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Foreword

Power systems optimization has received a great deal of attention in recent years.
Even from the 1960s, when the foundation of classical power systems optimization
was laid, it has encompassed a variety of complex power system problems including
cost minimization, economic load dispatch, and unit commitment. Initially, mostly
convex problems were tackled using gradient and quadratic optimization techniques.
In addition, graphing techniques and linear and dynamic programming were
employed to solve unconventional problems like security-constrained unit commit-
ment. In the earlier years, computing speed was the main obstacle significantly
limiting the scope of the investigation and the complexity of the system model.
The evolution of computers, however, has removed many of the previous obstacles,
thereby enabling the development of more complex and comprehensive system
models and expanding the solution domain. In particular, the evolution of
metaheuristic optimization algorithms enables the investigation of real-world,
large-scale, non-convex, multi-objective problems including mixed programming.
This covers a very wide variety of areas from power systems planning and operations
to power quality applications. Examples include, but are not limited to, generation,
transmission and sub-transmission expansion design, smart grid and micro-grid
design optimization, renewables and energy storage systems design, load forecast-
ing, unit commitment, bidding mechanism, competitive electric energy markets,
demand-side management and energy savings, deployment of intelligent protection
devices, and optimum deployment of harmonic power filters.

Sophisticated methods and algorithms inspired by nature have flourished in
recent years and have demonstrated both effectiveness and robustness in dealing
with very complex power system problems. Among them are genetic algorithms,
swarm intelligence, and music-inspired algorithms. Since 2001, when Geem intro-
duced the harmony search algorithm, music-inspired methods have been used in
many areas including industry, signal and image processing, and power systems.
The latter encompasses a variety of optimization problems such as cost minimization
and static/dynamic economic load dispatch.

This book is a timely and important work in the field of power systems optimi-
zation that can benefit both the practicing engineer and the graduate student
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viii Foreword

endeavoring in the field. From the first step, it provides a comprehensive introduc-
tion to traditional music-inspired algorithms, followed by several innovative archi-
tectures with the aim of overcoming the shortcomings of the traditional algorithms.
This book also elaborates on a number of common and uncommon power system
problems, ranging from power systems operation problems such as a bilateral
bidding mechanism and competitive electric markets; power systems planning
problems such as generation expansion planning, transmission expansion planning,
coordination of generation and transmission expansion planning; distribution expan-
sion planning; and harmonic power filter planning problems such as passive, active,
and hybrid harmonic power filter planning.

Innovative models accounting for the stochastic nature of power systems are
introduced and include uncertainty parameters and incomplete information. This is
significant for modern power systems operation and planning, particularly with the
integration of distributed generation and renewable resources into the network. The
book also gives appropriate significance to risk as an important supplement to
planning. With this aim in mind, the information-gap decision theory and the
efficient two-point estimate method are widely employed to handle severe uncer-
tainties in the solution of power systems operation and planning problems and also
harmonic power filter planning problems, respectively. The book provides a very
good treatment of this topic. Finally, a variety of test systems are provided.

The discipline of power systems optimization has come a long way since the days
of gradient methods, and the tools of modern engineers have expanded in both scope
and breadth. The work that this book is based on represents an important milestone
in the ever-expanding and increasingly demanding field of power systems optimi-
zation.

Department of Electrical and Computer Constantine J. Hatziadoniu
Engineering, Southern Illinois

University, Carbondale, IL, USA

November 2018



Preface

In today’s world, the optimization process has become a commonly used concept
across different branches of science, such as engineering, economics, management,
operations research, and so on. The main purpose of this process is to effectively
decrease wasted time and resources, design mistakes, and unnecessary costs in such
a way that the predetermined objectives and constraints pertaining to optimization
are still met with the highest level of satisfaction. On the one hand, the lack of
complexity in the scientific challenges reported in the form of optimization problems
and, on the other hand, the lack of access to powerful computing techniques for
solving these optimization problems have given rise to the fact that optimization
problems had a relatively simple architecture at the beginning of their development.
By improving the efficiency of computing techniques and the emergence of a new
generation of techniques with extraordinary powers, however, this promise has been
given to the researchers and specialists who can put aside simplifications performed
in scientific challenges, due to the lack of powerful computing techniques. In
addition, the advent of new concepts in different branches of the sciences has forced
researchers and specialists to move toward the definition of scientific challenges with
more realistic characteristics during the last decade. As a result, researchers and
specialists have encountered a new generation of optimization problems with new
complexities, such as mixed-integer decision-making variables, multiple conflicting
and heterogeneous objective functions, and non-convex, non-smooth, and nonlinear
relationships.

At the same time, and with the development of optimization problems with more
realistic characteristics, researchers and specialists have addressed a wide range of
optimization algorithms in order to deal with these optimization problems. Meta-
heuristic optimization algorithms are a new class of optimization algorithms, widely
employed as a well-established optimization technique across different branches of
science and owing to their unique characteristics and high strengths. Meta-heuristic
optimization algorithms operate independently of the optimization problems. That is
to say that, unlike other optimization algorithms, these algorithms are not dependent
on the structure of the optimization problems and, thus, are able to solve the
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optimization problems without changing their structure. Meta-heuristic optimization
algorithms can, therefore, be utilized in order to deal with a wide range of optimi-
zation problems having different structures.

Technically speaking, meta-heuristic music-inspired optimization algorithms
employ a different architecture compared with their counterparts that have a source
of inspiration other than music. In the architecture of meta-heuristic music-inspired
optimization algorithms, the process of generating new solutions depends on the
entire space of the nonempty feasible decision-making variables. As a consequence,
achieving sufficient knowledge and its promotion to a relatively high level
concerning both the varied characteristics of the optimization problems, the solution
process, and the optimization algorithms, particularly the meta-heuristic and meta-
heuristic music-inspired optimization algorithms, can dramatically help researchers
and specialists to meet their scientific challenges as much as possible with satisfac-
tory results.

Electrical power engineering is one of the principal subfields of electrical engi-
neering in which most of its challenges are described in the form of optimization
problems. On the one hand, it is well-known that most power system optimization
problems are complicated, real-world, large-scale, non-convex, non-smooth optimi-
zation problems having a nonlinear, mixed-integer nature with big data. This means
that the number of the local optimal points is greatly increased by enlarging the size
of the power grid under study, after which traditional optimization algorithms are
encountered with many difficulties in dealing with such optimization problems and
finding the global optimal point. On the other hand, with emerging, newfound issues
and challenges in power systems, such as unbundling, deregulation, integration of
renewable and nonrenewable energy resources, global environmental policies, etc.,
new uncertainties have been introduced and existing ones escalated. Under these
circumstances, optimization problems of power systems can be much more compli-
cated than before.

Strictly speaking, power system researchers and specialists take into account two
different processes in dealing with the optimization problems of power systems. The
first group of researchers and specialists considered only a simple model of power
system optimization problems, such as being a single-objective model, disregarding
the uncertainties, regarding the traditional structure of power systems, lack of
consideration practical limits, etc. Accordingly, the theoretical aspects have merely
been applied in these power system optimization problems, the outputs for which are
not applicable. A second group of researchers and specialists, however, considered a
more complex and realistic model of the power system optimization problems. In
order to solve these complex optimization problems, some simplifications, such as
linearization of the nonlinear models, have been assumed in the solution process.
These simplifications, which bring about the obtained outputs of linearized models,
are not based on the actual conditions. There is a need, then, to use a simple model of
the power system optimization problems and/or to use a more complex and realistic
model of the power system optimization problems but with multiple simplifications
derived from the lack of powerful optimization techniques. As a general result, the
development of such powerful optimization techniques for dealing with these power
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system optimization problems with a minimal simplification of the vital aspects is
considered as a critical requirement.

The contents of this book are briefly summarized below:

Chapter I: This chapter begins with a concise definition of the optimization
problem and its parameters, along with a mathematical description of an optimiza-
tion problem with continuous and discrete decision-making variables whose objec-
tive functions are employed in a standard form of an optimization problem along
with equality and inequality constraints. Subsequently, the authors address the
classifications of an optimization problem from different perspectives, which
deserve attention and can achieve full knowledge regarding an optimization problem
and its parameters. Also mentioned are categorizations of an optimization problem
from the point of view of the number of objective functions, the constraints, the
nature of employed equations, the objective function landscape, the kind of decision-
making variables, the number of decision-making variables, the separability of the
employed equations, and the uncertainty. In addition, a succinct overview pertaining
to the optimization algorithms with a focus on meta-heuristic optimization algo-
rithms is reported. With that in mind, a well-organized classification of meta-
heuristic optimization algorithms is demonstrated on the basis of the inspirational
source and then categorized into four classes: (1) swarm intelligence-based meta-
heuristic optimization algorithms, (2) biologically inspired meta-heuristic optimiza-
tion algorithms not based on swarm intelligence, (3) physics- and chemistry-based
meta-heuristic optimization algorithms, and (4) human behaviors and society-
inspired meta-heuristic optimization algorithms. This topic is indispensable, because
of its highly influential nature in choosing a reasonable and efficient meta-heuristic
algorithm to solve a typical optimization problem with respect to the breadth and
variety of meta-heuristic optimization algorithms.

Chapter 2: In this chapter, the necessity of utilizing a multi-objective optimiza-
tion process is rigorously elucidated. Afterward, the fundamental concepts of opti-
mization in multi-objective optimization problems are thoroughly described in five
sections: (1) mathematical description of a multi-objective optimization problem;
(2) concepts related to efficiency, efficient frontier, and dominance; (3) concepts
relevant to Pareto optimality; (4) concepts associated with the vector of ideal
objective functions and the vector of nadir objective functions; and (5) concepts
pertaining to Pareto optimality investigation. In this chapter, the authors also provide
an exhaustive classification of the multi-objective optimization algorithms by con-
centrating on the role of the decision-maker in the solution process, which are then
broken down into two approaches: (1) non-interactive and (2) interactive.
Non-interactive approaches are further divided into four classes, including basic,
no-preference, a priori, and a posteriori approaches. The fuzzy satisfying method is
then extensively expressed in order to select the final optimal compromise solution
from the Pareto-optimal solutions set. This method is considered as the preferred
multi-objective decision-making technique, due to its simplicity and similarity to
human reasoning. Thorough coverage of these topics in this chapter is requisite,
owing to their great effectiveness in attaining the Pareto-optimal solutions set and
choosing the final optimal solution for a typical multi-objective optimization
problem.



Xii Preface

Chapter 3: This chapter illustrates the definition of music with regard to its
historical roots then denotes the different interpretations of music from the stand-
point of well-known philosophers and scientists. A concise history of music is also
presented through a review of archaeological evidence. These topics are especially
advantageous in the solution process and, therefore, are discussed in detail through-
out the book, because the authors will introduce and develop modern music-inspired
meta-heuristic optimization algorithms by borrowing the phenomena and fundamen-
tal concepts of music. Besides these initial topics, Chap. 3 deals with the music-
inspired meta-heuristic optimization algorithms from past to present: the single-stage
computational single-dimensional harmony search algorithm (SS-HSA), the single-
stage computational single-dimensional improved harmony search algorithm
(SS-IHSA), and the continuous two-stage computational, multi-dimensional,
single-homogeneous melody search algorithm (TMS-MSA). In doing so, interde-
pendencies of phenomena and fundamental concepts of music and the optimization
problem are expressed, and then, the basic principles of the original SS-HSA,
SS-THSA, and original continuous TMS-MSA, along with their performance-driven
architectures, are precisely addressed. This chapter will also help readers to identify
the enhancements applied on the original SS-HSA in the form of a structural
classification, including (1) the enhanced versions of the original SS-HSA, based
on parameter adjustments; (2) enhanced versions of the original SS-HSA, according
to a combination of this algorithm with other meta-heuristic optimization algorithms;
and (3) enhanced versions of the original SS-HSA, in accordance with architectural
principles. The first category of this structural classification describes how the
original SS-THSA is considered to be a well-known enhanced version of the original
SS-HSA by investigating the basic differences between the SS-IHSA and original
SS-HSA. Finally, the chapter elaborates on reasonability and applicability of the
music-inspired meta-heuristic optimization algorithms from past to present for
solving complicated, real-world, large-scale, non-convex, non-smooth optimization
problems having a nonlinear, mixed-integer nature with big data and, subsequently,
outlines a valuable background for elucidating innovative versions of the music-
inspired meta-heuristic optimization algorithms in Chap. 4.

Chapter 4: This chapter complements the preceding chapter by providing multi-
ple innovative versions of the modern music-inspired optimization algorithms. First,
the authors propose an innovative continuous/discrete TMS-MSA by borrowing the
basic principles of the original continuous TMS-MSA in order to deal with the
complicated, real-world, large-scale, non-convex, non-smooth optimization prob-
lems with a simultaneous combination of the continuous and discrete decision-
making variables. Then, an innovative improved version of the proposed continu-
ous/discrete TMS-MSA, called a two-stage computational multi-dimensional single-
homogeneous enhanced melody search algorithm (TMS-EMSA), is developed in
order to increase the efficiency and efficacy of the performance of this optimization
algorithm. Also described, with regard to today’s world, are modern engineering
challenges widely developed in the form of the multilevel optimization problems;
therefore, the original SS-HSA, SS-THSA, original continuous TMS-MSA, proposed
continuous/discrete TMS-MSA, and proposed TMS-EMSA may not be able to
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maintain the most favorable performance in the solution process of such optimiza-
tion problems. This owes to the fact that a single-homogeneous structure is
employed in the architecture of the aforementioned optimization algorithms. As a
consequence, an innovative version of the architecture of the proposed
TMS-EMSA—a multi-stage computational multi-dimensional multiple-homoge-
neous enhanced melody search algorithm (MMM-EMSA), multi-stage computa-
tional multi-dimensional single-inhomogeneous enhanced melody search algorithm
(MMS-EMSA), or symphony orchestra search algorithm (SOSA)—is rigorously
developed in order to appreciably enhance its performance, flexibility, robustness,
and parallel capability. The newly developed SOSA has a multi-stage computational
multi-dimensional and multiple-homogeneous or multi-stage computational multi-
dimensional and single-inhomogeneous structure.

Many real-world optimization problems in the engineering sciences, particularly
electrical engineering, have more than one objective function and are introduced in
the form of a multi-objective optimization problem. The most reasonable strategy for
solving an optimization problem having multiple conflicting, non-commensurable,
and correlated objective functions is the use of a multi-objective optimization
process. The architecture of the original SS-HSA, SS-IHSA, and original continuous
TMS-MSA described in the Chap. 3 and the architecture of the proposed continuous/
discrete TMS-MSA, TMS-EMSA, and SOSA in this chapter have, however, been
developed in such a way that they are only suitable for solving single-objective
optimization problems and cannot be employed for dealing with multi-objective
optimization problems. With that in mind, the chapter continues with the presenta-
tion of new multi-objective strategies for remodeling the architecture of the meta-
heuristic music-inspired optimization algorithms or, more comprehensively, the
meta-heuristic music-inspired optimization algorithms with a single-stage computa-
tional and a single-dimensional structure, such as the original SS-HSA and
SS-IHSA, in dealing with multi-objective optimization problems. Afterwards, new
multi-objective strategies are represented for remodeling the architecture of the
meta-heuristic music-inspired optimization algorithms with a two-stage computa-
tional single-dimensional and single-homogeneous structure, such as the original
continuous TMS-MSA, continuous/discrete TMS-MSA, and proposed TMS-EMSA
in dealing with multi-objective optimization problems. Eventually, a new multi-
objective strategy is addressed for remodeling the architecture of the SOSA, which
has a multi-stage computational multi-dimensional and multiple-homogeneous
structure or a multi-stage computational multi-dimensional and single-inhomoge-
neous structure, in dealing with multi-objective optimization problems.

Chapter 5: The second part of the book starts with Chap. 5, which is devoted to an
innovative, two-level computational-logical framework for a bilateral bidding mech-
anism within a competitive security-constrained electricity market. In this chapter, a
comprehensive survey related to game theory is meticulously presented. Subse-
quently, the authors describe the formulation of a two-level computational-logical
framework, including its mathematical model of first and second levels. In the first
level, the generation and distribution companies maximize their profits. In the
second level, however, the independent system operator clears the competitive
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security-constrained electricity market by considering additional objectives
containing CO,, SO,, and NO, emissions. Exhaustive coverage of this topic in
this chapter is indispensable, due to its being considered as a central core and or as
a short-term operational slave problem for the strategic multilevel long-term expan-
sion planning frameworks of the power systems planning studies in Chap. 6. Further,
the proposed two-level computational-logical framework is applied on the modified
six-machine eight-bus test network. In order to show the effectiveness of the
performance associated with the two-level computational-logical framework, two
cases are taken into account in the implementation process: (1) considering only a
unilateral bidding mechanism and (2) considering a bilateral bidding mechanism.
The comparative analysis demonstrates the sufficiency and profitableness of the
proposed two-level computational-logical framework by considering a bilateral
bidding mechanism. This chapter also compares the performance of the newly
proposed single-objective  SOSA, single-objective  TMS-EMSA, and single-
objective continuous/discrete  TMS-MSA with the original single-objective
SS-THSA, original single-objective SS-HSA, and non-dominated sorting genetic
algorithm-II (NSGA-II), as state-of-the-art optimization algorithms. The obtained
results prove the practicality and high performance of the newly proposed single-
objective music-inspired optimization algorithms, especially the single-objective
SOSA, when compared with other optimization algorithms.

Chapter 6: This chapter begins with a general, yet rigorous treatment of power
systems planning studies with a focus on important characteristics, such as power
system structure, planning horizon, uncertainties, and solving algorithms. The chap-
ter also explains why power systems need expansion planning studies. Afterward,
four innovative strategic multilevel computational-logical frameworks are devel-
oped for pseudo-dynamic generation expansion planning (PD-GEP), pseudo-
dynamic transmission expansion planning (PD-TEP), coordination of pseudo-
dynamic generation and transmission expansion-planning (PD-G&TEP), and
pseudo-dynamic distribution expansion planning (PD-DEP) in order to optimally
supply, transfer, and distribute electric energy. The proposed PD-GEP and PD-TEP
are formulated by a strategic tri-level computational-logical framework; similarly,
the PD-G&TEDP is organized by a strategic quad-level computational-logical frame-
work. These formulations contain a short-term operational slave problem and a long-
term planning master problem. Moreover, the PD-DEP is described by a techno-
economic framework in the presence of the distributed generation resources (DGRs).
The PD-DEP formulation includes a short-term loadability-based optimal power
flow (LBOPF) problem and a long-term planning problem. This chapter widely
employs a well-founded information-gap decision theory (IGDT) under a twofold
envelope-bound uncertainty model in order to handle risks of the PD-GEP, PD-TEP,
PD-G&TEP, and PD-DEP problems stemming from severe twofold uncertainties of
demand and market price. In the IGDT-based formulation, the proposed PD-GEP,
PD-TEP, PD-G&TEP, and PD-DEP problems are then remodeled under three risk-
neutral, risk-averse, and risk-taker decision-making policies. The proposed PD-GEP
and PD-G&TEP problems are applied on the modified large-scale 46-bus south
Brazilian system. The PD-TEP problem is also implemented on both the modified
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IEEE 30-bus test system and the modified large-scale Iranian 400-kV transmission
network. The PD-DEP problem is also run on the modified three-phase 13.8 kV
27-node open-loop distribution test network. In the implementation process of this
chapter, the performances of the strategic multilevel computational-logical frame-
works are analyzed both by considering the IGDT risk-averse decision-making
policy, the first case, and considering the IGDT risk-taker decision-making policy,
the second case. This chapter also compares the performances of the newly proposed
PD-GEP, PD-TEP, PD-G&TEP, and PD-DEP problems under the IGDT risk-averse
policy with the performances of those under the robust optimization technique. The
comparative investigation exhibits profitableness of the proposed frameworks by the
IGDT risk-averse policy. Finally, the efficiencies of the newly proposed multi-
objective SOSA, multi-objective TMS-EMSA, multi-objective continuous/discrete
TMS-MSA, multi-objective SS-HSA, and multi-objective SS-IHSA are scrutinized
on the PD-GEP, PD-TEP, PD-G&TEP, and PD-DEP problems. The efficiencies of
the NSGA-II, as a well-known and powerful state-of-the-art multi-objective optimi-
zation algorithm, then compared to each of these multi-objective problems. The
results indicate applicability and high efficiency of the newly proposed multi-
objective music-inspired optimization algorithms, especially the multi-objective
SOSA, when compared with the NSGA-II.

Chapter 7: In this chapter, the authors provide a succinct overview of harmonic
power filter planning studies, including causes and malicious effects of nonlinear
loads and detailed descriptions of passive and active harmonic power filters. Next,
different methodologies for solving harmonic power-flow problems are precisely
classified using three points of view: (1) a modeling technique, (2) a distribution
network condition, and (3) a solution approach. Besides these outlines, the chapter
develops the formulation of an innovative techno-economic multi-objective frame-
work for the hybrid harmonic power filter (HHPF) planning problem in distribution
networks, with consideration of uncertainty in demand and harmonic currents
injected by nonlinear loads. The proposed framework is also broken down into a
harmonic power flow problem and the HHPF planning problem. The harmonic
power flow problem acts as a central core of the HHPF planning problem and is
solved via a probabilistic decoupled harmonic power flow (PDHPF) methodology.
This chapter widely utilizes an efficient two-point estimate method (two-PEM) in
order to handle uncertainty in demand and harmonic currents injected by nonlinear
loads in the proposed framework. With that in mind, the proposed PDHPF method-
ology, according to the efficient two-PEM, is implemented by a deterministic
decoupled harmonic power flow (DDHPF) methodology. A loadability-based New-
ton-Raphson power flow (LBNRPF) methodology is also applied to solve the
power-flow problem at the principal frequency, because the DDHPF methodology
for the distribution network assessment at harmonic frequencies requires the acqui-
sition of information determined from the power-flow problem at the principal
frequency. Furthermore, the proposed techno-economic multi-objective framework
is applied on both the modified IEEE 18-bus distorted test network and the modified
34-bus distribution test network. In order to illustrate the effectiveness of the
performance related to the techno-economic multi-objective framework, three
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cases are considered in the implementation process: (1) considering only passive
harmonic power filters, (2) considering only active harmonic power filters, and
(3) considering both passive and active harmonic power filters (i.e., hybrid harmonic
power filters). The filtering efficiency of allocated passive harmonic power filters is
also scrutinized through the harmonic attenuation coefficient. The comparative
evaluation reveals the flexibility and desirability of the proposed techno-economic
multi-objective framework by considering both passive and active harmonic power
filters. Eventually, the authors investigate the performances of the newly proposed
multi-objective SOSA, multi-objective TMS-EMSA, multi-objective continuous/
discrete TMS-MSA, multi-objective SS-HSA, and multi-objective SS-IHSA on the
techno-economic multi-objective framework, which are subsequently compared to
the performance of the NSGA-II as a well-known and powerful state-of-the-art
multi-objective optimization algorithm. The results represent feasibility, reasonabil-
ity, and high performance of the newly developed multi-objective music-inspired
optimization algorithms, especially the multi-objective SOSA, when compared with
the NSGA-IL

It is presumed that readers have an adequate knowledge of the fundamental
concepts associated with the optimization process, meta-heuristic optimization algo-
rithms, and power systems studies, including power systems operation and planning
as well as power quality planning.

In the end, the authors encourage and welcome input from readers of this book,
who wish to point out deficiencies, provide suggestions, or inquire about any issues.

Tehran, Iran Mohammad Kiani-Moghaddam
Shahrood, Iran Mojtaba Shivaie
Firelands, OH Philip David Weinsier

November 2018
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Fundamental Concepts of Optimization
Problems and Theory of Meta-Heuristic
Music-Inspired Optimization Algorithms



Chapter 1 ®)
Introduction to Meta-heuristic Gk
Optimization Algorithms

1.1 Introduction

From the early years of the formation and evolution of modern man-made societies,
willingness to perform activities originating from modernization in industrial, com-
mercial, medical, and agriculture sectors with the least difficulty and cost was one of
the most prominent concerns of humans. In doing so, many efforts have been made
to provide relatively high prosperity in different dimensions of human life. In the
field of engineering sciences, one of the most fundamental of these efforts was to
determine optimal solutions for overcoming engineering challenges. Obtaining such
solutions is accomplished during a process called optimization. The main aim of this
process is to effectively decrease wasted time and resources, engineering mistakes,
and unnecessary costs in such a way that the process objectives are still satisfied. As
a result, the optimization process can appropriately provide a bridge between theory
and practice across the wide range of different sciences, especially the engineering
sciences. Specialists in different branches of the engineering sciences (e.g., electri-
cal, civil, computer, mechanical, and aerospace) often make use of mathematical
models associated with their specialty branches to optimize their time and resources.
In the optimization process, specialists make decisions according to these optimal
solutions while achieving minimum or maximum values of one or more objective
functions under the predetermined constraints.

In recent years, the application of the optimization process in solving engineering
challenges has dramatically grown, in view of the need of the specialists to identify
optimal solutions under varying parameters. These challenges are often expressed as
complicated, large-scale, non-convex optimization problems of a nonlinear mixed-
integer nature. Under these circumstances, many serious difficulties arise in reaching
a final optimal solution and, in the face of new concepts such as deregulation,
multidisciplinary analysis, and big data, already serious difficulties can escalate.
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In the literature, numerous algorithms have been developed to solve a wide range
of optimization problems. Nevertheless, given the architectural type of such algo-
rithms, each of these techniques is appropriate only for a narrow range of problems.
In other words, there is no specific optimization algorithm to solve optimization
problems with different characteristics. Selecting a suitable algorithm to solve
optimization problems depends not only on a thorough understanding of the opti-
mization problem and its parameters, but also on full knowledge of the architecture
of the algorithms and their characteristics.

In view of the wide variety of optimization problems and algorithms, providing
an appropriate classification is needed. Hence, the authors will focus on two
targets:

e Target 1: Provide a brief introduction pertaining to the optimization problems and
their parameters.

» Target 2: Present a brief overview related to the classification of optimization
algorithms with a focus on meta-heuristic optimization algorithms.

The rest of this chapter is organized as follows: First, the mathematical descrip-
tion of an optimization problem and its parameters are explained in Sect. 1.2. In Sect.
1.3, the classification of optimization problems and algorithms is reviewed from
different points of view. Finally, the chapter ends with a brief summary and some
concluding remarks in Sect. 1.4.

1.2 An Optimization Problem and Its Parameters

In a very general sense, optimization refers to finding one or more solutions from a
set of possible solutions through minimizing/maximizing one or more objective
functions under the predetermined constraints, if any.

1.2.1 Mathematical Description of an Optimization Problem

In mathematical terms, the standard form of an optimization problem can generally
be represented by Eqgs. (1.1) and (1.2):

Minimize  F(x) = [fi(x), - fu(x),--.fa(®)]; A >0}, ¥{a € 2}
subject to :
G(x) = [g1(x), -, & (x), .., g5 (x)] = 0; V{B >0}, v{be ¥’}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E > 0},V{e € ¥"}

(1.1)
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X= [x,..., %, ..., xnpv); V{v € PNPV} w{ NPV _pNCDVANDDVA gy e X1,
V{xénin <x < x‘rynax’v c lPNCDV}’
{x, € {0(1), ..., (w), ... ox, (W) Hy € $RPPY Y
(1.2)

In Eq. (1.1), A, B, and C indicate the number of objective functions that must be
simultaneously optimized, and the number of equality and inequality constraints that
must be satisfied, respectively. In this equation, F(x) € RA — R, G(x) € RE R,
and H(x) € RF — 9% also represent the vector of objective functions, the vector of
equality constraints, and the vector of inequality constraints, respectively. Addition-
ally, £,(x) : R"PY = R, g,(x) : RV — R, and A(x) : RV — R express
objective function a or component a of the vector of objective functions, equality
constraint » or component b of the vector of equality constraints, and inequality
constraint e or component e of the vector of inequality constraints, respectively. In
Eq. (1.1), x describes the vector of decision-making variables—vector of design—
which belongs to the nonempty feasible decision-making space—nonempty possible
design space—X C R""V. In Eq. (1.2), x, represents decision-making variable v or
component v of the vector of decision-making variable, which can be continuous or
discrete. The sum of the number of continuous decision-making variables (NCDV)
and the number of discrete decision-making variables (NDDV) is considered as the
total number of decision-making variables (NDV). If the decision-making variable x,
has a continuous nature—belongs to the set of the NCDV—the set of candidate
admissible values for this decision-making variable is confined by a lower bound,
x;“i“, and an upper bound, x,"**. For the same reason, if the decision-making variable
X, has a discrete nature—belongs to the set of the NDDV—the set of candidate
permissible values for this decision-making variable is defined as the set {x,(1), ...,
x,(w,), ... ,x,(W,)}. The point to be made here is that the nonempty feasible
decision-making space, X, which names the possible design space, is addressed as
the set {xIG(x) = 0,H(x) < 0}. The vector of objective functions addresses the
illustration of the vector of decision-making variables and contains the values of the
objective functions, as given by Eq. (1.3):

z=F(x)=[f1(x),....fa(x),....fa(x)]; V{A>2},V{a € P*} (1.3)

The illustration of the nonempty feasible decision-making space in the objective
space is known as feasible objective space Z = F(X) and is described by using the set
of {F(x)lx € X}. It is necessary to mention that the domain of the feasible objective
space in the multi-objective optimization problems is considerably larger than that in
single-objective problems. More precisely, the domain of the feasible objective
space in an optimization problem depends on the number of its objective functions.
A solution is considered to be a possible solution if it does not lead to any violation
of equality and inequality constraints.

Technically speaking, the standard form of an optimization problem is generally
defined as a minimization problem. Nonetheless, a maximization problem can be
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addressed in the negative form of its equivalent minimization problem. More
precisely, the maximization of the objective function a, f,(x), is indicated as a
minimization of the negative of the corresponding objective function, —f,(x). More-
over, the inequality constraint is generally described as /.(x) < 0, according to the
standard formulation of an optimization problem from Eq. (1.1). For this reason, if
there is an inequality constraint, e, such as £.(x) > 0, in the formulation of a specific
optimization problem, this constraint must be implemented as —A.(x) < 0.

1.3 Classification of an Optimization Problem

Broadly speaking, the classification of an optimization problem is a challenging task.
This is due to fact that there are different tastes, ideas, and experiences for this
classification. Here, the authors’ aim is to present a brief classification for the
standard form of an optimization problem, as demonstrated by Egs. (1.1) and
(1.2). Readers interested in a comprehensive discussion on this topic are referred
to the work by Rao [1].

1.3.1 Classification of Optimization Problems
Jrom the Perspective of a Number of Objective
Functions

Optimization problems can be broken down into two types, from the perspective of a
number of objective functions: single- and multi-objective. In Egs. (1.1) and (1.2), if
A is equal to 1, the corresponding problem is converted to a single-objective
optimization problem. The single-objective optimization problem can then be
addressed by Eqgs. (1.4) and (1.5):

Mir;ier)r(lize F(x) = [f(x)]
subject to :
G(x) = [g1(X),---,85(X),...,85(x)] = 0; V{B >0},v{b e ¥®}
H(x) = [ (x), ..., he(x),...,hg(x)] <0; V{E > 0},V{e € ¥"}

(1.4)
X = [X1yee X xnpy]iV{y € WDV} @NDY @ NCDVANDDVY ity ¢ )
v{x‘fnin <x < x‘tnax’v c \PNCDV}’
{x, € {0,(1), ..o (w), ... x(Wy) Hy € PRPPY Y
(1.5)
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From Egs. (1.4) and (1.5), a single-objective optimization problem consists of an
individual objective function. Solving a single-objective optimization problem
necessitates finding an individual response/output called the optimal solution. In
Egs. (1.1) and (1.2), however, if A is larger than 1, the corresponding problem is
turned into to a multi-objective optimization problem. In this optimization problem,
several different objective functions are simultaneously considered with conflicting
interests relative to each other. Solving a multi-objective optimization problem gives
rise to an optimal response/output set referred to as a Pareto-optimal solution set or
non-dominated solution set. As a consequence, a multi-objective optimization prob-
lem is much more complicated than a single-objective optimization problem. The
solution process for a multi-objective optimization problem is described in Chap. 2.

1.3.2 Classification of Optimization Problems
Jrom the Perspective of Constraints

Optimization problems can be divided into four types, from the perspective of a
number of constraints: unconstrained, equality constrained, inequality constrained,
and hybrid equality or inequality constrained. In the standard formulation of an
optimization problem presented in Eqs. (1.1) and (1.2), if B plus E is equal to zero,
B + E = 0, the corresponding problem is converted to an unconstrained optimization
problem. The unconstrained optimization problem can, then, be given by Eqgs. (1.6)
and (1.7):

Minimize  F(x) = [f1(x),....fo(X),....fa(X)]; V{A >0},V{a € P*}

xeX
(1.6)
x= [x,....%,....xn0v); V{ve ‘I‘NDV},V{‘PNDV:‘I‘NCDV+NDDV},V{X € X},
y{xmin < x, < x;naxlv c lI;NCDV},
{xv e {x(1),...,x(w),...,x(W,)}Hv e ‘PNDDV}
(1.7)

Solving an unconstrained optimization problem is much easier than a constrained
optimization problem. Also from Egs. (1.1) and (1.2), if B is greater than zero,
B > 0, and E is equal to zero, E = 0, the corresponding problem is transformed into
an equality constrained optimization problem, as shown in Egs. (1.8) and (1.9):

Mir;ier)r(lize F(x) = [f(x)]
subject to :
G(x) = [81(x), -, 8,(x),---,gs(x)] = 0: V{B >0}, ¥{b e ¥’}
(1.8)
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X= [x,..., %, ..., xnpv); V{v € PNPV} w{ NPV _pNCDVANDDVA gy e X1,
V{xénin <x < x‘rynax’v c lPNCDV}’
{x, € {0(1), ..., (w), ... ox, (W) Hy € $RPPY Y
(1.9)

Similarly, if B is equal to zero, B = 0, and E is greater than zero, E > 0, the
corresponding problem is also changed to an inequality constrained optimization
problem, as illustrated in Eqgs. (1.10) and (1.11):

Minir}r(u'ze F(x) = [f(x)]
Xe
subject to :

H(x) = [h(x), ..., he(x),...,hg(x)] < 0; V{E >0},V{e € ¥*}
(1.10)
x= [x1,...,%,...oxpv]; V{v € PPV}, y{PNPV=@NCDVINDDVA yiy € X},

v{x:’nin <x < x;nax|v c \PNCDV},
{x € {0,(1), .. (W), .. x(Wy) Hy € PRPPYY
(1.11)

By the same token, if B and E are simultaneously greater than zero, B > 0 and
E > 0, the corresponding problem is turned into a hybrid equality or inequality
constrained optimization problem.

1.3.3 Classification of Optimization Problems
Jrom the Perspective of the Nature of Employed
Equations

Optimization problems can be classified into two different types, from the perspec-
tive of the nature of the employed equations in objective functions and constraints:
linear and nonlinear. In Egs. (1.1) and (1.2), the problem will be linear provided that
all objective functions and equality and inequality constraints are defined as linear
functions of the decision-making variables. And the problem will be nonlinear if the
conditions of the objective functions and equality and inequality constraints are
nonlinear functions of the decision-making variables. Solving nonlinear optimiza-
tion problems is much more difficult than linear optimization problems. As previ-
ously mentioned, each optimization algorithm is able to solve a specific range of
optimization problems; accordingly, this classification is very useful for choosing an
efficient optimization algorithm.
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1.3.4 Classification of Optimization Problems
Jrom the Perspective of an Objective Functions
Landscape

Optimization problems can be broken down into two different types, from the
perspective of an objective functions landscape: unimodal and multimodal. Consider
a single-objective optimization problem in accordance with Egs. (1.4) to (1.5). In
this formulation, the corresponding problem is unimodal if its objective function has
only one peak. In this case, the local optimal point is also the global optimum point.
A convex optimization problem is considered a special type of unimodal optimiza-
tion problem if the objective function has not only a certain convexity but also a
guaranteed optimality. Furthermore, if the objective function has more than one peak
then the corresponding problem is considered to be a multimodal optimization
problem. Basically, multimodal optimization problems are much more complicated
in comparison to unimodal optimization problems.

1.3.5 Classification of Optimization Problems
Jrom the Perspective of the Kind of Decision-Making
Variables

Optimization problems can be divided into three different types, from the perspec-
tive of the kind of the decision-making variables: continuous, discrete, and hybrid
continuous and discrete. In Eqgs. (1.1) and (1.2), if the decision-making variables
have continuous values—real values over certain intervals—the corresponding
problem is continuous. This optimization problem can be presented according to
Eqgs. (1.12) and (1.13):

Mir;ier)r(lize F(x) = [f1(x),....fa(X),.. .. fa(X)]; V{A>0},V{a € ‘PA}
subject to :
G(x) = [g1(X),---,85(X),...,85(x)] = 0; V{B >0},v{b e ¥®}
H(x) = [h1(x), ..., he(x),...,he(x)] < 0; V{E > 0},V{e € ¥*}

(1.12)
X = [}C],...,xv,...,XNCDv]; V{VE\PNCDV},V{XGX},

‘ (1.13)
v{x;mn <x < x‘l/‘nax|v c \PNCDV}
Using similar reasoning for Egs. (1.1) and (1.2), if the decision-making variables
have discrete values over certain intervals, the corresponding problem is discrete.
This optimization problem can be given using Egs. (1.14) and (1.15):
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Minimize F(x) = [f1(X), . fa(X),- .. fa(X)]; V{A > 0},V{a € P}
subject to :
G(x) =[&1(x):---,8(x),---,8(x)] = 0: V¥{B >0}, V{h € ¥"}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E >0},V{e € ¥"}
(1.14)

X = [X1,. ., Xps .-, XNDDV]; V{v € ‘PNDDV},V{X € X},

1.15

{x € {n(1), ... x(w), ... x, (W) Hy € $RPPY Y (1.15)

In a discrete optimization problem, if the discrete decision-making variables have

only binary values, {0, 1}, then the problem is known as a pure-binary optimization

problem. Many real-world optimization problems are found to have a combination

of continuous and discrete decision-making variables, making them mixed-integer

problems—see Eqs. (1.1) and (1.2). In this situation, the complexity of the optimi-

zation problem dramatically increases. In the mixed-integer optimization problem, if

the discrete decision-making variables have only binary values then the problem is
recognized as a mixed-binary integer problem.

1.3.6 Classification of Optimization Problems
Jrom the Perspective of the Number of Decision-Making
Variables

Optimization problems can be classified into two different types, from the perspec-
tive of the NDV: single-variable and multivariable. In the standard formulation of an
optimization problem described by Egs. (1.1) and (1.2), if the NDV is equal to 1 then
the corresponding problem becomes a single-variable problem. A single-variable
optimization problem is thus represented on the basis of Eqs. (1.16) and (1.17):

Mir;ier)r(lize F(x) = [f1(X), o fa(X), oo fa(X)]; V{A > 0},V{a € P}
subject to :
G(x) = [g1(X),---,85(X),-..,85(x)] = 0; V{B >0},v{b € ¥®}
H(x) = [ (x), ..., h(x),...,hg(x)] <0; V{E>0},V{e € ¥*}

(1.16)
x= [x]; V{x€X},V{xm" <x < x™*|x: continuous decision-making variable},
{xe{x(1),...,x(w),...,x(W)}|x : discrete decision-making variable}

(1.17)

Similarly, if the NDV is greater than 1 then the corresponding problem is converted
into a multivariable problem. A multivariable optimization problem has a much higher
computational burden compared to a single-variable optimization problem.
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1.3.7 Classification of Optimization Problems
Jrom the Perspective of the Separability of the Employed
Equations

Optimization problems can be categorized into two different types, from the per-
spective of the separability of the employed equations: separable and inseparable. In
Egs. (1.1) and (1.2), the corresponding problem is a separable optimization problem
provided that all objective functions and equality and inequality constraints can be
indicated as the sum of the NDV single-variable functions. The separable optimiza-
tion problem is given according to Eqgs. (1.18) and (1.19):

Mll;lel)?lZe [ Z fl v xv Z fa v .Xv L) Z fA,v(xV>];

\pNDV \I;NDV VE\PNDV
V{A > 0},V{a € ¥*}
subject to :
Zglvxv . Zgbvxv ZngxV = ;
VE\PNDV &E\PNDV Ve\{;NDV

V{B > 0},V{b € ¥?}

[Z hlvxv . Zhevxva QY ZhE,v(Xv)‘|§0;

llINDV \PNDV vE\PNDV

V{E > 0},V{e € ¥"}

(1.18)
X — [xl e Xy -xNDV V{V c lIJNDV} v{lPNDV \PNCDV+NDDV} V{X c X},
V{xlrynin <x < x‘znax}v c \PNCDV}’
{xv €{x (1), xw), . x (W)} v € TNDDV}
(1.19)

Moreover, if each of the objective functions and equality and inequality con-
straints cannot be expressed as the sum of the NDV single-variable functions, the
corresponding problem is an inseparable problem.

1.3.8 Classification of Optimization Problems
Jrom the Perspective of Uncertainty

Optimization problems can be broken down into two different types, from the
perspective of uncertainty: deterministic and nondeterministic. In Eqs. (1.1) and
(1.2), if the values of the objective functions and equality and inequality constraints
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are precisely specified for each set of decision-making variables and input parame-
ters, the corresponding problem is deterministic. Conversely, the problem is
nondeterministic if some or all of the decision-making variables and input parame-
ters have a nondeterministic or stochastic nature. Put simply, in the nondeterministic
optimization problem, the values of the objective functions and equality and inequal-
ity constraints are not exactly determined and have uncertainty. Uncertainly in
optimization problems introduces additional complexities and increases the effects
of existing ones. The need to provide new techniques is, therefore, felt more than
ever to accurately analyze and mitigate the effects of the different uncertainties and
complexities arising from them.

1.4 Optimization Algorithms and Their Characteristics

Different optimization problems, with various structures and parameters, have given
rise to the emergence of distinct optimization algorithms. Each of the optimization
algorithms is only suitable for solving a specific range of optimization problems. In
the literature, there is no unique, well-recognized approach for classifying the
optimization algorithms. This challenging task, to develop diverse indices, has fallen
on specialists and researchers in the field. In a broad sense, optimization algorithms
can be classified into two main categories: deterministic and nondeterministic/
stochastic. Deterministic algorithms are based on a very precise process such that
the decision-making variables and employed functions are repeatable. Most classical
and traditional optimization algorithms fall into the category of deterministic opti-
mization algorithms. The Newton-Raphson (NR) algorithm is one of the well-known
deterministic optimization algorithms, which requires the derivatives of the
employed functions in order to solve an optimization problem. The NR algorithm
is perfectly appropriate for solving unimodal optimization problems but, by contrast,
does not have favorable performance in multimodal optimization problems or
optimization problems with discontinuity in objective functions. Readers interested
in a comprehensive discussion on this topic are referred to the work by Rao [1].

In addition, nondeterministic/stochastic optimization algorithms always have a
stochastic behavior. These algorithms can be broken down into two different types:
heuristic and meta-heuristic. Heuristic means finding a solution by trial and error.
Heuristic optimization algorithms have a simple structure and using them, particu-
larly on complicated and large-scale optimization problems, can yield relatively
good solutions over a reasonable period of time. However, the main disadvantage
of this category of the optimization algorithms is that there is no guarantee that an
optimal solution or a set of optimal solutions can be found. Local search algorithms
are the most well-known heuristic optimization algorithms. These algorithms move
through limited variations from one solution to another in the search space so as to
find a desirable solution. In general, the local search optimization algorithms are
approximate or incomplete algorithms because, even if the best solution found by
these algorithms is not optimal, the search process may be stopped. Stopping occurs
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even if the optimization algorithm is terminated due to its failure to improve the
solution. In this condition, the optimal solution can be far from the proximity and
neighborhood of the solutions that the algorithm has passed through. Readers
interested in a comprehensive discussion on heuristic optimization algorithms are
referred to the work by Rothlauf [2].

Developments to overcome the drawbacks of the heuristic optimization algo-
rithms are known as meta-heuristic optimization algorithms. In the meta-heuristic
phrase, the “meta” part means beyond or at a higher level. Hence, and as expected,
meta-heuristic optimization algorithms have better performance compared to their
heuristic counterparts. In the next section, a brief introduction to meta-heuristic
optimization algorithms and their classification is presented.

1.5 Meta-heuristic Optimization Algorithms

In a very general sense, meta-heuristic algorithms are optimization techniques
operating independently of the optimization problems. In other words, unlike other
optimization algorithms, these algorithms are not dependent on the architecture of
the optimization problems and can be used to solve a wide range of optimization
problems with different structures. The main purpose of meta-heuristic optimization
algorithms is not only their efficient work in the search space, but also their use of
strategies to avoid getting stuck in a local optimum point and instead finding the
semi-optimal or optimal solutions. Meta-heuristic optimization algorithms employ
experience and data obtained during the search process in the form of a memory,
with the aim of guiding this process into a global optimum point in the search space.
These algorithms also rely on random search principles in all stages of the search
process for the optimal solution or a set of optimal solutions.

Most meta-heuristic optimization algorithms use a somewhat similar mechanism
in order to search for the optimal solution or a set of optimal solutions. The search
process of these algorithms begins with the creation of one or more random
responses—initial solutions—within the permissible range of the decision variables.
Afterwards, one or more new random responses are generated by employing the
predefined operators of the optimization algorithm. The new responses are compared
to available responses in the memory of the optimization algorithm; the memory is
then updated according to the best responses. This process continues until the
stopping criterion of the optimization algorithm is reached. The most important
part of the architecture of meta-heuristic optimization algorithms is the operators
employed in order to generate one or more new responses. From a technical point of
view, this part plays the role of a central core for the meta-heuristic optimization
algorithms and expresses its intelligence capacity and performance capability.

Given the breadth and variety of meta-heuristic optimization algorithms, provid-
ing a well-organized classification for recognizing their characteristics is certainly a
necessity. This category can be highly influential in choosing a meta-heuristic
algorithm to solve a typical optimization problem. In view of the fact that meta-
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heuristic optimization algorithms can be based on different criteria, it is a complicated
and challenging task to provide a structural classification system for them. In this
chapter, a classification of meta-heuristic optimization algorithms is presented with a
focus on the inspirational source. For a comprehensive discussion regarding different
classifications of these optimization algorithms on the basis of other criteria, inter-
ested readers are directed to the work by Rao [1], Ng et al. [3], and Boussaid et al. [4].

1.5.1 Classification of Meta-heuristic Optimization
Algorithms with a Focus on Inspirational Sources

Nature is a huge and powerful source of inspiration and a highly diverse, dynamic,
and strong exhibit of attractive phenomena for solving difficult and complicated
problems across different sciences. The design of a wide range of meta-heuristic
optimization algorithms has been inspired by natural phenomena. As a consequence,
the inspirational source can be employed as a very worthy criterion for classifying
meta-heuristic optimization algorithms. However, even with a focus on natural
phenomena, depending on how much detail is considered, the classification of
meta-heuristic optimization algorithms may have many subclassifications. By con-
centrating on the highest level of a given inspirational source, the algorithms can be
broken down into four different categories [5]: (1) swarm intelligence-based meta-
heuristic optimization algorithms (SI-MHOAs); (2) biologically inspired meta-
heuristic optimization algorithms not based on swarm intelligence (BI-MHOAs-
NSI); (3) physics- and chemistry-based meta-heuristic optimization algorithms
(P&C-MHOASs); and (4) human behavior- and society-inspired meta-heuristic opti-
mization algorithms (H&S-MHOASs). In the following sections, each of the afore-
mentioned categories is briefly addressed.

1.5.1.1 Swarm Intelligence-Based Meta-heuristic Optimization
Algorithms

This category of meta-heuristic optimization algorithms was inspired by existing
swarm intelligence-oriented structures in nature. SI-MHOAs are organized by
using a population of agents (e.g., flocks of birds, fish, ants, termites, bees,
fireflies, bats) that interact locally with each other and globally with the environ-
ment. These multi-agent populations follow some simple rules. Although there is
no centralized control structure that determines the behaviors of the agents, local
interactions and partly random interactions among the agents give rise to the
emergence of intelligent global behavior, which is impossible for an individual
agent. Put another way, any available agent in the swarm group may be considered
as unintelligible; however, the entire swarm group may demonstrate a self-
organized behavior. Accordingly, a swarm group consisting of multiple agents
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will exhibit intelligent behaviors. Moreover, the structure of SI-MHOAs is such
that data is shared among the different agents. This data sharing during various
iterations of the optimization algorithm results in an increase in the efficiency of
the related meta-heuristic optimization algorithms. On the other hand, the available
agents in the swarm group can be effortlessly paralleled. The parallelism charac-
teristic of SI-MHOAs can cause real-world, large-scale optimization to be more
feasible from an implementation standpoint. As a result, meta-heuristic optimiza-
tion algorithms are highly popular and widely employed for solving optimization
problems with different structures across various sciences.

Examples of the most well-known SI-MHOAs include (1) particle swarm opti-
mization algorithm [6]; (2) ant colony optimization algorithm [7]; (3) firefly search
optimization algorithm [8]; (4) bat search optimization algorithm [9]; (5) bacteria
foraging optimization algorithm [10]; (6) bee colony optimization algorithm [11];
(7) wolf search optimization algorithm [12]; and, (8) cuckoo search optimization
algorithm [13]. Interested readers are directed to the work by Parpinelli and Hopes
[14] for a comprehensive discussion of SI-MHOAs.

1.5.1.2 Biologically Inspired Meta-heuristic Optimization Algorithms
Not Based on Swarm Intelligence

SI-MHOAs represent a subset of a larger set known as biologically inspired meta-
heuristic optimization algorithms. Many of the biologically inspired algorithms do
not directly apply the original characteristic of the SI-MHOAs—swarm/collective
behavior—and are, therefore, known as a subset of the BI-MHOASs-NSI. As a result,
the integration of the subset of the SI-MHOAS and the subset of the BI-MHOAs-NSI
is organized as a set of biologically inspired meta-heuristic optimization algorithms.

Examples of the most well-known BI-MHOASs-NSI include (1) genetic optimi-
zation algorithm [15]; (2) brain storm optimization algorithm [16]; (3) dolphin
echolocation optimization algorithm [17]; (4) shuffled frog leaping optimization
algorithm [18]; and, (5) flower pollination optimization algorithm [19]. Readers
interested in a comprehensive discussion on this topic are referred to the work by
Kar [20].

1.5.1.3 Physics- and Chemistry-Based Meta-heuristic Optimization
Algorithms

Biologically inspired meta-heuristic optimization algorithms belong to a larger set
known as the nature-inspired meta-heuristic optimization algorithms. However,
some of these algorithms cannot be included in the set of biologically inspired
meta-heuristic optimization algorithms, due to some specific characteristics. These
algorithms have been inspired by using physics and chemistry phenomena and,
therefore, are identified as P&C-MHOAs. Combining the set of P&C-MHOAs and
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the set of biologically inspired meta-heuristic optimization algorithms forms a
perfect set of nature-inspired meta-heuristic optimization algorithms.

Examples of the most well-known P&C-MHOAs include (1) harmony search
optimization algorithm [21]; (2) gravitational search optimization algorithm [22];
(3) simulated annealing optimization algorithm [23]; (4) electromagnetism optimi-
zation algorithm [24]; and, (5) big bang-big crunch optimization algorithm
[25]. Interested readers are directed to the work by Biswas et al. [26] and the work
by Siddique and Adeli [27] for a comprehensive discussion in the context of P&C-
MHOA:s.

1.5.1.4 Human Behavior- and Society-Inspired Meta-heuristic
Optimization Algorithms

Some of the meta-heuristic optimization algorithms have an inspirational source
other than nature. It is, therefore, not possible to put these optimization algorithms in
the categories mentioned thus far. These meta-heuristic optimization algorithms,
which are generally inspired by human behavior and modern human societies, fall
into the fourth category associated with the classification of the meta-heuristic
optimization algorithms.

Examples of the most well-known H&S-MHOAs include (1) imperialist compet-
itive optimization algorithm [28]; (2) anarchic society optimization algorithm [29];
(3) social emotional optimization algorithm [30]; (4) league championship optimiza-
tion algorithm [31]; and, (5) artificial cooperative search optimization algorithm [32].

1.5.1.5 Some Hints Concerning the Architecture of Meta-heuristic
Optimization Algorithms

As indicated earlier, nature is an extremely broad inspirational source for the design
of meta-heuristic optimization algorithms. Nevertheless, specialists and researchers
should note that many of the available inspirational sources in nature can resemble
one another. Hence, considering each of these inspirational sources separately in the
design of meta-heuristic optimization algorithms may decrease the novelty and
originality characteristics for the meta-heuristic optimization algorithms. To illus-
trate, with about 33,600 different species, fish have one of the widest variety of
species among wildlife species in nature. This does not mean that specialists and
researchers should invent 33,600 meta-heuristic optimization algorithms. Nor does it
mean that by inventing a meta-heuristic optimization algorithm from a single species
of fish research and development should be neglected on other species. It is simply
important to note that existing similarities can be found in inspirational sources,
which ultimately leads to the homogeneity of the meta-heuristic optimization algo-
rithms, which are identified and taken into account as much as possible in the
architecture of the algorithms. In addition, it is suggested that instead of establishing
new algorithms using inspirational sources similar to those for other algorithms,
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specialists and researchers should concentrate on developing the architecture, per-
formance, and efficiency of available meta-heuristic optimization algorithms.

1.6 Conclusions

In this chapter, the authors presented a brief introduction to the optimization
concepts and meta-heuristic optimization algorithms. First, the standard formulation
of an optimization problem was explained, followed by a thorough classification for
optimization problems with a focus on eight different points of view: (1) the number
of objective functions; (2) the constraints; (3) the nature of the employed equations;
(4) the objective functions landscape; (5) the kind of decision-making variables;
(6) the number of decision-making variables; (7) the separability of the employed
equations; and, (8) the uncertainty.

In addition, a thorough categorization was reported for the meta-heuristic opti-
mization algorithms by concentrating on the inspirational source. This categorization
was developed based on the highest level of the inspirational sources and was broken
down into four classes: (1) swarm intelligence-based meta-heuristic optimization
algorithms; (2) biologically inspired meta-heuristic optimization algorithms not
based on swarm intelligence; (3) physics- and chemistry-based meta-heuristic opti-
mization algorithms; and, (4) human behavior- and society-inspired meta-heuristic
optimization algorithms.

Finally, based on hints concerning architecture of the meta-heuristic optimization
algorithms, it was suggested that efficient meta-heuristic optimization algorithms
should be addressed and invented by specialists and researchers so that real-world,
large-size, non-convex optimization having a nonlinear, mixed-integer nature
become more practical from an implementation perspective. As a result, the main
focus of the authors is not only to investigate the advantages and disadvantages of
meta-heuristic optimization algorithms, with the aim of achieving better insight into
more beneficial algorithms, but also to develop algorithms to tackle the difficulties in
solving complicated optimization problems.

Appendix 1: List of Abbreviations and Acronyms

NCDV Number of continuous decision-making variables

NDDV Number of discrete decision-making variables

NDV Number of decision-making variables including continuous and
discrete decision-making variables

NR Newton-Raphson

SI-MHOAs Swarm intelligence-based meta-heuristic optimization algorithms

(continued)
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BI-MHOAs- | Biologically inspired meta-heuristic optimization algorithms not based

NSI on swarm intelligence

P&C- Physics- and chemistry-based meta-heuristic optimization algorithms
MHOAs

H&S- Human behavior- and society-inspired meta-heuristic optimization algorithms
MHOAs

Appendix 2: List of Mathematical Symbols

Index:

a Index for objective functions running from 1 to A

b Index for equality constraints running from 1 to B

e Index for inequality constraints running from 1 to E

v Index for decision-making variables, including the continuous and discrete decision-
making variables, running from 1 to the NDV and an index for continuous decision-
making variables running from 1 to the NCDV and also an index for discrete decision-
making variables running from 1 to the NDDV

Set:

pA Set of indices of objective functions

pB Set of indices of equality constraints

pE Set of indices of inequality constraints

PNEPY [ Set of indices of continuous decision-making variables

WNPDV | Set of indices of discrete decision-making variables

WNDY | Set of indices of decision-making variables, including the continuous and discrete
decision-making variables

w, Set of indices of candidate permissible values of discrete decision-making variable v

R Set of real numbers

RE B-dimensional set of real numbers

RE E-dimensional set of real numbers

RNPY | NDV-dimensional set of real numbers

Parameters:

x Upper bound on the continuous decision-making variable v

x;“i“ Lower bound on the continuous decision-making variable v

X Nonempty feasible decision-making space, including feasible continuous and discrete
decision-making spaces

Z Feasible objective space

Variables:

fu(x) Objective function a of the optimization problem or component a of the vector of
objective functions

F(x) Vector of objective functions of the optimization problem

8gu(X) Equality constraint b of the optimization problem or component b of the vector of
equality constraints

G(x) Vector of equality constraints of the optimization problem

(continued)
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ho(x) Inequality constraint e of the optimization problem or component e of the vector of
inequality constraints

H(x) Vector of inequality constraints of the optimization problem

Xy Continuous or discrete decision-making variable v

x,(w,) | Candidate permissible value w of discrete decision-making variable v

X Vector of decision-making variables

z Vector of objective functions
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Chapter 2 ®)
Introduction to Multi-objective st
Optimization and Decision-Making

Analysis

2.1 Introduction

In today’s world, overcoming complicated real-world engineering challenges with
big data has become an indispensable need for specialists and researchers in order to
make better use of their time and resources. These engineering challenges are mostly
addressed as a large-scale, non-convex optimization problem having a nonlinear,
mixed-integer nature. As a result, the application of the optimization is significantly
increased for solving real-world engineering challenges and achieving an optimal
solution. Initially, optimization problems were organized as simple single-objective
mathematical models in which one given objective function needed to be minimized
or maximized. More precisely, a single-objective optimization problem consists of
an individual objective function subject to some specified constraints in such a way
that solving this particular optimization problem leads to finding an individual
optimal solution. That is to say that the main goal of minimization or maximization
of a single-objective optimization problem is to obtain the minimum or maximum
value of the corresponding objective function, provided that this value does not
violate any specified constraints—an optimal solution.

Conversely, in multi-objective optimization problems (MOOPs), a set of objec-
tive functions that are often conflicting should be simultaneously minimized or
maximized. In this circumstance, solving a MOOP results in finding a set of different
compromise solutions called a Pareto-optimal solution set or non-dominated optimal
solution set. With that in mind, only one solution should be chosen from the Pareto-
optimal solution set. Unlike a single-objective optimization problem, solving a
MOQOP is, therefore, composed of three important and completely different steps:
(1) formation of a mathematical model; (2) optimization; and (3) decision-making
[1]. In the optimization step, the Pareto-optimal solution set is determined; however,
in the decision-making step, the most satisfactory solution is chosen from the Pareto-
optimal solution set based on the preferences of the decision maker.
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To illustrate, consider a two-objective optimization problem for operation of a
typical engineering system. Simultaneous minimization of operational costs and
maximization of system reliability are two conflicting objectives considered in this
optimization problem. This means that minimization of operational costs brings
about a reduction in system reliability, and maximization of system reliability
gives rise to an increase in operational costs. As a consequence, there is no individual
solution that can simultaneously optimize these two conflicting objectives. In this
condition, a Pareto-optimal solution set is achieved by solving this two-objective
optimization problem. As an instance, take into account two solutions in the Pareto-
optimal solution set. If the first solution, in terms of the operational costs, can
overcome the second solution—given that the first solution has a lower cost than
the second one—this solution with respect to system reliability cannot overcome the
second solution—given that the first solution definitely has less reliability than the
second one. Put another way, compared to the second solution, the first solution is a
non-dominated response/output in terms of operational costs—the lowest opera-
tional costs—when it is a dominated response/output with respect to system reli-
ability—the most unfavorable performance. After determination of the Pareto-
optimal solution set, or non-dominated solution set, the decision maker, by consid-
ering its preferences, should choose the final solution so that a trade-off is made up
between operational costs and system performance. Given the preferences of the
decision maker, it is also possible that system performance would have a higher
degree of significance compared to the operational costs and vice versa. Hence, the
preferences of the decision maker dramatically affect the choice of the final solution
from the Pareto-optimal solution set.

In the MOOPs, the complexities and difficulties of the solution process are
dramatically increased in view of introducing and integrating new concepts com-
pared to single-objective optimization problems. In addition, multi-objective opti-
mization algorithms (MOOAs) are needed to solve the MOOPs. In related literature,
many MOOAs have been developed to deal with a wide range of multi-objective
optimization problems. However, each MOOA is appropriate for solving only a
specific range of MOOPs. The choice of a well-suited MOOA depends first on a full
understanding of the MOOP and its characteristics and second on having full
knowledge of the architecture and features of the different MOOAs. Due to the
different concepts of the optimization in the MOOPs and the diversity and variety of
MOOAs, it is thoroughly indispensable to clarify the fundamental concepts of multi-
objective optimization and provide a suitable classification for the MOOAs. In this
chapter, then, the authors will concentrate on the following targets.

* Target 1: Providing a brief introduction associated with fundamental concepts of
optimization in the MOOPs.

e Target 2: Presenting a brief overview pertaining to the classification of the
MOOA:s.

In this chapter, the authors do not present all of the details related to optimization
concepts in the MOOPs, as it is assumed that the reader is already familiar with the
elementary concepts of optimization. The main focus, then, will be on the funda-
mental concepts of optimization in the MOOPs, particularly the fundamental



2.2 Necessity of Using Multi-objective Optimization 23

concepts discussed in the MOOPs that will be widely employed later in this book.
Where appropriate, though, the reader will be referred to related studies that cover
more details of concepts of optimization in the MOOPs.

The remainder of this chapter is arranged as follows: First, the necessity of using
the multi-objective optimization process is reviewed in Sect. 2.2. Then, the funda-
mental concepts of optimization in the MOOPs are described in Sect. 2.3. In Sect.
2.4, the classification of the MOOAs is addressed from different points of view. A
fuzzy satisfying method is also expounded upon in Sect. 2.5. Finally, the chapter
ends with a brief summary and some concluding remarks in Sect. 2.6.

2.2 Necessity of Using Multi-objective Optimization

In a very general sense, many objective functions can be employed in real-world
engineering problems. These objective functions usually have a conflicting,
noncommensurable, and correlated nature with each other. In this way, the integra-
tion of objective functions of a MOOP, with the aim of forming a single-objective
optimization problem and then employing the developed single-objective solvers, is
a common misconception.

The conversion of a MOOP into a single-objective optimization problem causes
the decision-making step to be transferred before the optimization step. It is,
therefore, very difficult to specify the preferences of the decision maker before the
optimization, and it may not match the obtained solution of the single-objective
optimization problem with a determined solution of the MOOP that is selected from
the Pareto-optimal solution set by the decision maker. Nevertheless, the implemen-
tation of the optimization process in a MOOP, without turning it into a single-
objective problem, can force the decision-making step to be placed after the optimi-
zation step or these two steps to be transformed into a hybrid process. This structure
helps the decision maker to better understand the MOOP and be able to make a more
knowledgeable choice through the Pareto-optimal solution set with regard to its
preferences. Achieving the Pareto-optimal solution set also enables the decision
maker to perform a thorough analysis regarding the interdependencies among
decision-making variables, objective functions, and constraints. Acquiring knowl-
edge about these interactions can be employed in order to reconsider the mathemat-
ical model of the optimization problem with the aim of increasing the chances of
determining a solution that not only aligns better with reality but also better matches
the preferences of the decision maker. As a result, if an optimization problem
consists of multiple conflicting, noncommensurable, and correlated objective func-
tions, the most reasonable strategy is to take advantage of the multi-objective
optimization process in order to solve the problem.
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2.3 Fundamental Concepts of Optimization in the MOOPs

The concepts of optimization in the MOOPs are different from those in single-
objective problems. In this section, the fundamental concepts of optimization in the
MOOPs are briefly addressed. As previously mentioned, the optimization process in
the MOOPs includes three general steps: (1) formation of a mathematical model;
(2) optimization; and, (3) decision-making [1]. The mathematical description of an
optimization problem—the formulation of an optimization problem by defining its
decision-making variables, objective functions, and constraints—is considered as
the first step in the optimization process. The next two steps in the optimization
process depend on the structure and characteristics of the problem. Many studies
carried out in the context of the optimization process implicitly suppose that the
MOQORP has been correctly determined. In practice, however, this assumption is not
necessarily valid on all occasions. As a consequence, providing a rigorous mathe-
matical model by considering the structure and characteristics of a MOOP can be
practically helpful in the optimization process.

2.3.1 Mathematical Description of a MOOP

Technically speaking, a MOOP consists of multiple objective functions in such a
way that these functions ordinarily have a conflicting, noncommensurable, and
correlated nature with each other. The mathematical description of a MOOP can
generally be expressed according to Egs. (2.1) and (2.2) [1]:

Mir}zig)r(lize F(x) = [f1(X), o fa(X), oo faX)]; V{A >2},V{a € P}
subject to :
G(x) =[g;(x),...,8(x),...,gg(x)] =0; V{B> O},V{b € ‘I‘B}
H(x) = [ (x), ..., he(x),...,hg(x)] <0; V{E>0},V{e € ¥*}

(2.1)
X= [X1y.e s Xpy..., XNDV]; V{v € PNDV PpNDV _pNCDVANDDY 'y X},
v{xénin <x < x‘inax’v c \PNCDV}’
V{x, € {x(1),...,x(w),...,x,(W,)}v € ¥"PPV}
(2.2)

The explanations associated with the parameters and variables from Egs. (2.1)
and (2.2) were previously defined in Sect. 1.2.1 of Chap. 1. The vector of objective
functions addresses the illustration of the vector of decision-making variables and
contains the values of the objective functions, as given by Eq. (2.3):
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z=F(x)=[f1(x),....fa(x),....fa(x)]; V{A>2},V{a € P*} (2.3)

The explanations related to the parameters and variables from Eq. (2.3) were
formerly described in Sect. 1.2.1 of Chap. 1.

2.3.2 Concepts Associated with Efficiency, Efficient frontier,
and Dominance

In this section, efficiency, efficient frontier, and dominance, as main concepts of the
MOORP, are thoroughly demonstrated.

Efficiency definition: A vector of decision-making variables x** € X is efficient in
the MOOP, given in Egs. (2.1) and (2.2), if there is no another vector of decision-
making variables like x* € X so that F(x™) < F(x™*) with at least one f,(x™) < f,(x™).
Otherwise, the vector of decision-making variables x™ € X is inefficient [2].

Efficient frontier definition: The complete set of efficient vectors of decision-
making variables is known as the efficient frontier [2].

Dominance definition: A vector of objective functions F(x™) € Z is
non-dominated in the MOOP, given in Egs. (2.1) and (2.2), if there is no another
vector of objective functions like F(x*) € Z in such a way that F(x™) < F(x**) with at
least one f,(x*) < f,(x*™). Otherwise, the vector of objective functions F(x™*) € Z is
dominated or has failed [2]. Put another way, the vector of objective functions
F(x™) € Z overcomes the vector of objective functions F(x™™) € Z in the MOOP, if
the following two conditions are simultaneously met:

Condition I: All components or elements of the vector of objective functions F
(x*) € Z are not worse than the corresponding components or elements of the vector
of objective functions F(x**) € Z, as given by Eq. (2.4):

F(x*) < F(x™) V f,(x*) < f,(x*)sfor all objective functions, V{a € ¥} (2.4)

Note that the symbol “V” in Eq. (2.4) represents the operator “or.”

Condition 2: At least one of the components or elements of the vector of objective
functions F(x™) € Z is better than components or elements of the vector of objective
functions F(x*) € Z, as presented by Eq. (2.5):

fr(x*) < f1(x*)sfor at least one objective function, V{k € ¥} (2.5)

Given what has been described, it can be found that the definitions of efficiency
and dominance are analogous for all practical aims. However, it must be noted that
the concepts associated with efficiency and dominance usually refer to the vector of
decision-making variables in a feasible decision-making space and vector of objec-
tive functions in a feasible objective space, respectively.
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2.3.3 Concepts Pertaining to Pareto Optimality

Unlike a single-objective optimization problem, there is no a single solution that can
simultaneously optimize all objective functions in a MOOP. The objective functions
of a MOOP are often in conflict with each other, and parameters related to some
objective functions may not lead to optimality for other objective functions—even
though these parameters can sometimes give rise to worse amounts for other
objective functions. As a consequence, in contrast to solving a single-objective
optimization problem that yields a single solution, solving a MOQOP results in finding
a set of solutions that represents a trade-off among the different objective functions.
These solutions are also known collectively as a Pareto-optimal solution set or a
non-dominated optimal solution set. With that in mind, Pareto optimally, weakly,
and appropriately Pareto optimal are other fundamental concepts of the MOOPs
which are briefly reviewed in this section.

Definition of a Pareto-optimal solution: A vector of decision-making variables
x** € X is a Pareto-optimal solution in the MOOP, given in Egs. (2.1) and (2.2), if
there is no another vector of decision-making variables like x* € X so that F(x*) < F
(x™) and f,(x™) < f,(x**) for at least one objective function. Otherwise, the vector of
decision-making variables x™ € X is not a Pareto-optimal solution [1-3]. In other
words, the vector of decision-making variables x™* € X is a Pareto-optimal solution
if there is no another vector of decision-making variables like x* € X that can
simultaneously satisfy the conditions presented in Eqs. (2.4) and (2.5). That is to say
that the vector of decision-making variables x** € X is a Pareto-optimal solution if
there does not exist another vector of decision-making variables like x* € X that can
improve at least one of the objective functions of the MOOP without worsening
other objective functions. The set of Pareto-optimal vectors of decision-making
variables is taken into account as P(X). Mutually, a vector of objective functions is
a Pareto-optimal solution if the corresponding vector of decision-making variables is
a Pareto-optimal solution. In this way, the set of Pareto-optimal vectors of objective
functions is considered as P(Z). Many algorithms used for solving multi-objective
optimization problems provide solutions that are not Pareto-optimal. These solutions
can, however, meet other criteria. One of the most important of these criteria that can
be very useful and effective in real-world MOOPs and provide useful information for
the decision maker is the weak Pareto-optimal solution, which can be explained as
follows:

Definition of a weak Pareto-optimal solution: A vector of decision-making vari-
ables x™* € X is a weak Pareto-optimal solution in the MOOP, given in Egs. (2.1)
and (2.2), if there is no another vector of decision-making variables like x* € X in
such a way that F(x™) < F(x™). Otherwise, the vector of decision-making variables
x** € X is not a weak Pareto-optimal solution [1-3]. In simple terms, the vector of
decision-making variables x™ € X is a weak Pareto-optimal solution if there does
not exist another vector of decision-making variables like x* € X so that the
response/output obtained by this vector of decision-making variables in all objective
functions of the MOORP is better than the response/output calculated by the vector of
decision-making variables x*™* € X in the corresponding objective functions. Or, the
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vector of decision-making variables x™ € X is a weak Pareto-optimal solution if
there is no another vector of decision-making variables like x* € X that can
simultaneously improve all objective functions of the MOOP. The set of weak
Pareto-optimal vectors of decision-making variables is considered as WP(X). Cor-
respondingly, a vector of objective functions represents a weak Pareto-optimal
solution if the corresponding vector of decision variables is a weak Pareto-optimal
solution. In this case, the set of weak Pareto-optimal vectors of objective functions is
taken into account as WP(Z). As a result, the set of Pareto-optimal vectors of
decision-making variables belongs to a larger set called the set of weak Pareto-
optimal vectors of decision-making variables. Accordingly, if the vector of decision-
making variables x** € X is the Pareto-optimal solution, then this vector is the weak
Pareto-optimal solution. However, if the vector of decision-making variables x™ € X
is the weak Pareto-optimal solution, then this vector is not necessarily the Pareto-
optimal solution. Each of the available responses or outputs in the Pareto-optimal
solution set can be classified as either an appropriate or an inappropriate Pareto-
optimal response or output. In related literature, there are different definitions for the
appropriate Pareto-optimal concept, which are not equivalent. Here, the definition
employed for an appropriate or inappropriate Pareto-optimal concept is derived
according to Geoffrion [4].

Definition of an appropriate Pareto-optimal solution: A vector of decision-
making variables x™ € X is an appropriate Pareto-optimal solution in the MOOP,
given in Egs. (2.1) and (2.2), if this vector is the Pareto-optimal solution and if there
is some real number J > 0 not only for each objective function a and for each of
the other vectors of decision-making variables like x* € X satisfying f,,(x™) < f,(x™),
but also that there is at least one objective function k in the MOOP such that
SilxX™) < filx®) and {f,(x™") — L)W {fix") — filx@™)} < J. The quotient of the
fraction {f,(x™) — fu(xX)W{fu(X") — filx*™)} refers to a compromise in the MOOP;
that is, it indicates an increase in the objective function k originating from a decrease
in the objective function a. Put simply, a Pareto-optimal solution is an appropriate
Pareto-optimal solution if there exists at least one pair of objective functions such
that a confined decrease in one objective function is possible only with an increase in
the other objective function. The set of appropriate Pareto-optimal vectors of
decision-making variables is AP(X). Mutually, a vector of objective functions is
an appropriate Pareto-optimal solution if the corresponding vector of decision-
making variables is an appropriate Pareto-optimal solution. In this manner, the set
of appropriate Pareto-optimal vectors of objective functions is considered as AP(Z).

As a result, the set of appropriate Pareto-optimal vectors of decision-making
variables belongs to a larger set called the set of Pareto-optimal vectors of decision-
making variables. Therefore, if the vector of decision-making variables x™* € X is
the appropriate Pareto-optimal solution, then this vector is the Pareto-optimal solu-
tion. However, if the vector of decision-making variables x** € X is the Pareto-
optimal solution, then this vector is not necessarily the appropriate Pareto-optimal
solution.

Concepts pertaining to Pareto optimality and relationships among these concepts
are demonstrated in Fig. 2.1. In Fig. 2.1, the set of appropriate Pareto-optimal



28 2 Introduction to Multi-objective Optimization and Decision-Making Analysis

£(x)

A+H+® Wweak Parcto-optimal solutions: WP(Z)
A+ Pareto-optimal solutions: P(2)
A Appropriate Pareto-optimal solutions: AP(Z)

Feasible objective
space: Z

>/ (x)

Fig. 2.1 Concepts pertaining to Pareto optimality

responses and outputs is shown with solid green triangles. The set of Pareto-optimal
responses and outputs is illustrated as a sum of the solid green triangles and solid red
squares. The set of weak Pareto-optimal responses and outputs is depicted as a sum
of solid green triangles, solid red squares, and solid blue circles. Also from Fig. 2.1,
it can be seen that the set of appropriate Pareto-optimal responses and outputs
belongs to a larger set called the set of Pareto-optimal responses and outputs, as
previously mentioned. Moreover, it can be seen that the set of Pareto-optimal
responses/outputs belongs to a larger set called the set of weak Pareto-optimal
responses/outputs, as stated earlier.

2.3.4 Concepts Related to the Vector of Ideal Objective
Functions and the Vector of Nadir Objective Functions

Suppose that in the MOOP, given in Eq. (2.1) and (2.2), the objective functions are
bounded on the feasible objectives space. In this circumstance, the upper and lower
bounds associated with the set of Pareto-optimal responses and outputs in the
feasible objectives space can provide very useful information about the MOOP.
For this MOOP, the lower bounds related to the set of Pareto-optimal responses and
outputs are available in the vector of ideal objective functions—z'%** € R* [1-
3]. The vector of ideal objective functions is defined using Eq. (2.6):

Jideal _ [Zildeal’ o ’Zi:ieal’ o ’Zi(\ieal}; V{a c TA} (2.6)
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~ The component or element a relevant to the vector of ideal objective functions
z;deal can be obtained by minimizing the objective function a of the MOOP as a
single-objective optimization problem bounded by equality and inequality con-

straints, as given in Eqgs. (2.7) and (2.8):

Minimize ~ F(x) = [fux)]; V{a WP}
subject to :
G(x) = [g1(x),---,8(x),...,88(x)] = 0; V{B > O}’V{b € ‘PB}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E > 0},V{e € ¥"}

2.7)
X= [X1,.. %, .., XNDV]; V{v S ‘{‘NDV,‘I’NDV:‘PNCDV+NDDV,X € X},
V{x‘r)nin <x < x‘fnax’v c \PNCDV}’
V{x € {x(1),...,xw),....x,(W,)}v € ¥"°PV}
(2.8)

A vector of objective functions strictly dominated by the vector of ideal objective
functions is known as the vector of utopian objective functions—z""""*" [1-3]. The
vector of the utopian objective functions is defined by Eq. (2.9):

utopian utopian utopian utopian | , A
ZMOPR — ORI }, V{a € ¥*} (2.9)

The relationship between the component or element a related to the vector of
ideal objective functions and the component or element a relevant to the vector of
utopian objective functions is defined using Eq. (2.10):

utopian
2q

=28 g V{ae P} (2.10)

In Eq. (2.10), € is a positive scalar number. For this same MOOP, the upper
bounds associated with the set of Pareto-optimal responses and outputs are available
in the vector of nadir objective functions—z"%" [1-3]. The vector of nadir objective
functions is described using Eq. (2.11):

Znadir _ [Zrlmdir7 o ’Zgadir’ o 7ZnAadir]; V{a c lPA} (211)

In MOOPs having a nonlinear nature, there is usually no useful well-recognized
process to accurately calculate the vector of nadir objective functions. It is, therefore,
generally difficult to precisely capture the components or elements relevant to the
vector of nadir objective functions. These components or elements can be approx-
imately estimated by using some decision-making analysis tools, such as the payoff
table; however, the estimate resulting from these approaches may not be
trustworthy [1].
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2.3.5 Concepts Relevant to the Investigation of Pareto
Optimality

In related literature, there are several methods generally used to investigate Pareto
optimality of the vector of decision-making variables. One of the most well-known
methods is to examine the Pareto optimality of the vector of decision-making vari-
ables, with the idea of forming an optimization problem [5]. In this regard, Pareto
optimality of the vector of decision-making variables x** € X can be investigated by
solving the optimization problem given in Eq. (2.12):

Maximize Z Yas V{a € ‘PA}

xeX,y e
a

subject to :

fa(®) +7a =fux); V{a ¥}

Ya>0; V{ac ‘PA}

G(x) = [g1(X),---,8(X)-..,85(x)] = 0; V{B >0},v{b e ¥®}

H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E>0},V{e € ¥"}
(2.12)

In Eq. (2.12), both x € ®"PY andy € R ﬁ are variables. The coefficients vector y
can be also indicated by using Eq. (2.13):

Y=[1 Ve 7als V{a € ¥} (2.13)

If the value of the objective function of the optimization problem given in
Eq. (2.12) is equal to zero, the vector of decision-making variables x** € X is then
Pareto optimal. In other words, the vector of decision-making variables x** € X is
Pareto optimal, provided that all of the components or elements of the coefficients
vector y given in Eq. (2.13) are equal to zero. This strategy can also be employed to
generate initial Pareto-optimal solutions for interactive MOOAs. Readers interested
in a comprehensive discussion on this strategy are referred to the work by Benson [5].

2.4 Multi-objective Optimization Algorithms

Basically, the process of solving a MOOP in order to find the Pareto-optimal solution
set, and then select a final optimal solution from this set, requires information related
to the preferences of the decision maker. More precisely, the process of solving a
MOQOP should be established with regard to the preferences of the decision maker. In
this way, the solution process can give rise to finding solutions that have more
compatible with the preferences of the decision maker. The decision maker generally
has sufficient insight into the MOOP. In addition, the decision maker can provide
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information pertaining to the preferences of different objective functions or different
solutions in various structures.

In related literature, many MOOQOAs have been developed for finding the Pareto-
optimal solution set and selecting the final optimal solution. Because the classifica-
tion of these optimization algorithms can be carried out with a view to different
criteria, it is a challenging task to provide a well-organized classification for these
optimization algorithms. In related literature, different classifications have been
reported on the basis of various criteria. MOOAs can be broken down into two
types of approaches, according to the role of the decision maker in the solution
process [1]: noninteractive and interactive.

2.4.1 Noninteractive Approaches

In a general classification, noninteractive approaches (NIAs) can be divided into four
classes: (1) basic; (2) no preference; (3) a priori; and, (4) a posteriori.

2.4.1.1 Basic Approaches

Basic approaches are one of the most well-known and most used approaches for
solving MOOPs. In order to employ solutions developed for single-objective opti-
mization, these approaches transform a MOOP into a single-objective problem.
Therefore, these approaches cannot actually be taken into account as a MOOA. The
weighting coefficient approach and the e-constraint approach are the most common
basic approaches. Because of the widespread use and applicability of these
approaches in solving MOOPs, an overview of these approaches is provided next.

Weighting coefficient approach: In the literature, the weighting coefficient
approach is one of the simplest and most popular basic approaches for solving a
MOQRP. In this approach, the objective functions of the MOOP are transformed into
a scalar objective function by using weighting coefficients [3, 6]. More precisely, in
this approach, the MOOP, given in Egs. (2.1) and (2.2), is turned into a single-
objective optimization problem in accordance with Eqgs. (2.14) and (2.15) through
the weighting coefficients:

C e o . A
er%g)r(nze F(x) = {Z};Awa.fa(x)}, V{A >2},V{a € ¥* o, € 0,1]}
ac
subject to :

G(x) = [g1(x),...,8,(x),...,gs(x)] = 0; V{B>0},v{b e P?}
H(x) = [l (x), ..., he(x),...,hg(x)] < 0; V{E > 0},V{e € ¥*}

(2.14)
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X = [¥,. Xy oxnpy]; Vv € WNDY PNPV_NCDVENDDY o 1
V{x‘l;nin <x < x\z‘nax|v c \PNCDV}’
V{x, € {x(1),...,xw),...,x,(W,) v € ¥"°PV}
(2.15)

In these equations, @, describes the weighting coefficient corresponding to objec-
tive function a of the MOOP, which is usually followed by Egs. (2.16) and (2.17):

0<w, <1; V{A>2},V{ae¥*} (2.16)
> wa=1; VA >2},V{ac¥} (2.17)
acyh

In the weighting coefficient approach, the decision maker, by systematically
changing the weighting coefficients, solves the single-objective optimization prob-
lem organized in Egs. (2.14) and (2.15). Solving the single-objective optimization
problem formed in Eqgs. (2.14) and (2.15) for different weighting coefficients results
in the estimation of the Pareto-optimal solutions. The solution specified by solving
the optimization problem given in Egs. (2.14) and (2.15) is a weak Pareto-optimal
solution if the condition provided in Eq. (2.18) is satisfied:

wa > 0; V{A>2},V{a e P} (2.18)

This solution is also the Pareto-optimal solution if it is unique [3]. The weighting
coefficient approach is appropriate for a MOOP in which all objective functions are
of the same type and have a common scale (e.g., all objective functions are of a cost
type with a dollar scale). If objective functions of optimization problem are not of
same type and not have a common scale, the use of the weighting coefficient
approach is not efficient. In this situation, the recommended strategy for employing
the weighting coefficient approach is to normalize the objective functions. Objective
function a of this same MOOP is normalized through Eq. (2.19):

fNQ(X) :m; V{a € “I"A} (219)

This equation refers to a situation in which the minimization of the objective
function a of the MOOP is taken into account. Similarly, if maximization of the
objective function a of the MOOP is regarded, Eq. (2.19) should be rewritten
according to Eq. (2.20):

fa)=1 —% V{a e ¥*} (2.20)
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In Eqgs. (2.19) and (2.20), the lower and upper bounds of objective function a of
the MOOP are calculated by using a single-objective optimization. More precisely,
the upper bound of objective function a, f;**(x), is achieved by single-objective
maximization of the corresponding objective function. In the same way, the lower
bound of objective function a, f™"(x), is determined by single-objective minimiza-
tion of the corresponding objective function. After normalization of the objective
functions of the MOOP given in Egs. (2.1) and (2.2), this optimization problem can

be rewritten based on Egs. (2.21) and (2.22):

L. o 7 . A
er)zg(nze F(x) = {Z};}\wa fa(x)}, V{A >2},V{a € ¥* o, € 0, 1]}
ac
subject to :

G(x) =g (x),...,8,(x),...,gg(x)] =0; V{B> 0},V{b € ‘I’B}
H(x) = [h1(x), ..., he(x),... hg(x)] < 0; V{E>0},V{e € ¥"}

(2.21)
x= [xr,...,%,...,xxpv); V{v € PPV}, v { NPV =@NCDVINDDVA iy € X},
v{x;nin <x < x;nax|v c lPNCDV}’
V{x, € {x(1), ..., x(w), ..., x(W,)}v € ¥NPPV}
(2.22)

One of the most important strengths of the weighting coefficients approach,
making it widely utilized for solving a wide range of MOOPs, is the simplicity of
its use. In this approach, one solution can be found through the Pareto-optimal
solution set by changing the weighting coefficients. It has been proven, however,
that this characteristic is reliable only in convex optimization problems. That is, in
non-convex optimization problems, regardless of how the weighing coefficients
are chosen, some Pareto-optimal solutions cannot be found. Furthermore, if some
objective functions correlate with each other in the MOOPs, changing the
weighting coefficients may not lead to finding Pareto-optimal solutions. As a
result, the weighting coefficient approach does not have an appropriate perfor-
mance for these MOOPs. It should be pointed out that the decision maker can
employ the weighting coefficient approach either as an a priori approach or as an a
posteriori approach.

e-Constraint approach: In related literature, the e-constraint approach is one of
the most applicable basic approaches for solving MOOPs [7, 8]. At each step in
this approach, one of the objective functions of the MOOP is chosen for optimi-
zation, while the remaining objective functions are considered as constraints. This
process is repeated for all objective functions of the MOOP. By using the &-
constraint approach, the MOOP, again from Eqs. (2.1) and (2.2), is transformed
into a single-objective optimization problem in accordance with Eqs. (2.23) and
(2.24):
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.. _ . A
Minimize F(x) = {f.(x)}; V{aec¥*}
subject to :
G(x) = [g1(X),---,85(x),...,85(x)] = 0; V{B >0},v{b € ¥*}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E >0},V{e € ¥"}
fi(x) < e V{k € P4}, V{k # a}
(2.23)
x= [r,...,x,....xnov); V{ve WNDV @NDV _@NCDVHNDDY 'y o X},
W{x‘fnin <x < xvmax = \PNCDV}’
V{xv € {x(1),...,x,(w),...,x,(W,)}v € ‘I—’NDDV}

(2.24)

In Eq. (2.23), g™ represents the upper bound for objective function k of the
MOOP. The vector of decision-making variables x** € X is Pareto optimal if and
only if this vector solves the optimization problem organized in Egs. (2.23) and
(2.24) for each objective function of the MOOP, f,(x™); V {a € YA}, while
satisfying e™ = f,(x*);V{k € ¥*},V¥{k # a} [7, 8]. More precisely, to ensure
that Pareto optimality corresponds to the vector of decision-making variables
x"* € X—finding one solution from the Pareto-optimal solution set—either the
single-objective optimization problem formed in Eqs. (2.23) and (2.24) must be
solved by the number of objective functions of the MOOP or one unique solution of
the single-objective optimization problem formed in Egs. (2.23) and (2.24) must be
achieved. Nevertheless, in a MOOP, if the weak Pareto-optimal solution is satisfac-
tory, from the perspective of the decision maker, solving the single-objective
optimization problem organized in Eqs. (2.23) and (2.24) is sufficient for an objec-
tive function to find one solution from the weak Pareto-optimal solution set.

In contrast to the weighting coefficient approach, finding the Pareto-optimal
solution set by using the e-constraint approach does not depend on the convexity
or non-convexity of the optimization problem. In other words, the e-constraint
approach has a desirable performance in dealing with convex or non-convex opti-
mization problems.

In practice, the selection of the upper bounds associated with different objective
functions of the MOOP has many complexities. These complexities are dramatically
expanded by increasing the number of objective functions of the MOOP. The
selection of the upper bounds must, therefore, be made meticulously. In this manner,
the upper bounds selected for different objective functions of the MOOP must be
within the feasible space; otherwise, the single-objective optimization problem
formed in Eqgs. (2.23) and (2.24) will not have a solution. If maximization of this
MOQOP is taken into account, then the MOOP is turned into a single-objective
optimization problem based on Egs. (2.25) and (2.26) by using the e-constraint
approach:
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Maximize F(x) = {f,(x)}; V{aeP*}
subject to :
G(x) = [g1(X),---,85(x),...,85(x)] = 0; V{B >0},v{b € ¥*}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E >0},V{e € ¥"}
fi(x) > eminy V{k € ¥4}, V{k # a}
(2.25)
x= [r,...,x,....xnov); V{ve WNDV @NDV _@NCDVHNDDY 'y o X},
V{x‘r)nin <x < x‘inax’v c \PNCDV}’
V{x € {x(1),...,xW),...,x(W,)}v € P"°PV}
(2.26)

In Eq. (2.25), e,ﬁ“in describes the lower bound for objective function k of the
MOQOP. Similar to the weighting coefficient approach, the e-constraint approach can
be utilized by the decision maker either as an a priori approach or as an a posteriori
approach.

2.4.1.2 No-Preference Approaches

In no-preference approaches, known as neutral-preference approaches, the prefer-
ences of the decision maker are not considered in the process of solving the MOOP.
In these approaches, the MOOP is solved by using some relatively simple
approaches, at which point the solution is taken at the disposal of the decision
maker. The decision maker is also able to accept or reject the specified solution.
Non-preference approaches are suitable for situations in which information related to
the preferences of the decision maker is not available, or the decision maker does not
consider particular preferences. The global criterion approach and neutral-
compromise solution approach are the best-known no-preference approaches.
Readers interested in a thorough discussion on these approaches are directed to the
work by Yu [9] and Wierzbicki [10], respectively.

2.4.1.3 A Priori Approaches

In a priori approaches, the decision maker first determines the information related to
his/her preferences, and then solves the MOOP by trying to find a Pareto-optimal
solution that can, as much as possible, satisfy his/her preferences. Simply put, in a
priori approaches, information related to the preferences of the decision maker is
determined before the process of solving the MOOP begins.

A major disadvantage in a priori approaches is that the decision maker is not
necessarily aware of the possibilities and restrictions of the MOOP in advance. As a
result, it is possible that information about the preferences of the decision maker is
overly optimistic or pessimistic. That is to say that the decision maker does not
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necessarily know in advance what the response/output is likely to be from the
MOOP or how realistic his/her preferences are. In this situation, it is possible that
the solution cannot satisfy the decision maker and encourage the decision maker to
rectify his/her preferences. The most well-known a priori approaches can be referred
to as value function approaches, lexicographic ordering approaches, and goal pro-
gramming approaches. Readers interested in a comprehensive discussion on these
approaches are referred to the work by Keeney and Raiffa [11], Fishburn [12], and
Charnes and Cooper [13], respectively.

2.4.1.4 A Posteriori Approaches

The main idea of a posteriori approaches is established on the basis of finding the
Pareto-optimal solution set and presenting it to the decision maker with the aim of
choosing the final solution through the aforementioned set. More precisely, in a
posteriori approaches, the process of solving the MOOP first tries to find the Pareto-
optimal solution set. After determination of the Pareto-optimal solution set, this set is
taken at the disposal of the decision maker. Finally, the decision maker chooses the
most satisfactory solution from the set as the final optimal solution.

One of the strengths of a posteriori approaches, compared to a priori approaches, is
that in a posteriori approaches, the Pareto-optimal solution set is completed before
being presented to the decision maker. In this way, the decision maker has a complete
overview of all solutions, making it easier and more realistic to choose the most
satisfactory solution. Nonetheless, the major weakness of a posteriori approaches is
their high computational burden. Additionally, the decision maker encounters a very
large amount of information in optimization problems with more than two objective
functions, which makes analysis of the information a difficult task.

The best-known a posteriori approaches can be referred to as weighted metrics
approaches, achievement scalarizing function approaches, approximation
approaches, and meta-heuristic MOOAs. Readers interested in a thorough discussion
on these approaches are referred to the work by Miettinen [3], Wierzbicki [14], and
Ruzika and Wiecek [15], respectively. It is important to be noted that detailed
descriptions of some developed meta-heuristic MOOAs by the authors are provided
in Chap. 4.

2.4.2 Interactive Approaches

Interactive approaches (IAs) are established on the basis of creating an iterative
solution procedure or pattern that consists of different steps. In this approach to
finding the most satisfactory solution, different steps of this iterative procedure are
repeated and the decision maker progressively determines preference information
during the solution process. In other words, after completion of each step of the
iterative procedure, the information is taken at the disposal of the decision maker, at
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which point the decision maker assesses the information and then may specify
additional details. This interactive process is repeated until the stopping criterion is
satisfied—and as long as the most satisfactory solution has been specified by the
decision maker. In this structure, the decision maker can modify and update his/her
preference information. As a consequence, the decision maker straightforwardly
directs the process in the IAs.

The main steps of an iterative procedure can be briefly expressed as follows:

» Step one: Initialization (i.e., determine the ideal vector of objective functions and
nadir vector of objective vector and present these values to the decision maker).

¢ Step two: Produce a Pareto-optimal starting point (i.e., some neutral-compromise
solution or solution specified by the decision maker that can be taken into account
as the starting point).

» Step three: Specify the preference information by the decision maker (i.e., the
number of new solutions to be produced).

¢ Step four: Produce one or more Pareto-optimal solutions by taking into account
the preferences specified by the decision maker in the previous step and then
showing this Pareto-optimal solution or solutions along with information associ-
ated with the MOOP to the decision maker.

» Step five: Select the most satisfactory solution by the decision maker through
Pareto-optimal solutions achieved thus far, if multiple Pareto-optimal solutions
have been produced in the fourth step. If a Pareto-optimal solution has been
produced in the fourth step, this solution is considered as the most satisfactory
solution by the decision maker in this step.

» Step six: Stop, if the consent of the decision maker is satisfied by the solution
chosen in the fifth step; otherwise, go to the third step.

One of the strengths of the [As is that the decision maker is able to update his/her
preference information in each iteration of the process. Accordingly, by informing
the decision maker about interdependencies between the iterative solution procedure
and its preferences, the probability of achieving a satisfactory solution that meets the
preferences of the decision maker is increased. In other words, because of the
establishment of the IAs, based on an iterative procedure that allows the decision
maker to specify or update preference information during the process, Pareto-
optimal solutions are produced that can satisfy the decision maker. As a result, the
structure of the IAs can give rise to a significant reduction in computational burden.

In recent years, a wide range of IAs have been developed for solving MOOPs.
Basically, there is no unique IA that has a more preferred performance for solving the
MOOPs with different features and structures as well as multiple decision makers
compared to other approaches. This means that each approach is generally developed
for a specific range of MOOPs and decision makers. In a wide classification, IAs can
be broken down into three general classes: (1) compromise-driven or trade-off-based
approaches; (2) reference point approaches; and, (3) classification-based approaches.
Readers interested in a thorough discussion of these approaches are referred to the
work by Branke et al. [1].
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2.5 Selection of the Final Solution by Using a Fuzzy
Satisfying Method

After solving our MOOP and determining the Pareto-optimal solution set, the next
step is to select a flexible and realistic solution from the entire set of candidate
solutions that represent a compromise among different objective functions of the
MOQORP. In related literature, there are several multi-objective decision-making tools
for selecting the most satisfactory solution from the Pareto-optimal solution set; keep
in mind, though, that a fuzzy satisfying method (FSM) is highly regarded in this
situation, owing to its simplicity and similarity to human reasoning [16—19]. In this
method, then, a fuzzy membership function, @) ()En), is defined for each given
objective function, £/ (x), in any available solution in the Pareto-optimal solution set,
X,. The value of this membership function can vary from O to 1. The fuzzy
membership function demonstrates a numerical description for the satisfaction
level of the decision maker regarding the value of objective function a in the
available solution n in the Pareto-optimal solution set. The fuzzy membership
function with a value of 0, (Dfu”(x) ()E,,) = 0, represents a complete dissatisfaction of
the decision maker. On the other hand, the fuzzy membership function with a value
of 1, Dpniy) ()E,,) = 1, represents full satisfaction of the decision maker. As a result,
higher values of this membership function refer to higher levels of satisfaction of the
decision maker regarding the value of objective function a in the available solution
n in the Pareto-optimal solution set. Different types of fuzzy membership functions
can generally be used by the decision maker, such as linear, convex exponential,
concave exponential, piecewise linear, and hyperbolic types. Considering different
types of fuzzy membership functions for different objective functions of the MOOP
can affect the choice of the final solution through the Pareto-optimal solution set. As
an example, suppose that the fuzzy membership function considered by the decision
maker for objective function a of our MOOP is convex exponential and the fuzzy
membership function regarded by the decision maker for other objective functions is
linear. These conditions provide a priority for minimization of objective function
a relative to other objective functions. This is due to the fact that a smaller fuzzy
membership function in the neighborhood of the upper bound of the objective
function a, f)™*(x), has been assigned by the convex exponential membership
function compared with the linear membership function.

Here, the fuzzy membership function considered for all of the existing objective
functions in our MOOP is assumed to be a linear membership function. To clarify,
the linear membership function corresponds to objective function a of the MOOP
that is depicted in Fig. 2.2.

If the minimization of the objective functions of the MOOP is considered, the
linear membership function related to objective function a is represented as a
descending uniform function (see Fig. 2.2). The mathematical description of the
linear membership function shown in Fig. 2.2 can also be set out using Eq. (2.27):
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Fig. 2.2 The linear membership function corresponds to the minimization of objective function
a of the MOOP
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As shown in Fig. 2.2 and formulated in Eq. (2.27), this membership function has
both a lower bound,f ™" (x), and an upper bound, f ™ (x). These bounds are achieved
by using a single-objective optimization. That is to say that the lower and upper
bounds of objective function a of the MOOP are calculated by minimizing and
maximizing only the corresponding objective function as a single-objective optimi-
zation problem, respectively. Similarly, if the maximization of the objective functions
of the same MOOP is taken into account, the linear membership function relevant to
objective function a is addressed as an ascending uniform function (see Fig. 2.3). The
mathematical description of the linear membership function depicted in Fig. 2.3 can
also be set out using Eq. (2.28):

(1) ( ) V{fn >fmax( )}
f;rlaxx 7f¢:lx mm maxX
Fa) — ey U0 STI0) <L)

0 ;V{fJ(X) <f(x)}
V{A >2},V{a € ¥* n e P}

Dpo) (%) = 4 1~

(2.28)

After describing the membership functions for all objective functions for all
available solutions in the Pareto-optimal solutions set, the decision maker must
specify the level of desirability of achieving each objective function of the MOOP,
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Fig. 2.3 The linear membership function relevant to the maximization of objective function a of
the MOOP

&Jf“(x). The level of desirability of achieving objective function a of the MOOP, f,,(x),
is known as the reference level of achieving the corresponding objective function.
After determination of the level of desirability of achieving each objective function
of the MOOP, the decision maker should employ a well-suited decision-making
analysis tool in order to choose the final optimal compromise solution from the
Pareto-optimal solution set. To do this, there are generally many decision-making
analysis tools developed using a variety of philosophies and from myriad perspec-
tives. Here, the conservative and distance metric methodologies, as two applicable
and well-known decision-making analysis tools, are reviewed and discussed.

2.5.1 Conservative Methodology

In the conservative methodology (CM)—the min-max formulation—conservative
decision-making can be achieved by trying to find a solution whose minimum meets
the maximum objective function. This means that the decision maker is willing to
specify a solution that simultaneously achieves the highest level of satisfaction for all
of the objective functions of the MOOP. In this methodology, the final optimal
compromise solution is determined from all available solutions in the Pareto-optimal
set by solving the optimization problem given in Eq. (2.29):

min {max {|¢)fa — Dy (xn)|}} V{A > 2},V{a eEYAne ‘PN} (2.29)

ne¥N (acy?

If the decision maker is willing to achieve the highest level of satisfaction for all
of the objective functions of the MOOP, D (x) = I;V{a c ‘I’A}, Eq. (2.29) must be
rewritten as Eq. (2.30):
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min {max {|1 = ®pniy (xn)|}}; V{iA>2}V{a e ¥A ne¥N}  (230)

ne¥N ac¥?

In other words, Eq. (2.30) can also be expressed as Eq. (2.31):

max {min {|®pnx) (x,,)|}}; V{A >2},V{a € ¥ n e PN} (2.31)

ne®™ (acy?

The CM ensures for the decision maker that all of the objective functions of the
MOQORP are well optimized. Interested readers are directed to the work by Sakawa and
Yano [20] for a comprehensive discussion of the CM.

2.5.2 Distance Metric Methodology

In the distance metric methodology (DM), the final optimal compromise solution is
obtained from all available solutions in the Pareto-optimal set by solving the
optimization problem given in Eq. (2.32):

min { Z {|<i)fa(x> — Dy (%) ’u}}; V{A>2},V{a e YA neWN ue [l,oo)}

newN
acy?

(2.32)

It can be seen that Eq. (2.32) attempts to minimize the #-norm deviations from the
values of the reference membership. The u quantity has a value between one and
infinity, a value that has already been specified by the decision maker. Because the
absolute difference of the level of desirability of achieving objective function a and
its fuzzy membership function in available solution n in the Pareto-optimal set

ﬁ)mx) — Dy ()E )’ always has a value between zero and one, a larger value of
u represents less sensitivity to reference levels and vice versa. It should be pointed
out that if the decision maker is not satisfied by the solution, he/she is able to
improve the corresponding solution by updating the levels of desirability of achiev-
ing different objective functions of the MOOP, ® ¢ (x)- Interested readers are directed
to the work by Chen [21] for a comprehensive discussion of DM.

2.5.3 Step-by-Step Process for Implementing the FSM

As a general result, after solving the MOOP, as given in Egs. (2.1) and (2.2), and
specifying the Pareto-optimal solution set, the implementation of the FSM by the
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decision maker to select the final optimal compromise solution through the Pareto-
optimal solution set can be expressed using the following step-by-step process:

» Step one: Set the number of objective functions of the MOOP equal to A.

e Step two: Set the counter of the objective function to a = 1.

e Step three: Determine the lower and the upper bounds of objective function a of
the MOOP by minimizing and maximizing only the corresponding objective
function as a single-objective optimization, respectively.

» Step four: Set the number of available solutions in the Pareto-optimal solution set
specified by solving the MOOP equal to N.

o Step five: Set the counter of available solutions in the Pareto-optimal solution set
ton = 1.

» Step six: Calculate the value of the linear membership function associated with
objective function a in available solution 7 in the Pareto-optimal solution set by
using Eq. (2.27).

* Step seven: If n < N, set n = n + 1 and go to step six; otherwise, go to the
next step.

e Step eight: If a < A, set a = a + 1 and go to step three; otherwise, go to the
next step.

» Step nine: Specify the level of desirability of achieving each objective function of
the MOOP.

e Step ten: Determine the final optimal compromise solution from the Pareto-
optimal solution set either by using the CM—min-max formulation given in
Eq. (2.29)—or by using the DM—formulation given in Eq. (2.32).

2.6 Conclusions

In this chapter, the authors presented a brief introduction to the multi-objective
optimization process. First, the necessity of employing the multi-objective optimi-
zation process instead of the single-objective optimization process was justified.
Then, the fundamental concepts of optimization in the MOOPs were exhaustively
addressed in the five sections: (1) mathematical description of a MOOP; (2) concepts
associated with efficiency, efficient frontier, and dominance; (3) concepts pertaining
to Pareto optimality; (4) concepts related to the vector of ideal objective functions
and the vector of nadir objective functions; and, (5) concepts relevant to Pareto
optimality investigation. In addition, a thorough classification was provided for the
MOOAs with a focus on the role of the decision maker in the process of solving the
MOOP. This classification was broken down into two approaches: NIAs and IAs.
The NIAs were also classified into four different classes including basic, no prefer-
ence, a priori, and a posteriori approaches. Finally, the FSM, as the most preferred
multi-objective decision-making tool, was thoroughly described in order to select the
final optimal compromise solution from the Pareto-optimal solution set.
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Appendix 1: List of Abbreviations and Acronyms

CM Conservative methodology

DM Distance metric methodology

FSM Fuzzy satisfying method

IAs Interactive approaches

MOOAs Multi-objective optimization algorithms
MOOPs Multi-objective optimization problems
NIAs Noninteractive approaches

Appendix 2: List of Mathematical Symbols

Index:

a Index for objective functions running from 1 to A

b Index for equality constraints running from 1 to B

e Index for inequality constraints running from 1 to E

k Index for objective functions running from 1 to A

n Index for available solutions in the Pareto-optimal solution set running from 1 to N

v Index for decision-making variables, including the continuous and discrete decision-
making variables, running from 1 to NDV, and an index for continuous decision-
making variables running from 1 to NCDV and also an index for discrete decision-
making variables running from 1 to NDDV

Set:

pA Set of indices of objective functions

phB Set of indices of equality constraints

pE Set of indices of inequality constraints

PNEDY Set of indices of continuous decision-making variables

PNDDV Set of indices of discrete decision-making variables

PhbV Set of indices of decision-making variables, including the continuous and discrete
decision-making variables

PN Set of indices of available solutions in the Pareto-optimal solution set

AP(X) Set of appropriate Pareto-optimal vectors of decision-making variables

AP(Z) Set of appropriate Pareto-optimal vectors of objective functions

P(X) Set of Pareto-optimal vectors of decision-making variables

P(Z) Set of Pareto-optimal vectors of objective functions

R A-dimensional set of real numbers

R i\ A-dimensional set of positive real numbers

RE E-dimensional set of real numbers

w, Set of indices of candidate permissible values of discrete decision-making variable v

WP(X) Set of weak Pareto-optimal vectors of decision-making variables

WP(Z) Set of weak Pareto-optimal vectors of objective functions

(continued)
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Parameters:
Fi(x) Upper bound of objective function a
f{;""“ (x) Lower bound of objective function a
J Some real number
u Integer with a value between one and infinity
X, Upper bound on continuous decision-making variable v
xv"‘i" Lower bound on continuous decision-making variable v
X Nonempty feasible decision-making space
VA Feasible objective space
€ A positive scalar number
g Upper bound of objective function k
g];“i“ Lower bound of objective function k
[0) - (%) Level of desirability of achieving objective function a
Variables:
fu(x) Objective function a of the optimization problem or component a of the vector of
objective functions
Ji(x) Objective function k of the optimization problem or component k of the vector of
objective functions
fa(x) Normalized value of objective function a of the optimization problem or normalized
value of component a of the vector of objective functions
fa(x) Given objective function a in available solution 7 in the Pareto-optimal solution set
F(x) Vector of objective functions of the optimization problem
8p(X) Equality constraint b of the optimization problem or component b of the vector of
equality constraints
G(x) Vector of equality constraints of the optimization problem
h(x) Inequality constraint e of the optimization problem or component e of the vector of
inequality constraints
H(x) Vector of inequality constraints of the optimization problem
X Solution 7 in the Pareto-optimal solution set
X Continuous or discrete decision-making variable v
x,(w,) Candidate permissible value w of discrete decision-making variable v
X, X", X™ | Vector of decision-making variables
z Vector of objective functions
Zideal Vector of ideal objective functions
z;deal Component or element a relevant to the vector of ideal objective functions
Zoopian Vector of utopian objective functions
Z;“’Pia“ Component or element « relevant to the vector of utopian objective functions
Znadir Vector of the nadir objective functions
zzﬂdif Component or element a relevant to the vector of nadir objective functions
Y Coefficient vector
Ya Component or element « relevant to the coefficient vector
W, Weighting coefficient relevant to objective function a
D) ()En) Fuzzy membership function of objective function a in available solution n in the
Pareto-optimal solution set
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Chapter 3 )
Music-Inspired Optimization Algorithms: e
From Past to Present

3.1 Introduction

Many engineering challenges are addressed in the form of an optimization problem.
These engineering challenges must generally satisfy multiple conflicting and het-
erogeneous objectives, such as finding the lowest cost, the most profit, the shortest
path, the maximum reliability, the best topology, etc. For such cases, achieving the
most preferred response/output requires mathematical modeling of the
corresponding challenge and solving it by using an optimization algorithm. In a
general sense, the optimization problem refers to the process of finding the most
satisfactory response/output under the specified conditions. Technically speaking,
the optimization problem can also be defined as the process of finding the minimum
or maximum value of one or more objective functions, provided that the equality and
inequality constraints, if any, are not violated. In a broad sense, the optimization
algorithms can be broken down into two main categories, deterministic and
nondeterministic/stochastic, as outlined in Sect. 1.4 of Chap. 1.

Most traditional, or conventional, optimization algorithms (e.g., the Newton-
Raphson algorithm) fall into the category of deterministic optimization algorithms.
Basically, deterministic optimization algorithms need to have the derivatives of the
objective functions in order to solve the optimization problems. Each of the
deterministic optimization algorithms is only appropriate for solving a narrow
range of optimization problems. More precisely, because most real-world optimi-
zation problems involve complexities—such as mixed-integer decision-making
variables, multiple conflicting and heterogeneous objective functions, and
non-convex, non-smooth, and nonlinear equations—there is no unique determin-
istic optimization algorithm that has the desirable performance to solve the real-
world optimization problems with the aforementioned complexities. Moreover, the
nondeterministic/stochastic algorithms always have a stochastic behavior and can
be divided into two main categories—heuristic and meta-heuristic. One of the
strengths of heuristic optimization algorithms is their uncomplicated architecture,
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compared to deterministic optimization algorithms. Accordingly, the implementa-
tion of heuristic optimization algorithms in different engineering optimization
problems, particularly complicated large-scale optimization problems, can lead to
finding relatively satisfactory solutions in a reasonable amount of time. Neverthe-
less, the main disadvantage of the heuristic optimization algorithms is that there is
no guarantee that an optimal solution and/or a set of optimal solutions will be
found. Developments designed to overcome the disadvantage of heuristic optimi-
zation algorithms are referred to as meta-heuristic optimization algorithms. The
meta-heuristic optimization algorithms are the optimization techniques indepen-
dent of the architecture of the optimization problems. That is to say that, unlike
other optimization algorithms, the meta-heuristic optimization algorithms can
extensively be employed to solve a wide range of optimization problems with
different structures. A well-organized classification of the meta-heuristic optimi-
zation algorithms with a focus on inspirational source was exhaustively reported in
Sect. 1.5.1 of Chap. 1.

From an implementation point of view, the existing meta-heuristic optimization
algorithms bring about multiple undesirable difficulties, such as premature conver-
gence, getting stuck in a local optimum point, low convergence rate, and extremely
high dependency on accurate adjustments of initial values of algorithm parameters.
Technically speaking, when the existing meta-heuristic optimization algorithms fall
into a local optimum point, most of these algorithms do not have the ability to exit
the local optimum point and to continue the search process for reaching a global
optimal point; and, thus, premature convergence occurs. In most of the existing
meta-heuristic optimization algorithms, the process of generating new solutions also
depends on a confined decision-making space whose dependency can affect the
favorable performance of these optimization techniques. Put another way, in each
new generation, a solution vector is generated with respect to a finite set of solution
vectors stored in the memory of the algorithm. For example, the genetic algorithm
(GA) takes into account only two parent vectors stored in memory—mating pool—
to generate a new solution vector. Consequently, most of the existing meta-heuristic
optimization algorithms do not have a high chance of reaching a global optimum
point in solving complicated, real-world, large-scale, non-convex, non-smooth opti-
mization problems that have a nonlinear, mixed-integer nature with big data, due to
the poor performance of these optimization techniques during the search process,
along with the other difficulties identified above.

In 2001, a new population-based meta-heuristic optimization algorithm,
referred to as a harmony search algorithm (HSA), was developed by the inspiration
of music phenomena. The original HSA had a somewhat different architecture
compared to other existing meta-heuristic optimization algorithms. In the proposed
architecture for this optimization algorithm, the process of generating new solu-
tions depends on the entire space of the nonempty feasible decision-making. Put
simply, in each new generation, or improvisation, the HSA generates a new
solution vector after sweeping over all of the solution vectors stored in the memory
of the algorithm; this characteristic can appreciably enhance the performance of the
HSA in the search process. With that in mind, the favorable performance of the
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HSA compared to its counterparts has given rise to its widespread utilization for
solving complicated, real-world, large-scale, non-convex, non-smooth optimiza-
tion problems in different branches of the engineering sciences (e.g., electrical,
civil, computer, mechanical, and aerospace). In addition, many enhanced versions
of the HSA have been developed with the aim of improving the efficiently and
efficacy of the performance of this algorithm in solving the complicated, real-
world, large-scale, non-convex, non-smooth optimization problems by specialists
and researchers. However, by increasing an unbalanced number of dimensions of
complicated, real-world, large-scale, non-convex, non-smooth optimization prob-
lems with big data, the performance of most of the existing meta-heuristic optimi-
zation algorithms, even the HSA and its enhanced versions, is highly influenced
and cannot maintain its favorable performance in the face of such optimization
problems. This is due to the tenuous and vulnerable characteristics employed in the
architecture of the existing meta-heuristic optimization algorithms: having only a
single-stage computational structure; using single-dimensional structures; etc. In
2011, for the first time, a new meta-heuristic optimization algorithm, referred to as
a melody search algorithm (MSA), was proposed. It had a very different architec-
ture compared to other meta-heuristic optimization algorithms. The MSA was
inspired by the phenomena and concepts of music and developed as a new version
of architecture of the HSA. It has a two-stage (or level) computational, multi-
dimensional, and single-homogenous structure. Organizing the MSA brings about
an innovative direction in the architecture of the meta-heuristic algorithms in order
to solve complicated, real-world, large-scale, non-convex, non-smooth optimiza-
tion problems having a nonlinear, mixed-integer nature with big data. With regard
to the well-designed architecture of the music-inspired optimization algorithms
and their favorable performance, there may well be appropriate optimization
techniques for overcoming the difficulties in solving complicated, real-world,
large-scale, non-convex, non-smooth optimization problems and finding the most
satisfactory response/output with higher accuracy and convergence speed com-
pared to other existing meta-heuristic optimization algorithms.

For the reasons identified above, the authors have focused on two targets in the
context of the music-inspired optimization algorithms.

» Target 1: Providing an extensive introduction to the HSA.
» Target 2: Presenting an extensive introduction to the MSA.

The remainder of this chapter is arranged as follows. First, the interdependencies
of phenomena and concepts of music and the optimization problem are reviewed
briefly in Sect. 3.2. An overview of the HSA is presented in Sect. 3.3. In Sect. 3.4, a
general classification of the enhanced versions of the HSA is reported, followed by a
thorough description of the improved harmony search algorithm (IHSA) in Sect. 3.5.
In Sect. 3.6, an overview of the MSA is presented. Finally, the chapter ends with a
brief summary and some concluding remarks in Sect. 3.7.
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3.2 A Brief Review of Music

In this section, the authors briefly address the definition of music, its history, and the
interdependencies of phenomena and concepts of music and the optimization
problem.

3.2.1 The Definition of Music

Generally speaking, music, as a social and communicative tool, is the art of
incorporating vocal or instrumental sounds (or both) in order to reach pleasant and
melodious forms of hearing. The phrase “music” originated from the ancient Greek
word “Mousiké,” which spoke to each of the skills and arts imparted by the nine
Muses—daughters of Zeus and Mnemosyne, who were inspirational goddesses of
science and art in Greek mythology. In ancient Iran, however, music was referred to
as “Khoniya.” The phrase “Khdniya” comes from the words “Khéniyak™ and
“Hoénavac,” which evolved in two parts: “H6” meaning beauty/pleasure and
“Navak” meaning tone/song. The phrase “Khoniya,” therefore, represents a beauti-
ful/pleasant tone/song. From ancient times to present, music has earned a lot of
consideration in view of its desirable effect on emotions and performances of
humans. With that in mind, different interpretations and definitions have been
reported for music by well-known philosophers and scientists. Some of the most
significant definitions for music are as follows:

¢ Greek philosopher Plato: “Music is a moral law. It gives soul to the universe,
wings to the mind, flight to the imagination, and charm and gaiety to life and to
everything.”

» Greek philosopher Aristotle: “Music has the power of producing a certain effect
on the moral character of the soul, and if it has the power to do this, it is clear that
the young must be directed to music and must be educated in it.”

¢ German philosopher Friedrich Nietzsche: “Without music, life would be an error.
The German imagines even God singing songs.”

» Persian philosopher Abu Nasr Al-Farabi: “Music is the science of identifying
tones and includes two parts: theory of music and practice of music.”

¢ Persian polymath Avicenna—Abu Ali Sina or Ibn Sina: “Music is a mathematical
science in which the quality of the tones in terms of rhythm and harmony and how
to set the time among tones are exhaustively discussed.”

Although Avicenna, as the most distinguished Persian philosopher, physician,
astronomer, thinker, and writer, referred to music in the mathematical section of
the Book of Healing—Al-Shifa—music can be generally considered an art. This is
due to the fact that, unlike principles of mathematical science, music is adjustable
and changeable with respect to the tastes, ideas, and experiences of the player/
instrumentalist/musician. As a result, music has recently been represented as a
combination of mathematical science and art.
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3.2.2 A Brief Review of Music History

Music history is not rigorously known with a view to historical studies concerned
with music from its origins to the present. Archaeological evidence, however,
demonstrates the effects of the phenomena associated with music in the process of
human life in territories such as ancient Iran, Greece, Abyssinia, Japan, and Ger-
many, several thousand years ago. An ancient, unique cylinder seal was discovered
in the Choghamish district,1 which dates back to 3400 BC (i.e., the fourth millen-
nium BC), suggesting that the oldest world music orchestra was in Dezful county,
Khuzestan province, Iran [1]. This cylinder seal is actually the earliest historical
evidence indicating that music was artistically organized. Figure 3.1 shows a
depiction of this seal, which is currently on display at the National Museum of
Iran.” As can be seen, a scene of music performance with a feasting man, a servant, a
vocalist, and multiple players is depicted in this cylinder seal. In addition, string,
wind, and percussion instrument are exhibited in one inscription for the first time,
which reveals the origin of the harmonious and symphonious tones/songs. As a
result, ancient Iran was one of the first civilizations in the world in which full
knowledge pertaining to the fundamental concepts of music was widely provided
and developed for different purposes several thousand years ago.

3.2.3 The Interdependencies of Phenomena and Concepts
of Music and the Optimization Problem

Since the advent of music, humans have sought to take advantage of music capa-
bilities to overcome difficulties and obstacles in various sciences. Music therapy is
one of the most popular applications of music in medical science for treating
patients. Music therapy is generally a clinical use of music consisting of three
major processes: (1) induction of relaxation; (2) acceleration of the process of curing
diseases; and, (3) enhancing mental performance and bringing health. Nevertheless,
music capabilities were neglected when it came to dealing with engineering chal-
lenges and alleviating their complexities. The point to be made here is that these
challenges are often expressed as an optimization problem.

In 2001, for the first time, a new optimization algorithm, referred to as an HSA,
was developed through inspiration of the fundamental concepts of music to solve
different optimization problems and achieve the optimal solution [2]. The HSA is
based on the music improvisation process in such a way that players play their
musical instruments step by step in order to achieve more harmony and better

'Choghamish district is a district in Dezful county, Khuzestan province, Iran.

The National Museum of Iran is located in Tehran province, Iran. It was established in two parts:
The Museum of Ancient Iran and the Museum of the Islamic Era whose inaugurations were in 1937
and 1972, respectively.
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Fig. 3.1 The oldest world music orchestra in 3400 BC in the Choghamish district of Dezful county,
Khuzestan province, Iran [1]

Table 3.1 Interdependencies of phenomena and concepts of music and the optimization problem
modeled by the HSA

Comparison Concept of the optimization problem
No. | factor modeled by the HSA Music concept
1 Structural pattern | Decision-making variable Player
2 Component Value of the decision-making variable Pitch of the musical
instrument
3 Decision-making | Value range of the decision-making Pitch range of the musical
space variable instrument
4 General struc- Solution vector Musical harmony
tural pattern
5 Target Objective function Aesthetic standard of the
audience
6 Process unit Iteration Time/practice
7 Memory Solution vector matrix Experience of the players
8 Best state Global optimum point Best harmony
9 Search process Local and global optimum searches Improvisation of the

players

sound. This process is virtually the same as the optimization process in solving
engineering challenges in which the optimal solution can be explored by the
evaluation of the objective function. Table 3.1 gives the interdependencies of
phenomena and concepts of music and the optimization problem modeled by
means of the HSA.
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3.3 Harmony Search Algorithm

The HSA is a population-based music-inspired meta-heuristic optimization algo-
rithm that was developed in 2001 [2]. This algorithm was inspired by the improvi-
sation process of jazz players seeking to find the best harmony and generate the most
beautiful music possible. At each music performance, these players would try to
enhance the sound of their musical instruments in order to produce more mature and
beautiful music. As set out in Table 3.1, the concepts of music are equivalently
expressed with the concept of an optimization problem modeled by the HSA. With
that in mind, each player or music instrument, the pitch of the musical instrument at
the disposal of each player, and the pitch range of the musical instrument at the
disposal of each player are virtually the same as for each decision-making variable,
the value of the decision-making variable corresponding to the relevant player, and
the value range of the decision-making variable corresponding to the relevant player,
respectively. By the same token, the musical harmony, aesthetic standard of the
audience, and time/practice refer to the solution vector, objective function, and
iteration, respectively. Additionally, the experience of the players, the best harmony
and improvisation of the players are equivalent to the solution vector matrix, global
optimum point, and local and global optimum searches, respectively. By enhancing
the musical harmony by the players in each practice, compared to before practice
from the viewpoint of the aesthetic standard of the audience, the solution vector
related to the optimization problem is improved in each iteration, compared to before
each iteration from the perspective of the proximity to the optimal global point. Form
the standpoint of algorithm architecture, the HSA has two main characteristics:
single-stage computational structure and single-dimensional structure. The HSA is,
therefore, referred to as a single-stage computational, single-dimensional harmony
search algorithm (SS-HSA).

The prerequisite for comprehending these characteristics is that you scrutinize
features employed in the architecture of the MSA and symphony orchestra search
algorithm (SOSA), which are thoroughly discussed in Sect. 3.6 of this chapter and
Sect. 4.4 of Chap. 4, respectively. After a detailed investigation of the architecture
associated with the MSA and SOSA, you will discover the reasons for the charac-
teristics expressed for the SS-HSA.

The performance-driven architecture of the SS-HSA is generally broken down
into four stages [2—4], as follows:

e Stage 1—Definition stage: Definition of the optimization problem and its
parameters.
» Stage 2—Initialization stage.

— Sub-stage 2.1: Initialization of the parameters of the SS-HSA.
— Sub-stage 2.2: Initialization of the harmony memory (HM).

» Stage 3—Computational stage.

— Sub-stage 3.1: Improvisation of a new harmony vector.
— Sub-stage 3.2: Update of the HM.
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— Sub-stage 3.3: Check of the stopping criterion of the SS-HSA.

» Stage 4—Selection stage: Selection of the final optimal solution—the best
harmony.

3.3.1 Stage I: Definition Stage—Definition
of the Optimization Problem and its Parameters

In order to solve an optimization problem using the SS-HSA, stage 1 is used to
meticulously define the optimization problem and its parameters. In mathematical
terms, the standard form of an optimization problem can be generally indicated
based on Eqs. (1.1) and (1.2), which were given in Sect. 1.2.1 of Chap. 1. However,
because the original version of the SS-HSA was developed to solve the single-
objective optimization problems, now the standard form of an optimization problem
must be rewritten according to Egs. (3.1) and (3.2):

Mir;ier)l(lize F(x) = [f(x)]
subject to :
G(x) = [1(0),- 8 (X)s- . g5 ()] = 0: V{B >0}, V{be ¥}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E >0}, V{ee WP}

(3.1)
X= [X1y.c0,Xpy---, XNDV]; V{v € PNDV @pNDV _ pyNCDVANDDV 'y X},
V{xf“i“ <x < xj“ax|v € ‘PNCDV},
{x € {x(1), ..o (W), ..o x (W) Hy € PRPPY Y
(3.2)

The explanations related to the parameters and variables from Eqs. (3.1) and (3.2)
were previously defined in Sect. 1.2.1 of Chap. 1. The vector of the objective
function elucidates the illustration of the vector of decision-making variables and
contains the value of the objective function, as given by Eq. (3.3):

z = f(x) (3.3)

It should be pointed out that the illustration of the nonempty feasible decision-
making space is recognized as a feasible objective space in objective space Z = f
(X) and is explained by the set {f(x)lx € X}. If a solution does not result in any
violation in equality and inequality constraints, it is also considered as a feasible
solution.

The SS-HSA explores the entire space of the nonempty feasible decision-making
in order to find the vector of optimal decision-making variables, or solution vector.
The optimal vector has the lowest possible value for the objective function given in
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Eq. (3.1). Basically, the SS-HSA merely considers the objective function given in
Eq. (3.1). Nonetheless, if the solution vector obtained by the SS-HSA gives rise to
any violation in equality and/or inequality constraints given in Eq. (3.1), the algo-
rithm can employ one of the two following processes from the perspective of the
decision-maker in dealing with this solution vector:

* First process: The SS-HSA ignores the obtained solution vector.

* Second process: The SS-HSA takes into account the obtained solution vector by
applying a specified penalty coefficient to the objective function of the optimi-
zation problem.

3.3.2 Stage 2: Initialization Stage

After completion of stage 1 and a thorough mathematical description of the optimi-
zation problem, stage 2 is employed. This stage is formed by two sub-stages:
initialization of the parameters of the SS-HSA and initialization of the HM, which
is discussed in detail below.

3.3.2.1 Sub-stage 2.1: Initialization of the Parameters of the SS-HSA

In sub-stage 2.1, the parameter adjustments of the SS-HSA should be initialized with
specific values. Table 3.2 provides a detailed description of the parameter adjust-
ments of the SS-HSA. In the SS-HSA, the HM is a place for storing the solution, or
harmony vectors. The HM in the SS-HSA is virtually the same as the mating pool in
the GA. The harmony memory size (HMS) represents the number of solution vectors
stored in the HM.

The HMS is equivalent to the population size in the GA. In the improvisation
process of a new harmony vector, the harmony memory considering rate (HMCR)

Table 3.2 Adjustment parameters of the SS-HSA

No. |SS-HSA parameter Abbreviation | Parameter range
1 Harmony memory HM -

2 Harmony memory size HMS HMS > 1

3 Harmony memory considering rate HMCR 0 <HMCR <1
4 Pitch adjusting rate PAR 0<PAR <2

5 Bandwidth BW 0 <BW < +o00
6 Number of continuous of decision-making variables | NCDV NCDV > 1

7 Number of discrete decision-making variables NDDV NDDV > 1

8 Number of decision-making variables NDV NDV > 2

9 Maximum number of improvisations/iterations MNI MNI > 1
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is employed in order to determine whether the value of a decision-making variable
related to a new harmony vector is derived from the HM or from the entire space of
the nonempty feasible decision-making. Put another way, the HMCR expresses the
rate at which the value of a decision-making variable from a new harmony vector is
randomly selected with respect to the player’s memory, or more comprehensively
from the HM. In this regards, 1-HMCR indicates the rate at which the value of a
decision-making variable from a new harmony vector is haphazardly chosen in
terms of the entire space of the nonempty feasible decision-making. By the same
token, in the improvisation process of a new harmony vector, the pitch adjusting
rate (PAR) is utilized to specify whether the value of a decision-making variable
selected from the HM needs an update to its neighbor value or not. More precisely,
the PAR describes the rate at which the value of a decision-making variable
selected with the HMCR rate from the player’s memory, or more comprehensively
from the HM, is altered. With that in mind, 1-PAR clarifies the rate at which the
value of a decision-making variable, chosen with the HMCR rate from the player’s
memory or more comprehensively from the HM, is not changed. The bandwidth
(BW)—fret width—is considered to be an optional length and is exclusively
defined for continuous decision-making variables. In music literature, the fret
width is a significant element on the neck of a string musical instrument (e.g., a
bass guitar) in such a way that the neck of a string musical instrument is broken up
into fixed-length segments at intervals pertaining to the musical framework. In the
string musical instruments (e.g., the guitar family), each fret illustrates a semitone,
and 12 semitones make up an octave in the standard Western style. In the SS-HSA,
however, the frets represent arbitrary points that divide the entire space of the
nonempty feasible continuous decision-making into fixed parts. The fret width—
BW—is defined as the distance between two neighbor frets. The number of
decision-making variables (NDV), which is dependent on the optimization prob-
lem given in Egs. (3.1) and (3.2), consists of the sum of the number of continuous
decision-making variables (NCDV) and the number of discrete decision-making
variables (NDDV). The NDV characterizes the dimensions of the harmony vector
in the SS-HSA. The maximum number of improvisations/iterations (MNI)
addresses the number of times that the computational stage is repeated in the
SS-HSA. The point to be made here is that the SS-HSA improvises a harmony
vector in each improvisation/iteration. The MNI is usually employed as a stopping
criterion in the SS-HSA.

3.3.2.2 Sub-stage 2.2: Initialization of the HM

After finalization of sub-stage 2.1 and parameter adjustments of the SS-HSA, the
HM must be initialized in sub-stage 2.2. In this sub-stage, the HM matrix, which has
a dimension equal to {HMS} - {NDV + 1}, is filled with a large number of solution
vectors generated randomly according to Egs. (3.4) through (3.6):
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x! Xpoox e xpy | f(x)
HM = x| = xoex) xI{IpV ‘ f()'(s) : 34)
<HMS AHMS L HMS L (HMS | g HMS)
v {v € PNDV ¢ o pHMS \I,NDv:q,NCDW—NDDV}
X =xM U0, 1) (xM™ —xM); Vv e PNPY 5 e M) (3.5)
x, =x,); V{v € PNPDV ¢ ¢ phMS U{x,(1),...,x,(wy),... ,xv(Wv)}}
(3.6)

Equation (3.4) represents the HM. Equations (3.5) and (3.6) are also considered
for continuous and discrete decision-making variables, respectively. In Eq. (3.5), U
(0, 1) indicates a random number with a uniform distribution between 0 and 1. In
addition, Eq. (3.5) expresses how the value of the continuous decision-making
variable v from the harmony vector s stored in the HM is randomly determined
using the set of candidate admissible values for this decision-making variable,
which is confined by lower bound x™" and upper bound x™*. In Eq. (3.6), the
y index describes a random integer with a uniform distribution through the set
{x, (1), ..., x,(wy), -, x5, (W) }—y ~U{x, (1), ..., x,(w,), ...,x,(W,)}. Equation
(3.6) describes how the value of the discrete decision-making variable v from the
harmony vector s stored in the HM is randomly specified using the set of candidate
allowable values for this decision-making variable, which is demonstrated by the
set {x,(1), ...,x,(w), ...,x,(W,)}. Table 3.3 gives the pseudocode associated
with initialization of the HM in the SS-HSA. After filling the HM with random
solution vectors, the solution vectors stored in the HM must be sorted from the
lowest value to the highest value—in an ascending order—with regard to the value
of the objective function of the optimization problem. Table 3.4 presents the
pseudocode related to sorting the solution vectors stored in the HM under the
SS-HSA.

3.3.3 Stage 3: Computational Stage

After completion of stage 2 and initialization of the parameters of the SS-HSA and
the HM, this computational stage must be performed. This stage consists of three
sub-stages: (1) improvisation of a new harmony vector; (2) update of the HM; and
(3) check of the stopping criterion of the SS-HSA. The mathematical equations
expressed at this stage must depend on the improvisation/iteration index—index
m—>because of the repeatability of the computational stage in the SS-HSA.
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Table 3.3 Pscudocode associated with initialization of the HM in the SS-HSA

Algorithm 1: Pseudocode for initialization of the HM in the SS-HSA

Input: HMS, NCDV, NDDV, NDV, x;“i“, XD, oxwy), L x (W)
Output: HM

start main body

1: | begin
Z construct the HM matrix with dimension {HMS} - {NDV + 1} and zero initial value
3 for harmony vector s [s € pHMS) 4o
4 | construct the harmony vector x* with dimension {1} - {NDV + 1} and zero initial value
Z for decision-making variable v [v € PNPV] do

6: x§=xM" 4+ U(0,1) - (x™ — xM); for CDVs
T =x0) WU (D, x(m), -5 (W,)); for DDVs
8 | allocate x; to element (1, v) of the harmony vector x

9: end for
10: | calculate the value of objective function, fitness function, derived from the harmony
| vector x* as fix")
11: | allocate fix") to element (1, NDV + 1) of the harmony vector x*

12: add harmony vector x* to the row s of the HM matrix
'13: | end for
'14: | terminate

end main body

Note: Continuous decision-making variable (CDVs), discrete decision-making variable (DDVs)

Table 3.4 Pseudocode related to sorting the solution vectors stored in the HM under the SS-HSA

Algorithm 2: Pseudocode for sorting the solution vectors stored in the HM under the SS-HSA

Input: Unsorted HM
Output:  Sorted HM

start main body

1: | begin
2: | F" = sort(HM(1: HMS,NDV + 1), ascend’)

3: | for harmony vector s [s € PHMS) qo
4: | for harmony vector s* [s* € ¥"™S] do
5. | if Fs) == HM(s",NDV + 1) then
6 HM*"(s5, 1: NDV + 1) = HM(s", 1: NDV + 1);
7. | endif
E end for

9: | end for
10 | HM = HM*"
"11: | terminate

end main body
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3.3.3.1 Sub-stage 3.1: Improvisation of a New Harmony Vector

In the jazz improvisation process, a musical note can generally be played by a player
based on one of the three different styles: (1) selection of a musical note from the
corresponding player’s memory; (2) creation of a slight alteration in the selected
musical note from the corresponding player’s memory; and, (3) random selection of a
musical note from the entire playable range. In the SS-HSA, however, improvisation
process refers to the process of producing a harmony vector. Similarly, in the
SS-HSA, selection of the value of a decision-making variable corresponding to a
player can be accomplished according to one of the three different methods: (1) selec-
tion of the value of a decision-making variable from the HM,,;; (2) creation of a slight
alteration in the value of the selected decision-making variable from the HM,,;
and, (3) selection of the value of a decision-making variable from the entire space
of the nonempty feasible decision-making. In an exhaustive definition, the improvi-
sation process of a new harmony vector—x™" = (xp", ..., XV, ... X0\ py )—in
the SS-HSA can be expressed by three rules: (1) harmony memory consideration;
(2) pitch adjustment; and, (3) random selection.

Rule I: In the harmony memory consideration rule, the values of a new harmony
vector are randomly selected from the available harmony vectors in the HM,,, with
the probability of the HMCR. More precisely, the value of the first decision-making
variable from a new harmony vector, x,’;elw is randomly chosen from the available
corresponding decision-making variable in the harmony vectors stored in the HM,,,
(x:ngl, . 7’62, Lreee ,er:’I‘l/IS), with the probability of the HMCR. The values for other
decision-making variables are also selected in the same way. Applying the harmony
memory consideration rule to determine the value of the decision-making variable
v from a new harmony vector, x"V, is performed using Eq. (3.7):

m,v >

e = xr o V{m e WMLy e WPV 1 L U{1,2,... HMS}, WPV NCDVANDDV Y
(3.7)

Equation (3.7) is employed for continuous and discrete decision-making vari-
ables. It is also important to point out that index r is a random integer with a uniform
distribution through the set {1,2, ... ,HMS}—r ~ U{1,2, ... ,HMS}. In other
words, in Eq. (3.7), the value of index r is randomly determined through the set of
allowable values illustrated by the set {1,2, ..., HMS}. Determination of this index
is represented in accordance with Eq. (3.8):

r=int(U(0,1) - HMS) + 1 (3.8)

It should be pointed out that other distributions can be utilized for index r, such as
(U(0, 1))%. The use of this distribution gives rise to the selection of lower values for
index r.

Rule 2: In the pitch adjustment rule, the values of a new harmony vector, which
are randomly selected through the existing harmony vectors in the HM,, with the
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probability of the HMCR, are updated with the probability of the PAR to the
available values in the neighborhood of the current values. Put another way, after
the value of the first decision-making variable from a new harmony vector, x, 7', is
randomly selected from the available corresponding decision-making variable in the
harmony vectors stored in the HM,,, with the probability of the HMCR, this decision-
making variable is updated with the probability of the PAR to one of the available
values in the neighborhood of its current value. The update process to one of the
available values in the neighborhood for this decision-making variable is done by
adding a specific value to its current value. The values for other decision-making
variables are also selected in the same way. Applying the pitch adjustment rule to
specify the value of the decision-making variable v from a new harmony vector,
new

X is carried out by using Egs. (3.9) and (3.10):

m,v >

Xpe = xneV £U(0,1) - BW;  V{m e ¥y e NPV (3.9)
oy = Xy (v 1);

V{m e YMNLy, c WPV oy U{x, (1), ..., x,(wy), .. .,

X (W)}t~ U{=1,+1}} (3.10)

Equations (3.9) and (3.10) are used for the continuous and discrete decision-
making variables, respectively. In Eq. (3.10), f represents the neighborhood index.
The neighborhood index ¢ is a random integer with a uniform distribution through
the set {—1,+1}—t ~ U{—1, +1}. In other words, in Eq. (3.10), the value of index
t is randomly determined through the set of allowable values illustrated by the set
{—1,+1}.

Rule 3: In the random selection rule, the values of a new harmony vector are
randomly chosen from the entire space of the nonempty feasible decision-making
with the probability of the 1-HMCR. In simple terms, the value of the first decision-
making variable from a new harmony vector, x,',‘f{” , is randomly selected from the
entire space of the nonempty feasible decision-making with the probability of the
1-HMCR. The values for other decision-making variables are also chosen in the same
way. The point to be made here is that the random selection rule was already utilized
in sub-stage 2.2 for initialization of the HM. Applying the random selection rule to
characterize the value of the decision-making variable v from a new harmony vector,
X"V is done using Egs. (3.11) and (3.12):

m,v

xhew _ xé’nin + U(O, 1) . (xmax 7x‘§nin); V{m c ‘PMNI7V c TNCDV} (311)

oo =x(); V{m e WMLy e WYy~ Ul (1), x(w), o x(Wa)
(3.12)
Equations (3.11) and (3.12) are used for the continuous and discrete decision-

making variables, respectively. As further elucidation, assume that the parameter
adjustments for the HMCR and PAR are considered to be 0.75 and 0.65,
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respectively. First, a random number with a uniform distribution between 0 and 1, U
(0, 1), is generated. If the generated random number has a lower value than the value
of the HMCR parameter (i.e., 0.75), the value of the first decision-making variable
from a new harmony vector, x,‘;f}”, is randomly selected from the available
corresponding decision-making variable among the harmony vectors stored in the
HM,,, ( I TRRPPE AR PR ,I;,Il S) with the probability of 0.75. Correspondingly, the
value of the first decision-making variable from a new harmony vector, x,7}', is
randomly chosen from the entire space of the nonempty feasible decision-making
with the probability of (1-0.75), provided that the random number generated has a
value higher than the value of the HMCR parameter (0.75).
After the value of the first decision-making variable from a new harmony vector,
X, 1 » has been randomly selected from the available corresponding decision-making
variable in the harmony vectors stored in the HM,,, with the probability of 0.75, one
more random uniform number between 0 and 1, U(0, 1), is generated. If this random
number has a value lower than the value of the PAR parameter (0.65), the value of the
first decision-making variable from a new harmony vector, x,"", is updated to one of
the available values in the neighborhood of its current value chosen from the HM,,
with the probability of 0.65. Mutually, the value of the first decision-making variable
from a new harmony vector, x;ﬂ” which was haphazardly selected from available
corresponding decision-making variable in the harmony vectors stored in the HM,,,
(x:n’ reeesXmpseees EI‘I/IS) with the probability of 0.75, is not changed if the gener-
ated random number has a value higher than the value of the PAR parameter (0.65).
As a general result, the probability that the value of the first decision-making
variable from a new harmony vector, x,°", can be determined by applying the
harmony memory consideration, pitch adjustment, and random selection rules is
equal to HMCR x (1 — PAR), HMCR x PAR, and 1 — HMCR, respectively. The
values for other decision-making variables are also chosen in the same way.
Table 3.5 presents the pseudocode pertaining to improvisation of a new harmony

vector in the SS-HSA.

3.3.3.2 Sub-stage 3.2: Update of the HM

After finalization of sub-stage 3.1 and improvisation of a new harmony vector, the
update process of the HM,,, must be carried out in sub-stage 3.2. In this sub-stage, a
new harmony vector is evaluated and compared with the worst available harmony
vector in the HM,,—the harmony vector stored in the HMS row of the HM,,—from
the perspective of the objective function. If a new harmony vector has a better value
than the worst available harmony vector in the HM,,, from the perspective of the
objective function, this new harmony vector replaces the worst harmony vector
available in the HM,,; the worst available harmony vector is then eliminated from
the HM,,,. Table 3.6 shows the pseudocode related to the update of the HM,, in the
SS-HSA.



Table 3.5 Pseudocode pertaining to improvisation of a new harmony vector in the SS-HSA

Algorithm 3: Pseudocode for improvisation of a new harmony vector in the SS-HSA

Input: BW, HMCR, HMS, NCDV,NDDV, NDV, PAR, x:"i", X (D), e (wy), xy
W)}
Output:  x'°%

m

start main body

begin

D | =

construct the new harmony vector x,,”" with dimension {1} - {NDV + 1}
and zero initial value
for decision-making variable v [v € DV do
if U(0, 1) < HMCR then

Rule 1: The harmony memory consideration with the probability
] of the HMCR
5: X = x5 Vr~U{1,2,... , HMS}; for CDVs and DDVs
6: | ifU(0, 1) < PAR then

3:
4
new

Rule 2: The pitch adjustment with the probability of the HMCR - PAR
Yoy = Xv £U(0,1) - BW; for CDVs

Xy = xon (v 1)y ~ Ulx, (1), .., (wy), ., 0 (W) ), Ve~ U1, +1)
for DDVs
end if
else if
Rule 3: The random selection with the probability of the 1 — HMCR

xhew x‘:'nin + U(O, 1) . (xvmax _ xmin); for CDVs

9 |

10: |

12 Xy = X,(9); Vy~U{x,(1), ..., x,Mm), ..., x(W,)}; for DDVs

13: | endif

14: end for

? calculate the value of objective function, fitness function, derived from the
harmony vector x/" as f (x,2")

16: | allocate f (x,*) to element (1, NDV + 1) of the new harmony vector x**

17: | terminate

end main body

Note: Continuous decision-making variable (CDVs), discrete decision-making variable (DDVs)

Table 3.6 Pseudocode related to update of the HM,, in the SS-HSA

Algorithm 4: Pseudocode for the update of the HM,, in the SS-HSA

Input: Not update HM,,, ;"™
Output: Updated HM,,

start main body

1: | begin

20 | set xVot = x[MS

3 [ set f(x") = f(xIMS)

4. |iff (x,‘}f‘”) < f(xV™") then

5| x™Y € HM,,

6 xV™ ¢ HM,

7: | end if

'8: | terminate

end main body
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Table 3.7 Pseudocode relevant to sorting the solution vectors stored in the HM,, under the
SS-HSA

Algorithm 5: Pseudocode for sorting the solution vectors stored in the HM,, under the SS-HSA

Input: Unsorted HM,,,
Output: Sorted HM,,

start main body

1: | begin

2 = sort (HMm(l: HMS,NDV + 1), ’ascend’)
T for harmony vector s [s € wHMS] gg

E for harmony vector s* [s* € ¥"™5] do

5 if F5"(s) == HM,,(s*, NDV + 1) then

6: HM"(s,1: NDV + 1) = HM,,(s*,1: NDV + 1);
7. | endif

'8: | end for

9: | end for

10: | HM,, = HM™

"11: | terminate

end main body

It should be pointed out that the update process of the HM,, is not accomplished if
the new harmony vector is not notably better than the worst available harmony
vector in the HM,,,, from the standpoint of the objective function. After completion of
this process, harmony vectors stored in the HM,, must be re-sorted based on the
value of objective function—fitness function—in an ascending order. The
pseudocode related to sorting the solution vectors stored in the HM was already
provided in Table 3.4. Given the dependence of the HM to the improvisation/
iteration index of the computational stage—index m—the aforementioned
pseudocode must be rewritten according to Table 3.7.

3.3.3.3 Sub-stage 3.3: Check of the Stopping Criterion of the SS-HSA

After completion of sub-stage 3.2 and an update of the HM, the check process of the
stopping criterion of the SS-HSA must be done in sub-stage 3.3. In this sub-stage,
the computational efforts of the SS-HSA are terminated when its stopping crite-
rion—the MNI—is satisfied. Otherwise, sub-stages 3.1 and 3.2 are repeated.

3.3.4 Stage 4: Selection Stage—Selection of the Final
Optimal Solution—The Best Harmony

After finalization of stage 3, or accomplishment of the computational stage, the
selection of the final optimal solution—the best harmony—must be performed in
stage 4. In this stage, the best harmony vector stored in the HM, x', is taken as the



64 3 Music-Inspired Optimization Algorithms: From Past to Present

Table 3.8 Pseudocode relevant to the selection of the final optimal solution in the SS-HAS

Algorithm 6: Pseudocode for the selection of the final optimal solution in the SS-HSA

Input: HM
Output:  x™

start main body
1: | begin
Z set X"t = x!
3: | terminate

end main body

Table 3.9 Pseudocode pertaining to performance-driven architecture of the SS-HSA

Algorithm 7: Pseudocode for performance-driven architecture of the SS-HSA
Input: BW, HMCR, HMS, MNI, NCDV, NDDV, NDV, PAR, x;"i", i {x(D), ...,

xY)(Mt}V)’ R ’xV(WV)}
Output: x>

start main body

1: | begin
2: | Stage 1—Definition stage: Definition of the optimization problem and its parameters
3: | Stage 2—Initialization stage

4: | Sub-stage 2.1: Initialization of the parameters of the SS-HSA

5: Sub-stage 2.2: Initialization of the of the HM

6 Algorithm 1: Pseudocode for initialization of the HM in the SS-HSA

7 Algorithm 2: Pseudocode for sorting the solution vectors stored in the HM under the
SS-HSA

8: | Stage 3—Computational stage

9: set improvisation/iteration m = 1
10: set HM,, = HM

11: while m < MNI do

12: Sub-stage 3.1: Improvisation of a new harmony vector
E Algorithm 3: Pseudocode for improvisation of a new harmony vector in the SS-HSA
14| Sub-stage 3.2: Update of the HM
15: | Algorithm 4: Pseudocode for the update of the HM,, in the SS-HSA
16: Algorithm 5: Pseudocode for sorting the solution vectors stored in the HM,, under
the SS-HSA
17 set improvisation/iteration m = m + 1

18: end while

19: | Stage 4—Selection stage: Selection of the final optimal solution—The best harmony

20: Algorithm 6: Pseudocode for the selection of the final optimal solution in the SS-HSA
21: | terminate

end main body

final optimal solution. Table 3.8 gives the pseudocode relevant to the selection of the
final optimal solution in the SS-HSA. The designed pseudocode in different stages
and sub-stages of the SS-HSA is located in a regular sequence and forms the
performance-driven architecture of this algorithm. Table 3.9 presents the
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pseudocode pertaining to the performance-driven architecture of the SS-HSA. In
here, sub-stage 3.3—the check process of the stopping criterion of the SS-HSA—is
defined by the WHILE loop in the pseudocode pertaining to the performance-driven
architecture of the SS-HSA (see Table 3.9).

3.4 Enhanced Versions of the Single-Stage Computational,
Single-Dimensional Harmony Search Algorithm

As previously mentioned, the original SS-HSA was introduced in 2001. Readers
interested in a comprehensive discussion on different applications of the SS-HSA are
referred to the work by Manjarres et al. [5]. From 2001 to the present, many
enhanced versions of the original SS-HSA have been developed to solve a wide
range of optimization problems in the engineering sciences (e.g., electrical, civil,
computer, mechanical, and aerospace). In related literature, different classifications
for the enhanced versions of the SS-HSA have been presented. Providing a structural
classification for the enhanced versions of the SS-HSA can dramatically help
interested readers to reasonably understand how to enhance the SS-HSA. By inves-
tigating all enhanced versions of the SS-HSA, it can be concluded that all enhance-
ments, from the perspective of implementation, can be broken down into three
general categories, as follows:

e Category 1: Enhancements applied on the SS-HSA from the perspective of the
parameter adjustments. The most well-known existing enhanced version of this
category is the IHSA.

» Category 2: Enhancements accomplished on the SS-HSA from the standpoint of a
combination of this algorithm with other meta-heuristic optimization algorithms.
Enhanced versions of this category are divided into two subcategories.

— Subcategory 2.1: Enhancements performed on the SS-HSA from the view-
point of integration of some components associated with other meta-heuristic
optimization algorithms in the architecture of the SS-HSA. The best known
existing enhanced version of this subcategory is the global-best harmony
search algorithm.

— Subcategory 2.2: Enhancements carried out by the SS-HSA from the perspec-
tive of integration of some components pertaining to the SS-HSA in the
architecture of other meta-heuristic optimization algorithms. The most well-
known existing enhanced version of this subcategory is the adaptive GA using
the SS-HSA.

* Category 3: Enhancements implemented on the SS-HSA from the standpoint of
architectural principles. The first existing enhanced version of this category is
the MSA.
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More detailed descriptions regarding the enhanced versions of the SS-HSA are
beyond the scope of this chapter, but the interested reader may look to the work by
Moh’d-Alia and Mandava [6] for a thorough discussion of these enhanced
versions.

As the IHSA and MSA are widely employed in the second part of this book for
comparison purposes, these two existing optimization techniques will be discussed
extensively in Sects. 3.5 and 3.6 of this chapter, respectively.

3.5 Improved Harmony Search Algorithm

As previously mentioned, the IHSA, as the most well-known existing enhanced
version of the SS-HSA, was developed by dynamically changing the parameter
adjustments in each improvisation/iteration. The architecture of the IHSA is, there-
fore, quite similar to the architecture of the SS-HSA. In more detail, the IHSA has
two main characteristics: a single-stage computational structure and a single-
dimensional structure. With that in mind, the THSA is referred to as the single-
stage computational, single-dimensional improved harmony search algorithm
(SS-IHSA). In the architecture of the SS-HSA, the PAR and BW parameters play
a pivotal role in adjusting the convergence rate of the algorithm to achieve the final
optimal solution. Accordingly, desirable performance of the SS-HSA is highly
dependent on precise and proper adjustment of these parameters. In view of the
fact that the BW parameter can have any value in the range of zero to positive
infinity, fine-tuning this parameter is more difficult than the PAR parameter. In the
SS-HSA, the values of the PAR and BW parameters are adjusted in stage 2.1 and
cannot be changed during subsequent improvisations/iterations. Simply put, the
SS-HSA employs invariant values for the PAR and BW parameters in all improvi-
sations/iterations. The main disadvantage of these parameter adjustments appears in
the number of iterations required by the SS-HSA to find the final optimal solution.
Considering small values for the PAR parameter with large values for the BW
parameter can generally bring about a poor performance for the SS-HSA and a
significant increase in the number of iterations needed to reach the final optimal
solution. Although considering smaller values for the BW parameter in the termi-
native improvisations/iterations strengthens the probability of more precise adjust-
ment of solution vectors, taking into account large values for the BW parameter in
initial improvisations/iterations is certainly a necessity for increasing diversity in the
solution vectors of the SS-HSA. Similarly, considering large values for the PAR
parameter with small values for the BW parameter can usually improve the solutions
in the terminative improvisations/iterations in such a way that the SS-HSA con-
verges towards the optimal solution vector.

In 2007, to overcome the difficulties associated with the invariant values of the
BW and PAR parameters, the SS-IHSA was introduced and variant values were
employed for the PAR and BW parameters [7]. Given the fact that the different stages
in the SS-IHSA are virtually the same as the different stages in the SS-HSA, only the
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differences caused by the use of variant values for the PAR and BW parameters are
referred to here. The major differences between the SS-IHSA and the SS-HSA appear
only in sub-stage 2.1 (initialization of the parameters of the algorithm) and in sub-
stage 3.1 (improvisation of a new harmony vector). In sub-stage 2.1, the parameter
adjustments of the offered SS-HSA are characterized according to Table 3.1, which is
presented in Sect. 3.3.2.1 of this chapter. As is clear from Table 3.1, the SS-HSA
considers invariant values for the PAR and BW parameters. In this sub-stage,
however, the SS-IHSA replaces the PAR and BW parameters with parameters
minimum pitch adjusting rate (PAR™") and maximum pitch adjusting rate (PAR™®)
and minimum bandwidth (BW™") and maximum bandwidth (BW™), respectively.
Other parameters presented in Table 4.1 remain unchanged for the SS-IHSA. As a
result, the detailed descriptions relevant to the adjustment parameters of the SS-IHSA
are thoroughly represented in Table 3.10.

In sub-stage 3.1, unlike the SS-HSA, which uses invariant values for the PAR
and BW parameters in the improvisation process of a new harmony vector, the
SS-IHSA utilizes the updated values for the PAR and BW parameters in the
improvisation process of a new harmony vector. In this sub-stage, the values
associated with the PAR and BW parameters are dynamically changed and updated
in each improvisation/iteration of the SS-IHSA by using Eqgs. (3.13) and (3.14),
respectively:

In (BWmax/BWmin)
MNI

BW,, = BW™ -exp( m) v{me ™'} (3.13)

PAR™* _ P ARmin
MNI

PAR,, = PAR™" + ( ) m; V{m e $MN} (3.14)

In Eq. (3.13), the value of the BW,, parameter is represented as an exponential
function of the improvisation/iteration index—index m. In this equation, the value of
the BW,, parameter is exponentially decreased by increasing the value of the
improvisation/iteration index.

Table 3.10 Adjustment parameters of the SS-IHSA

No. | SS-IHSA parameter Abbreviation | Parameter range

1 Harmony memory HM -

2 Harmony memory size HMS HMS > 1

3 Harmony memory considering rate HMCR 0<HMCR <1

4 Minimum pitch adjusting rate PAR™" 0 < PAR™" <2
5 Maximum pitch adjusting rate PAR™ 0 < PAR™™ <2
6 Minimum bandwidth BW™" 0 < BW™" <+ 00
7 Maximum bandwidth Bw™ 0 <BW™ <+ 00
8 Number of continuous decision-making variables | NCDV NCDV > 1

9 Number of discrete decision-making variables NDDV NDDV > 1

10 Number of decision-making variables NDV NDV > 2

11 Maximum number of improvisations/iterations MNI MNI > 1
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That is to say that the value of the BW,, parameter, by altering the improvisation/
iteration index from zero to the MNI, m € {0 — MNI}, is exponentially changed
from the value of the BW™ parameter to the value of the BW™" parameter,
BW,, € {BW™* — BW™"} In Eq. (3.14), the value of the PAR,, parameter is
expressed as a linear function of the improvisation/iteration index—index m. In this
equation, the value of the PAR,, parameter is linearly grown by increasing the value
of the improvisation/iteration index. Put simply, the value of the PAR,, parameter, by
changing the improvisation/iteration index from zero to the MNI, m € {0 — MNI},
is linearly altered from the value of the PAR™™ parameter to the value of the PAR™
parameter, PAR,, € {PAR™" — PAR™®}. Table 3.11 shows the rectified

Table 3.11 Pseudocode associated with improvisation of a new harmony vector in the SS-IHSA

Algorithm 8: Pseudocode for improvisation of a new harmony vector in the SS-IHSA

Input: BW™, BW™", HMCR, HMS, MNI, NCDV, NDDV, NDV, PAR™, PAR™", x™",
) {x (D), ), - x (W)Y

Output: x'°V

m

start main body

1: | begin

2: | BW,, = BW™™ . exp [(In(BW™/BW™")/MNI) - m]

3: | PAR,, = PAR™" — [(PAR™>* — PAR™")/MNI) - m]

4: | construct the new harmony vector x,,°" with dimension {1} - {NDV + 1} and zero initial
value

5:  |for decision-making variable v [v € PPV do

6: if U(0, 1) < HMCR then

Rule 1: The harmony memory consideration with the probability of the HMCR

7: x”"ffv = x;w; Vr~U{l,2, ... ,HMS}; for CDVs and DDVs

'8¢ | if U0, 1) < PAR,, then

] Rule 2: The pitch adjustment with the probability of the HMCR - PAR,,

9 X1V = XY £ (0, 1) - BW,,; for CDVs

10: | XY = XY (y 4 1); yU (D - oxn), <o (W)), Y =U{—1,+1); for
DDVs

11 | endif

120 | elseif

Rule 3: The random selection with the probability of the 1 — HMCR
13: | xpey = x4+ U(0,1) - (™ — x™"); for CDVs
14: Xoon = % (9); Vy~U{x,(1), ..., x,(wy), ..., x(W,)}; for DDVs
15: end if
16: | end for
17: | calculate the value of objective function, fitness function, derived from the harmony vector
X as f (x™)

18: | allocate f(x") to element (1, NDV + 1) of the new harmony vector x "

19: | terminate

end main body

Note: Continuous decision-making variable (CDVs), discrete decision-making variable (DDVs)
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Table 3.12 Pseudocode related to the performance-driven architecture of the SS-IHSA

Algorithm 9: Pseudocode for performance-driven architecture of the SS-IHSA

Input: BW™>, BW™" HMCR, HMS, MNI, NCDV, NDDV, NDV, PAR™>, PAR™", x;“i",

x;)“;f D), oy, L x (W)}
b

Output:

start main body

1: | begin
2: | Stage 1—Definition stage: Definition of the optimization problem and its parameters
3: | Stage 2—Initialization stage

4: Sub-stage 2.1: Initialization of the parameters of the SS-IHSA

'5: | Sub-stage 2.2: Initialization of the of the HM

Z Algorithm 1: Pseudocode for initialization of the HM in the SS-IHSA

7 Algorithm 2: Pseudocode for sorting the solution vectors stored in the HM under the
SS-THSA

8: | Stage 3—Computational stage

9: set improvisation/iteration m = 1
10: set HM,, = HM

11: while m < MNI do

120 Sub-stage 3.1: Improvisation of a new harmony vector
13: Algorithm 8: Pseudocode for improvisation of a new harmony vector in the
| SS-IHSA
14: ] Sub-stage 3.2: Update of the HM
15: | Algorithm 4: Pseudocode for the update of the HM,, in the SS-IHSA
16: Algorithm 5: Pseudocode for sorting the solution vectors stored in the HM,, under
the SS-THSA
17: set improvisation/iteration m = m + 1

18: end while
19: | Stage 4—Selection stage: Selection of the final optimal solution—The best harmony
20: Algorithm 6: Pseudocode for the selection of the final optimal solution in the SS-IHSA

21: | terminate

end main body

pseudocode associated with improvisation of a new harmony vector in the SS-IHSA.
Table 3.12 gives the pseudocode related to the performance-driven architecture of
the SS-IHSA.

3.6 Melody Search Algorithm

In a general sense, playing more than one musical note at a time is referred to as a
harmony. The difference in the pitch between the two musical notes is called their
interval. Given this definition, consider a few simple scenarios: two-note harmonies
have one interval; three-note harmonies have three intervals; and four-note
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harmonies have six intervals. The impressiveness and diversity of each harmony
increase geometrically with the addition of each musical note. More precisely, if the
number of musical notes played at a given time increases, the richness and variety of
harmony increase, owing to the fact that a combination of musical notes is utilized in
order to create a beautiful and pleasant tone or complete song. Harmonies with three
or more musical notes are called chords. Chords generally make a harmonic structure
or a background mode for a piece of music. In these harmonies, intervals are
considered structural blocks of the chords.

That is, in music, harmony is the use of simultaneous pitches or chords. In this
circumstance, the investigation of harmony involves chords, their construction,
and progressions; connection principles are accomplished to form a melody. It is
important to note that harmony refers to vertical aspects of the music space, due to
simultaneous playing of available music notes in harmony. In contrast to harmony,
a melody is a linear sequence of musical notes that can be recognized as a single
song by a listener. More precisely, a melody consists of a linear sequence of
individual pitches or musical notes, one followed by another one in a certain
order. A hybrid ordering of musical notes, then, makes up a song. The point to
be made here is that melody refers to the horizontal aspect of the music space,
because the available musical notes are played in a linear sequence and read mostly
horizontally from left to right. Figure 3.2 depicts the major difference between the
structures related to harmony and melody. Harmony is able to convey different
types of emotions, impulses, and coloring to the melody. Harmony therefore
causes deepening and richness of the melody. Stated another way, if a melody is
a boat, harmony is a river along which the boat floats. Where the river is deeper and
without stones and obstacles, the boat can move, or flow, more easily—more
fluently and beautifully. More detailed descriptions of the entire concepts
pertaining to harmony and melody in music are out of the scope of this chapter,
but the interested reader may look to the work by Martineau [8] and Sturman [9] for
an exhaustive discussion regarding these concepts.

According to what has been described in Sect. 3.4, the SS-HSA and its enhanced
versions—categories 1 and 2—have a single-stage computational and
one-dimensional structure. These characteristics cause the performance of the
SS-HSA and its enhanced versions to be greatly influenced by the process of solving
complicated, real-world, large-scale, non-convex, non-smooth optimization
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Fig. 3.2 The major difference between the structure of harmony and melody
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problems having a nonlinear, mixed-integer nature with big data in such a way that
these algorithms cannot maintain their affordable performance. In order to tackle the
disadvantages of the SS-HSA and its enhanced versions, a new meta-heuristic
optimization algorithm, referred to as an MSA, was introduced in 2011 [10]. Subse-
quently, the completed version of this algorithm was presented in 2013 [11]. The
MSA is an innovative, population-oriented, meta-heuristic optimization algorithm,
which was inspired by borrowing the phenomena and concepts of music as well as
principles employed in the SS-HSA.

This newly developed optimization technique basically has a different architec-
ture compared to other meta-heuristic optimization algorithms, because it imitates
the process of music performance and interactive relationships among members of a
musical group, while each player is looking for the best set of pitches within a
melody line. In such a musical group, the presence of multiple players with different
tastes, ideas, styles, and experiences under interactive relationships among players
can effectively result in attaining the most desirable sequence of pitches more
quickly. This process is virtually the same as the optimization process in engineering
sciences in which the optimal solution can be explored by evaluating the objective
function. Table 3.13 shows the interdependencies of phenomena and concepts of
music and the optimization problem modeled by the MSA. As set out in Table 3.13,
the concepts of music are equivalently indicated with the concept of the optimization

Table 3.13 Interdependencies of phenomena and concepts of music and the optimization problem
modeled by the MSA

Concept of the

Comparison
No. | factor

optimization problem
modeled by the MSA

Music concept

1 Structural pattern | Decision-making Pitch in a particular melody played by a
variable particular player in the musical group
2 Component Value of decision- Value of each pitch in a particular melody

making variable

played by a particular player in the
musical group

3 Decision-making
space

Value range of decision-
making variable

Range of each pitch in a particular mel-
ody played by a particular player in the
musical group

4 General structural
pattern

Solution vector

Musical melody played by each existing
player in the musical group

5 Target

Objective function

Aesthetic standard of the audience

Process unit

Iteration

Time/practice invested by all existing
players in the musical group

7 Memory

Solution vectors matrix

Experience of all existing players in the
musical group

8 Best state

Global optimum point

Best melody selected from among all
melodies played by all existing players in
the musical group

9 Search process

Local and global opti-
mum searches

Improvisation of all existing players in
the musical group
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problem modeled by the MSA. With that in mind, each pitch in a particular melody
played by a particular player in the musical group, the value of each pitch in a
particular melody played by a particular player in the musical group, and the range of
each pitch in a particular melody played by a particular player in the musical group
are virtually the same as each decision-making variable, value of each decision-
making variable, and value range of each decision-making variable, respectively.
In the same way, the musical melody played by each existing player in the musical
group, aesthetic standard of the audience, and time and practice invested by all
existing players in the musical group refer to the solution vector, objective function,
and iteration, respectively. Moreover, the experience of all existing players in the
musical group, the best melody selected from among all melodies played by all
existing players in the musical group, and improvisation of all existing players in the
musical group are equivalent to the solution vectors matrix, global optimum point,
and local and global optimum searches, respectively. By improving the musical
melodies played by all existing players in the group at each practice, compared to
before practice from the perspective of the aesthetic standard of audience, the
solution vector pertaining to the optimization problem is also enhanced in each
iteration, compared to the situation prior to each iteration from the standpoint of
proximity to the optimal global point. Although the MSA was designed by
employing the phenomena and concepts of music and the principles of the
SS-HSA, its architecture is entirely different from the SS-HSA.

Unlike the SS-HSA, which employs a single-stage computational structure, the
MSA utilizes a two-stage computational structure in order to achieve the optimal
solution: (1) a single computational stage or single improvisation stage (SIS) and
(2) a pseudo-group computational stage or pseudo-group improvisation stage
(PGIS). In the SIS, each musician, or player, improvises the melody individually,
without the influence of other players in the group. In the PGIS, however, the MSA
has a pseudo-group performance. More precisely, in this stage, each player impro-
vises the melody interactively with the influence of other players in the group.
Different melodies available in the group can direct the players to select better,
albeit random, pitches and strengthen the probability of playing a better melody in
the next improvisation/iteration. Furthermore, and in contrast to the SS-HSA, which
uses a single HM, the MSA employs multiple player memories (PMs). Multiple PMs
form a melody memory (MM). As a result, the SS-HSA is referred to as a single-
stage computational (or single-level computational stage), one-dimensional optimi-
zation technique, because it has a single improvisation stage and a single or an
individual memory. Conversely, the MSA is called as a two-stage (or two-level)
computational, multi-dimensional, single-homogeneous MSA (TMS-MSA) owing
to the fact that it has two improvisation stages and multiple memories. The point to
be made here is that the prerequisite of understanding of the characteristics, such as
single-homogeneous and pseudo-group computational stage in the TMS-MSA, is
that you first scrutinize the features employed in the architecture of the proposed
two-stage (or two-level) computational, multi-dimensional, single-homogeneous
enhanced melody search algorithm (TMS-EMSA) and the proposed SOSA, which
is described extensively in Sects. 4.3 and 4.4 of Chap. 4, respectively. It is also
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necessary to state that, unlike the SS-HSA in which the feasible range of each
continuous decision-making variable is not changed during different improvisa-
tions/iterations, the feasible range of each continuous decision-making variable in
any improvisation/iteration associated with the PGIS of the TMS-MSA is updated
only for random selection.

The performance-driven architecture of the TMS-MSA is generally broken down
into five stages [11], as follows:

e Stage 1—Definition stage: Definition of the optimization problem and its
parameters.
» Stage 2—Initialization stage.

— Sub-stage 2.1: Initialization of the parameters of the TMS-MSA.
— Sub-stage 2.2: Initialization of the MM.

» Stage 3—Single computational stage or SIS.

— Sub-stage 3.1: Improvisation of a new melody vector by each player.
— Sub-stage 3.2: Update of each PM.
— Sub-stage 3.3: Check of the stopping criterion of the SIS.

» Stage 4—Pseudo-group computational stage or PGIS.

— Sub-stage 4.1: Improvisation of a new melody vector by each player taking
into account the feasible ranges of the updated pitches.

— Sub-stage 4.2: Update of each PM.

— Sub-stage 4.3: Update of the feasible ranges of pitches—continuous decision-
making variables—for the next improvisation—only for random selection.

— Sub-stage 4.4: Check of the stopping criterion of the PGIS.

o Stage 5—Selection stage: Selection of the final optimal solution—the best
melody.

3.6.1 Stage I: Definition Stage—Definition
of the Optimization Problem and its Parameters

In order to solve an optimization problem using the TMS-MSA, stage 1 is needed to
precisely describe the optimization problem and its parameters. In mathematical
terms, the standard form of an optimization problem can generally be expressed
using Eqs. (1.1) and (1.2), which were presented in Sect. 1.2.1 of Chap. 1. However,
because the original version of the TMS-MSA was developed to solve only single-
objective optimization problems with continuous decision-making variables, the
standard form of an optimization problem must be rewritten, as shown in
Egs. (3.13) and (3.14):


https://doi.org/10.1007/978-3-030-12044-3_1#Equ1
https://doi.org/10.1007/978-3-030-12044-3_1#Equ2
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Minir}r{]jze F(x) = [f(x)]
Xe
subject to :

G(x) = [g1(x), -, & (), g5 (x)] = 0; V{B >0}, V{beV¥'}
H(x) = [ (x), ..., he(x),...,hg(x)] < 0; V{E >0}, V{ee ¥}
(3.13)

X = [xl,...,xv,...,xNCDV}; V{VETNCDV,XGX}, 314
V{x;m“ <x < x;m"]v € ‘I‘NCDV} (3.14)
The explanations associated with the parameters and variables from Egs. (3.13)
and (3.14) were also previously represented in Sect. 1.2.1 of Chap. 1. In the SIS and
PGIS of the TMS-MSA, each player—without and with the influence of other
players in the musical group, respectively—explores the entire space of the
nonempty feasible decision-making in order to find the optimal decision-making
(solution) vector. The optimal decision-making vector has the lowest possible value
for the objective function given in Eq. (3.13). Basically, each player in the group
merely takes into account the objective function given in Eq. (3.13) in order to solve
the optimization problem presented in Egs. (3.13) and (3.14). Nevertheless, if the
solution vector determined by the corresponding player results in any violation in
any equality or inequality constraints provided in Eq. (3.13), the player would have
to utilize one of the following two processes with respect to the standpoint of the
decision maker in dealing with this solution vector:

* First process: The corresponding player ignores the solution vector.

e Second process: The corresponding player considers the solution vector by
applying a specified penalty coefficient to the objective function of the optimi-
zation problem.

3.6.2 Stage 2: Initialization Stage

After finalization of stage 1 and a thorough mathematical description of the optimi-
zation problem, stage 2 must be processed. This stage is organized into two
sub-stages: initialization of the parameters of the TMS-MSA and initialization of
the MM, which is described at length below.

3.6.2.1 Sub-stage 2.1: Initialization of the Parameters of the TMS-MSA

In sub-stage 2.1, the parameter adjustments of the TMS-MSA should be initialized

with specific values. Table 3.14 gives a detailed description of the parameter
adjustments related to the TMS-MSA. In the TMS-MSA, the MM is a place for
storing the solution vectors for all existing players in the musical group. The number
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Table 3.14 Adjustment parameters of the TMS-MSA

No. | TMS-MSA parameter Abbreviation | Parameter range

1 Melody memory MM -

2 Player number PN PN > 1

3 Player memory of player p PM, -

4 Player memory size PMS PMS > 1

5 Player memory considering rate PMCR 0<PMCR <1

6 Minimum pitch adjusting rate PAR™" 0 < PAR™" < 2

7 Maximum pitch adjusting rate PAR™ 0 < PAR™ <2

8 | Minimum bandwidth BW™" 0<BW™ < +0

9 Maximum bandwidth BwW™* 0<BW< +00

10 | Number of continuous decision-making variables NCDV NCDV > 1

11 | Maximum number of improvisations/iterations of | MNI-SIS MNI - SIS > 1
the SIS

12 | Maximum number of improvisations/iterations of | MNI-PGIS MNI - PGIS > 1
the PGIS

of player (PN) parameter represents the number of existing players in the group.
Each player in the group has a memory defined by a PM parameter. The memory of
the player p in the group is a place for storing the corresponding player’s solution
vectors. And, multiple PMs form the MM. The player memory size (PMS) describes
the number of solution vectors stored in a player’s memory. In the improvisation
process of a new melody vector by a particular player under sub-stages 3.1 and 4.1,
the player memory considering rate (PMCR) is used to specify whether the value of a
decision-making variable relevant to a new melody vector played by the
corresponding player is derived from the player’s PM or from the entire space of
the nonempty feasible decision-making. In other words, the PMCR indicates the rate
at which the value of a decision-making variable from a new melody vector played
by a particular player is randomly chosen according to its PM. Conversely, 1-PMCR
expresses the rate at which the value of a decision-making variable from a new
melody vector played by a particular player is randomly selected in accordance with
the entire space of the nonempty feasible decision-making. The PAR™" and the
PAR™® parameters are used to calculate the PAR parameter in the iteration m of the
SIS and PGIS—PAR,,,.

This parameter is dynamically changed and updated in each improvisation/
iteration of the SIS and PGIS. For the same reason, in the improvisation process of
anew melody vector by a particular player under sub-stages 3.1 and 4.1, the PAR,, is
employed to determine whether the value of a decision-making variable chosen from
the corresponding PM needs an update to its neighbor’s value or not. Put simply, the
PAR,, clarifies the rate at which the value of a decision-making variable selected with
the PMCR rate from the corresponding PM is changed. Therefore, 1 — PAR,,
addresses the rate at which the value of a decision-making variable chosen with
the PMCR rate from the corresponding PM is not altered. The BW™™ and the BW™*
parameters are employed to determine the BW parameter in the iteration m of the SIS
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and PGIS—BW,,. This parameter is dynamically changed and updated in each
improvisation/iteration of the SIS and PGIS. The BW,, is taken to be an optional
length and is merely defined for continuous decision-making variables. Detailed
descriptions of the BW,, were provided in sub-stage 2.1 of the SS-HSA (see Sect.
3.3.2.1 of this chapter). The NCDV depends on the optimization problem given in
Egs. (3.13) and (3.14). This parameter specifies the dimension of the melody vector
in the TMS-MSA. The maximum number of improvisations/iterations of the SIS
(MNI-SIS) denotes the number of times a single computational stage is repeated in
the TMS-MSA. Similarly, the maximum number of improvisations/iterations of the
PGIS (MNI-PGIS) signifies the number of times a pseudo-group computational
stage is repeated in the TMS-MSA. It should be pointed out that each player in the
musical group improvises one melody individually without the influence of any
other players in each improvisation/iteration of the SIS. The corresponding player
also improvises one melody interactively with the influence of other players in each
improvisation/iteration of the PGIS. The sum of the MNI-SIS and the MNI-PGIS is
employed as a stopping criterion in the TMS-MSA.

3.6.2.2 Sub-stage 2.2: Initialization of the MM

After completion of sub-stage 2.1 and parameter adjustments of the TMS-MSA, the
MM must be initialized in sub-stage 2.2. As previously mentioned, the MM is
composed of multiple PMs. With that in mind, Fig. 3.3 shows the architecture of
the MM in the TMS-MSA. Given the above descriptions, the MM matrix with the
dimensions of {PMS} - {(NCDV + 1) - PN} consists of multiple PM submatrices
with the dimensions of {PMS} - {NCDV + 1}.

In the TMS-MSA, the number of PMs forming the MM is specified by the PN
parameter. The MM matrix and PM submatrices are filled with a large number of
solution vectors generated randomly and based on Egs. (3.15) through (3.17):

MM = [PM, --- PM, --- PMp]; V{p € ¥™} (3.15)

1 [ e ey | ()
PMy=| X5 | =[x, = X, - XNy | f(xlj) ’

PMS

LML s s s f(x;st)_

V{P c ‘PPN,V c ‘IINCDV,S c lIIPMS}
(3.16)
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X, =xM 4+ U(0,1)
. (xmax _ x‘inin); V{p c ‘PPN,V c "PNCDV,S c \PPMS} (317)

Equation (3.15) denotes the MM. Equation (3.16) represents the memory relevant
to existing player p (PM,,) in the musical group. In Eq. (3.17), U(0, 1) indicates a
random number with a uniform distribution between O and 1. Furthermore,
Eq. (3.17) tells us that the value of the continuous decision-making variable
v from melody vector s stored in the memory related to player p (x, ) is randomly
specified by the set of candidate-admissible values for this decision-making variable,
limited by lower bound x;“i" and upper bound x,"**. Table 3.15 gives the pseudocode
relevant to initialization of the entire set of PMs or MM in the TMS-MSA. After
filling all of the PMs or the MM with random solution vectors, the solution vectors
stored in each PM must be sorted from the lowest value to the highest value—in an
ascending order—with respect to the value of the objective function of the optimi-
zation problem. Table 3.16 illustrates the pseudocode pertaining to sorting the
solution vectors stored in the PMs or MM in the TMS-MSA.

Table 3.15 Pseudocode relevant to initialization of the entire set of PMs or MM in the TMS-MSA

Algorithm 10: Pseudocode for initialization of the entire set of PMs or MM in the TMS-MSA

Input:  NCDV, PMS, PN, x™n, xm
Output: MM

start main body

1: | begin
2: | construct the matrix MM with dimension {PMS} - {(NCDV + 1) - PN} and zero initial value
3: | for music player p [p € ¥™N] do

4: | construct the submatrix PM,, with dimension {PMS} - {NCDV + 1} and zero initial value

5| for melody vector s [s € wPMS1 4o

6: construct melody vector s of music player p, x;, with dimension {1} - {NCDV + 1}
and zero initial value

7 for continuous decision-making variable v [v € ‘PNCDV] do

8 X0, =x U0, 1) - (M —xm™)

9: allocate x;,v to element (1, v) of melody vector x;

10: | end for

1L calculate the value of the objective function, fitness function, derived from melody

s 5
vector X, as f (xp)

12: allocate f (x;> to element (1, NCDV + 1) of melody vector x,
13: add melody vector x,, to the row s of the submatrix PM,
14: end for

15: add submatrix PM,, to the rows 1 to PMS and columns 1 + [(p — 1) - (NCDV + 1)] to
[p - (NCDV + 1)] of the matrix MM

16: | end for

17: | terminate

end main body
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Table 3.16 Pseudocode pertaining to sorting the solution vectors stored in the PMs or MM in the
TMS-MSA

Algorithm 11: Pseudocode for sorting the solution vectors stored in the PMs or MM in the
TMS-MSA

Input: Unsorted MM
Output: Sorted MM
start main body

1 begin
Z for music player p [p € ¥*N] do
3: | set PM,=MM(1: PMS,[(p — 1) - (NCDV + 1)] : [p - (NCDV + 1)])
4 F = sort (PMP(I . PMS, (NCDV + 1)),/ascend,)
5:_ for melody vector s [s € PPMS| go
6| for melody vector s* [s* € ¥*™5] do

7 if F;O“(s) == PM,(s*,(NCDV + 1)) then
8| PM"(s,1: (NCDV + 1)) = PM,,(s",1 : (NCDV + 1))

9: end if
10: | end for
I end for

12: MM*"(1 : PMS, 1 +[(p — 1) - (NCDV + 1)] : [p- (NCDV + 1)]) = PM;"
E end for

14: | MM = MM**"
'15: | terminate

end main body

3.6.3 Stage 3: Single Computational Stage or SIS

After finalization of stage 2 and initialization of the parameters of the TMS-MSA
and the MM, the single computational stage, or SIS, must be completed. This stage
contains three sub-stages: (1) improvisation of a new melody vector by each player;
(2) update of each PM; and, (3) check of the stopping criterion of the SIS, which is
described below.

The mathematical equations expressed at this stage must depend on the improvi-
sation/iteration index—index m—due to the repeatability of the SIS in the
TMS-MSA.

3.6.3.1 Sub-stage 3.1: Improvisation of a New Melody Vector by Each
Player

In sub-stage 3.1, the improvisation process of a new melody vector by each player
in the musical group must be carried out. In this sub-stage, each player improvises
a new melody vector individually, without the influence of other players. In
the TMS-MSA, a new melody vector or a new melody line played by player
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P—Xpyp = (x,‘:f[‘j’ e Xmpys -3 Ko, NCDV)—is generated through a new alter-
native improvisation procedure (AIP) established according to the main concepts
of improvisation of a harmony vector in the SS-HSA. The AIP will be explained
in Sect. 3.6.6. The improvisation process of a new melody vector is carried out by

other players in the same way.

3.6.3.2 Sub-stage 3.2: Update of Each PM

After completion of sub-stage 3.1 and improvisation of a new melody vector by each
player in the musical group, the update process of the PMs or MM must be done
in sub-stage 3.2. To illustrate, consider the memory relevant to player p (PM,, ).

In this sub-stage, a new melody vector played by player p— X, , =

new new new 1 1
(xm’ s Xy Xy p’NCDV) —is evaluated and compared with the worst

available melody vector in the PM,, ,—the melody vector stored in the PMS row
of the PM,, ,—from the perspective of the objective function. If the new melody
vector played by player p has a better value than the worst available melody vector in
the PM,, ,, from the standpoint of the objective function, this new melody vector
replaces the worst available melody vector in the PM,,, ,; the worst available melody
vector is then eliminated from the PM,, ,. This process is also performed for other
players in the group. Table 3.17 gives the pseudocode associated with the update of
the memory of all existing players in the musical group or the update of the MM,,,.

Table 3.17 Pseudocode associated with the update of the memory of all existing players in the
musical group or the update of the MM, in the TMS-MSA

Algorithm 12: Pseudocode for the update of the memory of all existing players in the musical
group or the update of the MM,, in the TMS-MSA

Input: Not updated MM,,,, X,
Output: Updated MM,
Start main body
1: | begin
2: | for music player p [p € ¥*~] do
3 set Xy = x M
4: Setf<X;vorst> :f (xrljll’\;3>
500 it (x;;f;) <f (gj‘) then
6: Xy € PMy,
7: XEPM,,
8: end if
9: | end for
10: | terminate

end main body
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Table 3.18 Pseudocode pertaining to sorting the solution vectors stored in the PMs or MM,,, in the
TMS-MSA

Algorithm 13: Pseudocode for sorting the solution vectors stored in the PMs or MM, in the
TMS-MSA

Input: Unsorted MM,,
Output: Sorted MM,,

start main body

1: | begin

2: | for music player p [p € ¥*™] do

3: set PM,, , = MM,,(1: PMS,[(p — 1) - (NCDV + 1)] : [p - NCDV + 1)])
R = sort (PM,,,,p(l: PMS, (NCDV + 1)), ’ascend/)

5: for melody vector s [s € PPMS| 4o

6: for melody vector s* [s* € ¥*™5] do

7 if Ffz‘;(s) == PM,, ,(s",(NCDV + 1)) then

8: PM"(5,1: (NCDV + 1)) = PM, (s, 1 : (NCDV + 1))

9: end if

10: end for

11: end for

12: | MM (1: PMS, 1 + [(p — 1) - (NCDV + 1)]: [p - (NCDV + 1)]) = PM;"
13: | end for

14: | MM, = MM}"

15: | terminate

end main body

The update process of the PM,,, ,, is not performed if the new melody vector played
by player p in the musical group is not notably better than the worst available melody
vector in its memory, from the standpoint of the objective function. After completion
of this process, melody vectors stored in the memory of all existing players in the
musical group or the MM,, must be re-sorted based on the value of objective
function—fitness function—in an ascending order.

The pseudocode pertaining to sorting the solution vectors stored in the memory of
all existing players in the musical group or the MM was formerly presented in
Table 3.16. Given the dependence of each PM or more comprehensively the MM to
the improvisation/iteration index of the SIS—index m—this pseudocode must be
rewritten according to Table 3.18.

3.6.3.3 Sub-stage 3.3: Check of the Stopping Criterion of the SIS

After completion of sub-stage 3.2 and an update of all PMs, the process of checking
the stopping criterion of the single computational stage must be accomplished. If the
stopping criterion of the SIS—the MNI-SIS—is satisfied, its computational efforts
are terminated. Otherwise, sub-stages 3.1 and 3.2 are repeated.
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3.6.4 Stage 4: Pseudo-Group Computational Stage or PGIS

After finalization of stage 3, or accomplishment of the SIS, the pseudo-group
computational stage or the PGIS must be performed. This stage consists of four
sub-stages: (1) improvisation of a new melody vector by each player taking into
account the feasible ranges of the updated pitches; (2) update of each PM; (3) update
of the feasible ranges of pitches—continuous decision-making variables—for the
next improvisation—only for random selection; and, (4) check of the stopping
criterion of the PGIS. The mathematical equations expressed at this stage must
depend on the improvisation/iteration index—index m—due to the repeatability of
the PGIS in the TMS-MSA.

3.6.4.1 Sub-stage 4.1: Improvisation of a New Melody Vector by Each
Player Taking into Account the Feasible Ranges of the Updated
Pitches

In sub-stage 4.1, the improvisation process of a new melody vector by each player in
the group must be performed. In this sub-stage, each player improvises a new
melody vector interactively with the influence of other players. In other words,

in this sub-stage, player p improvises a new melody vector—

new __ new new new : .
Xpp = (xm’p’],...,xm’p’v, P NCDV) —by the AIP taking into account the

feasible range of the pitches—continuous decision-making variables—which are
updated in different improvisations/iterations of the PGIS. The improvisation pro-
cess of a new melody vector is carried out by other players in the same way.

3.6.4.2 Sub-stage 4.2: Update of Each PM

After completion of sub-stage 4.1 and improvisation of a new melody vector by
each player in the group, the update process of the PMs or MM must be performed.
This process is similar to sub-stage 3.2 of the SIS, which was explained in
Sect. 3.6.3.2.

3.6.4.3 Sub-stage 4.3: Update of the Feasible Ranges of Pitches—
Continuous Decision-Making Variables—for the Next
Improvisation—Only for Random Selection

This sub-stage is a major part of the architecture of the TMS-MSA, which can give
rise to a remarkable difference between this optimization technique and the SS-HSA.
In the SS-HSA, the feasible ranges of continuous decision-making variables in the
harmony vector are not changed during different improvisations/iterations. In the
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Melody memory (MM)
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Fig. 3.4 Update of the feasible ranges of the continuous decision-making variables in the
TMS-MSA

TMS-MSA, however, the feasible ranges of continuous decision-making variables in
the melody vector are altered and updated during each improvisation/iteration of the
PGIS, but only for random selection. This means that the lower bound of the
continuous decision-making variable v (x™") and the upper bound of the continuous
decision-making variable v (x,"*) in the PGIS depend on the improvisation/iteration
index of the PGIS and change in the form of x”“" and x,;", respectively. Figure 3.4
displays the process of updating the feasible ranges of continuous decision-making
variables in the TMS-MSA. Table 3.19 provides the pseudocode relevant to the
update of the feasible ranges of the continuous decision-making variables in the
TMS-MSA.

3.6.4.4 Sub-stage 4.4: Check of the Stopping Criterion of the PGIS

After finalization of sub-stage 4.3 and update of the feasible ranges of the continuous
decision-making variables for the next improvisation of the PGIS, the checking
process of the stopping criterion of this computational stage must be accomplished.
In this sub-stage, the computational efforts of the PGIS are terminated in case if its
stopping criterion—the MNI-PGIS—is satisfied. Otherwise, sub-stages 4.1, 4.2, and
4.3 are repeated.
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Table 3.19 Pseudocode relevant to the update of the feasible ranges of the continuous decision-
making variables in the TMS-MSA

Algorithm 14: Pseudocode for the update of the feasible ranges of the continuous decision-
making variables in the TMS-MSA
1

Input: X p
Output: x,"7, x>
start main body

1: | begin
2: | for music player p [p € ¥*"] do

. b 1
3: set xpeSl =X,
4: | end for
5: | for continuous decision-making variable v [v € PNCDV] go
6: x,‘:i:} = min (x}ff,‘); Vp € YN, V{m e PMNIFGIS)
T X = max <x§f:‘>; Vp € WPN v {m e yMNIPGISy
8: |end for
9: | terminate

end main body

Table 3.20 Pseudocode related to the selection of the final optimal solution in the TMS-MSA

Algorithm 15: Pseudocode for the selection of the final optimal solution in the TMS-MSA

Input: MM
Output: x"*
start main body

1: | begin
2: | for music player p [p € ¥*~] do

. best __ 1
3 set X% = x,,
4: | end for
50| gbest — in (xzest); Vp € WY
6: | terminate

end main body

3.6.5 Stage 5: Selection Stage—Selection of the Final
Optimal Solution—The Best Melody

After completion of stage 4, or accomplishment of the PGIS, the selection of the final
optimal solution must be made in stage 5. In this stage, the best melody vector stored
in the memory of each existing player in the musical group is determined. Then, the
best melody vector is selected from among these melody vectors as the final optimal
solution. Table 3.20 shows the pseudocode related to the selection of the final
optimal solution in the TMS-MSA.
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3.6.6 Alternative Improvisation Procedure

As indicated earlier, in the TMS-MSA, player p in the group improvises a new

new __ new new
melody vector—x,, , = (xm’p,p s Xy

s %m p.Ncpy ) —using the AIP. This
procedure was developed with regard to the fundamental concepts of improvisation
of a harmony vector in the SS-HSA. Implementing the AIP by player p is carried out
according to three rules: (1) player memory consideration; (2) pitch adjustment; and,
(3) random selection.

Rule I: In consideration of a player’s memory, the values of the new melody vector
for player p are randomly selected from the melody vectors stored in the PM,, ,
with the probability of the PMCR. In this rule, two principles are alternately
employed, with each principle consisting of a linear combination of a decision-
making variable chosen from the PM,,, , and a ratio of the BW,,,. If the first principle
is activated, the value of the first decision-making variable from the new melody
vector played by player p, x,7";, is randomly selected from the available

corresponding continuous decision-making variable in the melody vectors stored in
the PM,, ,— (Xrln,p,] . ,xj,‘l’p,l s, xIMS ) —with the probability of the PMCR and

*myp,1
updated by the BW,, parameter. Conversely, the value of the first decision-making
variable from the new melody vector played by player p, x,°7, is randomly
chosen from the entire set of available continuous decision-making variables

] 1 ] PMS 1 ] PMS
stored in the PM,, p—{(xm,p_,,..i,x;,’p’l,i. x, ),...,(x ..7x;1,p’v,4..,xm,p’v)wu,

> myp,1 m,p,v?°

(xfn,,,,NCDv X NCDY - .X;ngNCDV) }—with the probability of the PMCR and updated

by the BW,,, parameter, provided that the first principle is not activated or the second
principle is activated. The values for other continuous decision-making variables are
also selected in the same way.

Implementing the player memory consideration rule to specify the value of the
continuous decision-making variable v from a new melody vector played by player
D, x,‘,‘fl‘j”v, is done using Egs. (3.18) and (3.19):

Xy =Xy U(0,1) - BW,,;;
V{m € PMNI-SIS) +(MNI-PGIS) ), o« @PN |, ¢ @NCDV . u{1,2,... ,PMS}}
(3.18)
x,‘,‘f;”v = x,’n’p)k +U(0,1) - BW,,;
v { m € PMNI-SIS)H(MNI-PGIS) 1, o PN |, (NCDV
r~U{1,2,...,PMS},k ~ U{1,2,... . NCDV}} (3.19)

Equations (3.18) and (3.19) are used for the first and second principles of the
player memory consideration rule, respectively. Here, index r is a random integer
with a uniform distribution through the set {1,2, ... ,PMS}—r ~ U{1,2, ...,
PMS }—and index k is a random integer with a uniform distribution through the set
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{1,2, ... ,NCDV}—k ~ U{l1,2, ... ,NCDV}. Put another way, in Eq. (3.18), the
value of index r is randomly specified through the set of admissible values demon-
strated by the set {1,2, ...,PMS}. Determination of this index is elucidated on the
basis of Eq. (3.20):

r=int(U(0,1) - PMS) + 1 (3.20)

In Eq. (3.19), the value of index k is also randomly characterized through the set
of permissible values displayed by the set {1, 2, ... ,NCDV}. Determination of this
index is described based on Eq. (3.21):

k = int(U(0, 1) - NCDV) + 1 (3.21)

The point to be made here is that other distributions can be employed for indexes
rand k, such as (U(0, 1)). The utilization of this distribution results in the selection
of lower values for these indexes. In the player memory consideration rule, the first
and second principles can effectively give rise to a more desirable convergence and a
more substantial increase in the diversity of the generated solutions for the
TMS-MSA. Applying the player memory consideration rule is also accomplished
for other players in the same way.

Rule 2: In the pitch adjustment rule, the values of a new melody vector played
by player p, haphazardly selected from among the existing melody vectors in the
PM,, , with the probability of the PMCR, are updated with the probability of the
PAR,,. More precisely, after the value of the first continuous decision-making
variable from a new melody vector by player p, x:f;f 1» is haphazardly chosen
from the melody vectors stored in the PM,,, , with the probability of the PMCR, this
continuous decision-making variable is updated with the probability of the PAR,,.
The update process for this continuous decision-making variable is performed by
replacing it with the value of the first continuous decision-making variable from

the best melody vector available in the PM,,,, A%t The values for other

m,p,1*
continuous decision-making variables are also updated in the same way.
Implementing the pitch adjustment rule to determine the value of the continuous

decision-making variable v from a new melody vector played by player p, x,',‘fl",v,v, is
done by using Eq. (3.22):

ynew  _ best .y {m € PMNI-SIS)+(MNI-PGIS) |, o @PN |, \PNCDV} (3.22)

m,p,v m,p,v’

Applying the pitch adjustment rule is also carried out for other players in the
same way.

Rule 3: In the random selection rule, the values of a new melody vector played by
player p are haphazardly selected from the entire space of the nonempty feasible
decision-making with the probability of the 1-PMCR. In here, the random selection
rule is organized in accordance with two different principles. The first and second
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principles are activated in the SIS and PGIS, respectively. If the first principle of the
random selection rule is activated, the value of the first continuous decision-making
variable from the new melody vector played by the player p, x,‘:fl‘,‘f 1» 1s haphazardly
selected from the entire space of the nonempty feasible decision-making related to
this decision-making variable with the probability of the 1-PMCR. In here, the entire
space of the nonempty feasible decision-making relevant to the corresponding
decision-making variable is characterized by an invariable lower bound, xlmi“, and
an invariable upper bound, x"*, which are defined in the first stage of the
TMS-MSA—definition of the optimization problem and its parameters—and
unchanged in all improvisations/iterations of the SIS. The values for other continu-
ous decision-making variables are also chosen in the same way. This principle of the
random selection rule was previously used in sub-stage 2.2 for initialization of
the MM.

Implementing the first principle of random selection rule to specify the value of
the continuous decision-making variable v from a new melody vector played by

new

player p, x,,” ., is performed by using Eq. (3.23):

DA x;“i“ +U(0,1)

m,p,v

e —xmn)s w{m e OIS, g PN,y e pNDVL - (3.03)

Equation (3.23) tells us that in the first principle of the random selection rule, the
player p in order to determine the value of the continuous decision-making variable
v from the new vector can utilize the entire space of the nonempty feasible decision-
making relevant to this decision-making variable which is specified in the first stage
of the TMS-MSA and unchanged in all improvisations/iterations of the SIS.

Conversely, the value of the first continuous decision-making variable from the
new melody vector played by player p, x,,°", is randomly chosen from the entire
space of the nonempty feasible decision-making pertaining to this continuous
decision-making variable with the probability of the 1-PMCR provided that the
first principle is not activated or the second principle is activated. In here, the entire
space of the nonempty feasible decision-making associated with the corresponding
decision-making variable is determined by a variable lower bound, x”'fl", and a
variable upper bound, x,'{*, which are dynamically changed and updated in each
improvisation/iteration of the PGIS. The values for other continuous decision-
making variables are also chosen in the same way.

Implementing the second principle of random selection rule to specify the value
of the continuous decision-making variable v from a new melody vector played by

new

player p, x,,°, ,, is performed by using Eq. (3.24):

D x,‘,iis +U(0,1)

m,p,v

e —xn)s v € YONITO) ¢ @iy ¢ pNOVE (304

m,v m,v
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Equation (3.24) tells us that in the second principle of the random selection rule,
the player p in order to specify the value of the continuous decision-making variable
v from the new melody vector can merely use the space of the nonempty feasible
decision-making related to this decision-making variable which is updated in all
improvisation/iteration of the PGIS. Applying the random selection rule is also
accomplished for other players in the same way.

As a general consequence, the probability that the value of the continuous
decision-making variable v from a new melody vector played by player p, x,‘,“fl",v’v,
can be obtained by applying the player memory consideration, pitch adjustment, and
random selection rules equals to PMCR x (1 — PAR,,), PMCR x PAR,, and
1 — PMCR, respectively. In order to provide a more favorable convergence, as
well as a more significant increase in the diversity of solution vectors for the
TMS-MSA, each player in the musical group employs the updated values of the
PAR,, and BW,, parameters in the improvisation process of its melody vector. The
PAR,, and BW,, parameters are updated in each improvisation/iteration of the SIS
and the PGIS by using Egs. (3.25) and (3.26), respectively:

BW,, = BW™
In (meax /mein)
“*P\ (MNLSIS) + (MNI-PGIS

-m ); V{m c \p(MNI-SIS)+(MNI-PGIS)}
) )

(3.25)
) PAR™* _ P ARmin
PAR,, = PAR™
* ((MNI—SIS) n (MNI-PGIS)>
m: V{m c \P(MNI-SIS)Jr(MNI-PGlS)} (3.26)

The update process of the PAR,, and BW,, parameters by Eq. (3.25) and (3.26) is
virtually the same as the update process used in the SS-IHSA. Hence, further
explanations are related to the update process of these parameters available in
Sect. 3.5 of this chapter.

Table 3.21 gives the pseudocode pertaining to the improvisation of a new melody
vector by each player in the musical group of the TMS-MSA. The designed
pseudocode in different stages and sub-stages of the TMS-MSA is located in a
regular sequence and forms the performance-driven architecture of this algorithm.

Table 3.22 also gives the pseudocode associated with the performance-driven
architecture of the TMS-MSA. In here, sub-stages 3.3 and 4.4—the check process of
the stopping criterion of the SIS and PGIS—are defined by the first and second
WHILE loops in the pseudocode pertaining to the performance-driven architecture
of the TMS-MSA (see Table 3.22).



Table 3.21 Pseudocode pertaining to improvisation of a new melody vector by each player in the
musical group of the TMS-MSA

Algorithm 16: Pseudocode for improvisation of a new melody vector by each player in the
musical group of the TMS-MSA

Input: BW™, BW™", MNI-SIS, MNI-PGIS, NCDV, PAR™, PAR™", PMCR, PMS, PN,

x;nm’ x;nax
Output: x,°)
start main body
1: | begin

2: | BW,, = BW™ . exp [(In(BW™/BW™")/(MNI-SIS) + (MNI-PGIS))) - m]
3: | PAR,, = PAR™" — [(PAR™ — PAR™")/((MNI-SIS) + (MNI-PGIS))) - 1]
4: | for music player p [p € ¥™] do

5: construct the new melody vector for music player p, x,‘:f;’, with dimension
| {1}- {NCDV + 1} and zero initial value
6:_ for continuous decision-making variable v [v € PNCPVY 4o

7: if U(0, 1) < PMCR then
: Rule 1: Harmony memory consideration with probability PMCR
8: if improvisation/iteration m [m € pMNLSIS) + (MN['PGIS)] is odd then
] Principle 1: First combination
9 Xy = x 2 U(0,1) - BW,; Vr~U{1,2, ... ,PMS})

10: else

Principle 2: Second combination

11: x;fl“’,’v :xr:t,p,k +U(0,1) - BW,,; Vr~U{1,2, ... ,PMS}, Vk~U{1,2, ...,
NCDV}
12: | end if
13 if U0, 1) < PAR,, then
: Rule 2: Pitch adjustment with probability HMCR - PAR,,
| g =
15: end if
16 | else if
] Rule 3: Random selection with probability 1-HMCR
17 switch 1
E case improvisation/iteration m [m € PMNESIS) + (MNP Gls)] <(MNI-SIS) then
1951 = U0, 1) (P — )
20: case improvisation/iteration m [m € PMNLESIS) + MNEPGIS)) ~, (MNI-SIS) and impro-
| visation/iteration m [m € $MN'S1S) + MNIPGIS| <(MNI-SIS) + (MNI-PGIS) then
26 g = U0, 1) - (x -
22: end switch
23 end if
Y end for
F calculate the value of objective function, fitness function, derived from melody vector
xiy as ()
26: allocate f (x,‘;‘f]‘f) to element (1, NCDV + 1) of the new melody vector x,‘;‘le;'
'27: | end for

28: | terminate

end main body




Table 3.22 Pseudocode associated with the performance-driven architecture of the TMS-MSA

Algorithm 17: Pseudocode for performance-driven architecture of the TMS-MSA

Input:  BW™>, BW™" MNI-SIS, MNI-PGIS, NCDV, PAR™, PAR™", PMCR, PMS, PN,

xmm, xmax
Output: x>
start main body
1: | begin

2: | Stage 1—Definition stage: Definition of the optimization problem and its parameters
3: | Stage 2—Initialization stage

4: | Sub-stage 2.1: Initialization of the parameters of the TMS-MSA
5t | Sub-stage 2.2: Initialization of the of the MM
6: Algorithm 10: Pseudocode for initialization of the entire set of PMs or MM in the
| TMS-MSA
7 Algorithm 11: Pseudocode for sorting the solution vectors stored in the PMs or MM in
the TMS-MSA

8: | Stage 3—Single computational stage or SIS
9: set improvisation/iteration m = 1

10: set MM,, = MM

11: while m < (MNI-SIS) do

12: ] Sub-stage 3.1: Improvisation of a new melody vector by each player

13: Algorithm 16: Pseudocode for improvisation a new melody vector by each player in
| the musical group of the TMS-MSA
140 | Sub-stage 3.2: Update of each PM

15: Algorithm 12: Pseudocode for the update of the memory of all existing players in the
| musical group or the update of the MM, in the TMS-MSA

16: Algorithm 13: Pseudocode for sorting the solution vectors stored in the PMs or
| MM,, in the TMS-MSA

17: set improvisation/iteration m = m + 1

18: end while
19: | Stage 4—Pseudo-group computational stage or PGIS
20: while m > (MNI-SIS) and m < (MNI-PGIS) do

21: Sub-stage 4.1: Improvisation of a new melody vector by each player with taking into
| account the feasible ranges of the updated pitches

22: Algorithm 16: Pseudocode for improvisation of a new melody vector by each player
| in the musical group of the TMS-MSA

23: Sub-stage 4.2: Update of each PM

24: Algorithm 12: Pseudocode for the update of the memory of all existing players in the
| musical group or the update of the MM, in the TMS-MSA

25: Algorithm 13: Pseudocode for sorting the solution vectors stored in the PMs or
| MM,, in the TMS-MSA

26: Sub-stage 4.3: Update of the feasible ranges of pitches—Continuous decision-making
| variables—For the next improvisation—Only for random selection

27: Algorithm 14: Pseudocode for the update of the feasible ranges of the continuous
| decision-making variables in the TMS-MSA

28: set improvisation/iteration m = m + 1

29: end while
30: | Stage 5—Selection stage: Selection of the final optimal solution—The best melody

31: Algorithm 15: Pseudocode for the selection of the final optimal solution in the
TMS-MSA

32: | terminate

end main body
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3.7 Conclusions

In this chapter, the music-inspired meta-heuristic optimization algorithms were
reviewed from past to present, with a focus on the SS-HSA, SS-IHSA, and
TMS-MSA. First, a brief review of the definition of music, its history, and the
interdependencies of phenomena and concepts of music and the optimization
problem was addressed. Second, the fundamental principles of the SS-HSA and
its performance-driven architecture were rigorously described. In addition, a struc-
tural classification for the enhanced versions of the SS-HSA was provided. In this
regard, the basic differences between the SS-IHSA, as a well-known enhanced
version of the SS-HSA, and the SS-HSA were carefully examined in detail. Third,
the fundamental principles of the TMS-MSA and its performance-driven architec-
ture were meticulously expressed. Given related literature, and after presentation of
the different versions of the music-inspired meta-heuristic optimization algorithms
and their implementation on optimization problems in different branches of the
engineering sciences (e.g., electrical, civil, computer, mechanical, and aerospace),
it was observed that these optimization techniques may represent a reasonable and
applicable method for solving complicated, real-world, large-scale, non-convex,
non-smooth optimization problems having a nonlinear, mixed-integer nature with
big data. This is due to the fact that the music-inspired meta-heuristic optimization
algorithms have a distinctive and flexible architecture for facing optimization
problems compared with other optimization techniques. It can be seen, then, that
the willingness of specialists and researchers in different branches of the engineer-
ing sciences to employ music-inspired meta-heuristic optimization algorithms with
the aim of overcoming difficulties in solving complicated, real-world, large-scale,
non-convex, non-smooth optimization problems over recent years has been appre-
ciably increasing.

As a result, this chapter can serve as an aid to using the music-inspired meta-
heuristic optimization algorithms. Moreover, this chapter can effectively provide a
precious background for explaining innovative versions of music-inspired meta-
heuristic optimization algorithms, which will be discussed in the next chapter.

Appendix 1: List of Abbreviations and Acronyms

AIP Alternative improvisation procedure
BW Bandwidth

CDVs Continuous decision-making variables
DDVs Discrete decision-making variables
GA Genetic algorithm

HM Harmony memory

HMCR Harmony memory considering rate
HMS Harmony memory size

(continued)
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HSA Harmony search algorithm

IHSA Improved harmony search algorithm

MM Melody memory

MNI Maximum number of improvisations/iterations

MNI-PGIS Maximum number of improvisations/iterations of the pseudo-group improvisation
stage

MNI-SIS Maximum number of improvisations/iterations of the single improvisation stage

MSA Melody search algorithm

NCDV Number of continuous decision-making variables

NDDV Number of discrete decision-making variables

NDV Number of decision-making variables including continuous and discrete decision-
making variable

PAR Pitch adjusting rate

PGIS Pseudo-group improvisation stage

PMCR Player memory considering rate

PMs Player memories

PMS Player memory size

PN Player number

SIS Single improvisation stage

SOSA Symphony orchestra search algorithm

SS-HSA Single-stage computational, single-dimensional harmony search algorithm

SS-IHSA Single-stage computational, single-dimensional improved harmony search
algorithm

TMS-EMSA | Two-stage computational, multidi-mensional, single-homogeneous enhanced
melody search algorithm

TMS-MSA | Two-stage computational, multidi-mensional, single-homogeneous melody search

algorithm

Appendix 2: List of Mathematical Symbols

Index:

b Index for equality constraints running from 1 to B

e Index for inequality constraints running from 1 to E

m Index for improvisations/iterations running from 1 to MNI in the SS-HSA and
also running from 1 to (MNI-SIS) + (MNI-PGIS) in the TMS-MSA
Index for existing players in a music group running from 1 to PN

s, 8" Index for harmony vectors stored in the HM running from 1 to HMS in the
SS-HSA and also an index for melody vectors stored in each PM running
from 1 to PMS in the TMS-MSA

v Index for decision-making variables, including the continuous and discrete
decision-making variables, running from 1 to NDV in the SS-HSA and also
an index for continuous decision-making variables running from 1 to NCDV
in the TMS-MSA

wy, Index for candidate permissible values of discrete decision-making variable v

running from 1 to W, in the SS-HSA

(continued)
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Set:

pB Set of indices of equality constraints

pE Set of indices of inequality constraints

PHMS Set of indices of harmony vectors stored in the HM
PMNI Set of indices of improvisations/iterations in the SS-HSA

PMNISIS) + (MNI-
PGIS)

Set of indices of improvisations /iterations in the TMS-MSA

YDV Set of indices of decision-making variables, including the continuous and
discrete decision-making variables

PNEDY Set of indices of continuous decision-making variables

PNbDY Set of indices of discrete decision-making variables

PPMS Set of indices of melody vectors stored in each PM

PPN Set of indices of existing players in a music group

W, Set of indices of candidate permissible values of discrete decision-making
variable v

Parameters:

BW Bandwidth

BW™# Maximum bandwidth

BW™? Minimum bandwidth

HMCR Harmony memory considering rate

HMS Harmony memory size

MNI Maximum number of improvisations/iterations in the SS-HSA

MNI-SIS Maximum number of iterations of the SIS in the TMS-MSA

MNI-PGIS Maximum number of iterations of the PGIS in the TMS-MSA

PAR Pitch adjusting rate

PAR™ Maximum pitch adjusting rate

PAR™" Minimum pitch adjusting rate

PMCR Player memory considering rate

PMS Player memory size

X, Upper bound on the decision-making variable v

x‘j“i" Lower bound on the decision-making variable v

X Nonempty feasible decision-making space

Z Feasible objective space

Variables:

BW,, Bandwidth in improvisation/iteration m of the SS-HSA or bandwidth in
improvisation/iteration m of the TMS-MSA

fx) Objective function of the optimization problem

S(x%) Value of the objective function—Fitness function—Derived from the harmony
vector s stored in the HM matrix

f (Xs) Value of the objective function—Fitness function—Derived from the melody

’ vector s stored in memory submatrix relevant to existing player p in the

musical group

F(xoe™) Value of the objective function—Fitness function—Derived from the new

harmony vector in improvisation/iteration m of the SS-HSA

(continued)
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f (errnlclv)v> Value of the objective funct?or.l—Fitness fu‘nction—DAerived frot?l the new
’ melody vector played by existing player p in the musical group in

improvisation/iteration m of the TMS-MSA

F(x) Vector of objective function of the optimization problem

gr(X) Equality constraint b of the optimization problem or component b of the vector
of equality constraints

G(x) Vector of equality constraints of the optimization problem

ho(x) Inequality constraint e of the optimization problem or component e of the
vector of inequality constraints

Hx) Vector of inequality constraints of the optimization problem

HM Harmony memory matrix

k Random integer with a uniform distribution through the set {1, 2, ...,NCDV} in
the TMS-MSA

MM Melody memory matrix

PAR,, Pitch adjusting rate in improvisation/iteration m of the SS-HSA or pitch
adjusting rate in improvisation/iteration m of the TMS-MSA

PM, Memory submatrix relevant to existing player p in the musical group

r Random integer with a uniform distribution through the set {1,2, ..., HMS}in
the SS-HSA and random integer with a uniform distribution through the set
{1,2, ...,PMS} in the TMS-MSA

t Random integer with a uniform distribution through the set {—1,+1}

U@, 1) Random number with a uniform distribution between 0 and 1

Xy Decision-making variable v or component v of the vector of decision-making
variable

X Element v of the new harmony vector in improvisation/iteration m of the SS-
HSA

x?:i;, ) Element v of the best melody vector stored in the memory submatrix relevant
to existing player p in the musical group in improvisation/iteration m of the
TMS-MSA

x,‘f;’m Element v of the new melody vector played by existing player p in the musical
group in improvisation/iteration m of the TMS-MSA

> Element v of the harmony vector s stored in the HM matrix

x;,v Element v of the melody vector s stored in the memory submatrix relevant to
existing player p in the musical group

X, (W) Candidate permissible value w of discrete decision-making variable v

X Vector of decision-making variables

X New harmony vector in improvisation/iteration m of the SS-HSA

x,':f;" New melody vector played by existing player p in the musical group in
improvisation/iteration m of the TMS-MSA

xbest Best harmony vector stored in the HM matrix in the SS-HSA and also best
melody vector stored in the MM matrix in the TMS-MSA

x};es‘ Best melody vector stored in the memory submatrix relevant to existing player
p in the musical group

d Harmony vector s stored in the HM matrix
X, Melody vector s stored in the memory submatrix relevant to existing player p

in the musical group

(continued)
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xWorst Worst harmony vector stored in the HM matrix

x;"’m Worst melody vector stored in the memory submatrix relevant to existing
player p in the musical group

y Random integer with a uniform distribution through the set {x,(1), ...,
xwy), -, x(Wy)}

z Vector of the objective function
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Chapter 4 )
Advances in Music-Inspired Optimization e
Algorithms

4.1 Introduction

As mentioned in the preceding chapter, most of the existing meta-heuristic optimi-
zation algorithms have given rise to many difficulties in solving complicated, real-
world, large-scale, non-convex, non-smooth optimization problems such as slow
convergence rate, premature convergence, getting stuck in a local optimum point,
and extremely high dependency on precise adjustments of initial values of algorithm
parameters. In addition, the process of generating new responses or outputs by these
algorithms depends on a limited space for nonempty feasible decision-making. More
precisely, in each new generation, a solution vector is produced with regard to a
narrow set of solution vectors stored in the memory of the algorithm. This depen-
dency can, therefore, dramatically decrease the desirable performance of the meta-
heuristic optimization algorithms in solving these complicated optimization prob-
lems having a nonlinear, mixed-integer nature with big data. According to what has
been described, most of the existing meta-heuristic optimization algorithms have
neither appropriate efficiency nor sufficiency to achieve a global optimum point in
solving the optimization problems identified above.

In the previous chapter, a single-stage computational single-dimensional har-
mony search algorithm (SS-HSA), as a new population-based meta-heuristic opti-
mization algorithm, was developed with inspiration from music phenomena for the
first time in 2001 [1]. The architecture of the original SS-HSA is rather different from
other existing meta-heuristic optimization algorithms, in that this optimization
technique has been conceptualized from the improvisation process of jazz players.
In this improvisation process, each jazz player seeks to find the best harmony and
generate the most beautiful music possible. In this case, the jazz players try to
improve the sound of their musical instruments at each music performance with
the aim of providing more mature and beautiful music. In the architecture of the
original SS-HSA, the process of generating new responses/outputs depends on the
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entire space of nonempty feasible decision-making. That is to say that this optimi-
zation technique generates a new solution vector in each new improvisation after
sweeping the entire solution vectors stored in the memory of the algorithm. This
characteristic can considerably strengthen the performance of the SS-HSA in solving
complicated real-world optimization problems having a nonlinear, mixed-integer
nature with big data. Detailed descriptions pertaining to the SS-HSA were exhaus-
tively represented in Sect. 3.3 of Chap. 3.

In recent years, the use of the SS-HSA has grown remarkably for solving the
optimization problems noted earlier in different branches of the engineering sciences
(e.g., electrical, civil, computer, mechanical and aerospace, and engineering),
because of its desirable performance compared to other meta-heuristic optimization
algorithms. Many attempts have been made by specialists and researchers to provide
more efficient and effective versions of the SS-HSA. Readers interested in achieving
a thorough systematic classification of enhanced versions of the SS-HSA are referred
to Sect. 3.4 of Chap. 3. Nevertheless, the performance of most existing meta-
heuristic optimization algorithms, even the SS-HSA and many of its enhanced
versions, is strongly affected by an unbalanced increase in dimensions of the
big-data optimization problems. For such cases, these optimization techniques
cannot satisfactorily maintain their desirable performance. The poor performance
of most existing meta-heuristic optimization algorithms can be attributed to tenuous
and vulnerable features utilized in their architecture, such as having only a single-
stage computational structure, using a single-dimensional structure, etc.

In order to enhance the performance of the SS-HSA and remove its tenuous and
vulnerable features, the two-stage computational multi-dimensional single-
homogeneous melody search algorithm (TMS-MSA), as a new architectural version
of the SS-HSA, was reported for the first time in 2011 [2]. Although this optimiza-
tion technique was inspired by the phenomena and concepts of music and the
fundamental principles of the SS-HSA, it has a markedly different architecture
compared to the SS-HSA and other existing meta-heuristic optimization algorithms.
The original TMS-MSA had a two-stage computational, multi-dimensional, and
single-homogenous structure. Establishing the TMS-MSA with relatively strength-
ened and robust features brings about an innovative direction in the architecture of
meta-heuristic algorithms in order to solve complicated, real-world, large-scale,
non-convex, non-smooth optimization problems having a nonlinear, mixed-integer
nature with big data. The detailed descriptions associated with the original
TMS-MSA were thoroughly described in Sect. 3.6 of Chap. 3.

The original TMS-MSA was merely developed for optimization problems with
continuous decision-making variables. The original TMS-MSA is, therefore,
referred to as the continuous TMS-MSA. Consequently, the continuous
TMS-MSA does not have the ability to solve complicated, real-world, large-scale,
non-convex, non-smooth optimization problems with a concurrent combination of
continuous and discrete decision-making variables. With that in mind, specialists
and researchers in different branches of the engineering sciences are enthusiastic
about employing innovative alternatives in order to tackle the complexities of our
complicated real-world optimization problems.
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In this chapter, then, the authors begin by proposing a new continuous/discrete
TMS-MSA in order to deal with the complicated, real-world, large-scale,
non-convex, non-smooth optimization problems with a simultaneous combination
of the continuous and discrete decision-making variables. In addition, the authors
develop an innovative improved version of the continuous/discrete TMS-MSA, or
two-stage computational multi-dimensional single-homogeneous enhanced melody
search algorithm (TMS-EMSA), with the aim of heightening efficiency and efficacy
of the performance of this optimization technique.

In today’s world, however, modern engineering challenges with multilevel
dimensions in different branches of the engineering sciences, particularly electrical
engineering, have been widely encountered; therefore, these challenges cannot be
represented in the form of single-level optimization problems, or as traditional
optimization problems. Instead, modern engineering challenges with multilevel
dimensions must be developed in the form of new nontraditional optimization
problems—multilevel optimization problems—because of their specific characteris-
tics. In this case, many of the optimization algorithms, even the original TMS-MSA,
the proposed continuous/discrete TMS-MSA, and the TMS-EMSA, may not be able
to maintain the most desirable performance in solving such multilevel optimization
problems. This is due to the fact that a single-homogeneous structure has been used
in the architecture of the aforementioned optimization algorithms. Consequently,
developing an innovative optimization algorithm is certainly a necessity for
maintaining its favorable performance for solving multilevel optimization problems.
In this chapter, then, the authors develop an innovative architectural version of the
proposed TMS-EMSA, which is referred to as either a multi-stage computational
multi-dimensional multiple-homogeneous enhanced melody search algorithm
(MMM-EMSA), or a multi-stage computational multi-dimensional single-
inhomogeneous enhanced melody search algorithm (MMS-EMSA), or a symphony
orchestra search algorithm (SOSA), in order to appreciably enhance its performance,
flexibility, robustness, and parallel capability. The SOSA has a multi-stage compu-
tational multi-dimensional multiple-homogeneous—or multi-stage computational
multi-dimensional single-inhomogeneous—structure.

It should be noted that the SS-HSA, the single-stage computational single-
dimensional improved harmony search algorithm (SS-IHSA), the continuous
TMS-MSA, the continuous/discrete TMS-MSA, the proposed TMS-EMSA, and
the proposed SOSA can be solely employed for solving single-objective optimiza-
tion problems. If an optimization problem consists of multiple conflicting,
noncommensurable, and correlated objective functions, the most reasonable strategy
is to take advantage of the multi-objective optimization process in order to deal with
such optimization problems, as described in Sect. 2.2 of Chap. 2. As a result, to
overcome this acute weakness in the architecture of the aforementioned optimization
algorithms and to provide appropriate strategies for solving multi-objective optimi-
zation problems, the authors propose the multi-objective versions of these optimi-
zation algorithms.

For the reasons explained above, the authors have concentrated on five targets in
the area of advances in music-inspired optimization algorithms.
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e Target 1: Present a new hybrid version of the original TMS-MSA, referred to as
the continuous/discrete TMS-MSA.

» Target 2: Propose a new enhanced version of the proposed continuous/discrete
TMS-MSA, referred to as the TMS-EMSA.

e Target 3: Develop an innovative version of architecture of the proposed
TMS-EMSA, referred to as the MMM-EMSA, MMS-EMSA, or SOSA.

» Target 4: Provide a new multi-objective strategy for remodeling the architecture
of the single-stage computational single-dimensional meta-heuristic music-
inspired optimization algorithms (i.e., the SS-HSA and SS-IHSA).

e Target 5: Provide a new multi-objective strategy for remodeling the architecture
of the two-stage computational multi-dimensional single-homogeneous meta-
heuristic music-inspired optimization algorithms (i.e., the original TMS-MSA,
proposed continuous/discrete TMS-MSA, and TMS-EMSA).

» Target 6: Provide an innovative multi-objective strategy for remodeling the
architecture of the multi-stage computational multi-dimensional multiple-
homogeneous meta-heuristic music-inspired optimization algorithm (i.e., the
proposed SOSA).

The rest of this chapter is arranged as follows: First, the proposed continuous/
discrete TMS-MSA is thoroughly addressed in Sect. 4.2. Then, the proposed
TMS-EMSA is reviewed in Sect. 4.3. In Sect. 4.4, the newly developed SOSA
is represented more in depth. The implementation strategies of multi-objective
versions pertaining to the SS-HSA, SS-IHSA, offered continuous/discrete
TMS-MSA, proposed TMS-EMSA, and proposed SOSA are meticulously
explained in Sect. 4.5. Finally, the chapter ends with a brief summary and some
concluding remarks in Sect. 4.6.

4.2 Continuous/Discrete TMS-MSA

As previously mentioned, the original TMS-MSA—the continuous TMS-MSA—
was addressed only for solving optimization problems with continuous decision-
making variables. Most real-world optimization problems in different branches of
the engineering sciences (e.g., electrical, civil, computer, mechanical, and aerospace)
are involved with a concurrent combination of the continuous and discrete decision-
making variables. Therefore, it is not feasible to employ this optimization technique
in order to deal with this range of optimization problems. In this section, then, the
authors propose a continuous/discrete TMS-MSA in order to deal with a wide range
of optimization problems. The performance-driven architecture of the proposed
TMS-MSA is generally broken down into five stages, as follows:

e Stage 1—Definition stage: Definition of the optimization problem and its
parameters
* Stage 2—Initialization stage
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— Sub-stage 2.1: Initialization of the parameters of the continuous/discrete
TMS-MSA
— Sub-stage 2.2: Initialization of the melody memory (MM)

¢ Stage 3—Single computational stage or single improvisation stage (SIS)

— Sub-stage 3.1: Improvisation of a new melody vector by each player
— Sub-stage 3.2: Update each player’s memory (PM)
— Sub-stage 3.3: Check of the stopping criterion of the SIS

e Stage 4—Pseudo-group computational stage or pseudo-group improvisation stage
(PGIS)

— Sub-stage 4.1: Improvisation of a new melody vector by each player with
taking into account the feasible ranges of the updated pitches

— Sub-stage 4.2: Update of each PM

— Sub-stage 4.3: Update of the feasible ranges of pitches—continuous decision-
making variables—for the next improvisation—only for random selection

— Sub-stage 4.4: Check of the stopping criterion of the PGIS

» Stage 5—Selection stage: Selection of the final optimal solution—the best
melody

It is clear that the performance-driven architecture of the proposed continuous/
discrete TMS-MSA is quite similar to the performance-driven architectures of the
continuous TMS-MSA, which were expressed in Sect. 3.6 of Chap. 3. The proposed
continuous/discrete TMS-MSA, however, has fundamental differences in some
stages and sub-stages of the performance-driven architecture when compared with
its continuous version, due to the concurrent presence of continuous and discrete
decision-making variables. In here, given that this optimization technique is taken
into account as a foundation for the subsequent proposed TMS-EMSA, its different
stages and sub-stages are entirely represented.

4.2.1 Stage I: Definition Stage—Definition
of the Optimization Problem and Its Parameters

In order to solve an optimization problem using the proposed continuous/discrete
TMS-MSA, stage 1 must precisely describe the optimization problem and its param-
eters. In mathematical terms, the standard form of an optimization problem can
generally be defined using Eqs. (1.1) and (1.2), which were presented in Sect. 1.2.1
of Chap. 1. Because the proposed continuous/discrete TMS-MSA was developed for
solving single-objective optimization problems, the standard form of an optimization
problem must be rewritten according to Egs. (4.1) and (4.2):
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Minir)r(lize F(x) = [f(x)]
Xe
and subject to :

G(x) = [g1(x),- ., 8(x),-...85(x)] = 0 V{B >0}, ¥{be¥'}
H(x) = [l(x), ..., he(x),...,he(x)] < 0; V{E >0}, V{e € ¥*}

(4.1)

X = [0, Xy 2py]; Vv € WADY NPV _pNCDVENDDY o 1
V{xvr"i“ <x, §x;“a"|v IS ‘PNCDV}, {xv e {x(1),...,x,(w),...,x,(W,) }v € ‘PNDDV}
(4.2)

Detailed descriptions associated with variables and parameters of Egs. (4.1) and (4.2)
were previously explained in Sect. 1.2.1 of Chap. 1.

4.2.2 Stage 2: Initialization Stage

After completion of stage 1 and an exhaustive mathematical description of the
optimization problem, stage 2 is started. For the proposed continuous/discrete
TMS-MSA, this stage is organized into two sub-stages: initialization of the param-
eters of the proposed continuous/discrete TMS-MSA and initialization of the MM.

4.2.2.1 Sub-stage 2.1: Initialization of the Parameters of the Proposed
Continuous/Discrete TMS-MSA

In sub-stage 2.1, the parameter adjustments of the proposed continuous/discrete
TMS-MSA should be initialized with specific values. Detailed descriptions
pertaining to parameter adjustments of the proposed continuous/discrete TMS-
MSA are given in Table 4.1, where the sum of the number of continuous
decision-making variables (NCDV) and the number of discrete decision-making
variables (NDDV) is considered as the total number of decision-making variables
(NDV). Unlike the continuous TMS-MSA in which the dimension of the melody
vector, or solution vector, is determined by the NCDV, in the proposed continu-
ous/discrete TMS-MSA, it is characterized by the number of the NDV. Detailed
descriptions relevant to other parameters presented in Table 4.1 were formerly
clarified in Sect. 3.6.2.1 of Chap. 3.

4.2.2.2 Sub-stage 2.2: Initialization of the MM

After finalization of sub-stage 2.1 and parameter adjustments of the proposed
continuous/discrete TMS-MSA, the MM must be initialized in sub-stage 2.2. Similar
to the continuous TMS-MSA, multiple PMs are placed next to each other to form the
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Table 4.1 Adjustment parameters of the proposed continuous/discrete TMS-MSA

The proposed continuous/discrete

No. TMS-MSA parameter Abbreviation Parameter range

1 Melody memory MM -

2 Player number PN PN >1

3 Player memory of player p PM, -

4 Player memory size PMS PMS > 1

5 Player memory considering rate PMCR 0<PMCR <1

6 Minimum pitch adjusting rate PAR™" 0 < PAR™" <2

7 Maximum pitch adjusting rate PAR™ 0 < PAR™ <2

8 Minimum bandwidth BW™" 0 < BW™" < 400

9 Maximum bandwidth Bw™* 0 < BW™ < 400

10 Number of continuous decision- NCDV NCDV > 1
making variables

11 Number of discrete decision- NDDV NDDV > 1
making variables

12 Number of decision-making NDV NDV >2
variables

13 Maximum number of improvisa- MNI-SIS MNI-SIS > 1
tions/iterations of the SIS

14 Maximum number of improvisa- MNI-PGIS MNI-PGIS > 1
tions/iterations of the PGIS

MM in the proposed continuous/discrete TMS-MSA. In a more precise expression,
the MM matrix, which has a dimension equal to {PMS} - {(NDV + 1) - PN}, consists
of multiple PM submatrices so that each PM has a dimension equal to
{PMS} - {(NDV + 1}.

The MM matrix and PM submatrices are filled with a large number of solution
vectors generated randomly and based on Egs. (4.3)-(4.6):

MM = [PM; --- PM, --- PMp]; V{p € ¥™N} (4.3)
x;, x;l?,l xflf’v x},’I?]DV | f(X;)

e R EE R S
xpPMS x[ii;/[s xll)”i\fs x[il\li[ISDV | f(xll;’MS>

v { p €PN g YDV (o pPMS gNDV_ lI;NCDVJrNDDV}
x$ = xvmi“ +U(0,1)

2%
(e — Xy v{p € PNy € PPV 5 € PPMS ) (4.5)

v v
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x5 =x,0y); V{peP™ ve PPV s e ¥™ y o Ulx,(1),...,.x(w),...,x,(W,)} }
(4.6)

Detailed descriptions related to Egs. (4.3)—(4.5) were given in Sect. 3.6.2.2 of
Chap. 3. In Eq. (4.6), index y is a random integer with a uniform distribution through
the set of {x,(1), ..., x,(w,), ..., x,(W,)}—y ~ U{x,(1), ..., x,(w,), ..., x,(W))}.
Equation (4.6) tells us that the value of the discrete decision-making variable v from
the melody vector s stored in the memory associated with player p (x; ) is randomly

determined by the set of candidate permissible values for this decision, which is
shown by the set {x,(1), ...,x,(w,), ...,x,(W,)}. Table 4.2 presents the pseudocode
related to initialization of the entire set of PMs or MM in the proposed continuous/
discrete TMS-MSA. After filling all of the PMs or MM with random solution
vectors, the solution vectors stored in each PM must be sorted from the lowest
value to the highest value—in an ascending order—from the perspective of the value
of the objective function of the optimization problem. Table 4.3 illustrates the
pseudocode for sorting the solution vectors stored in the PMs or MM in the proposed
continuous/discrete TMS-MSA.

4.2.3 Stage 3: Single Computational Stage or SIS

After finalization of stage 2 and initialization of the parameters of the proposed
continuous/discrete TMS-MSA and the MM, the single computational stage, or SIS,
must be started. This stage is formed by three sub-stages: (1) improvisation of a new
melody vector by each player; (2) update of each PM; and, (3) check of the stopping
criterion of the SIS, all of which are described below.

The mathematical equations defined at this stage must depend on the improvisa-
tion/iteration index—index m—due to the repeatability of the SIS in the proposed
continuous/discrete TMS-MSA.

4.2.3.1 Sub-stage 3.1: Improvisation of a New Melody Vector by Each
Player

In sub-stage 3.1, a new melody vector is individually improvised by each player in
the musical group without the influence of other players. In the continuous
TMS-MSA, generating a new melody vector or a new melody line played by

existing player p in the musical group—x,,”" = (x,‘,‘f,jv e X povs 1 X p NDV

—is accomplished by using an alternative improvisation procedure (AIP). The AIP
employed in the continuous TMS-MSA was developed for optimization problems
with continuous decision-making variables. A detailed description related to the AIP
was presented in Sect. 3.6.5 of Chap. 3.
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Table 4.2 Pseudocode related to initialization of the entire set of PMs or MM in the proposed
continuous/discrete TMS-MSA

Algorithm 1: Pseudocode for initialization of the entire set of PMs or MM in the proposed
continuous/discrete TMS-MSA

Input: PN, PMS, NCDV, NDDV, NDV, x™ xm% (x (1), ..., x,(m), --.,x(W,)}
Output: MM

start main body

1: | begin
Z construct the matrix MM with dimension {PMS} - {(NDV + 1) - PN} and zero initial value
3: | for music player p [p € PN do

4: construct the submatrix PM,, with dimension {PMS} - {NDV + 1} and zero initial
| value
5:_ for melody vector s [s € ‘I‘PMS] do

6: construct melody vector s of music player p, x,, with
] dimension {1} - {NDV + 1} and zero initial value
7 for decision-making variable v [v € PNDV] do

8: x5, =M+ U(0,1) - (x> — x"") s for CDVs
9 | %, =50) 1 ¥y~ U, ..on0m), ... x(W,)}: for DDVs
W allocate x;’v to element (1, v) of melody vector x;
E end for

12: calculate the value of the objective function, fitness function, derived from

melody vector X, as f <x;>

13: allocate f (xps) to element (1, NDV + 1) of melody vector x,,

14: add melody vector X, to the row s of the submatrix PM),
'15: | end for
? add submatrix PM,, to the rows 1 to PMS and columns 1 + [(p — 1) - (NDV + 1)]
| to[p-(NDV + 1)] of the matrix MM

17: | end for

18: | terminate

end main body

Note: Continuous decision-making variable (CDVs), discrete decision-making variables (DDVs)

The continuous/discrete TMS-MSA was developed in order to solve optimization
problems with a concurrent combination of the continuous and discrete decision-
making variables; and, accordingly, the AIP is not functional for these optimization
problems and, therefore, cannot be employed by each player in the musical group for
improvisation of a new melody vector in this optimization technique. Thus, the
authors propose a new continuous/discrete AIP. In the continuous/discrete
TMS-MSA, a new melody vector or a new melody line played by player p in the

musical group—x"% = (x“""’fl, R

ewW new 1 1
p - mpove - Xmp NDy | —18 generated by using

the continuous/discrete AIP, which will be thoroughly explained in Sect. 4.2.6 of
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Table 4.3 Pseudocode relevant to the sorting of the solution vectors stored in the PMs
or MM in the proposed continuous/discrete TMS-MSA

Algorithm 2: Pseudocode for sorting the solution vectors stored in the PMs or MM in
the proposed continuous/discrete TMS-MSA

Input: Unsorted MM
Output: Sorted MM

start main body

1: | begin
2. | for music player p [p € ¥™] do
3 set PM,, = MM(1 : PMS, [(p — 1) - NDV + )] : [p - (NDV + 1)])
4| Fom = sort(PM,(1 : PMS, (NDV + 1)), ascend )

5: for melody vector s [s € PPMS| go
E for melody vector s* [s* € ¥*M5] do

7: if F;""(s) == PM,(s", (NDV + 1)) then
8 PM"(s,1: (NDV + 1)) = PM,(s*,1 : (NDV + 1))

9: end if
100 | end for
E end for

12: MM*"(1 : PMS, 1 + [(p — 1) - (NDV + 1)] : [p - (NDV + 1)]) = PM3"
13: | end for
14: | MM = MM*™"

15: | terminate

end main body

this chapter. The improvisation process of a new melody vector is carried out by
other players in the same way.

4.2.3.2 Sub-stage 3.2: Update of Each PM

After completion of sub-stage 3.1 and improvisation of a new melody vector by each
player in the musical group, the update process of the PMs or MM must be performed
in sub-stage 3.2. To clarify, consider the memory associated with player p (PM,,, ,). In
this sub-stage, a new melody vector played by player p is evaluated and compared
with the worst available melody vector in the PM,, ,—the melody vector stored in the
PMS row of the PM,,, ,—from the perspective of the objective function. If the new
melody vector played by player p has a better value than the worst available melody
vector in the PM,, ,, from the standpoint of the objective function, this new melody
vector replaces the worst available melody vector in the PM,, ,; the worst available
melody vector is then discarded from the PM,, ,. This process is also done for other
players in the group. Table 4.4 presents the pseudocode pertaining to the update of the
memory of all existing players in the musical group or the update of the MM,,,.

The update process of the PM,, , is not accomplished if the new melody vector
played by player p in the musical group is not notably better than the worst
available melody vector in its memory, from the perspective of the objective
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Table 4.4 Pseudocode pertaining to the update of the memory of all existing players in
the musical group or the update of the MM,, in the proposed continuous/discrete
TMS-MSA

Algorithm 3: Pseudocode for the update of the memory of all existing players in the
musical group or the update of the MM, in the proposed continuous/discrete
TMS-MSA

Input: Not updated MM, X,

Output:  Updated MM,,

Start main body

begin
for music player p [p € ™) do

PMS
m,p

setf (x;”’“‘) =f <xzf\23>
if f x;,f;v> < f(x,vjorst) then
Xpp € PMin,p
X[\yorst ¢ PMm,p
end if
end for

worst

set Xp =X

10: | terminate

end main body

function. After completion of this process, melody vectors stored in the memory of
all existing players in the musical group or the MM,, must be re-sorted based on
the value of objective function—fitness function—in an ascending order. The
pseudocode pertaining to sorting the solution vectors stored in the memory of all
existing players in the musical group or the MM was formerly presented in
Table 4.3. Given the dependence of each PM or more comprehensively the MM
to the improvisation/iteration index of the SIS—index m—this pseudocode must
be rewritten according to Table 4.5.

4.2.3.3 Sub-stage 3.3: Check of the Stopping Criterion of the SIS

After completion of sub-stage 3.2 and an update of all PMs, the check process of the
stopping criterion of the single computational stage must be accomplished. The
computational efforts of the SIS are terminated if its stopping criterion—the
MNI-SIS—is satisfied. Otherwise, sub-stages 3.1 and 3.2 are repeated.

4.2.4 Stage 4: Pseudo-Group Computational Stage or PGIS

After finalization of stage 3, or accomplishment of the SIS, the pseudo-group
computational stage or the PGIS must be performed. This stage is organized into
four sub-stages: (1) improvisation of a new melody vector by each player, taking into
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Table 4.5 Pseudocode relevant to the sorting of the solution vectors stored in the PMs or MM,,, in
the proposed continuous/discrete TMS-MSA

Algorithm 4: Pseudocode for sorting the solution vectors stored in the PMs or MM,,, in the
proposed continuous/discrete TMS-MSA

Input: Unsorted MM,,,
Output:  Sorted MM,,

start main body

1: begin

2: for music player p [p € ¥*] do

3: set PM,, , = MM,,, (1: PMS, [(p — 1) - NDV + D]: [p - (NDV + 1)])
4: F" = sort(PM,y,,(1 : PMS, (NCDV + 1)), ascend')

5: for melody vector s [s € PPMS| go

6: for melody vector s* [s* € ¥*™5] do

7: if F' f,‘l":, (s) == PM,,,(s", (NCDV + 1)) then

8: PM% (5,1 : (NDV + 1)) = PMyy, (s, 1 : (NDV + 1))

9: end if

10: end for

11: end for

12: MM™M(1:PMS, 1+ [(p—1)- (NDV+1)]: [p- (NDV +1)]) = PMer;
13: end for

14: MM, = MM

15: terminate

end main body

account the feasible ranges of the updated pitches; (2) update of each PM; (3) update
of the feasible ranges of pitches—continuous decision-making variables—for the
next improvisation—only for random selections; and, (4) check of the stopping
criterion of the PGIS. The mathematical equations expressed at this stage must
depend on the improvisation/iteration index—index m—due to the repeatability of
the PGIS in the proposed continuous/discrete TMS-MSA.

4.2.4.1 Sub-stage 4.1: Improvisation of a New Melody Vector by Each
Player

In sub-stage 4.1, the improvisation process of a new melody vector by each player in
the group must be performed. In this sub-stage, each player improvises a new
melody under the influence of other players. In other words, the improvisation

process of a new melody vector by player p—
Xpp = (xnnﬁf 132 Xpypys s e ,x,‘;lfl",iNDv) —is accomplished by using the proposed

continuous/discrete AIP, taking into account the feasible range of the pitches, which
are updated in different improvisations/iterations of the PGIS. The improvisation
process of a new melody vector is done by other players in the same way.
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4.2.4.2 Sub-stage 4.2: Update of Memory of Each Player

After completion of sub-stage 4.1 and improvisation of a new melody vector by each
player in the group, the update process of the PMs or MM must be done. This
process is virtually the same as for sub-stage 3.2 of the SIS, which was discussed in
Sect. 4.2.3.2.

4.2.4.3 Sub-stage 4.3: Update of the Feasible Ranges of Pitches—
Continuous Decision-Making Variables for the Next
Improvisation—Only for Random Selection

After completion of sub-stage 4.2 and an update of the PMs, the update process of
the feasible ranges of pitches—continuous decision-making variables for the next
improvisation—only for random selection must be performed. Similar to the con-
tinuous TMS-MSA, in the continuous/discrete TMS-MSA, the feasible ranges of
continuous decision-making variables in the melody vector are changed and updated
during each improvisation/iteration of the PGIS, but only for random selection. This
means that the lower bound of the continuous decision-making variable v (xvmi“) and
the upper bound of the continuous decision-making variable v (x"**) in the PGIS
depend on the improvisation/iteration index of the PGIS and change in the form of
xn’zig and x,"*, respectively. Table 4.6 gives the pseudocode associated with the
update of the feasible ranges of continuous decision-making variables in the pro-
posed continuous/discrete TMS-MSA.

4.2.4.4 Sub-stage 4.4: Check of the Stopping Criterion of the Pseudo-
Group Improvisation Stage

After finalization of sub-stage 4.3 and the update of the feasible ranges of the
continuous decision-making variables for the next improvisation of the PGIS, the
check process of the stopping criterion of this computational stage must be carried
out. If the stopping criterion of the PGIS—the MNI-PGIS—is satisfied, its compu-
tational efforts are then terminated. Otherwise, sub-stages 4.1, 4.2, and 4.3 are
repeated.

4.2.5 Stage 5: Selection Stage—Selection of the Final
Optimal Solution—The Most Favorable Melody

After completion of stage 4, or accomplishment of the PGIS, the selection of the final
optimal solution must be done in stage 5. In this stage, the best melody vector stored
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Table 4.6 The pseudocode associated with the update of the feasible ranges of the continuous
decision-making variables in the proposed continuous/discrete TMS-MSA

Algorithm 5: Pseudocode for the update of the feasible ranges of the continuous decision-making
variables in the proposed continuous/discrete TMS-MSA

Input: Xo,p
Output:  x", x %
start main body

1: | begin
2: | for music player p [p € ¥*™] do

. best _ o1
3: set X3 =x,,
4: | end for
5: | for continuous decision-making variable v [v € PNEDV] do
6: X — min <x;e:t) [Vp € WPN, v {m € PUNIPOIS)
T X% = max (xﬁ?i‘) :Vp € ¥, v{m e ‘I’MNI_PGIS}
8: | end for
9: | terminate

end main body

Table 4.7 Pseudocode relevant to the selection of the final optimal solution in the proposed
continuous/discrete TMS-MSA

Algorithm 6: Pseudocode for the selection of the final optimal solution in the proposed contin-
uous/discrete TMS-MSA

Input: MM
Output:  x"
start main body

1: begin
2: for music player p [p € ¥*~] do

best __ 1
3 set X, = X,
4: end for
5: Xbesl = min <X;est>; Vp c \PPN
6: terminate

end main body

in the memory of each existing player in the musical group is characterized; then, the
best melody vector is chosen from among these melody vectors as the final optimal
solution. Table 4.7 provides the pseudocode relevant to the selection of the final
optimal solution in the proposed continuous/discrete TMS-MSA.



4.2 Continuous/Discrete TMS-MSA 111

4.2.6 Continuous/Discrete Alternative Improvisation
Procedure

As previously mentioned, existing player p in the musical group improvises a new

new __ new new
melody vector—ux,’ » = \Xmps s X poys - -

continuous/discrete AIP in the continuous/discrete TMS-MSA. Employing the con-
tinuous/discrete AIP by existing player p in the musical group is accomplished on
the basis of three rules: (1) player memory consideration; (2) pitch adjustment; and,
(3) random selection.

Rule I: In the player memory consideration rule, the values of the new melody
vector for player p are randomly selected from the melody vectors stored in the PM,,, ,
with the probability of the PMCR. In this rule, two principles are alternately
employed.

Applying of the first principle of the player memory consideration rule to
determine the value of the continuous or discrete decision-making variable v from

a new melody vector played by player p in the music group, x,°7,, is carried out

<X p Dy ) —bY using the proposed

using Eqs. (4.7) and (4.8), respectively:

xhew t—xr 2+ U(0,1) - BW,;

m,p,v m,p,v

V{m c IP(MNI-SISH(MNI-PGIS)J) € WN | g pNeDY u{l1,2,... ,PMS}}
(4.7)
x:g,v _ x;l’p’v; v {m c \P(MNI—SIS)+(MNI—PGIS), peW™N e lPNDDV}’
v{r ~U{L,2,...,PMS}} (4.8)

Equation (4.7) tells us that the value of the continuous decision-making variable
v from the new melody vector played by player p, x,," . is randomly selected from

the available corresponding continuous decision-making variable in the melody
vectors stored in the PM,, ,— (xl co XS xPMS )—With the probability

m,p,v? ) rﬁ,p,v""’ m,p,v
of the PMCR and updated by the BW,,, parameter. Equation (4.8) also tells us that the
value of the discrete decision-making variable v from the new melody vector played

by player p, x,," ., is haphazardly chosen from the available corresponding discrete

decision-making variable in the melody vectors stored in the PM,,,—
(xl U APRTRRRRE Ay )—With the probability of the PMCR. Implementing

m,p,w ? m,p,v
of the second principle of the player memory consideration rule to specify the value
of the continuous or discrete decision-making variable v from a new melody vector
played by the existing player p in the music group, x,° . is done using Egs. (4.9)
and (4.10), respectively:
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'xi’?fl\;l,v = 'xr:t,p,k + U(Ov 1) : BWm;
V{m ¢ PMNISIS)+(MNI-PGIS) ), o PN |, o @NCDV . U{1,2,...,PMS},
k~U{l,2,...,NCDV}} (4.9)

new — xr .
m,p,v m,p, 1’

v{m c \P(MNI-SIS)+(MNI-PGIS)’p c lPPN, v e \PNDDV, r o~ U{]»z7 o PMS}7
I ~U{1,2,...,NDDV}} (4.10)

X

Equation (4.9) tells us that the value of the continuous decision-making
variable v from the new melody vector played by player p is randomly chosen
from the entire set of available continuous decision-making variables stored in the

1 5 PMS 1 s PMS
PM,, — {(xmﬁp’] N TR ,xm,p,l), ey (xm’p,v, S ,xm,p,v> e
1 s PMS : T
(xm’ PNCDV: -+ %m p NCDV' - = = 2 X, p. NCDV) } —with the probability of the

PMCR and updated by the BW,, parameter. Also, Eq. (4.10) tells us that the value of
the discrete decision-making variable v from the new melody vector played by player
p is randomly chosen from the entire set of available discrete decision-making variables
stored in the PMyy—{ (hs- s 8088 )y (R30S, )
(x,ln,p,NDDv, X NDDVS -+ 7xn‘?}f,§NDDV) }—with the probability of the PMCR.
Index r in Egs. (4.7)—(4.10) is a random integer with a uniform distribution
through the set {1,2, ... ,PMS}—r ~ U{1,2, ... ,PMS}. Put simply, the value
of index r in Egs. (4.7)-(4.10) is randomly specified through the set of permissible

values demonstrated by the set {1,2, ... ,PMS}. Determination of this index is
performed according to Eq. (4.11):

r=int(U(0,1) - PMS) + 1 (4.11)

Index k in Eq. (4.9) is also a random integer with a uniform distribution through
the set {1,2, ... ,NCDV}—k ~ U{l1,2, ... ,NCDV}. Put simply, the value of
index k in Eq. (4.9) is randomly characterized through the set of permissible values
displayed by the set {1,2, ... ,NCDV}. Determination of this index is done in
accordance with Eq. (4.12):

k = int(U(0, 1) - NCDV) + 1 (4.12)

Moreover, indices / in Eq. (4.10) represent a random integer with a uniform
distribution through the set {1,2, ... ,NDDV}—I/~U{1,2, ... ,NDDV}. Put
simply, the value of index [ in Eq. (4.10) is randomly characterized through the set
of permissible values displayed by the set {1,2, ...,NDDV}. Determination of this
index is performed according to Eq. (4.13):
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I = int(U(0,1) - NDDV) + 1 (4.13)

Applying the player memory consideration rule is also performed for other
players in the same way.

Rule 2: In the pitch adjustment rule, the values of a new melody vector played by
player p, randomly selected from among the existing melody vectors in the PM,,, ,,
with the probability of the PMCR, are updated with the probability of the PAR,,.
Applying of the pitch adjustment rule to determine the value of the continuous or
discrete decision-making variable v from a new melody vector played by player p,
xtew is carried out by using Eqgs. (4.14) and (4.15), respectively:

m,p,v?

xhew _ best . v{m c IP(MNI-SIS)vL(MNI-PGIS)’p c lPPN, ve \PNCDV} (414)

m,p,v m,p,v’

le:;‘f,v _ xlrane’spt’v; V{m c \P(MNI-SIS)Jr(MNI-PGIS)’p ceWN )¢ lPNDDV} (4.15)

Equations (4.14) and (4.15) tell us that after the value of the continuous or
discrete decision-making variable v from a new melody vector by player p was
haphazardly chosen from the melody vectors stored in the PM,,, , with the probability
of the PMCR, this continuous or discrete decision-making variable is updated with
the probability of the PAR,, The update process for the continuous or discrete
decision-making variable v is done by replacing it with the value of the
corresponding continuous or discrete decision-making variable from the best melody
vector available in the PM,,, ,, x,tq’q"j},] . Applying the pitch adjustment rule is also done
for other players in the same way.

Rule 3: In the random selection rule, the values of a new melody vector played by
player p are randomly selected from the entire space of the nonempty feasible
decision-making with the probability of the 1-PMCR. In this rule, two different
principles are used. The first and second principles are activated in the SIS and PGIS,
respectively. Applying of the first and second principles of the random selection rule
to determine the value of the continuous decision-making variable v from a new
melody vector played by player p in the music group, x,°7,, is accomplished by

using Eqgs. (4.16) and (4.17), respectively:

hew x‘r/nin + U(()7 1)

m,p,v

C (emex — min); V{m € POMNISIS) ) o PN |, TNCDV} (4.16)

v v

A= 1 U(0, 1)

m,p,v

o —xmn); v e WONITO) ¢ @iy g @NOVE (417
Equation (4.16) tells us that the value of the continuous decision-making variable

v from the new melody vector played by player p, x,,"; . is randomly chosen from the
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entire space of the nonempty feasible decision-making relevant to this decision-
making variable, which is characterized by an invariable lower bound, x™", and an
invariable upper bound, x"**, with the probability of the 1-PMCR. Equation (4.17)
also tells us that the value of the continuous decision-making variable v from the new
melody vector played by player p, x,°", is haphazardly selected from the entire
space of the nonempty feasible decision-making pertaining to this decision-making
variable, which is specified by a variable lower bound, x”T’i'v“, and a variable upper
bound, x,Tf‘VX, with the probability of the 1-PMCR.

The first and second principles of the random-selection rule associated with
discrete decision-making variables are quite similar. Applying of the first and second
principles of the random-selection rule in order to determine the value of the discrete
decision-making variable v from a new melody vector played by the existing player

p in the music group, x™*V is performed by using Eq. (4.18):

m,p,v’>

Xy = X ();

v{m € PMNISIS)H(MNIPGIS) ) o PN ), @ WNDDV [y (50 x, (1), ..., x, (), - .- ,xv(Wv)}}

(4.18)

Equation (4.18) tells us that the value of the discrete decision-making variable
v from a new melody vector played by player p, x,",, is randomly specified through
the set of candidate permissible values for corresponding discrete decision-making
variable shown by the set of {x,(1), ... ,x,(w,), ..., x,(W,)}. In Eq. (4.18), index
y is a random integer with a uniform distribution through the set of {x,(1), ...,
x,wy), o x, (W) —y~U{x, (1), ..., x,(w,), ... ,x,(W,)}. Applying of the ran-
dom selection rule is also accomplished for other players in the same way. Similar to
the continuous TMS-MSA, in the proposed continuous/discrete TMS-MSA, each
player in the musical group employs the updated values of the BW,, and PAR,,
parameters in the improvisation process of its melody vector. The BW,, and PAR,,
parameters are updated in each improvisation/iteration of the SIS and the PGIS by
using Egs. (4.19) and (4.20), respectively:

In (meax/mein)
BW,, = BW™ . exp -m);

(MNLSIS) + (MNLPGIS) "
V{m c T(MNI-SISH(MNI-PGIS)} (4.19)

) PAR™* _ P ARmin
PAR,, = PAR™ + ( )

(MNI-SIS) + (MNI-PGIS)
om Y { me W(MNI—SISH(MNI—PGIS)} (4.20)

Table 4.8 presents the pseudocode relevant to the improvisation of a new melody
vector by each player in the musical group of the proposed continuous/discrete



Table 4.8 Pseudocode relevant to improvisation of a new melody vector by each player in the
musical group of the proposed continuous/discrete TMS-MSA

Algorithm 7: Pseudocode for improvisation of a new melody vector by each player in the musical group
of the proposed continuous/discrete TMS-MSA

Input: BW™>, BW™" MNI-SIS, MNI-PGIS, NCDV, NDDV, NDV, PAR™, PAR™", PMCR,

PMS, PN, x"%, x™%, {x,(1), ..., 0,0n), -, x(W,)}

Output:  x'V

m,p

start main body

32:

begin
BW,, = BW™* . exp [(In(BW™/BW™")/(MNI-SIS) + (MNI-PGIS))) - m]
PAR,, = PAR™™ — [((PAR™ — PAR™")/((MNI-SIS) + (MNI-PGIS))) - m]
for music player p [p € ¥™N] do

construct the new melody vector for music player p, x,,°7, with dimension

{1} - {NDV + 1} and zero initial value

for decision-making variable v [v € wNPV] do

if U(0, 1) < PMCR then
Rule 1: harmony memory consideration with probability PMCR
if improvisation/iteration m[m € PMNLESIS) + (MNIPGIS) 56 4 then
Principle 1: first combination
Xty = X oy U(0,1) - BW,,; Vr~U{1,2, ... ,PMS}; for CDVs
Vr~U{1,2, ... ,PMS}; for DDVs

new — r .
Ximpov = Xm,p,vs

else
Principle 2: second combination
Kooy = % o £U(0,1) - BW,,; Vr~U{1,2, ... , PMS}, Vk~U

{1,2, ... ,NCDV}; for CDVs
xhew  _ yr Vr~U{1,2, ... ,PMS},Vi~U{l1,2, ... ,NDDV};

m,p,v m.p. 15

for DDVs
end if

if U(0, 1) < PAR,, then
Rule 2: pitch adjustment with probability HMCR - PAR,,
X = bt s for CDVs and DDVs

end if

else if
Rule 3: random selection with probability 1-HMCR

switch 1
case improvisation/iteration m{m € YMNESIS) + (MNEPGIS) < (MN]-SIS) then
Xopipy = xM 4 U(0, 1) - (xM — xMin); for CDVs

xnew = x,(3); Vy~Uf{x, (1), ...,x,(w,), ...,x,(W,)}; for DDVs

m,p,v
case improvisation/iteration m [m € PMNESIS) + (MNIPGIS)|  (\INT-SIS) and
improvisation/iteration m [m € PMNESIS) + MNEPGIS))  (VIN]-SIS)

+ (MNI-PGIS) then

XV = xmin 4 (0, 1) - (xM — xMin); for CDVs

mopv = X,y v v
xr‘:f!‘,” » =x%0); Vy~U{x), ..., xwm), ..., x,(W,)}; for DDVs
end switch
end if

end for

calculate the value of objective function, fitness function, derived from melody
vector x,,° as f (X;CI‘;’)
allocate f (x,‘,‘f‘;’) to element (1, NDV + 1) of the new melody vector x,,°)

end for
terminate

end main body

Note: Continuous decision-making variable (CDVs), discrete decision-making variable (DDVs)
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TMS-MSA. The designed pseudocodes in various stages and sub-stages of the
continuous/discrete TMS-MSA are organized in a regular sequence and form the
performance-driven architecture of this algorithm. Table 4.9 presents the
pseudocode associated with the performance-driven architecture of the proposed
continuous/discrete TMS-MSA.

4.3 Enhanced Version of the Proposed Continuous/Discrete
TMS-MSA

In the preceding section, the continuous/discrete TMS-MSA was developed in order
to deal with complicated, real-world, large-scale, non-convex, non-smooth optimi-
zation problems involved with a concurrent combination of continuous and discrete
decision-making variables. In order to appreciably improve the performance, flexi-
bility, and robustness of the continuous/discrete TMS-MSA, an enhanced version of
the continuous/discrete TMS-MSA—the TMS-EMSA—will now be presented.

The performance-driven architecture of the TMS-EMSA is generally broken
down into five stages, as follows:

* Stage 1—Definition stage: Definition of the optimization problem and its
parameters
» Stage 2—Initialization stage

— Sub-stage 2.1: Initialization of the parameters of the TMS-EMSA
— Sub-stage 2.2: Initialization of the MM

» Stage 3—Single computational stage or SIS

— Sub-stage 3.1: Improvisation of a new melody vector by each player
— Sub-stage 3.2: Update of each PM
— Sub-stage 3.3: Check of the stopping criterion of the SIS

» Stage 4—Group computational stage or group improvisation stage (GIS)

— Sub-stage 4.1: Improvisation of a new melody vector by each player taking
into account the feasible ranges of the updated pitches

— Sub-stage 4.2: Update of each PM

— Sub-stage 4.3: Update of the feasible ranges of pitches—continuous decision-
making variables for the next improvisation—only for random selection

— Sub-stage 4.4: Check of the stopping criterion of the GIS

» Stage 5—Selection stage: Selection of the final optimal solution—the best melody

It should be obvious that the performance-driven architecture of the TMS-EMSA
is quite similar to the performance-driven architectures of the continuous/discrete
TMS-MSA, which were reported in Sect. 4.2 of this chapter. Nevertheless, the
proposed TMS-EMSA brings about fundamental differences in some stages and
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Table 4.9 Pseudocode associated with the performance-driven architecture of the proposed con-
tinuous/discrete TMS-MSA

Algorithm 8: Pseudocode for performance-driven architecture of the proposed continuous/dis-

crete TMS-MSA

Input: BW™, BW™?" MNI-SIS, MNI-PGIS, NCDV, PAR™, PAR™", PMCR, PMS, PN,
x:nin’ x‘:nax

Output: x5t

start main body

1: | begin
2: | Stage 1—Definition stage: Definition of the optimization problem and its parameters
3: | Stage 2—Initialization stage

4: Sub-stage 2.1: Initialization of the parameters of the continuous/discrete

] TMS-MSA

50 Sub-stage 2.2: Initialization of the of the MM

6: Algorithm 1: Pseudocode for initialization of the entire set of PMs or
] MM in the proposed continuous/discrete TMS-MSA

7: Algorithm 2: Pseudocode for sorting the solution vectors stored in the PMs

or MM in the proposed continuous/discrete TMS-MSA
8: | Stage 3—Single computational stage or SIS

9| set improvisation/iteration m = 1

10: set MM,, = MM

1 while m < (MNI-SIS) do

12| Sub-stage 3.1: Improvisation of a new melody vector by each player
13| Algorithm 7: Pseudocode for improvisation of a new melody

vector by each player in the musical group of the proposed
continuous/discrete TMS-MSA

14: Sub-stage 3.2: Update of each PM

15: Algorithm 3: Pseudocode for the update of the memory of all
existing players in the musical group or the update of the MM,,
in the proposed continuous/discrete TMS-MSA

16: Algorithm 4: Pseudocode for sorting the solution vectors stored
in the PMs or MM, in the proposed continuous/discrete
] TMS-MSA
17: ] set improvisation/iteration m = m + 1
18: | end while
19: | Stage 4—Pseudo-group computational stage or PGIS
120: | while m > (MNI-SIS) and m < (MNI-SIS) + (MNI-PGIS) do
21: Sub-stage 4.1: Improvisation of a new melody vector by each player taking
] into account the feasible ranges of the updated pitches
22: Algorithm 7: Pseudocode for improvisation of a new melody

vector by each player in the musical group of the proposed
continuous/discrete TMS-MSA

23: Sub-stage 4.2: Update of each PM

24: Algorithm 3: Pseudocode for the update of the memory of all
existing players in the musical group or the update of the MM,
in the proposed continuous/discrete TMS-MSA

25: Algorithm 4: Pseudocode for sorting the solution vectors stored
in the PMs or MM, in the proposed continuous/discrete
TMS-MSA

(continued)
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Table 4.9 (continued)

26: Sub-stage 4.3: Update of the feasible ranges of pitches—continuous
decision-making variables—for the next improvisation—only for random
] selection
27: Algorithm 5: Pseudocode for the update of the feasible ranges

of the continuous decision-making variables in the proposed
continuous/discrete TMS-MSA

28: set improvisation/iteration m = m + 1
29: end while
30: | Stage 5—Selection stage: Selection of the final optimal solution—the best melody

31: Algorithm 6: Pseudocode for the selection of the final optimal solution in the
proposed continuous/discrete TMS-MSA
32: | terminate

end main body

sub-stages of the performance-driven architecture over the continuous/discrete
TMS-MSA, because of its enhancements. Here, only the different stages and
sub-stages altered in the TMS-EMSA, in comparison with the continuous/discrete
TMS-MSA, are redefined to prevent repeating the previous descriptions in Sect. 4.2
of this chapter.

Stage 1 is related to the definition of the optimization problem and its parameters.
This stage of the proposed TMS-EMSA is virtually the same as the corresponding
stage of the continuous/discrete TMS-MSA, previously described in Sect. 4.2.1 of
this chapter.

Sub-stage 2.1 is related to the initialization of the parameters of the optimization
algorithm. In this sub-stage, the parameter adjustments of the continuous/discrete
TMS-MSA are characterized in Table 4.1, which was presented in Sect. 4.2.2.1 of
this chapter. As for Table 4.1, the PMS parameter represents the number of melody
vectors—solution vectors—stored in the memory of each existing player in the
musical group. In the music literature, this parameter refers to the number of
melodies that an existing player in the musical group is capable of storing in its
own mind. Table 4.1 shows that in the continuous/discrete TMS-MSA, the PMS
parameter is considered to be invariant for all of the existing players in the musical
group. That is to say that the number of melody vectors stored in the memory of all
existing players in the musical group is equal. In reality, however, the number of
melodies that a player can store in its own mind is a unique parameter. Stated another
way, the number of melodies that existing players in the musical group can store in
their minds is not equal. In this regard, the PMS parameter in the TMS-EMSA can be
different for each player in the musical group. For this purpose, the PMS parameter
must be dependent on the index of the player, p, or consequently the PMS parameter
in the TMS-EMSA is substituted with the PMS of player p—PMS,,.

In Table 4.1, the PMCR parameter is employed in the improvisation process of a
new melody vector by an existing player in the musical group under sub-stages 3.1
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and 4.1 with the aim of determining whether the value of a decision-making variable
from a new melody vector played by the corresponding player is derived from its PM
or from the entire space of the nonempty feasible decision-making related to the
corresponding variable. In the music literature, the activation of this parameter for an
existing player in the musical group is equivalent to the player randomly choosing
notes of its new melody vector through the notes of the melody vectors stored in its
own mind. Conversely, the inactivation of the PMCR parameter for an existing
player in the musical group brings about haphazardly selected notes for this player
from all of the notes available to be played. Table 4.1 also shows that the PMCR
parameter is taken into account to be invariant for all existing players in the musical
group in the continuous/discrete TMS-MSA. In reality, however, determining
whether the value of a note from a new melody vector played by an existing player
in the musical group should be randomly chosen from the notes of melody vectors
stored in the mind of the corresponding player or from all of the available notes is a
unique parameter. That is, the PMCR parameter for existing players in the musical
group is not equal. In the proposed TMS-EMSA, the PMCR parameter can be
different for each player in the musical group. The PMCR parameter must, then,
be dependent on the index of player—p. As a result, the PMCR parameter in the
TMS-EMSA is replaced by the PMCR of player p—PMCR,,.

Also from Table 4.1, the PAR™" and PAR™® parameters are generally employed
in order to determine the value of the PAR parameter in improvisation/iteration m of
the SIS and PGIS—PAR,,. The update process of the PAR,, parameter was previ-
ously described by using Eq. (4.20) in Sect. 4.2.6 of this chapter. In the improvisa-
tion process of a new melody vector by an existing player in the musical group under
sub-stages 3.1 and 4.1, the PAR,, parameter is exploited with the aim of specifying
whether the value of a decision-making variable, randomly selected from the
memory relevant to the corresponding player with the probability of the PMCR,
needs a change/update or not. In the music literature, the activation of this parameter
for an existing player in the musical group is equivalent to the player making a
change/update in notes of its new melody vector, which is haphazardly selected from
the notes of the melody vectors stored in its own mind. In fact, the inactivation of the
PAR,, parameter for an existing player gives rise to the player not creating any
changes or updates in notes of its new melody vector, which is randomly chosen
from the notes of the melody vectors stored in its own mind. As set out in Table 4.1,
in the continuous/discrete TMS-MSA, the PAR™" and PAR™ parameters are
considered to be invariant for all players in the musical group. That is to say that
the PAR,, parameter, as a pitch adjusting rate parameter in improvisation/iteration
m of the SIS and PGIS, is the same for all players in the musical group. In fact, the
rate that specifies whether or not the value of a decision-making variable from a new
melody vector played by an existing player haphazardly selected from the memory
relevant to the corresponding player with the probability of the PMCR needs a
change or update is a unique parameter. Put another way, in reality, the PAR,,
parameter for existing players in the musical group is not equal. In the
TMS-EMSA, this parameter can, therefore, be different for each player. In
doing so, the PAR™" and PAR™® parameters must be dependent on the index of
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player—p. This dependency causes the PAR,, parameter, which is calculated by
using the PAR™™ and PAR™® parameters, which also depends on the index of
player—p. As a consequence, the PAR™", PAR™, and PAR,, parameters in the
TMS-EMSA are substituted with a minimum pitch adjusting rate of player p (PAR;‘i“),
amaximum pitch adjusting rate of player p (PAR™), and a pitch adjusting rate of
player p in improvisation/iteration m of the SIS and GIS (PAR,, ), respectively.

Again from Table 4.1, the BW™" and BW™ parameters are generally used in
order to specify the value of the BW parameter in improvisation/iteration m of the SIS
and PGIS—BW,,.. For this parameter, the update process was previously expressed
using Eq. (4.19) in Sect. 4.2.6 of this chapter. The BW,,, parameter is exploited in order
to change/update the value of continuous decision-making variable chosen from the
memory relevant to an existing player in the musical group with the probability of the
PMCR, in the improvisation process of a new melody vector by the corresponding
player under sub-stages 3.1 and 4.1. The point to be made here is that the BW,,
parameter is of an optional length and is solely defined for continuous decision-
making variables. In the music literature, after activation of the PMCR for an existing
player, the player must make a change or an update in notes of its new melody vector,
haphazardly selected from the notes of the melody vectors stored in its own mind. The
corresponding player performs this change/update by using the BW,, parameter.
Table 4.1 further shows that, in the continuous/discrete TMS-MSA, the BW™" and
BW™® parameters are considered to be invariant for all players. This means that the
BW,, parameter, as BW parameter in improvisation/iteration m of the SIS and PGIS, is
the same for all players. In reality, however, the BW,, parameter for changing/
updating the value of a decision-making variable from a new melody vector played
by an existing player, randomly chosen from the memory relevant to the
corresponding player with the probability of the PMCR, is a unique parameter. Put
simply, the BW,, parameter for existing players in the musical group is not equal. In
this regard, the BW,,, parameter can be different for each player in the TMS-EMSA.
To do this, the BW™" and BW™* parameters must be dependent on the index of
player—p. This dependency gives rise to the BW,, parameter, which is obtained by
using the BW™" and BW™® parameters, and depends on the index of player—p. As a
result, the BW™", BW™ and BW,, parameters in the TMS-EMSA are replaced by
the minimum bandwidth of player p (BW;,‘““), the maximum bandwidth of player p (
BW ), and the bandwidth of player p in improvisation/iteration m of the SIS and
GIS (BW,,,), respectively.

Another adjustment parameter of the continuous/discrete TMS-MSA presented in
Table 4.1 is the maximum number of improvisations/iterations of the pseudo-group
improvisation stage—MNI-PGIS. Given the architecture of the TMS-EMSA, the
PGIS becomes the GIS. The main reason for the transformation of the PGIS into the
GIS originates from an innovative, well-organized improvisation procedure devel-
oped by the authors for the proposed TMS-EMSA to appreciably improve its
performance, flexibility, and robustness. Accordingly, the MNI-PGIS is substituted
with the maximum number of improvisations/iterations of the group improvisation
stage—MNI-GIS—in the TMS-EMSA. Other parameters presented in Table 4.1
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Table 4.10 Adjustment parameters of the proposed TMS-EMSA

No. |Proposed TMS-EMSA parameter Abbreviation | Parameter range
1 Melody memory MM -
2 Player number PN PN >1
3 Player memory PM, -
4 Memory size of player p PMS, PMS, > 1
5 Memory considering rate of player p PMCR, 0 <PMCR, <1
6 Minimum pitch adjusting rate of player p PAR,;“i" 0< PAR};“in <2
7 Maximum pitch adjusting rate of player p PAR™ 0 < PARI™ <2
8 Minimum bandwidth of player p BW;“in 0< BW’{“'m < 400
9 Maximum bandwidth of player p BW 0 <BW,™ < +o0
10 | Number of continuous decision-making variables NCDV NCDV > 1
11 | Number of discrete decision-making variables NDDV NDDV > 1
12 | Number of decision-making variables NDV NDV > 2
13 | Maximum number of improvisations/iterations of MNI-SIS MNI-SIS >1
the SIS
14 | Maximum number of improvisations/iterations of MNI-GIS MNI-GIS >1
the GIS

remain unchanged for the TMS-EMSA. Detailed descriptions for the adjustment
parameters of the TMS-EMSA are presented in Table 4.10.

Sub-stage 2.2 is related to initialization of the MM. In this sub-stage of the
continuous/discrete TMS-MSA, initialization of the MM is carried out according
to Egs. (4.3)-(4.6), given in Sect. 4.2.2.2 of this chapter. In the TMS-EMSA,
however, in view of the changes applied in the parameters under sub-stage 2.1, the
initialization process of the MM must be rewritten using Eqs. (4.21)-(4.24), as
follows:

MM = [PM, --- PM, --- PMp]; V{pe¥™} (4.21)
_ _ M1 1 1 1
x117 X1 Xy, X, Npy | f(xp)
PMP = x; = xl‘i] .o x;’v . 'x;,NDV | f(X;) ;
PMS, PMS, PMS, PMS PMS
L Xp ] _xp’l 7 S Xpy ; ‘xp,NDpV | f(Xp p)_

V{p c ‘“PPN, = \PNDV7 = lPPMSp’ IPNDV:\I;NCDV-‘rNDDV}

(4.22)
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Table 4.11 Pseudocode related to initialization of the entire set of PMs or MM in the proposed
TMS-EMSA

Algorithm 9: Pseudocode for initialization of the entire set of PMs or MM in the proposed
TMS-EMSA

Input: NCDV, NDDV, NDV, PN, PMS,,, x™8, x™ {x (1), ..., x,W,), ... ,x(W,)}
Output: MM

start main body

1: | begin
2: | set PMS™ = max(PMS,); Vp € W™
'3: | construct the matrix MM with dimension {PMS™*} . {(NDV + 1) - PN} and zero initial
value
4: | for music player p [p € ¥*] do
T construct the submatrix PM,, with dimension {PMS,,} - {NDV + 1} and zero initial
] value
6: for melody vector s [s c P MS”] do
7 construct the melody vector s of music player p, x,,, with dimension
{1} - {NDV + 1} and zero initial value
E for decision-making variable v [v € PPV do
9: x;’v = xvmi“ +U(0,1) - (x“,‘“’" — x",“i“); for CDVs
10: | X =00): Vr~Ua(D, ....x,0m), ....x(W,)}; for DDVs
T allocate x,f’ , to element (1, v) of the melody vector xlj'
12 end for
T calculate the value of the objective function, fitness function, derived from the
melody vector X, as f (xlf)
14: allocate f <X;> to element (1, NDV + 1) of the melody vector x;
15: | add melody vector x; to the row s of the submatrix PM,,
16: | end for
17: | add submatrix PM,, to the rows 1 to PMS,, and columns 1 + (p — 1) - (NDV + 1) to
p - (NDV + 1) of the matrix MM
'18: | end for
'19: | terminate

end main body

Note: Continuous decision-making variable (CDVs), discrete decision-making variable (DDVs)

X, =x"+U(0,1)
C(xma — xmin); v p € WPN y € WNCPY g ¢ wPMS ) (4.23)

X, =x50); W{p € WN v e WDV ¢ ¢ @S,
Yy~ Uln(D), o x(wy), o x (W) 1) (4.24)
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Table 4.12 Pseudocode relevant to the sorting of the solution vectors stored in the PMs or MM in
the proposed TMS-EMSA

Algorithm 10: Pseudocode for sorting of the solution vectors stored in the PMs or MM in the
proposed TMS-EMSA

Input: Unsorted MM
Output: Sorted MM
start main body
1: begin
2: for music player p [p € ¥™~] do
3: set PM,, = MM(1 : PMS,,,[(p — 1) - NDV + D] : [p - (NDV + D)])
4: F = sort(PM,, (1 : PMS,, (NDV + 1)), "ascend )
5 for melody vector s [s ey MS"} do
6: for melody vector s* [s* c P MS"] do
7: if F)"(s) == PM(s",(NDV + 1)) then
8: PM" (s, 1 : (NDV + 1)) = PM,(s*,1 : (NDV + 1))
9: end if
10: end for
11: end for
12: MM (1 : PMS,, 1 +[(p—1) - (NDV 4+ 1)] : [p- (NDV + 1)]) = PM;™"
13: end for
14: MM = MM*"
15: terminate

end main body

Detailed descriptions associated with Eqgs. (4.21)—(4.24) were presented in
Sect. 3.6.2.2 of Chap. 3 and Sect. 4.2.2.2 of this chapter. Table 4.11 presents
the pseudocode related to initialization of the entire set of PMs or MM in the
proposed TMS-EMSA. After filling all of the PMs or MM with random solution
vectors, the solution vectors stored in each PM must be sorted from the lowest
value to the highest value—in an ascending order—from the standpoint of the
value of the objective function of the optimization problem. In the continuous/
discrete TMS-MSA, sorting the stored solution vectors for all PMs or MM is
performed according to the pseudocode presented in Table 4.3. In the
TMS-EMSA, however, due to the changes made in the parameters under
sub-stage 2.1, the sorting process for all PMs or MM must be restructured. As a
result, Table 4.12 gives the pseudocode relevant to the sorting of the solution
vectors stored in the PMs or MM in the proposed TMS-EMSA. Sub-stages 3.1 and
4.1 are related to the improvisation of a new melody vector by each player in the
musical group without and with the influence of other players in the musical
group, respectively.

Simply put, in sub-stages 3.1 and 4.1, each player improvises a new melody
vector both without and with taking into account interactive relationships among
existing players in the musical group, respectively. In fact, the ultimate purpose of
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each player is to achieve the most desirable sequence of pitches in a melody that
represents a truly fantastic melody. For example, consider player p in the musical
group. First, the SIS is run by player p in order to achieve a superior melody. In
the SIS, the corresponding player improvises its melodies individually without the
influence of other players in the musical group. After the corresponding player has
achieved an appropriate sequence of pitches in its melodies, the GIS is run. In the
GIS, the corresponding player improves its sequence of pitches of melodies played
in the SIS interactively with the influence of other players. More precisely, in the
SIS, player p merely seeks to achieve a superior melody with an individual
exercise, while in the GIS the corresponding player has the ability to learn
and imitate the best existing player in the group with the aim of attaining the
superior melody. In sub-stages 3.1 and 4.1 of the continuous/discrete TMS-MSA,

m,p m,p,17 »m,p,v?
using the continuous/discrete AIP. Detailed descriptions pertaining to the contin-
uous/discrete AIP were presented in Sect. 4.2.6 of this chapter. In the continuous/
discrete TMS-MSA, the sole interactive relationship among existing players in the
musical group is the update process of the feasible ranges of continuous decision-
making variables. In this regard, the upper and lower bounds of continuous
decision-making variables are updated in each improvisation/iteration of the
PGIS. Detailed descriptions relevant to this update process in the continuous/
discrete TMS-MSA were described in Sect. 4.2.4.3 of this chapter. In this optimi-
zation technique, the capability of learning and imitating each player in the
musical group is also ignored from the best player in the group. The pseudo-
group performance is, therefore, widely employed to improvise a new melody
vector in stage 4 of the continuous/discrete TMS-MSA. That is, stage 4 of the
continuous/discrete TMS-MSA is referred to as the PGIS, due to a lack of
thorough modeling of the interactive relationships among the different players in
the group. In the proposed TMS-EMSA, however, the update process of the
feasible ranges of continuous decision-making variables is concurrently considered
with the possibility of learning and imitating each player from the best existing
player through interactive relationships among the different players. For this
reason, stage 4 of the TMS-EMSA is referred to as the GIS. In sub-stages 3.1
and 4.1, an enhanced alternative improvisation procedure (EAIP) is developed

player p improvises a new melody—x "V = (x“ew S ,x,j‘fl‘j’,NDv)—by

: H new __ new
to improvise a new melody— x,°) = (xm’p,l,...

RS Xy ) —from
player p, which is extensively described later in this chapter.

Sub-stages 3.2 and 4.2 relate to the update process of all PMs or MM. In
sub-stages 3.2 and 4.2 of the continuous/discrete TMS-MSA, the update process of
all PMs or MM is done on the basis of the pseudocode presented in Table 4.4. Due
to the changes applied to the parameters of the TMS-EMSA in sub-stage 2.1, the
update process of all PMs or MM must be restructured. As a result, Table 4.13
illustrates the pseudocode associated with the update of the memory of all existing
players in the music group or the update of the MM, in the proposed TMS-EMSA.

In sub-stages 3.2 and 4.2, the update process of the memory of an existing player
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Table 4.13 Pseudocode associated with the update of the memory of all existing players in the
music group or the update of the MM,, in the proposed TMS-EMSA

Algorithm 11: Pseudocode for the update of the memory of all existing players in the music group
or the update of the MM,,, in the proposed TMS-EMSA

Input: Not updated MM,,,, X%

Output:  Updated MM,,

Start main body

1: | begin
2 for music player p [p € ™) do
3: set X}v)vorst — XZT/II)S/:
4 Sth(X:,Vom) :f<Xf;{\;I;SI’)
5: : st

if £ (xpey) <f(xpo) then
6: Xy € PMiy,p
7: x;“’rs‘ ¢ PM,, ),
8: end if
9: | end for
10: | terminate

end main body

in the group is not accomplished if the new melody vector played by a
corresponding player is not notably better than the worst available melody vector
in its memory, from the perspective of the objective function.

After completion of this process, melody vectors stored in the memory of all
existing players in the musical group or the MM,, must be re-sorted based on the
value of objective function—fitness function—in an ascending order. In the contin-
uous/discrete TMS-MSA, the pseudocode pertaining to sorting the solution vectors
stored in the memory of all existing players in the musical group or the MM,, was
formerly presented in Table 4.5. Due to the changes applied to the parameters of the
TMS-EMSA in sub-stage 2.1, this pseudocode must be restructured according to
Table 4.14. Sub-stages 3.3 and 4.4 are associated with the check process of the
stopping criterion of the SIS and GIS. These sub-stages of the TMS-EMSA are
virtually the same as the corresponding sub-stages of the continuous/discrete
TMS-MSA, which are previously described in Sects. 4.2.3.3 and 4.2.4.4 of this
chapter, respectively.

Only in sub-stage 4.4 must the MNI-PGIS parameter be replaced with the
MNI-GIS parameter.

Sub-stage 4.3 is related to the update of the feasible range of pitches—continuous
decision-making variables for the next improvisation—only for random selection.
This sub-stage of the TMS-EMSA is similar to the corresponding sub-stage of the
continuous/discrete TMS-MSA, previously described in Sect. 4.2.4.3 of this chapter.
Only in sub-stage 4.3 must the MNI-PGIS parameter be replaced with the MNI-GIS
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Table 4.14 Pseudocode related to the sorting of the solution vectors stored in the PMs or MM,,, in
the proposed TMS-EMSA

Algorithm 12: Pseudocode for sorting the solution vectors stored in the PMs or MM, in the
proposed TMS-EMSA

Input: Unsorted MM,,
Output:  Sorted MM,,

start main body

1: begin

2: for music player p [p € ¥*~] do

3: set PM,,, = MM,,(1 : PMS,,,[(p — 1) - NDV + 1)] : [p - (NDV + 1)])
4: F = sort(PM,y,, (1 : PMS,, (NDV + 1)), ascend )

5 for melody vector s [s ey MS/’] do

6: for melody vector s* [s* € P MS"} do

7: if F7 (5) == PM,, ,(s", (NCDV + 1)) then

8: PM (s, 12 (NDV + 1)) = PM,y p(s*, 1 : (NDV + 1))

9: end if

10: end for

11: end for

12: MM (1 : PMS,, 14 [(p— 1) - (NDV + 1)] : [p- (NDV + 1)]) = PM}>"
13: end for

14: MM, = MM

15: terminate

end main body

parameter. Stage 5 is related to the selection of the final optimal solution, or the best
melody. This stage of the TMS-EMSA is similar to the corresponding stage of the
continuous/discrete TMS-MSA, previously described in Sect. 4.2.5 of this chapter.

As previously mentioned in sub-stages 3.1 and 4.1 of the TMS-EMSA,

. . . . new
player p in the musical group improvises a new melody vector— x,°" =

(x;f,;fl, e ,x,':f[‘,V’NDV)—by using the proposed EAIP.

Employing the proposed EAIP by player p is performed on the basis of three
rules: (1) player memory consideration; (2) pitch adjustment; and, (3) random
selection.

Rule 1: As previously mentioned, in the player memory consideration rule of the
continuous/discrete AIP, the values of a new melody vector played by player p are
randomly selected from melody vectors stored in the PM,,,, with the probability of
the PMCR. In this rule of the continuous/discrete AIP, two principles are alternately
employed. Applying of the first and second principles of the player memory con-
sideration rule in the continuous/discrete AIP in order to determine the value of the
continuous or discrete decision-making variable v from a new melody vector played
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by player p, x,’,‘f}f,v, is carried out using Eqgs. (4.7) and (4.8) and Eqs. (4.9) and (4.10)
from Sect. 4.2.6 of this chapter, respectively.

In the player memory consideration rule of the proposed EAIP, however, the
values of a new melody vector played by player p are randomly selected from
melody vectors stored in the PM,,, with the probability of the PMCR,,. In this
rule, two principles are alternately used. In the presence of the continuous decision-
making variables, each principle consists of a linear combination of a continuous
decision-making variable discrete from the PM,, ,, and a ratio of the BW,, ,. Con-
versely, each principle consists of a discrete decision-making variable chosen from
the PM,,, in the presence of the discrete decision-making variables. As a conse-
quence, to specify the value of the continuous or discrete decision-making variable
v from a new melody vector played by player p,x,," . the first principle of the player
memory consideration rule in the proposed EAIP is rewritten and accomplished in
accordance with Egs. (4.25) and (4.26), because of the changes applied to the
parameters of the proposed TMS-EMSA in sub-stage 2.1:

X0 =X p £ U(0,1) - BW,y,
V{m € PMNISIS)+(MNI-GIS) ), = @PN |, o @NCDV ry ~ U{1,2, o ,PMSP}}
(4.25)

xnew — .
p,v m,p,v>

V{m € PMNI-SIS) (MNI-GIS) ) o PN |, o NDDV. ry ~ U{l, 2. ,PMSP}}
(4.26)

Detailed descriptions related to Eqgs. (4.25) and (4.26) are virtually the same as
the detailed explanations pertaining to Eqgs. (4.7) and (4.8), previously reported in
Sect. 4.2.6 of this chapter. By the same token, to determine the value of the
continuous or discrete decision-making variable v from a new melody vector
played by player p, x,‘:f]‘;“,v, the second principle of the player memory consideration
rule in the proposed EAIP is rewritten and performed according to Eqs. (4.27) and
(4.28):

R — +£U(0,1)-BW,; V{m c IP(MNI-SIS)HMNI-GIS)’p c¥N e IPNCDV},

m,p,v — “m,p,k
v{r, ~U{1,2,...,PMS, } ,k~U{1,2,....NCDV}}
(4.27)

new _ JTp . (MNI-SIS)+(MNI-GIS) PN NDDV
Xmpv = Xm,p,1> V{m eV pe¥ T vel )

(4.28)
V{r,, ~ U{1,2, . ,PMS,,},IN U{1,2,... ,NDDV}}
Detailed descriptions associated with Egs. (4.27) and (4.28) are virtually the same
as those corresponding to Egs. (4.9) and (4.10), represented in Sect. 4.2.6 of this
chapter.
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In Eqs. (4.25)—(4.28), index r related to player p in the musical group—r,—is a
random integer with uniform distribution through the set of {1,2, ... ,PMS,}—
r, ~ U{L,2, ... ,PMS,}. Stated another way, index r is randomly characterized
through the set of the permissible values given by using the setof {1,2, ..., PMS,}.
Determination of this index is described according to Eq. (4.29):

r, =int(U(0,1) - PMS,) + 1; V{p € ¥} (4.29)

In addition, detailed descriptions of the indices k and / were already presented in
Sect. 4.2.6 of this chapter. Determination of these indices was previously indicated
according to Egs. (4.12) and (4.13), given in Sect. 4.2.6 of this chapter, respectively.
In the proposed EAIP, applying of the player memory consideration rule is also done
for other players in the same way.

Rule 2: One of the fundamental differences between the continuous/discrete
AIP and the proposed EAIP appears in the pitch adjustment rule. In the pitch
adjustment rule of the continuous/discrete AIP, the values of a new melody
vector played by player p, haphazardly chosen from the available melody vectors
in the PM,, , with the probability of the PMCR, are updated with the probability
of the PAR,,. The pitch adjustment rule is organized based on a single principle
in the continuous/discrete AIP. Implementing of the pitch adjustment rule to
specify the value of the continuous or discrete decision-making variable v from a
new melody vector played by player p, x,° . is carried out using Eqgs. (4.14) and
(4.15), given in Sect. 4.2.6 of this chapter, respectively. These equations indicate
that, by the activation of the pitch adjustment rule in the continuous/discrete AIP,
the value of the continuous or discrete decision-making variable v from a new
melody vector played by player p, x,°,, randomly selected from the melody
vectors stored in the PM,,, with the probability of the PMCR, is updated with
the probability of the PAR,,. The update process for this continuous or discrete
decision-making variable is accomplished by substituting it with the value of the
continuous or discrete decision-making variable v from the best available melody

vector in the PMm,p—xbeSt Simply put, in the pitch adjustment rule of the

m,p,v*
continuous/discrete AIP, player p tries to emulate the best melody stored in its
own memory.

In the pitch adjustment rule of the proposed EAIP, however, the values of a new
melody vector played by player p, haphazardly chosen from the available melody
vectors in the PM,,, with the probability of the PMCR,, are updated with the
probability of the PAR,,,. The pitch adjustment rule is established according to
two principles in the EAIP. The first and second principles of the pitch adjustment
rule in the EAIP are activated in the SIS and GIS, respectively. If the first principle is
activated, the value of the continuous or discrete decision-making variable v from a
new melody vector played by player p, x,° . randomly selected from the melody
vectors stored in the PM,, , with the probability of the PMCR,, is updated with the
probability of the PAR,,,. The update process for this continuous or discrete

decision-making variable is performed by replacing it with the value of the



4.3 Enhanced Version of the Proposed Continuous/Discrete TMS-MSA 129

continuous or discrete decision-making variable v from the best available melody
vector in the PMm,p—x}’,fj;,v. As a result, applying of the first principle of the pitch
adjustment rule in the EAIP to determine the value of the continuous or discrete

decision-making variable v from a new melody vector played by player p, x,°7 ., is
done by using Egs. (4.30) and (4.31), respectively:

m,p,v m,p,v’

new  _ best | V{m c IP(MNI-SIS)+(MNI-GIS)7P cWN e \PNCDV} (4.30)

xrr:f[\zv _ x?ne,s;,v; V{m c \P(MNI-SIS)Jr(MNI—GIS)’p cWN ¢ \PNDDV} (4.31)

Detailed descriptions related to Eqgs. (4.30) and (4.31) are virtually the same as
the detailed explanations relevant to Eqs. (4.14) and (4.15), previously reported in
Sect. 4.2.6 of this chapter. Equations (4.30) and (4.31) state that in the first
principle of the pitch adjustment rule in the EAIP, player p tries to emulate the
best melody stored in its own memory. If the first principle of the pitch adjustment
rule in the EAIP is deactivated, or in other words the second principle is activated,
the continuous or discrete decision-making variable v from a new melody vector
played by player p, x;fl‘;iv, haphazardly chosen from the melody vectors stored in
the PM,,,, with the probability of the PMCR,, is updated with the probability of
the PAR,, ). The update process for this continuous or discrete decision-making
variable is carried out by substituting it with the value of the continuous or discrete
decision-making variable v from the best available melody vector in the MM,,—
x}jzsgest’v. As a consequence, implementing of the second principle of the pitch
adjustment rule in the EAIP to characterize the value of the continuous or discrete
decision-making variable v from a new melody vector played by player p, x,,°) . is
accomplished by using Eqgs. (4.32) and (4.33), respectively:

XY bt V{m € POMNISIS) H(MNI-GIS) ) o PN |, LPNCDV} (4.32)
XY gpen oy {m € PMNISIS) £ (MNIGIS) ) o PN |, ¢ \PNDDV} (4.33)

Equations (4.32) and (4.33) state that in the second principle of the pitch
adjustment rule in the EAIP, player p tries to emulate the best melody stored in the
memory of the best existing player in the musical group. In the proposed EAIP,
applying the pitch adjustment rule is also performed for other players in the
same way.

Rule 3: In the random selection rule of the continuous/discrete AIP, the values
of a new melody vector played by player p are randomly selected from the entire
nonempty feasible decision-making space with the probability of the 1-PMCR. In
this rule, two principles are employed. The first and second principles are activated
in the SIS and PGIS, respectively. Applying of the first and second principles of
the random selection rule in the continuous/discrete AIP to determine the value of
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the continuous decision-making variable v from a new melody vector played by
player p, x,°) . is accomplished by using Eqs. (4.16) and (4.17), given in
Sect. 4.2.6 of this chapter, respectively. Also, implementing of the first and second
principles of the random selection rule in the continuous/discrete AIP to determine
the value of the discrete decision-making variable v from a new melody vector
played by player p, x,,"" . is performed by using Eq. (4.18), given in Sect. 4.2.6 of
this chapter. In the random selection rule of the proposed EAIP, however, the
values of a new melody vector played by player p in the musical group are
haphazardly chosen from the entire nonempty feasible decision-making space
with the probability of the 1 — PMCR,. In this rule, two principles are used.
The first and second principles are activated in the SIS and GIS, respectively.
The application of the first and second principles of the random selection rule
in the proposed EAIP to specify the value of the continuous decision-making
variable v from a new melody vector played by player p, x,° . is rewritten
and accomplished in accordance with Egs. (4.34) and (4.35), respectively,
because of the changes applied on the parameters of the proposed TMS-EMSA

in sub-stage 2.1:

X = 2 U0, 1)
. (xmax _xmin); V{m c IPMNI—SISJ) c “PPN,V c \PNCDV} (434)

X — x,’nrfis +U(0,1)

m,p,v
(o —xn); V{m e WO p e WIN y e WREPVE - (4.35)

Detailed descriptions pertaining to Egs. (4.34) and (4.35) are virtually the same as
those corresponding to Eqgs. (4.16) and (4.17), represented in Sect. 4.2.6 of this
chapter, respectively. By the same token, to determine the value of the discrete
decision-making variable v from a new melody vector played by player p, x,", the
first and second principles of the random selection rule in the proposed EAIP are
rewritten and performed according to Eq. (4.36):

Xy = X% (¥);

V{m c qJ(MNI-SIS)vt(MNI-GIS)’p € YPN ¢ PPV

y~U{x(1),...,x.wm),...,x(W,)}} (4.36)

Detailed descriptions pertaining to Eq. (4.36) are virtually the same as those
corresponding to Eq. (4.18), represented in Sect. 4.2.6 of this chapter. In the
proposed EAIP, implementing of the random selection rule is also done for other
players in the same way.

In the proposed continuous/discrete TMS-MSA, each player in the musical group
employs the updated values of the BW,, and PAR,, parameters in the improvisation
process of its melody vector. The update process of the BW,, and PAR,, parameters
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in each improvisation/iteration of the SIS and PGIS of the continuous/discrete
TMS-MSA is defined according to Egs. (4.19) and (4.20), given in Sect. 4.2.6 of
this chapter, respectively. In the TMS-EMSA, however, in view of the changes
applied in the parameters under sub-stage 2.1, the update process of the BW,, , and
PAR,,,, parameters in each improvisation/iteration of the SIS and GIS must be
rewritten using Eqs. (4.37) and (4.38), as follows:

BW,,, = BW™
In (BWp /BWy)
(MNI-SIS) + (MNI-GIS)

- exp ml: v {m c T(MNI—SISH(MNI—GIS)}

(4.37)

PAR,., — pARmn 1 PARy™ — PAR)™
mee (MNI-SIS) + (MNI-GIS)

o V{m c \P(MNI—SIS)+(MNI—GIS)} (4.38)

Equations (4.37) and (4.38) tell us that in the TMS-EMSA each player in the
musical group employs the updated values of its BW,,, , and PAR,, , parameters in the
improvisation process of its melody vector. Stated another way, in the continuous/
discrete TMS-MSA, all existing players in the music group employ the same
updated BW,, and PAR,, parameters in the improvisation process of their melody
vectors, while in the TMS-EMSA each player in the musical group employs its own
unique updated BW,,,, and PAR,,, parameters in the improvisation process of its
melody vector. Table 4.15 presents the pseudocode associated with the improvisa-
tion of a new melody vector by each player in the musical group of the proposed
TMS-EMSA. The designed pseudocode in different stages and sub-stages of the
TMS-EMSA is located in a regular sequence and forms the performance-driven
architecture of this algorithm.

Table 4.16 illustrates the pseudocode relevant to the performance-driven archi-
tecture of the proposed TMS-EMSA. As a general result, the changes applied in
different stages and sub-stages of the TMS-EMSA give rise to more realistically and
appreciably improved performance, flexibility, and robustness, in comparison to the
continuous/discrete TMS-MSA. That is to say that the changes applied in
the TMS-EMSA and, consequently, its new architecture can bring about well-
suited characteristics for dealing with the complicated, real-world, large-scale,
non-convex, non-smooth optimization problems: (1) increasing the diversity of
melody vectors stored in the memory of each existing player in the musical
group; (2) increasing the probability of achieving a more appropriate sequence of
pitches in the melody vectors played by each existing player in the musical
group; (3) increasing the convergence rate of algorithms to attain the final optimal
solution; etc.
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Table 4.15 Pseudocode associated with the improvisation of a new melody vector by each player
in the musical group of the proposed TMS-EMSA

Algorithm 13: Pseudocode for improvisation of a new melody vector by each player in the
musical group of the proposed TMS-EMSA
Input: BW ™, BWI‘,“i“, MNI-SIS, MNI-GIS, NCDV, NDDV, NDV, PAR™, PAR;"“‘,

PMCR,,, PMS,,, PN, x™", x™, {x,(1), ...,x, (W), ..., x(W))}
Output:  x,°)

start main body

1: | begin

2 BW,,, = BWM™ -exp [(m (BWI;mx /Bmei"> /((MNI-SIS) + (MNI—GIS))) : m]
35| PAR,,, = PAR™™ — [((PAR,;““ - PAR,’,“"‘) /((MNILSIS) + (MNI-GIS))) m]
4: | for music player p [p € ¥*"] do

5: construct the new melody vector for music player p, x,,°, with dimension
{1} - {NDV + 1} and zero initial value
6: for decision-making variable v [v € PNDV] do
7: if U(0, 1) < PMCR,, then
Rule 1: player memory consideration with probability PMCR,,
8: if improvisation/iteration m [m € PMNISIS) + (MNI’GIS)] is odd then
Principle 1 of Rule 1: first combination
9: X =X pw £ U0, 1) - BW,, 3 Vr, ~U{1,2, ..., PMS,}; for CDVs
10: x;‘:‘;V = x,r,’,’,,,,v; Vr,~U{L,2, ... ,PMS,}; for DDVs
11: else
Principle 2 of Rule 1: second combination
12: Xopoy = x::’p‘k +U(0,1) - BW,, 5 Vr,~U{1,2, ... ,PMS,}, Vk~U

{1,2, ... ,NCDV}; for CDVs

13: e = x5V~ U{1,2, ... ,PMS,}, VI~U{1,2, ... ,NDDV}; for
DDVs

14: end if

15: if U(0, 1) < PAR,,,, then

Rule 2: pitch adjustment with probability PMCR,, - PAR,, ,
16: switch 1

17: case improvisation/iteration m [m € YMNLESIS) + (MNI'GIS)] < (MNI-SIS) then
: Principle 1 of Rule 2: first choice
18: Xy = xl,’,fjﬁ,v; for CDVs and DDVs
T case improvisation/iteration m [m € PMNIESIS) + (MNI-GIS)) (MNI-SIS) and
improvisation/iteration m [m € YMNESIS) + MNECIS)) - (MNI-SIS) + (MNI-
GIS) then
: Principle 2 of Rule 2: second choice
20: ey, = xﬁ’,is,;est, ,: for CDVs and DDVs
26 end switch
22 end if
23 else if
: Rule 3: random selection with probability 1 — PMCR,,
24: switch 1
? case improvisation/iteration m [m € PMNLESIS) + (MNI'GIS)] < (MNI-SIS) then

(continued)
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Table 4.15 (continued)

] Principle 1 of Rule 2: first choice

26: Xoppry = x4+ U(0, 1) - (x1* — xMin); for CDVs

27| A =, (0): Yy~ UL, ..o 0w, ... .x(W,)): for DDVs

28 | case improvisation/iteration m [m € WMN'SIS) + MNIGIS) . (\INL.SIS) and

improvisation/iteration m [m € PMNISIS) + (MNI’GIS)] < (MNI-SIS) + (MNI-GIS)

then

: Principle 2 of Rule 2: second choice

29: Xoppry = x,',"hi;‘ +U(0,1) - (x;;‘f‘v" — x,;'ti:‘); for CDVs

30: | X =60 Yy~ Ul ..o, ... x(W,)}: for DDVs

Kt end switch

32: | end if

33 end for

34: calculate the value of objective function, fitness function, derived from melody vector
xies

as £ (xpen)

35: allocate f (x,‘}f}f) to element (1, NDV + 1) of the new melody vector x,,°

'36: | end for

'37: | terminate

end main body

Table 4.16 Pseudocode relevant to the performance-driven architecture of the proposed
TMS-EMSA

Algorithm 14: Pseudocode for performance-driven architecture of the proposed TMS-EMSA
Input: BW ", BWl?““, MNI-SIS, MNI-GIS, NCDV, NDDV, NDV, PAR ™, PARI;““‘,
PMCR,, PMS,, PN, x™™ x™_{x (1), ..., x,W), ..., x(W,)}

Output: x>
start main body

1: begin

2: Stage 1—Definition stage: Definition of the optimization problem and its parameters

3: Stage 2—Initialization stage

4: Sub-stage 2.1: Initialization of the parameters of the TMS-EMSA

5: Sub-stage 2.2: Initialization of the of the MM

6: Algorithm 9: Pseudocode for initialization of the entire set of PMs or
MM in the proposed TMS-EMSA

7: Algorithm 10: Pseudocode for sorting of the solution vectors stored
in the PMs or MM in the proposed TMS-EMSA

8: Stage 3—Single computational stage or SIS

9: set improvisation/iteration m = 1

10: set MM,, = MM

11: while m < (MNI-SIS) do

12: Sub-stage 3.1: Improvisation of a new melody vector by each player

(continued)
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Table 4.16 (continued)

13: Algorithm 13: Pseudocode for improvisation of a new melody
vector by each player in the musical group of the proposed
TMS-EMSA

14: Sub-stage 3.2: Update each PM

15: Algorithm 11: Pseudocode for the update of the memory of all

existing players in the music group or the update of the MM,,
in the proposed TMS-EMSA

16: Algorithm 12: Pseudocode for sorting of the solution vectors
stored in the PMs or MM,, in the proposed TMS-EMSA

17: set improvisation/iteration m = m + 1

18: end while

19: Stage 4—Group computational stage or GIS

20: while m > (MNI-SIS) and m < (MNI-SIS) + (MNI-GIS) do

21: Sub-stage 4.1: Improvisation of a new melody vector by each player taking

into account the feasible ranges of the updated pitches

22: Algorithm 13: Pseudocode for improvisation of a new melody
vector by each player in the musical group of the proposed
TMS-EMSA

23: Sub-stage 4.2: Update of each PM

24: Algorithm 11: Pseudocode for the update of the memory of all

existing players in the music group or the update of the MM,,, in
the proposed TMS-EMSA

25: Algorithm 12: Pseudocode for sorting the solution vectors
stored in the PMs or MM, in the proposed TMS-EMSA
26: Sub-stage 4.3: Update of the feasible ranges of pitches—continuous
decision-making variables—for the next improvisation—only for random
selection
27: Algorithm 5: Pseudocode for the update of the feasible ranges

of the continuous decision-making variables in the proposed
TMS-EMSA; while the MNI-PGIS parameter is replaced with

the MNI-GIS
28: set improvisation/iteration m = m + 1
29: end while
30: Stage 5—Selection stage: Selection of the final optimal solution—the best melody
31: Algorithm 6: Pseudocode for the selection of the final optimal solution in the
proposed TMS-EMSA
32: terminate

end main body

4.4 Multi-stage Computational Multi-dimensional
Multiple-Homogeneous Enhanced Melody Search
Algorithm: Symphony Orchestra Search Algorithm

Technically speaking, the original TMS-MSA, the proposed continuous/discrete
TMS-MSA, and the TMS-EMSA all have a two-stage computational,
multi-dimensional and single-homogeneous structure, as mentioned in the preceding
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sections. This structure causes these optimization techniques to maintain their desir-
able performance to an acceptable degree in solving complicated, real-world, large-
scale, non-convex, non-smooth optimization problems having a nonlinear, mixed-
integer nature with big data.

As previously mentioned, though, modern engineering challenges with multilevel
dimensions in different branches of the engineering sciences, particularly electrical
engineering, have been extensively developed. With that in mind, these modern
challenges cannot be addressed in the form of conventional optimization problems—
single-level optimization problems. Modern engineering challenges with multilevel
dimensions, due to their specific characteristics, must be raised in the form of new,
unconventional optimization problems—multilevel optimization problems.
Multilevel optimization problems, unlike their single-level counterparts, are much
more complex. Basically, the different levels of multilevel optimization problems
may be involved with the multiple objective functions and constraints, and may be
solved from the different perspectives of the specialists and researches, and also may
be aligned together and follow a single goal.

The structure of multilevel optimization problems is in such a way that the
information flow among the different levels is frequently repeated until a conver-
gence is achieved in the results. More precisely, in multilevel optimization problems,
the output information arising from the implementation of the optimization process in
one or more levels is considered to be input information for the implementation of the
optimization process in one or more other levels, and vice versa. As a result, unlike
the single-level optimization problems, the amount of information involved in the
optimization process of multilevel optimization problems is dramatically increased.

The point to be made here is that an instance of the two-level optimization
problems will be thoroughly presented in Chap. 5 and entitled a computational-
logical framework for a bilateral bidding mechanism within a competitive electricity
market. Two examples of three-level optimization problems will also be extensively
addressed in Sects. 6.3 and 6.4 of Chap. 6 and entitled a strategic tri-level
computational-logical framework for the pseudo-dynamic generation expansion
planning and a strategic tri-level computational-logical framework for the pseudo-
dynamic transmission expansion planning, respectively. In addition, an instance of
four-level optimization problems will be exhaustively described in Sect. 6.5 of
Chap. 6 and entitled a strategic quad-level computational-logical framework for
the pseudo-dynamic coordinated generation and transmission expansion planning.

Remarkable increases in the information involved in the optimization process in
the different levels of the multilevel optimization problem and the interdependency of
these different levels can give rise to the performance of the optimization algorithms;
even the original TMS-MSA, the proposed continuous/discrete TMS-MSA, and the
TMS-EMSA are influenced in the optimization process; and consequently, these
algorithms cannot maintain their favorable performance to an acceptable degree.

In this section, then, the authors develop an innovative architectural version of
the proposed TMS-EMSA, which will be referred to as either MMM-EMSA,
MMS-EMSA, or SOSA, to more efficiently and effectively overcome the disad-
vantages of the optimization algorithms in the optimization process of the
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multilevel optimization problems. The newly developed SOSA was inspired by the
phenomena and concepts of music, available principles in a symphony orchestra
structure, and fundamental concepts of the TMS-EMSA. Nonetheless, the pro-
posed SOSA differs from the perspective of architecture with other meta-heuristic
optimization algorithms, because of its multi-stage computational multi-dimen-
sional and multi-homogeneous structure.

The word “symphony,” initially derived from the ancient Greek word
“Lopgovia,” referred to the concord of the sound. This word originally evolved as
two parts: (1) syn- (cov), meaning with/together, and, (2) phone (pwv1}), meaning
sound/sounding. In ancient Greece, the symphony was employed in order to represent
the general concept of concord, not only between consecutive sounds but also in the
unison of concurrent sounds. Moreover, the word orchestra, initially derived from the
ancient Greek word 6pynotpa, referred to an area in the front of an ancient Greek
stage reserved for the Greek vocalists. In the music literature, the orchestra refers to a
great musical ensemble in which there are different musical instruments from various
families and tries to perform specific musical pieces. The musical instruments
employed in an orchestra can be generally classified into four main families with
regard to the technique of sound production by the instruments: (1) string instru-
ments; (2) woodwind instruments; (3) brass instruments; and, (4) percussion instru-
ments. The string instruments are the largest family of the musical instruments in the
orchestra and include two groups. The first group of the string instruments consists of
four sizes. From smallest to largest they are (1) violin; (2) viola; (3) cello; and,
(4) double-bass—contrabass. The second group, which has structural differences
with the first group, includes only the harp. The woodwind instruments are another
family of musical instruments in the orchestra and include four groups. The first
group of the woodwind instruments includes (1) flute and (2) piccolo. The oboe and
English horn make up the second group of woodwind instruments. The third group of
woodwind instruments contains (1) clarinet; (2) e-flat clarinet; and, (3) bass clarinet.
Eventually, the bassoon and contrabassoon were organized into a fourth group of
woodwind instruments. Another family of musical instruments in the orchestra is the
brass instruments. These musical instruments form four groups in such a way that
each group has only one instrument. The musical instruments of groups one to four
are respectively, (1) trumpet; (2) French horn; (3) trombone; and, (4) tuba. The
percussion instruments represent yet another family of instruments and contain two
groups. The first group of percussion instruments consists only of a piano. The second
group, however, includes other musical instruments: (1) timpani; (2) xylophone;
(3) cymbals; (4) triangle; (5) snare drum; (6) bass drum; (7) tambourine; (8) maracas;
(9) gong; (10) chimes; (11) castanets; and, (12) celesta.

Technically speaking, each orchestra is named depending on the type and number
of musical instruments in it. A full-size orchestra—the largest type—which includes
all of the musical instrument families and almost all of the Western classical
instruments, is recognized as the symphony orchestra. The number of players
employed in a symphony orchestra to play a specific musical piece, depending on
the size of the venue and the characteristics of the musical piece to be played, may
vary from 70 to more than 100 players. The arrangement of different musical
instruments in a symphony orchestra is illustrated in Fig. 4.1.
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The number of players in an orchestra may be about 50 players or fewer. In this
circumstance, this small-size orchestra is known as a chamber orchestra. It is,
therefore, obvious that the chamber orchestra is smaller than the symphony orchestra
in terms of the number of players and musical instruments.

In some cases, other names are utilized for the orchestras, which do not refer to
the type of the musical instruments or the role of these instruments in these
orchestras (e.g., philharmonic orchestra). The structure of a philharmonic orchestra
is similar to a symphony orchestra in terms of the musical instruments. This structure
is used to identify different orchestras in a region or city (e.g., the London symphony
orchestra or the London philharmonic orchestra). More detailed descriptions of the
definitions and concepts related to the symphony orchestra are beyond the scope of
this chapter, but interested readers may look to the work by Rimsky-Korsakov [3] for
a thorough discussion regarding these definitions and concepts.

As previously described, the original TMS-MSA, the proposed continuous/dis-
crete TMS-MSA, and the TMS-EMSA imitate not only the processes of music
performance, but also the interactive relationships among members of a musical
group, while each player in this musical group is looking for the best set of the
pitches within a melody line. The architecture of these optimization algorithms has
been developed in such a way that all players in this musical group must have the
same musical instruments. Stated another way, the interactive relationships among
members of a homogenous musical group—a musical group with similar instru-
ments (e.g., a group of violinists)—are widely employed by these optimization
algorithms. In a homogenous musical group, there are different players having the
same musical instrument; however, at the same time, their different tastes, ideas,
styles, and experiences can give rise to the achievement of the most desirable
sequence of fastest pitches. On the other hand, a symphony orchestra refers to a
great musical ensemble that includes multiple groups of players with different
musical instruments from diverse families and endeavors to carry out specific
musical pieces, as formerly depicted in Fig. 4.1. With that in mind, a symphony
orchestra alludes to an inhomogeneous musical ensemble organized by multiple
homogeneous groups of players with different musical instruments (e.g., a group of
violinists, a group of harp players, a group of clarinet players). More precisely, it can
be stated that a symphony orchestra—an inhomogeneous musical ensemble—con-
sists of several homogeneous musical groups. Each homogeneous musical group
includes a number of players with similar musical instruments. The proposed SOSA
mimics the processes of the music performance and interactive relationships among
existing players in the symphony orchestra, while each player is looking for the best
set of the pitches within a melody line. This is due to the fact that the architecture of
this optimization algorithm is established in accordance with the definitions and
concepts related to the symphony orchestra structure.

In addition, the interactive relationships among existing players in the symphony
orchestra consist of two types: (1) the interactive relationships among existing
players in each existing homogeneous musical group in the symphony orchestra
and (2) the interactive relationships among existing players in different homoge-
neous musical groups in the symphony orchestra or the inhomogeneous musical
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Table 4.17 Interdependencies of phenomena and concepts of the music and the optimization
problem modeled by the proposed SOSA

Concept of the optimization
Comparison | problem modeled by the

No. | factor SOSA Music concept
1 Structural Decision-making variable Pitch in a specific melody played by a par-
pattern ticular existing player in a special homoge-
neous musical group of the symphony
orchestra
2 Component | Value of the decision- Value of each pitch in a specific melody
making variable played by a particular existing player in a

special homogeneous musical group of the
symphony orchestra

3 Decision- Value range of the decision- | Range of each pitch in a specific melody
making making variable played by a particular existing player in a
space special homogeneous musical group of the

symphony orchestra

4 General Solution vector Musical melody played by a particular
structural existing player in a special homogeneous
pattern musical group of the symphony orchestra

5 Target Objective function Aesthetic standard of the audience
Process unit | Iteration Time/practice invested by all existing

players in the symphony orchestra

7 Memory Solution vector matrix Experience of all existing players in the
symphony orchestra

8 Best state Global optimum point Best melody selected from among all melo-
dies played by all existing players in the
symphony orchestra

9 Search Local and global optimum | Improvisation of all existing players in the
process searches symphony orchestra

ensemble. In the symphony orchestra, there are different players having diverse
musical instruments from various families. These different players with diverse
tastes, ideas, styles, and experiences can lead to the attainment of the best sequence
of fastest pitches. The interdependencies of phenomena and concepts of the music
and the optimization problem modeled by the proposed SOSA are demonstrated in
Table 4.17. As set out in Table 4.17, each pitch in a specific melody played by a
particular existing player in a special homogeneous musical group of the symphony
orchestra, the value of each pitch in a specific melody played by a particular existing
player in a special homogeneous musical group of the symphony orchestra, and the
range of each pitch in a specific melody played by a particular existing player in a
special homogeneous musical group of the symphony orchestra are virtually the
same as each decision-making variable, the value of each decision-making variable,
and the range of each decision-making variable, respectively.

By the same token, the musical melody played by a particular existing player in a
special homogeneous musical group of the symphony orchestra, aesthetic standard
of the audience, and time and practice invested by all existing players in the
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symphony orchestra refer to the solution vector, objective function, and iteration,
respectively. Moreover, the experience of all existing players in the symphony
orchestra, the best melody selected from among all melodies played by all existing
players in the symphony orchestra, and the improvisation of all existing players in
the symphony orchestra are equivalent to the solution vectors matrix, global opti-
mum point, and local and global optimum searches, respectively. By improving the
musical melody played by existing players in the symphony orchestra in each
practice in comparison to before practice from the perspective of the aesthetic
standard of audience, the solution vector associated with the optimization problem
is also enhanced in each iteration in comparison to the before iteration from the
standpoint of the proximity to the optimal global point.

Although the main concepts employed in the TMS-EMSA along with the phe-
nomena and concepts of the symphony orchestra are the original inspirational
sources for the SOSA, the architecture of the proposed SOSA has fundamental
differences with the architecture of the TMS-EMSA. Unlike the TMS-EMSA,
which consists of the SIS and GIS, the proposed SOSA utilizes three computational
stages in order to achieve an optimal response/output: (1) SIS; (2) group computa-
tional stage for each homogeneous musical group or group improvisation stage for
each homogeneous musical group (GISHMG); and, (3) group computational stage
for inhomogeneous musical ensemble or group improvisation stage for inhomoge-
neous musical ensemble (GISIME). In the SIS, each player in the symphony
orchestra improvises its melody individually, without the influence of other players
in the homogeneous musical group to which it belongs, and without the influence of
other players in other homogeneous musical groups to which it does not belong.

In the GISHMG, the proposed SOSA has a homogeneous group performance.
Stated another way, in this computational stage, each player in the symphony
orchestra improvises its melody interactively only under the influence of other
players in the homogeneous musical group to which it belongs. In the GISHMG,
the different melodies in the memory of different players in a homogeneous musical
group of the symphony orchestra not only can direct the players of corresponding
homogeneous musical group to better choices of random pitches, but also can
increase the probability of playing a better melody by the players of corresponding
homogeneous musical groups in the next improvisation/iteration of this stage. In the
GISIME, however, the proposed SOSA has an inhomogeneous ensemble perfor-
mance. Put another way, in this computational stage, each player in the symphony
orchestra improvises its melody interactively, both with the influence of other
players in the homogeneous musical group to which it belongs and under the
influence of other players in other homogeneous musical groups to which it does
not belong. In the GISIME, the different melodies in the memory of different players
in all of the existing homogeneous musical groups in the symphony orchestra can not
only effectively handle the players of all of the homogeneous musical groups to
better choose random pitches, but also efficiently increase the probability of playing
a better melody by the players of all of the homogeneous musical groups in the next
improvisation/iteration of this stage.
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On the other hand, unlike the TMS-EMSA, which utilizes a single MM, the
proposed SOSA employs multiple MMs. A symphony orchestra memory (SOM) is
then organized by incorporating the many MMs. The point to be made here is that
these different MMs interact with each other, similar to the performance of different
homogeneous groups in a symphony orchestra. With that in mind, in the proposed
SOSA, an MM indicates the memory related to a homogeneous musical group in a
symphony orchestra. Similar to the TMS-EMSA, in the proposed SOSA, each MM
consists of numerous PMs. As a consequence, the TMS-EMSA is called a two-stage
computational multi-dimensional and single-homogeneous optimization algorithm,
due to its two improvisation stages, multiple single PMs, and a homogeneous group
memory. This definition can be expressed for the original TMS-MSA and the
proposed continuous/discrete TMS-MSA in the same way. Similarly, in view of
the fact that the proposed SOSA has three improvisation stages, multiple single PMs,
and multiple homogeneous group memories or an inhomogeneous ensemble mem-
ory, it is referred to as the MMM-EMSA or the MMS-EMSA.

In the TMS-EMSA, the feasible ranges of each pitch—each decision-making
variable—are merely updated for the random selection in each improvisation/itera-
tion of the GIS. In the proposed SOSA, however, the feasible ranges of each pitch are
solely updated for the random selection both in each improvisation/iteration of the
GISHMG and in each improvisation/iteration of the GISIME.

The performance-driven architecture of the proposed SOSA is generally broken
down into six stages, as follows:

e Stage 1—Definition stage: Definition of the optimization problem and its
parameters
e Stage 2—Initialization stage

— Sub-stage 2.1: Initialization of the parameters of the SOSA
— Sub-stage 2.2: Initialization of the SOM

e Stage 3—Single computational stage or SIS

— Sub-stage 3.1: Improvisation of a new melody vector by each player in the
symphony orchestra

— Sub-stage 3.2: Update of each available PM in the symphony orchestra

— Sub-stage 3.3: Check of the stopping criterion of the SIS

» Stage 4—Group computational stage for each homogeneous musical group or
GISHMG

— Sub-stage 4.1: Improvisation of a new melody vector by each existing player
in the symphony orchestra taking into account the feasible ranges of the
updated pitches for each homogeneous musical group

— Sub-stage 4.2: Update of each available PM in the symphony orchestra

— Sub-stage 4.3: Update of the feasible ranges of the pitches—continuous
decision-making variables—for each homogeneous musical group in the
next improvisation—only for random selection

— Sub-stage 4.4: Check of the stopping criterion of the GISHMG
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* Stage 5—Group computational stage for the inhomogeneous musical ensemble or
GISIME

— Sub-stage 5.1: Improvisation of a new melody vector by each player in the
symphony orchestra taking into account the feasible ranges of the updated
pitches for the inhomogeneous musical ensemble

— Sub-stage 5.2: Update of each available PM in the symphony orchestra

— Sub-stage 5.3: Update of the feasible ranges of the pitches—continuous
decision-making variables—for the inhomogeneous musical ensemble in the
next improvisation—only for random selection

— Sub-stage 5.4: Check of the stopping criterion of the GISIME

* Stage 6—Selection stage: Selection of the final optimal solution—the best
melody

4.4.1 Stage 1: Definition Stage—Definition
of the Optimization Problem and Its Parameters

In order to solve an optimization problem using the proposed SOSA, stage 1 must
rigorously describe the optimization problem and its parameters. As a mathematical
expression, the standard form of an optimization problem can generally be expressed
in accordance with Egs. (4.39) and (4.40):

Mir;ier)r(lize f(x)
subject to :
G(x) =[g;(X),...,8,(x),...,gg(x)] =0; V{B> O},V{b IS ‘PB}
H(x) = [ (X), ..., he(x),...,hg(x)] < 0; V{E > 0},V{e € ¥*}

(4.39)

X=[X],- s Xy, XNDV]S V{v € ‘I‘NDV},V{‘PNDV:‘PNCDV+NDDV},V{X € X},
V{x;ni“ <zx < x;“a"’v € ‘PNCDV}, {xv e{x(1),....,x,(w),...,x,(W,)}v € ‘PNDDV}
(4.40)

The detailed descriptions relevant to the variables and parameters of Egs. (4.39)
and (4.40) were previously represented in Sect. 1.2.1 of Chap. 1.

In the proposed SOSA, each player in the symphony orchestra explores the
entire space of the nonempty feasible decision-making variable in order to find the
vector of optimal decision-making—solution vector. In the SIS, implementing this
search process is carried out by each player without taking into account the
interactive relationships with other players in the homogeneous musical group to
which it belongs, and without taking into account the interactive relationships with
other existing players in other homogeneous musical groups to which it does not
belong. In the GISHMG and GISIME, however, applying of this search process is
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accomplished by each player, while taking into account the interactive relation-
ships with other players in the homogeneous musical group to which it belongs,
and both with and without taking into account the interactive relationships with
other players in other homogeneous musical groups to which it does not belong,
respectively.

The optimal vector is a vector that gives the lowest possible value for the
objective function presented in Eq. (4.39). Besides, in order to solve the optimization
problem presented in Eqgs. (4.39) and (4.40), each player in the symphony orchestra
exclusively considers the objective function given in Eq. (4.39). If the solution
vector determined by the corresponding player gives rise to a violation in each of
the equality and/or inequality constraints provided in Eq. (4.39), this player can
apply one of the following two processes, depending on the standpoint of the
decision maker in dealing with this solution vector:

 First process: The corresponding player ignores the determined solution vector.

e Second process: The corresponding player considers the determined solution
vector by applying a specific penalty coefficient to the objective function of the
optimization problem.

4.4.2 Stage 2: Initialization Stage

After finalization of stage 1 and a complete mathematical description of the optimi-
zation problem, stage 2 must be carried out. This stage is formed by two sub-stages:
(1) initialization of the parameters of the proposed SOSA and (2) initialization of
the SOM.

4.4.2.1 Sub-stage 2.1: Initialization of the Parameters of the SOSA

The parameter adjustments of the proposed SOSA should be initialized with specific
values in sub-stage 2.1. Table 4.18 presents a detailed description of the parameter
adjustments pertaining to the proposed SOSA. The SOM is a place for storing the
solution vectors of all players in the symphony orchestra in the proposed SOSA. The
number of homogeneous musical groups (NHMG) describes the number of the
available homogeneous musical groups in the symphony orchestra.

To illustrate, each player in the violinists group, harp players group, clarinet
players group, and other existing groups in the symphony orchestra is solely
considered as an instance of a homogeneous musical group in the symphony
orchestra—a group of players with similar instruments.

These homogeneous musical groups also form a symphony orchestra—an inho-
mogeneous musical ensemble. The melody memory of the homogeneous musical
group g in the symphony orchestra (MM,) is a place for storing the solution vectors
of all players in this available homogeneous musical group in the symphony
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Table 4.18 Adjustment parameters of the proposed SOSA

No. | The proposed SOSA parameters Abbreviation | Parameter range

1 Symphony orchestra memory SOM —

2 Number of homogeneous musical groups NHMG NHMG > 1

3 Melody memory of homogeneous musical group g | MM, -

4 Existing number of players in the homogeneous PN, PN, > 1
musical group g

5 Player memory of existing player p in the homoge- | PM, , -
neous musical group g

6 Player memory size of player p in the homogeneous | PMS, , PMS, ,>1
musical group g

7 Player memory considering rate of player p in the PMCR,, |, 0 < PMCR, ,<1
homogeneous musical group g

8 Minimum pitch adjusting rate of player p in the PAR;};“ 0< PAR;‘};“ <2
homogeneous musical group g

9 Maximum pitch adjusting rate of player p in the PAR} 0 < PAR;* <2
homogeneous musical group g

10 | Minimum bandwidth of player p in the homoge- BWé‘j"ipn 0< BW;?;" < +oo
neous musical group g

11 | Maximum bandwidth of player p in the homoge- BW ¥ 0 <BW,T* < +o0
neous musical group g

12 | Number of continuous decision-making variables NCDV NCDV > 1

13 Number of discrete decision-making variables NDDV NDDV > 1

14 | Number of decision-making variables NDV NDV > 2

15 | Maximum number of improvisations/iterations of MNI-SIS MNI-SIS >1
the SIS

16 | Maximum number of improvisations/iterations of MNI- MNI-GISHMG
the GISHMG GISHMG > 1

17 | Maximum number of improvisations/iterations of MNI- MNI-GISIME > 1
the GISIME GISIME

orchestra. The SOM is organized by multiple melody memories related to all
homogeneous musical groups in the symphony orchestra. The number of existing
players in the homogeneous musical group g in the symphony orchestra (PN,)
indicates the number of players available in the homogeneous musical group g in
the symphony orchestra. Player p in the available homogeneous musical group g in
the symphony orchestra has a memory defined by the player memory of player p in
the homogeneous musical group g (PM,_,). The player memory size of player p in
the homogeneous musical group g (PMS, ,) also represents the number of solution
vectors stored in the player memory of player p in the available homogeneous
musical group g in the symphony orchestra. In the improvisation process of a new
melody vector by player p in sub-stages 3.1, 4.1, and 5.1 of the proposed SOSA, the
player memory considering the rate of player p in the available homogeneous
musical group g in the symphony orchestra (PMCR, ) is employed in order to
determine whether the value of a decision-making variable associated with a new
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melody vector played by the corresponding player is derived from its PM or from the
entire space of nonempty feasible decision-making. More precisely, the PMCR, ,
parameter expresses the rate at which the value of a decision-making variable from a
new melody vector played by player p in the available homogeneous musical group
g in the symphony orchestra is randomly selected, based on its PM. In this regard,
1 — PMCR, , parameter addresses the rate at which the value of a decision-making
variable from a new melody vector played by player p in the available homogeneous
musical group g in the symphony orchestra is haphazardly chosen on the basis of the
entire space of the nonempty feasible decision-making. The minimum pitch
adjusting rate of player p in the homogeneous musical group g in the symphony
orchestra (PAR;;," ) and the maximum pitch adjusting rate of player p in the
homogeneous musical group g in the symphony orchestra (PAR;";") are utilized in
order to specify the value of the pitch adjusting rate parameter relevant to player p in
the available homogeneous musical group g in the symphony orchestra under
improvisation/iteration m of the SIS, GISHMG, and GISIME (PAR,,, ). In the
improvisation process of a new melody vector by player p in the available homoge-
neous musical group g in the in the symphony orchestra under sub-stages 3.1, 4.1,
and 5.1 of the proposed SOSA, the PAR,, ., parameter is used to characterize
whether or not the value of a decision-making variable chosen from the memory
of the corresponding player needs a change or update. Simply put, the PAR,,
parameter represents the rate at which the value of a decision-making variable
selected with the probability of the PMCR,, from the memory pertaining to the
corresponding player is changed or updated. With that in mind, the 1 — PAR,, .,
parameter describes the rate at which the value of a decision-making variable chosen
with the probability of the PMCR, , from memory pertaining to the corresponding
player remains unchanged. The minimum bandwidth of player p in the homoge-
neous musical group g in the symphony orchestra (BW;};“) and maximum bandwidth
of player p in the homogeneous musical group g in the symphony orchestra (BW;‘;")

are employed in order to determine the value of the bandwidth parameter
corresponding to player p in the available homogeneous musical group g in the
symphony orchestra under improvisation/iteration m of the SIS, GISHMG, and
GISIME (BW,, ¢ ,,). In the improvisation process of a new melody vector by player
p in the available homogeneous musical group g in the in the symphony orchestra
under sub-stages 3.1, 4.1, and 5.1 of the proposed SOSA, the BW,), , ,, parameter is
utilized in order to change or update the value of a continuous decision-making
variable selected from the memory associated with the corresponding player. It is
simply important to note that the BW,,, . , parameter is considered to be an optional
length and is solely defined for continuous decision-making variables.

The NCDV and NDDV parameters depend on the optimization problem provided
in Egs. (4.39) and (4.40). The sum of the NCDV and NDDV parameters is taken into
account as the NDV parameter. The dimension of the melody vector in the proposed
SOSA depends directly on these parameters. The MNI-SIS and maximum number of
improvisation/iteration of the GISHMG (MNI-GISHMG) and maximum number of
improvisation/iteration of the GISIME (MNI-GISIME) express the number of times
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Fig. 4.2 The architecture of the SOM in the proposed SOSA

the SIS, GISHMG, and GISIME are repeated in the proposed SOSA, respectively.
The sum of the MNI-SIS, MNI-GISHMG, and MNI-GISIME parameters is regarded
as a stopping criterion for the proposed SOSA.

4.4.2.2 Sub-stage 2.2: Initialization of the Symphony Orchestra
Memory

After completion of sub-stage 2.1 and parameter adjustments of the proposed SOSA,
the SOM must be initialized in sub-stage 2.2. As previously indicated, the SOM is
organized into multiple MMs, while each MM is also composed of multiple PMs.
The architecture of the SOM in the proposed SOSA is rigorously demonstrated in
Fig. 4.2. Given the above descriptions, the SOM matrix, with the dimensions of

{Z gepninic PM, m"‘"} -{(NDV + 1) - PN™} consists of multiple MM submatrices

with the dimensions of {PM ;‘a"} -{(NDV +1) - PN,}.

In the proposed SOSA, the number of the MMs forming the SOM is determined by
the number of the NHMG parameter. In addition, each MM, submatrix is organized

into multiple PM,, submatrices with the dimensions {PMS,,} - {NDV + 1}.
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The number of the PM, , forming the MM, is also characterized by the number of the
PN, parameter. The SOM matrix, MM,, and PM, , submatrices are filled with a large
number of solution vectors generated haphazardly according to Eqgs. (4.41)-(4.45), as
follows:

SOM = [MM, --- MM, --- MMyuvc]": V{g € PNIMG} (4.41)
MMg — [ng’l C.. ng‘p - ng’PNg]; V{g c q;NHMGJ) c \PPNg}
(4.42)
1 [ e e | ()
PM, , = Xg,p = xéf,pyl e xg’p’v T xg,p,NDV | f(X;,p) 5
PMSg, PMS,,, PMS,, PMS,, PMS,,,
-Xg’[] - _.xg’P’lg’l tee .xg,p,g ’ e 'xg,p,liﬂp)V | f(xg,p ¢ l)

v{g c \PNHMva c TPN.H’ ve lPNDV,S c lPPMSg,p}

(4.43)
x;,p,tv = xvmm + U(O7 1)
(X xmin); vy fg @ WNMG | ¢ @PN: ) @ WNCDV ¢ ¢ P, )
(4.44)

x;,p,v :xv(y);
V{g € YNHMG 1y c @Ne ), c NPV ¢ c WPMSer 3y o U{x, (1),..., %, (W)), ... ,xv(Wv)}}
(4.45)

Equation (4.41) indicates the SOM. Equation (4.42) also denotes the melody
memory pertaining to the available homogeneous musical group g in the sym-
phony orchestra—MM,. Equation (4.43) describes the memory associated with
player p in the available homogeneous musical group g in the symphony orches-
tra—PM, ,. In Eq. (4.44), U(0, 1) expresses a random number with a uniform
distribution between 0 and 1. Equation (4.44) also indicates that the value of the
continuous decision-making variable v from the melody vector s stored in the
memory relevant to player p in the available homogeneous musical group g in the
symphony orchestra (x, ,,) is randomly determined by the set of candidate

permissible values for the corresponding decision-making variable, restricted by
lower bound xvmi“ and upper bound x;"**. In Eq. (4.45), index y represents a random
integer with uniform distribution through the set {x,(1), ... ,x,(w,), ...,
x, (W) —y ~ U{x,(1), ..., x,(w,), ...,x,(W,)}. Equation (4.45) indicates that

the value of the discrete decision-making variable v from melody vector s stored in
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the memory related to player p in the available homogeneous musical group g in
the symphony orchestra (x, , ) is haphazardly obtained through the set of candi-
date permissive values for this decision-making variable, given by the set
{x, (1), ..., x,(w)), ...,x,(W,)}. Table 4.19 illustrates the pseudocode relevant
to the initialization of the entire set of PMs, or entire set of MMs, or SOM in the
proposed SOSA. After filling all of the PMs, MMs, or SOM with random solution
vectors, the solution vectors stored in each PM must be sorted from the lowest
value to the highest value—in an ascending order—with respect to the value of the
objective function of the optimization problem. Table 4.20 gives the pseudocode
related to sorting the solution vectors stored in the PMs, MMs, or SOM in the
proposed SOSA.

4.4.3 Stage 3: Single Computational Stage or SIS

After finalization of stage 2 and initialization of the parameters of the proposed
SOSA and the SOM, the single computational stage, or SIS, must be carried out.
This stage is formed by three sub-stages: (1) improvisation of a new melody vector
by each player in the symphony orchestra; (2) update of each available PM in the
symphony orchestra; and, (3) check of the stopping criterion of the SIS. The
mathematical equations expressed at this stage must depend on the improvisa-
tion/iteration index—index m—due to the repeatability of the SIS in the
proposed SOSA.

4.4.3.1 Sub-stage 3.1: Improvisation of a New Melody Vector by Each
Player in the Symphony Orchestra

In this sub-stage, each player in the symphony orchestra improvises a new melody
vector individually without the influence of other existing players in the homoge-
neous musical group to which it belongs, and without the influence of other players
in other homogeneous musical groups to which it does not belong. That is to say that,
in sub-stage 3.1, player p in the available homogeneous musical group g in the
symphony orchestra is looking to achieve a fantastic melody only by practicing
individually and without learning from the other players in the homogeneous
musical group to which it belongs and the players in homogeneous musical groups
to which it does not belong.

The point to be made here is that, in the proposed SOSA, a new melody vector or
a new melody line played by player p in the homogeneous musical group g in the

new — new
symphony orchestra—=x,," , = (X015 - - -

by using a novel improvisation procedure (NIP), which is established based on
fundamental concepts of the improvisation of both a harmony vector and a melody
vector in the SS-HSA and TMS-EMSA, respectively.

n
, X,

eW new 1
mg.pv -2 %m g pNDV |18 generated
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Table 4.19 Pseudocode relevant to initialization of the entire set of PMs, or entire set of MMs, or
SOM in the proposed SOSA

Algorithm 15: Pseudocode for initialization of the entire set of PMs, or entire set of MMs, or
SOM in the proposed SOSA
Input: NHMG, PN,, PMS, ,, NCDV, NDDV, NDV, x;“i", XM {x (D), o xwy),

x,(W,)}
Output: SOM

start main body

1: | begin

2:  |set PMSy™ =0

3: | set PMS™ = max(PMS,,); Vp € ¥

4: | set PN™* = max (PN,); Vg € $NMG

5t | construct the matrix SOM with dimension {Z gg\PNHMGPMS;mX} -{(NDV + 1) - PN™*}
and zero initial value

6: | for homogeneous musical group g [g € ¥N™5) do

7 construct the submatrix MM, with dimension {PM ;“ax} -{(NDV +1) - PN, }

and zero initial value

8: for music player p of the homogeneous musical group g [p e P N”] do
9 construct the submatrix PM, , with dimension {PMS, ,} - {NDV + 1} and
] zero initial value
10: for melody vector s [s € " MSW} do
T construct the melody vector s of music player p of the homogeneous
musical group g, X, ,, with dimension {1} - {NDV + 1} and zero
initial value
E for decision-making variable v [v € NPV do
13: X3y =M+ U(0,1) - (x — xm"); for CDVs
14: x;’p’v =x,(); Vy~U{x,(1), ..., x,(W,), ...,x,(W,)}; for DDVs
15: | allocate x; v 1O element (1, v) of the melody vector x; »
16: end for
T calculate the value of the objective function, fitness function, derived

s Q s
from the melody vector x; , as f (xg, p>

18: allocatef(ng,l,) to element (1, NDV + 1) of the melody vector X, ,
19: add melody vector x; , to the row s of the submatrix PM,,

20: end for

21: add submatrix PM,, to the rows 1 to PMS, ;, and columns

1+(p—1)-(NDV + 1)top - (NDV + 1) of the submatrix MM,
22: end for

23: add submatrix MM, to the rows 1 + 3 qet PMS;™ to 3y PMS™™ and
columns 1 to (NDV + 1) - PN, of the matrix SOM
24: | end for

25: | terminate

end main body

Note: Continuous decision-making variables (CDVs), discrete decision-making variable (DDVs)
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Table 4.20 Pseudocode related to the sorting of the solution vectors stored in the PMs, MMs, or
SOM in the proposed SOSA

Algorithm 16: Pseudocode for sorting of the solution vectors stored in the PMs, MMs, or SOM in the
proposed SOSA

Input: Unsorted SOM
Output: Sorted SOM

start main body

begin

set PMSy™ =0

set PMS,™ = max (PMS,,,); ¥p € PV
set PN™* = max (PN,); Vg € PNHMG

1
2
3
4
5 for homogeneous musical group g [g € ¥V"™5] do

6: set MMy = SOM(1 + 37, eyt PMSI™ 57 0 PMST™ 1 : [(NDV + 1) - PN,])
7 for music player p of the homogeneous musical group g [p cpP N*’] do

8 set PM, , = MMy(1 : PMS,, 1 + [(p — 1) - (NDV + D] : [p - (NDV + D)])

9 F = sort(PM, (1 : PMS,,, (NDV + 1)), ascend')

i for melody vector s [s € ¥*%] do
11: for melody vector s* [s* € ¥"%] do

12 if F7 (s) == PM, ,(s",(NDV + 1)) then

13 PM(s, 1 : (NDV + 1)) = PM, ,(s", 1 : (NDV + 1))
14: end if

? end for

E end for

7 MM (1: PMS,, 1+ [(p—1)- (NDV 4+ 1)] : [p- (NDV + 1)]) = PM
18: end for

19 | SOMO™ (14 5, et PMST™ 57y PMST™, 12 [(NDV + 1) - PN, ] ) = MM"
20: | end for

21: | SOM = SOM*™"

22: | terminate

end main body

The NIP will be presented in Sect. 4.4.6 of this chapter. Here, the improvisation
process of a new melody vector is performed by players in available homogeneous
musical group g and by other players in other available homogeneous musical
groups in the symphony orchestra in the same way.

4.4.3.2 Sub-stage 3.2: Update of Each Available PM in the Symphony
Orchestra

After completion of sub-stage 3.1 and improvisation of a new melody vector by each
player in the symphony orchestra, the update process of each available PM in the
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symphony orchestra must be accomplished in sub-stage 3.2. Consider player p in the
homogeneous musical group g in the symphony orchestra. In this sub-stage, a new
melody vector played by player p in the homogeneous musical group g in the

new __ ne
X

W n
mgp — \Mmgpls 0%

symphony orchestra—x g vy

new .
) xm,g,p,NDv) —is assessed

and compared with the worst available melody vector in its PM—the melody vector
stored in the PMS, , row of the PM,, , ,—from the perspective of the objective
function. If the new melody vector played by the corresponding player has a better
value than the worst available melody vector in the PM,,, . ,,, from the viewpoint of the
objective function, this new melody vector substitutes the worst available melody
vector in the PM,,, , ,; the worst melody vector is thus eliminated from the PM,), , ,,.
This process is also done for other players in homogeneous musical group g and for
all existing players in other available homogeneous musical groups in the symphony
orchestra in the same way. Table 4.21 gives the pseudocode related to the update of
the memory of all existing players in the symphony orchestra or the update of the
SOM,,, in the proposed SOSA. It should be pointed out that the update process of the
PM,, ., is not performed if the new melody vector played by player p in the
homogeneous musical group g in the symphony orchestra is not notably better than
the worst available melody vector in its memory, from the standpoint of the objective
function. After completion of this process, solution vectors stored in the memory of
all existing players in the symphony orchestra or the SOM,,, must be re-sorted, based
on the value of objective function—fitness function—in an ascending order.

The pseudocode related to the sorting of the solution vectors stored in the PMs,
MMs, or SOM in the proposed SOSA was formerly presented in Table 4.20. Given
the dependence of each PM, MM, or, more comprehensively, SOM on the impro-
visation/iteration index of the SIS—index m—this pseudocode must be rewritten
according to Table 4.22.

4.4.3.3 Sub-stage 3.3: Check of the Stopping Criterion of the SIS

After completion of sub-stage 3.2 and an update of each available PM in the
symphony orchestra, the check process of the stopping criterion of the SIS must
be done. In this sub-stage, if the stopping criterion of the SIS—the MNI-SIS—is
satisfied, its computational efforts are terminated. Otherwise, sub-stages 3.1 and 3.2
are repeated.

4.4.4 Stage 4: Group Computational Stage for Each
Homogeneous Musical Group or GISHMG

After finalization of stage 3, or implementation of the SIS, the group computational
stage for each homogeneous musical group or GISHMG must be carried out. This
stage is organized into four sub-stages: (1) improvisation of a new melody vector by
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Table 4.21 Pseudocode related to the update of the memory of all existing players in the
symphony orchestra or the update of the SOM,, in the proposed SOSA

Algorithm 17: Pseudocode for the update of the memory of all existing players in the symphony
orchestra or the update of the SOM,, in the proposed SOSA

Input: Not updated SOM,,, X%,
Output: Updated SOM,,
start main body

1: | begin

2. | for homogeneous musical group g [g € PNHMGY g
3 for music player p of the homogeneous musical group g [p € ‘I’PNR} do
4 set Xy 0%t = leg“'p'”

5: setf (xpor) = £ (e’

6 if £ (xpex,) <f (o) then

7 Xmgp € PMu,gp
8 X2 PM g

9: end if
10 end for
‘11: | end for
'12: | terminate

end main body

each player in the symphony orchestra, taking into account the feasible ranges of the
updated pitches for each homogeneous musical group; (2) update of each available
PM in the symphony orchestra; (3) update of the feasible ranges of the pitches—
continuous decision-making variables—for each homogeneous musical group in the
next improvisation—only for random selection; and, (4) check of the stopping
criterion of the GISHMG. The mathematical equations expressed at this stage
must depend on the improvisation/iteration index—index m—due to the repeatabil-
ity of the GISHMG in the proposed SOSA.

4.4.4.1 Sub-stage 4.1: Improvisation of a New Melody Vector by Each
Player in the Symphony Orchestra Taking into Account
the Feasible Ranges of the Updated Pitches for Each
Homogeneous Musical Group

In sub-stage 4.1, the improvisation process of a new melody vector by each player in
the symphony orchestra must be accomplished. That is, each player improvises a
new melody vector interactively under the influence of other players in the homo-
geneous musical group to which it belongs, and individually without the influence of
other players in other homogeneous musical groups to which it does not belong.
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Table 4.22 Pseudocode related to the sorting of the solution vectors stored in the PMs, MMs, or
SOM,,, in the proposed SOSA

Algorithm 18: Pseudocode for sorting of the solution vectors stored in the PMs, MMs, or SOM,,, in the
proposed SOSA

Input: Unsorted SOM,,
Output:  Sorted SOM,,

start main body

1 begin

2 set PMSy™ =0

3 | set PMSI™ = max(PMS,,); Vp € ¥

4 set PN™* = max (PN,); Vg € PNHMG

5: for homogeneous musical group g [g € PNIMG) g4

6 set MM y,o = SOMyy (1 4 Y eyt PMS™ = 3" PMSI™ 1 [(NDV + 1) - PN,])
7 for music player p of the homogeneous musical group g [p c P N*’] do

8 set PM,, o p = MM, o(1:PMS,,1+[(p—1)-(NDV + D] :[p- (NDV + 1)])
9 F = sort(PMo, g, (1 : PMS,, (NDV + 1)), ascend )

m,g.p
10: for melody vector s [s € ¥*] do
11: for melody vector s* [5* IS ‘PPMSN} do
12: if By (s) == PM,,  ,(s",(NDV + 1)) then
13 PM" (5,1 (NDV + 1)) = PM,, ¢ ,(s*, 1 : (NDV + 1))
14: end if
15: end for
16: end for
17: MM (12 PMS,, 1+ [(p— 1) - (NDV + 1)] : [p- (NDV + 1)]) = PM"
18: end for
19| SOMEN(1 4+ e PMSI 5 5 qu PHS™ 1 : [(NDV + 1) - PN,]) = MM
20: | end for

21: | SOM,, = SOM3"

22: | terminate

end main body

Put another way, player p in the available homogeneous musical group g is
looking to attain a fantastic melody only by practicing, learning, and imitating the
best player in the homogeneous musical group to which it belongs. The update
process of feasible ranges of pitches—continuous decision-making variables—for
homogeneous musical group g along with the ability to learn and imitate player
p in homogeneous musical group g from the best player in the homogeneous
musical group to which it belongs is considered as the interactive relationship
among existing players in homogeneous musical group g. In sub-stage 4.1, player
p in the homogeneous musical group g improvises a new melody—

new __ new new new 3
Xonop = (xm,g’p’l,...,xm’g’p’v,...,xm’g’p’NDV> —by using the proposed NIP and
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taking into account the interactive relationships among different players in homo-
geneous musical group g. Here, the improvisation process of a new melody vector
is accomplished by players in homogeneous musical group g and by other players
in other homogeneous musical groups in the symphony orchestra in the same way.

4.4.4.2 Sub-stage 4.2: Update of Each Available PM in the Symphony
Orchestra

After completion of sub-stage 4.1 and improvisation of a new melody vector by
each player in the symphony orchestra, taking into account the feasible ranges of
the updated pitches for each homogeneous musical group, the update process of
each available PM in the symphony orchestra must be accomplished in sub-stage
4.2. The update process for each available PM in the symphony orchestra is
virtually the same as sub-stage 3.2 of the SIS, which is extensively reported in
Sect. 4.4.3.2 of this chapter.

4.4.4.3 Sub-stage 4.3: Update of the Feasible Ranges of the Pitches—
Continuous Decision-Making Variables—for Each
Homogeneous Musical Group in the Next Improvisation—Only
for Random Selection

After finalization of sub-stage 4.2 and the update of each available PM in the
symphony orchestra, the update process of the feasible ranges of pitches—continuous
decision-making variables—for each homogeneous musical group in the next impro-
visation—only for random selection—must be done. In the proposed SOSA, the
feasible ranges of the continuous decision-making variables in the melody vector for
each available homogeneous musical group in the symphony orchestra are changed
and updated during different improvisations/iterations of the GISHMG, but only for
random selection. Figure 4.3 demonstrates the update process of the feasible ranges of
the continuous decision-making variables for homogeneous musical group g in the
symphony orchestra in the proposed SOSA. The update process of the feasible ranges
of the continuous decision-making variables for other homogeneous musical groups
in the symphony orchestra is similar to Fig. 4.3. Table 4.23 presents the pseudocode
related to the update of the feasible ranges of the continuous decision-making vari-
ables for each homogeneous musical group in the symphony orchestra in the pro-
posed SOSA.

4.4.4.4 Sub-stage 4.4: Check of the Stopping Criterion of the GISHMG

After completion of sub-stage 4.3 and the update of the feasible ranges of the
continuous decision-making variables for each homogeneous musical group in the
next improvisation—only for random selection—the check process of the stopping
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Fig. 4.3 Update process of the feasible ranges of the continuous decision-making variables for
homogeneous musical group g in the symphony orchestra in the proposed SOSA

criterion of the GISHMG must be performed. In this sub-stage, the computational
efforts of the GISHMG are terminated, if its stopping criterion—the
MNI-GISHMG—is satisfied. Otherwise, sub-stages 4.1, 4.2, and 4.3 are repeated.

4.4.5 Stage 5: Group Computational Stage
Jor the Inhomogeneous Musical Ensemble or GISIME

After finalization of stage 4, or implementation of the GISHMG, the group
computational stage for the inhomogeneous musical ensemble or the GISIME
must be accomplished. This stage is made up of four sub-stages: (1) improvisa-
tion of a new melody vector by each player in the symphony orchestra, taking
into account the feasible ranges of the updated pitches for the inhomogeneous
musical ensemble; (2) update of each available PM in the symphony orchestra;
(3) update of the feasible ranges of the pitches—continuous decision-making
variables—for the inhomogeneous musical ensemble in the next improvisation—
only for random selection; and, (4) check of the stopping criterion of the
GISIME. The mathematical equations expressed at this stage must depend on
the improvisation/iteration index—index m—due to the repeatability of the
GISIME in the proposed SOSA.
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Table 4.23 The pseudocode related to the update of the feasible ranges of the continuous decision-
making variables for each homogeneous musical group in the symphony orchestra in the
proposed SOSA

Algorithm 19: Pseudocode for update of the feasible ranges of the continuous decision-making
variables for each homogeneous musical group in the symphony orchestra in the proposed SOSA

Input:  x, .,

. min max
Output:  x;"0 |, x,°%,

start main body

1 begin

2 for homogeneous musical group g [g € ¥V"™] do

3 for music player p of the homogeneous musical group g [p S i ‘} do
4 set X =x, .

5: end for

6 end for

7 for homogeneous musical group g [g € ¥V do

8 for continuous decision-making variable v [v € PNCDVY 4o
9 xmin = min (x';f;f V); Vp € PV

10: X, = max <ng;"‘,>; Vp e ¢V

11: end for

12: | end for

13: | terminate

end main body

4.4.5.1 Sub-stage 5.1: Improvisation of a New Melody Vector by Each
Player in the Symphony Orchestra Taking into Account
the Feasible Ranges of the Updated Pitches
for the Inhomogeneous Musical Ensemble

In sub-stage 5.1, the improvisation process of a new melody vector by each player in
the symphony orchestra must be carried out. In this sub-stage, each player impro-
vises a new melody vector interactively both under the influence of other players in
the homogeneous musical group to which it belongs and under the influence of other
players in other homogeneous musical groups to which it does not belong. That is to
say that player p in homogeneous musical group g is looking to obtain a fantastic
melody both by learning and imitating from the best existing player in the inhomo-
geneous musical ensemble—the best player in the symphony orchestra. The update
process of feasible ranges of pitches—continuous decision-making variables—for
the inhomogeneous musical ensemble along with the ability to learn and imitate
player p in the homogeneous musical group g from the best player in the inhomo-
geneous musical ensemble—the best existing player in the symphony orchestra—is
regarded as the interactive relationship among different players in the inhomoge-
neous musical ensemble. In sub-stage 5.1, each player p in the homogeneous musical
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3 1 new __ new new new
group g improvises a new melody—x,," , = (xm,g,p’l, o Xopg gyt ,xm’g’p’NDv)

—by using the proposed NIP and taking into account the interactive relationships
among different players in the inhomogeneous musical ensemble. In this sub-stage,
the improvisation process of a new melody vector is done by players in available
homogeneous musical group g and by other players in other available homogeneous
musical groups in the symphony orchestra in the same way.

4.4.5.2 Sub-stage 5.2: Update of Each Available PM in the Symphony
Orchestra

After completion of sub-stage 5.1 and improvisation of a new melody vector by each
player in the symphony orchestra by considering the feasible ranges of the updated
pitches for the inhomogeneous musical group, the update process of each available
PM in the symphony orchestra must be accomplished in sub-stage 5.2. The update
process of each available PM is virtually the same as sub-stage 3.2 of the SIS and
sub-stage 4.2 of the GISHMG, which were addressed in Sect. 4.4.3.2 of this chapter.

4.4.5.3 Sub-stage 5.3: Update of the Feasible Ranges of the Pitches—
Continuous Decision-Making Variables—for
the Inhomogeneous Musical Group in the Next Improvisation—
Only for Random Selection

After finalization of sub-stage 5.2 and the update of each available PM in the
symphony orchestra, the update process of the feasible ranges of pitches—continu-
ous decision-making variables—for the inhomogeneous musical ensemble in the
next improvisation—only for random selection—must be performed. In the pro-
posed SOSA, the feasible ranges of the continuous decision-making variables in the
melody vector for the inhomogeneous musical ensemble are changed and updated
during different improvisations/iterations of the GISIME, but only for random
selection. The update process of the feasible ranges of the continuous decision-
making variables for the inhomogeneous musical ensemble in the proposed SOSA is
depicted in Fig. 4.4. Table 4.24 presents the pseudocode associated with the update
of the feasible ranges of the continuous decision-making variables for the inhomo-
geneous musical ensemble in the proposed SOSA.

4.4.5.4 Sub-stage 5.4: Check of the Stopping Criterion of the GISIME

After completion of sub-stage 5.3 and the update of the feasible ranges of the pitches
for the inhomogeneous musical ensemble in the next improvisation—only for
random selection—the check process of the stopping criterion of the GISIME
must be accomplished. In this sub-stage, the computational efforts of the GISIME
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Fig. 4.4 Update process of the feasible ranges of the continuous decision-making variables for the
inhomogeneous musical ensemble in the proposed SOSA

Table 4.24 The pseudocode associated with the update of the feasible ranges of the continuous
decision-making variables for the inhomogeneous musical ensemble in the proposed SOSA

Algorithm 20: Pseudocode for the update of the feasible ranges of the continuous decision-
making variables for the inhomogeneous musical ensemble in the proposed SOSA

Input:  x;, .,
Output: xyin, xm
start main body
begin

for homogeneous musical group g [g € PN"™] do
for music player p of the homogeneous musical group g [p e N 8] do
set Xp =X, .
end for
end for
for homogeneous musical group g [g € PN"™C] do

for continuous decision-making variable v [v € PNV 4o

min s best . PN,
X,g , = Min (xg,p,v), Vp € P

R Rl el B Rl Bl el e

10: xm = max(ng‘;fv>; Vp € PPN

11: end for

12: end for

13: for continuous decision-making variable v [v € PNEPVY go
14: X — min <xgivn>; Vg € YNHMG

15: XX = max (ngfx>; Vg € YNHIMG

16: end for

17: terminate

end main body
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Table 4.25 Pseudocode associated with the selection of the final optimal solution in the
proposed SOSA

Algorithm 21: Pseudocode for the selection of the final optimal solution in the proposed SOSA

Input: SOM
Output:  x™
start main body
1 begin
2 for homogeneous musical group g [g € ‘PNHMG] do
3 for music player p of the homogeneous musical group g [p € ‘I’PNK} do
best _ 1
4 set Xg,e; = Xep
5: end for
6: end for
7 for each homogeneous musical group g [g € PNHMGY g0
8 xbe = min <x';f;‘); Vp € PN
9 end for
10: xbesl — min (XEeSl); vg c \PNHMG
11: | terminate

end main body

are terminated when its stopping criterion—the MNI-GISIME—is satisfied. Other-
wise, sub-stages 5.1, 5.2, and 5.3 are repeated.

4.4.6 Stage 6: Selection Stage—Selection of the Final
Optimal Solution—the Best Melody

After completion of stage 5, or accomplishment of the GISIME, the selection of the
final optimal solution—the best melody—must be carried out in stage 6. In this
stage, the best melody vector stored in the memory of each player in each existing
homogeneous musical group in the symphony orchestra is specified. Then, the best
melody vector is selected from among the best melody vectors of the existing music
players in each homogeneous musical group as the best melody vector of the
corresponding homogeneous musical group. Eventually, the best melody vector is
chosen from among the best available melody vectors in all homogeneous musical
groups as the final optimal solution.

Table 4.25 gives the pseudocode associated with the selection of the final optimal
solution in the proposed SOSA.
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4.4.7 Novel Improvisation Procedure

As previously described, in the proposed SOSA, player p in the homogeneous

musical group g improvises a new melody vector—
new — new new new 1
Xprgp = (xm’g’p‘l oo Xy ,xm’g’p’NDV>—by using the NIP.

This improvisation procedure was established on the basis of fundamental con-
cepts of the improvisation of both a harmony vector and a melody vector in the
SS-HSA and TMS-EMSA, respectively, previously reported in Sect. 3.6.5 of
Chap. 3 and Sect. 4.3 of this chapter. The proposed NIP is organized according to
three rules: (1) player memory consideration; (2) pitch adjustment; and, (3) random
selection.

Rule I: In the player memory consideration rule, the values of the new melody vector
played by player p are randomly chosen from the melody vectors stored in the PM,,, , ,,
with the probability of the PMCR, ,. In this rule, two principles are alternately used. In
the presence of the continuous decision-making variables, each principle consists of a
linear combination of a decision-making variable chosen from the PM,), ., and a ratio of
the BW,,, , .. In the presence of the discrete decision-making variables, however, each
principle consists of a discrete decision-making variable selected from the PM,,, , .. If the
first principle is activated, the value of the continuous decision-making variable v from
the new melody vector played by player p (x,’; , ,) is haphazardly chosen from the
available corresponding continuous decision-making variable in the melody vectors

. PMS . -
stored in the PM,, , ,— (x}n apvr s Xmg pr - Xm, gf};,”v) —with the probability of

the PMCR,, , and updated by the BW,,, . , parameter. By the same token, the value of the
discrete decision-making variable v from the new melody vector played by player p is
randomly selected from the available corresponding discrete decision-making variables

. . PMS,
in the melody vectors stored in the PM,, , ,— (x,‘n apvr Xng pr s Xm, gj,;f’v) —

with the probability of the PMCR,, ,, in case the first principle is activated. Conversely, if
the first principle is deactivated—or, in other words, the second principle is activated—
the value of the continuous decision-making variable v from the new melody vector
played by player p is haphazardly chosen through the entire set of available continuous
decision-making variables in the melody vectors stored in the PM,, ,,—

xl X3 xPMSy,p xl X3 xPMSg,ﬂ
mgp, 10 Xmgp 10t Amgp,t fo s \Xmygpvr 0 Amy g pve e Amagpoy Joee
1 s PMS,,, . -
(xm’ @ NCDV: < < - + Ko ¢ 5 NCDV' - -+ 2 X g, pr NCDV }—with the probability of PMCR, ,

and updated by the BW,), ,,, parameter. For the same reason, the value of the discrete
decision-making variable v from the new melody vector played by player p is
randomly selected through the entire set of available decision-making variables in

: 1 s PMSy,p
the melody vectors stored in the PMm,g,p—{ ()cm’gW7 s Xty 1 Xmepl ) 0
xl X3 xPMSg,n xl xS
? m,g,p,v? "y m,g,p, vttty ILE DY [yt m,g,p,NDDV * * * 7'm, ¢ p NDDV? * * * 3

xﬁ/lgsflx’NDDV)}—with the probability of PMCR, , provided that the first principle is

not activated—or, in other words, the second principle is activated. As a result, in the
proposed NIP, implementing the first principle of the player memory consideration
rule to determine the value of the continuous or discrete decision-making variable
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v from a new melody vector played by player p is performed according to Eqgs. (4.46)
and (4.47), respectively:

Xt = xen 0 £U(0,1) - BW,

m,g,p,v
lPNHMG

m,g,p>

V{ge p € PNe v e PNCDY 4y c

V{re, ~U{1,2,...,PMS, ,}}

s

(MNI-SIS)+(MNI-GISHMG) + (MNI-GISIME) }

(4.46)

new

_re . NHMG PN, NDDV
Koo pv = Xoile povs V{gE‘P ,LpEPN veV? },

V{rgp ~U{1,2,... . PMS;, }} (4.47)

Similarly, applying of the second principle of the player memory consideration
rule to characterize the value of the continuous or discrete decision-making variable
v from a new melody vector played by player p is accomplished in accordance with
Egs. (4.48) and (4.49), respectively:

new _ Jer . .
xm,g,p,v - 'xm,g,p,k + U(07 1) BWm,gJ”

vige PNHMG peWNe e PNCDY e @ (MNI-SIS)+(MNI-GISHMG)+ (MNI-GISIME)

V{re, ~U{1,2,...,PMS, ,} },¥{k ~ U{1,2,...,NCDV}}

s

(4.48)

e =X V{g € WO p e WVe y e WPV
V{re, ~U{1,2,...,PMS,,} },¥{l ~ U{1,2,... ,NDDV}}
(4.49)

In Egs. (4.46)—(4.49), index r associated with player p in the homogeneous
musical group g in the symphony orchestra (r, ) is a random integer with uniform
distribution through the set of {1,2, ... ,PMS, ,}—r,, ~ U{1,2, ... ,PMS, ,}.
More precisely, the value of index r is randomly obtained through the set of
allowable values which is shown by the set of {1,2, ... ,PMS,,}. Determination
of this index is expressed based on Eq. (4.50):

rep =int(U(0,1) - PMS,,) +1; V{g e PN™MO p c ph:} (4.50)

Index k is also a random integer with uniform distribution through the set of
{1,2, ... ,NCDV}—k ~ U{1,2, ... ,NCDV}. In other words, the value of index
k is haphazardly achieved through the set of permissive values which is illustrated by
the set of {1,2, ... ,NCDV}. Determination of this index is addressed according to
Eq. (4.51):
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k = int(U(0, 1) - NCDV) + 1 (4.51)

In addition to this, index [ is a random integer with uniform distribution through
the set of {1,2, ... ,NDDV}—I ~ U{1,2, ... ,NDDV}. Stated another way, the
value of index / is randomly specified through the set of permissible values which is
displayed by the set of {1,2, ... ,NDDV}. Determination of this index is addressed
in accordance with Eq. (4.52):

I = int(U(0,1) - NDDV) + 1 (4.52)

It is important to note that other distributions can be employed for indices r, k, and
I such as (U(0, 1))>. The employment of this distribution gives rise to selection of
lower values for these indices. In the proposed NIP, the first and second principles of
the player memory consideration rule can efficiently lead to a more favorable
convergence and a more significant increase in the diversity of the generated
solutions for the newly developed SOSA. Implementing the player memory consid-
eration rule in the proposed NIP is also carried out for other players in homogeneous
musical group g and for other players in other homogeneous musical groups in the
symphony orchestra in the same way.

Rule 2: In the pitch adjustment rule, the values of a new melody vector played by
player p, haphazardly chosen through the existing melody vectors in the PM,), , , with
the probability of the PMCR, ,,, are updated with the probability of the PAR,, , ,,. In the
proposed NIP, the pitch adjustment rule is established based on three principles. The
first, second, and third principles of the pitch adjustment rule in the proposed NIP are
activated in the SIS, GISEMG, and GISIME, respectively. If the first principle of the
pitch adjustment rule in the proposed NIP is activated, the update process for the
continuous or discrete decision-making variable v is accomplished by substituting it
with the value of the continuous or discrete decision-making variable v from the best
available melody vector in the PMm,g,p—x'ffg’ v 1n the proposed NIP, therefore,
implementing the first principle of the pitch adjustment rule to obtain the value of the
continuous or discrete decision-making variable v from a new melody vector played
by player p is done by using Eqgs. (4.53) and (4.54), respectively:

ey L= Vg € WNIMG p e wNs ) ¢ PREPYY (4.53)

m,g,p,v m,g,p,v’

X = V{g € YNNG p e ey € pNPPVY (4.54)

Equations (4.53) and (4.54) tell us that, in the first principle of the pitch adjust-
ment rule under the proposed NIP, player p tries to imitate the best melody stored in
its own memory. If the second principle of the pitch adjustment rule in the proposed
NIP is activated, the update process for the continuous or discrete decision-making
variable v is carried out by replacing it with the value of the continuous or discrete
decision-making variable v from the best available melody vector in the MM,, ,—

xbest Applying of the second principle of the pitch adjustment rule to specify the

m, g, best,v*
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value of the continuous or discrete decision-making variable v from a new melody
vector played by player p is performed by using Egs. (4.55) and (4.56), respectively:

Xoopw = Tmgbestyt V(g € ¥NMG, p e Wy € WPV Y (4.55)
bes . NHMG PN NDDV
X e py = X best.vd v{geV¥ P EPYN yey } (4.56)

Equations (4.55) and (4.56) tell us that, in the second principle of the pitch
adjustment rule under the proposed NIP, player p tries to mimic the best melody
stored in the memory of the best player in the homogeneous musical group g in the
symphony orchestra. If the third principle of the pitch adjustment rule in the
proposed NIP is activated, the update process for the continuous or discrete
decision-making variable v is accomplished by substituting it with the value of the
continuous or discrete decision-making variable v from the best available melody
vector in the SOMm—x',’n‘“:%est’ pest,v- Subsequently, implementing of the third principle
of the pitch adjustment rule to characterize the value of the continuous or discrete
decision-making variable v from a new melody vector played by player p is done by
using Eqgs. (4.57) and (4.58), respectively:

best . NHMG PN NCDV

x,’,‘f?”p’v = X, best, best,v> V{g cw pEPveW } (4.57)
best . NHMG PN NDDV

xn'f;”p’v = X, best, best, 15 V{g ey ,LpEP T ved } (4.58)

Equations (4.57) and (4.58) tell us that, in the third principle of the pitch
adjustment rule under the proposed NIP, player p tries to emulate the best melody
stored in the memory of the best player in the best homogeneous musical group or
the best melody stored in the memory of the best player in the inhomogeneous
musical ensemble. In the proposed NIP, the first, second, and third principles of the
pitch adjustment rule, by modeling the interactive relationships both among
existing players in each homogeneous musical group and among existing players
in the inhomogeneous musical ensemble, can purposefully enhance the desirable
convergence, diversity of the generated solutions, and ability to achieve a fantastic
melody in the entire space of the nonempty feasible decision-making for the
proposed SOSA. Applying the pitch adjustment rule in the proposed NIP is also
performed for players in homogeneous musical group g and for other players in
other available homogeneous musical groups in the symphony orchestra in the
same way.

Rule 3: In the random selection rule of the proposed NIP, the values of a new
melody vector played by player p are randomly chosen from the entire space of the
nonempty feasible decision-making variables with the probability of the
1 — PMCR, . Here, the random selection rule related to continuous decision-
making variables is established according to three principles. The first, second, and
third principles of the random selection rule are activated in the SIS, GISHMG, and
GISIME, respectively. If the first principle of the random selection rule for
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continuous decision-making variables is activated, the value of the continuous
decision-making variable v from a new melody vector played by player p is
haphazardly selected from the entire space of the nonempty feasible decision-
making relevant to this continuous decision-making variable, limited by an invari-
able lower bound (xvmi“) and an invariable upper bound (x;"**). These invariable
lower and upper bounds for the continuous decision-making variable v, specified in
stage 1 of the proposed SOSA—definition of the optimization problem and its
parameters—are unchanged in all improvisations/iterations of the SIS. Accord-
ingly, implementing the first principle of the random selection rule for continuous
decision-making variables to obtain the value of the continuous decision-making
variable v from a new melody vector played by player p is accomplished by using
Eq. (4.59):

XMV = x™r 1 U(0,1)

m,g,p,v

. (x:nax _ xénin); v{g c lPNHMG,p c \PPN)Z7 Ve IPNCDV} (459)

Equation (4.59) states that, in the first principle of the random selection rule for
continuous decision-making variables, player p, characterized by the value of the
continuous decision-making variable v from a new melody vector, has the strength to
seek the entire space of the nonempty feasible decision-making associated with this
continuous decision-making variable, defined in stage 1 of the proposed SOSA. If
the second principle of the random selection rule for continuous decision-making
variables is activated, the value of the continuous decision-making variable v from a
new melody vector played by player p is randomly chosen from the entire space of
the nonempty feasible decision-making pertaining to this continuous decision-
making variable, restricted by a variable lower bound (x,',{’f;’v) and a variable
upper bound (x,"¥,). These variable lower and upper bounds for the continuous
decision-making variable v are updated in each improvisation/iteration of the
GISHMG and for the available homogeneous musical group g in the symphony
orchestra. As a result, applying of the second principle of random selection rule for
continuous decision-making variables to determine the value of the continuous
decision-making variable v from a new melody vector played by player p is done
by using Eq. (4.60):

yhew — xmin + U(O7 l) . (xmax _xmin >;

m,g,p,v m,g,v m,g,v m,g,v

V{ g € WNHMG ) o PN, |\, c @NCDV ) lP(MNI—GISHMG)} (4.60)

Equation (4.60) addresses the second principle of the random selection rule for
continuous decision-making variables, where player p specifies that the value of
the continuous decision-making variable v from a new melody vector merely has
the ability to seek the space of the nonempty feasible decision-making related to
this continuous decision-making variable, which is updated in each improvisation/
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iteration of the GISHMG and for the available homogeneous musical group g in
the symphony orchestra. The update process of the feasible ranges of the contin-
uous decision-making variable v in each improvisation/iteration of the GISHMG
and for the available homogeneous musical group g in the symphony orchestra was
discussed in Sect. 4.4.4.3 of this chapter. Similarly, the value of the continuous
decision-making variable v from a new melody vector played by player p is
haphazardly selected from the entire space of the nonempty feasible decision-
making relevant to this continuous decision-making variable bounded by a vari-
able lower bound (x,ﬁ‘,i;‘) and a variable upper bound (x,}"), provided that the third
principle of the random selection rule for continuous decision-making variables is
activated. These variable lower and upper bounds for the continuous decision-
making variable v are updated in each improvisation/iteration of the GISIME and
for the inhomogeneous musical group or symphony orchestra. Consequently,
implementing of the third principle of random selection rule for continuous
decision-making variables to obtain the value of the continuous decision-making
variable v from a new melody vector played by player p is carried out by using
Eq. (4.61):

new = xmin . max __ ,.min).
Ym.gpv = Fm.y + U(O’ 1) (xm,v xm,v)»

V{ g € WNHIMG 1 o WPy ), o YNCDV 4y T(MNI-GISIME)} (4.61)

Equation (4.61) describes the third principle of the random selection rule for
continuous decision-making variables, where player p characterizes the value of the
continuous decision-making variable v from a new melody vector solely that has the
strength to seek the space of the nonempty feasible decision-making associated with
this continuous decision-making variable, updated in each improvisation/iteration of
the GISIME and for the inhomogeneous musical group or symphony orchestra. The
update process of the feasible ranges of the continuous decision-making variable v in
each improvisation/iteration of the GISIME and for the inhomogeneous musical
group was previously reported in Sect. 4.4.5.3 of this chapter. Similar to the three
principles of the pitch adjustment rule, the first, second, and third principles of the
random selection rule for continuous decision-making variable by modeling the
interactive relationships both among existing players in each homogeneous musical
group and among existing players in the inhomogeneous musical ensemble can
appreciably promote favorable convergence, diversity of the generated solutions,
and ability to attain a fantastic melody in the entire space of the nonempty feasible
decision-making for the proposed SOSA. The point to be made here is that the first,
second, and third principles of the random selection rule for discrete decision-
making variables are virtually the same. Applying of the first, second, and third
principles of the random selection rule for discrete decision-making variables to
determine the value of the discrete decision-making variable v from a new melody
vector played by player p is performed by using Eq. (4.62):
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) NHMG PN, NDDV
X oy = 0(V); v{geV¥ LpEYTEveY ,

y~U{x(1),...,5wm), ..., x(W,) }} (4.62)

In Eq. (4.62), index y is a random integer with a uniform distribution through the
set of {x,(1), ..., x,(w,), ..., x,(W)}—y ~ U{x,(1), ..., x,(w,), ..., x, (W)}
Equation (4.62) also indicates that the value of the discrete decision-making variable
v from the new melody vector played by player p is randomly characterized through
the set of candidate allowable values for this decision-making variable demonstrated
by the set {x,(1), ...,x,(w,), ... ,x,(W,)}. Implementing of the random selection
rule in the proposed NIP for continuous and discrete decision-making variables is
accomplished for other players in homogeneous musical group g and for other
players in other homogeneous musical groups in the symphony orchestra in the
same way.

In the newly developed SOSA, player p utilizes the updated values of the BW,, , ,
and PAR,,,, parameters in the improvisation process of its melody vector.
These parameters in each improvisation/iteration of the SIS, GISHMG, and
GISIME of the proposed SOSA are updated according to Egs. (4.63) and (4.64),
respectively:

( Wmax/BWéxlt’l[i’n)
(MNL-SIS) + (MNI-GISHMG) + (MNI-GISIME) " |’

v { g€ WNHME | o @PNe lP(MNI—SIS)+(MNI—GISHMG)+(MNI—GISIME)}

BWyep = BW," - exp

(4.63)
PARY™ — PARY
) : o
(MNI-SIS) + (MNI-GISHMG) + (MNI-GISIME)
V{ g € WNIME ) c WPNe ) ¢ lP(MNI—SIS)+(MNI—GISHMG)+(MNI—GISIME)}

PARp, ., = PAR;) + (

(4.64)

Equation (4.63) tells us that the value of the bandwidth parameter relevant to player
p (BW,,.,) is addressed as an exponential function of the improvisation/iteration
index—index m—in such a way that the value of the BW,, , , parameter is exponen-
tially decreased by increasing the value of this index. Stated another way, by altering
the improvisation/iteration index from zero to the maximum number of the improvi-
sation/iteration—m € {0 — (MNI-SIS) + (MNI-GISHMG) + (MNI-GISIME)}—the
value of the BW,,, , parameter is exponentially changed/updated from the BW,"*

parameter to the BWmlrl parameter— BW,, , , € {BW;“;" — BW“““} Equation

(4.64) also tells us that the value of the pitch adjusting rate parameter associated with
player p (PAR,,,,) is described as a linear function of the improvisation/iteration
index—index m—so that the value of the PAR,, , , parameter is linearly increased by
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increasing the value of this index. In other words, by varying the improvisation/
iteration index from zero to the maximum number of the improvisation/iteration—
m € {0 — (MNI-SIS) + (MNI-GISHMG) + (MNI-GISIME) }—the value of the PAR,,,,
o,p Parameter is linearly changed/updated from the PAR;};“ parameter to the PAR,"*

parameter— PAR,, ¢ , € {PAR;‘;" — PAR;;"}. Table 4.26 gives the pseudocode

pertaining to improvisation of a new melody vector by each player in the
symphony orchestra of the proposed SOSA. The designed pseudocode in differ-
ent stages and sub-stages of the proposed SOSA is located in a regular sequence
and forms the performance-driven architecture of this algorithm. Table 4.27 pre-
sents the pseudocode related to the performance-driven architecture of the pro-
posed SOSA. Here, sub-stages 3.3, 4.4, and 5.4—the check process of the
stopping criterion of the SIS, GISHMG, and GISIME—are defined by the first,
second, and third WHILE loops in the pseudocode pertaining to the performance-
driven architecture of the proposed SOSA (see Table 4.27).

4.4.8 Some Hints Regarding the Architecture
of the Proposed SOSA

One of the substantial points regarding the newly developed SOSA is its compu-
tational burden. To clarify, consider three homogeneous musical groups in the
symphony orchestra: (1) a homogeneous group of four violinists; (2) a homoge-
neous group of three clarinet players; and, (3) a homogeneous group of two celesta
players. In these special circumstances, the homogeneous group of four violinists
has an equal computational burden compared to the TMS-EMSA with four players.
By the same token, the homogeneous group of three clarinet players and the
homogeneous group of two celesta players have the same computational burden
in comparison with the TMS-EMSA with three and two players, respectively. In
addition, each of the existing players in each of the aforementioned homogeneous
musical groups has an equal computational burden compared to the SS-IHSA. As a
result, the proposed SOSA has three and nine times more computational burden
than the TMS-EMSA and SS-IHSA. Stated another way, the proposed SOSA has
as much computational burden as NHMG—the number of homogeneous musical
groups in the symphony orchestra—times greater than the TMS-EMSA and as
much as de\pNHMGPN ¢—the number of the existing players in the symphony
orchestra—times greater than the SS-IHSA. Given this fact, the principal question
is whether employing the proposed SOSA with this high computational burden is
rational and cost effective? In answer to this question, two perspectives must be
considered, which depend on the time needed to solve the optimization problem.
The first perspective is related to real-time optimization problems with small data,
which must be solved in real time or near real time (e.g., every few minutes or
every few hours) and the responses/outputs must be made available to the special-
ist/researcher/planner in order to decide the next time step. Charging and
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Table 4.26 The pseudocode pertaining to improvisation of a new melody vector by each existing
player in the symphony orchestra of the proposed SOSA

Algorithm 22: Pseudocode for improvisation of a new melody vector by each existing player in the symphony

orchestra of the proposed SOSA

Input: BWX, BW;“I‘,“, MNI-GISHME, MNI-GISIME, MNI-SIS, NCDV, NDDV, NDV, PAR;"X,
PAR'“‘" PMCR,,, PMS, 5, PN, x™0, x™% {x (1), ..., %W, ..., x(W,)}

o g
. new
Output:  x,77,

start main body

1: begin
2| BW,gp = BT »exp[(ln( BW X /BW"““)/((MNI—SIS) + (MNL-GISHMG) + (MNI-GISIME))) ~m]

8P 8&p

3 | PAR,,,, = PARM™ — K(PAR;‘;" - PAR;}},") /((MNLSIS) + (MNLI-GISHMG) + (MNI-GISIME))) m]

4: for homogeneous musical group g [g € ¥""™C] do
5 for music player p of the homogeneous musical group g [p € ¢V *] do
6| construct the new melody vector for the music pla