
Deep Learning Segmentation of the Left
Ventricle in Structural CMR: Towards
a Fully Automatic Multi-scan Analysis

Hakim Fadil, John J. Totman, and Stephanie Marchesseau(B)

Clinical Imaging Research Centre, A*STAR-NUS, Singapore, Singapore
stephanie.marchesseau@circ.a-star.edu.sg

Abstract. In the past three years, with the novel use of artificial intelli-
gence for medical image analysis, many authors have focused their efforts
on defining automatically the ventricular contours in cardiac Cine MRI.
The accuracy reached by deep learning methods is now high enough for
routine clinical use. However, integration of other cardiac MR sequences
that are routinely acquired along with the functional Cine MR has not
been investigated. Namely, T1 maps are static T1-based images that
encode in each pixel the T1 relaxation time of the tissue, enabling the
definition of local and diffuse fibrosis; T2 maps are static T2-based images
that highlight excess water (edema) within the muscle; Late Gadolinium
Enhancement (LGE) images are acquired 10 min after injection of a con-
trast agent that will linger in infarct areas. These sequences are acquired
in short-axis plane similar to the 2D Cine MRI, and therefore contain
similar anatomical features. In this paper we focus on segmenting the left
ventricle in these structural images for further physiological quantifica-
tion. We first evaluate the use of transfer learning from a model trained
on Cine data to analyze these short-axis structural sequences. We also
develop an automatic slice selection method to avoid over-segmentation
which can be critical in scar/fibrosis/edema delineation. We report good
accuracy with dice scores around 0.9 for T1 and T2 maps and correla-
tion of the physiological parameters above 0.9 using only 40 scans and
executed in less than 15 s on CPU.

1 Introduction

Cardiac imaging is an active research field with increasingly new imaging tech-
niques being proposed to better understand, diagnose, treat and anticipate the
evolution of cardiac diseases, especially after myocardial infarction. Manual anal-
ysis of these images made of thousands of slices is extremely tedious, and more
importantly leads to high variability between observers which impacts diagnosis
as well as research methodology (e.g. increased recruitment is needed to account
for measurement variability). Hence, automatic and reproducible pipelines to
process all imaging data are strongly needed. With the emergence of high com-
putational power and the availability of massive labeled image data, recent
advances in deep neural networks have made fully automatic cardiac MRI seg-
mentation possible.
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Fig. 1. Illustration of the three studied structural MRI sequences for segmentation of
the scar tissue (in LGE), fibrosis (in T1 maps) and edema (in T2 maps). (Color figure
online)

1.1 Deep Learning for Cardiac Cine MRI

Last year’s Automated Cardiac Diagnosis Challenge [10] allowed the compari-
son of several deep learning models for the segmentation of the left and right
ventricles from Cine MRI. Very high accuracies were reached, for instance by
models derived from the DenseNets model [6] which connects each layer to every
other layer; or the U-Net architecture [1,4,11] made of a series of symmetric
downsampling convolutional layers followed by upsampling convolutional layers
and skip connections for each resolution.

A modified version of the 2D U-Net was optimized for cardiac segmentation
[1] in which the authors reduced the up-sampling path complexity by setting the
number of filters in the up-convolution layers to the number of classes. Since this
model gives very accurate results on our Cine data, we based our implementation
on this modified 2D U-Net model.

1.2 Structural MRI Sequences

In addition to Cine MRI, which allows the evaluation of functional parameters,
most MRI scans also include structural images. In this paper we will focus on
three of the available sequences that are routinely used in cardiac scans.

Late Gadolinium Enhancement - Acquired in most imaging centers, short-
axis Late Gadolinium Enhancement (LGE) images (also known as delayed
enhancement images) are T1-weighted images acquired 10–15 min after injec-
tion of a contrast agent (gadolinium) that washes-out more slowly in infarct
tissue than healthy tissue, resulting in areas of high intensities in the presence
of scarring (see example Fig. 1 (left)). Despite many studies, no consensus has
yet been reached to determine the best segmentation method to extract scar
tissue once the myocardium is segmented [8]. On the other hand, only very few
papers focus their energy on segmenting the myocardium in these sequences,
using either deformable models [2], or Cine to LGE registration [12]. As one can
notice on Fig. 1 (left), the intensity difference between the blood pool and the
area of interest is rather low, leading to high difficulty in distinguishing accu-
rately between endocardium and scar, making automatic segmentation of the
myocardium in LGE images for scar quantification an open challenge.
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T1 maps - Short-axis T1 maps are routinely acquired since the development of
fast acquisition methods such as the Modified Look-Locker imaging (MOLLI),
for its ability to measure T1 relaxation times without contrast. More specifically,
myocardial T1 relaxation time is prolonged in most forms of pathology. Unlike
LGE images for which only local abnormalities can be measured, T1 MOLLI
maps can distinguish diffuse as well as local fibrosis by comparison with known
reference T1 values. An example of local fibrosis definition (in yellow) on T1
MOLLI map is shown Fig. 1 (middle). In order to assess diffuse fibrosis, the T1
value of the entire myocardium must be compared to healthy muscle, therefore
in T1 maps the accuracy of the LV segmentation is crucial for diffuse fibrosis
quantification as well as further thresholding for local fibrosis quantification.

T2 maps - Similarly, T2 maps are acquired to measure myocardial edema,
which manifests as free water content with prolonged T2 relaxation times. Dif-
ferentiating edema from infarction has been shown to be useful to characterize
myocardial salvage by comparison with LGE, and hence quantify the success of
coronary revascularization surgery. Prolonged T2 value is also an indicator of
diffuse pathology such as cardiomyopathy and is therefore a key biomarker to
measure. An example of T2 maps is presented Fig. 1 (right) where a zone with
edema is delineated in yellow.

In this paper, we propose to automatically segment the endocardium and
epicardium contours on the three structural images described above. To the best
of our knowledge, this is the first attempt to automatically segment the left
ventricle in T1 and T2 maps. Since a large amount of Cine data is available for
training compared to available structural data, we will test a transfer learning
approach from the Cine model as well as a full U-Net architecture on our dataset
made of 40 patients.

2 Methods

2.1 Available Data: Pre and Post-processing

The T1 and T2 maps being relatively new sequences, and varying from scanner
to scanner, only 40 patient scans were available at the time of this study. The
same number of LGE data was used for fair comparison. The train/validation
partition was set to 80/20% for each experiment without data augmentation.
All images were acquired post-myocardial infarction on Siemens scanners (3T
mMR and 3T Prisma). To account for various image sizes and resolutions, all
2D slices were rescaled to 212×212 pixels of 1.37 mm × 1.37 mm resolution, and
intensities were normalized. Softmax predictions were rescaled to the original
resolution and size, and 3D masks were created choosing the labels with the
highest score. Finally, only large connected components were kept, and a convex
hull was defined to smooth the endocardium and epicardium contours. Since
no consensus exist on the best way to define scar, fibrosis or edema once the
left ventricle contours exist, we decided to use 2-dimensional Otsu automatic
threshold [5] to estimate the amount of damaged tissue for both the ground truth
contours (obtained manually) and the predicted contours, instead of relying on
a manual ground truth.
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2.2 Transfer Learning from U-Net vs Full U-Net Model

Transfer learning is based on the hypothesis that in a deep neural network, the
first layers extract global features that are similar among many types of images,
hence do not require to be retrained for every set of similar images. In our
case, all images are short-axis slices showing similar shapes for which only the
contrast between the various structures changes. We therefore hypothesize that
training only the last few layers will allow a smaller database to be used for
training while giving accuracy similar to a full U-Net model. A transfer model
also has the advantage of requiring less computational memory and time and
can therefore be trained on CPU. To apply transfer learning, we base our code
on the open-source 2D U-Net python code [1]. We apply our pretrained Cine
model up to the last 3 layers to create the input image and define a small model
(named 3 Layers) only made of the last 3 layers of U-Net (3 convolution blocks
with 64, 64 and 3 filters). This model as well as the full U-Net model (named Full
Model) are optimized to maximize the foreground dice (combining endocardium
and myocardium contours) with Adam optimizer (learning rate of 0.01, β1 = 0.9,
β2 = 0.999, batch size = 5). The training of the 3 Layers and Full Model took
respectively 5 h and 20 h for 40K steps on a GPU NVIDIA K40. The volume
segmentation takes less than 14 s on an Intel Xeon E5-1650 CPU.

2.3 Automatic Image Selection

Imbalance between foreground and background data led to over-segmentation
of basal and apical slices that should not be included in the segmentation (do
not contain myocardium), as previously noticed in right ventricle segmentation
using the full 2D U-Net on Cine MRI. To cope with this issue, we decided to
independently train a binary classification network that automatically selects for
each scan the slices that include the myocardium. We designed a neural network
(see Fig. 2) made of 7 convolutional blocks, a flatten layer and two fully connected
blocks, inspired by the AlexNet [7] architecture. Each convolution block consists
of a 3 × 3 convolution without padding, followed by a 2 × 2 max pooling layer
and a ReLU activation. The model was optimized to fit weighted cross-entropy
with a weight of 0.2 to decrease false negative rate since removing a slice to
segment is more critical than over-segmenting. The decision to remove a slice
was made if the probability to remove it was 10 times higher than the probability
to keep it. We used Adam optimizer (learning rate of 0.0001, β1 = 0.9, β2 =
0.999, batch size = 16) and dropout layers after each block, to regularize the
model that initially showed high variance, with the keep prob adjusted for each
sequence from 0.7 to 0.9. The model was trained in approximately 2000 steps
which took 20 min on CPU. The classification of each scan took less than 1 s on
CPU. Each 3D scan is therefore first segmented through the U-Net model and
then over-segmentation are deleted using the results of this selection network
applied on the original scan.
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Fig. 2. Representation of the designed CNN, inspired by AlexNet [7] architecture. Each
blue arrow represents a convolution layer made of a 3 × 3 convolution, a 2 × 2 max
pooling and a ReLU activation. The number of filters is written in each arrow. A flatten
layer and two fully connected layers terminate the network. Resulting image sizes are
written below each block. (Color figure online)

3 Results

3.1 Accuracy of Image Selection for Structural Images

Table 1 reports the sensitivity (true positive rate, where positive means keep a
slice), specificity (true negative rate, where negative means remove a slice) and
total accuracy for the training and validation sets. Dropout coefficients were
adjusted to each sequence to balance the high variance problem we observed in
our first experiments. Notice the very high sensitivity rates in the validation set
that guarantees that all slices to be segmented will be rightly kept. The model
also manages to remove between 78% (for T2 maps) and 91% (for T1 maps) of
all unwanted slices.

Table 1. Sensitivity, specificity and accuracy of the designed method to select the
slices to keep for further segmentation. KP: keep prob in the dropout regularization

Training (n = 384 slices) Validation (n = 81 slices)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

LGE (KP = 0.7) 98% 74% 91% 100% 85% 96%

T1 maps (KP = 0.9) 100% 100% 100% 97% 91% 94%

T2 maps (KP = 0.8) 89% 76% 86% 100% 78% 91%

3.2 Comparison of the Methods

Using the image selection results, corrections were applied (slices were removed
according to the classification) after prediction, for the 3 Layers and the Full
Model leading to a comparison of four methods. Results were measured in terms
of dice scores for the endocardium and the myocardium masks. Additionally,
using the Otsu thresholding to define damaged zones, Pearson’s correlation (R),
bias and reproducibility error (RPC) were assessed for the scar size. For T1
and T2 maps, since the actual relaxation times are also predictors of cardiac
dysfunction, the mean value within the myocardium was also measured and a
Pearson’s correlation reported.
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Table 2. Segmentation accuracy and statistical results for the estimation of infarct
size using the various proposed methods on LGE images. Bold values represent best
values in the validation set.

Training(n = 32) Validation (n=8)

Dice Scar %LVM Dice Scar %LVM

Endo Myo R Bias RPC Endo Myo R Bias RPC

3 Layers 0.93 0.84 0.97 1.96 3.63 0.83 0.68 0.94 0.09 5.58

Corrected 3L 0.95 0.85 0.96 2.11 4.38 0.87 0.69 0.95 0.16 4.92

Full Model 0.84 0.88 0.97 −0.82 3.85 0.78 0.64 0.91 −1.11 7.34

Corrected FM 0.96 0.96 0.99 −0.03 2.06 0.89 0.66 0.94 0.05 5.67

LGE Image Segmentation. As shown in Table 2, training accuracy was
extremely high for the 3 Layers (with or without correction) and the Corrected
Full Model, which proves the capacity of these models to estimate myocardium
contours in LGE images despite the close signal intensity values between blood
pool and scar tissue. However, the validation set did not reach such performance
in terms of dice scores despite a good correlation in the scar size. Fair and poor
results are mainly due to a wrong endocardium segmentation that includes the
infarct zone as shown Fig. 4 (left). Since scar appearance in MRI varies consid-
erably in shape, location and intensity from patient to patient, and depends on
the contrast injected and the acquisition method, we believe a larger database
is mandatory to reduce the high variance we obtained.

T1 Maps Segmentation. As illustrated in Fig. 3 (left), best dice scores and
correlations are reported with the Corrected Full Model (dice = 0.96 for endo-
cardium, dice = 0.92 for myocardium, R = 0.996 for Mean T1 and R = 0.983
for fibrosis size) while the 3 Layers model seems unreliable for fibrosis detec-
tion. Figure 4 (middle) gives three example segmentations of local fibrosis and

Fig. 3. Segmentation accuracy and correlation of T1 and T2 measures using the various
proposed methods for the validation set made of 8 patient scans.
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endocardium in T1 maps. Fair results correspond to slight underestimation of
the fibrosis due to over-segmentation of the endocardium. Poor results arise in
cases of important artifacts (probably due to breathing motion that perturbed
T1 reconstruction).

Fig. 4. Example endocardium (green) and scar, fibrosis or edema (red) segmentations
obtained using the Corrected Full Model on validation data. Good, median and bad
results are shown for LGE, T1 and T2 images. (Color figure online)

T2 Maps Segmentation. As shown Fig. 3 (right), the Corrected 3 Layers
showed results similar to the Corrected Full Model in terms of dice scores for
the endocardium (0.889 and 0.885) and correlation for Mean T2 values (0.937
and 0.977 respectively). Surprisingly, the edema size showed better correlation
without the added correction (R = 0.919). Figure 4 (right) illustrates examples
of endocardium and edema delineations showing that poor results were due to
wrong segmentation of non-existing edema, while fair results, similarly to T1
and LGE, were due to over-segmentation of the endocardium.

4 Discussion and Conclusions

In this paper, we used deep neural network to automatically segment the
myocardium contours in structural images, very accurately for T1 and T2 maps,
and reasonably for LGE. Despite a fair dice score in the myocardium delineation
of the LGE images, the scar size was well estimated with an error around 5% and
a high correlation (R = 0.94) on our small validation set. These correlations and
error levels are comparable to reported reproducibility errors obtained between
two manual segmentations [3].

We evaluated the use of transfer learning to segment the structural maps
since these maps share features with Cine data for which our pretrained model
reach high performance. Results were extremely comparable to the full U-Net
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model in terms of dice scores or correlations, apart from the estimation of the
fibrosis size. It can therefore be a good alternative when working with restricted
memory or computation power.

Better results were achieved after correction using our proposed CNN
image selection model. High accuracies were reached, preventing most over-
segmentation without deleting required slices. Cine MRI segmentation also suf-
fers from this type of over-segmentation as the definition of the basal slice varies
among observers. Recent active shape algorithms have been proposed to auto-
matically define the basal slice [9] but once again deep learning methods, such
as the one proposed here, showed more promising results. For a fully automatic
cardiac analysis pipeline, we will extend the proposed slice selection neural net-
work to our Cine data in combination with the current U-Net model that we are
routinely using.

Future work will extend the current database and validate the robustness of
the proposed pipelines. Similar concepts will also be applied to other structural
images such as T2*, T2 black blood, post-contrast T1 maps or even ECV maps.
Estimating the scar/fibrosis/edema zones directly from a deep learning network
would also be appreciated once a reliable ground truth is given, or a consensus
among experts has been reached.

After further validation, these models and the Cine model will be incorpo-
rated into our in-house cardiac analysis software. The amount of post-prediction
corrections required will be measured in order to obtain confidence intervals for
a fully automatic multi-scan cardiac MRI analysis pipeline in the near future.
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