
Chapter 2
Introduction to Multi-objective
Optimization and Decision-Making
Analysis

2.1 Introduction

In today’s world, overcoming complicated real-world engineering challenges with
big data has become an indispensable need for specialists and researchers in order to
make better use of their time and resources. These engineering challenges are mostly
addressed as a large-scale, non-convex optimization problem having a nonlinear,
mixed-integer nature. As a result, the application of the optimization is significantly
increased for solving real-world engineering challenges and achieving an optimal
solution. Initially, optimization problems were organized as simple single-objective
mathematical models in which one given objective function needed to be minimized
or maximized. More precisely, a single-objective optimization problem consists of
an individual objective function subject to some specified constraints in such a way
that solving this particular optimization problem leads to finding an individual
optimal solution. That is to say that the main goal of minimization or maximization
of a single-objective optimization problem is to obtain the minimum or maximum
value of the corresponding objective function, provided that this value does not
violate any specified constraints—an optimal solution.

Conversely, in multi-objective optimization problems (MOOPs), a set of objec-
tive functions that are often conflicting should be simultaneously minimized or
maximized. In this circumstance, solving a MOOP results in finding a set of different
compromise solutions called a Pareto-optimal solution set or non-dominated optimal
solution set. With that in mind, only one solution should be chosen from the Pareto-
optimal solution set. Unlike a single-objective optimization problem, solving a
MOOP is, therefore, composed of three important and completely different steps:
(1) formation of a mathematical model; (2) optimization; and (3) decision-making
[1]. In the optimization step, the Pareto-optimal solution set is determined; however,
in the decision-making step, the most satisfactory solution is chosen from the Pareto-
optimal solution set based on the preferences of the decision maker.
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To illustrate, consider a two-objective optimization problem for operation of a
typical engineering system. Simultaneous minimization of operational costs and
maximization of system reliability are two conflicting objectives considered in this
optimization problem. This means that minimization of operational costs brings
about a reduction in system reliability, and maximization of system reliability
gives rise to an increase in operational costs. As a consequence, there is no individual
solution that can simultaneously optimize these two conflicting objectives. In this
condition, a Pareto-optimal solution set is achieved by solving this two-objective
optimization problem. As an instance, take into account two solutions in the Pareto-
optimal solution set. If the first solution, in terms of the operational costs, can
overcome the second solution—given that the first solution has a lower cost than
the second one—this solution with respect to system reliability cannot overcome the
second solution—given that the first solution definitely has less reliability than the
second one. Put another way, compared to the second solution, the first solution is a
non-dominated response/output in terms of operational costs—the lowest opera-
tional costs—when it is a dominated response/output with respect to system reli-
ability—the most unfavorable performance. After determination of the Pareto-
optimal solution set, or non-dominated solution set, the decision maker, by consid-
ering its preferences, should choose the final solution so that a trade-off is made up
between operational costs and system performance. Given the preferences of the
decision maker, it is also possible that system performance would have a higher
degree of significance compared to the operational costs and vice versa. Hence, the
preferences of the decision maker dramatically affect the choice of the final solution
from the Pareto-optimal solution set.

In the MOOPs, the complexities and difficulties of the solution process are
dramatically increased in view of introducing and integrating new concepts com-
pared to single-objective optimization problems. In addition, multi-objective opti-
mization algorithms (MOOAs) are needed to solve the MOOPs. In related literature,
many MOOAs have been developed to deal with a wide range of multi-objective
optimization problems. However, each MOOA is appropriate for solving only a
specific range of MOOPs. The choice of a well-suited MOOA depends first on a full
understanding of the MOOP and its characteristics and second on having full
knowledge of the architecture and features of the different MOOAs. Due to the
different concepts of the optimization in the MOOPs and the diversity and variety of
MOOAs, it is thoroughly indispensable to clarify the fundamental concepts of multi-
objective optimization and provide a suitable classification for the MOOAs. In this
chapter, then, the authors will concentrate on the following targets.

• Target 1: Providing a brief introduction associated with fundamental concepts of
optimization in the MOOPs.

• Target 2: Presenting a brief overview pertaining to the classification of the
MOOAs.

In this chapter, the authors do not present all of the details related to optimization
concepts in the MOOPs, as it is assumed that the reader is already familiar with the
elementary concepts of optimization. The main focus, then, will be on the funda-
mental concepts of optimization in the MOOPs, particularly the fundamental
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concepts discussed in the MOOPs that will be widely employed later in this book.
Where appropriate, though, the reader will be referred to related studies that cover
more details of concepts of optimization in the MOOPs.

The remainder of this chapter is arranged as follows: First, the necessity of using
the multi-objective optimization process is reviewed in Sect. 2.2. Then, the funda-
mental concepts of optimization in the MOOPs are described in Sect. 2.3. In Sect.
2.4, the classification of the MOOAs is addressed from different points of view. A
fuzzy satisfying method is also expounded upon in Sect. 2.5. Finally, the chapter
ends with a brief summary and some concluding remarks in Sect. 2.6.

2.2 Necessity of Using Multi-objective Optimization

In a very general sense, many objective functions can be employed in real-world
engineering problems. These objective functions usually have a conflicting,
noncommensurable, and correlated nature with each other. In this way, the integra-
tion of objective functions of a MOOP, with the aim of forming a single-objective
optimization problem and then employing the developed single-objective solvers, is
a common misconception.

The conversion of a MOOP into a single-objective optimization problem causes
the decision-making step to be transferred before the optimization step. It is,
therefore, very difficult to specify the preferences of the decision maker before the
optimization, and it may not match the obtained solution of the single-objective
optimization problem with a determined solution of the MOOP that is selected from
the Pareto-optimal solution set by the decision maker. Nevertheless, the implemen-
tation of the optimization process in a MOOP, without turning it into a single-
objective problem, can force the decision-making step to be placed after the optimi-
zation step or these two steps to be transformed into a hybrid process. This structure
helps the decision maker to better understand the MOOP and be able to make a more
knowledgeable choice through the Pareto-optimal solution set with regard to its
preferences. Achieving the Pareto-optimal solution set also enables the decision
maker to perform a thorough analysis regarding the interdependencies among
decision-making variables, objective functions, and constraints. Acquiring knowl-
edge about these interactions can be employed in order to reconsider the mathemat-
ical model of the optimization problem with the aim of increasing the chances of
determining a solution that not only aligns better with reality but also better matches
the preferences of the decision maker. As a result, if an optimization problem
consists of multiple conflicting, noncommensurable, and correlated objective func-
tions, the most reasonable strategy is to take advantage of the multi-objective
optimization process in order to solve the problem.
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2.3 Fundamental Concepts of Optimization in the MOOPs

The concepts of optimization in the MOOPs are different from those in single-
objective problems. In this section, the fundamental concepts of optimization in the
MOOPs are briefly addressed. As previously mentioned, the optimization process in
the MOOPs includes three general steps: (1) formation of a mathematical model;
(2) optimization; and, (3) decision-making [1]. The mathematical description of an
optimization problem—the formulation of an optimization problem by defining its
decision-making variables, objective functions, and constraints—is considered as
the first step in the optimization process. The next two steps in the optimization
process depend on the structure and characteristics of the problem. Many studies
carried out in the context of the optimization process implicitly suppose that the
MOOP has been correctly determined. In practice, however, this assumption is not
necessarily valid on all occasions. As a consequence, providing a rigorous mathe-
matical model by considering the structure and characteristics of a MOOP can be
practically helpful in the optimization process.

2.3.1 Mathematical Description of a MOOP

Technically speaking, a MOOP consists of multiple objective functions in such a
way that these functions ordinarily have a conflicting, noncommensurable, and
correlated nature with each other. The mathematical description of a MOOP can
generally be expressed according to Eqs. (2.1) and (2.2) [1]:

Minimize
x2X

F xð Þ ¼ f 1 xð Þ; . . . ; f a xð Þ; . . . ; f A xð Þ½ �; 8 A � 2f g, 8 a 2 ΨA
� �

subject to :
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g, 8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g,8 e 2 ΨE

� �
ð2:1Þ

x ¼ x1; . . . ; xv; . . . ; xNDV½ �; 8 v 2 ΨNDV;ΨNDV¼ΨNCDVþNDDV; x 2 X
� �

,

8 xmin
v � xv � xmax

v

��v 2 ΨNCDV
� �

,
8 xv 2 xv 1ð Þ; . . . ; xv wð Þ; . . . ; xv Wvð Þf gjv 2 ΨNDDV
� �

ð2:2Þ

The explanations associated with the parameters and variables from Eqs. (2.1)
and (2.2) were previously defined in Sect. 1.2.1 of Chap. 1. The vector of objective
functions addresses the illustration of the vector of decision-making variables and
contains the values of the objective functions, as given by Eq. (2.3):
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z ¼ F xð Þ ¼ f 1 xð Þ; . . . ; f a xð Þ; . . . ; f A xð Þ½ �; 8 A � 2f g,8 a 2 ΨA
� � ð2:3Þ

The explanations related to the parameters and variables from Eq. (2.3) were
formerly described in Sect. 1.2.1 of Chap. 1.

2.3.2 Concepts Associated with Efficiency, Efficient frontier,
and Dominance

In this section, efficiency, efficient frontier, and dominance, as main concepts of the
MOOP, are thoroughly demonstrated.

Efficiency definition: A vector of decision-making variables x�� 2 X is efficient in
the MOOP, given in Eqs. (2.1) and (2.2), if there is no another vector of decision-
making variables like x� 2 X so that F(x�)� F(x��) with at least one fa(x

�)< fa(x
��).

Otherwise, the vector of decision-making variables x�� 2 X is inefficient [2].
Efficient frontier definition: The complete set of efficient vectors of decision-

making variables is known as the efficient frontier [2].
Dominance definition: A vector of objective functions F(x��) 2 Z is

non-dominated in the MOOP, given in Eqs. (2.1) and (2.2), if there is no another
vector of objective functions like F(x�) 2 Z in such a way that F(x�)� F(x��) with at
least one fa(x

�) < fa(x
��). Otherwise, the vector of objective functions F(x��) 2 Z is

dominated or has failed [2]. Put another way, the vector of objective functions
F(x�) 2 Z overcomes the vector of objective functions F(x��) 2 Z in the MOOP, if
the following two conditions are simultaneously met:

Condition 1: All components or elements of the vector of objective functions F
(x�) 2 Z are not worse than the corresponding components or elements of the vector
of objective functions F(x��) 2 Z, as given by Eq. (2.4):

F x�ð Þ � F x��ð Þ _ f a x�ð Þ � f a x��ð Þ;for all objective functions, 8 a 2 ΨA
� � ð2:4Þ

Note that the symbol “_” in Eq. (2.4) represents the operator “or.”
Condition 2: At least one of the components or elements of the vector of objective

functions F(x�) 2 Z is better than components or elements of the vector of objective
functions F(x��) 2 Z, as presented by Eq. (2.5):

f k x�ð Þ < f k x��ð Þ;for at least one objective function, 8 k 2 ΨA
� � ð2:5Þ

Given what has been described, it can be found that the definitions of efficiency
and dominance are analogous for all practical aims. However, it must be noted that
the concepts associated with efficiency and dominance usually refer to the vector of
decision-making variables in a feasible decision-making space and vector of objec-
tive functions in a feasible objective space, respectively.
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2.3.3 Concepts Pertaining to Pareto Optimality

Unlike a single-objective optimization problem, there is no a single solution that can
simultaneously optimize all objective functions in a MOOP. The objective functions
of a MOOP are often in conflict with each other, and parameters related to some
objective functions may not lead to optimality for other objective functions—even
though these parameters can sometimes give rise to worse amounts for other
objective functions. As a consequence, in contrast to solving a single-objective
optimization problem that yields a single solution, solving a MOOP results in finding
a set of solutions that represents a trade-off among the different objective functions.
These solutions are also known collectively as a Pareto-optimal solution set or a
non-dominated optimal solution set. With that in mind, Pareto optimally, weakly,
and appropriately Pareto optimal are other fundamental concepts of the MOOPs
which are briefly reviewed in this section.

Definition of a Pareto-optimal solution: A vector of decision-making variables
x�� 2 X is a Pareto-optimal solution in the MOOP, given in Eqs. (2.1) and (2.2), if
there is no another vector of decision-making variables like x� 2 X so that F(x�) � F
(x��) and fa(x

�) < fa(x
��) for at least one objective function. Otherwise, the vector of

decision-making variables x�� 2 X is not a Pareto-optimal solution [1–3]. In other
words, the vector of decision-making variables x�� 2 X is a Pareto-optimal solution
if there is no another vector of decision-making variables like x� 2 X that can
simultaneously satisfy the conditions presented in Eqs. (2.4) and (2.5). That is to say
that the vector of decision-making variables x�� 2 X is a Pareto-optimal solution if
there does not exist another vector of decision-making variables like x� 2 X that can
improve at least one of the objective functions of the MOOP without worsening
other objective functions. The set of Pareto-optimal vectors of decision-making
variables is taken into account as P(X). Mutually, a vector of objective functions is
a Pareto-optimal solution if the corresponding vector of decision-making variables is
a Pareto-optimal solution. In this way, the set of Pareto-optimal vectors of objective
functions is considered as P(Z). Many algorithms used for solving multi-objective
optimization problems provide solutions that are not Pareto-optimal. These solutions
can, however, meet other criteria. One of the most important of these criteria that can
be very useful and effective in real-world MOOPs and provide useful information for
the decision maker is the weak Pareto-optimal solution, which can be explained as
follows:

Definition of a weak Pareto-optimal solution: A vector of decision-making vari-
ables x�� 2 X is a weak Pareto-optimal solution in the MOOP, given in Eqs. (2.1)
and (2.2), if there is no another vector of decision-making variables like x� 2 X in
such a way that F(x�) < F(x��). Otherwise, the vector of decision-making variables
x�� 2 X is not a weak Pareto-optimal solution [1–3]. In simple terms, the vector of
decision-making variables x�� 2 X is a weak Pareto-optimal solution if there does
not exist another vector of decision-making variables like x� 2 X so that the
response/output obtained by this vector of decision-making variables in all objective
functions of the MOOP is better than the response/output calculated by the vector of
decision-making variables x�� 2 X in the corresponding objective functions. Or, the
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vector of decision-making variables x�� 2 X is a weak Pareto-optimal solution if
there is no another vector of decision-making variables like x� 2 X that can
simultaneously improve all objective functions of the MOOP. The set of weak
Pareto-optimal vectors of decision-making variables is considered as WP(X). Cor-
respondingly, a vector of objective functions represents a weak Pareto-optimal
solution if the corresponding vector of decision variables is a weak Pareto-optimal
solution. In this case, the set of weak Pareto-optimal vectors of objective functions is
taken into account as WP(Z). As a result, the set of Pareto-optimal vectors of
decision-making variables belongs to a larger set called the set of weak Pareto-
optimal vectors of decision-making variables. Accordingly, if the vector of decision-
making variables x�� 2 X is the Pareto-optimal solution, then this vector is the weak
Pareto-optimal solution. However, if the vector of decision-making variables x�� 2X
is the weak Pareto-optimal solution, then this vector is not necessarily the Pareto-
optimal solution. Each of the available responses or outputs in the Pareto-optimal
solution set can be classified as either an appropriate or an inappropriate Pareto-
optimal response or output. In related literature, there are different definitions for the
appropriate Pareto-optimal concept, which are not equivalent. Here, the definition
employed for an appropriate or inappropriate Pareto-optimal concept is derived
according to Geoffrion [4].

Definition of an appropriate Pareto-optimal solution: A vector of decision-
making variables x�� 2 X is an appropriate Pareto-optimal solution in the MOOP,
given in Eqs. (2.1) and (2.2), if this vector is the Pareto-optimal solution and if there
is some real number J > 0 not only for each objective function a and for each of
the other vectors of decision-making variables like x� 2 X satisfying fa(x

�)< fa(x
��),

but also that there is at least one objective function k in the MOOP such that
fk(x

��) < fk(x
�) and {fa(x

��) � fa(x
�)}/{fk(x

�) � fk(x
��)} � J. The quotient of the

fraction {fa(x
��) � fa(x

�)}/{fk(x
�) � fk(x

��)} refers to a compromise in the MOOP;
that is, it indicates an increase in the objective function k originating from a decrease
in the objective function a. Put simply, a Pareto-optimal solution is an appropriate
Pareto-optimal solution if there exists at least one pair of objective functions such
that a confined decrease in one objective function is possible only with an increase in
the other objective function. The set of appropriate Pareto-optimal vectors of
decision-making variables is AP(X). Mutually, a vector of objective functions is
an appropriate Pareto-optimal solution if the corresponding vector of decision-
making variables is an appropriate Pareto-optimal solution. In this manner, the set
of appropriate Pareto-optimal vectors of objective functions is considered as AP(Z).

As a result, the set of appropriate Pareto-optimal vectors of decision-making
variables belongs to a larger set called the set of Pareto-optimal vectors of decision-
making variables. Therefore, if the vector of decision-making variables x�� 2 X is
the appropriate Pareto-optimal solution, then this vector is the Pareto-optimal solu-
tion. However, if the vector of decision-making variables x�� 2 X is the Pareto-
optimal solution, then this vector is not necessarily the appropriate Pareto-optimal
solution.

Concepts pertaining to Pareto optimality and relationships among these concepts
are demonstrated in Fig. 2.1. In Fig. 2.1, the set of appropriate Pareto-optimal
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responses and outputs is shown with solid green triangles. The set of Pareto-optimal
responses and outputs is illustrated as a sum of the solid green triangles and solid red
squares. The set of weak Pareto-optimal responses and outputs is depicted as a sum
of solid green triangles, solid red squares, and solid blue circles. Also from Fig. 2.1,
it can be seen that the set of appropriate Pareto-optimal responses and outputs
belongs to a larger set called the set of Pareto-optimal responses and outputs, as
previously mentioned. Moreover, it can be seen that the set of Pareto-optimal
responses/outputs belongs to a larger set called the set of weak Pareto-optimal
responses/outputs, as stated earlier.

2.3.4 Concepts Related to the Vector of Ideal Objective
Functions and the Vector of Nadir Objective Functions

Suppose that in the MOOP, given in Eq. (2.1) and (2.2), the objective functions are
bounded on the feasible objectives space. In this circumstance, the upper and lower
bounds associated with the set of Pareto-optimal responses and outputs in the
feasible objectives space can provide very useful information about the MOOP.
For this MOOP, the lower bounds related to the set of Pareto-optimal responses and
outputs are available in the vector of ideal objective functions—zideal 2 ℜA [1–
3]. The vector of ideal objective functions is defined using Eq. (2.6):

zideal ¼ zideal1 ; . . . ; zideala ; . . . ; zidealA

� �
; 8 a 2 ΨA

� � ð2:6Þ

Appropriate Pareto-optimal solutions: AP(Z)
Pareto-optimal solutions: P(Z)
Weak Pareto-optimal solutions: WP(Z)+ +

+

( )2 xf

( )1 xf

Feasible objective 
space: Z

Fig. 2.1 Concepts pertaining to Pareto optimality
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The component or element a relevant to the vector of ideal objective functions
zideala can be obtained by minimizing the objective function a of the MOOP as a
single-objective optimization problem bounded by equality and inequality con-
straints, as given in Eqs. (2.7) and (2.8):

Minimize
x2X

F xð Þ ¼ f a xð Þ½ �; 8 a 2 ΨA
� �

subject to :
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g, 8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g,8 e 2 ΨE

� �
ð2:7Þ

x ¼ x1; . . . ; xv; . . . ; xNDV½ �; 8 v 2 ΨNDV;ΨNDV¼ΨNCDVþNDDV; x 2 X
� �

,

8 xmin
v � xv � xmax

v

��v 2 ΨNCDV
� �

,
8 xv 2 xv 1ð Þ; . . . ; xv wð Þ; . . . ; xv Wvð Þf gjv 2 ΨNDDV
� �

ð2:8Þ

A vector of objective functions strictly dominated by the vector of ideal objective
functions is known as the vector of utopian objective functions—zutopian [1–3]. The
vector of the utopian objective functions is defined by Eq. (2.9):

zutopian ¼ zutopian1 ; . . . ; zutopiana ; . . . ; zutopianA

h i
; 8 a 2 ΨA

� � ð2:9Þ

The relationship between the component or element a related to the vector of
ideal objective functions and the component or element a relevant to the vector of
utopian objective functions is defined using Eq. (2.10):

zutopiana ¼ zideala � ε; 8 a 2 ΨA
� � ð2:10Þ

In Eq. (2.10), ε is a positive scalar number. For this same MOOP, the upper
bounds associated with the set of Pareto-optimal responses and outputs are available
in the vector of nadir objective functions—znadir [1–3]. The vector of nadir objective
functions is described using Eq. (2.11):

znadir ¼ znadir1 ; . . . ; znadira ; . . . ; znadirA

� �
; 8 a 2 ΨA

� � ð2:11Þ

In MOOPs having a nonlinear nature, there is usually no useful well-recognized
process to accurately calculate the vector of nadir objective functions. It is, therefore,
generally difficult to precisely capture the components or elements relevant to the
vector of nadir objective functions. These components or elements can be approx-
imately estimated by using some decision-making analysis tools, such as the payoff
table; however, the estimate resulting from these approaches may not be
trustworthy [1].

2.3 Fundamental Concepts of Optimization in the MOOPs 29



2.3.5 Concepts Relevant to the Investigation of Pareto
Optimality

In related literature, there are several methods generally used to investigate Pareto
optimality of the vector of decision-making variables. One of the most well-known
methods is to examine the Pareto optimality of the vector of decision-making vari-
ables, with the idea of forming an optimization problem [5]. In this regard, Pareto
optimality of the vector of decision-making variables x�� 2 X can be investigated by
solving the optimization problem given in Eq. (2.12):

Maximize
x2X, γ

X
a2ΨA

γa; 8 a 2 ΨA
� �

subject to :
f a xð Þ þ γa ¼ f a x��ð Þ; 8 a 2 ΨA

� �
γa � 0; 8 a 2 ΨA

� �
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g, 8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g,8 e 2 ΨE

� �
ð2:12Þ

In Eq. (2.12), both x 2ℜNDV and γ 2 ℜA
þ are variables. The coefficients vector γ

can be also indicated by using Eq. (2.13):

γ ¼ γ1; . . . ; γa; . . . ; γA½ �; 8 a 2 ΨA
� � ð2:13Þ

If the value of the objective function of the optimization problem given in
Eq. (2.12) is equal to zero, the vector of decision-making variables x�� 2 X is then
Pareto optimal. In other words, the vector of decision-making variables x�� 2 X is
Pareto optimal, provided that all of the components or elements of the coefficients
vector γ given in Eq. (2.13) are equal to zero. This strategy can also be employed to
generate initial Pareto-optimal solutions for interactive MOOAs. Readers interested
in a comprehensive discussion on this strategy are referred to the work by Benson [5].

2.4 Multi-objective Optimization Algorithms

Basically, the process of solving a MOOP in order to find the Pareto-optimal solution
set, and then select a final optimal solution from this set, requires information related
to the preferences of the decision maker. More precisely, the process of solving a
MOOP should be established with regard to the preferences of the decision maker. In
this way, the solution process can give rise to finding solutions that have more
compatible with the preferences of the decision maker. The decision maker generally
has sufficient insight into the MOOP. In addition, the decision maker can provide
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information pertaining to the preferences of different objective functions or different
solutions in various structures.

In related literature, many MOOAs have been developed for finding the Pareto-
optimal solution set and selecting the final optimal solution. Because the classifica-
tion of these optimization algorithms can be carried out with a view to different
criteria, it is a challenging task to provide a well-organized classification for these
optimization algorithms. In related literature, different classifications have been
reported on the basis of various criteria. MOOAs can be broken down into two
types of approaches, according to the role of the decision maker in the solution
process [1]: noninteractive and interactive.

2.4.1 Noninteractive Approaches

In a general classification, noninteractive approaches (NIAs) can be divided into four
classes: (1) basic; (2) no preference; (3) a priori; and, (4) a posteriori.

2.4.1.1 Basic Approaches

Basic approaches are one of the most well-known and most used approaches for
solving MOOPs. In order to employ solutions developed for single-objective opti-
mization, these approaches transform a MOOP into a single-objective problem.
Therefore, these approaches cannot actually be taken into account as a MOOA. The
weighting coefficient approach and the ε-constraint approach are the most common
basic approaches. Because of the widespread use and applicability of these
approaches in solving MOOPs, an overview of these approaches is provided next.

Weighting coefficient approach: In the literature, the weighting coefficient
approach is one of the simplest and most popular basic approaches for solving a
MOOP. In this approach, the objective functions of the MOOP are transformed into
a scalar objective function by using weighting coefficients [3, 6]. More precisely, in
this approach, the MOOP, given in Eqs. (2.1) and (2.2), is turned into a single-
objective optimization problem in accordance with Eqs. (2.14) and (2.15) through
the weighting coefficients:

Minimize
x2X

F xð Þ ¼
X
a2ΨA

ωa:f a xð Þ
( )

; 8 A � 2f g, 8 a 2 ΨA;ωa 2 0; 1½ �� �
subject to :
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g,8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g, 8 e 2 ΨE

� �
ð2:14Þ
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x ¼ x1; . . . ; xv; . . . ; xNDV½ �; 8 v 2 ΨNDV;ΨNDV¼ΨNCDVþNDDV; x 2 X
� �

,

8 xmin
v � xv � xmax

v

��v 2 ΨNCDV
� �

,
8 xv 2 xv 1ð Þ; . . . ; xv wð Þ; . . . ; xv Wvð Þf gjv 2 ΨNDDV
� �

ð2:15Þ

In these equations, ωa describes the weighting coefficient corresponding to objec-
tive function a of the MOOP, which is usually followed by Eqs. (2.16) and (2.17):

0 � ωa � 1; 8 A � 2f g,8 a 2 ΨA
� � ð2:16ÞX

a2ΨA

ωa ¼ 1; 8 A � 2f g,8 a 2 ΨA
� � ð2:17Þ

In the weighting coefficient approach, the decision maker, by systematically
changing the weighting coefficients, solves the single-objective optimization prob-
lem organized in Eqs. (2.14) and (2.15). Solving the single-objective optimization
problem formed in Eqs. (2.14) and (2.15) for different weighting coefficients results
in the estimation of the Pareto-optimal solutions. The solution specified by solving
the optimization problem given in Eqs. (2.14) and (2.15) is a weak Pareto-optimal
solution if the condition provided in Eq. (2.18) is satisfied:

ωa > 0; 8 A � 2f g, 8 a 2 ΨA
� � ð2:18Þ

This solution is also the Pareto-optimal solution if it is unique [3]. The weighting
coefficient approach is appropriate for a MOOP in which all objective functions are
of the same type and have a common scale (e.g., all objective functions are of a cost
type with a dollar scale). If objective functions of optimization problem are not of
same type and not have a common scale, the use of the weighting coefficient
approach is not efficient. In this situation, the recommended strategy for employing
the weighting coefficient approach is to normalize the objective functions. Objective
function a of this same MOOP is normalized through Eq. (2.19):

~f a xð Þ ¼ f max
a xð Þ � f a xð Þ

f max
a xð Þ � f min

a xð Þ ; 8 a 2 ΨA
� � ð2:19Þ

This equation refers to a situation in which the minimization of the objective
function a of the MOOP is taken into account. Similarly, if maximization of the
objective function a of the MOOP is regarded, Eq. (2.19) should be rewritten
according to Eq. (2.20):

~f a xð Þ ¼ 1� f max
a xð Þ � f a xð Þ

f max
a xð Þ � f min

a xð Þ ; 8 a 2 ΨA
� � ð2:20Þ
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In Eqs. (2.19) and (2.20), the lower and upper bounds of objective function a of
the MOOP are calculated by using a single-objective optimization. More precisely,
the upper bound of objective function a, f max

a xð Þ, is achieved by single-objective
maximization of the corresponding objective function. In the same way, the lower
bound of objective function a, f min

a xð Þ, is determined by single-objective minimiza-
tion of the corresponding objective function. After normalization of the objective
functions of the MOOP given in Eqs. (2.1) and (2.2), this optimization problem can
be rewritten based on Eqs. (2.21) and (2.22):

Minimize
x2X

F xð Þ ¼
X
a2ΨA

ωa � ~f a xð Þ
( )

; 8 A � 2f g, 8 a 2 ΨA;ωa 2 0; 1½ �� �
subject to :
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g, 8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g,8 e 2 ΨE

� �
ð2:21Þ

x ¼ x1; . . . ; xv; . . . ; xNDV½ �; 8 v 2 ΨNDV
� �

,8 ΨNDV¼ΨNCDVþNDDV
� �

,8 x 2 Xf g,
8 xmin

v � xv � xmax
v

��v 2 ΨNCDV
� �

,
8 xv 2 xv 1ð Þ; . . . ; xv wð Þ; . . . ; xv Wvð Þf gjv 2 ΨNDDV
� �

ð2:22Þ

One of the most important strengths of the weighting coefficients approach,
making it widely utilized for solving a wide range of MOOPs, is the simplicity of
its use. In this approach, one solution can be found through the Pareto-optimal
solution set by changing the weighting coefficients. It has been proven, however,
that this characteristic is reliable only in convex optimization problems. That is, in
non-convex optimization problems, regardless of how the weighing coefficients
are chosen, some Pareto-optimal solutions cannot be found. Furthermore, if some
objective functions correlate with each other in the MOOPs, changing the
weighting coefficients may not lead to finding Pareto-optimal solutions. As a
result, the weighting coefficient approach does not have an appropriate perfor-
mance for these MOOPs. It should be pointed out that the decision maker can
employ the weighting coefficient approach either as an a priori approach or as an a
posteriori approach.

ε-Constraint approach: In related literature, the ε-constraint approach is one of
the most applicable basic approaches for solving MOOPs [7, 8]. At each step in
this approach, one of the objective functions of the MOOP is chosen for optimi-
zation, while the remaining objective functions are considered as constraints. This
process is repeated for all objective functions of the MOOP. By using the ε-
constraint approach, the MOOP, again from Eqs. (2.1) and (2.2), is transformed
into a single-objective optimization problem in accordance with Eqs. (2.23) and
(2.24):
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Minimize
x2X

F xð Þ ¼ f a xð Þf g; 8 a 2 ΨA
� �

subject to :
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g, 8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g,8 e 2 ΨE

� �
f k xð Þ � εmax

k ; 8 k 2 ΨA
� �

,8 k 6¼ af g
ð2:23Þ

x ¼ x1; . . . ; xv; . . . ; xNDV½ �; 8 v 2 ΨNDV;ΨNDV¼ΨNCDVþNDDV; x 2 X
� �

,

88 xmin
v � xv � xmax

v

��v 2 ΨNCDV
� �

,
8 xv 2 xv 1ð Þ; . . . ; xv wð Þ; . . . ; xv Wvð Þf gjv 2 ΨNDDV
� �

ð2:24Þ

In Eq. (2.23), εmax
k represents the upper bound for objective function k of the

MOOP. The vector of decision-making variables x�� 2 X is Pareto optimal if and
only if this vector solves the optimization problem organized in Eqs. (2.23) and
(2.24) for each objective function of the MOOP, fa(x

��); 8 {a 2 ΨA}, while
satisfying εmax

k ¼ f k x��ð Þ;8 k 2 ΨA
� �

,8 k 6¼ af g [7, 8]. More precisely, to ensure
that Pareto optimality corresponds to the vector of decision-making variables
x�� 2 X—finding one solution from the Pareto-optimal solution set—either the
single-objective optimization problem formed in Eqs. (2.23) and (2.24) must be
solved by the number of objective functions of the MOOP or one unique solution of
the single-objective optimization problem formed in Eqs. (2.23) and (2.24) must be
achieved. Nevertheless, in a MOOP, if the weak Pareto-optimal solution is satisfac-
tory, from the perspective of the decision maker, solving the single-objective
optimization problem organized in Eqs. (2.23) and (2.24) is sufficient for an objec-
tive function to find one solution from the weak Pareto-optimal solution set.

In contrast to the weighting coefficient approach, finding the Pareto-optimal
solution set by using the ε-constraint approach does not depend on the convexity
or non-convexity of the optimization problem. In other words, the ε-constraint
approach has a desirable performance in dealing with convex or non-convex opti-
mization problems.

In practice, the selection of the upper bounds associated with different objective
functions of the MOOP has many complexities. These complexities are dramatically
expanded by increasing the number of objective functions of the MOOP. The
selection of the upper bounds must, therefore, be made meticulously. In this manner,
the upper bounds selected for different objective functions of the MOOP must be
within the feasible space; otherwise, the single-objective optimization problem
formed in Eqs. (2.23) and (2.24) will not have a solution. If maximization of this
MOOP is taken into account, then the MOOP is turned into a single-objective
optimization problem based on Eqs. (2.25) and (2.26) by using the ε-constraint
approach:
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Maximize
x2X

F xð Þ ¼ f a xð Þf g; 8 a 2 ΨA
� �

subject to :
G xð Þ ¼ g1 xð Þ; . . . ; gb xð Þ; . . . ; gB xð Þ½ � ¼ 0; 8 B � 0f g, 8 b 2 ΨB

� �
H xð Þ ¼ h1 xð Þ; . . . ; he xð Þ; . . . ; hE xð Þ½ � � 0; 8 E � 0f g,8 e 2 ΨE

� �
f k xð Þ � εmin

k ; 8 k 2 ΨA
� �

,8 k 6¼ af g
ð2:25Þ

x ¼ x1; . . . ; xv; . . . ; xNDV½ �; 8 v 2 ΨNDV;ΨNDV¼ΨNCDVþNDDV; x 2 X
� �

,

8 xmin
v � xv � xmax

v

��v 2 ΨNCDV
� �

,
8 xv 2 xv 1ð Þ; . . . ; xv wð Þ; . . . ; xv Wvð Þf gjv 2 ΨNDDV
� �

ð2:26Þ

In Eq. (2.25), εmin
k describes the lower bound for objective function k of the

MOOP. Similar to the weighting coefficient approach, the ε-constraint approach can
be utilized by the decision maker either as an a priori approach or as an a posteriori
approach.

2.4.1.2 No-Preference Approaches

In no-preference approaches, known as neutral-preference approaches, the prefer-
ences of the decision maker are not considered in the process of solving the MOOP.
In these approaches, the MOOP is solved by using some relatively simple
approaches, at which point the solution is taken at the disposal of the decision
maker. The decision maker is also able to accept or reject the specified solution.
Non-preference approaches are suitable for situations in which information related to
the preferences of the decision maker is not available, or the decision maker does not
consider particular preferences. The global criterion approach and neutral-
compromise solution approach are the best-known no-preference approaches.
Readers interested in a thorough discussion on these approaches are directed to the
work by Yu [9] and Wierzbicki [10], respectively.

2.4.1.3 A Priori Approaches

In a priori approaches, the decision maker first determines the information related to
his/her preferences, and then solves the MOOP by trying to find a Pareto-optimal
solution that can, as much as possible, satisfy his/her preferences. Simply put, in a
priori approaches, information related to the preferences of the decision maker is
determined before the process of solving the MOOP begins.

A major disadvantage in a priori approaches is that the decision maker is not
necessarily aware of the possibilities and restrictions of the MOOP in advance. As a
result, it is possible that information about the preferences of the decision maker is
overly optimistic or pessimistic. That is to say that the decision maker does not
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necessarily know in advance what the response/output is likely to be from the
MOOP or how realistic his/her preferences are. In this situation, it is possible that
the solution cannot satisfy the decision maker and encourage the decision maker to
rectify his/her preferences. The most well-known a priori approaches can be referred
to as value function approaches, lexicographic ordering approaches, and goal pro-
gramming approaches. Readers interested in a comprehensive discussion on these
approaches are referred to the work by Keeney and Raiffa [11], Fishburn [12], and
Charnes and Cooper [13], respectively.

2.4.1.4 A Posteriori Approaches

The main idea of a posteriori approaches is established on the basis of finding the
Pareto-optimal solution set and presenting it to the decision maker with the aim of
choosing the final solution through the aforementioned set. More precisely, in a
posteriori approaches, the process of solving the MOOP first tries to find the Pareto-
optimal solution set. After determination of the Pareto-optimal solution set, this set is
taken at the disposal of the decision maker. Finally, the decision maker chooses the
most satisfactory solution from the set as the final optimal solution.

One of the strengths of a posteriori approaches, compared to a priori approaches, is
that in a posteriori approaches, the Pareto-optimal solution set is completed before
being presented to the decision maker. In this way, the decision maker has a complete
overview of all solutions, making it easier and more realistic to choose the most
satisfactory solution. Nonetheless, the major weakness of a posteriori approaches is
their high computational burden. Additionally, the decision maker encounters a very
large amount of information in optimization problems with more than two objective
functions, which makes analysis of the information a difficult task.

The best-known a posteriori approaches can be referred to as weighted metrics
approaches, achievement scalarizing function approaches, approximation
approaches, and meta-heuristic MOOAs. Readers interested in a thorough discussion
on these approaches are referred to the work by Miettinen [3], Wierzbicki [14], and
Ruzika and Wiecek [15], respectively. It is important to be noted that detailed
descriptions of some developed meta-heuristic MOOAs by the authors are provided
in Chap. 4.

2.4.2 Interactive Approaches

Interactive approaches (IAs) are established on the basis of creating an iterative
solution procedure or pattern that consists of different steps. In this approach to
finding the most satisfactory solution, different steps of this iterative procedure are
repeated and the decision maker progressively determines preference information
during the solution process. In other words, after completion of each step of the
iterative procedure, the information is taken at the disposal of the decision maker, at
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which point the decision maker assesses the information and then may specify
additional details. This interactive process is repeated until the stopping criterion is
satisfied—and as long as the most satisfactory solution has been specified by the
decision maker. In this structure, the decision maker can modify and update his/her
preference information. As a consequence, the decision maker straightforwardly
directs the process in the IAs.

The main steps of an iterative procedure can be briefly expressed as follows:

• Step one: Initialization (i.e., determine the ideal vector of objective functions and
nadir vector of objective vector and present these values to the decision maker).

• Step two: Produce a Pareto-optimal starting point (i.e., some neutral-compromise
solution or solution specified by the decision maker that can be taken into account
as the starting point).

• Step three: Specify the preference information by the decision maker (i.e., the
number of new solutions to be produced).

• Step four: Produce one or more Pareto-optimal solutions by taking into account
the preferences specified by the decision maker in the previous step and then
showing this Pareto-optimal solution or solutions along with information associ-
ated with the MOOP to the decision maker.

• Step five: Select the most satisfactory solution by the decision maker through
Pareto-optimal solutions achieved thus far, if multiple Pareto-optimal solutions
have been produced in the fourth step. If a Pareto-optimal solution has been
produced in the fourth step, this solution is considered as the most satisfactory
solution by the decision maker in this step.

• Step six: Stop, if the consent of the decision maker is satisfied by the solution
chosen in the fifth step; otherwise, go to the third step.

One of the strengths of the IAs is that the decision maker is able to update his/her
preference information in each iteration of the process. Accordingly, by informing
the decision maker about interdependencies between the iterative solution procedure
and its preferences, the probability of achieving a satisfactory solution that meets the
preferences of the decision maker is increased. In other words, because of the
establishment of the IAs, based on an iterative procedure that allows the decision
maker to specify or update preference information during the process, Pareto-
optimal solutions are produced that can satisfy the decision maker. As a result, the
structure of the IAs can give rise to a significant reduction in computational burden.

In recent years, a wide range of IAs have been developed for solving MOOPs.
Basically, there is no unique IA that has a more preferred performance for solving the
MOOPs with different features and structures as well as multiple decision makers
compared to other approaches. This means that each approach is generally developed
for a specific range of MOOPs and decision makers. In a wide classification, IAs can
be broken down into three general classes: (1) compromise-driven or trade-off-based
approaches; (2) reference point approaches; and, (3) classification-based approaches.
Readers interested in a thorough discussion of these approaches are referred to the
work by Branke et al. [1].
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2.5 Selection of the Final Solution by Using a Fuzzy
Satisfying Method

After solving our MOOP and determining the Pareto-optimal solution set, the next
step is to select a flexible and realistic solution from the entire set of candidate
solutions that represent a compromise among different objective functions of the
MOOP. In related literature, there are several multi-objective decision-making tools
for selecting the most satisfactory solution from the Pareto-optimal solution set; keep
in mind, though, that a fuzzy satisfying method (FSM) is highly regarded in this
situation, owing to its simplicity and similarity to human reasoning [16–19]. In this
method, then, a fuzzy membership function, Φf na xð Þ

�
�xn
�
, is defined for each given

objective function, f na xð Þ, in any available solution in the Pareto-optimal solution set,
�xn. The value of this membership function can vary from 0 to 1. The fuzzy
membership function demonstrates a numerical description for the satisfaction
level of the decision maker regarding the value of objective function a in the
available solution n in the Pareto-optimal solution set. The fuzzy membership
function with a value of 0, Φf na xð Þ

�
�xn
� ¼ 0, represents a complete dissatisfaction of

the decision maker. On the other hand, the fuzzy membership function with a value
of 1, Φf na xð Þ

�
�xn
� ¼ 1, represents full satisfaction of the decision maker. As a result,

higher values of this membership function refer to higher levels of satisfaction of the
decision maker regarding the value of objective function a in the available solution
n in the Pareto-optimal solution set. Different types of fuzzy membership functions
can generally be used by the decision maker, such as linear, convex exponential,
concave exponential, piecewise linear, and hyperbolic types. Considering different
types of fuzzy membership functions for different objective functions of the MOOP
can affect the choice of the final solution through the Pareto-optimal solution set. As
an example, suppose that the fuzzy membership function considered by the decision
maker for objective function a of our MOOP is convex exponential and the fuzzy
membership function regarded by the decision maker for other objective functions is
linear. These conditions provide a priority for minimization of objective function
a relative to other objective functions. This is due to the fact that a smaller fuzzy
membership function in the neighborhood of the upper bound of the objective
function a, f max

a xð Þ, has been assigned by the convex exponential membership
function compared with the linear membership function.

Here, the fuzzy membership function considered for all of the existing objective
functions in our MOOP is assumed to be a linear membership function. To clarify,
the linear membership function corresponds to objective function a of the MOOP
that is depicted in Fig. 2.2.

If the minimization of the objective functions of the MOOP is considered, the
linear membership function related to objective function a is represented as a
descending uniform function (see Fig. 2.2). The mathematical description of the
linear membership function shown in Fig. 2.2 can also be set out using Eq. (2.27):
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Φf na xð Þ
�
�xn
� ¼

0 ;8 f na xð Þ > f max
a xð Þ� �

f max
a xð Þ � f na xð Þ

f max
a xð Þ � f min

a xð Þ ;8 f min
a xð Þ � f na xð Þ � f max

a xð Þ� �
1 ;8 f na xð Þ < f min

a xð Þ� �

8>><
>>:
;8 A � 2f g, 8 a 2 ΨA; n 2 ΨN

� �
ð2:27Þ

As shown in Fig. 2.2 and formulated in Eq. (2.27), this membership function has
both a lower bound, f min

a xð Þ, and an upper bound, f max
a xð Þ. These bounds are achieved

by using a single-objective optimization. That is to say that the lower and upper
bounds of objective function a of the MOOP are calculated by minimizing and
maximizing only the corresponding objective function as a single-objective optimi-
zation problem, respectively. Similarly, if themaximization of the objective functions
of the same MOOP is taken into account, the linear membership function relevant to
objective function a is addressed as an ascending uniform function (see Fig. 2.3). The
mathematical description of the linear membership function depicted in Fig. 2.3 can
also be set out using Eq. (2.28):

Φf na xð Þ
�
�xn
� ¼

1 ;8 f na xð Þ > f max
a xð Þ� �

1� f max
a xð Þ � f na xð Þ

f max
a xð Þ � f min

a xð Þ ;8 f min
a xð Þ � f na xð Þ � f max

a xð Þ� �
0 ;8 f na xð Þ < f min

a xð Þ� �

8>><
>>:

;8 A � 2f g,8 a 2 ΨA; n 2 ΨN
� �

ð2:28Þ
After describing the membership functions for all objective functions for all

available solutions in the Pareto-optimal solutions set, the decision maker must
specify the level of desirability of achieving each objective function of the MOOP,

1

0 ( )xn
af

( )min xaf ( )max xaf

( )
(x)n

a
nf
xΦ

Fig. 2.2 The linear membership function corresponds to the minimization of objective function
a of the MOOP
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~Φf a xð Þ. The level of desirability of achieving objective function a of the MOOP, fa(x),
is known as the reference level of achieving the corresponding objective function.
After determination of the level of desirability of achieving each objective function
of the MOOP, the decision maker should employ a well-suited decision-making
analysis tool in order to choose the final optimal compromise solution from the
Pareto-optimal solution set. To do this, there are generally many decision-making
analysis tools developed using a variety of philosophies and from myriad perspec-
tives. Here, the conservative and distance metric methodologies, as two applicable
and well-known decision-making analysis tools, are reviewed and discussed.

2.5.1 Conservative Methodology

In the conservative methodology (CM)—the min-max formulation—conservative
decision-making can be achieved by trying to find a solution whose minimum meets
the maximum objective function. This means that the decision maker is willing to
specify a solution that simultaneously achieves the highest level of satisfaction for all
of the objective functions of the MOOP. In this methodology, the final optimal
compromise solution is determined from all available solutions in the Pareto-optimal
set by solving the optimization problem given in Eq. (2.29):

min
n2ΨN

max
a2ΨA

~Φf a xð Þ �Φf na xð Þ
�
�xn
��� ��� �	 


; 8 A � 2f g, 8 a 2 ΨA; n 2 ΨN
� � ð2:29Þ

If the decision maker is willing to achieve the highest level of satisfaction for all
of the objective functions of the MOOP, ~Φf a xð Þ ¼ 1;8 a 2 ΨA

� �
, Eq. (2.29) must be

rewritten as Eq. (2.30):
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( )min xaf ( )max xaf
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Fig. 2.3 The linear membership function relevant to the maximization of objective function a of
the MOOP
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min
n2ΨN

max
a2ΨA

1�Φf na xð Þ
�
�xn
��� ��� �	 


; 8 A � 2f g,8 a 2 ΨA; n 2 ΨN
� � ð2:30Þ

In other words, Eq. (2.30) can also be expressed as Eq. (2.31):

max
n2ΨN

min
a2ΨA

Φf na xð Þ
�
�xn
��� ��� �	 


; 8 A � 2f g,8 a 2 ΨA; n 2 ΨN
� � ð2:31Þ

The CM ensures for the decision maker that all of the objective functions of the
MOOP are well optimized. Interested readers are directed to the work by Sakawa and
Yano [20] for a comprehensive discussion of the CM.

2.5.2 Distance Metric Methodology

In the distance metric methodology (DM), the final optimal compromise solution is
obtained from all available solutions in the Pareto-optimal set by solving the
optimization problem given in Eq. (2.32):

min
n2ΨN

X
a2ΨA

~Φf a xð Þ �Φf na xð Þ
�
�xn
��� ��u� �( )

; 8 A� 2f g,8 a 2 ΨA;n 2 ΨN;u 2 1;1½ Þ� �
ð2:32Þ

It can be seen that Eq. (2.32) attempts to minimize the u-norm deviations from the
values of the reference membership. The u quantity has a value between one and
infinity, a value that has already been specified by the decision maker. Because the
absolute difference of the level of desirability of achieving objective function a and
its fuzzy membership function in available solution n in the Pareto-optimal set
~Φf a xð Þ �Φf na xð Þ

�
�xn
��� �� always has a value between zero and one, a larger value of

u represents less sensitivity to reference levels and vice versa. It should be pointed
out that if the decision maker is not satisfied by the solution, he/she is able to
improve the corresponding solution by updating the levels of desirability of achiev-
ing different objective functions of the MOOP, ~Φf a xð Þ. Interested readers are directed
to the work by Chen [21] for a comprehensive discussion of DM.

2.5.3 Step-by-Step Process for Implementing the FSM

As a general result, after solving the MOOP, as given in Eqs. (2.1) and (2.2), and
specifying the Pareto-optimal solution set, the implementation of the FSM by the
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decision maker to select the final optimal compromise solution through the Pareto-
optimal solution set can be expressed using the following step-by-step process:

• Step one: Set the number of objective functions of the MOOP equal to A.
• Step two: Set the counter of the objective function to a ¼ 1.
• Step three: Determine the lower and the upper bounds of objective function a of

the MOOP by minimizing and maximizing only the corresponding objective
function as a single-objective optimization, respectively.

• Step four: Set the number of available solutions in the Pareto-optimal solution set
specified by solving the MOOP equal to N.

• Step five: Set the counter of available solutions in the Pareto-optimal solution set
to n ¼ 1.

• Step six: Calculate the value of the linear membership function associated with
objective function a in available solution n in the Pareto-optimal solution set by
using Eq. (2.27).

• Step seven: If n < N, set n ¼ n + 1 and go to step six; otherwise, go to the
next step.

• Step eight: If a < A, set a ¼ a + 1 and go to step three; otherwise, go to the
next step.

• Step nine: Specify the level of desirability of achieving each objective function of
the MOOP.

• Step ten: Determine the final optimal compromise solution from the Pareto-
optimal solution set either by using the CM—min-max formulation given in
Eq. (2.29)—or by using the DM—formulation given in Eq. (2.32).

2.6 Conclusions

In this chapter, the authors presented a brief introduction to the multi-objective
optimization process. First, the necessity of employing the multi-objective optimi-
zation process instead of the single-objective optimization process was justified.
Then, the fundamental concepts of optimization in the MOOPs were exhaustively
addressed in the five sections: (1) mathematical description of a MOOP; (2) concepts
associated with efficiency, efficient frontier, and dominance; (3) concepts pertaining
to Pareto optimality; (4) concepts related to the vector of ideal objective functions
and the vector of nadir objective functions; and, (5) concepts relevant to Pareto
optimality investigation. In addition, a thorough classification was provided for the
MOOAs with a focus on the role of the decision maker in the process of solving the
MOOP. This classification was broken down into two approaches: NIAs and IAs.
The NIAs were also classified into four different classes including basic, no prefer-
ence, a priori, and a posteriori approaches. Finally, the FSM, as the most preferred
multi-objective decision-making tool, was thoroughly described in order to select the
final optimal compromise solution from the Pareto-optimal solution set.
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Appendix 1: List of Abbreviations and Acronyms

CM Conservative methodology

DM Distance metric methodology

FSM Fuzzy satisfying method

IAs Interactive approaches

MOOAs Multi-objective optimization algorithms

MOOPs Multi-objective optimization problems

NIAs Noninteractive approaches

Appendix 2: List of Mathematical Symbols

Index:

a Index for objective functions running from 1 to A

b Index for equality constraints running from 1 to B

e Index for inequality constraints running from 1 to E

k Index for objective functions running from 1 to A

n Index for available solutions in the Pareto-optimal solution set running from 1 to N

v Index for decision-making variables, including the continuous and discrete decision-
making variables, running from 1 to NDV, and an index for continuous decision-
making variables running from 1 to NCDV and also an index for discrete decision-
making variables running from 1 to NDDV

Set:

ΨA Set of indices of objective functions

ΨB Set of indices of equality constraints

ΨE Set of indices of inequality constraints

ΨNCDV Set of indices of continuous decision-making variables

ΨNDDV Set of indices of discrete decision-making variables

ΨNDV Set of indices of decision-making variables, including the continuous and discrete
decision-making variables

ΨN Set of indices of available solutions in the Pareto-optimal solution set

AP(X) Set of appropriate Pareto-optimal vectors of decision-making variables

AP(Z) Set of appropriate Pareto-optimal vectors of objective functions

P(X) Set of Pareto-optimal vectors of decision-making variables

P(Z) Set of Pareto-optimal vectors of objective functions

ℜA A-dimensional set of real numbers

ℜA
þ A-dimensional set of positive real numbers

ℜE E-dimensional set of real numbers

Wv Set of indices of candidate permissible values of discrete decision-making variable v

WP(X) Set of weak Pareto-optimal vectors of decision-making variables

WP(Z) Set of weak Pareto-optimal vectors of objective functions

(continued)
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Parameters:

f max
a xð Þ Upper bound of objective function a

f min
a xð Þ Lower bound of objective function a

J Some real number

u Integer with a value between one and infinity

xmax
v Upper bound on continuous decision-making variable v

xmin
v

Lower bound on continuous decision-making variable v

X Nonempty feasible decision-making space

Z Feasible objective space

ε A positive scalar number

εmax
k Upper bound of objective function k

εmin
k

Lower bound of objective function k

~Φ f a xð Þ Level of desirability of achieving objective function a

Variables:

fa(x) Objective function a of the optimization problem or component a of the vector of
objective functions

fk(x) Objective function k of the optimization problem or component k of the vector of
objective functions

~f a xð Þ Normalized value of objective function a of the optimization problem or normalized
value of component a of the vector of objective functions

f na xð Þ Given objective function a in available solution n in the Pareto-optimal solution set

F(x) Vector of objective functions of the optimization problem

gb(x) Equality constraint b of the optimization problem or component b of the vector of
equality constraints

G(x) Vector of equality constraints of the optimization problem

he(x) Inequality constraint e of the optimization problem or component e of the vector of
inequality constraints

H(x) Vector of inequality constraints of the optimization problem

�xn Solution n in the Pareto-optimal solution set

xv Continuous or discrete decision-making variable v

xv(wv) Candidate permissible value w of discrete decision-making variable v

x, x�, x�� Vector of decision-making variables

z Vector of objective functions

zideal Vector of ideal objective functions

zideala
Component or element a relevant to the vector of ideal objective functions

zutopian Vector of utopian objective functions

zutopiana
Component or element a relevant to the vector of utopian objective functions

znadir Vector of the nadir objective functions

znadira
Component or element a relevant to the vector of nadir objective functions

γ Coefficient vector

γa Component or element a relevant to the coefficient vector

ωa Weighting coefficient relevant to objective function a

Φf na xð Þ
�
�xn
�

Fuzzy membership function of objective function a in available solution n in the
Pareto-optimal solution set
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