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Abstract. The availability of large scale databases containing imaging
and non-imaging data, such as the UK Biobank, represents an opportu-
nity to improve our understanding of healthy and diseased bodily func-
tion. Cardiac motion atlases provide a space of reference in which the
motion fields of a cohort of subjects can be directly compared. In this
work, a cardiac motion atlas is built from cine MR data from the UK
Biobank (≈ 6000 subjects). Two automated quality control strategies are
proposed to reject subjects with insufficient image quality. Based on the
atlas, three dimensionality reduction algorithms are evaluated to learn
data-driven cardiac motion descriptors, and statistical methods used to
study the association between these descriptors and non-imaging data.
Results show a positive correlation between the atlas motion descriptors
and body fat percentage, basal metabolic rate, hypertension, smoking
status and alcohol intake frequency. The proposed method outperforms
the ability to identify changes in cardiac function due to these known
cardiovascular risk factors compared to ejection fraction, the most com-
monly used descriptor of cardiac function. In conclusion, this work rep-
resents a framework for further investigation of the factors influencing
cardiac health.

Keywords: Cardiac motion atlas · Non-imaging data ·
Dimensionality reduction · Multivariate statistics

1 Introduction

Although much is known about the factors influencing healthy and diseased car-
diac development, the recent availability of large scale databases such as the UK
Biobank represents an excellent opportunity to extend this knowledge. The wide
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range of clinical information contained in such databases can be used to learn
new associations with indicators of cardiac function. In this paper we propose a
framework for performing such an investigation.

Left-ventricular (LV) function has been traditionally assessed using global
indicators such as ejection fraction and stroke volume. The main drawback of
such indicators is that they do not provide localised information about ventric-
ular function, and so their diagnostic power is limited. Motion parameters such
as displacements allow for a more spatially and temporally localised assessment
of LV function. Statistical cardiac motion atlases have been proposed as a way
of making direct comparisons between motion parameters from multiple sub-
jects [1,10]. We use the UK Biobank database to build a cardiac motion atlas
from cine MR images using around 6000 subjects with no known cardiovascular
disease. To ensure that the estimated motion parameters are accurate, two auto-
mated quality control strategies are proposed to reject subjects with insufficient
image quality. We use motion descriptors extracted from the atlas to identify
relationships between cardiac function and other clinical information.

Previously, several papers have tried to analyse the influence of clinical infor-
mation such as smoking, alcohol and body weight on cardiovascular disease [5–
7]. However, these studies were based on a limited number of factors and used
relatively crude indicators of cardiac health, such as categorical variables indi-
cating disease state. In contrast, we exploit the large scale atlas to make use
of more localised motion parameters and also examine a wider range of clinical
information.

Contributions: Our scientific contributions in this paper are threefold. First,
we present, for the first time, a large scale cardiac motion atlas built from the UK
Biobank database. Second, we propose an automated quality control approach
to ensure the robustness of the extracted motion descriptors. Third, we use
the atlas to learn associations between descriptors of cardiac function and non-
imaging clinical information. This automatic framework represents an ideal tool
to further explore factors influencing cardiac health.

2 Materials

The UK Biobank data set contains multiple imaging and non-imaging informa-
tion from more than half a million 40–69 year-olds. From this data set, only
participants with MR imaging data were considered for analysis. Furthermore,
participants with non-Caucasian ethnicity, known cardiovascular disease, respi-
ratory disease, diabetes, hyperlipidaemia, haematological disease, renal disease,
rheumatological disease, malignancy, symptoms of chest pain or dyspnoea were
excluded.

MR imaging was carried out on a 1.5T scanner (Siemens Healthcare,
Erlangen, Germany) [11]. Short-axis (SA) stacks covering the full heart, and
two orthogonal long-axis (LA) planes (2-chamber (2Ch) and 4-chamber (4Ch)
views) were available for each subject (TR/TE = 2.6/1.10ms, flip angle = 80◦).
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In-plane resolution of the SA stack and LA images was 1.8mm, with slice thick-
ness of 8mm and 6mm for SA and LA respectively. 50 frames were acquired
per cardiac cycle (temporal resolution ≈14–24 ms/frame). In addition, the fol-
lowing non-imaging parameters were used for the statistical analysis: age, smok-
ing status (smoker/non-smoker), body mass index (BMI), body fat percentage
(BFP), basal metabolic rate (BMR), hypertension and alcohol intake frequency
(occasionally/regularly). Demographics of the analysed cohort are presented in
Table 1.

Table 1. Baseline characteristics for the healthy cohort from the UK Biobank data set.
All continuous values are reported as mean (SD), while categorical data are reported
as number (percentage).

Total

Number of participants 6002

Male gender (n(%)) 3046 (50.8%)

Age(years) 61 (8)

Body mass index (BMI) (kg/m2) 26.4 (4.2)

Body fat percentage (BFP) (%) 28.2 (7.7)

Basal metabolic rate (BMR) (KJ) 6650.1 (1324.9))

Smokers (n(%)) 1011 (38.2%)

Regular alcohol intake (n(%)) 1407 (48.9%)

Hypertension (n(%)) 2903 (48.4%)

Ejection fraction (EF)(%) 59.2 (6.3%)

3 Methods

In the following Sections we describe the estimation and analysis of the atlas-
based motion descriptors. Details of the atlas formation procedure are reported
in Sect. 3.1. Section 3.2 details the quality control (QC) strategies proposed.
Section 3.3 describes the different dimensionality reduction algorithms used to
characterise cardiac function. Section 3.4 presents the statistical methods used
to identify relationships between the motion descriptors and non-motion clinical
information.

3.1 Motion Atlas Formation

This section outlines the procedure used to build the motion atlas, which is based
on the work published in [1] and [10].

LV Geometry Definition. A fully-convolutional network (FCN) with a 17
convolutional layer VGG-like architecture was used for automatic segmentation
of the LV myocardium and blood-pool at end-diastole (ED) for SA and LA slices



Learning Associations 97

[2,14]. Each convolutional layer of the network is followed by batch normalisation
and ReLU, except the last one, which is followed by the softmax function. In
the case of the SA stack, each slice is segmented independently, i.e. in 2D. From
the segmentations, a bounding box was generated and used to crop the image
to only include the desired field of view, improving pipeline speed and reducing
errors in motion tracking. The MR SA and LA segmentations were used to
correct for breath-hold induced motion artefacts using the iterative registration
algorithm proposed in [14]. The motion-corrected LA/SA segmentations were
fused to form a 3D smooth myocardial mask. An open-source statistical shape
model (SSM) was optimised to fit to this LV binary mask following an initial
rigid registration using anatomical landmarks [1]. The use of landmarks ensured
that the LV mesh was aligned to the same anatomical features for each patient,
and the endocardial and epicardial surfaces of the mesh were smoothly fitted to
the myocardial mask, providing surface meshes with point correspondence for
each of the subjects and a 17 AHA regions segmentation.

Motion Tracking. A 3D GPU-based B-spline free-form deformation (FFD) was
used [13] to estimate LV motion between consecutive frames. Subsequently, the
inter-frame transformations were estimated and then composed using a 3D + t
B-spline to estimate a full cycle 3D + t transformation.

Spatial Normalisation. Similar to [10], we transform each mesh to an unbiased
atlas coordinate system using a combination of Procrustes alignment and Thin
Plate Spline transformation. We denote the transformation for each subject n
from its subject-specific coordinate system to the atlas by φn.

Medial Surface Generation. A medial surface mesh with regularly sampled
vertices (≈ 1000) was generated from the SSM epicardial and endocardial meshes
using ray-casting and homogeneous downsampling followed by cell subdivision.

Motion Reorientation. The displacements (un) for each subject n were reori-
ented into the atlas coordinate system under a small deformation assumption
using a push-forward action: uatlas

n = J(φn(rn))un [10], where J(·) refers to the
Jacobian matrix, and rn are the positions of the vertices in the ED frame.

Transform to Local Coordinate System. For each subject n the displace-
ments in the atlas coordinate system uatlas

n were projected onto a local cylindri-
cal coordinate system xatlas

n , providing radial, longitudinal, and circumferential
information. The long axis of the LV ED atlas medial mesh was used as the
longitudinal direction.

3.2 Quality Control

To ensure that the atlas was formed only from subjects with high quality cine MR
images and robust motion descriptors, two QC methods were implemented to
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automatically reject subjects with insufficient quality or incorrect segmentations
and/or motion tracking. These two methods are:

QC1. SA images with insufficient image quality were excluded using two deep
learning based approaches. First the 3D convolutional neural network (CNN)
described in [8] was used to automatically identify images with motion-related
artefacts such as mistriggering, arrhythmia and breathing artefacts. Second, sub-
jects with incorrectly planned 4Ch LA images were automatically excluded using
the CNN described in [9]. This pipeline identified images containing the left ven-
tricular outflow tract, which is a common feature of poorly planned 4Ch images.
A total of 806 subjects were rejected using the QC1 step.

QC2. Our second QC measure aimed to detect segmentation and/or motion
tracking errors. LV volume curves over the cardiac cycle were computed based on
the LV geometry and motion fields. Based on these curves, an automatic pipeline
was used to identify curves with unrealistic properties. The LV curve was divided
into diastole and systole based on the ED and end-systolic (ED) points, where
ED corresponds to the point with maximum volume, and ES corresponds to the
point with minimum volume. These two curves were treated independently. In
the systole part of the curve, the downslope should be smooth and continuous
and therefore the first derivative should only contain one peak. Cases with more
than one (automatically identified using the first and the second derivative of
the LV curve) peak were therefore excluded. In the diastole part the curves were
divided into rapid inflow, diastasis and atrial systole phases. In the rapid inflow
phase the upslope should be smooth and continuous and the first derivative
should only contain one peak. Cases with more than one peak were therefore
excluded. In the diastasis phase the curve should be flat and with no variation,
so the first and second derivatives were used to exclude any cases with changes of
volume higher than 10%. Finally, in the atrial systole phase the upslope should
be smooth and continuous and the first derivative should only contain one peak.
Cases with more than one peak were therefore excluded. The QC2 step excluded
a total of 64 cases.

3.3 Dimensionality Reduction

In this work, we propose to learn descriptors of cardiac function from the motion
atlas using dimensionality reduction techniques. More specifically, three tech-
niques were compared: Principal Component Analysis (PCA) [3], Locally Lin-
ear Embedding (LLE) [12], and stacked denoising autoencoders (SDA) [15]. To
form the inputs to these three algorithms, the local displacements per AHA
region were averaged and these were concatenated into a column vector such
that for subject n, xatlas ∈ R

L, where L = 3AT , T is the number of cardiac
phases and A is the number of AHA regions (17) in the atlas medial surface
mesh. The column vectors for each subject were combined to produce a matrix
X = [xatlas

1 , ...,xatlas
N ], where N is the number of subjects. The matrix X is
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the input for all of the proposed dimensionality reduction techniques, and the
output of all of them is a matrix D ∈ R

(d×N), where d is the size of the low
dimensional space.

3.4 Statistical Analysis

Multivariate statistics were used to find relationships between the low-
dimensional motion descriptors and non-imaging clinical information. For cat-
egorical variables (i.e. smoking status, hypertension and alcohol intake) a mul-
tivariate Hotelling's T 2 test (assuming unequal variance) [4] was used to test
for differences between groups, and the p-value was recorded. For continuous
variables (age, BMI, BFP, BMR) a multivariate regression was used to compute
the R statistic that measures the degree of relationship between the data. The
R statistic and associated p-values were recorded. All the recorded p-values were
adjusted using Bonferroni's correction for multiple tests.

Furthermore, we analysed the impact of using a cardiac motion atlas com-
pared to standard clinical global measures such as ejection fraction (EF), the
current most used clinical global measure of cardiac function. To this end, the
EF for each subject was computed from the tracked meshes. For categorical vari-
ables, similar to the previous case, a paired t-test (assuming unequal variance)
was used to test for differences between groups, and the p-value was recorded.
For continuous variables a linear regression was used to compute the R statistic
and the associated p-value. As before, all the recorded p-values were adjusted
using Bonferroni's correction for multiple tests.

4 Experiments and Results

For all of the proposed dimensionality reduction algorithms the number of dimen-
sions d retained was optimised. In the case of PCA, d was selected to retain 99%
of the variance; in the case of LLE a grid search algorithm was used to vary
d between 2 and 256 and the number of neighbours s was fixed to 10. Then,
d and s were selected to minimise the reconstruction error ε. Finally, SDA was
applied with 5 layers with size [L, 2000, 1000, 500, d], a learning rate of 0.001, a
corruption level of 50%, and number of epochs 500. The value of d was opti-
mised using a grid search between 2 and 256, and d was selected to minimise
the reconstruction error ε. For the three dimensionality reduction algorithms,
the optimised d were: dPCA = 932; dLLE = 32 and εLLE = 0.37 mm; dSDA =
50 and εSDE = 0.15 mm.

Table 2 shows the computed p-values with Bonferroni's correction and R
statistics for the different clinical data for the different dimensionality reduction
algorithms, and also using only EF as a motion descriptor. Bold numbers show
p-values less than 0.05 (i.e. that showed statistical significance at 95% confi-
dence). The results show that for all of the dimensionality reduction methods
there was no statistical significance for age and BMI, while BFP, BMR, smoking
status, hypertension and alcohol consumption are shown to be associated with
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cardiac function. Furthermore, the R statistics for BFP and BMR for all of the
non-linear dimensionality reduction algorithms are around 60%, which indicates
a clear linear relationship with the data. Using only EF we can see that there is
no statistical significance with any of the clinical information, and the R values
are lower compared to the use of the cardiac motion atlas. Non-linear dimen-
sionality reduction algorithms, i.e. LLE and SDA show lower p-values and higher
R statistics compared to linear PCA for all of the clinical information analysed.
For BFP, BMR, smoking status, hypertension and alcohol consumption, LLE
shows a better linear fitting, with slightly higher R statistics compared to SDA.
However, the difference between the two methods is not significant.

Table 2. Association of clinical information with estimated motion descriptors from the
atlas represented by computed p-values and R statistics using multivariate statistics.
The p-values and R statistics for EF were computed using paired t-tests and linear
regression respectively. Bold numbers show p-values after Bonferroni’s correction less
than 0.05, which are considered to be statistically significant at 95% confidence.

R statistics (%) p-value

PCA LLE SDA EF PCA LLE SDA EF

Age 48.45 49.03 56.11 39.67 0.31 0.29 0.28 0.38

BMI 45.19 57.47 59.83 25.87 0.20 0.16 0.18 0.31

BFP 48.22 64.20 64.63 23.98 0.05 0.03 0.05 0.68

BMR 55.67 64.60 55.84 21.96 0.05 0.01 0.04 0.21

Smoking 0.05 0.02 0.04 0.56

Alcohol 0.05 0.03 0.02 0.62

Hypertension 0.03 0.01 0.03 0.15

5 Discussion

In this work, we have demonstrated the derivation of motion atlas-based descrip-
tors of cardiac function and investigated their association with a range of clinical
information. This is the first time that a cardiac motion atlas has been formed
from a large number of subjects from the UK Biobank, and this has enabled
us to produce a framework for investigating factors influencing cardiac health.
We show that our method was able to identify factors known to impact cardiac
health (directly or indirectly), such as hypertension, smoking, alcohol intake and
body composition. Contrary to previous smaller studies, age was not related to
large changes in cardiac function. We were unable to assess whether the apparent
lack of association was influenced by a selection bias due to anticipated better
survival of healthy versus relatively unhealthy individuals, the relatively small
spread in ages (45–70) compared to other studies, the clustering of most partic-
ipants in the middle age range (55–65), or was a consequence of the dimension-
ality reduction algorithms. We will investigate these possibilities in future work.
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In addition, we demonstrated that the use of a cardiac motion atlas has added
value over using only global indicators such as EF. The proposed method repre-
sents an important contribution to furthering our understanding of the influences
on cardiac function. We used the selected categories as an illustration of the capa-
bilities of the atlas method. However, the univariate analysis that we performed
does not capture the complex interrelation of health factors, age and cardiac
function. Future work will focus on a deeper analysis of the impact of these
parameters and will also include further clinical characteristics. In this work,
displacements were used as a representation of cardiac motion. However, other
representations such as velocity and strain can characterise motion in different
ways. Our future work also includes extension of the motion atlas to incorporate
strain parameters. In conclusion, this work represents an important contribution
to furthering our understanding of the influences on cardiac function and opens
up the possibility of learning the relationships between motion descriptors and
further non-imaging information.
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