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Abstract. In this paper, we present a novel method for the real-time
cardiac motion compensation. Our method generates interpolated car-
diac motion using segmented mesh models from preoperative 3D+T com-
puted tomography angiography (CTA). We propose a pair-wise mesh
registration technique for building correspondence and interpolating the
control points over a cardiac cycle. The key contribution of this work is a
rapid creation of a deformation field through a concise mathematical for-
mulation while maintaining desired properties. These are C2 continuity,
invertibility, incompressibility of cardiac structure and capability to han-
dling large deformation. And we evaluated the proposed method using
different conditions, such as deformation resolution, temporal sampling
rates, and template model selection.

Keywords: Cardiac · Spatiotemporal · Registration · Deformation ·
4D motion modeling

1 Introduction

Cardiovascular diseases (CVDs) are a leading cause of death in developed coun-
tries [3]. Not only CVDs is one of the most mortality but also it is reported as
a major cost burden on health-care system in North America [14]. Health-care
cost of CVDs is continuously growing as developed countries become an aging
society [14]. In practical treatment of CVDs, cardiovascular imaging systems
and techniques became a gold standard for diagnosis and functional analysis
[4,12]. Analyzing a cardiac motion over cycle, it helps to reduce morbidity and
mortality induced from cardiovascular disease [11].

A number of studies for cardiac motion have been conducted using spatiotem-
poral images, such that ECG-gated CT angiography [8] and tagged MRI [7].
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In order to estimate a cardiac motions, registration method is crucial to building
a correspondence between anatomic land-marks and to computing a deforma-
tion fields between different cardiac phases [6,9,13]. Although many of authors
have studied motion modeling of using registration methods, these are still suf-
fered from the heavy computation of displacement field and lack of correspon-
dence between scenes. Also, a large amount of data is required for statistical
population-based approach to cover a variability of shapes.

In this study, we propose a novel 4D cardiac motion modeling method using
cage deformation scheme. For efficient computation, we formulate a representa-
tion of an object using control points and constant weight values. Thus defor-
mation is only governed by the position of control points. In order to estimate
a cardiac motion, shape interpolation method is addressed with pair-wise mesh
registration. Proposed motion modeling method resolves lack of correspondence
and heavy calculation of displacement field, therefore, it is suitable for real-
time use.

2 Related Work

We categorize the studies of cardiac motion analysis methods into their (1)
motion modeling method and (2) applications.

Motion Modeling Methods. In cardiac motion modeling, the one of the
desired property is spatiotemporal continuity. In the aspect of temporal con-
tinuity, group-wise registration method defines a cost function accumulatively
or globally. This approaches register multiple objects simultaneously, therefore
it improves consistency and continuity between scenes [9,13,15]. In spatially, the
spatial transformation model governs the way of regional displacement between
scenes. Basis functions and parametric models use a basis function or parametric
geometries, such as splines, curves, and surfaces, to represent the regional move-
ment of the anatomical object, smoothly. Also, data-driven methods use a plenty
of data to model a deformation of the anatomical object [1]. The variability of
shape can be analyzed by a statistical method.

Applications. The main application of cardiac motion modeling is image guided
intervention. Recently, Yabe et al. report the motion compensation and real-
time visualization of coronary arteries significantly reduce the contrast volume
and fluoroscopic time while percutaneous coronary intervention [17]. In ablation
therapy, Wilson et al. studied an electrophysiological (EP) mapping method that
is essential for arrhythmia treatment [16], they introduced the patient-specific 4D
cardiac mapping method to improve EP mapping under the dynamic situation.
In the perspective of diagnosis and monitoring, Gilbert et al. proposed a rapid
quantification method for biventricular function using standard MRI [5].

Creating Motion Model for Complex Structure. Tiny and complex struc-
tures of the heart, such as coronary arteries, are very challenging to model
dynamically. Due to the motion artifacts and topological/geometrical variations,
Baka et al. shifted the problem of motion modeling from coronary arteries to
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the attached muscle [1]. Representation of lumen changes is limited because they
focus on the centerline of the coronary artery.

In this context, we propose a novel 4D motion modeling method for either
convex/non-convex structures using pair-wise registration and shape interpola-
tion. Our contribution is to simplify a shape deformation, therefore it is possible
to real-time usage.

3 Method

Proposed 4D shape modeling method mainly consists of pair-wise registration
and shape blending method. In order to build the correspondence between sam-
pled cardiac phases from 4D CT, pair-wise registration is conducted between seg-
mented meshes from 4D CT. After pair-wise registration, control points govern-
ing the shape deformation are interpolated for the whole cardiac phase (Fig. 1).
The result of interpolation creates a 4D shape model.

Fig. 1. Generating a 4D motion model for the cardiac structure periodically changing
according to the motion of the heart (left). Transforming the source object into target
object by optimizing the cost function (right).

3.1 Shape Representation for Cardiac Structures

The shape of the cardiac structure is obtained by segmentation from volumetric
images, such as CT, 3D ultrasound, and MRI. In this paper, we use a mesh
representation for shape in order to model a specific cardiac structure, such as a
coronary artery, atrium, or ventricle. A shape V is defined as a mesh that consists
of vertices, edges and faces. Therefore, V = {v1, . . . , vIV } and E = V ×V , where
vk ⊂ Rd, IV is number of vertices, and d is a embedding dimension of an object.
Let us consider a sequence of objects from spatiotemporal image, such as 4D
CT, then a sequence is Vs = {V1, . . . , Vn} where Vi is a shape.
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3.2 Landmark Base Registration

The purpose of registration is to find the best alignment from source to target,
source is referred as moving mesh by transformation and target is destination.
Now, let mesh Vs ∈ V be a source, and mesh Vt ∈ V be a target, respectively.
The goodness of alignment is measured by cost function. Cost function C is
defined as

C :=
∑

d(T (x) ◦ Vs), Vt) (1)

where d is a disparity measure between meshes Vs and Vt. For simplicity, we use
the Euclidean distance. T is a transformation model, and x is a transformation
parameter. The best transformation parameter x∗ is optimized by minimizing
cost function,

x∗ = arg min
x

C = arg min
x

∑
d(T (x) ◦ Vs, Vt) (2)

3.3 Shape Deformation

In order to formulate a shape deformation, we assign a displacement vector,
ui ∈ Rd, to each of vertices. Displacements of vertices represent a shape defor-
mation as

T : V → V + U(x) (3)

where U(x) is movements of vertices about transformation parameter x. Shape
deformation U(x) can be decomposed by affine transformation A ∈ Rd×d and
non-linear deformation u(x),

T : V → V + U(x) = A(xa) ◦ V + u(x) (4)

where xa is affine parameter and u(x) = (V − A(xa) ◦ V ) + U(x) is a local
deformation after global affine transformation.

3.4 Finite Element Mapping for Deformation Modeling

In order to represent the object V using control points, let domain Ω be Ω =
[min(V ),max(V )], where Ω defines a bounding box of object V . Ω is partitioned
by md number of evenly spaced grid and (m + 1)d control points.

A cage P consist of control points VP = {pi}i∈IP ⊂ Rd, where IP is number
of control points and pi is a control point. If a point v ∈ Rd is inside cage P , such
that v ⊂ ΩP = [min(P ),max(P )], then given vertex v ∈ Rd can be represented
by control points as below,

v = F (v;P ) =
∑

k∈IP

ϕk(v)pk (5)
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where F (·, ·) is a finite element mapping and ϕk(·) is a weighting function with
respect to given vertex v. For example, a 3D weighting functions are ϕ1(x, y, z) =
(1−x)(1−y)(1−z)

8 , ..., and ϕ8(x, y, z) = (1−x)(1+y)(1+z)
8 . After weighting functions

are determined, the movement of vertex v only depends on control points,

v′ = F (v;P ′) =
∑

k∈IP

ϕk(v)p′
k (6)

where P ′ represents the changed cage P , such that VP ′ = {p′
k}k∈IP ⊂ Rd. The

moved vertex v′ in (6) can be rewritten using (4) as below,

v′ = A(xa) ◦ v + u(x) =
∑

k∈IP

ϕk(v)(A(xa) ◦ pk + uk(x)) (7)

3.5 Optimization

As we mentioned in Sect. 3.2, registration problem is rewritten as optimization
of cost function. We define dissimilarity measurement, as below

d(Vs, Vt, x) =
∑

i∈IVs

min
j∈IVt

|T (x) ◦ vi − vj |2 (8)

where vi ∈ Vs and vj ∈ Vt.
The regularization supports that the deformation became a diffeomorphism,

therefore deformation is invertible and smooth. We are inspired from [2]. The
hyper-elasticity regularization is easily extended to proposed deformation set-
ting. The hyper-elasticity regularization is defined as below

Shyper(x) =
∫

α1ϕvol(x) + α2ϕsur(x) + α3ϕlen(x)dΩ (9)

where αi are balancing parameter and ϕvol, ϕsur, ϕlen are cost functions that
penalizing a change of volume, area, length. Control points of cage P act like
corner points of hexahedron of [2]. By introducing the hyper-elasticity regular-
ization, cost function has an infinity value for non-diffeomorphic transformation.

The cost function is combination of dissimilarity measurement and regular-
ization as below,

C(Vs, Vt, x) = d(Vs, Vt, x) + Shyper(x) (10)

We decouple optimization process into two steps, (1) finding global affine
transform (x∗

a) and (2) finding non-linear transformation (x∗) with regulariza-
tion. In step (1), we neglect regularization energy. Updating control points is
simply iterative closest point (ICP). In step (2), we use Levenberg-Marquardt
(LM) method to optimize a non-linear least square problem. In order to use gra-
dient decent optimization, the derivative of dissimilarity measurement is given
as below,

∂

∂x
d(Vs, Vt, x) = 2

∑

i∈IVs

∑

k∈IP

ϕk(vi)(vT
i − vT

j ) (11)

where vi ∈ Vs and vj ∈ Vt.
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3.6 Interpolation of Shapes

Let a vector Pk = {pk1, pk2, . . . , pk((m+1)3−1), pk(m+1)3} be set of control points
at k-th object, where pi ∈ Rd, d is embedding dimension. By registering a
template shape to the k-th sequence, the control points are updated P(k) =
AkPk + Uk, where Ak is an affine transformation and displacement of control
points is Uk = {Δpk1,Δpk2, . . . ,Δpk((m+1)3−1),Δpk(m+1)3}.

From sets of control points, S(t) = {s1(t), . . . , s(m+1)3(t)} is interpolated,
where si(t) is a spline function of corresponding control points. In our imple-
mentation, closed cubic spline is used. Therefore, spline vector S(t) has C2 con-
tinuity with respect to t. A vector function S(t) is a interpolated control point of
time, which maps S : R → R(m+1)3×d. Then shape is function of time as below

v(t) = F (v;S(t)) =
∑

i∈IV

φi(v)si(t) (12)

4 Evaluation and Discussion

In order to evaluate the performance of 4D modeling, we used anonymous patient
data. A patient data was evenly sampled from 4D CT within R-R peak (5%
sampling interval), therefore, 20 volumes (M0%, M5%, ..., M95%) were available.
The coronary artery models were manually segmented from CT volumes using
ITK-Snap [18]. Through the evaluation, we observed (1) the effect of cage par-
titioning, (2) the effect of the phase sampling, and (3) the effect of the template
model. We define the discrepancy of modeling by an average Euclidean distance
of bijective closest point pairs as below

d =
1

IBi

∑

i∈IVs

min
j∈IVt

|T (x) ◦ vi − vj |2 (13)

where IBi is the number of bijective pairs.

4.1 Effect of Cage Partitioning

In this section, we observed the effect of cage partitioning. Cage partitioning gov-
erns the degree of freedom for deformation. The spatial partitioning is defined by
the number of cage control points. For example, let a region ΩS be the bounding
box of a source model Msource, then a cage partitioning produces the cages that
ΩS = Ω{0,0,0} ∪ Ω{1,0,0} ∪ · · · ∪ Ω{i,j,k}, where i, j, k are the number grid parti-
tioning in 3D. We compared different partitioning resolutions [i, j, k] as 4 cases
that are [2, 2, 2], [4, 4, 4], [8, 8, 8] and [12, 12, 12]. We measured the discrepancy
between the registered mesh model M ′

i% and manually segmented model Mi%.
As Fig. 2, the resolution of cage partitioning affect the accuracy of registration,
the higher resolution provide the lower error. Time consumption for creating 4D
model was 15 min for [2, 2, 2], [4, 4, 4], 20 min for [8, 8, 8], and 30 min [12, 12, 12]
using Intel i7-7700K CPU.
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Fig. 2. Comparison of different partitioning resolutions [i, j, k] as 4 cases that are
[2, 2, 2], [4, 4, 4], [8, 8, 8] and [12, 12, 12].

4.2 Effect of the Phase Sampling

In order to observe the effect of sampling, the proposed 4D model was compared
to manually segmented model under different sampling conditions. Our data
contain 20 volumes per each patient, we were able to select some volumes to
create the 4D model. For example, if a sampling step is 10%, then M0%, M10%, ...,
M90% are selected. We selected the 75% phase as the template model. The missed
models are generated from 4D model. For example, if a sampling step is 10%,
then missed models are M ′

5%, M ′
15%, ..., M ′

95%). We calculated the discrepancy
between the interpolated model M ′

i% and manually segmented model Mi%. As
Fig. 3, the temporal sampling largely influences the accuracy of 4D modeling,
the higher temporal sampling rate provides the lower error.

Fig. 3. The effect of sampling was observed by comparing manually segmented models
and interpolated models under different conditions (5 samples {15, 35, 55, 75, 95}, 10
samples {5, 15, 25, 35, 45, 55, 65, 75, 85, 95} and 20 samples). We use [8, 8, 8] partitioning
and 75% phase as template
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4.3 Effect of Template Model

Because of the very complex movement of the cardiac structure, quality of the
cardiac image depends on the selection of phase [10]. This variation of image
quality affects the visibility of cardiac structures, therefore, segmentation results
are non-consist. We observed the select of template model section, we selected
the 35% and 75% phases as the template models, that are known as the least
movement phase [10]. Although the template models are different, trend of dis-
crepancy is similar (Figs. 4 and 5).

Fig. 4. The discrepancy between the registered mesh models and manually segmented
mesh models under different template model selection (35% and 75%). We use [8, 8, 8]
partitioning.

Fig. 5. The colored coronary arteries and cages show the amount of displacement from
the template model (75% cardiac phase) (Color figure online)

5 Conclusion

In this study, we present a pair-wise registration and shape interpolation method
for 4D motion modeling. In order to formulate the shape deformation concisely,
we use a finite element mapping. A shape is represented by cages that con-
sist of control points and their weighting constants. Therefore, the deformation
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only depends on the change of control point. Also, the deformation is decom-
posed by global affine transform and local non-linear deformation to cover large
deformation.

However, local non-linear deformation can’t ensure to be diffeomorphic defor-
mation. By using hyperelastic regularization of [2], the non-diffeomorphic defor-
mation is penalized. Thus, our deformation model is able to cover large deforma-
tion while preserving diffeomorphism. One of desired property of cardiac model-
ing is the incompressibility, this is provided by regularization term and decom-
position of motion. The correspondence of control points is given by pair-wise
registration between different objects, then the corresponding control points are
interpolated by spline function over the time domain. The spline interpolation of
control points is smooth and invertible, because of the inherited property from
spline function.

Despite we use a regularization term for the method, this regularization term
doesn’t ensure that the volume preservation while interpolating shapes. The
motion of the right coronary artery is very dynamic within the cardiac interval
of 0% to 20%, therefore, it is hard to accurately segment. These non-consist
segmentation results produce the large error at that interval.

Combination of pair-wise registration and control points interpolation recon-
structs the cardiac model at any time point. The proposed method enables to
simplify the shape deformation by introducing finite element mapping. Although
[12, 12, 12] partitioning spend 30 min to create 4D motion modeling, it is able
to real-time rendering (60 fps) during the cardiac intervention. Because shape
deformation is simply represented by control points that change over time.
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