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Abstract. Training an ensemble of convolutional neural networks requires
much computational resources for a large set of high-resolution medical 3D
scans because deep representation requires many parameters and layers. In this
study, 100 3D late gadolinium-enhanced (LGE)-MRIs with a spatial resolution
of 0.625 mm � 0.625 mm � 0.625 mm from patients with atrial fibrillation
were utilized. To contain cost of the training, down-sampling of images, transfer
learning and ensemble of network’s past weights were deployed. This paper
proposes an image processing stage using down-sampling and contrast limited
adaptive histogram equalization, a network training stage using a cyclical
learning rate schedule, and a testing stage using an ensemble. While this method
achieves reasonable segmentation accuracy with the median of the Dice coef-
ficients at 0.87, this method can be used on a computer with a GPU that has a
Kepler architecture and at least 3 GB memory.

Keywords: Convolutional neural network � LGE-MRI � Human atria �
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1 Introduction

In computer vision, major advances in the performance of neural networks comes
empirically from an increase in their number of learnable parameters and in floating
point operations per seconds [1]. In 2015, an ensemble of two ResNets yielded 3.57%
test error in the ImageNet classification challenge. The ensemble is computationally
expensive to train as one ResNet, the version of the architecture with 152 parameters
layers, contains 60-million parameters [2] and uses 11.3 � 109 floating point opera-
tions per second in a single forward pass [3]. Another example is a winning entry for
brain tumor segmentation challenge (BRATS 2017); it deployed an ensemble of
multiple neural networks with unique architectures that were separately trained and
then put together [4].

Segmentation of images of diseased hearts with atrial fibrillation is useful scien-
tifically and clinically. The left atrium can be imaged using 3D late Gadolinium-
Enhanced Magnetic Resonance Imaging [5]. However, manual segmentation requires
expert knowledge and is laborious and time-consuming. Thus, the task of the seg-
mentation of the left atria can be benefited from the use of automated deep neural
networks.
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However, these advanced networks are computationally expensive to train and
deploy. Because of resource constraint, one should not ignore the computational
overhead during training and inference. To this end, this paper aims to emphasize the
importance of the concept of reuse and to demonstrate its practical value in getting
good segmentation performance at a fraction of the overhead. Reuse appears in two
ways. One is transfer learning; the other is an ensemble of networks. The goal is to
strike a balance between memory usage, floating point operations, and segmentation
performance.

Transfer learning is commonly used in object localization/detection and segmen-
tation [6–9]. The theory is that network’s weights after training on a large image dataset
such as the ImageNet dataset are useful in related tasks such as localization and
segmentation. These weights can then be further fine-tuned for other imaging tasks.
The advantage of transfer learning is that these weights’ values provide better con-
vergence to the objective function of a related task than those that are randomly
sampled from a normal distribution. During training, these weights can be tuned, albeit
at a lower learning rate, or be frozen altogether. If these weights are held fixed, one
eliminates the need to perform operations to update them and to store their error
gradient during backpropagation. Furthermore, ensembles of networks typically require
separate training on a number of different neural networks with various architectures or
different weight initialization [10]. To reduce the computational cost of training such an
ensemble, [10] observed that improvement can also be gained by averaging a single
network with a fixed architecture but different values of weights that were captured at
different points in time during training. It has been shown that DenseNet performance
can be boosted by this ensemble technique [10]. During the training phase, the learning
rate was perturbed periodically at regular intervals. This is very different from the
method of learning rate decay or of setting the learning rate to be dependent on the
accumulation of the magnitude of the error gradients over epochs [11, 12]. [13] appears
to support cyclical learning rate as it reduces training time for GoogLeNet with
inception modules and AlexNet in ImageNet challenge without sacrificing the accu-
racy. In addition, Cyclic Cosine Annealing, a recently proposed learning rate schedule,
may help to move network weight values from one local minimum of the parameter
space to the next [14]. An ensemble can improve accuracy for different architectures
such as DenseNet and ResNet by averaging its members [10].

This paper proposes an algorithm that combines (1) ideas from transfer learning to
use weights from ResNet (networks trained on ImageNet dataset for image classifi-
cation task), and (2) techniques to create an ensemble of convolutional neural networks.
The method section provides information on the data used in the heart segmentation
challenge, and training and evaluation methods of the ensemble of neural networks.
The result section delineates the progress of training, validation and testing. The dis-
cussion section summarizes the key findings, and it shows that the lessons learned from
classification tasks can be carried forward nicely to segmentation tasks. The conclusion
describes future directions of this paper.
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2 Methods

2.1 Data Source

The dataset contains 100 cases of 3D late gadolinium-enhanced (LGE)-MRIs with a
spatial resolution of 0.625 mm � 0.625 mm � 0.625 mm. These images have 88
slices in the z direction and either 640 � 640 or 576 � 576 in the x and y directions
respectively. The edges of the 640 � 640 were trimmed down to 576 � 576. No
additional data source was used except this MRI dataset. These images have detailed
structural information of the diseased hearts, showing atria and its scar. Heart functions
are linked to their structures [15, 16]. All the images of the hearts are in grey-scale, and
come with a ground truth mask that outlines the left atria.

2.2 Data Processing

As the intensity contrast of the MRIs was low, contrast limited adaptive historgram
equalization technique was used to enhance its contrast [17]. This technique worked by
locally enhancing the contrast of the images. It used a pixel neighborhood in which the
intensity was adjusted. One of the crucial parameters was thus the size of this neigh-
borhood/ kernel. As the kernel size varied, the output image differed. A range of kernel
sizes was tested from ¼ down to 1/128 of the image’s height. The final selection
included sizes of 1/8 and 1/32 on an ad hoc basis. These two kernels operated on
different scales and thus revealed different boundaries of the part to be segmented.

2.3 Image Processing and Augmentation

The original resolution of the MRI scans was down-sampled to 88 by 112 by 112 using
a bi-cubic interpolation at each depth to save memory usage. Out of these 100 cases,
training took 70%; validation 10%; testing 20%.

To augment the dataset, image transformations were performed, including his-
togram matching and various image transformations (rotation, cropping and translation,
zooming, skewing, shearing, randomly erasing patches, tilting, flipping and reversing
stack orders). The rotation operation randomly rotated the images at an angle between
0-360°. The cropping and translation operation randomly cut out 2/3 of the stack of
images using a square bounding box that was randomly placed inside the scans. The
zooming operation randomly zoomed in and out based on a ratio between 1.5 and 0.5.
The perspective skewing calculated a transformation plane that, out of four corners
(upper left, upper right, lower left or lower right), skewed toward one corner. The
tilting operation calculated the transformation plane that, out of four sides (top, bottom,
left and right), tilted toward one side. The shearing operation transformed the image in
either x or y direction at an angle that was chosen randomly between ±25°. The
erasing operation erased a rectangular patch whose width and height ranged from 10%
to 100% of the input’s width and height. As the width and height were chosen ran-
domly and independently, the shape of the patch was usually a rectangle, even though a
square was possible. The reverse of stack order meant the slices in the depth direction
were sorted back to front. The flipping operation flipped the images either sideway or
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upside down. The histogram matching first normalized the cumulative distribution of
pixel intensity of a source and a template, both sampled at random from the cases.
A source was to be matched to a template. The quantiles of the source’s pixel intensity
were mapped and adjusted to the corresponding values dictated by the template’s
distribution. If the amount of free hard disk space is of concern, one can opt for
augmenting dataset during training on demand rather than storing the transformed
images and masks on hard disk. As a result of the augmentation procedure, the training
dataset increased to 11250 cases while the validation and the testing datasets both
increased to 3750.

2.4 Network Training, Validation and Testing

Figure 1 is the schematic of the proposed architecture of our deep convolutional neural
network. The inputs were two stacks of the contrast-enhanced MRI scans from an
identical case. The 2D feature maps produced by pre-trained ResNet34 were repre-
sented by flat squares. The layers of ResNet that could extract highly expressive
features were kept in the original sequential or hierarchical order, and the rest (clas-
sification layer and the pooling layer) were discarded. Specifically, these layers were
layer 0–2, 4, 5, 6, 7 in Pytorch implementation. The feature maps were then con-
catenated to show the two input stacks at each level. Subsequently, 3D convolution was
performed on them to account for the fact that the object to-be-segmented was 3D.

Fig. 1. An overview of the neural network architecture. The input is contrast-enhanced with 1/8
and 1/32 kernels. The weights from the ResNet34 process the stacks slice by slice in 2D. The
resultant feature maps are then convolved with 3D filters at their corresponding levels (horizontal
arrows). The feature cubes are interpolated to match the dimension of the upper levels and then
concatenated with those higher up. Inputs are reused and concatenated to the highest level. The
network predicts the mask by 3 � 3 � 3 convolution, followed by sigmoid activations and
interpolation. The size of the squares and cubes alludes to the change in dimension. The detailed
dimension (number of feature channels, depth, height, width) is written in bold near to the layers.
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3D Convolution was followed by batch-norm [18] whose outputs were passed
through a rectified linear unit [19]. The network resembled U-Net or V-Net on the
ascending arm [20, 21]. It expanded its resolution and joined the lower level to the
upper level level-by-level. In order to match the dimensions between the upper and
lower levels, interpolation was used to obtain the exact size and to minimize
misalignment. Finally, the features went through a 3D 3 � 3 � 3 convolution with
sigmoid activation units for binary classification or segmentation. An additional
interpolation pushed the predicted mask to the dimension back to the original scans.
Unlike U-Net, this network’s architecture is a hybrid with the descending arm com-
posed of 2D convolutions from a pre-trained ResNet34 and ascending arm composed
of 3D convolutions.

Dice loss as in [21] was used, for it seemed to be more suitable than cross-entropy
loss for segmentation. It penalized both false positive and false negative and thus was
more similar to that of Dice coefficient, the scoring criterion. The total loss was cal-
culated as a sum of the Dice losses on all individual slices. On segmenting, this
automatically put more weights on the smaller parts than the larger parts. Misclassi-
fication of small regions as appeared on the MR images became costlier mathematically
because of the ratios among true positive, false positive and false negative in Dice loss.
As the region shrank, any misclassified voxel would give rise to an increase in the loss.

Training began by randomly shuffling the training set. The learnable weights’
values were initialized as in [22]. The mini-batch size was 5. Adam algorithm [11]
optimized the network.

Learning rate, one of the hyper-parameters, is hard to optimize. A learning rate test
as in [13] was run to estimate a suitable learning rate value range. In that paper, the
suggestion is to try a wide range of learning rates for any particular configuration (such
as minibatch size, dataset, objective function, and network architecture). The learning
rate test began training a network from the slowest to the fastest rate, and the accuracy
for each level of the rates was recorded. The optimal range was characterized by the
rise in the accuracy. In this study, the learning rate test examined log10 of learning rates
spanning −4 to 0. At each level, 10 weight updates were performed and the means and
standard deviations of the Dice coefficients were recorded (Fig. 2a). The optimal range
was later found to be between 0.003–0.03. Throughout the course of training, the
learning rate schedule was a triangular waveform with a period of 50 weight updates
and a peak of 0.03 and a trough of 0.003. The weights were saved at checkpoints which
were set at every 200 weight updates.

Cessation of improvement was determined by a paired sample t-test. 20 randomly
selected samples in the validation dataset were fed to the networks at different
checkpoints. Training was terminated when t-tests showed no improvement in the
validation loss. While t-test may not be necessary for determining whether difference in
losses exists, it can still be useful as it quantifies the lack of difference by its p-value.

Amongst the checkpoints, six were selected based on their low validation losses.
Afterwards, an ensemble of networks was formed by selecting a number of members
up to all the six checkpoints. Once the ensemble was created, the ensemble’s prediction
was a simple average of all the predictions made by the members. To identify an
ensemble that yielded low validation loss, several combinations were tried and the one
with the lowest loss was kept aside. The ensemble’s prediction, by nature, was
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continuous, between 0–1, owing to the sigmoid activation function. To obtain a binary
mask, the prediction was thresholded at a cutoff value. By comparing changes in Dice
coefficients of predictions given by the earlier ensemble at different cutoffs, the optimal
threshold was the one that yielded the highest Dice coefficient.

Testing was conducted on 63 combinations of ensembles of neural networks using
up to the six aforementioned checkpoints. The smallest ensemble included a single
network that was loaded with weights at a single checkpoint; the largest ensemble
included six networks with weights from all the six checkpoints. Each test ran on 50
randomly selected samples in the augmented test set. The performance was quantified
by the median of the Dice coefficients.

3 Experimental Results

The results are delineated in the order of training, validation and testing. Figure 2a
plots the results of the learning rate test. Between –4–0, an optimal range of values sits
between −1.5–−2.5 (log values)/0.003–0.03 because of higher average Dice coeffi-
cients. This optimal range was set to be the peak and tough of the cyclical learning rate
schedule. Figure 2b shows the Dice loss of validation dataset at various checkpoints.
The rhythmic rise and fall of the loss mirrors the cyclical learning rate. The peaks of the
learning rate waveform have likely assisted the network in exploring the possible
parameters’ space, thereby dislodging the weights from one local minimum to the next.
The price tag is a temporary increase in loss. Paired sample t-test reveals no significant
evidence that the loss of checkpoint 4440 is different from that of checkpoint 3920
(p-value: 0.72). This suggests further training may not be needed. The binary mask was
obtained by thresholding the network’s prediction. The optimal threshold is at 0.37,
giving a Dice coefficient of 0.85.

The evaluation of the performance of the ensembles was performed in two ways,
using the test set. The first is a graphic method in which the network’s mistake and

Fig. 2. (a) shows the results of a learning rate test. The optimal range for the learning rate spans
over the hump (rise in Dice coefficient). The range of −1.5–−2.5 was used in training in the form
of a cyclical learning rate scheme. (b) shows validation loss at different checkpoints. The
validation loss rose and fell, like a ripple, as a consequence of the learning rate scheme, and it had
shown little or no improvement after the ripple settled down. Those checkpionts, with lower
losses, were selected in a list of candidates for an ensemble.
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correctness were plotted against the ground truth. The second is a quantitative way in
which the median of Dice coefficients was calculated.

Figure 3 shows a side-by-side comparison between a ground truth and a predicted
mask estimated by an ensemble of a test case. While the region of true positive highly
aligns with that of the ground truth, the regions of the false negative and false positive
are small and very small respectively. Figure 4 summarizes the top 16 medians of the
Dice coefficients produced by ensembles of different combinations of neural networks.
The performance of the ensembles is sensitive to group size and combinations of
networks with a specific selection of weights. It is worth pointing out that only the first
and the seventh columns represent the score given by a single network. The rest are
ensembles of two or more networks.

4 Discussion

The findings of this paper align with the existing view of the behavior, in general, of
ensembles of neural networks and with the effect of using cyclical learning rate
schedules in training. However, it is important to emphasize the difference between this
work and the existing literature. The existing view is that ensemble outperforms
individuals in terms of robustness and accuracy [10, 23]. The performance does not
guarantee to improve by a merely increase in size. The optimal combinations for an
ensemble are normally found by trial and error. The finding in this paper confirms this
view. The ensemble of networks in Fig. 4 often produces slightly better results than its
individual members because, amongst the 16, only two were single networks. As the
Dice coefficient rises, it is hard to identify a clear pattern of combination of networks
that would work best. The performance gain is hypothesized to be a result of averaging
predictions by various sets of weights at saddle points or local minimums on the path of
parameter optimization during training.

The cyclical learning rate schedule has been observed to produce an oscillating
pattern [13, 14]. [10] deployed similar schedules for training and had found that the
oscillation was a consistent hallmark. The exploration using fast learning rate can be
beneficial in the long run despite temporary increase in loss as observed in this work.

Fig. 3. A side-by-side comparison between the ground truth mask and a predicted mask
estimated by an ensemble during testing. This case obtained a Dice coefficient of 0.87. Yellow
region highlights the false positive, the false negative, and the true positive of the prediction as
well as the ground truth. The shape formed by true-positive pixels resembles the shape of the
ground truth. (Color figure online)
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What makes this work novel is that the ensemble’s objective is to segment images
whereas the existing work in the literature concerns image classification. Although
segmentation can be regarded as a classification task between yes or no, it is still non-
identical to classifying many classes of objects such as 1000 different classes in
ImageNet Classification Challenge. Nonetheless, the finding of this work indicates that
the existing tricks for training neural networks also apply in segmentation tasks. The
benefit of using transfer learning, cyclical learning rate schedule and ensembles is
reduced computational overhead. In this work, while training needs only 2.4 GB of
memory on GPU, testing requires no more than 3.0 GB. Consequently, it is possible to
implement this work on a computer with a GPU that has a Kepler architecture and at
least 3 GB memory.

5 Conclusions and Future Work

This work demonstrates a feasible pipeline that helps train an ensemble with limited
computational resources. It suggests that the tricks used in image classification can be
carried forward to segmentation. The future work will include evaluations of different
learning rate schedules, and investigations of the benefits and harms of various image
augmentation techniques. As learning rate is often set to monotonically decay during
training, future studies should compare how the generalization of ensembles improves
under various learning rate decay schedules and other cyclical learning rate schedules
with different waveforms, periods, and peak and tough values. The speed of network
training will also be explored under the influence of different schedules. Moreover, this
preliminary work deploys many image transformation techniques, but their potential
impacts on ensemble’s performance are unclear. In other words, how the transforma-
tion techniques work to boost the ensemble’s ability to achieve good segmentation in
unseen patient cases should be considered. Future work will investigate the balance

Fig. 4. The size and membership of an ensemble can often produce variation in the level of
accuracy. The above plot highlights the median of Dice coefficients produced by ensembles of
different combinations of neural networks at different checkpoints. A black square means the
inclusion of that checkpoint. A white square means the opposite. The series of black squares
down each column represents the configuration of that ensemble. The x axis shows the Dice
coefficient in an ascending order. The y axis shows which checkpoints were used in the ensemble
of networks’ weights.
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between the computational overhead on the image augmentation and performance
gains, and will consider ways to fine tune or adjust parameters of these techniques as to
better reflect the characteristics of MRI data of the hearts.
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