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Abstract. The segmentation and classification of atherosclerotic plaque
(AP) are of great importance in the diagnosis and treatment of coro-
nary artery disease. Although the constitution of AP can be assessed
through a contrast-enhanced coronary computed tomography angiogra-
phy (CCTA), the interpretation of CCTA scans is time-consuming and
tedious for radiologists. Automation of AP segmentation is highly desired
for clinical applications and further researches. However, it is difficult due
to the extreme unbalance of voxels, similar appearance between some
plaques and background tissues, and artefacts. In this paper, we propose
a vessel-focused 3D convolutional network for automatic segmentation
of AP including three subtypes: calcified plaques (CAP), non-calcified
plaques (NCAP) and mixed calcified plaques (MCAP). We first extract
the coronary arteries from the CT volumes; then we reform the artery
segments into straightened volumes; finally, a 3D vessel-focused convolu-
tional neural network is employed for plaque segmentation. The proposed
method is trained and tested on a dataset of multi-phase CCTA volumes
of 25 patients. We further investigate the effect of artery straighten-
ing through a comparison experiment, in which the network is trained
on original CT volumes. Results show that by artery extraction and
straightening, the training time is reduced by 40% and the segmentation
performance of non-calcified plaques and mixed calcified plaques gains
significantly. The proposed method achieves dice scores of 0.83, 0.73 and
0.68 for CAP, NCAP and MCAP respectively on the test set, which
shows potential value for clinical application.
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1 Introduction

Coronary artery disease (CAD) is one of the biggest causes of mortality in the
world. It is usually caused by atherosclerosis, of which the plaques are divided
into three subtypes: calcified (CAP), non-calcified (NCAP) and mixed calcified
(MCAP). The plaque composition is an important indicator for the diagnosis
and treatment of CAD [1].

Contrast-enhanced coronary CT angiography (CCTA) allows assessment of
AP composition, while it is demanding to interpret CCTA scans due to the
large volume of data and the numerous segments of coronary arteries. Therefore,
automatic segmentation and classification of AP is highly desirable. It can not
only facilliate the interpretation of CCTA scans, but also provides a quantitative
measurement of AP. However, AP segmentation on voxel level is difficult due to
extreme unbalance of voxels (much more background voxels than plaque voxels),
similar appearance between some plaques and background tissues, and artefacts.

Many studies have focused on CAP segmentation in 3D CT volumes. CAP is
characterized by bright appearance in CT images, which can be easily discerned
in both non-contrast-enhanced and contrast-enhanced cardiac CT. Wolterink
et al. [2] summarized CAP segmentation methods. In non-contrast cardiac CT
scans, CAP can be detected by a threshold of 130 HU [3] and subsequent classi-
fiers, while in CCTA the detection threshold may vary depending on protocols,
scanners and contrast agents, and thus special techniques are needed to deter-
mine the threshold. CNN-based methods have emerged recently, which typically
consist of two network: the first performs a rough segmentation to restrict the
area of interest and the second performs a meticulous segmentation [4,5].

Although fewer studies have covered the segmentation of NCAP and MCAP,
the detection of them is important because they are more prone to rupture and
result in acute coronary syndromes such as stroke and sudden death. In con-
trast to CAP, NCAP and MCAP show similar intensity with surrounding tis-
sues, which makes segmentation of NCAP and MCAP more challenging (Fig. 1).
[6] adopts a two-fold methodology for NCAP segmentation, in which the first
step extracts the coronary arteries and NCAP is detected based on the extracted
arteries. To our knowledge, there is no existing method that segments all three
subtypes of AP at the same time.

(a) CAP (b) NCAP (c) MCAP

Fig. 1. Atherosclerosis plaques in CT images. CAP is characterized by bright appear-
ance while NCAP shows similar intensity with surrounding tissues. MCAP is a mixture
of bright and gray area.
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Recently, fully convolutional neural networks (FCNs) have demonstrated
state-of-the-art performance on many challenging image segmentation tasks. 3D
U-Net [7] is one example that is especially suitable for medical image analysis.

In this paper, we propose a robust method based on 3D FCNs for automatic
coronary artery plaques segmentation including all three types. To begin with,
a bounding box encasing the coronary arteries are automatically generated for
the purpose of reducing computation. Then we extract the coronary arteries and
reform artery segments into straightened volumes as inputs of the network using
multi-planar reformation (MPR) technique. Finally, a vessel-focused 3D convo-
lutional network with attention layers [8] is trained to segment subtypes of AP.
We further investigate the effect of artery straightening through a comparison
experiment in which the network is trained on original data.

2 Method

The main challenges for the segmentation of artery plaques include:

– class imbalance (a lot more background voxels than plaque voxels)
– high variability of the plaque appearance
– high similarity between non-calcified plaques and background

To address the first two problems, we first extract and straighten vessel seg-
ments along artery centerlines as inputs, which restricts the volume-of-interest
that alleviates the class imbalance and simplifies the analysis of lumen curvature
variation and surrounding tissues. We also use a multi-class Dice loss function
that increases the cost of segmentation mistakes on the plaques.

To better distinguish plaques from background tissues, we design a U-Net [9]
like encoder-decoder network with residual blocks that preserve the signals from
shallow layers, deep supervision that encourages multi-scale segmentation and
attention layers [8] that helps to locate the pathologies.

Figure 2 shows the workflow of the proposed method. The network architec-
ture is described in detail in Sect. 2.3.

Fig. 2. Flowchart of the proposed method.
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Fig. 3. (a) Auto bounding box generation. Three convolutional neural networks (Con-
vNets) are trained on axial, sagittal and coronal planes respectively and determine the
boundary of coronary artery on each axis. (b) Illustration of the 3D MPR technique.
Cross-sectional planes are extracted along the centerline and stacked into a rectangular
volume.

2.1 Auto Bounding Box Detection

To restrict the volume-of-interest for computation reduction, three ConvNets are
employed to determine the bounding box around the heart for the comparison
method (Fig. 3(a)). Slices along different directions are given a label (1 for slice
with coronary). We use 100 additional volumes to train the ConvNets. Each
ConvNet is a pretrained AlexNet [10], while we added an additional neuron with
sigmoid activation on top of the original AlexNet output for the binary classi-
fication and fine-tuned the networks on three orthogonal planes (axial, sagittal,
coronal). We chose the utmost predicted foreground slices as the boundary of
the bounding box to make sure all the coronary arteries were enclosed.
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2.2 Coronary Artery Extraction and Straightening

The coronary artery trees are extracted by MSCAR-DBT [11] which only
requires two manually identified seed points. Vessels with diameter less than
2 mm are left out. The centerlines is then extracted based on the coronary artery
extraction results.

We reform the artery segments into straightened volumes using 3D multi-
planar reformation technique, which is illustrated in Fig. 3(b). We first subdivide
the centerline into n segments with a equal length of 0.5 mm, and obtain n + 1
evenly spaced control points Pm (1 ≤ m ≤ n) along the centerline. Then we
extract cross-sectional planes with a size of 32 × 32 pixels at each control points
and stack them into a rectangular volume. We define the reference vector #»r0 as a
unit vector parallel to the y-axis of

∑
P . Let # »

tm to be the normalized tangent to
the centerline at Pm. The bases of the cross-sectional plane at Pm are calculated
by:

#  »am = #»r0 × # »
tm,

#  »

bm = − # »
tm × #  »am. (1)

Equation 2 defines the mapping of point P (i, j, k) in the straightened space∑
S to the original physical coordinate

∑
P .

∀ i, j, k ∈ Z : −32 ≤ i, j < 32, 0 < k ≤ n, P (x, y, z) = Pk+
1
2
i× # »ak+

1
2
j× #»

bk. (2)

The reformed voxel values are obtained by bicubic interpolation. We cut the
volumes that are longer than 128 voxels into several overlapping segments. The
segmentation results for overlapped areas are obtained by averaging the output
of the overlapping segments.

2.3 Network Architecture

The network is an encoder-decoder network shown in Fig. 4. The left part shows
the encoding path. In each stage, one to three convolutional layers extract
abstract context information. Each layer is with kernels of 3× 3 × 3, symmet-
ric padding, instance normalization and PRelu non linearity. We formulate each
stage as a residual block, that is the input of each stage is added to the output of
the last layer of the stage. Then convolutions with stride two are applied to halve
the resolution and double the number of feature channels. The right part of the
network is the decoding path. Each stage has a similar structure with the left
but consists of a concatenation with the corresponding feature maps from the
attention layers of the contracting path. De-convolution is applied to increase
feature map resolution and halve the number of feature channels.

The idea of attention layer is to use attention gates to implicitly learn to
suppress irrelevant regions in the input while highlighting salient features useful
for plaque segmentations, which is described detailedly in [8].

We employ deep supervision in the expansive path by combining output of
different stages via element-wise summation to form the final network output,
which forces the network to produce an accurate segmentation in an early stage.
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Fig. 4. The proposed network architecture. The networks is an encoder-decoder style
network, with attention gates to select the most useful features from encoder path.
Deep supervision is achieved by combining output of different stages via element-wise
summation.

To address the extreme class unbalance in our data, we use a multiclass dice
loss function [12] instead of the conventional categorical crossentropy loss:

Ldc = − 2
|K|

∑

k∈K

∑
i u

k
i v

k
i∑

i u
k
i +

∑
i v

k
i

(3)

where u is the output of the network and v is a one hot encoding of the ground
truth. For both u and v, i is the number of pixels and k ∈ K being the classes.

3 Experiment Results

3.1 Dataset

We collected ECG-gated 4D-CTA scans by Philip 256-iCT from 25 patients,
among which 13 were diagnosed with AP. The 4D-CT data sets are constructed
in 20 phases: 5%, 10%,..., 100%. The size of each slice is 512 × 512 pixels with an
isotropic resolution of 0.414 mm. The number of slices in each volume ranged
from 213 to 358 with thickness of 0.335 mm. We pick 4 phases (25%, 45%,
55% and 75%) from each patient and obtain a dataset consist of 100 scans,
which allows the network to learn the variance introduced by cardiac motion
and enhances the generalization ability. We select 80 scans as training set and
the rest as test set.

The APs were annotated and classified by 5 trained radiologists, each scan
is only annotated by one radiologist and then examined by a second one. The
annotations serve as ground truth.
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Table 1. Experiment results

Method Dice score Sensitivity PPV

CAP NCAP MCAP CAP NCAP MCAP CAP NCAP MCAP

Proposed
method

0.83 0.73 0.68 0.85 0.76 0.72 0.82 0.69 0.62

Comparison
method

0.87 0.61 0.58 0.89 0.63 0.68 0.86 0.58 0.52

3.2 Comparison Experiment

To investigate the effect of artery straightening, we train a second network with
the same architecture on the original data. Figure 5 shows the workflow of the
method for comparison experiment.

Fig. 5. Flowchart of the method for comparison experiment.

3.3 Training Procedure

We implemented the proposed network in Keras with TensorFlow backend. For
the proposed method, the input size is 64×64×128; for the comparison method,
the input size is 128 × 128 × 128. The initial learning rate was 0.0001, and we
reduced the learning rate by 50% if the validation loss did not improve after 10
epochs. The weights were updated by stochastic gradient descent with Adam
optimizer. We ran more than 200 epochs on four NVIDIA 1080 GPUs.

We use extensive data augmentation techniques including rotation, scaling,
flipping, and smooth dense deformations on both data and ground truth labels.

3.4 Results

We remapped the output of the 3D network to the original space with nearest
interpolation for visualization. Figures 6 and 7 show some examples. We evalu-
ate the performance of the proposed method by true positive rate (sensitivity),
positive predictive value (PPV) and dice score. The dice score of two sets A and
B is evaluated as 2|A ∩ B|/(|A| + |B|).

The proposed method achieved dice scores of 0.83, 0.73 and 0.68 for CAP,
NCAP and MCAP respectively on the test set. Table 1 compares the performance
of the proposed method and comparison experiment. It is shown that both meth-
ods perform well on the segmentation of CAP while proposed achieves significant
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(a) Groud Truth (b) Proposed (c) Comparison

(d) Ground Truth (e) Proposed (f) Comparison

(g) Ground Truth (h) Proposed (i) Comparison

Fig. 6. Segmentation Result. (a)–(c): CAP; (d)–(f): NCAP; (g)–(i): MCAP. CAP is
easily segmented by both methods. However, NCAP shows similar intensity with sur-
rounding tissues, and comparison method fails to distinguish a majority of the plaque
from background in (f), while proposed method successfully segments the whole struc-
ture in (e). MCAP is a mixture of bright and gray area while comparison method only
captures the bright part in (i).

gains in the segmentation of NCAP and MCAP. In addition, the training time
for proposed method is around 40% less than the comparison method because of
the smaller input size, which also demonstrates the benefits of artery straight-
ening. It is also observed during training that the comparison method is more

Fig. 7. Examples of segmentation results in 3D visualization (gray: CAP, red: MCAP).
(Color figure online)
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prone to overfit due to the small dataset while the proposed method benefits
from the MPR transformation that makes the data more uniform and reduces
the gap between training and testing data.

Existing methods only segment one type of the plaques and mostly reports
sensitivity. For calcified plaques(CAP), [13] reports a sensitivity of 91.24%. For
non-calcified plaques(NCAP), [14] reports a sensitivity of 92.5%. The result of
proposed method is comparable to existing results while generalizes to three
subtypes.

4 Discussion and Conclusion

Studies has shown that multi-planar reconstructions are useful in the evaluation
of CT scans of coronary arteries for human radiologists [15]. The comparison
experiment shows that MPR also contributes to a better segmentation perfor-
mance for convolutional neural networks.

The detection and segmentation of artery plaques is very challenging due
to class imbalance, high similarity between non-calcified plaques and high vari-
ability of the plaque appearance. The proposed method achieved dice scores of
0.83, 0.73 and 0.68 for CAP, NCAP and MCAP respectively on the test set.
However, there are several drawbacks of this study. First, the current dataset
only consists of 100 scans from 25 patients, which may not be representative
considering the large variability of plaques. Second, the label for each scan is
annotated by only one radiologist, and thus the network learns the segmenta-
tion regarding inter-observer error, which may hinder the network performance.
Third, the location priors of the plaques are not utilized. In addition, although
the MPR helps to boost the segmentation performance, it relies on the centerline
of coronary artery which can be difficult to extract with the presence of plaques;
and the coronary artery extraction method we are using now is semi-automatic
and can be replaced with recent fully automatic state-of-the-art coronary artery
segmentation algorithms.

To summarize, in this study we propose a pipeline for automatic plaque
segmentation, which shows potential value in clinical use. Results show that by
artery extraction and straightening, the training time is reduced by 40% and
the segmentation performance of NCAP and MCAP gains significantly. The
proposed method remains to be improved and tested on larger datasets.
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