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Abstract. Fifteen percent of all strokes are caused by emboli formed in
the left atrium (LA) in case of atrial fibrillation (AF). The most common
site of thrombus formation is inside the left atrial appendage (LAA). The
LAA is accounting for 70% to 90% of the thrombi formed in the LA in
patients with non-valvular AF. Studies have shown there is a correla-
tion between the LAA morphology and risk of ischemic stroke; Chicken
Wing and Cauliflower LAA shapes are associated with lower and higher
risk, respectively. These two LAA shape categories come from a popular
classification in the medical domain, but it is subjective and based on
qualitative shape parameters. In this paper, we describe a full frame-
work for shape analysis and clustering of the LAA. Initially, we build
a point distribution model to quantitatively describe the LAA shape
variation based on 103 LAA surfaces segmented and reconstructed from
multidetector computed tomography volumes. We are successfully able to
determine point correspondence between LAA surfaces, by non-rigid vol-
umetric registration of signed distance fields. To validate if LAA shapes
are clustered, we employ an unsupervised clustering on the shape models
parameters to estimate the natural number of clusters in our training set,
where the number of shape clusters is estimated by validating the test
log-likelihood of several Gaussian mixture models using two level cross-
validation. We found that the LAAs surfaces basically formed two shape
clusters broadly corresponding to the Chicken wing and non-Chicken
Wing morphologies, which fits well with clinical knowledge.
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1 Introduction

Atrial fibrillation (AF) causes a 5-fold increase in risk of ischemic stroke, being
the cause for approximately 15% all strokes in the United States [7]. Around
70% to 90% of the cases, thrombi are formed inside the left atrial appendage
(LAA) in patients with non-valvular AF [17]. The LAA is a complex tubular
structure, with a high inter-patient variability, originating from the left atrium
(LA). Studies have shown there is a correlation between LAA morphology and
risk of ischemic stroke [4,8]. Di Biase et al. [4] reported that the popular named
Chicken Wing morphology is associated with lower risk of stroke compared to
non-Chicken Wing morphology. Several studies have focused on describing the
varying LAA morphology, where the morphology is described by the LAA length,
width, orfice/ostium size, and number of lobes. In a study based on 220 LAA
obtained from necropsy studies, Ernt et al. [5] reported variation in LAA volumes
ranging from 770 to 19,270 mm3, minor orifice diameters ranging from 5 to
27 mm, major orifice diameters between 10 and 40 mm, and LAA lengths ranging
between 16 and 51 mm.

The aim of this work was to quantitatively describe the LAA shape variation
and clustering using a statistical shape model. We trained a point distribution
model (PMD) based on LAA surfaces reconstructed from multidetector com-
puted tomography (CT) images and later combined the trained PMD together
with unsupervised clustering methods to examine the natural clustering of the
LAA shapes.

2 Data and Preprocessing

The LAA surfaces are reconstructed from CT images, provided by the Depart-
ment of Radiology, Rigshospitalet, University of Copenhagen. The data are
acquired as part of the Copenhagen General Population Study [12], where partic-
ipants are offered a research cardiac computed tomography angiography (CCTA)
examination [6]. Participants are excluded from the examination if they, among
other things, suffer from AF. The CCTA examinations are performed on a 320
detector CT scanner (Aquilion One, Toshiba, Medical Systems), with the scan-
ner settings: Gantry rotation time 350 ms, detector collimation 0.5× 320, X-ray
tube voltage 100–120 kV, and X-ray tube current 280–500 mA. The acquired CT
images have a matrix size 512× 512× 560 and a voxel size 0.5× 0.5× 0.25 mm.

One hundred and five CT images with high contrast are randomly selected
from the database (see Fig. 1a for an example of CT image). The raw CT-volumes
are manually cropped, using Osirix, to only contain the tracer-enhanced regions
with the LAA. After cropping, CT-volumes are blurred with a Gaussian filter
kernel with standard deviation at 0.5 mm and the iso-surfaces of the inner part of
the LAA is computed using the Marching Cubes algorithm [11] with a manually
set iso-level in the range 150–250 Hounsfield Units. The selected iso-surface level
varies, due to variations of the amount of tracer in the LAA. Image blurring and
surface reconstruction are conducted using 3D Slicer [1]. A reconstructed LAA
surface from the example CT image is shown in Fig. 1b.
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(a) CT-image (b) LAA surface

Fig. 1. (a) Slice from raw cardiac computed tomography (CT) image. (b) Left atrial
appendage (LAA) surface reconstructed from the CT image shown in (a), where the
red marks are manually placed landmarks. HU: Hounsfield Units (Color figure online)

3 Methods

The first goal of this work is to build a statistical shape model [3] to quanti-
tatively describe the shape variation of the LAA. This model is created from a
training set containing N Procrustes-aligned shapes; shapes in the training set
are represented as a series of corresponding points.

3.1 Point Correspondence

Point correspondences between LAA surfaces are determined by registering a
source surface S to each target surface T in the training set, such that each ver-
tex is positioned on the same anatomical structures in both S and T . Initially,
S is aligned to T with a similarity transform by registration of four manually
placed landmarks equally distributed in the LAA orifice (two out of the four
landmarks are visible as the red marks in Fig. 1b). Furthermore, the registration
is fine-tuned by an iterative close point (ICP) alignment [16]. The aligned source
is now denoted SICP . The surface registration of SICP and T is performed using
a non-rigid volumetric registration algorithm. To be able to use the volumetric
registration algorithm, SICP and T must be represented as volumes. We repre-
sent SICP and T , as signed distance fields (SDF), where each voxel value in the
SDF is equal to the signed Euclidean distance to the surface [13,15].

The non-rigid volumetric registration is conducted by solving the optimiza-
tion given by:

T̂µ = arg min
Tµ

(C (Tµ; IF , IM )) (1)

Here C is a cost-function, IF is the fixed volume and IM is the moving vol-
ume, where IF and IM are the SDF representation of SICP and T respec-
tively. Tµ is the non-rigid volumetric transformation that transform IM to IF .
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The transformation is parameterised by a parameter-vector μ. In this work, we
use a multi-level B-Spline transformation with five resolution levels. The cost
function we are going to minimize is described by:

C = ω1MSD (μ; IF , IM ) + ω2PCP (x,y) + ω3PBE (μ) , (2)

where MSD is the mean squared voxel value difference similarity measure,
PCP (x,y) is penalizing large distances between landmarks and PBE (μ) is the
bending energy penalty term. The weights: ω1 = 1, ω2 = 0.15 and ω3 = 2 are
optimized using a grid search. The optimal transformation parameters are found
using adaptive stochastic gradient descent [9] as optimizer, with 2048 random
samples per iteration for a maximum of 500 iterations as implemented in the
elastix library [10]. The estimated transformation determined between IF and
IM is applied to SICP and the transformed surface is ST .

Since the volumetric registration is conducted on the SDF, it is not guar-
anteed that the zero level iso-surfaces fits perfect after the registration. This
problem is solved using an approach originally described in [14], where vertices
in ST are propagated to T using Markov Random Field regularization of the
correspondence vector field. After the vertices in ST are propagated to T we
have obtained a point correspondence surface SCOR, where each vertex corre-
sponds to a vertex in T . The set of surfaces with point correspondence is used to
construct a point distribution model using Procrustes alignment and principal
component analysis (PCA) as described in [3].

3.2 Shape Clustering

To examine the natural shape clusters formed by our data set, we use the trained
point distribution model to represent the surfaces by their PCA loadings and use
the loadings to identify shape clusters. The PCA loadings b of a given surface
is determined by:

b = P(x′ − x̄), (3)

where x′ is the input surface, x̄ is the Procrustes average shape of the N aligned
SCOR and P is the set of the t first eigenvectors. We use the PCA loadings to
estimate the natural number of shape clusters, by examining the log-likelihood
(LLH) computed from multivariate Gaussian mixture models (GMM) fitted to
the loadings. The probability density function of a GMM can be written as:

p(x) =
K∑

i=k

πkN (x|μk,Σk) , (4)

where x is the loadings, πk is the mixing coefficient, K is the number of mixture
components and N (x|μk,Σk) is the multivariate Gaussian distribution with
mean μk and covariance matrix Σk. From Eq. (4) the LLH function is given
by [2]:

p(x|π,μ,Σ) =
N∑

i=1

ln

(
K∑

k=1

πkN (xi|μk,Σk)

)
(5)
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In order to avoid over-fitting, the number of shape clusters is determined
by using two level cross-validation. The first level performs leave-one-out cross-
validation. Here the data are divided into N − 1 training shapes and one test
shape. The training set is used to train a GMM with K mixture components,
while the test shape is used to validate the trained GMM, using the LLH as
quality metric. This procedure is repeated until all N shapes have been used
as the test shape, after which the mean test LLH is computed based on the
N test LHH. The second cross-validation level iterates through K = 1 . . . 10
mixture components, where the first level is conducted for every K. The number
of shape clusters is equal to the number of mixture components, which results
in the highest mean test LLH.

In order to identify shape appearance of the natural formed clusters, a new
GMM is trained on the entire data set, where the number of mixture components
is equal to the number of estimated shape clusters. We can now use the model to
randomly sample PCA loadings within the different shape clusters and generate
synthetic shapes base on the loadings by:

x = x̄ + Pb (6)

The synthetic shapes can be visualized to identify the different shape appearance
of each cluster.

The GMMs are fitted to the training data by estimating a set of model
parameters: π, μ, and Σ, that maximize the LLH function. In this work, we
estimate the parameters by the Expectation Maximization algorithm, with 100
random initialization and use the set of model parameters with highest training
LLH.

4 Results

The point correspondence framework is applied to our 105 reconstructed LAA
surfaces. We use the template surface shown in Fig. 2a as source. The template is
the average shape of N Procrustes aligned SCOR. The set of SCOR is computed
as an initial registration of S and T , where S is selected randomly from the pool
of LAA surfaces.

We are able to determine point correspondences of the majority of the target
surfaces (103 out of 105), with a median root mean square distance (RMS)
between T and SCOR at 0.6 mm and a 75th percentile at 0.9 mm. The surfaces
with RMS equal to the median and 75th percentile are shown in Fig. 2b and
c, respectively. The figure shows T , where the color scale indicate the distance
between T and SCOR. It is seen that SCOR matches T in most of the surface. It
is also seen that the point correspondence framework are not able to find point
correspondences in the most distal lobes of the LAA. A visual analysis of all
SCOR shows that two of the surfaces have poor point correspondence and are
therefore excluded from the training set, leaving 103 surfaces for the rest of the
analysis.



Statistical Shape Clustering of Left Atrial Appendages 37

(a) Template (b) Median (c) 75th percentile

Fig. 2. (a): Template surface determined as the average shape of the N Procrustes-
aligned point correspondence surfaces (SCOR). (b) and (c) target surface, where the
color scale indicate the distance to the SCOR. (Color figure online)

The point distribution model is trained on the 103 Procrustes-aligned SCOR

and we choose to represent the shapes using their first five PCA loadings. The
first five PCA loadings are used, since the remaining 98 PCA loadings each
describes only a small fraction (less than 5 %) of the total shape variation in the
studied data. Ten GMMs, with K = 1 . . . 10 mixture components, are trained on
the PCA loadings and the test LLH is computed from each GMM using cross-
validation. The mean test LLH and mean train LLH are shown in Fig. 3 for each
validated GMM. It can be seen that, according to the LLH test, a GMM with
two mixture components gets the best validation performance. This means that
the studied dataset of LAA most likely form two different shape clusters.

Fig. 3. Training and testing log likelihood (LLH) after training Gaussian mixture mod-
els (GMMs) on 103 PCA loadings using two level leave-one-out cross-validation.
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In order to identify the shape appearance of the clusters, we train a new
GMM, with two mixture components, on the entire data set. We generate four
synthetic shapes by sampling PCA loadings from mixture component one and
two of the new GMM, which can be visualized in Figs. 4 and 5. It can be observed
in Fig. 4 that surfaces sampled from cluster one have similar LAA morphology,
with an obvious bend in the primary lobe, a particular characteristic of Chicken
Wing morphologies. It can also be appreciated the variability within the cluster
in terms of LAA orifice characteristics and volumes. On the other hand, sur-
faces samples from cluster two, illustrated in Fig. 5, do not present a bending of
the primary lobe, but a wider one with several secondary lobes. These particu-
lar characteristics are typical of non-Chicken Wing LAA morphologies such as
Cauliflower ones.

Fig. 4. Four synthetic shapes generated by sampling PCA loadings from mixture com-
ponent one of a Gaussian mixture model (GMM) with two components.

Fig. 5. Four synthetic shapes generated by sampling PCA loadings from mixture com-
ponent two of a Gaussian mixture model (GMM) with two components.

5 Conclusion

In this work we have presented a full framework for the extraction and quantifi-
cation of shape clusters of left atrial appendages and demonstrated that the two
primary shape clusters broadly correspond to the main LAA morphological cat-
egories in standard clinical classification, Chicken Wing and non-Chicken Wing
LAA shapes. The framework enables future statistical inference on the relation
between LAA shape characteristics and stroke risk.
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