismic input excitation to numerically simulate the output response data. The simulated
input and output response data with added Gaussian white noise (to mimic the measurement noise) are then used to update
only the time-invariant material parameters of the multiaxial material model using unscented Kalman filtering (a nonlinear
Bayes filter). This paper investigates the issue of convergence in FE response prediction (to the true response) in the absence
of convergence of the parameter estimates to their true values due to parameter non-identifiability issues. Note that this study
accounts only for the sources of uncertainty related to the input-output measurement noise and the material parameters.
Moreover, the same FE model is used to simulate the response and to perform the model updating, thereby disregarding the
effects of modeling uncertainty.

29.2 FE Model Updating as Parameter-Only Estimation Problem

In general, FE model updating aims at jointly estimating the unknown system state and parameter vector of the nonlinear
FE model using sparse and noisy input-output measurement data [8]. The state vector x for an FE model includes the
displacement and velocity at every degree of freedom of the model. In addition, for nonlinear FE models, the state vector also
contains all history-dependent variables (material history variables) at each integration point of the model [3]. The parameter
vector θ comprises of all unknown FE model parameters such as geometric, damping, constraint and material (time-invariant)
parameters. The input measurement data can consist of an earthquake recorded by a seismograph (or seismometer) in the
vicinity of the structure while the output measurement data are typically provided by accelerometers mounted at various
locations on the structure. Note that the input and output measurement data are noisy and often insufficient to completely
estimate the joint state and parameter vector of the nonlinear FE model.

In this study, the FE model with realistic values of model parameters is assumed to predict realistically the actual response
of the structure. In other words, the selected FE model class has the capability to represent reasonably well the actual
nonlinear behavior of the real structure. With this assumption, the FE model updating problem (joint state and parameter
estimation) boils down to a parameter-only estimation problem. Therefore, the input and output measurement data are used
to estimate the unknown parameter vector θ only as the updated nonlinear FE model is relied upon to provide satisfactory
estimates of the state of the system.

29.3 Bayesian Parameter Estimation

At time tk, let yk ∈ R
ny be the measurement vector and yFEk = hk (u1:k; θ) ∈ R

ny denote the response predicted by the
FE model hk parameterized by vector θ ∈ R

nθ when subjected to input time history u1:k. The error between the measured
response and the FE estimated response at time tk can be written as ek = yk − hk(u1:k; θ). The goal of parameter estimation
is to estimate the parameter vector θ by minimizing the error ek at time tk (k = 0, 1, 2, . . . ) while accounting for the
pertinent sources of uncertainty. The Bayesian parameter estimation framework can be used to solve this mathematical
inverse problem. This framework can be employed to recursively, over the time steps tk (k = 0, 1, 2, . . . ), estimate the
parameter vector θ by using the following discrete-time state-space representation of the system dynamics:

State Equation : θk = θk−1 + wk−1

Measurement Equation : yk = hk (u1:k; θk)+ vk
(29.1)

In this framework, the unknown parameter vector θ at each time step tk is modeled as random vector denoted by �k. The
state equation governing the parameter vector θk ∈ R

nθ is driven by the artificial process noise wk ∈ R
nθ . The measurement

noise vk ∈ R
ny is assumed to be additive to the FE predicted response hk(u1:k; θk) in the measurement equation.
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29.3.1 Unscented Kalman Filtering

The process of recursive Bayesian filtering involves sequentially computing the probability distribution of �k given the
current and previous measurements y1:k = {y1, y2, . . . . , yk}: �k|k ∼ p(θk| y1:k), k = 1, 2, 3, . . . . This involves initializing
the filter with an initial probability distribution of the unknown parameter vector �0|0 ∼ p(θ0) to sequentially compute
p(θk| y1:k) for every k, i.e., recursively update the probability distribution of unknown parameter vector considering new
measurements. At each time k, the process of recursive updating involves computing p(θk| y1:k − 1), referred to as predicted
parameter distribution at time step tk, using p(θk − 1| y1:k − 1) and then updating the predicted distribution to p(θk| y1:k),
referred to as the posterior probability distribution of �k given measurements y1:k or updated parameter distribution at time
step tk, after observing measurement vector yk. Note that the FE model hk is a nonlinear function of θk. Therefore, the
nonlinear Kalman filter, a nonlinear Bayesian filtering technique, is used in this study to compute the probability distribution
of the random vectors �k|k, k = 1, 2, 3, . . . .

The nonlinear Kalman filter is a special type of nonlinear Bayes filter for which:

1. The initial distribution of the unknown parameter vector is modeled as Gaussian. Therefore, initial parameter vector �0|0
is modeled as a Gaussian random vector with estimated mean vector θ̂0|0 and estimated covariance matrix P̂θθ

0|0, i.e.,

�0|0 ∼ N
(̂
θ0|0, P̂θθ

0|0
)

.

2. Both the process noise and measurement noise are modeled as zero-mean Gaussian white noise processes, i.e., wk ∼
N (0,Qk) and vk ∼ N (0,Rk) for all k, where Qk and Rk are the process and measurement noise covariance matrices,
respectively, at time step tk.

3. The process noise, wk, and measurement noise, vk, across all time steps tk (k = 0, 1, 2, . . . ), along with the initial
parameter vector, �0|0, are assumed to be mutually statistically independent.

4. The posterior distribution of the unknown parameter vector � is assumed to be Gaussian. Therefore, �k|k, at any time tk,
is a Gaussian random vector with estimated mean vector θ̂k|k and estimated covariance matrix P̂θθ

k|k .

The unscented Kalman filter (UKF) is a special type of nonlinear Kalman filter which uses a minimal set of
deterministically chosen sample points V(i), also known as sigma-points (SPs), to represent a random vector E ∈ R

nE

(Gaussian or non-Gaussian). The SPs are selected such that they accurately capture the true mean vector and the true
covariance matrix of the random vector E. These SPs when propagated through any nonlinear function, F = g(E), capture
the true mean vector and covariance matrix of the transformed random vector F accurately up to second order (third order if
E follows a Gaussian distribution) [9]. A deterministic sampling technique known as scaled Unscented transformation (SUT)
is used in this paper. Figure 29.1 summarizes the algorithm to recursively estimate the mean vector and the covariance matrix
of the unknown parameter vector of a nonlinear FE model using the UKF.

29.4 Application Example

Parameter estimation or system identification of concrete gravity dams is a subject of interest to many researchers [10]. Such
studies were conducted by Chopra and co-workers using forced vibration test data to estimate the linear elastic material
parameters such as Young’s modulus of concrete [11] but without accounting for uncertainty. In the present work, the
multiaxial material model parameters which govern both the elastic and plastic behavior of the concrete of a dam are
estimated using numerically simulated seismic response data contaminated with added Gaussian white noise (to mimic
real-world data). The uncertainty due to the input and output measurement noise and the unknown model parameters is
accounted for, but the effects of modeling uncertainty are not considered here. To achieve this, an idealized 2D model of Pine
Flat dam is developed in OpenSees and the FE simulated noisy seismic response data are used to recursively estimate the
time-invariant parameters of the cap plasticity material model (used to model the plain concrete of the dam) using the UKF.

Figure 29.2 shows a picture of Pine Flat dam and illustrates the 2D plane strain nonlinear FE model developed. In this
FE model, the dam is assumed to be sitting on a rigid foundation, i.e., the boundary conditions at the bottom of the dam are
assumed fixed. The concrete is assumed to be isotropic and homogeneous (i.e., characterized by the same material model
and same set of material parameter values) over the entire cross-section of the dam. Each finite element consists of a bilinear
quadrilateral element with material behavior at each integration point governed by the cap plasticity model (see Fig. 29.3).
The dynamic interaction between the water reservoir and the dam (i.e., fluid-structure interaction) is not accounted for in this
study; the hydrostatic water pressure distribution along the upstream face of the dam, see Fig. 29.2, is applied statically and
kept constant during the dynamic seismic response analysis.
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Fig. 29.1 Unscented Kalman Filter Algorithm using scaled unscented transformation

Fig. 29.2 (a) Pine Flat Dam, and (b) 2D FE model of the dam

The cap plasticity material model is a sophisticated three-dimensional non-smooth multi-surface plasticity model intended
to capture realistically the multi-dimensional behavior of plain concrete [6, 12], see Fig. 29.3c. The cap plasticity model is
characterized by a set of eleven (11) time-invariant material parameters (i.e., material constants) [5]. Two of these parameters
(shear modulus, G, and bulk modulus, K) are linear elastic parameters, while the other nine parameters (T, X0, R, α, λ,
D, W, β and θ ) characterize the yield surfaces, the flow rule and the hardening law of the cap plasticity model. The three
yield surfaces are: an ideal plasticity failure envelope f1(σ) = 0 defined by α, λ, β and θ ; a strain hardening ellipsoidal cap
f2(σ, κ) = 0 (κ is the hardening parameter acting as a material history variable) defined by X0 and R; and an ideal plasticity
tensile-cutoff surface f3(σ) = 0 defined by T. Parameters D and W characterize the hardening law. Here, σ is the stress tensor
with s and (I1/3)I denoting its deviatoric and volumetric components such that σ = s + (I1/3)I (I1 is the first invariant of the



29 Non-unique Estimates in Material Parameter Identification of Nonlinear. . . 261

Fig. 29.3 FE model hierarchy: (a) Structure level, (b) Element level, and (c) Material level

stress tensor, and I denotes the fourth order identity tensor). In this paper, the eleven time-invariant parameters of the cap
plasticity model define the unknown parameter vector θ as θ = [G, K, X0, D, W, R, λ, θ , β, α, T]T ∈ R

11 × 1.

29.4.1 Simulation

The numerically simulated seismic response data with added Gaussian white noise (to simulate measurement noise) is
assumed to represent the data measured from a real-world dam and is used in developing and validating the Bayesian
filtering framework considered herein. In the simulation (data generation) phase, the 2D FE model of the dam characterized
by a realistic set of material parameter values (obtained through calibrating the cap plasticity model to the Colorado concrete
test data [7] at the material level) is subjected to the first 20 s of the 360◦ horizontal component of the 1994 Northridge
earthquake (M6.7) recorded at Sylmar Hospital station scaled by factor 2. The set of material parameter values used in the
simulation phase are referred to as θtrue from here on and are reported in Eq. (29.2).

θtrue :
[
G = 1700 ksi, K = 2100 ksi, D = 0.0032 ksi−1, W = 0.42, X0 = 16 ksi,

R = 4.43, λ = 1.16 ksi, β = 0.44 ksi−1, θ = 0.11, α = 3.86 ksi, T = −0.3 ksi

]
(29.2)

Then, the absolute acceleration and relative displacement (with respect to the base of the dam) response time histories at
locations A–G (see Fig. 29.3a) are obtained from the dynamic seismic response analysis. These response data are referred
to as true measured responses and are now polluted with Gaussian white noise of root mean square (RMS) 1.0% g and
0.075 in, for the acceleration and displacement responses, respectively, to simulate the measurement noise. Therefore, the
output response vector is defined as y = [aA, aB, . . . aF , dA, dB, . . . dF]T ∈ R

14 × N , where N denotes the number of
time steps (or sample points) in the simulated response histories, ai and di are a vector of the absolute acceleration and
the relative displacement response, respectively, at location i ∈ [A, B, . . . , F] (see Fig. 29.3a). The input (ground motion
record) is also polluted with 1.0%g RMS Gaussian white noise to simulate measurement noise. Note that this input white
noise transforms to a colored noise at the system output. Therefore, the total output noise (transformed input noise together
with the added output measurement noise) is non-white which violates the white noise assumption for vk in Eq. (29.1) and
may result in biased estimation of the model parameters [2]. Therefore, heterogeneous sensors (absolute acceleration and
relative displacement response histories) are considered in this study to enhance the estimation accuracy.
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Note that, in this study, the input earthquake ground motion record is appropriately scaled to drive the dam into adequate
levels of constitutive nonlinearity. A simple FE response sensitivity analysis using the direct differentiation method (DDM), a
local sensitivity analysis, is then performed to ensure that the resulting measured responses are sufficiently sensitive to all the
eleven material parameters governing both linear and non-linear behavior of the dam. Low sensitivity of a measured response
to a certain parameter implies that the parameter cannot be estimated in the context of a parameter estimation problem.

29.4.2 Estimation

The noisy input and output data set, generated in the simulation phase, are used in the estimation phase to recursively estimate
the unknown parameter vector θ using the UKF. The same FE model of the dam, as the one used to simulate the response in
the simulation phase, is employed in the parameter estimation phase.

The probability distribution of the initial value (θ0|0) of the unknown parameter vector θ is assumed as

�0|0 ∼ N
(̂
θ0|0, P̂θθ

0|0
)

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̂0|0
11×1

=
[

1.40 Gtrue, 0.55 Ktrue, 0.85Xtrue0 , 1.20Dtrue, 0.80Wtrue,

0.80Rtrue, 1.15λtrue, 1.05θ true, 0.95βtrue, 0.80αtrue, 0.60 T true

]T

P̂θθ
0|0

11×11

= [
0.25 × diag

(̂
θ0|0

)]2 (29.3)

The mean parameter values θ̂0|0 in Eq. (29.3) are defined in terms of the true parameter values θtrue. However, in a real-
world problem, the data are obtained from the sensors mounted on the real system (not simulated numerically); therefore,
the true parameter values are unknown and do not even exist (since the selected FE model class may not contain the real
structure). The diagonal elements of the covariance matrix of the artificial process noise Q are assumed to be equal to(

10−3 × θ(i)0|0
)2
, i = 1, 2, . . . , 11. The choice of Q governs the convergence and tracking performance of the filter [9]. In

real-world problems, the characteristics of the noise in the measurement data are not known exactly. Therefore, the covariance
matrix of the measurement noise R is set different than that of the (known) added noise to account for the unknown noise
level.

The time histories of the posterior mean estimates of all eleven parameters obtained using the UKF and normalized with
respect to their corresponding true values are shown in Fig. 29.4. The blue line in each plot represents the normalized mean

estimate
(̂
θk|k, k = 1, 2, 3, . . .

)
and the grey shaded region represents the estimation uncertainty

(
P̂θθ
k|k, k = 1, 2, 3, . . .

)
in the corresponding mean estimate, namely the mean ± two standard deviations. The estimates of the two linear-elastic
concrete material parameters, G and K, and of a nonlinear-material parameter, the tensile strength of concrete (T), converge
smoothly to their corresponding true values (see blue lines in Fig. 29.4). In addition, their estimation uncertainty decreases
asymptotically and very fast (see grey shaded areas in Fig. 29.4) as more information about these parameters is assimilated
step by step from the measured input and output response. Even though the sensitivity of the measured responses to all
parameters is high, it is observed in Fig. 29.3 that the estimates of other parameters controlling the nonlinear concrete
behavior, X, R, α, λ, D, W, β and θ , do not converge to their corresponding true values. However, it is important to note that
the measurement responses predicted by the FE model characterized by the parameter estimates obtained at the last step of
the filter (tk = 20s) are in excellent agreement with the true measurement responses.

In this study, the FE predicted seismic response of the dam obtained using the posterior mean estimates of the parameters is
compared to the true response, obtained from the FE model using θ = θtrue, and the relative-root-mean-square error (RRMS)
[3] is used as metric to measure the discrepancy between two time series. The evolution of the RRMS error for each sensor
(aA, aB, . . . aF , dA, dB, . . . dF) during filtering is shown in Fig. 29.5. In this figure, the RRMS error at each time step
tk is computed by comparing the entire time history of FE predicted response obtained using the posterior mean estimates of
the material parameters θ at tk

(̂
θk|k

)
and the entire time history of the true response (obtained using θ = θtrue). As expected,

at the start of filtering (i.e., at k = 0), the error between the predicted response (obtained using θ̂0|0) and the true response
(obtained using θtrue) is very high (with a RRMS error of over 100%). During filtering, the UKF adjusts the estimates of the
material parameters to decrease the error between the predicted response and the true response. It is important to observe that
although the estimates of some material parameters, X, R, α, λ, D, W, β and θ , do not converge to their corresponding
true values, the RRMS errors between the predicted responses and the corresponding true responses decrease progressively
to very small values. This implies that the filter finds different sets of parameter values (non-true) that each yields a very good
match of the time histories of the measured response quantities. In addition, a very good agreement between predicted and
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Fig. 29.4 Time history of normalized posterior estimates of all eleven time-invariant material parameters

Fig. 29.5 Evolution of RRMS error for all sensors during filtering

true response time histories was also observed for non-measured response quantities. To illustrate this, the predicted response
history (using the posterior mean estimate of the material parameters at the last time step, tk = 20s) and the corresponding
true response time history are shown in Fig. 29.6 for the first invariant of the stress tensor (I1) and the Frobenius norm of the
deviatoric stress tensor, respectively, at an integration point close to the heel of the dam (see Fig. 29.3a).
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Fig. 29.6 Time histories of (a) First invariant of the stress tensor, and (b) Frobenius norm of the deviatoric stress tensor at heel of the dam

29.4.3 Validation

For validation purposes, the posterior mean estimates of the material parameters at different time steps (tk = 0 s, 3 s, 10
s, 20 s) are used to predict the seismic response of the dam to an earthquake ground motion (the North-South component
of the 1940 El Centro earthquake recorded at the El Centro station scaled by a factor of two) significantly different from
the one (1994 Northridge earthquake recorded at the Sylmar station) used in the parameter estimation stage of this study.
The predicted response and true response histories of the horizontal displacement at the top of the dam are compared in Fig.
29.7. It is observed (see Fig. 29.7a) that the predicted response using θ̂k|k at tk = 0 s (initial mean estimate of the unknown
parameter vector) is in bad agreement with the true response. The response predicted using θ̂k|k at tk = 3 s matches the
true response in the linear elastic range (in the time window 0–4 s, see Fig. 29.7b) since the estimation of the parameters
governing the linear elastic response (G and K) is converged by tk = 3 s (see Fig. 29.4). However, the match between this
predicted response and the true response is found to degrade when the dam enters its nonlinear range of behavior (after 4 s).
The predicted response histories obtained using θ̂k|k at tk = 10 s and tk = 20 s are found to follow very closely the entire true
response histories (see Fig. 29.7c, d). In fact, it was observed that the response predicted using any set of parameter estimates
after tk = 7 s agrees with the true response equally well and is confirmed by the low RRMS error in Fig. 29.5: Evolution
of RRMS error for all sensors during filtering after tk = 7 s. This confirms that the predicted response converges to the
true response even though the parameter estimates do not converge to their true values, due to parameter non-identifiability
issues.

29.5 Conclusions

This paper studies the application of the unscented Kalman filter, an advanced nonlinear Bayesian filtering technique, to
recursively estimate, using earthquake input and output response data, the time-invariant material parameters of a multiaxial
multi-surface plasticity model characterizing the concrete behavior of a nonlinear FE model of a dam. This study is based on
numerically simulated dam seismic response data and does not consider the effects of modeling error/uncertainty. The input
earthquake ground motion record is appropriately scaled to drive the dam into adequate levels of constitutive nonlinearity
and a local sensitivity analysis is performed to ensure that the resulting output measured responses (using the scaled ground
motion as input) are sufficiently sensitive to all the material parameters. It is observed that, although the estimates of some
parameters do not converge to their corresponding true values, the predicted responses (for both measured and unmeasured
response quantities) match the respective true responses extremely well (i.e., with a low relative root-mean-square error).
In other words, the filter finds different sets of parameter values (non-true) that yield a very good match between the FE
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Fig. 29.7 Predicted versus true response using θ̂k|k at (a) tk = 0 s, (b) tk = 3 s, (c) tk = 10 s, and (d) tk = 20 s

predicted (using the material parameter estimates) and true response time histories. This implies that the set of all eleven
material parameters defining the cap plasticity model is not identifiable. In other words, the mathematical inverse problem
involves a many-to-one function, i.e., many sets of parameter values result in the same FE predicted response. Therefore,
for all practical purposes, any such set of parameter estimates can be used for dam (structural) response prediction, damage
diagnosis and prognosis. In the future, structural and practical identifiability analysis of such multiaxial plasticity models
should be performed to investigate non-identifiability, if any, of parameters before solving a parameter estimation problem.
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Chapter 30
On Key Technologies for Realising Digital Twins for Structural
Dynamics Applications

D. J. Wagg, P. Gardner, R. J. Barthorpe, and K. Worden

Abstract The term digital twin has gained increasing popularity over the last few years. The concept, loosely based
on a virtual model framework that can replicate a particular system for contexts of interest over time, will require the
development and integration of several key technologies in order to be fully realised. This paper, focusing on vibration-
related problems in mechanical systems, discusses these key technologies as the building blocks of a digital twin. The
example of a simulation digital twin that can be used for asset management is then considered. After briefly discussing the
building blocks required, the process of data-augmented modelling is selected for detailed investigation. This concept is one
of the defining characteristics of the digital twin idea, and using a simple numerical example, it is shown how augmenting a
model with data can be used to compensate for the inherent model discrepancy. Finally the implications of this type of data
augmentation for future digital twin technology is discussed.

Keywords Digital twin · Dynamics · Mechanical · Virtualisation · Vibration

30.1 Introduction

The digital twin concept is based on creating a virtual model framework that can replicate a particular system for contexts
of interest over time. For example, a digital twin can be considered as a process, a product or some combination of both.
At the most basic level, a digital twin is defined as a virtual duplicate of an engineering system built from a combination of
models and data. In this sense the digital twin is more than just a computer-based simulation of the system of interest. Most
importantly, the digital twin should have the ability to be used as a predictive tool to inform key engineering decisions, and
it will be argued that this is one of its defining characteristics. A good introduction to the idea of the digital twin, including
the background and history of the topic, is given by Datta [1–3].

There are multiple other examples of using the digital twin concept for engineering applications in the literature. For
example, improving manufacturing processes [4–6], additive manufacturing [7, 8], aerospace engineering [2, 9], offshore
drilling [3], product design [10–13] and nuclear fusion [14]. All these applications can be categorised into broad classes of
tasks that the digital twin is being asked to achieve (with considerable overlap). In the context considered here, this will
specifically be to make predictions for condition or structural health monitoring (SHM) purposes, and to understand the
current state of the physical twin.

The aim of this paper is to show an example of how a digital twin can be built for engineering applications which have
time-dependent (dynamic) behaviour. The key building blocks required to create a simulation digital twin will be discussed. A
key characteristic of a digital twin is the ability to bring together models and data, in order to give more accurate predictions.
To demonstrate one approach to achieving this, the process of data-augmented modelling is considered in detail. To illustrate
the concepts described an engineering based example is presented. A companion paper to this one presents a mathematical
framework for the digital twin paradigm [15].
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30.2 Building a Digital Twin

The primary aim of creating a digital twin is to enable the user to have as much information as possible about the current
status and future behaviour of the physical twin. To set the context for this, a schematic hierarchy of possible capabilities
for a digital twin is shown in Fig. 30.1. Here it can be seen that there are currently five levels of sophistication for a digital
twin, starting at the lowest level of sophistication with Level 1, and increasing to Level 5, with each level incorporating
the functionality of all previous levels. In fact three key requirements of a digital twin, namely supervision, learning and
management are captured by Levels 3 to 5 respectively. To capture the historical time evolution, Levels 1 and 2 are included,
but not considered further.

An key distinguishing feature of a digital twin (and hence the dividing line between Levels 2 and 3 in Fig. 30.1) is that it
can be used as a predictive tool. Furthermore, despite the focus on asset management tasks, all types of digital twin should
evolve over the life-time of the physical twin. As a result they can be used in different contexts, depending on the life stage
of the physical twin, whilst remaining a close one-to-one mapping from physical to digital. For example, if required, a digital
twin can be used in the design phase of the physical twin, as described in Tuegel et al. [2]. Following that, the digital twin
can be used in the manufacture and commissioning stage. Then, the digital twin can be used for asset management through
operation and maintenance of the physical twin right through to end of life and decommissioning. Finally it is noted that the
optimum final embodiment of the digital twin is in the form of a piece of software with highly informative graphical outputs.

30.2.1 Objectives of a Digital Twin

The precise objectives of the digital twin will depend on the context that is required, but a typical simulation-twin should
allow the user to:

• understand the outputs quickly, in real-time if required, with visualisation of results;
• incorporate and update the geometry of the digital twin through integrated computer-aided-design (CAD) and data

processes with a clear measure of fidelity;
• tunnel through the full-system CAD to specific components or sub-assemblies of interest and perform isolated tasks;
• navigate a hierarchical representation of physical behaviour at different length scales;
• interrogate the current state of the structure, whether in real-time or historically and perform data analysis (diagnosis);
• test multiple scenarios to predict likely future outcomes (prognosis and decision support);
• design controllers, perform hardware-in-the-loop simulation and/or set control processes for the physical twin;
• quantify a level of confidence (trust) that the user should ascribe to given outputs;
• generate test strategies if the digital twin needs additional data in order to increase the confidence level of a particular

task.

Note that the ability to predict future outcomes, and quantify the level of confidence in these predictions are particularly
important features. This is now considered by using an example layout for a simulation digital twin.

Fig. 30.1 A capabilities hierarchy for digital twins, where each level incorporates all the previous capabilities of the levels below
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30.2.2 Example Layout of Simulation Digital Twin

A schematic representation of a simulation digital twin during an asset management phase of a wind turbine structure is
shown in Fig. 30.2. Here, data sets are recorded from the physical twin, and control and scheduling commands fed back
as required (enabling supervision and operation). The recorded data (potentially in real-time and from similar or legacy
sources) are used for tasks in combination with the numerical model(s) and physical test-bed(s) (which can include further
online devices, systems or databases) to give the required simulation capability. The interaction of these different elements
is coordinated by a workflow, which also provides the user with visualisation and quantitative outputs.

As noted above, the exact formulation of a digital twin is context dependent, and so the elements shown inside the digital
twin box in Fig. 30.2 are called the building blocks required for this specific context. In this example the building blocks
are data sets; control and scheduling; numerical models; physical test-beds; workflow; visualisation; and quantitative output
data.

The workflow has a central role in providing all the required processes that the digital twin is expected to perform. The
workflow must also have a user interface enabling commands to be received from the users, and the quantitative and visual
outputs to be provided. The workflow will coordinate and sequence the required processes based on the aims and objectives
of the digital twin. The required processes themselves can be constructed from a series of “building blocks” within the
workflow. The example considered here is of a simulation-twin requiring uncertainty Quantification (UQ), and so it shall be
assumed that the required building blocks are:

• physics-based modelling;
• software integration and management;
• verification & validation (V & V);
• uncertainty quantification (UQ);
• quantification of predictive confidence and diagnostics;
• output visualisation (virtual inspection).

In addition to a workflow process related to each building block, it is possible that additional workflow processes can be
created by combining and further augmenting these underlying building blocks. For the current example, of a simulation-
twin, the process related to data-augmented modelling is now considered.

Fig. 30.2 Schematic representation of a simulation digital twin during an assessment management phase, showing the required elements for the
simulation-twin and their interrelations
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30.2.3 Data-Augmented Modelling

Computer models, regardless of the level of fidelity, are typically not able to capture all possible physics exhibited by an
engineering system. As a consequence, a digital twin will augment the outputs from computer models with data to get
closer to providing ultra-realistic predictions. One way to begin to quantify this is to define the model discrepancy. This is
simply the mismatch between the computer model output and the measured process from the physical twin (assuming for
simplicity there is no observational uncertainty). Two points are worthy of note here. First, model discrepancy it usually
quite straightforward to measure (or estimate in the presence of observational uncertainty) even if the physical twin and/or
computer model(s) are very complex. Second, even when the parameters are treated as deterministic and considered to be
“truly” known, there will typically still be a mismatch, and hence some level of model discrepancy.

Therefore, based on the fact that computer modelling alone will be inadequate, models will be augmented by information
from physically recorded data in order to create a digital twin. In fact this augmentation process is one of the core attributes
of a digital twin, and for the purpose of demonstrating the concept it will be assumed that the digital twin has just a single
computer model. Then, following the approach of Kennedy and O’Hagan [16], the computer model in the digital twin will
be represented as

z(x) = y(x)+ e = η(x, θ)+ δ(x)+ e, (30.1)

where z(x) and y(x) are respectively the observational and bias (or model discrepancy)-corrected computer model outputs
based on the given inputs x. The bias-corrected computer model output is equal to the sum of the computer model η(x, θ) and
the model discrepancy δ(x), where θ are parameters of the computer model. The observations are assumed to be uncertain,
and this is represented in the model by the addition of error, e.

The definitions in Eq. (30.1) allow us to build a digital twin in which firstly, data sets are used to quantify the model
discrepancy, δ(x). Then secondly, this information is used to add a correction (i.e. calibrate) the computer model so that
the augmented outputs, z(x), properly reflect the measured outputs from the physical twin. In the next section a numerical
example of this process will be presented.

30.2.4 Numerical Example

The importance of the model discrepancy term is demonstrated for a simple numerical example; a mass, tension wire system,
shown schematically in Fig. 30.3. The objective is to predict the natural frequency of the system f (in Hz), given different
tensions T , where the mass m is unknown. To reflect the concept of model discrepancy it is assumed that the “true” system
has an off-centred mass where, L = 1 m a = 0.2 m (Eq. (30.2) and Fig. 30.3a) and that the “true” mass is 5.45 kg. However,
the model of the system does not include the ability in incorporate an offset, instead modelling the system with a centred
mass, representing a level of missing physics (Eq. (30.3) and Fig. 30.3b), we have

ftrue = 1

2π

(
T (a + b)
mab

) 1
2

(30.2)

fmodel = 1

π

(
T

mL

) 1
2

(30.3)

(a) (b)

Fig. 30.3 Mass, tensioned wire system schematic. Panel (a) shows the model; centred mass, tensioned wire and panel (b) the ‘true’ system;
off-centred mass, tensioned wire (L = 1 m a = 0.2 m)
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Fig. 30.4 Mass tension wire system example. Panel (a) indicates the model discrepancy between the model and “true” system when the “true”
parameter value is used. Panel (b) presents the results of Bayesian calibration

Clearly when the computer model uses the “true” value of m there will be model discrepancy, as shown in Fig. 30.4a,
where the computer model, true system and experimental observation (with e ∼ N (0, 0.012)) are compared when
m = 5.45 kg. If calibration is performed (here Bayesian calibration is utilised) without considering model discrepancy
the estimated parameter value will be biased and there is no guarantee the functional form of the output will be correct.
Figure 30.4b presents the outcome of Bayesian calibration for the model (with a prior M ∼ N (5.45, 0.552)) where the
maximum a posteriori probability (MAP) estimate isM = 5.01 kg. The result also demonstrates the difficulty in replicating
the output correctly as model form errors are apparent (for further examples on the importance of model discrepancy see
[17]).

30.2.5 Implications for Digital Twin Technology

It should be noted that the example presented is highly simplified compared to the intended application for digital
twin technology. However, the intention is to demonstrate the power of data augmentation applied to models containing
unmodelled physics. A more general interpretation of the process is that of grey-box modelling. The grey box model is
formed by combining a white box (the physics-based model) with a black box (a machine learning or statistical process) in
order to capture model discrepancy.

Without quantifying model discrepancy, parameters inferred during an uncertainty quantification process will typically be
biased or potentially “over-confident”, leading to inaccurate predictions [17]. In a digital twin where biased parameters at a
low-level model are then combined with other augmented models, this may lead to considerable errors at a full-system level.
This affect could be compounded in a digital twin which includes multiple models, particularly with modelling issues such
as mesh mismatches, which will result in several sources of model form errors, that if propagated to the next model/level will
compound further. Trivially, bias will occur in calibrated parameters across the complete set of models, if discrepancy isn’t
accounted for. As a result, in contrast to the case of a single validated model, it will be essential for digital twins attempting
to join multiple models to incorporate mechanisms for inferring and compensating for model discrepancy.

Once quantified model discrepancy should be used to inform model improvements. By interrogating where the largest
sources of model discrepancy exist and the functional form of the bias, improvement to the physical models can be made.
This aids building confidence in predictions by ultimately leading to a reduction in uncertainty, where the digital twin will
systematically improve and evolve over the life-cycle of the structure.
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30.3 Conclusions

In this paper the building blocks of a simulation digital twin have been briefly outlined. In order to fuse the building blocks
together a series of workflow processes are required, and the process of data-augmented modelling was considered in more
detail. This concept is a key defining characteristic of the digital twin idea, and it was shown using a simple numerical
example how augmenting a model with data can be used to compensate for the inherent model discrepancy.

There are multiple approaches for inferring model discrepancy, all of which use a data augmentation process, where
model form errors are compensated for. The choice of a digital twin does not prescribe a single strategy for inferring model
discrepancy, however it will not be possible to ignore this form of uncertainty and bias. General approaches may incorporate
grey-box modelling via machine learning components, or fully statistical methods; this is a challenge to the implementation
of a digital twin.
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Chapter 31
Hygro-mechanical Modelling of Wood and Glutin-based Bond
Lines of Wooden Cultural Heritage Objects

Michael Kaliske and Daniel Konopka

Abstract A comprehensive modelling of the transient hygro-mechanical behaviour of complex wooden structures by finite
element method is targeted. New methods and material models for glutin-based bond lines are developed, since bond lines
proved to have significant influence on moisture transport and fracture behaviour. The models are validated and applied to
the structural analysis of wooden music instruments exposed to mechanical and hygric loadings.

Keywords Finite element analysis · Hygro-mechanical coupling · Multi-Fick’ian moisture transport · Transient
structural analysis · Wood-adhesive joint

31.1 Introduction

In many cases, museums with collections of historical music instruments have the conflict between conservation of the
original substance and maintenance of original use. Especially playable stringed keyboard instruments are complex wooden
structures under heavy mechanical loading. Hygric loadings as alternating climate conditions induce additional mechanical
loadings and influence the physical properties enforcing damages to the structure like large deformations and cracks. In
a recent research project, the Institute for Structural Analysis is developing an objective simulation tool for museums,
conservators and instrument makers in order to be able to evaluate wooden structures.

The complexity of the investigated structures and materials need to be modelled in an efficient and reliable manner.
Simplifications and assumptions have to be included. But often, oversimplifications are applied in recent numerical structural
analyses of wooden structures. The time- and moisture-dependent material behaviour of wood as well as the mechanical and
hygric characteristics (e.g. water transport) of bond lines and surface coatings, which have a significant direct or indirect
contribution on the load bearing behaviour of the whole structure, need to be considered properly.

In this paper, a short overview is given on the numerical models utilised in the software for the simulation of the load
bearing behaviour at coupled mechanical and hygric loading.

31.2 Methods

For the comprehensive structural-mechanical investigation of the whole construction of a complex wooden structure, like
wooden music instruments, numerical methods are required. Therefore, the finite element method (FEM) [1] is utilised.

In the following, the developed methods and time- and moisture-dependent material models of wood and bond lines are
briefly introduced. They are used for the investigation of the moisture distribution, the state of deformation and the load
bearing behaviour.

The properties of loaded wood essentially depend on the type and direction of loading, respectively the material directions
radial (r), tangential (t) and longitudinal (l). Compressively loaded wood, especially perpendicular to the grain, leads to
ductile failure with plastic deformations beyond the elastic range. For the numerical simulation, a multi-surface plasticity
model has been developed [2] and expanded to moisture dependency [3]. The elastic behaviour bases on the theory of
orthotropic elasticity [4]. Exposed to tensile or shear loading, wood shows distinctive brittle failure. This property can be
captured by interface-elements and corresponding moisture dependent material models [3, 5].
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Fig. 31.1 Shear test of adhesive-wood joints (glutin-based glue and European beech): (a) experimentally tested specimen [9]; (b) shear stress
(τTL) propagation from initial condition (uL = 0 mm) over peak condition before failure (uL = 0.145 mm) until final condition (uL = 0.5 mm); (c)
effect of three different moisture levels (RH = 35% MC = 6.8%, RH = 65% MC = 12.1%, RH = 95% MC = 23.8%) on the shear stress-relative
displacement relation in the joint [11]

When wooden structures are exposed to water vapour, moisture is absorbed via the surface and transported inside the
material. Different models with different simulation effort and accuracy exist. A realistic model with a two phase, i.e. multi-
FICK’ian moisture transport of vapour and bound water is applied for the investigated sensitive objects [6].

The mechanical and hygric effects are mutually dependent. The processes of swelling and shrinkage (hygro-expansion)
take place in every wooden construction and can cause decisive stresses, when the free hygro-expansion is constrained.
The effect is modelled with differential swelling/shrinkage values (percent swelling/shrinkage per percent moisture change).
Another effect is the change of material properties with changing moisture content, which is as well considered for the
material models. With increasing moisture content, elastic and strength values decrease. Since the material properties of
wood are defined by the microstructure, all input quantities of the models additionally depend on the wood species.

The surface resistance with respect to the emission of water vapour is considered by hygric convective surface elements.
Models for the influence of the buffering effect, based on the boundary layer theory as well as models for shellac varnish
with specific permeabilities are available and applied in the simulations [7, 8]. The contribution of the surface coatings on the
mechanical load bearing behaviour of the structure is rather marginal, due to their small thickness. It might become relevant
for the analysis of grounded (gesso layer) panel paintings with thicker coatings.

Recent investigations deal with the development of multi-FICK’ian hygro-mechanical models for glutin-based bond lines.
A cohesive element model, based on [5] is modified by adding features to simulate the mechanical behaviour of and the
moisture transport in the joint.

The joint, which includes one layer of adhesive and two layers of transition zones, is simplified by using a single layer
of cohesive elements. The material properties of the adhesive and the transition zones are assigned to the cohesive element.
This method decreases computational effort with a lesser number of material and element layers, while still maintain the
reliability of the model. The investigated glues are gelatine-based adhesives, which are often used in wooden cultural
heritage objects found in museums and collections. The hygro-mechanical properties of gelatine-based adhesives base on
experimental investigations in [9, 10]. The element and material formulations are described in [11].

The new bond line model is validated by numerical investigations of two wood species, European beech (Fagus sylvatica
L.) and Norway spruce (Picea abies L.), based on own and further experimental studies available in the literature. The
simulated specimens contain a single bond line of animal adhesive. Hygro-mechanical shear tests (Fig. 31.1) and diffusion
experiments are simulated and compared to the experimental results.

Finally, the methods are applied on the hygro-mechanical structural analysis of a clavichord. The structure is mechanically
loaded by the tensioned strings and the pins that carry the string load into the instrument. With respect to the hygric loading,
an alternating climate with a changing ambient relative humidity (RH) is simulated.

31.3 Results and Discussion

The results of the validations show that under mechanical loading, the numerical simulation of fracture under tension and
shearing are in agreement with the experimental results. Under moisture loading, however, the numerical results are diverse
in comparison to the experimental results. The reason for this difference is primarily due to the incomplete experimental data
which are served as the input parameter in the numerical simulation.
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Fig. 31.2 Clavichord: (a) original instrument and discretised FE-model; (b) two discretised cross-sections of the side wall and simulated moisture
intervals m(x,t), with and without shellac coating at alternating climate (30%/80%RH, period τ = 2 weeks)

Exemplarily, the results of internal wood moisture distributions in two cross sections of a side wall of the clavichord
are shown in Fig. 31.2. Especially in case of unvarnished surfaces the barrier effect of the bond lines is visible. The large
moisture gradient leads to internal hygro-expansional constraints at the adhesive layer and might provoke cracks around the
bond line.

31.4 Conclusion and Outlook

The new bond line model enables to consider the influence of adhesive layers on the fracture behaviour and the resistance
on moisture transport within structural analysis of wooden music instruments. In a first step, the long-term behaviour under
consideration of visco-elastic and mechano-sorptive creep [12, 13] is not considered, but will be investigated in the recent
research. Moreover, further experimental research on hygro-mechanical fracture behaviour and moisture transport in all
members of the investigated structures are required to enhance the accuracy of the simulation results.

Keeping in mind that every model is limited, simulation results can help conservators to evaluate constructions, detect
overloaded structural members in a non-destructive way and with that develop conservation measures and define climate
conditions.
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Chapter 32
Modelling of Sympathetic String Vibrations in the Clavichord
Using a Modal Udwadia-Kalaba Formulation

J.-T. Jiolat, J.-L. Le Carrou, J. Antunes, and C. d’Alessandro

Abstract The vibratory and acoustic modeling of musical instruments is important for several purposes in cultural heritage
preservation, performance studies and musical creation. On the one hand, building a model helps understanding the key
features of an instrument, and then is useful for evaluation, documentation and preservation of historical models. On the
other hand, modeling and simulation can help for improving existing instruments, or even designing new instruments by
extension of the model. The clavichord is an early keyboard instrument equipped with a very simple mechanics. The strings
are excited by small metal wedges or blades (the tangents) placed at the end of the keys. The tangent remains in contact with
the strings for the duration of the note, defining the vibrating length of the string. All strings are coupled at a same bridge.
A string is divided into three sections: a damped section (DS) between the hitch-pin and the tangent; the played section
(PS), excited by the tangents, between the tangent and the bridge; and the resting section (RS) between the bridge and the
tuning pin. Because of the coupling through the bridge of the PS and RS, the RS is set into vibration, acting as sympathetic
strings. The vibratory responses of the RS is modelled using a modal approach based on the Udwadia-Kalaba formulation.
Firstly, a review of the method is presented, accompanied with measurements performed on an instrument (copy of a Hubert
1784 fretted clavichord), which include an experimental modal analysis at the instrument bridge and measurements of string
motions. Then, simulation results are reported and compared with experimental measurements.

Keywords Sympathetic vibration · Clavichord · Udwadia-Kalaba formulation · String coupling · Modal analysis

32.1 Introduction

The sound of string instruments results of the vibratory behavior of coupled mechanical subsystems. These couplings can
be studied by using physical modeling of several kinds. For instance, in the case of the concert harp, the coupling of the
strings and the soundboard has been modeled by means of transfer matrices [5]. Also, it could be modeled by using finite
element methods or experimental modal analysis, in particular using substructure techniques. In the case of the guitar, the
couplings have been modeled by extracting the modal parameters of the soundboard at the bridge locations where the strings
and the structure motions are coupled [1]. In the clavichord, a string is divided into three functional sections: a damped
section (DS) between the hitch-pin and the tangent; the played section (PS), excited by the tangents, between the tangent
and the bridge; and the resting section (RS) between the bridge and the tuning pin (see Fig. 32.1). The RS of the string is
not directly excited by the tangent but is subjected to the motion constraint at the bridge. Then it is set into vibration, acting
as sympathetic strings. Our objective is to predict the vibratory response of the RS of strings, set indirectly into vibration as
a consequence of the excitation of one PS. To proceed accordingly, we first present the Udwadia-Kalaba (U-K) formulation
and its modal extension, in order to compute the vibratory responses of a set of coupled mechanical substructures. Then,
having extracted the necessary experimental modal parameters from our studied clavichord, we present some results from
our numerical simulation.
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32.2 Model U-K

The U-K formulation was originally obtained from the Gauss principle of least action. Then, in the papers by Arabyan
and Wu [2] and Laulusa and Bauchau [4], an original algebraic approach was found for deriving the U-K formulation for
constrained systems from the classical formulation with Lagrange multipliers [1]. Let us consider a mechanical system with
mass matrix M which is subjected to an external force vector Fe(t), which includes all constraint-independent internal and
external forces. This system is also subjected to a set of P holonomic and non-holonomic constraints which depend on the
system displacement x(t) and velocity v(t). Denoting the dynamical solution xu(t) of the unconstrained system and the one
x(t) of the constrained system, which depends on the constraining forces Fc(t), and following [2], one obtains the motion
equations of the constrained system proposed by Udwadia and Kalaba [1, 2]:

ẍ = ẍu + M−1/2B+(b − Aẍu). (32.1)

ẍu = M−1Fe(t) (32.2)

where A is the constraint matrix, b is a known constrained vector, B+ is the Moore-Penrose inversion of matrix B = AM1/2.
The original character of this approach is that it can be used for conservative or dissipative, linear or non-linear systems.
Moreover, the generalized inverse B+ can be rendered numerically robust, even when the constraint matrix is singular. For
a particular excitation Fe(t), we can solve these equations using a suitable time-step integration scheme. Next, we adapt
the U-K formulation in order to deal with continuous flexible systems whose dynamics will be described in terms of modal
coordinates. We assume a set of S vibrating subsystems, each one defined in terms of its unconstrained modal basis and
being coupled through P kinematic constraints. Then, using the usual modal equations that govern the physical motion of
the subsystems, we end up with similar equations of motion, which are described now in terms of modal parameters [1].

q̈ = WM̃−1(−C̃q̇ − K̃q + Fext) (32.3)

where q represent the vector of modal displacements, M̃, K̃, C̃ are respectively the modal mass matrix, modal stiffness
matrix, and modal damping matrix, while W = 1 − M̃−1/2B+A is a convenient global transformation matrix (which is
computed before the time loop), where A is the modal constraint matrix, and Fext are the external modal forces applied on
the system. In order to proceed to the computation of the vibratory response of the constraint system, for a given external
force vector, we need to obtain the modal parameters of each unconstrained subsystem. For the strings, we consider the
classical mode shapes that we find theoretically for a flexible string. We also use a theoretical formulation for the damping
of the string [3]. For the simulation, we decide to take 50 modes for each strings, covering a frequency range up to 24.5 kHz.
Concerning the modal parameters of the instrument soundboard, which were measured at the bridge, these were obtained
through experimental modal identification, using 37 points for the discretization along the bridge. Once we measured the
vibratory frequency response functions (between a reference location and each point of the bridge), we proceeded to the
modal identification using a frequency-domain approach called LSRF (Least-squares rational function estimation method),
implemented in Matlab [6]. This modal analysis was performed within a frequency band going from 40 to 800 Hz, leading
to 12 identified modes.

32.3 Results and Conclusion

To compare our model with experimental data, we used a vibrometer to measure the vibratory velocity of the RS of the C5
string, at two centimeters from the bridge, induced by the tangent excitation of PS of the F3 string (i.e. playing the F3 key),
all the other strings being muffled. The vibratory response is only measured in the vertical polarization of the motion of the
string, since the model developed gives the response in just one polarization of motion. Our first step was to model the F3
PS and the G4 and C5 RS being coupled with the bridge (see Fig. 32.1). We choose these two strings because their RS have
harmonic frequency relations with the harmonics of the PS of the F3 string: therefore a significant vibratory coupling should
be expected. We produced numerically a realistic string excitation such that the response of the played string was as close as
possible to the experimental response. In Fig. 32.2, we compare the spectral response of the C5 RS given by the numerical
simulation with the measured one. In both results, we see the fundamental frequency peak of the F3 string which is at 328 Hz
and all its harmonics, which are the partials transmitted to the C5 RS by means of the coupling with the bridge. Also, we
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Fig. 32.1 Photo from above of the Hubert clavichord, with indications as to the substructures being modeled in our numerical simulations
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Fig. 32.2 Spectral comparison between the experimental signal measured with the vibrometer and the simulation of the C5 string having excited
the F3 string of the Hubert clavichord

note the presence of the fundamental frequency peak of the C5 RS which is at 491 Hz and its harmonics, being present
because of the impulse response given to all substructures by the tangent excitation. Figure 32.2 shows a good agreement
between the numerical simulation and measurement. So with this simplified model, we can take account of much of the
physics being involved despite of the complexity of this instrument. For example, the coupling of the string with the bridge
is quite simplified in the model. However, some spectral components do not have the same spectral amplitudes. In particular,
we see that the partial at 200 Hz is absent in the simulation. We conjecture that this frequency peak comes from a soundboard
mode of the clavichord which was not taken into account in the model. As for the other partials, their lack of spectral energy
is probably due to a lack of precision in the estimation of the damping of the strings, and/or from some inaccuracy of the
simulated string excitation. To further improve the model, we should consider all the 74 sympathetic strings of the Hubert
clavichord in our simulation, which implies much longer computations. However, repeating the same measurement with all
strings being free, the vibratory response of the RS of the C5 string remains quite unchanged. So we may not need to consider
all the strings in the model to obtain a better result. Also, to improve our results, we should proceed to a more precise study
of the damping of the strings and of the excitation features, to have a better estimation of the spectral amplitude of each
partial of the computed response.
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Chapter 33
Modeling and Stochastic Dynamic Analysis of a Piezoelectric
Shunted Rotating Beam

Zhenguo Zhang, Ningyuan Duan, Jiajin Tian, and Hongxing Hua

Abstract This work presents a variational based stochastic electromechanical coupling model for response analysis of
a rotating cantilever beam with piezoelectric patches surface-mounted. The resonant shunt circuits are connected to the
piezoelectric elements to reduce vibrations of some specific resonance frequencies. The deterministic equations of motion
are derived by the generalised form of Hamilton’s principle for electromechanical systems and Rayleigh-Ritz modeling
method based on the orthogonal polynomial bases, while the Penalty method is adopted to connect the beam and piezoelectric
patches. The parameter uncertainties are taken into account in both the structural and electric components. The generalized
polynomial chaos expansion (gPCE) is employed to represent propagation of parameter uncertainties and to estimate the
statistical characteristics of the responses. Various results are presented and compared with the Monte Carlo simulation
(MCS) in order to validate the efficiency of the proposed formulation. Uncertainty analyses are carried out to ascertain the
effects of probabilistic parameters on the responses. The results reveal that both the structure and piezoelectric uncertainty
can affect the vibration behaviors, and consideration of parameter uncertainties is needed in dynamic designs in order to
minimise the vibration response at resonance frequencies.

Keywords Rotating beam · Vibration · Stochastic dynamic · Electromechanical

33.1 Introduction

Rotating beams provide basic components of many common engineering applications, such as turbine blades [1]. In the
realistic applications, the turbine blades are subjected to high dynamic forces which can lead to high cycle fatigue failures.
An effective vibration control of rotating beams is one of the most essential tasks for relevant designs of such systems. The
shunted piezoelectric damping technique is a potentially applicable method to reduce the vibrations of turbine blades.

In the applications of the piezoelectric damping to the turbine blades, most researches have been performed in the non-
rotational frames and the rotational effects have been always neglected [2]. The main differences between the rotating and
non-rotating beams are the additional Coriolis effects and centrifugal force due to the rotational motion, which will result in
the considerable coupling of the vibration modes in different directions. When the aero-elasticity are involved, those effects
may significantly influence the dynamic behaviors of rotating beam systems [3]. However, in most studies of rotating beams,
only the bending and stretching deformations were considered, the Coriolis effects as well as the coupling among the elastic
deformations of various directions, such as bending-stretching and bending-twist have been neglected.

Moreover, in practice input parameters are always submitted to dispersions due to inherent uncertainties involving in
manufacturing process and intrinsic properties of materials [4], so the response may also alter in the uncertain way. Thus,
in order to accurately estimate the system performance, the consideration of effects of input uncertainties into the system
modelling is necessary. However, little research exists regarding the rotating beams with uncertain parameters, and the effects
of uncertainty propagation into uncertain responses remain misunderstood.

Thus, the goal of this work is to (1) to develop multiphysics model of rotating beam with piezoelectric patches surface-
mounted, and (2) allow a prediction of uncertain responses generated by uncertainties in both the structural and electric
components based on a probabilistic framework.
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33.2 Background

To achieve an effective computational procedure, a stochastic variational method is proposed. Firstly, a variational
formulation of a rotating beam with piezoelectric patches is derived from the generalised form of Hamilton’s principle
for electromechanical systems, which involves the structural displacements and electrical voltage of piezoelectric patches.
Then an inductance-resistance-shunt is included in the voltage variable by using the Kirchhoff’s second law. In order to
accurately predict vibration characteristics of the rotating beam, the fully geometrically nonlinear beam theory is employed.
The deterministic equations of motion are derived by Rayleigh-Ritz method based on the orthogonal polynomial bases. The
generalized polynomial chaos expansion (gPCE) [5] is then employed to represent propagation of uncertainties (such as the
resistance and the rotating speed) and to estimate the statistical characteristics of the responses.

33.3 Analysis

Figure 33.1a shows the effect of Coriolis effects on the first in-plane natural frequency against the rotational speed. For
small values of rotational speed, the Coriolis force has little influence on the dynamic characteristics. With the increase
of the rotational speed, the influence becomes large and the Coriolis effects are counterbalance the stiffening effect of the
centrifugal force due to the rotating motion. Figure 33.1b shows the twist displacement of the cantilever rotating beam with
a tip force along the vertically bending direction. Due to the Coriolis effects and nonlinear effects, the in-plane and torsional
motions are coupled with vertically bending and axial vibrations. The generalized-time integration method [6] is adopted to
obtain the transient nonlinear dynamic responses for the rotating beam. It is found that the introducing the series single-mode
shunt damping can significantly reduce the resonant magnitude of the selected resonant frequency. That is mainly due to that
the strain energy in the beam and piezoelectric patch is transformed into the electrical energy of shunt, which will finally
dissipate into heat. Uncertainty analysis is then performed to ascertain the influence of random parameters on responses.
The results reveal that both the structure and piezoelectric uncertainties can affect the dynamic behaviors and hence the
consideration of input uncertainties is necessary in analyses.
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Fig. 33.1 Effects of rotational speed on the dynamic characteristics of the rotating beam
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33.4 Conclusion

A coupled electromechanical model is developed for the a rotating beam with piezoelectric patches surface-mounted. The
passive inductance-resistance-shunt damping is employed to attenuate the vibration of the rotating beam at the selected
resonant frequency. Both the Coriolis effect and nonlinear effects arising form the couplings of bending-stretching, bending-
twist and twist-stretching are taken into account. The effect of input uncertainties into the system modelling is considered.
The efficiency and accuracy of the given model is tested and validated. Novelty of this work includes the combination of the
power of non-intrusive gPCE for prediction of uncertain responses and the flexibility of the generalised form of Hamilton’s
principle for modeling of the complex electromechanical rotating beam.
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Chapter 34
On Digital Twins, Mirrors and Virtualisations

K. Worden, E. J. Cross, P. Gardner, R. J. Barthorpe, and D. J. Wagg

Abstract A powerful new idea in the computational representation of structures is that of the digital twin. The concept of the
digital twin emerged and developed over the last two decades, and has been identified by many industries as a highly-desired
technology. The current situation is that individual companies often have their own definitions of a digital twin, and no clear
consensus has emerged. In particular, there is no current mathematical formulation of a digital twin. A companion paper
to the current one will attempt to present the essential components of the desired formulation. One of those components
is identified as a rigorous representation theory of models, how they are validated, and how validation information can be
transferred between models. The current paper will outline the basic ingredients of such a theory, based on the introduction
of two new concepts: mirrors and virtualisations. The paper is not intended as a passive wish-list; it is intended as a rallying
call. The new theory will require the active participation of researchers across a number of domains including: pure and
applied mathematics, physics, computer science and engineering. The paper outlines the main objects of the theory and gives
examples of the sort of theorems and hypotheses that might be proved in the new framework.

Keywords Digital twins · Mirrors · Virtualisations · Verification and validation (V&V)

34.1 Introduction

The digital twin has emerged in the last two decades as a highly sought-after generalisation of the computational models
routinely used by industry and academia in attempts to understand the behaviour of real structures, systems and processes
and to make predictions in previously unseen circumstances [1–3]. There is currently no real concensus on what the necessary
and sufficient ingredients of a digital twin are, although a sister paper to this one [4] will attempt to bring some order to the
subject. What is inarguable, is that because the digital twin extends the concept of a computational model, such a model must
be a core ingredient. Furthermore the model must be validated; it must be demonstrated to be in correspondence with reality,
at least in the context of immediate engineering importance. Because of the problems which a digital twin will be required
to address, it will also potentially need to extrapolate or generalise to predictions on different structures or the same structure
in different contexts. This paper will argue that, in order to ensure the correct operation of digital twins, a mathematical
framework is needed in order to quantify the likely fidelity of validated models when used to generalise or extrapolate. This
paper will propose that what is needed is a type of algebra of models, which can be used in order to extend current concepts
of verification and validation (V&V).

For the purposes of this paper, the fundamental problem of V&V will be regarded as the need to answer two questions:

1. What is the lowest-cost model that will allow predictions of the required accuracy for the structure of interest in the
context of interest?

2. What is the lowest-cost programme of experimental testing that will validate the model with prescribed confidence?

Note that in answering these questions, one does not need a model that represents the whole structure across its entire
range of possible behaviours; one only needs a model that matches in the context of interest.1 In a machine learning context,

1Some would argue that a true ‘digital twin’ has to match the structure of interest in all contexts. This viewpoint does not make complete sense,
as the physics of a given structure is unlikely to be known at all scales and in all contexts; this means that modelling would not be possible.
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Fig. 34.1 Fraternal (non-identical) twins (publicity still from 1988 film Twins)

the question is essentially of generalisation; having learned from model data, can one say something meaningful about the
structure twinned with the model?

The use of the work ‘twin’ in the context of modelling is actually interesting semantically. Clearly the idea is to suggest
a one-to-one relationship or identity between a structure and a model; however, this is unjustified if one refers to biology.
According to recent statistics,2 roughly one in 65 births results in twins; of these, the vast majority are fraternal—or non-
identical twins (see Fig. 34.1). Furthermore, opposite-sex twin pairs make up roughly 33% of fraternal twins. In fact, identical
twins result from only one in 285 births, and even identical twins have distinct teeth marks and fingerprints. Finally, twins
may look identical, but behave in completely different ways.

In order to establish an over-arching mathematical framework, one will need to be precise and meaningful in one’s
terminology. The use of the term ‘twin’ is inconsistent with this goal for two reasons discussed above; the first is that there
is already widespread and disparate use of the term in the engineering community; the second is that it doesn’t really make
sense as an analogy anyway. The view taken in this paper, will be that a more meaningful term is provided by the word
mirror. A mirror is an instrument that faithfully reflects reality in terms of the aspects of an object that are mirror-facing;
it provides no ‘information’ about aspects that are not mirror-facing. The idea of ‘mirror-facing’ will be formalised in the
following as a context. Finally, if the object moves, the movement will be reflected perfectly, in the mirror—at least as far
as those aspects that are mirror-facing. This paper then, will attempt to motivate a mathematical basis for understanding
mirrors.3 As such, it will have the opportunity to develop independently of current conceptions as to what a ‘digital twin’ is,
but leaving the possibility for engineers to adopt the technology in developing whatever their favoured definition of a digital
twin actually is.4

Enough of levity; it is important to remember that everything here is motivated by the desire to construct meaningful
validated models of structures and systems; if one were to do nothing more than rearrange the terminology and dress the
problem in pretty mathematical trappings, then that would be ultimately empty. This paper is motivated by the belief that
a general mathematical theory of models and their validation will be of value; however, the current paper will not be able
to go beyond development of the basic terminology and theory and some attempts to convince the reader of the ultimate
possibilities. One might argue that general frameworks have already been proposed in terms of the formulation and evaluation
of models, and that there is no need to propose another one until the existing ones have been fairly evaluated. This is a fair

Furthermore, a lot of the motivation for digital twins comes from industry, and it is not conceivable that a profit-driven enterprise would require a
model to function outside the immediate context of interest if that extended functionality came at an increased cost.
2Twin statistics from http://www.twinsuk.co.uk—accessed 30th June 2018.
3The term digital mirror is already in use to define an item of technology; the items being exactly what one might imagine them to be. One could
use the term with complete confidence that the two meanings are unlikely to be confused; however, for simplicity the objects of interest will just
be referred to as ‘mirrors’, although different kinds of mirrors will be introduced.
4As a final observation on biological twins, there is an interesting link between twins and mirrors. Twenty five percent of identical twins are
mirror-image twins; their hair falls in different directions, their fingerprints are mirror images of each other and, if one of them is right-handed, the
other will be left-handed.

http://www.twinsuk.co.uk
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point; however, the authors here would argue that the current proposal is more sympathetic to the needs of the digital twin
concept, because of the explicit attention given to context and environment. There is no intention here to play down any
previous works on general methodologies, the assumption is that the tools already proposed will play important roles. One
example of a general framework for V&V is provided in [5]. That publication provides a methodology for estimating the
uncertainty in system-level predictions, where system-level parameters are estimated in terms of lower-level experiments.
The paper is largely concerned with calibration and uncertainty propagation, and introduces tools for estimating the reliability
of models. Perhaps more importantly for the current discussion, the paper introduces a concept of ‘relevance’ which quantifies
the relationship between the system-level model and lower-level models, and potentially allows a ‘confidence’ measure in
terms of extrapolating from lower levels to the system level. The paper by Nagel and Sudret [6], proposes a Bayesian unified
framework which provides a ‘. . . toolkit for statistical model building. It forms some kind of superstructure that embeds a
variety of stochastic inverse problems as special cases’. (There are of course, many other papers one could cite; however,
there is no intention here to provide a survey.) Another fair criticism of the current paper is that the new term ‘mirror’ is
not needed either, it refers simply to a validated model; however, it is introduced here because it refers to a specific class of
models and because, as discussed above, there is a need to distinguish the idea from the more overarching digital twin.

The layout of the paper is as follows. The next section will make the main series of definitions of the important concepts
in the framework: contexts, mirrors etc. The section will also define the concepts of environments and virtualisations which
are central to the idea of a digital twin. Section 34.3 will discuss a number of example problems in which the idea of a
mirror would be fruitful, assuming that the appropriate mathematical underpinnings of the theory can be provided. The paper
finishes with some discussion and conclusions.

34.2 Mirrors

34.2.1 Basic Definitions

To start with the simplest situation, the discussion will initially consider only physics-based models; data-based and hybrid
models5 will be brought in later.

One must begin with a structure (or system) S; this is the physical object of interest. It will be interpreted as having
an objective reality independent of its surroundings i.e. it is possible to think of it in a vacuum remote from any other
matter. Temporal changes in the confirmation and behaviour of the structure will be summarised in a state vector s(t) =
{s1(t), . . . sNS (t)}, which consists of a set of NS instantaneous measurements (at time t) which completely characterise its
state.

Now, the environment of the structure could be considered as all physical reality exterior to it; however, that is too general.
Considering the fact that the environment could also be characterised by a state vector; the environment E of S will be defined
as the set of environmental variables that can actually affect S i.e. a change in a variable will evoke a change in the state s(t).
With this in mind, one will have an environmental state vector e(t) = {e1(t), . . . eNE (t)}.

Recognising that one will generally only wish to model some aspects of the behaviour of S, a context C for S will be
defined as a set of variables C = {eCi ∈ E, sCj ∈ s; i, j}. The subset {eCi } will be referred to as the environmental context,

and the subset {sCj } as the response or predictive context.

Now, a schedule WC for the context C will be a set of time series {eCW (ti); i = 1, . . . Nt ; ti ∈ [0, T ]}. (In principle, the
set {ti} could be continuous or discrete.) The response rCW (t), to a schedule WC is defined as the measurement sequence
resulting from testing the structure and imposing the schedule as inputs. As the process will generally be dynamic, it will be
denoted by the functional,

rCW (t) = S[eCW (t) ≡ WC] (34.1)

One can now define the test T CW associated with the schedule WC in the context C, as the set T CW = {eCW , rCW }. In general,
tests will be carried out for multiple purposes; for the moment, it will be observed that data are captured for training of
models and for testing of models. For this reason, it is useful to divide data accordingly. Supposing that tests have been

5Hybrid models are also referred to in the literature as grey-box or data-augmented models. In the statistics literature, the addition of a data-based
model in order to correct a physics-based model is commonly called model bias correction or model discrepancy correction; the most influential
framework is probably that proposed in [7].
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carried out multiple times, one can define the training schedule (resp. testing schedule) as the set of schedules associated
with acquiring data for training (resp. testing); the set being denoted by Dtr (resp. Dt ). (Of course, these sets are specific to
a context and a schedule, but the notation will become too unwieldy if this is made explicit.)

Now, a model of S for a context C will be defined as a mathematical functionMC which attempts to predict the behaviour
of S for any schedule specific to the context C. Depending on the environmental and predictive variables, this may be a
multi-scale and/or multi-physics model, and it will almost always be implemented in computer code in some appropriate
language.6 A simulation for a context C under a schedule WC is then defined as,

mCW(t) = MC[eCW (t) ≡ WC] (34.2)

Now, it is clear that one can obtain the simulation mCi (t) corresponding to a test T Ci = {eCi , rCi } (with i now a schedule
label), so that one can attempt to assess the fidelity of the model by comparing its predictions to reality.

A metric on a given context C will be defined here simply as a function dC(x, y) such that dC(x, y) ≥ 0, with the zero
only if x = y. (This is only one of the conditions for a true mathematical metric, but it will do here for now.)

Finally, the main definitions of the paper are possible:

Definition 2.1 (ε-Mirror) A model MC
ε for a given context C is an ε-mirror if and only if

dC(mC(t), rC(t) ≤ ε (34.3)

for all scheduled tests in Dt .

Definition 2.2 (Fitness-for-Purpose) A model MC
ε is fit-for-purpose in a given context C iff it is an ε-mirror for C and

ε ≤ εT where εT is a critical threshold based on engineering judgement and/or context requirements.

34.2.2 Hybrid Models and Uncertainty

So far, only pure physics-based models have been considered; models sometimes termed white-box models. At the other end
of the modelling spectrum are black-box models which are formed by taking a model basis with a universal approximation
property, and tuning the parameters of the model to a set of observed data; examples of such models are artificial neural
networks or support vector machines [8, 9]. One can also make use of hybrid or grey-box models, which combine some
element specified by physics with an element of learning from data.

Suppose that it is desirable or necessary to form or update a model based on data. The model will be established using
data acquired from a training schedule Dtr and tested on data from a test schedule Dt .7 The resulting model MhC(Dtr) is
then an ε-mirror if it satisfies the conditions of Definition 2.1 on Dt .

There is no distinction here on how MhC(Dtr) is obtained. One might start with a white-box model and learn the
parameters via system identification, or one might adopt a grey-box structure where a physics-based model is augmented
with a nonparametric machine learner [10].

As the use of machine learning has been raised, it would seem to be an appropriate point to discuss uncertainty. This is
because many modern machine learning algorithms are probabilistic and accommodate uncertainty directly. For example,
Bayesian approaches to parameter estimation can characterise the entire density functions of parameters, rather than simply
producing point estimates [11, 12]. Furthermore, nonparametric learners like Gaussian process regression can produce a
natural confidence interval on predictions [13].

So, under the circumstances, one might allow the possibility that the modelMhC(Dtr) is a function that returns a random
variable, i.e. the simulation responses are stochastic processes,

MC
t = MhC[eCW (t)](Dtr ) (34.4)

6In fact, it may be the case that different models are needed in order to completely cover the context of interest. For notational simplicity, it is
assumed here that MC represents the set of relevant models, returning the values required by the overall context C; there is no overall loss of
generality at this point.
7Following best practice in machine learning, different data sets are potentially required in order to fit parameters and establish hyperparameters
[8]. In order to keep the notation simpler here and avoid confusion about the term ‘validation’, it is assumed that the modeller simply partitions
Dtr appropriately.
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The simulation might provide the whole density function for MC
t , or just low-order moments. In the first case, suppose

that the model returns the predictive mean of the process mC(t) = E[MC
t ] (where E is an expectation), then, mC(t) can be

used to determine whether MhC(Dtr) is an ε-mirror in the mean.
Alternatively, suppose that the model returns enough information to determine confidence intervals on the prediction. In

this case, then if rC(t) ∈ ([mC(t) − ασCr (t)], [mC(t) + ασCr (t)]) with probability determined by α, and for all schedules
in Dt , then one can define MhC(Dtr) as an α-mirror. Note that a given stochastic model can be both an ε-mirror and an
α-mirror.

It would be possible to define various metrics for comparison in the uncertain case; the one based on low-order moments
described above is related to the reliability metric discussed in [5], which is in turn related to a formulation of validation as
an outlier analysis problem, as discussed in [14]. If the comparison were made on the whole predictive or parameter density
functions, one might define a distance measure defined in terms of Kullback-Liebler divergence, for example, and this would
lead to the definition of a KL-mirror etc.

34.2.3 The Environment and Virtualisation

Raising the question of uncertainty means that one must reconsider the status of the environment.
Recall that the environment is comprised of all those variables which can have a causal influence on S, the structure of

interest. In general, this set will be composed of variables that can be controlled (e.g. forces applied to the structure) and
variables that can not (or can not be controlled with any precision). In an operational modal analysis context for example,
even the forces may not be controllable. It is therefore necessary to separate the variables (in context) accordingly into eCu
and eCc (uncontrolled and controlled, respectively). This distinction is very important if one wishes to use the model to make
true predictions i.e. to determine what the structure might do at some point in the future, under a given (controlled) forcing,
but when the eCu are unknown.

In this situation, what is needed is a generative model MEC
u , that will make some best estimate of eCu (t),

ê
C
u = MEC

u (t) (34.5)

This model itself will need to be validated appropriately, as far as possible. Given training data for the eCu , it might be
possible to establish a nonparametric black-box model that is an ε- or α-mirror, or one could substitute mean values for the
variables and treat variations as uncertainty that needs to be propagated. In any case, one can now make predictions (in the
given context),

pC(t) = M[eCc (t), êCu = MEC
u (t)] (34.6)

It is now possible to make another important definition: a virtualisation for a given context C is a pair,

V C = (MhC
ε1
,MEC

ε2
) (34.7)

where the two models concerned are ε-mirrors with the fidelities specified. The importance of the virtualisation is that it can
be used to examine what-if scenarios for the structure of interest in previously unseen circumstances. Of course, one can
make a similar definition with α-mirrors. Finally, it is important to note that a virtualisation, is itself a model, and as such
can also be an ε- or α-mirror; this will prove to be of interest later, when the use of virtualisations for design is discussed.

The problem of the ‘environment’ is discussed in [6]; however, there it appears to have been condensed into the
estimation/calibration of a further parameter set.

34.2.4 The Turing Mirror

One can also think of a semi-philosophical means of defining a mirror; this parallels the Turing test in the field of artificial
intelligence, which is a test of the ability of a machine to perform in a manner indistinguishable from a human [15].

The test will involve two protagonists: an interrogator and an oracle. The two people can only interact in a very limited
way, the interrogator is allowed to present questions to the oracle about the structure of interest via a remote interface. The
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oracle is equipped with a model of the structure of interest, which is the candidate mirror and also has facilities for carrying
out physical testing on the structure. The interrogator is allowed to present the oracle with a set of schedules eCW from some
given context, and the oracle is required to return either the test responses of the structure rCW , or simulations from the model
mCW .8 If the interrogator is unable to decide which option the oracle has taken in any case, then the model in question is a
Turing-mirror or T-mirror.

While this may seem like nothing more than an amusing digression, there is the possibility that the work over the years in
terms of implementing the Turing test could be used in order to derive rigorous methods of testing mirrors.

This is enough of basic definitions for now; in the next section, the potential uses of the technology are explored via a
number of example cases.

34.3 Examples

34.3.1 A Simple Example: Context Change

One of the simpler problems one can imagine in the context of mirrors, is how to analyse the performance of a given
model, when asked to make predictions outside its original context C. This problem is interesting because it can be made to
include the case of extrapolation, although that will not be discussed in great detail here. Extrapolation for a data-based or
hybrid model occurs, when the model MhC(Dtr) is used to make predictions outside the range of data encompassed by the
training set Dtr . Even if the model MhC(Dtr) is an ε-mirror on schedules in the training set, this may not hold if the model
extrapolates. One simple way to make the problem of context change encompass the problem of extrapolation, would be to
extend the definition of context C, so that it not only specifies the variables under investigation, but also the ranges of those
variables encountered in training data.

This example will consider a different problem, where a modelMC
ε is required to make predictions on different variables

to its context C. Suppose the model is modified in order to predict in a context C′, with the new model denoted M ′C′
.

Furthermore, assume that there are no training or test data available for the context C′. The interesting question is:

Given that a model MC is an ε-mirror for the context C; following modification to M ′C′
, is the new model an ε′-mirror for C′ for any ε′,

and if so, what is the minimum value of ε′ for which this holds? (Note that, with the extended definition of context discussed above, this is
the extrapolation problem if M = M ′).

Consider a simple example. Suppose one has constructed a Finite Element (FE) model MC , of a cantilever beam (as in
Fig. 34.2). The model has been validated on test data measured as the displacement responses yi(t) at points i = 1, 3, 5,
so that the predictive context is {y1, y3, y5}. Suppose that MC has been established as an ε-mirror on the context C. Now,
further suppose that one wishes to make predictions of the response at points 2, 3 and 4, so the predictive context for C′ is

Fig. 34.2 Simple FE model for
illustrating context change

56 4 3 2 1

8Clearly, there are subtleties. For example, if the necessary test programme in a given case were to take 10 days, while running the model would
only take 10 h, the oracle would only return the results after the greater time.
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{y2, y4, y6}. In this situation, there are two simple ways to establish M ′:

• The trivial approach is to simply change the output deck of MC , so that the model outputs the required variables (if it
didn’t before).

• One can add a numerical interpolation step to the process in order to estimate the variables in C′ from those in C.

In the first case, it should be a fairly straightforward matter to establish that the model is an ε′-mirror based on the existing
theory of error estimates for FE models [16, 17], and one would expect that ε′ ≈ ε. In the second case, one should be able
to use error estimates from the numerical analysis of interpolation, combined with some reasonable assumptions about the
continuity of the beam profile. One could also bound the errors based on much coarser assumptions e.g. one could estimate
how far y4 could get from y3 and y5 before the induced stresses in the beam exceeded the yield stress. Although the latter
approach would likely work, it would probably yield an ε′ � ε, so conservative that one would find the value impractical in
terms of model trust. In an exercise like this, the objective would be to find the lowest bound on ε′ possible.

A more interesting problem arises in the case of the extended definition of context. Suppose C covered points 1, 3 and
5 at low levels of excitation, and C′ covered points 2, 4 and 6 at a higher level of excitation; there would be two different
answers to this question, depending on whether MC was linear or nonlinear.

34.3.2 An Example Concerning Assembly

This example concerns a very important objective of any programme of ‘virtualisation’. Suppose one could validate a
model of a full-scale assembled structure using only test data acquired from substructure testing. The cost savings in the
design/production cycle would be potentially very high. It is important that the ‘algebra’ of models being developed covers
this situation, and this will entail an understanding of how to model joints and joining processes.

For the sake of simplicity, consider the case of two substructures (but note that this is not a real restriction, as the
substructure assembly can be considered recursively). The substructures, denoted S1 and S2, will be assumed to have
individual contexts C1 and C2 respectively. It will be assumed that the substructures will be joined using some technology,
which can itself be modelled; in the general case, one assumes that the joint may itself be a substructure SJ . With a small
abuse of mathematical notation, the assembled structure SA will be denoted by,

SA = S1
⊕
SJ
S2 (34.8)

For simplicity, it will be assumed that all the responses from the substructures can still be measured; in this case one can
denote the new context by CA = C1 ⊕ C2. (In this case, the ⊕ is largely just a direct sum with some reordering of symbols
and deletion of copies of symbols that appear in the environment context twice.) In general, one would have to allow for the
fact that the joining process might eliminate a possible measurement point on the substructure, and thus change the context
by removing a variable.

It is assumed that each substructure Si has a model MC
i associated with it, and that the models have been validated using

test data from the individual structures, and it has been established thatMC
i is an εi-mirror in each case. Furthermore, assume

that the joint/joining process has a model MJ , and that this model may or may not have been validated. The model of the
assembled structure is denoted,

MA = M1
⊕
MJ
M2 (34.9)

The key question is now,

Given the assumptions stated, is it possible to show that there exists any εA such that MA is an εA-mirror for SA in the context CA, in the
absence of any test data for the assembly SA? If so, then what is the smallest εA for which this is true?

Of course, one could also attempt to accommodate uncertainty, and frame the question in terms of α-mirrors. This is
the most difficult question so far, but it also offers the highest returns, if it can be answered. The problem also depends on
whether a validated model for MJ is available. For example, consider the case when the joint is a weld, and that coupon
tests have established some of the material properties of the weld material (perhaps with a high degree of uncertainty). Even
allowing for the fact that the issue is not just about material properties, one would expect εA to be a monotonically-increasing
function of the weld parameter uncertainties. One might also model the weld as a hybrid model, given that the physics of the
joint are not perfectly understood. From first principles, one might approach the problem from the same viewpoint as before;
one could make reasonable/trusted assumptions about the real joint and the model joint, and try to determine how far they
can diverge.
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Fig. 34.3 Ecastré beam as sum of two cantilevers

In a general theory, one would hope to prove theorems that were general, perhaps across particular classes of joint models;
consider for example the reasonable conjecture:

Suppose that given models MCi
i (i = 1, 2) are εi -mirrors for structures Si in contexts Ci , then MA = MC1

1
⊕
MJ
MC2

2 is an ε-mirror for the

structure S1
⊕
SJ
S2 in the context C1 ⊕ C2 with ε ≥ max(ε1, ε2) (where δ = ε − max(ε1, ε2) ≥ 0 is defined as the joining deficit).

Finally, it is important to mention another use of the idea of joining models. One might simply wish to represent a
complex structure in terms of substructures, even if there is no physical joining process involved (a situation that arises in
hybrid testing [18]). A simple example will suffice. Suppose one wished to model a fixed-fixed beam, and to validate the
model. However, suppose that one had no validation data for the beam, but one did possess a validated model for a cantilever
beam; in fact the cantilever model had been established as an ε-mirror. Clearly, one can regard the fixed-fixed beam as two
cantilevers joined perfectly at their tips. One could now attempt to answer the question above, as to whether joining two
copies of the cantilever beam is an εA-mirror for the fixed-fixed beam. In this case, one might assume that the joint model
MJ is perfect; in practice a perfect joint when joining two FE models would be accomplished by seamlessly merging the
meshes at the joint so that material continuity is as good at the joint as anywhere else. Perfect or idealised joints of this nature
will be denoted by the symbol ⊕

P .
Even in the case of a perfect joint, one should be aware of a caveat, and this relates to context. Suppose that the cantilever

model was linear and had been validated on test data showing small or moderate deflections of the cantilever tip. When the
cantilevers are joined, and the cantilever tips become the mid-point of the beam, the response of the real beam will become
nonlinear for much smaller values of mid-point displacement than the values measured at the cantilever tip (Fig. 34.3).

Many of the ideas discussed here are covered by the multilevel framework discussed in [5], and it may be that the ideas
of reliability and relevance applied in that framework can be adopted in order to prove hypotheses like those pointed out in
the current paper.

34.3.3 An Example Concerning Structural Health Monitoring

One of the major problems with data-based Structural Health Monitoring (SHM) is that data from damaged structures is
scarce. Although damage detection is possible even if one only have data from the normal condition of the structure of
interest, using unsupervised learning [19]; higher-level diagnostics like locating damage or assessing its type or severity can
only be accomplished if one has data from all the damage states of interest. It is inconceivable that one might carry out a test
programme that systematically involved damaging numbers of high-value structures, so one has to turn towards modelling
as a means of providing the necessary data.

The context responses in an SHM problem are usually going to be features for machine learning. Given the importance
of the specific context, new notation will be introduced; the SHM context will be denoted F .
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Fig. 34.4 Insertion of a local damage model into an undamaged structure model

Assume two ingredients: the first is a validated model of the undamaged structure of interest Su, denoted byMuF . Further
assume a set of data {DuT r ,DuT } which has been used to validate the data. Further assume thatMuF is an εu-mirror, according
to some appropriate metric.

The second ingredient is a local damage model Md , which has been validated in a context Cl using data from coupon
tests. The model may have been updated on the basis of test data and may well be a hybrid (grey-box) model. Assume that
under the circumstances MdCl is an εd -mirror for the context Cl according to some appropriate metric. Finally, we assume
that there are no validation data for the damaged structure Sd .

The problem is essentially a joining problem; however, it is of a specific type and merits a little more new notation. An
insertion model MI is defined as an algorithm or prescription for embedding the model MdCL in MuF , in such a way that
the result is a model for Sd . This differs from the previous joint definitions in that there is no new physics associated with
the join.MI could be a very simple process i.e. if the two component models are FE models, insertion will only really mean
harmonising the two meshes along the boundary of the join. One can think of the process as a type of surgery9 i.e. one cuts
out a healthy region of MuF and replaces in with MdCl , as in Fig. 34.4, and then harmonises the meshes at the boundary.10

Clearly this means that there will need to be compatibility conditions which guarantee some degree of smoothness/continuity
across the boundary.11

There is another compatibility condition required here by the theory; the models Mu andMd must exchange information
in such a way that the dynamics evolves appropriately i.e. the response context of Cl must overlap with the environmental
context of F i.e. Cl∩F 
= φ. In fact, in a general assembly modelMC1 ⊕

MI
MC2 , it will usually be necessary that C1 ∩C2 
= φ

and C1 ∩ C2 
= φ (where φ represents the empty set here).
As a fairly simple example, consider the problem of modelling a crack in a pressure vessel (Fig. 34.4). The undamaged

model MuF represents the vessel; the damage model MdCl , represents a through crack in a section of plate. By joining
the two models, one can embed a crack of arbitrary location, length or orientation in the vessel (the process might require
some care near the boundaries). A subtlety here is that the crack model might have been validated for flat specimens, in
which case a modification might be needed for compatibility with the curved surface of the vessel. A more important issue is
the following. The behaviour of the structure will usually be modelled using macroscopic physics, while the detailed crack
model will require microscopic physics; this means that the features have to be chosen very carefully so that the behaviour
of the crack is communicated over the boundary effectively.

9Surgery is a mathematical technique for building complicated topological spaces from simpler ones [20]. It may be that the technique can be
applied in the context of joining models.
10This is similar to the situation in real-time hybrid testing where coordinate sets are defined in each domain, which need to be synchronised in
order to form the join. Errors in the synchronisation process then give a measure of how imperfect the joint is.
11Note that this is rather perverse version of surgery, where undamaged tissue is replaced by damaged.
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Given all of the above, the mathematical question of interest is:

Given all of the above, is MC1 ⊕
MI
MC2 an ε-mirror for Sd , and if so, what is the smallest value of ε for which this is true?

This will usually be a probabilistic problem where the metrics are quantities like probability of misclassification or
probability of detection, in which case it will probably be more appropriate to frame the problem in terms of α-mirrors.

34.3.4 Multi-Fidelity Models: Refinement and Relaxation

This section considers the situation when one has multiple models of the same structure S, in a fixed context C. Suppose
that a model MC is an ε-mirror for S. A modified model M ′C = Ref[MC] is a refinement of MC , if it is an ε′-mirror with
ε′ < ε. Similarly, A modified model M ′C = Rel[MC] is a relaxation of MC , if it is an ε′-mirror with ε′ > ε. For finite
element models, these operations can be carried out by refining or coarsening the mesh. In this simplest of situations, one
might estimate the values of ε′ using analytical error estimates.

This idea is one that can be used in order to answer Question (1) in the introduction. In principle one starts with a model
MC which is provably fit-for-purpose and then relaxes the model until one arrives at M ′C with ε′ = εT .

Now, it is possible to consider what sort of propositions one might wish to prove in the theory i.e. consider the hypothesis:

Assume a model MA = MC1

1
⊕
MJ
MC2

2 is an εA-twin for a joined structure S1 ⊕
SJ
S2. Further suppose that MC1

1 is an ε1-mirror. Now, if

M ′A = M ′C1

1
⊕
MJ
MC2

2 is obtained by refining the first submodel, then M ′A is an ε′A-mirror, with ε′A < εA.

Another strategy for answering Question (1) would then be to relax submodels in an assembly until the result is marginally
fit-for-purpose.

34.3.5 An Example Concerning Design

This is one of the potential applications of digital twin technology that would produce large cost savings for industry.
Suppose one has a existing structure S and a context C; further suppose that a virtualisation V C = (MhC

ε1
,MEC

ε2
) exists

which has been validated and shown to be an ε-mirror for SC .
Imagine now that one wished to design a new structure S′ and thus wanted to know how it would behave (either in the

old context C, or in a new context C′. In a situation where one wished to avoid building a prototype for S′, there is no direct
means of validating a new visualisation V ′C = (M ′hC,M ′EC), even though this would be ideal for conducting ‘what-if’
games for the new structure. The question of immediate interest is:

Given a virtualisation V C = (MhC
ε1
,MEC

ε2
), which is an ε-mirror for SC ; is V ′C = (M ′hC

ε′1
,M ′EC

ε′2
) a mirror for S′C for any values of ε′1 and

ε′2, and if so, what are the smallest possible values for which this true?

34.4 Discussion and Conclusions

This paper proposes some ingredients for a mathematical theory which would allow a general framework for measuring
the fidelity of computational models and for understanding the consequences of combining validated models or using them
outside their original context. Such a theory would be invaluable in the design and construction of digital twins, because
one of the main uses of digital twins will be to make predictions in circumstances where their core models have not been
explicitly validated, and it will be critical to obtain estimates of how much models can be trusted when they are used to
extrapolate or generalise; i.e. when they are used to make inferences about different structures or in different contexts.

As discussed in the introduction, there are already attempts to define a unifying framework for model calibration and
validation. In fact, these papers already go into greater detail on specific technical points than the current paper e.g. they go
as far as to propose a Bayesian framework and define appropriate priors, likelihoods etc. [5, 6]. The techniques proposed
can very much form part of the armoury of the more general methodology proposed here. The current paper deliberately
draws back from some details because the authors believe that important discussions are still to be had. For example, it is
not agreed within the broader V&V and uncertainty quantification communities that probability theory is the correct way to
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approach model bias, or epistemic uncertainty in general. For this reason, some of the definitions given here are independent
of whatever uncertainty theory ultimately dominates in a given context. As long as an uncertainty theory singles out some
most highly indicated model from the population of possible choices, one can base the analysis on the ε-mirror for that single
model. For example, in a Bayesian framework, one can apply the idea to the Maximum a Posteriori (MAP) model. Of course,
any theorems in the general theory will have to be proved independently for each uncertainty specification.

In many ways, the paper presents a wish list; however, it does so in the real hope that the wishes can come true—that
the required theory can come together. The paper presents only the sketchiest arguments as to how the various ‘theorems’
might be proved, or how the relevant estimates could be made; this is because the current authors do not have anything
like the complete range of abilities/skills that will be needed in order to assemble the theory. In many ways the paper is
intended as a rallying call to the academic community; the skills needed will come from a range of disciplines: pure and
applied mathematics, physics, computer science (particularly machine learning) and engineering. The authors here believe
that a framework can come together which is more than the sum of its parts and that can be of lasting value in the pursuit of
effective computer models, and particularly in the construction of digital twins.

Acknowledgement The authors would like to acknowledge the support of the UK Engineering and Physical Sciences Research Council (EPSRC)
through grant reference numbers EP/J016942/1 and EP/K003836/2.
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Chapter 35
Applications of Reduced Order and Surrogate Modeling
in Structural Dynamics

Alexandros A. Taflanidis, Jize Zhang, and Dimitris Patsialis

Abstract Despite recent advances in computational science, the adoption of computationally intensive, high-fidelity
simulation models remains a challenge for many structural dynamics applications, especially those within the domain
of uncertainty quantification (UQ), requiring repeated calls to a computationally intensive simulator. Reduced order and
surrogate models offer an attractive alternative to circumvent this challenge. This contribution investigates how these
modeling principles can be leveraged for different UQ applications. For both types of approximate models, the development
of the corresponding (reduced order or surrogate) model is directly informed through simulations of the high-fidelity
numerical model. The tuning of the approximate model aims to improve accuracy for the specific UQ task at hand, rather
than targeting a globally accurate approximation. The specific applications discussed correspond to seismic loss estimation
(for reduced order modeling) and posterior sampling for Bayesian inference (for surrogate modeling).

Keywords Reduced order modeling · Surrogate modeling · Structural dynamics · Uncertainty quantification · Seismic
loss estimation · Adaptive tuning · Posterior density approximation · Bayesian inference

35.1 Introduction

Reduced order and surrogate models have emerged as powerful computational statistics tools for supporting UQ tasks in
different structural dynamics applications [1–6]. Their objective is to replace the original, high-fidelity simulation model
with an approximate one that has significantly smaller computational burden (therefore accelerating relevant computations),
but can still provide adequate accuracy for the UQ task of interest. This accuracy can be enhanced through tuning, perhaps
with adaptive characteristics, tailored to that specific task, instead of trying to accomplish a globally accurate approximation.

Reduced order models simplify the physics-based description of the original system through some form of condensation
of the initial degrees of freedom and equations of motion [7], sometimes coupled with an approximation of the nonlinear
response characteristics [3]. In the latter case, which is the one emphasized in this contribution, the calibration of the nonlinear
properties of the reduced order model can be performed using data from the original, high-fidelity simulation model, with
ultimate objective that the reduced order approximate model matches closely the high-fidelity one [1] for excitation (and
therefore operating conditions) similar to the ones entailed in the UQ task of interest. On the other hand, surrogate models
(also frequently referenced as metamodels) offer an entirely data-driven mathematical approximation of the input/output
relationships of the high-fidelity model. The characteristics of the metamodel are tuned using explicitly simulation data from
the original model [8]. Among the different classes of surrogate models, Gaussian Process Metamodels (GPMs) have gained
wide popularity for UQ applications. This can be attributed (1) to the fact that they correspond to a statistical emulator,
providing also a local estimate for the metamodel prediction error, a feature that fits well within the broader UQ setting,
and (2) to their computational efficiency in simultaneously providing, through vectorized algebraic manipulations, estimates
for multiple input samples, a feature well aligned with stochastic simulation algorithms used frequently in UQ applications.
For accurate UQ estimation, the selection of the database informing the metamodel development, what is formally known as
Design of Experiments (DoE) [8], plays always a critical role.

This contribution reviews some recent advances for the implementation of reduced order and surrogate modeling in
structural dynamics applications. Discussion for each type of approximation model are couched within a specific application;
seismic loss estimation for reduced order modeling and posterior sampling in Bayesian inference for surrogate modeling.
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Fig. 35.1 (a) Calibration results (time-history comparisons for one of the six excitations used in the calibration) for a reduced order model
matching a high-fidelity FEM model (developed in OpenSees modeling environment) for a three-story benchmark structure and (b) comparison of
seismic risk estimates from the reduced order and high-fidelity models considering an ensemble of 1000 ground motions

35.2 Reduced Order Modeling in Seismic Loss Assessment

Modern seismic loss estimation practices (and more broadly seismic risk assessment) require simulation of structural
behavior for different levels of earthquake shaking though time-history analysis. Under moderate and strong excitations this
behavior is strongly inelastic/hysteretic and evaluating it through high-fidelity Finite Element Models (FEMs) introduces
a significant computational burden. Reduced order modeling has been suggested to alleviate this burden [1, 3]. The
reduced order model in this setting is developed using data form the original high-fidelity model. Modal analysis (or static
condensation) is first leveraged to condense the initial equations of motion to a specific set of degrees of freedom per story.
For planar structural models, which is the focus here, this can be established by using one degree of freedom per story. The
restoring forces prescribed by the linear stiffness matrix are then substituted with hysteretic ones, equivalently viewed as
nonlinear springs connecting different degrees of freedom. Hysteretic models that can be considered for this task include
piecewise-linear models, Massing models [1] or Bouc-Wen models [3]. The characteristics of these models that describe the
initial (linear) response are selected directly based on the modal analysis results to match exactly the condensed stiffness
matrix. Characteristics that describe the nonlinear response can be subsequently calibrated [3] by comparing the reduced
order model time-history to the time-history of the original FEM for a range of different excitations. This is posed as a model
parameter identification problem with data coming from the high-fidelity FEM simulations. The excitations used in this
calibration should be carefully chosen to facilitate identification of all relevant model parameters, something accommodated
when nonlinearities associated with all degrees of freedom can be observed in the available data. Earlier work in this field
used simplified excitations for this purpose [3] while recent work by the first and third authors has demonstrated how this can
be more efficiently accomplished using seismic excitations with different intensity levels and frequency content. As shown
in Fig. 35.1, the calibrated model can be then used to efficiently provide loss assessment estimates.

35.3 Surrogate Modeling for Posterior Sampling

The importance of Bayesian inference in the analysis of engineering systems has dramatically increased over the past few
decades. For applications with complex posterior Probability Density functions (PDFs) this inference needs to rely on
stochastic sampling techniques for approximating this PDF. To alleviate the computational burden for applications entailing
complex numerical models, the implementation of surrogate modeling techniques for approximating the likelihood function,
involved in the posterior PDF definition, has been investigated [9]. The strategy by Angelikopoulos et al. [9] relied on use
of the metamodel for local approximation and only for samples for which its predicted metamodel accuracy was sufficiently
high (exact numerical model was used for samples that did not satisfy this requirement). The first two authors recently
developed [10] the adaptive Kriging stochastic sampling and density approximation algorithm (AK-SSD) for approximating
target densities using metamodeling techniques. AK-SSD utilizes solely metamodel predictions for all calculations within the
stochastic sampling task and establishes high computational efficiency by leveraging a global metamodel that is iteratively
developed to provide higher accuracy in domains of interest. AK-SSD assumes a sequential sampling setting, using a series
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Fig. 35.2 Results for implementation of AK-SSD algorithm for a modal synthesis problem; (a) discrepancy between different distributions across
iterations and (b) approximation of log evidence

of intermediate densities to approximate gradually the target density. At each AK-SSD iteration, the current metamodel is
used to approximate the intermediate and target densities and if convergence is not achieved knowledge gained from current
iteration is leveraged, primarily through an adaptive design of experiments, to update the metamodel formulation and proceed
to the next iteration. The Hellinger distance between the approximated densities in consecutive iterations is used to quantify
convergence, whereas new experiments are obtained using a hybrid DoE strategy that balances goals of improvement of
global metamodel accuracy and addition of experiments in critical regions for the posterior sampling. AK-SSD was initially
formulated for rare event estimation but can be seamlessly extended to Bayesian posterior sampling as shown in Fig. 35.2 for
a modal synthesis problem of an eight story structure, updating stiffness characteristics through eigenfrequency and modal
information for the first three modes of vibration. Part (a) of Fig. 35.2 shows the Hellinger distance discrepancy between the
approximated target densities in consecutive iterations or between the approximated and actual target density, while part (b)
shows the iteration-wise metamodel-based evidence estimate versus the reference one. As the iteration number k increases
discrepancy reaches a plateau, facilitating an efficient convergence to the target density, something further validated by the
agreement of the estimated evidence.
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